
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Miss-Optimized Memory Systems: Turning Thousands
of Outstanding Misses into Reuse Opportunities

Mikhail ASIATICI

Thèse n° 8050

2021

Présentée le 3 septembre 2021

Prof. E. Bugnion, président du jury
Prof. P. Ienne, directeur de thèse
Dr K. Vissers, rapporteur
Prof. V. Prasanna, rapporteur
Prof. G. Alonso, rapporteur

Faculté informatique et communications
Laboratoire d’architecture des processeurs
Programme doctoral en informatique et communications

Questions you cannot answer

are usually far better for you

than answers you cannot question.

— Yuval Noah Harari

To Maya, Mamiko, and my parents.

Abstract
Even if Dennard scaling came to an end fifteen years ago, Moore’s law kept fueling an exponential

growth in compute performance through increased parallelization. However, the performance

of memory and, in particular, Dynamic Random Access Memory (DRAM), has been increasing

at a slower pace for decades, making memory system optimization increasingly crucial. Con-

ventional solutions mitigate the issue by shifting as many memory accesses as possible from

off-chip DRAM to on-chip Static RAM (SRAM) memory, which has higher performance but lower

capacity. This is achieved by relying on spatial and temporal locality or on precise compile-time

information about the access pattern. However, when the access pattern is irregular and data-

dependent, these solutions are ineffective and the processing-memory gap grows even wider as

DRAMs themselves are optimized for sequential accesses.

In this thesis, we present a novel memory system for throughput-oriented compute engines

that perform irregular read accesses to DRAM. When accesses are irregular, we acknowledge

that obtaining a reasonable benefit from on-chip memory may be unrealistic; therefore, we

focus on minimizing stalls and reusing each memory response to serve as many misses as

possible without relying on long-term data storage. This is the same insight behind nonblocking

caches but on a vastly larger scale in terms of outstanding misses, which greatly increases

the opportunities for data reuse when accelerators emit a large number of outstanding reads.

Because we optimize miss handling rather than increasing hit rate, we call our architecture

miss-optimized memory system (MOMS).

We first focus on the microarchitectural level to show how a MOMS can support three orders of

magnitude more outstanding misses than a traditional nonblocking cache in a way that can be

efficiently implemented on Field-Programmable Gate Arrays (FPGAs). Once we maximize the

reuse of each individual word returned by the DRAM, we introduce two techniques to increase

the DRAM throughput. When the DRAM controller is optimized for burst requests, we group

incoming requests over multiple words that are requested as a burst. Conversely, when the

DRAM controller handles single requests efficiently, our MOMS reorders requests by DRAM

bank and row on a much larger scale than general-purpose DRAM controllers. We then discuss

techniques to use efficiently the vast amount of resources provided by multi-die FPGAs and

introduce two-level architectures which balance reuse maximization and contention of shared

hardware. Finally, we develop a graph processing accelerator backed by a MOMS. On three

algorithms on graphs with billions of edges and up to a hundred million nodes, our accelerator

outperforms the state-of-the-art on FPGAs and achieves higher performance per watt and unit

bandwidth than the state-of-the-art on CPUs and GPUs.

i

Abstract

Memory systems designers face increasing pressure to keep up with the compute engines

performance. Our results suggest that miss-optimized memory systems can help to reduce the

memory-processing gap where it is largest, that is, when accesses to memory are irregular and

difficult to serve from local buffers.

Keywords: DRAMs, nonblocking caches, MSHRs, bandwidth-bound, throughput-oriented,

FPGAs

ii

Sunto
Nonostante lo scaling di Dennard sia terminato quindici anni fa, la legge di Moore ha continuato

ad alimentare una crescita esponenziale delle prestazioni di calcolo attraverso una maggiore

parallelizzazione. Tuttavia, le prestazioni delle Dynamic Random Access Memories (DRAM)

è aumentata ad un ritmo più lento per decenni, rendendo l’ottimizzazione del sistema di

memoria sempre più cruciale. Le soluzioni convenzionali come le cache e gli scratchpad

mitigano il problema spostando il maggior numero possibile di accessi dalla DRAM esterna alla

memoria RAM statica (SRAM) interna, che ha prestazioni più elevate ma una capacità inferiore.

Ciò fa affidamento sulla località spaziale e temporale o su precise informazioni a tempo di

compilazione sulla sequenza di accessi in memoria. Tuttavia, quando tale sequenza è irregolare,

queste soluzioni si rivelano inefficaci e il divario elaborazione-memoria cresce ancora di più

poiché le DRAM stesse sono ottimizzate per gli accessi sequenziali.

In questa tesi, si presenta un nuovo sistema di memoria per acceleratori orientati al throughput

che eseguono accessi irregolari alla DRAM. Quando gli accessi sono irregolari, riconosciamo che

ottenere un beneficio ragionevole tramite buffering locale può essere irrealistico; ci si concentra

pertanto sulla minimizzazione degli stalli e sul riutilizzo di ogni risposta di memoria per servire

il maggior numero possibile di miss senza fare affidamento sullo stoccaggio di dati a lungo

termine. Questa è la stessa intuizione alla base delle cache non bloccanti, ma su una scala

molto più grande in termini di miss in sospeso, il che aumenta notevolmente le opportunità

di riutilizzo dei dati quando gli acceleratori emettono un gran numero di letture in sospeso.

Poiché si ottimizza la gestione delle miss piuttosto che aumentare i cache hits, chiamiamo la

nostra architettura sistema di memoria ottimizzato per le miss (miss-optimized memory system,

MOMS).

Nella prima parte della tesi si mostra ciò che, a livello microarchitetturale, permette ad un

MOMS di gestire tre ordini di grandezza in più di miss in sospeso rispetto a una cache non

bloccante tradizionale in una maniera che può essere implementata efficientemente su Field-

Programmable Gate Arrays (FPGAs). Si introducono quindi due tecniche per aumentare il

throughput della DRAM, utilizzando richieste burst o riordinando richieste singole su una scala

molto più grande rispetto ai controller DRAM general-purpose. In seguito, si introducono delle

linee guida per utilizzare in modo efficiente le FPGA multi-die e si presentano architetture a due

livelli che bilanciano la massimizzazione del riutilizzo dei dati ricevuti dalla DRAM e i conflitti

di accesso all’hardware condiviso. Si discute infine un acceleratore per elaborazione dei grafi

supportato da un MOMS e si dimostra che raggiunge prestazioni superiori rispetto allo stato

dell’arte su FPGA ed ha una maggiore efficienza per watt e per unità di banda passante rispetto

iii

Sunto

allo stato dell’arte su CPU e GPU nell’esecuzione di tre algoritmi su grafi con miliardi di archi e

fino a un centinaio di milioni di nodi.

I progettisti di sistemi di memoria devono affrontare una crescente pressione per tenere il passo

con le prestazioni dei motori di calcolo. I risultati esposti in questa tesi suggeriscono che i

MOMS possono aiutare a ridurre il divario memoria-elaborazione dove è più grande, ovvero

quando gli accessi alla memoria sono irregolari e difficili da soddisfare localmente.

Parole chiave: DRAMs, cache non bloccanti, MSHRs, bandwidth-bound, throughput-oriented,

FPGAs

iv

Acknowledgements
I am deeply grateful to all the people that made this long journey possible and enjoyable.

I sincerely thank my supervisor, Paolo Ienne, for entrusting me with a great deal of freedom

and at the same time providing continuous guidance, support, and encouragement. I learned

a lot from him at the technical, personal, and research level and I feel particularly lucky for

having had the chance to work with him. I would also like to thank the members of my thesis

committee, Gustavo Alonso, Edouard Bugnion, Viktor Prasanna, and Kees Vissers for finding the

time to review my work and for their valuable feedback.

I had the privilege to work with many great minds who helped me shaping my research direction.

I am very much obliged to Kristof Denolf, Kees Vissers, and Stephen Neuendorffer for exposing

me to interesting open industrial problems, including the application that inspired my research,

and for their feedback along the way. I am also grateful to Michael Adler for the insightful

discussions about memory-related challenges on FPGAs, and to David Novo, Gabriel Falcao, and

Dick Sites for their comments on my research.

During my PhD, I had the chance to do an internship at Microsoft Research in Cambridge, UK,

within Project Honeycomb. I would like to thank Junyi Liu and Aleksandar Dragojevic for giving

me the opportunity to explore the world of industrial research and for their valuable guidance.

I am very thankful to all of my colleagues at LAP—Ana, André, Andrea, Andrew, Aya, Chantal,

Grace, Lana, Nithin, Paolo, René, Sahand, Stefan—for the coffees, lunches, beers, outings, table

football games, and the countless other good times we had together. I am particularly grateful to

Andrea, Lana, Sahand, and my office mate Stefan for their friendship and support throughout

many years at LAP, to Nithin, for introducing me to FPGAs and for his precious guidance, and

to Chantal, for always being there to help with any problem, no matter what kind or how big. I

would also like to thank Joao and Gabriel, whose short visits were enough to leave many good

memories together.

I had great pleasure in working with many excellent interns, including Amna, Andrew, Aya,

Kushagra, Sena, Patryk, and my coauthors Damian and Gabor whose work had a significant

impact on my research.

A big thank you also to Raffaele, with whom I shared struggles and success since we first set foot

in a university back in Italy, all the way to EPFL, as well as Michele and Giuseppe.

Finally, none of this would have been possible without the support and love from my family, to

whom I express my deepest gratitude. I am forever indebted to my parents Andrea and Graziella

for their unconditional and endless support and for making me the person I am today. I am

eternally grateful to my wife Mamiko, for always encouraging me to push beyond my limits

v

Acknowledgements

and having believed in me even when I did not. Her support made it possible to overcome the

darkest moments and made the happiest news even more memorable. Last but not least, I am

forever grateful to my daughter Maya, who came into my life halfway through this journey, the

day after a paper submission deadline, for turning my world upside down and making me more

fulfilled that I could have ever imagined.

Lausanne, May 25, 2021 M. A.

vi

Contents
Abstract (English) i

Abstract (Italiano) iii

Acknowledgements v

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Memory-Computation Gap . 1

1.2 Limitations of Existing Solutions . 2

1.3 Opportunities for Data Reuse . 5

1.4 Pushing Nonblocking Caches to the Extreme . 6

1.5 Storing Requests Instead of Data . 7

1.6 Thesis Outline . 7

2 Background and Related Work 9

2.1 FPGA On-Chip Memory . 9

2.2 Nonblocking Caches . 10

2.3 DRAM Structure and Operation . 11

2.4 Reordering Memory Controllers . 14

2.5 Graph Processing . 15

2.6 Experimental Setup . 17

2.6.1 SpMV Accelerators . 17

2.6.2 FPGA Boards and Memories Specifications 18

2.6.3 Top-Level System Organization . 20

2.6.4 Platform Characterization . 21

3 From Tens to Tens of Thousands Outstanding Misses 27

3.1 Key Ideas . 27

3.1.1 Scalable MSHR Lookup and Storage . 27

3.1.2 Flexible Subentry Storage . 29

3.2 Detailed Architecture . 29

vii

Contents

3.2.1 MSHR Buffer . 30

3.2.2 Subentry Buffer . 31

3.2.3 Data Buffer . 32

3.2.4 Pipeline Efficiency and Throughput . 33

3.3 Experimental Results . 34

3.3.1 More Cache or More MSHRs? . 34

3.3.2 Number of MSHR Hash Tables and Stash Size 35

3.3.3 Subentry Organization . 36

3.3.4 Number of Outstanding Memory Requests 38

3.3.5 Resource Utilization . 39

3.4 Conclusion . 40

4 Increasing Available Bandwidth by Using Bursts 41

4.1 Key Ideas . 42

4.1.1 Generalizing MSHRs from Single Cache Lines to Variable-Length Memory

Areas . 42

4.1.2 Dynamically Adjusting Burst Bounds . 43

4.1.3 Minimizing Burst Invalidations . 45

4.2 System Architecture . 46

4.3 Evaluation . 48

4.3.1 Benefits of Dynamically Adjusting the Burst Length and Impact of Maxi-

mum Burst Length . 49

4.3.2 Architectural Exploration . 49

4.3.3 Detailed Speedup Profile . 51

4.3.4 Analysis of Burst Usage . 52

4.3.5 Resource Utilization . 53

4.4 Conclusion . 55

5 Increasing Available Bandwidth by Large-Scale Request Reordering 57

5.1 Key Idea: Where and How to Reorder? . 58

5.2 Row Conflict Reducer . 59

5.2.1 Row Address Buffer and Deallocation Queue 61

5.2.2 Column Address Buffer . 61

5.2.3 Output Buffer and Address Generator . 62

5.3 Evaluation . 62

5.3.1 Global Speedup and Impact of RCR Size . 63

5.3.2 Memory Bandwidth Utilization . 64

5.3.3 Speedup on Individual Benchmarks . 64

5.3.4 Resource Utilization . 67

5.4 Conclusion . 68

viii

Contents

6 Going Large: Multi-Die and Multi-Level Architectures 69

6.1 Spanning Over Multiple Dies Without Sacrificing Performance 69

6.2 Private and Two-Level MOMSes . 72

6.3 Evaluation . 74

6.3.1 Architecture Exploration . 74

6.3.2 Impact of Caches . 78

6.3.3 Contention on the Shared MOMS . 78

6.3.4 Resource Utilization and Operating Frequency 81

6.4 Conclusion . 82

7 Enabling Efficient Large-Scale Graph Processing 85

7.1 Limitations of the State-of-the-Art . 85

7.2 Key Ideas . 87

7.3 Graph Processing Model . 87

7.3.1 Graph Partitioning . 87

7.3.2 Programming Model . 88

7.3.3 Graph Encoding and Memory Layout . 90

7.4 System Architecture . 91

7.4.1 Top-Level Architecture . 91

7.4.2 PE Architecture . 93

7.4.3 Handling Efficiently Out-of-Order Responses 94

7.4.4 Node Reordering . 95

7.5 Evaluation . 96

7.5.1 Experimental Setup . 96

7.5.2 Architecture Exploration . 97

7.5.3 Preprocessing Cost and Impact . 100

7.5.4 Memory Bandwidth Scalability . 101

7.5.5 Impact of Caches . 102

7.5.6 Comparison with the State of the Art . 104

7.5.7 Resource Utilization and Operating Frequency 106

7.6 Conclusion . 107

8 Conclusions 109

8.1 A Cache for Throughput-Oriented Applications with Irregular Access Pattern . . 109

8.2 Exploiting Every Bit of Memory Bandwidth and FPGA Resources 110

8.3 Revisiting Caches for Graph Processing . 111

8.4 Future Perspectives . 112

8.5 Final Remarks . 114

Bibliography 115

Curriculum Vitae 127

ix

List of Figures
1.1 Forty-eight years of microprocessor trends . 2

1.2 DRAM capacity, bandwidth, and latency trends from 1999 to 2017 3

1.3 Roofline model definitions . 3

1.4 Impact of memory bandwidth and compute power scaling on the roofline model . 4

1.5 Impact of memory bandwidth variability on the roofline model 4

1.6 Spatial locality. Reuse count for each 512-bit block of data, for SpMV of pds-80 and

for the same number of read operations scanning sequentially the same memory

space. 5

1.7 Temporal locality. Fraction of 512-bit block references that have stack distance

≤ x, for SpMV of pds-80 and a sequential memory trace. 5

2.1 Structure of a nonblocking cache . 10

2.2 Structure of a DRAM bank with a single memory array 12

2.3 Overview of the DRAM hierarchy together with the multiplexers that are used

during read operations . 13

2.4 Example of memory command schedule . 15

2.5 Structure of our benchmark sparse matrix-vector multiplication accelerator 17

2.6 Multi-die partitioning of SpMV accelerator and MOMS on the AWS F1 FPGA . . . 20

2.7 Address mapping in our experimental platforms 22

2.8 Strided access pattern . 22

2.9 Bandwidth of the ZC706 PL memory system . 23

2.10 Bandwidth of the ZC706 PS memory system . 24

2.11 Bandwidth of the AWS F1 memory system . 25

3.1 MSHR-rich architectures for FPGAs . 28

3.2 Subentry organization in memory . 29

3.3 Top-level view of our MOMS . 30

3.4 Block diagram of the MSHR buffer . 31

3.5 Block diagram and operation of the subentry buffer 32

3.6 Retrieval of responses from the data buffer . 33

3.7 Area of the memory system and normalized execution time for all benchmarks

and a broad range of nonblocking cache architectures 35

3.8 Achievable MSHR storage load factor for several MSHR architectures 36

xi

List of Figures

3.9 Number of cycles lost due to stalls for collision resolution during the execution of

a uniformly distributed benchmark . 36

3.10 Average and maximum subentry utilization during the execution of ljournal with a

3×512 cuckoo MSHR . 37

3.11 Number of cycles lost due to subentry-related stalls 37

3.12 Number of external memory requests during the execution of ljournal with a 3×512

cuckoo MSHR and no cache . 37

3.13 Throughput as a function of ROB size, cache size, and benchmark 38

4.1 Total availability and utilization of DRAM-based external memory bandwidth

under short irregular access patterns . 42

4.2 MSHR memory range and structure . 43

4.3 Burst update policies . 43

4.4 Burst bounds update circuit . 45

4.5 Top-level view of the burst-based MOMS . 46

4.6 Block diagram and operation of the subentry buffer with variable-length bursts . . 47

4.7 Retrieval of responses from the data buffer . 47

4.8 Speedup obtained in MOMSes by sending bursts of memory requests compared to

single-request MOMSes, both with dynamically adjusted burst bounds and always

requesting full bursts . 49

4.9 Throughput of a traditional nonblocking cache, a single-request MOMS and

variable-length burst MOMS . 50

4.10 Throughput of traditional nonblocking cache, single-request MOMS and burst

MOMS on individual benchmarks for architectures where burst MOMSes have the

largest speedup compared to traditional caches . 51

4.11 Distribution of requested, used, and wasted cache lines per burst as a function of

the burst length, normalized by the total number of cache lines requested from

memory . 52

5.1 Impact of different miss-optimized architectures on the memory access pattern

and thus on DRAM bandwidth . 58

5.2 Top-level architecture of the MOMS with row conflict reducers (RCRs) 58

5.3 Architecture of an RCR . 59

5.4 Interpretation of memory addresses by the miss-handling logic and DRAM memory 60

5.5 Speedup of the RCR-based MOMS using the smaller and the larger RCRs across all

the benchmarks, compared to the single-request and variable-length burst MOMS 63

5.6 Fraction of requested and obtained DRAM bandwidth during the execution of all

benchmarks on all configurations, color-coded by MOMS architecture 65

5.7 Speedup provided by the RCRs on individual benchmarks, on a configuration

particularly favorable to RCRs . 66

5.8 Speedup provided by the RCRs on individual benchmarks, on a configuration

where the RCR-based MOMS is moderately competitive to the burst-based MOMS 66

xii

List of Figures

6.1 Layout of the placed-and-routed MOMS with 16 inputs and banks on the AWS F1

FPGA when no multi-die-aware design modifications and constrains are used . . 70

6.2 Inter-die crossing circuit for signals with handshake 71

6.3 Circuit that allow high-performance AXI4 connections that cross a die boundary

at the level of the Xilinx IP Integrator . 71

6.4 Structure of a two-level MOMS . 72

6.5 Structure of a private MOMS . 73

6.6 Throughput of the shared, two-level, and private MOMSes and traditional caches

presented in Table 6.1 . 76

6.7 Private reuse in private-only and two-level MOMSes 77

6.8 Shared reuse in shared-only and two-level MOMSes 77

6.9 Total reuse in private-only, shared-only, and two-level MOMSes 78

6.10 Impact of private and shared caches in private, shared, and two-level MOMSes . 79

6.11 Requested bandwidth at the shared MOMS crossbar output as a function of the

requested bandwidth at the accelerators output and at the crossbar input for the

16/16 shared and two-level MOMSes . 80

7.1 Performance of different memory systems when accesses are irregular 86

7.2 Example of interval-based graph partitioning . 88

7.3 Graph layout in memory . 90

7.4 Top-level system architecture . 91

7.5 Multi-die aware interconnect architecture for burst reads 92

7.6 Architecture of a PE . 93

7.7 Available MOMS interfaces . 94

7.8 Throughput on PageRank, SCC, and SSSP for different architectures 98

7.9 Throughput on SCC versus cache hit rate for the architectures shown in Figure 7.8 99

7.10 PageRank throughput on the 18/16 two-level MOMS architecture depending on

the preprocessing used . 100

7.11 Scalability of throughput as a function of the number of DDR4 channels for the

two-level 16/16 MOMS architecture and for PageRank on FabGraph 101

7.12 Detail of the hit/miss data paths from MOMS to accelerator 102

7.13 Throughput on SCC for the 16/16 two-level MOMS and traditional cache, with and

without shared cache . 103

7.14 Throughput on SCC for the 20/8 two-level MOMS and traditional cache, with and

without private and/or shared cache . 104

7.15 Comparison with state of the art on CPU, GPU, and FPGA 105

7.16 Relative utilization of resources for the top two architectures of each application 106

xiii

List of Tables
2.1 Properties of the benchmark matrices . 18

2.2 Specifications of the FPGAs used in our experiments. 19

2.3 Specifications of the external memory systems used in our experiments 19

3.1 Resource utilization of MOMSes and traditional cache with 16 MSHRs with 8

subentries each per bank, compared to the resource utilization of the rest of the

experimental system . 39

3.2 Resource utilization of the four-bank MOMS with 256 kiB cache as a function of

the number of MSHRs . 39

4.1 Resource utilization of MOMSes and traditional cache compared to the resource

utilization of the rest of the experimental system . 54

4.2 Resource utilization of the 16-bank MOMS on AWS F1 with 256 kiB cache, 3×512

MSHR, 8×4096 subentries per bank as a function of the maximum burst length . 55

5.1 Analogies and differences between MOMS miss handling and RCR memory request

handling . 60

5.2 Area utilization of the proposed solution and overhead compared to the baselines 67

6.1 Configurations evaluated in our experiments . 75

6.2 Resource utilization and clock frequency of the designs listed in Table 6.1 82

7.1 Examples of algorithm-specific parameters for Template 3 89

7.2 Benchmarks properties. 97

7.3 Preprocessing time in seconds. 100

7.4 Memory bandwidth and power consumption of the platforms considered in Fig-

ure 7.15 . 104

xv

1 Introduction

Since the inception of electrical computers 80 years ago, the available processing power has

been increasing at a tremendous pace. Between 1956 and 2015, the processing power available

on a single system has witnessed a 1-trillion fold increase [84] and the number of floating-point

operations that an Xbox One X from 2017 can perform in one second would take 190 years on

the Atlas, the fastest supercomputer in 1962 [96, 103]. Figure 1.1 shows that the number of

transistors in a single Central Processing Unit (CPU) has increased by a factor 107 in the past 48

years, which led to an exponential increase in single-thread compute performance until the end

of Dennard scaling around 2005 and, afterwards, of parallel cores in multicore CPUs.

1.1 Memory-Computation Gap

Memory capacity has also increased exponentially with time [39], although at a slower pace

than the number of processing cores [65]. However, the same cannot be said about bandwidth

and latency, as shown in Figure 1.2. While the number of transistors between 1999 and 2017

increased by 4,000× and the number of parallel cores between 2005 and 2020 by 100×, the

bandwidth of main memory only increased by a factor 20× and latency essentially stagnated.

The implications of this gap can be visualized in the roofline model [105], shown in Figure 1.3,

which shows the achievable performance in, e.g., Floating Point Operations per Second (FLOPS),

as a function of the operational intensity, i.e., the number of operations per byte read from

memory. While at high operational intensities the performance is limited by the processing

power of the compute engine, the bottleneck at low operational intensity becomes memory

bandwidth. Increasing the processing power shifts the horizontal ceiling up, while increasing

the memory bandwidth shifts the sloped memory ceiling leftwards. When the processing power

increases more quickly than memory bandwidth as in Figure 1.4, the intersection between the

two ceilings (ridge) shifts to the right. This means that the minimum arithmetic intensity that is

required to fully exploit a compute engine and achieve peak performance increases. Applications

where this condition is not satisfied are said to be memory-bound and are becoming more and

more common [105].

1

Chapter 1. Introduction

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 1.1 – Forty-eight years of microprocessor trends. The number of transistors in a CPU increased
by seven orders of magnitude; while the growth in single-thread performance and clock frequency has
slowed down or stopped since the mid-2000s, the number of parallel cores took over and increased by
two orders of magnitude in 15 years. Reprinted from Karl Rupp’s GitHub repository [86].

The examples introduced so far consider a single value for the memory bandwidth; however, in

the case of the Dynamic Random Access Memories (DRAM) which make up most of the main

memory market as of 2020 [92, 1, 100], this is a simplification. The actual DRAM bandwidth is

indeed heavily dependent on the access pattern, that is, the pattern of addresses that are sent to

the memory, as well as the granularity of each memory operation. Therefore, a more complete

roofline model defines a region where the memory bandwidth ceiling can be, depending on the

properties of the access pattern, rather than a single line, as shown in Figure 1.5. We will show in

Section 2.6.4 that the access pattern alone may decrease the memory bandwidth by up to 7×,

which can be compounded by another order of magnitude in the case of fine access granularity.1

As a result, for a broad range of operational intensities, access pattern and granularity will define

whether the application will be able to fully exploit the available compute resources or not.

1.2 Limitations of Existing Solutions

The most common way to increase memory bandwidth is to shift as many accesses as possible

to Static Random Access Memories (SRAMs), whose bandwidth is not only higher than that of

DRAMs but also insensitive to the access pattern. Since SRAMs have a larger area and a higher

price per bit than DRAM, memories based on the two technologies are usually combined in a

memory hierarchy. From the perspective of the compute engine, an ideal memory hierarchy

behaves as a memory that is as large as the DRAM but as fast as the SRAM: this is achieved by

1For example, for a common minimum access granularity of 512 bits, 32-bit irregular accesses can only use 1
16 of

each response

2

1.2. Limitations of Existing Solutions

Figure 1.2 – DRAM capacity, bandwidth, and latency trends from 1999 to 2017. Scaling efforts focused
on capacity, followed by bandwidth; latency remained mostly the same during 18 years. Reprinted from
Onur Mutlu’s presentation [72].

Memory-bound application

Compute-bound
application

Performance [GFLOPS]

1

2

4

1/2

1/4

1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational intensity [FLOPS/byte]

Bound based on peak performance

Bound based on memory bandwidth

Ridge

Figure 1.3 – Roofline model definitons. The roofline model provides a visual insight on the bottlenecks of
a kernel on a given platform. When the number of operations per transferred byte (operational intensity)
is high, the performance is limited by compute; conversely, memory bandwidth limits performance at
low operational intensities. Reprinted with modifications from Wikipedia [104].

serving as many memory accesses as possible directly from the SRAM while at the same time

migrating data from DRAM to SRAM as few times as possible.

Custom memory hierarchy design and automatic generation usually rely on access patterns that

are regular (scratchpads), have temporal and spatial locality (scratchpads, caches) or are at least

known at compile-time (memory banking and address scrambling) [3, 33, 18, 119]. When access

patterns are irregular and data-dependent and rewriting the application is not viable, designers

are left with maximizing memory-level parallelism (MLP) by generating enough outstanding

memory operations to at least make DRAM access fully pipelined. However, the throughput of

the memory system is still capped to one operation per cycle per DRAM channel, at best. This

imposes severe limitations on the amount of datapath parallelism that is worth implementing,

reducing the advantage of hardware specialization.

3

Chapter 1. Introduction

Performance [GFLOPS]

1

2

4

1/2

1/4

1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational intensity [FLOPS/byte]

increase in compute performance

increase in
memory bandwidth

Figure 1.4 – Impact of memory bandwidth and compute power scaling on the roofline model. If the peak
compute performance scales faster than the memory bandwidth, the ridge of the model shift rightwards,
meaning that the minimum operational intensity that makes the kernel compute-bound increases.

Performance [GFLOPS]

1

2

4

1/2

1/4

1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational intensity [FLOPS/byte]

Peak bandwidth

Acc
es

s p
at

te
rn

-d
ep

en
den

t r
eg

io
n

Actual bandwidth
range

Figure 1.5 – Impact of memory bandwidth variability on the roofline model. The bandwidth in common
external memories is heavily dependent on the access pattern; as a result, a particularly unfavorable
access pattern may turn a compute-bound kernel into a memory-bound one, wasting compute resources.

In fact, one operation per cycle per DRAM channel is only a theoretical bound: as discussed

in Section 1.1, the actual throughput is often significantly lower, especially when accesses are

irregular. If accesses are not only irregular but also narrow (such as 32- or 64-bit scalars), the

effective bandwidth gets reduced even further. Two separate mechanisms contributes to the

bandwidth degradation in those cases. Firstly, both DDR3 and DDR4 operate on bursts of eight

beats, normally of 64 bits each [47, 48], which results in a minimum access granularity of a full

512-bit burst. If accesses are narrower than the burst size, the remaining data returned from

memory will be discarded, wasting memory bandwidth and energy. In addition, serving uncorre-

lated streams of requests from multiple accelerators can only be done by time-multiplexing the

memory channel, canceling out any benefits due to parallelization when memory bandwidth is

the bottleneck. The only way to improve bandwidth utilization, and thus performance, would

be to use larger portions of each burst returned from memory.

The second mechanism relates to the organization of bits in DRAM: a few banks (8 and 16

for DDR3 and DDR4 respectively), each consisting of a two-dimensional array of capacitors.

4

1.3. Opportunities for Data Reuse

Reuse count

1
-2

3
-4

5
-6

7
-8

9
-1

0

1
1

-1
2

1
3

-1
4

1
5

-1
6

1
7

-1
8

1
9

-2
0

2
1

-2
2

2
3

-2
4

2
5

-2
6

2
7

-2
8

2
9

-3
0

3
1

-3
2

3
3

-3
4

3
5

-3
6

3
7

-3
8

3
9

-4
0

4
1

-4
2

0K

10K

20K

5
1

2
-b

it
 b

lo
ck

s

pds-80 sequential

Figure 1.6 – Spatial locality. Reuse count for
each 512-bit block of data, for SpMV of pds-80
and for the same number of read operations
performed sequentially over the same memory
range, wrapping back at the end. Despite show-
ing very different cache hit rates, both mem-
ory traces have similar amounts of data reuse
across the entire application execution.

1 10 100 1000 10000

Stack distance

0%

20%

40%

60%

80%

100%

Fr
a
ct

io
n
 o

f
re

fe
re

n
ce

s

pds-80 sequential

Figure 1.7 – Temporal locality. Fraction of 512-
bit block references that have stack distance ≤
x, for SpMV of pds-80 and a sequential memory
trace. A large fraction of the reuses that occur in
pds-80 are interleaved with references to many
different blocks. Blocks can be stored in a cache
hoping for future reuse; however, because large
stack distances are common, cache lines are
likely to be evicted before the next reuse, unless
a large cache is used.

Reading data involves first copying the respective row to the row buffer [47, 48], an operation

that has to be repeated every time a different row is accessed in the same bank. Since this

operation is time-consuming, the actual bandwidth decreases when accesses require switching

row frequently (row conflicts). DRAM controllers reorder memory requests to reduce the number

of DRAM row conflicts [82]; however, because general-purpose controllers must also minimize

latency, the internal request queues are relatively shallow and the optimization is possible only

for accesses close in time. More details on DRAM operation and on DRAM controllers are

provided in Section 2.3 and 2.4.

1.3 Opportunities for Data Reuse

To discuss the opportunities to increase the utilization of each 512-bit blocks received from

memory, Figure 1.6 shows the histogram of the number of reuses of 512-bit blocks for an

application with poor locality—accesses to the dense vector of 32-bit integers during sparse

matrix-vector multiplication (SpMV) with the pds-80 matrix from SuiteSparse [27] encoded

in Compressed Sparse Row (CSR) format. It also illustrates what would happen if the same

number of read operations were performed sequentially over the same address span—that is, if

instead of reading elements of the dense vector by following the sparsity pattern of the matrix,

we simply read the entire vector sequentially, wrapping back to the beginning when reaching the

end, until performing the same amount of read operations as in the first case. The sequential

access pattern achieves a 15/16 = 94% hit rate on any cache with 512-bit cache lines: the first

access to every cache line is a compulsory miss but the following 15 accesses hit on the same

cache line which has just been fetched. In contrast, we observed that the SpMV access pattern

only achieves a 57% hit rate on a 128 kiB direct-mapped blocking cache, despite having very

similar opportunities for reuse across the access pattern as a whole. This is because, in a cache,

5

Chapter 1. Introduction

eviction limits the time window where data reuse could occur. For the same two access patterns,

Figure 1.7 shows the cumulative frequency of stack distances, i.e., the number of different 512-bit

blocks that have been referenced between two consecutive references to the same blocks [20].

For example, for the memory trace: {389, 261, 124, 4938, 261, 389}, the stack distances for the last

access to blocks 261 and 389 are 2 and 3 respectively. While the stack distance of the sequential

pattern is always zero, the SpMV cumulative histogram grows very slowly, meaning that a large

fraction of reuses have large stack distance. With an ideal fully associative cache with N lines

and LRU replacement, reaccessing a cache line with stack distances larger than N will always be

a miss; on a realistic cache, even reuses with stack distance lower than N could be misses.

1.4 Pushing Nonblocking Caches to the Extreme

The previous example shows that even applications with poor temporal locality may still have

some spatial locality, which caches struggle to harness due to large stack distances between

reuses. Even worse, a blocking cache actually hampers performance if the hit rate is too low

to compensate for the stall cycles due to the misses. Nonblocking caches, described in detail

in Section 2.2, reduce stall penalties by handling a small number of misses without stalling. In

addition, they also group misses by cache line so that a single cache line request can be used to

serve all the respective misses. This is implemented by storing each in-flight cache line in a miss

status holding register (MSHR), each comprising multiple subentries that contain the offset and

source of the respective misses. This organization pushes the maximum MLP beyond the DRAM

latency and increases bandwidth utilization as long as there are available MSHRs and subentries

[68].

Indeed, adding an MSHR with its subentries enlarges the reuse window just like an extra cache

line: while a cache stores entire blocks hoping for future reuse, MSHRs and subentries keep track

of which portions of the blocks are actually needed. This way, as soon as a block is received, the

miss handling logic serves the block requests that have been accumulated and then discards the

block. With typical block and address sizes of hundreds and tens of bits respectively, the on-chip

memory cost of reusing a block is hundreds of bits if done using the cache or tens of bits per

reuse using MSHRs and subentries. This means that if the number of block reuses is greater than

one but sufficiently small, reusing it via MSHRs and subentries has a lower on-chip memory

cost than relying on the cache for the same purpose.

Nonblocking caches are extensively used in processors; however, MSHRs are usually searched

in a fully-associative structure to minimize latency, which limits their number to a few tens. In

practice, there is often little benefit in increasing the number of MSHRs beyond this limit on

realistic CPUs [64, 98]. On FPGAs, fully-associative searches are even less scalable than in ASICs;

yet, high-throughput massively parallel FPGA accelerators that generate a large number of

outstanding reads to hide memory latency [66, 23] could potentially benefit from an MSHR-rich

architecture even more than a general-purpose processor.

6

1.5. Storing Requests Instead of Data

1.5 Storing Requests Instead of Data

This thesis is based on the observation that serving a request (1) by using data that is in cache

or (2) by reusing a block that has been already requested to serve another miss have the same

impact on throughput. This means that, when latency is irrelevant, both are equally beneficial to

performance. While both mechanisms can satisfy the request without generating extra memory

traffic, thus without adding pressure to the memory bottleneck, the latter requires less on-chip

memory when reuse exists but is limited. Indeed, reusing an in-flight cache line only requires

storing some miss metadata until the data returns from memory as opposed to keeping the

entire cache line as long as possible in the cache array.

1.6 Thesis Outline

After covering some background and related work on nonblocking caches, DRAM memories,

and graph processing in Chapter 2, we discuss in Chapter 3 how to scale up the MSHR array by

three orders of magnitude. Doing so maximizes the probability for a miss to target a cache line

whose request has been already sent out or at least queued.2 We show that repurposing some

on-chip memory from cache to MSHRs generally proves to be beneficial, especially when the

DRAM controller exposes the entire DRAM burst through a wide data port and provides enough

bandwidth even to single requests.

When DRAM controllers instead have multiple narrow ports, which is common on SoC platforms,

or are heavily optimized for bursts and individual accesses cannot be fully pipelined, optimizing

the reuse of individual memory requests is generally useful but leaves some performance on the

table. To address these scenarios, in Chapter 4 we show how to extend MSHRs to support bursts

of variable length on the memory side. When possible, we make bursts longer and exploit more

of a DRAM burst or row without being limited to the data width exposed by the specific memory

controller. Conversely, when spatial locality is insufficient, we keep burst short and minimize

contention in the controller or avoid requesting unnecessary DRAM bursts. Requesting bursts

extends the scope of MOMSes to memory controllers with narrow ports or where single accesses

are heavily penalized compared to burst accesses. In addition, bursts make accesses locally more

sequential which, based on our memory characterization in Section 2.6.4, generally increases

the total bandwidth that the memory can deliver.

Extending MSHRs to support bursts only requires minor modifications to the MOMS architec-

ture; however, this simplicity comes with limitations in the way the generated bursts cover the

data requested by the accelerators. In particular, the MOMS may end up requesting data that

is not needed, which may account for up to 40% of the data received from memory, a fraction

that is sometimes high enough to offset the bandwidth gains provided by bursts. To overcome

these limitations, we observe that in order to gain visibility over a large number of incoming

2In other words, to increase the probability that new misses will be secondary rather than primary, using terms
that will be introduced in Section 2.2.

7

Chapter 1. Introduction

requests with minimal stalls, MOMSes also need a deep output queue for memory requests. As

a byproduct, this deep output queue also gives MOMSes access to thousands of future memory

requests. In Chapter 5, we discuss how to use this information to explicitly reorder individual

memory requests across a window that is three orders of magnitude larger than that of a typical

DRAM controller. We show that, on controllers where single accesses are not significantly penal-

ized over bursts and where we have control on the DRAM command scheduling policy, we can

reduce DRAM row conflicts without incurring in the data wastage associated with bursts.

After maximizing the achievable DRAM bandwidth on a single DRAM channel, in Chapter 6 we

address the challenges associated to scaling our MOMS over multi-die FPGAs with larger DRAM

bandwidth, allowing us to achieve high resource utilization and operating frequency on large

FPGAs. We then tackle the main internal bottleneck of our original MOMS architecture, where all

requests are handled by a single shared MOMS, which provides high reuse but is susceptible to

high contention. Therefore, we additionally explore private MOMSes, which group requests on a

per-accelerator basis with no interaccelerator conflict, and two-level MOMSes, which combine

the advantages of private and shared MOMSes.

With MOMSes now able to maximize both DRAM bandwidth and FPGA resource utilization, in

Chapter 7 we show how they can make FPGAs key enablers for large-scale graph processing in

the cloud, achieving higher performance than CPUs and better energy and bandwidth efficiency

than GPUs without the high NRE costs and long development times typical of ASICs. Finally, in

Chapter 8 we conclude and outline possible directions for future research.

8

2 Background and Related Work

After reviewing the main properties of the various on-chip memories available in modern FPGAs

in Section 2.1, we provide some background on nonblocking caches in Section 2.2, on DRAM

memories and controllers in Sections 2.3 and 2.4 respectively. We then provide some definitions

and present the state-of-the-art of graph processing on CPUs, GPUs, FPGAs, and ASICs in

Section 2.5 and conclude the chapter with a detailed presentation and characterization of our

experimental setup in Section 2.6.

2.1 FPGA On-Chip Memory

Modern FPGAs have at least three types of on-chip memory: flip flops, LUTRAM, and block

RAM (BRAM). Each bit of flip flop-based memory is exposed to the FPGA fabric, providing

the highest flexibility in terms of number, type, and width of memory ports and the largest

bandwidth. However, flip flop bits are the least abundant and some LUTs must be consumed

to implement their access logic. LUTRAMs use LUTs to realize single-, dual-, or quad-port

memories with medium depth (32-64 entries). However, they compete with combinational

logic for LUTs. BRAMs are dedicated memory resources implemented as hard logic. They

provide higher memory density than LUTRAMs and do not require any soft logic; however, they

generally provide only two ports and are optimized for narrow and deep memory arrays (at

least 512 entries). The most recent FPGA families offer an additional type of on-chip memory

(UltraRAM/URAM [112] and eSRAM [43] in Xilinx and Intel FPGAs respectively) with even higher

density and lower design flexibility than block RAMs—for example, Xilinx’s URAM blocks can

only be configured as 72-bit wide, 4,096-entry deep memories, while Intel’s eSRAM has a fixed

topology with 8 channels, each with up to 42 72-bit wide, 2,048 entry-deep banks, and have a

minimum read latency of 10 cycles as opposed to 1-cycle of the finer memory blocks (M20K and

MLABs). Therefore, the challenge is to use URAM/eSRAM as much as possible when available,

followed by block RAM, LUTRAM, and flip flops.

9

Chapter 2. Background and Related Work

valid tag subentries

cache

request

miss offset, ID

tag

external
memory

data

response

hit data

[m1] [h1]

[m2]

[m3]
[m4a]

[m4b]

[h2]

=
=
=
=

MSHR
array

Figure 2.1 – Structure of a nonblocking cache. On a hit (steps [h1]-[h2]), it behaves just like any cache.
On a miss (steps [m1] to [m4]), the miss address and source/ID is stored in an MSHR [m2]. Only on the
first miss to a particular cache line, a memory request is additionally generated [m3]. When the cache
line data is received from memory, it is stored in the cache [m4a] and used to respond to all its pending
misses [m4b].

2.2 Nonblocking Caches

The first nonblocking (lockup-free) cache, proposed by Kroft in 1981 [56], introduced the idea of

using miss status holding registers (MSHRs) to keep track of multiple in-flight misses. Farkas

and Jouppi [31] evaluate a number of alternative miss handling architectures (MHA) for loads

and observed that (1) nonblocking caches can reduce the miss stall cycles per instruction by a

factor 4 to 10 compared to blocking caches, (2) that they are beneficial even for large cache sizes,

and (3) that overlapping as many misses as possible allows processors to maximize the benefit

provided by nonblocking caches.

Figure 2.1 shows the organization of a typical nonblocking cache based on explicitly-addressed

MSHRs, which is among the architectures proposed by Farkas and Jouppi [31] and that today is

a de facto standard in industry [37]. In addition to the cache array, a nonblocking cache contains

an array of MSHRs, which keeps track of the in-flight misses. Each MSHR refers to one missing

cache line and contains a valid bit, the tag of the cache line and one or more subentries to handle

multiple misses to the same cache line. On the first miss of a cache line (a primary miss), the

address of the cache line is sent to memory and stored in an MSHR; the offset of the requested

word within the cache line, together with the request source/ID, is stored in a subentry for that

MSHR. Subsequent misses to the same cache line (secondary misses) only require the allocation

of a subentry on the same MSHR with no additional memory requests. When the missing cache

line is received, it is both stored in the cache and used to serve all of its pending misses [31].

Tuck et al. [98] introduced a novel MHA for single processor cores with very large instruction

windows. They propose a hierarchical MHA, with a small explicitly-addressed MSHR file for

each L1 cache bank and a larger shared MSHR file. MSHRs are explicitly-addressed and shared

MSHRs have more subentries than the dedicated ones. On a number of SPEC2000 benchmarks

running on a 512-entry instruction window superscalar single-core processor, dedicated files

with 16 MSHRs and 8 subentries and a shared file with 30 MSHRs and 32 subentries achieve

speedups that are close to those provided by an unlimited MHA. However, we believe that a

10

2.3. DRAM Structure and Operation

set of parallel accelerators is fundamentally different from a single-core processor even with a

large instruction window for two reasons: a) parallel accelerators with, for instance, decoupled

access/execution architectures [66, 23] could generate even more requests per cycle with no

fundamental limitations on the total number of in-flight operations, and b) unlike multicore

CPUs, requests to be merged can come from the same as well as a different accelerator, so

it is important to have a shared MHA to maximize the merging opportunities. Our results

throughout the thesis indeed show that, for parallel accelerators with massive MLP, thousands

of MSHRs paired to a small cache array or even no cache at all can achieve similar or even better

performance of larger caches with few MSHRs.

Gu and Chen [37] discussed the advantages of storing subentries in linked lists to accommodate

workloads with different ratios of primary and secondary misses in GPUs. We independently and

almost simultaneously proposed the same idea, which is discussed in detail in Section 3.1.2, as a

fundamental ingredient to massively scale up the number of MSHRs. While our implementation

is different as it is optimized for FPGAs and for a large number of MSHRs and subentries, we

essentially reach the same conclusions concerning the advantages of arranging subentries in

linked lists as opposed to statically allocating a fixed number of subentries to all MSHRs.

2.3 DRAM Structure and Operation

Dynamic random-access memories (DRAMs) use a single transistor-capacitor pair to store a

bit of information, as shown in Figure 2.2. This makes DRAMs more area-efficient, and thus

cheaper per bit, than SRAMs, where each bit usually requires a six-transistor (6T) cell. However,

the capacitor is not perfect and its charge leaks over time. Therefore, each memory cell must be

periodically read and rewritten, or refreshed [46]. We focus here on synchronous DRAMs and on

read operations as currently MOMSes do not optimize writes.

Alongside the schematic of a single cell, Figure 2.2 shows the structure of a typical DRAM bank.

Memory cells are organized in two-dimensional arrays, where each bit is identified by a row

and a column address. Reading a bit first involves precharging the bit lines to Vdd /2, which is

the average voltage between that of logic 0 and logic 1. Then, the row to be read is activated:

the row address decoder raises the voltage on the wordline corresponding to the row address,

which enables the access transistors of that row and connects each capacitor of the row to the

respective bit line. This results in a small voltage change ±δ on each bit line due to charge sharing

between the cell capacitor and the bit line capacitance, where the sign of the voltage change

depends on the bit that was stored on the capacitor. Such voltage changes are amplified by the

sense amplifiers in the row buffer, which latch the resulting logic levels and restore the charge in

each capacitor. Once a row is in the row buffer, individual bits can be accessed randomly with

high throughput and low latency using column accesses, essentially using the row buffer as a

cache. On the other hand, accessing a different row requires disabling the current word line,

followed by a new precharge and activation; all of these operations require extra time during

which no data transfers may occur from the DRAM array [46].

11

Chapter 2. Background and Related Work

Memory
array

R
o
w

 d
e
co

d
e
r

Sense amplifiers/
Row buffer

Column decoder

DRAM

word line

b
it

 l
in

e

capacitor

access
transistor

Memory cell

Data I/O buffer

...

...

column
address

row
address

...

Figure 2.2 – Structure of a DRAM bank with a single memory array. One bit of data is stored at every
intersection between bit (columns) and word (row) lines. A single row is first activated and latched by the
sense amplifiers; once there, column accesses can be performed to read individual bits. Reprinted with
modifications from the book of Jacob et al. [46].

To improve performance, DRAMs implement parallelism at different levels, summarized in

Figure 2.3. Multiple arrays can either share address and control signals or operate more or less

independently from each other. The first solution is typically used to increase throughput by

reading multiple bits with each column access: this has low area overhead but coarsens the

granularity of each column operation. Typical DRAMs also implement multiple banks, which

is the entire structure shown in Figure 2.2 (possibly with multiple memory arrays sharing the

address and control signals). Banks within a DRAM chip are identified by a bank address and

while they share the other I/O lines (row/column address, data, and control), they can mostly

operate independently from each other. This allows to pipeline memory operations: for example,

one bank may service a column access on a row that is already activated while another bank is

precharging. A chip with one or more banks can be organize in a rank to operate in lockstep

and further increase the size of each transfer by concatenating the respective data lines while

sharing all the other signals, similarly to having multiple arrays in a bank. Multiple ranks, each

identified by a dedicated chip select, can coexist within the same DRAM channel, which is the

highest level in the DRAM hierarchy. While the I/O pins of devices in a DRAM channel are

either shared or related to each other (such as the data pins in a rank, which are obtained by

concatenating the data I/Os from each chip), different DRAM channels have no common signals

and are completely independent from each other [46].

The complexity of DRAMs is not restricted to topology but also on its interface as even the

simplest memory operations, such as reading or writing some data, require multiple commands

such as bank precharge, row activation, and column access, while also periodically refreshing

12

2.3. DRAM Structure and Operation

...

...

...

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

...

...

...

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

...

...

rank

...

...

...

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

...

...

...

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

Data I/O buffer

Sense amplifiers/
Row buffer

Column decoder

...

...

chip bank

arrays

address data

...

channel

commands chip select

bank address

column
address

ro
w

 a
d
d
re

ss

Figure 2.3 – Overview of the DRAM hierarchy together with the multiplexers that are used during read
operations [46, 72]. Each channel has an independent address, command, and data bus and can be
composed of one or multiple ranks, which are enabled based on the chip select signals. A rank consists of
multiple chips that operate in lockstep; the data output of a rank is obtained by concatenating the output
of each chip. Each chip contains multiple banks, addressed by the bank address portion of the address,
which operate independently from each other. Each bank in turn typically contains multiple arrays so
that each column access retrieves multiple bits.

the memory array. Such commands must obey tens of device-dependent timing constraints to

ensure proper operation: for example, activation cannot be started until the bit lines reach the

proper precharge voltage. Therefore, a DRAM controller is typically used to translate the simple

memory commands generated by the CPU, GPU, or accelerator into a sequence of legal, and

ideally efficient, DRAM commands [46]. Each DRAM controller is typically assigned to a single

DRAM channel; modern CPUs [97, 9] and GPUs [77] use on-chip DRAM controllers while, on

FPGAs, controllers can be either hardened [109] or in soft logic [108].

Fabrication processes for DRAM are optimized for density of memory cells, whose leakage must

be low enough and capacitance large enough to ensure data retention and integrity [46]. Unlike

in logic-optimized processes, high operating frequency is a secondary concern and indeed

the DRAM core frequency has not increased significantly since the first single data rate (SDR)

synchronous DRAMs standardized by JEDEC in the mid-90s. Memory bandwidth has been

increased by instead 1) transferring a new data on both clock edges (double data rate, DDR)

and 2) increasing the I/O clock frequency from the 100–200 MHz of the first DDR standard to

the 667–1600 MHz of DDR4. To match the throughput of the DRAM core to that of the I/Os, all

DDR standards use prefetching: each column access inside the DRAM is wider than the I/O data

interface and the data read is serialized out in multiple transfers. The prefetch depth has been

doubled at every DDR generation until DDR3, where it reached the value of eight, meaning that

each column access results in eight transfers across four I/O clock cycles on both clock edges.

Note that, on all DDR generations until DDR3, the minimum time between column commands

(tCCD) is such that multiple column accesses can be perfectly pipelined as long as they are all

row hits (i.e., they target a row that is currently active in one of the banks), leading to the ideal

throughput of one transfer per clock edge. If the trend continued, DDR4 would have needed a

13

Chapter 2. Background and Related Work

prefetch depth of 16; however, considering that most DDR modules have a data width of 64 bit,

this would have meant that the minimum access granularity (burst length) would have become

1,024 bits. On many processors, including x86 and ARM, this would have corresponded to two

cache lines, potentially leading to large data and bandwidth wastage when memory accesses

are irregular. Therefore, DDR4 maintained a prefetch depth of eight like DDR3 but introduced

the concept of bank group instead. While DDR3 has eight fully independent banks, DDR4 has

16 banks organized in four bank groups: column accesses on a given bank group take longer

than four I/O cycles and cannot be perfectly pipelined but column accesses on different bank

groups can be partially overlapped and thus achieve ideal throughput [94]. This allows DDR4

to preserve the same access granularity as DDR3 at the expense of a higher complexity of the

policies that the DRAM controller must implement to achieve high performance.

In general, prefetching has no significant drawbacks as long as the burst size does not exceed

the minimum access granularity which, for the CPUs that make up the majority of the market,

corresponds to a single 512-bit cache line. However, for application-specific accelerators that

perform short irregular memory operations (such as in sparse linear algebra or graph processing),

prefetching may cause significant data wastage if only a small fraction of each DRAM burst is

used. The key insight behind our MOMS is to use as much of each DRAM burst as possible,

even in those cases. We do so in a dynamic, transparent, and application-agnostic manner by

maintaining a large pool of short accesses and serve as many of them as possible with every

DRAM burst returned by the memory.

2.4 Reordering Memory Controllers

Due to the high complexity of DRAMs, generating a sequence of commands that is both legal and

efficient for an arbitrary input memory operation sequence is an active field of research. Rixner et

al. [82] first observed that processing memory operations in the same order as they are received

is often suboptimal and does not properly exploit bank-level parallelism, as exemplified in

Figure 2.4. Their first-ready, first-come, first-serve policy (FR-FCFS) prioritizes ready operations

such as column accesses to an active row (row hits) over older operations that would require

resources that are not available, such as a bank that is currently being precharged, or that

would make some resources idle. FR-FCFS is now a de-facto standard implemented by most

DRAM controllers [46], including those used in our experiments [109, 108]. A plethora of other

scheduling policies have been proposed [87, 83, 44, 73, 70, 46]; for instance, they try to balance

aggregated throughput and fairness in a multi-processor [54] or heterogeneous systems [99] or

to maximize bandwidth under real-time latency guarantees [36]. The general-purpose scenarios

targeted by those policies must optimize bandwidth together with latency and fairness, which

limits queues depth and aggressiveness of reordering. Our MOMS is application-agnostic but

targets throughput-oriented systems that can trade more cycles on the miss path and a longer

worst-case latency for greater bandwidth through deeper request reordering. In Chapter 4, we

propose a mechanism to extend MSHRs to handle multiple consecutive cache lines, which

will be requested as a burst. This can be seen as an implicit memory request reordering at

14

2.5. Graph Processing

Figure 2.4 – Example of memory command schedule required to serve the trace shown on the two vertical
axis, (A) with strictly in-order operation and (B) with memory command reordering. Reordering memory
commands results in a 3× lower latency thanks to a better utilization of the DRAM resources. Reprinted
from the publication of Rixner et al. [82].

the granularity of the number of cache lines handled by each MSHR (2–16) but across the

tens of thousands of simultaneous misses handled by the MOMS. In Chapter 5, we propose a

more explicit policy that groups single requests by DRAM row, effectively implementing a very

aggressive row hit-first policy over the thousands of requests naturally exposed by the MOMS.

2.5 Graph Processing

A graph G consists of a node or vertex set V and an edge set E of sizes N and M respectively.

We consider G to be a directed graph; undirected graphs can be handled by duplicating each

edge. In addition, we focus here on graph algorithms that associate a value to every node and

iteratively update them for a fixed number of iterations or until convergence.

Because graphs are the most effective data representation in a wealth of domains, including

social networks [59, 81], drug discovery, [95], genomics [17], and robot navigation [16], high-

performance graph processing is a very active area of research. While graph problems are usually

embarrassingly parallel, the main challenge of graph processing is overcoming the memory

bottleneck, which is particularly tight as memory access patterns are often irregular. Indeed,

graph processing frameworks typically iterate sequentially over either vertices or edges (and are

accordingly called either vertex- or edge-centric) but access the other set irregularly [28, 29]. In

Chapter 7, we show how MOMS can make FPGAs an attractive platform for large-scale graph

processing by tackling the memory bandwidth bottleneck with a lightweight preprocessing that

has linear complexity with respect to the number of edges. In the remainder of this section, we

15

Chapter 2. Background and Related Work

review the most representative approaches that have been proposed on CPUs, GPUs, FPGAs,

and ASICs.

On CPUs, GraphChi [60] is an out-of-core graph processing system that first introduced the

concept of shards to confine random accesses to a smaller range that can be cached in main

memory. X-Stream [85] introduced the edge-centric scatter-gather model, where edges are

streamed and do not need to be sorted but only partitioned. Frameworks for in-core processing

include GraphMat [93], Galois [75], and Totem [34], which also supports hybrid CPU-GPU

systems. On a dual-socket Intel Xeon E5-2695 v3 with 28 cores, 240 W TDP, and 136 GB/s of

memory bandwidth combined, Aasawat et al. [2] reported 1.3, 1.8, and 9.0 GTEPS for PageRank

on RMAT-24 for Galois, GraphMat, and Totem respectively. We achieve 1.8 GTEPS with half

the DRAM bandwidth and a 15× lower power. Both Galois and Totem only support graphs in

CSR format, where edges are sorted by source node. During preprocessing, Totem also sorts

edges by vertex degree. Our approach does not need any edge sorting but a faster linear-time

partitioning. GPOP [62] is a cache-, work-, and memory-efficient framework that also does not

require any edge sorting and achieves significant speedup over Ligra and GraphMat. When

running PageRank, SSSP, and SCC on the RV and FR benchmarks presented in Table 7.2, our best

architecture is 0.22–5.0× faster and 2.2–49× more energy efficient.

GPUs have a memory bandwidth (and a power budget) that is at least an order of magnitude

larger than that of FPGAs; however, it is challenging to fit the irregular workload and memory

accesses typical of graphs into the GPU SIMD execution model. One solution, adopted for

example by CuSha [53], is to rely on offline preprocessing to balance the workload and group

memory accesses, which can constitute a relevant overhead on graphs that are dynamic or used

only a few times [69]. While Gunrock [101] shifts this overhead to runtime, Tigr [76] uses a lighter

offline preprocessing to convert irregular graphs into equivalent, more regular ones. On a 21M-

and a 59M-node graphs, Tigr achieves at most 10% speedup on PageRank compared to Gunrock,

which is much lower than the 1.5–12× speedup that our system sports against Gunrock on the

same application.

ASICs offer an order of magnitude higher clock rate, density, and energy efficiency than FPGAs

[58] at the cost of significantly higher NRE costs and fabrication times. For example, Graphi-

cionado [38] achieves 4.5 GTEPS for PageRank and 0.2 GTEPS for SSSP on the RV graph with a

similar memory bandwidth as ours (we achieve 1.5 and 0.7 GTEPS respectively), while Graph-

DynS [116] achieves more than 85 GTEPS on RMAT-26 on an HBM whose bandwidth is only 8×
larger than that of our DDR4. Both solutions have a clock that is 4–5× faster than ours and use

significantly more on-chip memory than us: 64 MB and 32 MB compared to, at most, 9 MB.

On FPGA, FabGraph [88] represents the state-of-the-art of large-scale graph processing on

a single FPGA that only needs a linear-complexity preprocessing. Its extension, FabGraph+

[89], focuses on optimizing the PCIe transfer when the FPGA DRAM cannot store the entire

graph, a problem also tackled by FPGP [25] that is orthogonal to efficiently processing the graph

once in its dedicated DRAM. ForeGraph [26] uses a very similar model as FabGraph but also

16

2.6. Experimental Setup

Algorithm 1 Sparse matrix-vector multiplication (SpMV)

1: for r ← 0 to ROWS−1 do
2: out[r] ← 0
3: for i ← idx[r] to idx[r +1] do
4: out[r] ← out[r]+val[i]×vect[col[i]]

Reorder
buffer

col DMA

val DMA

row DMA
row

counter

FP
multiplier

FP
accumulator out DMA

+

vect offset

MOMS

Figure 2.5 – Structure of our benchmark sparse matrix-vector multiplication accelerator. Xilinx AXI DMAs
are used to stream all CSR vectors accessed sequentially. The values of the col array are used to compute
the addresses of the vector elements that are retrieved through our memory controller.

supports multi-FPGA processing. HitGraph [118] outperforms our system on RMAT-24 but not

on extremely sparse graphs like WT and, in addition, requires edges to be sorted by destination

node. Except for FPGP [25], whose BFS performance on TW is 1.7× less bandwidth efficient

than our more complex SSSP on the same graph, all of these works have only been tested in

simulation and do not address the challenges related to multi-die partitioning that affect modern

large FPGAs.

2.6 Experimental Setup

Our MOMSa is written in Chisel 3 and is fully parametric in terms of, e.g., number of inputs,

banks, number and organization of MSHRs and subentries, cache size and associativity, input

and output data size. Even though it has been evaluated on two Xilinx platforms (described more

in detail in Section 2.6.2), it is written in platform-independent RTL. We compiled it using Vivado

2017.4 for the experiments on the ZC706 platform and Vivado 2019.1 for the AWS F1 FPGA. In

the remainder of this section we will introduce the sparse matrix-vector accelerators and the

matrices that we used as a benchmark (Section 2.6.1) and then present the FPGA boards where

we ran our analysis, with special emphasis on the properties of the memory systems (external

DDR memories and respective controllers; Section 2.6.2) which we benchmark in Section 2.6.4.

2.6.1 SpMV Accelerators

As a benchmark, we implemented a simple accelerator for sparse matrix-vector multiplication

(SpMV), an important kernel in a broad range of scientific applications [11] and to which many

17

Chapter 2. Background and Related Work

Table 2.1 – Properties of the benchmark matrices we used. We found the stack percentiles [20] to be
a better predictor of performance than, e.g., sparsity. All vectors are of single-precision floating point
values. The number of columns corresponds to the vector size divided by 4 bytes and, except for pds-80
and rail4284, it corresponds to the number of rows.

benchmark
vector
size
(MB)

rows
(M)

non-zero
elements
(M)

stack distance percentiles

75% 90% 95%

amazon-2008 2.81 0.735 5.16 6 6.63k 19.3k
cit-Patents 14.4 3.78 16.5 91.1k 129k 151k
cont11_i 7.48 1.47 5.38 2 2 3
dblp-2010 1.24 0.326 1.62 2 348 4.68k
eu-2005 3.29 0.863 19.2 5 26 69
flickr 3.13 0.821 9.84 3.29k 8.26k 14.5k
in-2004 5.28 1.38 16.9 0 4 11
ljournal 20.5 5.36 79.0 19.3k 120k 184k
mawi1234 70.8 18.6 38.0 20.9k 176k 609k
pds-80 1.66 0.129 0.928 26.3k 26.6k 26.6k
rail4284 4.18 0.004 11.3 0 13.3k 35.4k
road_usa 91.4 23.9 57.7 31 601 158k
webbase_1M 3.81 1.00 3.10 2 19 323
wikipedia-20061104 12.0 3.15 39.4 47.3k 105k 137k
youtube 4.33 1.13 5.97 5.8k 20.6k 32.6k

sparse graphs algorithms can be mapped [51]. Moreover, SpMV can easily generate a wide

range of access patterns depending on the matrix sparsity pattern. Our accelerator, shown

in Figure 2.5, is an almost direct implementation of Algorithm 1 for SpMV of a CSR-encoded

sparse matrix; we do not include any SpMV-specific optimizations as our controller aims for

a generic architectural solution for any applications with irregular memory access pattern.

Indices are 32-bit unsigned integers while values are single-precision floating point values.

All CSR vectors, accessed sequentially, are provided via AXI4-Stream through Xilinx AXI DMA

IPs; the dense vector, accessed randomly, is read through an AXI4-MM port connected to our

memory controller. The 8192-entry reorder buffer provides the vector values to the multiply-

accumulation pipeline, which is based on floating-point Xilinx IPs. We use the index vector to

clear the accumulator every time a new row begins, and the output vector is streamed to DRAM

through a DMA. Each accelerator can process one non-zero matrix element (NZ) per cycle; we

parallelize the SpMV by interleaving rows across multiple accelerators.

Table 2.1 shows the properties of our benchmark matrices, which are essentially the largest

benchmarks used in prior work on SpMV [11]. All benchmarks are available on SuiteSparse [27].

We use the stack distance, introduced in Section 1.3, to characterize the regularity of the access

pattern to the dense vector.

2.6.2 FPGA Boards and Memories Specifications

Table 2.2 and 2.3 shows the main properties of the FPGAs and the memory systems used in

our experiments. The ZC706 is an embedded board that contains a Zynq-7000 SoC with an

FPGA and two ARM cores. The SoC is connected to 1 GB of DDR3 on the processing sys-

18

2.6. Experimental Setup

Table 2.2 – Specifications of the FPGAs used in our experiments.

Platform ZC706 Amazon AWS F1

FPGA Zynq-7000 xc7z045 Virtex UltraScale+ xcvu9p
LUTs 218,600 1,182,000
Flip-Flops 437,200 2,364,000
DSPs 900 6,840
36 kib BRAMs 545 (2.4 MiB) 2,160 (9.5 MiB)
URAMs 0 960 (33.8 MiB)
Dices 1 3

Table 2.3 – Specifications of the external memory systems used in our experiments. Section 2.6.4 provides
more information on the peak bandwidth measurements.

Platform ZC706
AWS F1

Memory controller PS PL

Memory technology and speed DDR3-1066 DDR3-1600 DDR4-2133
Total size (GiB) 1 1 64
DDR IO data width (bits) 32 64 64
Memory channels 1 1 4
Controller ports 5 (4 HP, 1 ACP) 1 4 (1 per channel)
Controller data width (bits) 64 512 512
Controller clock frequency (MHz) 150 200 250
Peak measured bandwidth (single accesses, GiB/s) 0.93 8.3 29.8
Peak measured bandwidth (any burst length, GiB/s) 3.9 11.7 55.7

tem (PS) side through the ARM hardened memory controller and 1 GB of DDR3 on the pro-

grammable logic (PL) side. Being DDR3, both memories have eight banks: the PL memory

is a Micron MT8JTF12864HZ-1G6G1 with 64-bit datapath, while the PS memory is a Micron

MT41J256M8HX-15E with 32-bit datapath. The PL memory controller is a Xilinx MIG [108],

which exposes a single, 512-bit wide port that sends full DDR3 eight-beat bursts. We measured

a peak bandwidth of 11.7 GiB/s with burst sequential accesses at 200 MHz. The PS memory

uses the ARM memory controller, which exposes it to the FPGA through five 64-bit ports [109],

although our measurements showed that the four HP ports running at 150 MHz are enough to

saturate its 3.9 GiB/s bandwidth.

Both memory controllers use bank interleaving [46] and implement memory access reordering

[109, 108]. On the PL controller, requests targeting the same bank and row must be within eight

or less requests apart in order to inhibit bank precharge [108]. The PS controller, instead, picks

requests from a 32-entry CAM “to maximize DDR memory access efficiency” and keeps rows

open until another row from the same bank is required [109]. On the other hand, the FPGA sys-

tem available on the Amazon AWS F1 instances consists of a Virtex UltraScale+ FPGA connected

to four DDR4-2133 memories controlled by Xilinx MIG controllers beyond an undocumented

memory system in the encrypted AWS shell [5]. Because the maximum number of outstanding

reads per channel is limited to about half of the average number of cycles of latency, the quoted

peak bandwidth of 55.7 GiB/s can only be achieved using bursts of length two or larger; if only

single requests are used, the maximum measured bandwidth drops to 29.8 GiB/s.

19

Chapter 2. Background and Related Work

4 banks

cr
o
ss

b
a
r

12 accelerators

4 accelerators

A
X

I
S
M

C

from DMAs

DDR0

A
X

I
S
M

C
A

X
I
S
M

C

DDR1

DDR2

A
X

I
S
M

C

DDR3

A
X

I
S
M

C

A
X

I
S
M

C

from MOMS

A
X

I
S
M

C
A

X
I
S
M

C

DDR1

DDR2

DDR0

AXI
SMC

AXI
SMC

A
X

I
S
M

C

A
X

I
S
M

C

DDR3

from MOMS

from MOMS

from MOMS

MOMS floorplanning and
irregular read network DMA network

Top die

Central die

Bottom die

Figure 2.6 – Multi-die partitioning of SpMV accelerator and MOMS on the AWS F1 FPGA. The thick lines
represent the die boundaries. For the sake of clarity, the irregular read and DMA networks are shown
separately even though they are implemented simultaneously side by side. Each memory channel is
shared among four MOMS banks and the DMAs of four accelerators using an AXI SmartConnect.

2.6.3 Top-Level System Organization

On the ZC706 board, we consider two different configurations, which we take as representative

of realistic use cases in commercial FPGA systems. In the PL system, the dense vector is stored in

the PL DDR while sequential vectors are read from the PS memory; the opposite is done in the

PS system. In the PL system, it is the highest performing memory, exposed through a single, wide

port, that is accessed irregularly. Since the PL DDR is often the system bottleneck due to the

irregular accesses, we maximize its bandwidth by operating at 200 MHz. Ultimately, the system

throughput is limited to ≈2.4 multiply-accumulations (MACC) per cycle by the bandwidth of

the PS memory that hosts the sequential vectors. Therefore, four accelerators and four banks

are enough to saturate it. On the PS system, the sequential accesses on the PL DDR allow up to

≈8 MACC/cycle, while the PS DDR limits the throughput to ≈6.5 (150 MHz) or ≈4.9 (200 MHz)

MACC/cycle if each 32-bit word returned by the PS DDR is used exactly once (which, we found,

is often an optimistic assumption). Since the performance is always limited by the PS DRAM

whose bandwidth does not increase past 150 MHz, we ran the system at 150 MHz. This eases

timing closure and allowed us to implement eight accelerators and eight banks connected to the

four 64-bit HP ports.

Compared to the ZC706 FPGA, the AWS F1 FPGA contains 5.4× more CLBs (LUTs and FFs), 4.0×
more BRAM blocks, and 33.8 MiB of URAM. In addition, the external memory bandwidth is 3.5×
larger that of the ZC706. However, 25% of those resources are locked in FPGA regions reserved

to the AWS shell and thus unavailable to the designer. The remaining 75% are spread unevenly

among three dices (or Super Logic Regions in Xilinx’s terminology) as only the central and

bottom dices are partially occupied by the shell. The DDR4 controllers are also spread among

dices, with the top and bottom die hosting one controller each and two controllers in the central

die [6]. Because inter-die interconnects (Xilinx’s Super Long Lines or SLLs) are particularly scarce

20

2.6. Experimental Setup

and slow, achieving high resource utilization on multi-die devices is especially challenging and

needs to be explicitly taken care of during system design. In Chapter 6 we illustrate how the

MOMS modules and the accelerators have been assigned to memory controllers and dices, as

well as how we handled inter-die crossings, in order to achieve high performance and resource

utilization even on high-end multi-die FPGAs such as the one available on the AWS F1 instances.

As discussed in Section 2.6.2, the external memory bandwidth of the AWS F1 board is 3.5× larger

than that of the ZC706. Considering that the four memory channels are symmetric, we do not

artificially introduce any asymmetry and share all of them between DMAs and MOMS. Since

each MACC requires at least 12 bytes—one 32-bit value from each of the vectors val, col, and

vec, neglecting the 8 bytes per row of row and out—the maximum theoretical performance

with a DDR4 bandwidth of 55.7 GiB/s is of 19.9 MACC/cycle at the shell frequency of 250 MHz.

However, even though the AWS F1 FPGA offers more resources than the ZC706 one, they are

harder to exploit as they are spread unevenly among three dices and about 25% of them are

locked in FPGA regions reserved to the AWS shell. The DDR4 controllers are also spread among

dices, with the top and bottom die hosting one controller each and two controllers in the central

die [6]. In practice, achieving high performance and resource utilization requires to (1) spread

the logic as uniformly as possible among dices while (2) minimizing the number of die crossings,

under the constraints that (a) the top die has about 60% more resources than the other two

and (b) the central die has two memory controllers while the others have only one. In addition,

the sequential accesses performed by the DMAs (Figure 2.5) should be as balanced as possible

among memory channels.

Figure 2.6 shows the system organization that allowed the implementation of 16 accelerators and

16 banks running at 250 MHz. This is the highest performing system that we could implement,

which makes our experimental setup on the AWS F1 FPGA resource-bound—mostly due to the

AXI DMAs and fixed infrastructure, as discussed in Section 3.3.5—unlike the ZC706 that was

bandwidth-bound. We assign four accelerators’ DMAs to each of the four memory channels;

as a general rule, we generally assigned accelerators to the same die as the respective memory

channel, except for those that would end up in the central die, which have been moved to the

least congested top die. We discuss the generic multi-die guidelines that we elaborated for the

MOMS, as well as how we handled the inter-die crossings, in Section 6.1.

2.6.4 Platform Characterization

We characterize the three memory systems presented in Table 2.3 using strided access patterns,

whose properties are summarized in Figure 2.8. For a controller data width or word size W ,

the burst length B defines the number of consecutive words that are read with every access.

Since all of our controllers expose an AXI interface, W corresponds to the size of the AXI RDATA

signal whereas we set the AXI ARLEN as B −1. The stride S represents the difference between

start addresses of consecutive bursts in words of size W . Setting S = B results in a sequential

pattern without gaps, which is the pattern for which memory controllers are generally optimized

21

Chapter 2. Background and Related Work

0121112141529
subword

offset
row bank column

0231213151629

row bank column
subword

offset

02311161733 5678910

column[3]/autoprecharge

bank
group

column[2:0] subword
offset

bankcolumn[9:4]row

ZC706 PS

ZC706 PL

AWS F1

Figure 2.7 – Address mapping in our experimental platforms. We found that the row/bank/column
interleaving scheme generally provides the highest performance on our applications; the AWS F1 mapping
is set in the AWS shell and cannot be changed.

W ...

B

S

Figure 2.8 – Parameters that define the strided access pattern that we used to characterize the memory
systems in our experimental setups. It consists of bursts of B words of size W , which correspond to
the controller data width in Table 2.3, each starting at a distance of S words from the beginning of the
previous burst.

and through which we therefore expect to reveal the highest achievable throughput for a given

B . Increasing the stride produces a non-sequential and yet still intuitive pattern that provides

information on the bandwidth degradation as the access sequence deviates from the ideal one.

Figure 2.9a shows the bandwidth of the ZC706 PL memory controller for sequential access

patterns (S = B) as a function of B . Single accesses with B = 1 can only achieve 70% of the

theoretical bandwidth: this is due to the AXI SmartConnect between the memory controller and

the accelerator which limits the number of outstanding reads to 33 while the average memory

latency, at the controller frequency of 200 MHz, is of 45 cycles. As a result, the pipeline between

accelerator and memory can never be occupied for more than 73% of the cycles. On the other

hand, even bursts of size two are enough to saturate the bandwidth, achieving 97% of the

theoretical throughput (11.7 GiB/s or 12.5 GB/s), as 23 requests are now enough to fully utilize

the memory pipeline.

Figure 2.9b shows the bandwidth as a function of the stride for B = 1 to B = 4. For B ≤ 2,

the bandwidth remains stable to the highest value up to S = 64 which, given W = 64 bytes,

corresponds to 4 kiB. Considering the row/bank/column address mapping shown in Figure 2.7,

this means that the memory controller can completely hide the activate and precharge overheads

as long as there are at least two accesses per (row, bank) pair. For B = 4, the high-performance

regime extends up to S = 256 since every access carries more data that is fetched sequentially at

the highest throughput. For larger strides, the bandwidth gradually decreases until saturating at

its lowest value for S ≥ 1024, corresponding to 64 kiB, where only one bank is used and every

access is a row conflict. The gap between the two plateaus at low and high S is 7×, 5.4×, and

22

2.6. Experimental Setup

B
1 2 4 8

1
6

3
2

6
4

1
2

8

0

2

4

6

8

10

12

B
a
n
d

w
id

th
 (

G
iB

/s
)

S

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

0

2

4

6

8

10

12

B
a
n
d

w
id

th
 (

G
iB

/s
)

B
1

2

4

(a) (b)

Figure 2.9 – Bandwidth of the ZC706 PL memory system (a) for sequential accesses, as a function of B and
(b) for strided accesses, as a function of S. Single accesses can only achieve 70% of the peak bandwidth
due to a limitation on the number of outstanding reads. For a given B , the bandwidth is maximum for
S ≤ 64 and minimum for S ≥ 1024 due to bank parallelism and row conflicts.

3.2× for B = 1, B = 2, and B = 4 respectively and represents the bandwidth variability that can

be expected depending on the access pattern.

The multi-ported ZC706 PS memory controller has one more degree of freedom compared

to the PL one: the number of ports in use, from one to four. As a result, since all ports share

the same memory space on the same physical DDR3 controller and memory, the measured

bandwidth is also affected by inter-port conflicts. We set the same S and B on all ports and

the results appeared to be the least noisy when the address streams on the four ports started

from the same offset. Figure 2.10a shows the sequential bandwidth as a function of B and

parametrized by the number of input ports in use. Each 64-bit port has a theoretical bandwidth

of 1.14 GiB/s (1.20 GB/s) at 150 MHz, which is essentially saturated when up to three ports are

used, whereas on four ports the bottleneck becomes the 3.97 GiB/s (4.26 GB/s) DDR3-1066

bandwidth. The minimum B that achieved peak bandwidth is B = 4: indeed, when B < 4, the

burst length is smaller than the 256-bit DDR3 bursts, which suggests that the PS DDR3 controller

does not consider using the same DDR3 burst to serve multiple AXI requests even when they are

sequential. The bandwidth versus stride curves in Figure 2.10b when all four input ports are used

are more noisy than the corresponding curves for the PL controller due to inter-port conflicts.

Nevertheless, the curves become monotonically decreasing starting from S = 256 which, given

the PS address mapping shown in Figure 2.7, correspond to 2 kiB or half the size of a DRAM

row, as it was the case for the PL controller. The bandwidth reaches its minimum for S = 4096

and then stabilizes for S ≥ 8192; since all accesses for S ≥ 4096 are row conflicts and should be

served at an equally low performance irrespective of S, and since this is the only memory system

23

Chapter 2. Background and Related Work

B
1 2 4 8

1
6

3
2

6
4

1
2

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
a
n
d

w
id

th
 (

G
iB

/s
)

S

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
a
n
d
w

id
th

 (
G

iB
/s

)

Number of inputs in use
1

2

3

4

B
1

2

4

(a) (b)

Figure 2.10 – Bandwidth of the ZC706 PS memory system (a) for sequential accesses, as a function of
B and of the number of active inputs and (b) for strided accesses from four inputs, as a function of S.
The minimum B that achieves peak bandwidth is 4, which corresponds to a full DDR3 burst. While the
bandwidth versus stride curves are particularly noisy due to inter-port conflicts, we can still identify a
high-performance regime for S ≤ 256 and a low-performance one for S ≥ 4096.

where we observed such a non-monotonous trend, we can only identify inter-port conflicts as a

possible explanation for the minimum at S = 4096.

The AWS F1 memory system is also multi-ported but, unlike the ZC706 PS memory, each port

is connected to an independent memory space and DDR4 channel, meaning that there are no

inter-port conflicts. Of the four DDR4 controllers, three are in the user logic and one is in the

AWS shell [6]. On all the characterization points, we measured a 5% lower bandwidth from the

shell controller compared to the others; however, in our design, we will consider them symmetric

as we believe that any possible gain that could be achieved by breaking the symmetry is unlikely

to justify the increased design complexity given the minor performance mismatch. Considering

that the bandwidth trends with respect to B and S are the same among all controllers, we report

here the aggregate bandwidth that we measured across the four memory controllers altogether.

Figure 2.11 shows the bandwidth of the AWS F1 memory system. Like the ZC706 PL, single

requests are penalized due to a restriction in the number of outstanding operations, which

limits the maximum throughput to an even lower value of 50% of the theoretical one. On the

other hand, any B > 1 achieves the same peak throughput of 55.7 GiB/s (59.8 GB/s), which

corresponds to 93% of the maximum bandwidth of the AXI interfaces of the DDR controllers

at 250 MHz, which is slightly lower than theoretical bandwidth of four DDR4-2133 memories.

In terms of bandwidth as a function of the stride, shown in Figure 2.11, the degradation starts

at S = 4 for B ≤ 2, corresponding to 256 bytes, which is much lower than in the ZC706 memory

systems. This is due to the AWS F1 address mapping shown in Figure 2.7: S > 2 results in all

accessing targeting the same bank group, which results in suboptimal performance. In addition,

24

2.6. Experimental Setup

B
1 2 4 8

1
6

3
2

6
4

1
2

8

0

10

20

30

40

50

B
a
n
d
w

id
th

 (
G

iB
/s

)

S

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

0

10

20

30

40

50

B
a
n
d
w

id
th

 (
G

iB
/s

)

B
1

2

4

(a) (b)

Figure 2.11 – Bandwidth of the AWS F1 memory system (a) for sequential accesses, as a function of B and
(b) for strided accesses, as a function of S. A limitation on the number of outstanding reads penalizes
single accesses even more than on the ZC706 PL memory, setting the performance limit to 50% of the
peak bandwidth. The transition region between the high-performance and the low-performance The
bandwidth as a function of S declines earlier and more gradually than on the ZC706 memory systems due
to the more complex address mapping, shown in Figure 2.7.

S = 4 toggles bit 8, which is mapped to the autoprecharge signal, resulting in banks precharging

and activating the same row every other access. Strides larger than 16 always target the same

bank and, as S grows further, row conflicts become more and more common until, for S ≥ 4096,

all accesses are row conflicts. On the other hand, with B ≥ 4, each access is long enough to

mitigate the negative impact of these phenomena.

25

3 From Tens to Tens of Thousands
Outstanding Misses

In this chapter, we delve in the details of how to scale up dramatically the number of MSHRs

and subentries to turn a nonblocking cache into a MOMS, with a special focus on doing this

efficiently on FPGAs. This is based on the properties and availability of the different on-chip

memory resources provided by modern FPGAs which were discussed in Section 2.1. After

introducing the key ideas at the microarchitectural level in Section 3.1, we discuss more practical

implementation choices in Section 3.2 and present detailed experimental results in Section 3.3.

3.1 Key Ideas

Increasing the maximum number of outstanding misses in a nonblocking cache based on

explicitly-addressed MSHRs (introduced in Section 2.2) requires scaling up both the number

of MSHRs and of subentries, which handle primary and secondary misses respectively. This

section presents the main intuitions behind our scaling approach.

3.1.1 Scalable MSHR Lookup and Storage

For each additional MSHR, the memory system can handle one more primary miss without

stalling; similarly, each additional subentry allows servicing an extra secondary miss with no

added traffic to the external memory. Each MSHR has modest storage requirements: ~20-30 bits

for the cache line tag and its valid bit, plus ~10-20 bits for offset and request ID for each of the

~4-8 subentries. This is significantly smaller than a 512-bit cache line with its tag. Therefore,

within a given on-chip memory budget, bandwidth-bound applications with irregular memory

access patterns could benefit more from an increase of the number of MSHRs or subentries,

which increase MLP, rather than from an expansion of the cache. In practice, however, scaling

up the fully associative MSHR array (Figure 3.1a) also requires additional comparators and a

wider multiplexer, which increase area and hurt the critical path. Moreover, on FPGA, associative

This chapter is based on the work published at the 27th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2019 [13] and on Transactions on Reconfigurable Technology and Systems, 2021 [15].

27

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

=
=
=
=
=
=
=
=

tag

(a) (b)

(d)

=
=
=
=

tag

...

tag

(c)

hd-1h0

...

tag

hd-1h0

...

Figure 3.1 – MSHR-rich architectures for FPGAs. Because of the associative lookup, a traditional archi-
tecture (a) does not scale beyond a few MSHRs and MSHRs can only be mapped to flip flops. Using
a set-associative memory with a single hash function (b) allows MSHRs to be mapped to block RAM
but stalling on every collision results in low load factors. Cuckoo hashing (c) reduces the probability of
collision and a stash (d) allows collisions to be handled in the background when the unit is idle.

MSHRs can be mapped efficiently only to the scarce flip flops; LUTRAM- or block RAM-based

CAM implementations require 20–300 memory bits per CAM bit [45].

A set-associative MSHR memory (Figure 3.1b), indexed by the lowest significant bits of the

tag, can be efficiently mapped to block RAM and, as long as there are no collisions, lookups,

insertions, and deletions can be performed in a single step. Stalling is the simplest collision han-

dling mechanism; however, we will show in Section 3.3.2 that this strongly limits the maximum

load factor. Using linear probing would result in expected constant time lookup, insertion, and

deletion and, whenever any operation cannot be completed in a single step, incoming misses

must be stalled, hurting throughput.

To overcome these limitations, we propose to store MSHRs using cuckoo hashing (Figure 3.1c).

Cuckoo hashing uses d hash tables and d hash functions h0, . . . ,hd−1; each key x can be stored

in any hash table in bucket Hi [hi (x)]. Lookups and deletions require worst case constant time:

both involve one lookup per hash table, plus one update for deletions. For insertions, key x can

be inserted in any hash table whose bucket hi (x) is empty. If all possible locations Hi [hi (x)] are

occupied, a collision occurs: the new key x displaces an existing entry to one of its alternative

locations. If all possible buckets of the displaced entry are also occupied, the process is repeated

recursively until an entry can be inserted into an empty bucket. This means that insertions can

still require more than one operation, during which no other misses can be handled. Expected

28

3.2. Detailed Architecture

v tag subentries v tag subentriesptr

(a) (b)

Figure 3.2 – Subentry organization in memory. Allocating a fixed number of subentries to every MSHR (a)
results in a difficult tradeoff between a low maximum load factor and a high probability of stall, especially
if there is a large variation in the number of secondary misses per cache line. Using a separate buffer to
store blocks of subentries organized as linked lists (b) provides greater flexibility at a modest cost.

amortized insertion time is constant as long as the load factor is bounded; the bound is 50%

for d = 2 and grows very quickly with d [32]. To reduce the average insertion time, Kirsch et al.

proposed to temporarily store displaced entries in a small content-searchable queue (stash) [55]

(Figure 3.1d). As soon as the input interface is idle, the module tries to insert the oldest entry

from the stash; if this results in a collision, another entry from a different hash table is moved to

the stash. By doing so, entry reinsertion effectively happens in the background without slowing

down incoming requests; incoming allocations are stalled only when the stash gets full.

3.1.2 Flexible Subentry Storage

For their explicitly addressed MSHR architecture, Farkas and Jouppi propose to use a fixed

number of subentry slots per MSHR (Figure 3.2a) and to stall the miss handling architecture

whenever all slots of an MSHR are used. However, waiting for the specific MSHR that is full to be

deallocated may take a long time, during which the nonblocking cache may miss opportunities

for merging requests to in-flight cache lines to serve them with no extra memory bandwidth cost.

Increasing the number of slots per MSHR would reduce the probability of stall at the expense

of an increase in area or, in other words, a decrease in load factor due to increased internal

fragmentation. To mitigate these drawbacks, we propose a hybrid approach (Figure 3.2b): we

store subentries in a separate buffer and we dynamically allocate blocks of subentries to each

MSHR. Specifically, the subentry buffer, mapped to block RAM, contains multiple subentry

rows, each comprising Ns subentry slots. Each MSHR is initially assigned one subentry row;

whenever a row gets full, an additional row is allocated for that MSHR. Subentry rows are logically

organized as a linked list: the head pointer is stored in the MSHR buffer and each subentry row

contains a field for the pointer to the next row.

3.2 Detailed Architecture

Figure 3.3 shows the top-level view of our miss-optimized memory system. To simplify the design

and to maximize the scope for memory access optimization, our MOMS can return responses

out of order, which is not unusual among high performance memory systems [41, 40]. Therefore,

requests must be tagged with an ID, which will be used to match it with the corresponding

response. Optional reorder buffers can be instantiated for compatibility with accelerators that

29

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

cr
os
sb
ar

$
MSHR
buffer

subentry
buffer

m
u
lt

i-
p

o
rt

e
d

m
e
m

o
ry

 i
n
te

rf
a
ce

e
x
te

rn
a
l
m

e
m

o
ry

co
n
tr

o
lle

r

...

m
ul
ti-
po
rt
ed

pa
ra
lle
l

ac
ce
le
ra
to
r

data
buffer

$
MSHR
buffer

subentry
buffer

data
buffer

...... bank0 bankN -1b

Figure 3.3 – Top-level view of our MOMS. A crossbar steers memory requests from Ni accelerators to Nb

banks according to their address. Each bank consists of a cache, an MSHR buffer, a subentry buffer, and a
data buffer. The multi-ported memory interface multiplexes each memory interface among banks.

expect in-order responses. The reorder buffers append an ID to each memory request, which

will be used to match the corresponding response from the MOMS and to return the responses in

order. Requests received from each of the Ni input channels are redistributed across Nb banks by

means of a crossbar. We use a multi-banked structure in order to handle multiple requests and

responses per cycle. We maximize workload balancing among banks by interleaving requests

among them in the finest possible way: requests pertaining to consecutive cache lines are

served by different banks. The crossbar also appends additional bits to the requests’ ID to allow

responses to be routed to the respective source port. Each bank consists of a set-associative

cache, an MSHR buffer, a subentry buffer, and a data buffer. Data for requests that hit in the

cache are immediately returned to the crossbar, while misses are handled and stored by the

MSHR and subentry buffer. Since each occupied MSHR generates a memory request, the queue

depth corresponds to the size of the MSHR buffer. This ensures that the queue will not become

the bottleneck and allow the MSHR buffer to be always fully utilized irrespective of the amount

of buffering available in the external memory.

The external memory interface can handle Nmem ≥ 1 memory ports, where Nmem is a divisor

of Nb . It includes one arbiter/demultiplexer per memory port, each connected to Nb
Nmem

banks.

Therefore, each bank is statically assigned to a memory port, each of which currently uses a

round-robin arbiter to pick requests from its banks. This simple solution avoids having to instan-

tiate another crossbar and works well if ports are symmetric and requests are reasonably well

distributed among banks. The memory interface can be easily modified when these assumptions

do not hold.

3.2.1 MSHR Buffer

For the MSHR buffer, shown in Figure 3.4, we use one block RAM per hash table, with the

address of the cache line (tag) as key. We use universal hash functions in the form ha(x) =

30

3.2. Detailed Architecture

Arbiter

increasing prority

h0

H0

rdaddr wraddr

rddata wrdata

hd-1

Hd-1

rdaddr wraddr

rddata wrdata

... stash
rdaddr

rddata enq

deq

selection and update logic

misses
from cacheresponses from

external memory

fr
e
e
 r

o
w

 q
u
e
u
e
 (

FR
Q

)

to external
memory

to subentry
buffer

Figure 3.4 – Block diagram of the MSHR buffer. We multiplex the cuckoo hashing pipeline between
memory responses, new misses, and entries that have been displaced due to a conflict in one of the
cuckoo hash tables.

(ax mod2wt)div2wt−wM with wt being the number of bits of the tag, wM = log2(M) where M

is the number of buckets per hash table, and a is a random positive odd integer with a < 2w
t

[106]. Each bucket contains a valid bit, the tag of the missing cache line, and the address of the

first subentry row in the subentry buffer as described in Section 3.1.2. The stash is a content-

associative memory made of flip-flops. To integrate the stash in the pipeline, we include the

stash entries among the locations that are searched during lookups or that can be deallocated

when a response is received. Because most operations require a read-modify-write on the dual-

ported hash table BRAMs, we use a single pipeline that is multiplexed, with decreasing priority,

among memory responses, new misses, and entries from the stash. We will show in Section 3.2.4

that this is generally an acceptable compromise.

3.2.2 Subentry Buffer

Figure 3.5 shows implementation and operation of the subentry buffer. A subentry consists of

an (ID, offset) pair; a subentry row contains a) Ns subentry slots, b) the number of allocated

subentries, and c) a pointer to the next subentry row with its valid bit. To allocate a subentry, the

first subentry row is retrieved from the buffer. If the row is not full (1), the new entry is appended

and the row is written back to the buffer. If the row is full (2), a new row must also be allocated.

We use a FIFO (free row queue, FRQ) to store the addresses of the empty rows, and allocating a

row simply means extracting the first element of the FRQ.

31

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

rdaddr

rddata

wraddr
wrdata

51

25 3 0051

insertion
logic

row

56 2
entry

25 3 0151 56 2

rdaddr

rddata

wraddr
wrdata

51
row

13 0
entry

25 3 1151 56 2

51 25 3 0056 2

FRQ

103

13 0 00103

103

arbiter

rdaddr

rddata

wraddr
wrdata

51
row data

25 3 1151 56 2 103

25
56

FRQ

51

arbiter

(1) (2) (3)

entry0 nextptrentry1

lastvalid

tag offset

addr
valid ptr

Row format:

insertion
logic

response
generator

Figure 3.5 – Block diagram and operation of the subentry buffer. For requests, the subentry buffer receives
ID, offset, and the address of the first subentry row (head row) from the respective MSHR. The head row is
firstly retrieved from the buffer. If it is not full (1), the row is updated with the new entry and written back
to the buffer. If the row is full (2), the new entry is inserted in a new row, whose address is stored in the
previous row. When a response is received (3), all subentries are retrieved by traversing the subentry row
list. After all subentries have been forwarded to the response generator, the row is deallocated by pushing
its address to the free row queue.

The FRQ is also shared with the MSHR buffer to allow the allocation of the first subentry row for

newly allocated MSHRs. When the FRQ gets empty, further allocations are stalled.

When a cache line is received (3), the corresponding MSHR is deallocated from the MSHR buffer

and its subentry rows retrieved from the buffer. The response generator parses the subentry

rows, retrieves the data from the data buffer, and emits one response per allocated subentry.

The row is then recycled by inserting its address into the FRQ and the process is repeated for the

entire linked list of rows.

3.2.3 Data Buffer

The data buffer stores the data received from memory until all of its misses have been served.

Because responses are treated in-order inside the pipeline, the data buffer can be implemented

as a simple circular buffer in LUTRAM or block RAM. After storing the response in the circular

buffer, the module forwards its base address (pointer) and tag to the pipeline. The MSHR buffer

will use the tag to deallocate the MSHR pertaining to the response and retrieve its subentries;

the base address is then used by the subentry buffer to generate the responses as shown in

32

3.2. Detailed Architecture

data buffer pointer

ID
27E

subentry

response
token

cache line offset

data
buffer

tag

Figure 3.6 – Retrieval of responses from the data buffer. The tag is used to retrieve the MSHR and the
pointer to the first row of subentries. The data buffer pointer is used by the subentry buffer to retrieve
the cache line from the subentry buffer (yellow). Responses to the individual pending misses can be
generated by iterating over all subentries and extracting the relevant word (purple) based on the cache
line offsets.

Figure 3.5. When all pending misses have been served, the base pointer is used to deallocate the

response data inside the data buffer.

3.2.4 Pipeline Efficiency and Throughput

As long as an MSHR has a single subentry row, the primary and all secondary misses can be

handled without stalling the pipeline as they require no more than one read and one write per

dual-ported block RAM: lookup in the MSHR buffer, allocation of the MSHR for primary misses,

lookup in the subentry buffer for secondary misses, and row update in the subentry buffer. Each

block RAM has a data forwarding circuit to ensure that we always read the most up-to-date

data despite reads having two-cycle latency. MSHR collisions are handled transparently when

the unit is idle, as long as there are free entries in the stash. Allocating an additional subentry

row requires stalling the pipeline for one cycle to perform two writes: 1) inserting the pointer

of the newly allocated row into the tail of the list and 2) writing the new subentry into the

newly allocated row. Allocating a subentry on an MSHR that has more than one row requires

traversing the linked list, which costs an extra read per additional row. The traversal cost can be

significant for MSHRs with many subentries: to mitigate it, we use an 8-entry fully-associative

cache indexed by the head pointer of the subentry list to jump directly to the tail whenever

possible. In our subentry architecture, the tradeoff between internal fragmentation and stall

cycles, which depend on the number of subentries per row ns , remains; however, the cost of a full

subentry row is reduced from completely stalling the pipeline until the full MSHR is deallocated

to a few bubbles in the pipeline. Responses whose MSHR has a single subentry row can also be

handled without stalls; each additional subentry row costs one stall cycle. Most of the operations

are therefore fully pipelined, with the caveat that a single pipeline is shared between accelerator

requests and memory responses. However, the more secondary misses we can merge to the

same memory request, the fewer memory responses we will have to handle, reducing the cost

of pipeline sharing. Ultimately, the miss handling logic contained in Nb fully-pipelined banks

can supply up to Nb −nmem responses per cycle, where nmem is the average number of memory

responses per cycle.

33

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

3.3 Experimental Results

The innovations presented in this chapter aim at increasing the reuse of individual responses

from the DRAM controller by serving as many incoming requests as possible with the same data

requested only once. Because this reuse is largely independent from the properties of the DRAM

controller and memory, we focus on a single system configuration, the PL system on ZC706,

discussed in Section 2.6.3. Indeed, on the ZC706, MSHRs and subentries compete for the same

kind of resource as the cache: block RAM. Therefore, we can quantitatively explore the benefit of

reallocating some of the resources normally allocated to the cache to implement instead more

MSHRs and subentries, which are the new design points introduced by MOMSes which will be

discussed in Section 3.3.1. On the other hand, the AWS F1 system uses both BRAM and URAM for

cache, MSHRs, and subentries, which makes it harder to visualize and quantitatively analyze the

tradeoff. We complement the analysis by showing the advantages of cuckoo hashing for MSHR

storage and linked-list architecture for subentries in Sections 3.3.2 and 3.3.3 respectively. Finally,

in Section 3.3.4 we show the relation between number of outstanding reads and performance

and in Section 3.3.5 we provide details on the resource utilization of our MOMSes.

3.3.1 More Cache or More MSHRs?

We ran our benchmarks on a set of different traditional associative nonblocking caches and

MOMS. We used 4-way set associative caches except in the smallest caches due to the limited

minimum block RAM depth (see Section 2.1). For the traditional nonblocking caches, we only

consider the best architecture that can run at 200 MHz, with 16 MSHRs with 8 subentries each.

For MOMSes, we fixed the number of subentries per row to three since, due to the finite choice of

block RAM port widths, they occupy the same amount of block RAMs as two and provide a good

compromise between utilization and stall cycles, as we will demonstrate in Section 3.3.3. We

also fixed the stash size to two entries, which provides timing closure in all cases. We explored

the number and depth of MSHR hash tables, as well as the depth of the subentry buffer.

Figure 3.7 summarizes the results. Our MOMSes provide the highest performance benefit

to the benchmarks with the highest stack distance percentile (90% and 95%), i.e. the most

challenging ones for caches. With rail4284, misses to multiple cache lines are so frequent that

even the smallest MOMS with no cache at all performs 25% better than the largest traditional

nonblocking cache, which has a 24× larger area. On mawi1234, a small cache is enough to

capture any existing temporal locality; after that, investing 2% of block RAMs for a single MSHR

cuckoo hash table provides higher returns than any further increase in cache size. pds-80, flickr,
youtube, and ljournal offer a more gradual area-delay tradeoff and can benefit from the largest

MSHR solutions, which constitute most of the Pareto-dominant points. On these benchmarks,

we achieve 10% to 25% throughput increase with the same area or 35% to 60% area reduction at

constant throughput. dblp-2010, eu-2005, in-2004, and webbase_1M have higher locality and

thus benefit more than other benchmarks from larger caches; however, the simplest MOMS

with no cache, which uses 3× fewer BRAMs than the smallest cache, is enough to saturate

34

3.3. Experimental Results

Cycles/NZ

0

100

200

300

A
re

a
 (

B
R

A
M

s)

0

100

200

300

A
re

a
 (

B
R

A
M

s)

0

100

200

300

A
re

a
 (

B
R

A
M

s)

0

100

200

300

A
re

a
 (

B
R

A
M

s)

dblp-2010

flickr

rail4284

ljournal

pds-80

eu-2005

youtube

mawi1234

amazon-2008

webbase_1M

in-2004

road_usa

0.4 0.6 0.8 1.0 1.20.4 0.6 0.8 1.0 1.20.4 0.6 0.8 1.0 1.2
Cycles/NZCycles/NZ

0
128 kB direct mapped 256 kB 2-way set assoc.

512 kB 4-way set assoc. 1 MB 4-way set assoc.
Total cache size

MSHR architecture
and count (per bank) 16 assoc. 1x512 2x512 3x512 4x1024

MOMStraditional

Figure 3.7 – Area of the memory system and normalized execution time for all benchmarks and a broad
range of nonblocking cache architectures. For the MOMS architectures, we indicate the number and
depth of cuckoo hash tables in each of the four banks, whereas the cache size refers to the entire multi-
banked structure. Charts are sorted by increasing vector size and have been truncated at 1.3 cycles/NZ.
On half of the benchmarks, all the Pareto-optimal designs are MOMSes, except for the smallest possible
but low-performing design with no cache and associative MSHRs. For the other benchmarks, our MOMS
provides additional Pareto-optimal designs, especially on the low area side.

the PS DRAM bandwidth only by merging memory requests. On eu-2005 and in-2004, the

performance gain provided by the cache-less MOMSes is limited by handling the subentry

linked lists. Applications with higher temporal locality may thus benefit from an increase of

subentries per row. Benchmarks with few non-zero elements per row such as mawi1234 and

road_usa have a lower maximum performance due to the higher bandwidth requirements for

the sequential vectors; however, they are among the eight benchmarks that do not saturate the

PS DRAM bandwidth without a MOMS.

3.3.2 Number of MSHR Hash Tables and Stash Size

Figure 3.8 analyzes the performance of the MSHR storage architectures described in Section 2.1.

For each architecture, we measure average and peak utilization of the MSHR storage space. To

make sure the benchmark always uses all of the available MSHRs, we use a synthetic 1M×1M

matrix with 5M uniformly distributed non-zero elements, no cache, and each bank contains

4,096 subentry rows with 3 subentries each. All architectures have 2,048 MSHRs per bank or the

closest possible value.

35

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

Hashing Configuration Stash Size

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Utilization

single

1x2048

0

2

4

4x512

0

2

4

cuckoo

2x1024

0

2

4

3x512

0

2

4

3x1024

0

2

4

4x512

0

2

4

5x512
0

2

MaximumAverage

Figure 3.8 – Achievable MSHR storage load factor for several MSHR architectures. The 5×512 system with
a 4-entry stash did not meet timing constraints. Single-hash architectures cannot utilize more than 40%
of the storage space. Cuckoo hashing can handle collisions more efficiently and three hash tables are
enough to achieve more than 80% average and 90% peak load factors, even without stash.

S
ta

sh
 S

iz
e

0K 500K 1000K 1500K 2000K 2500K 3000K 3500K 4000K

Cycles In Stall

0

2

4

Figure 3.9 – Number of cycles lost due to stalls for collision resolution during the execution of a uniformly
distributed benchmark. A 4-entry stash, which uses a few hundreds of LUTs and FFs, reduces the number
of stall cycles by 30%.

Because any collision results in a stall that lasts until one of the colliding MSHRs is deallocated,

all of the single-hash architectures achieve poor utilization: even by introducing a stash to

tolerate up to four collisions, a 4-way set-associative architecture does not go beyond 30%

average and 45% peak load factors. Even a simple two-way cuckoo hash table achieves 50%

average and 70% peak utilization, and three ways enough to reach more than 80% average

utilization, which is consistent with prior findings on cuckoo hashing [32]. Interestingly, using

a 3-way 512-entry architecture (1,536 MHSRs) has higher absolute utilization than a 2-way,

1,024-entry organization (2,048 MSHRs). For three or more ways, adding a stash does not affect

MSHR utilization but decreases the number of stall cycles by up to 30% with a 4-entry stash

(Figure 3.9), which is the largest stash that we could implement within the 200 MHz constraint.

3.3.3 Subentry Organization

We performed a similar analysis for the memory organization of the subentries, as described in

Section 3.1.2. We use the ljournal benchmark, which has a large number of secondary misses,

36

3.3. Experimental Results

0K 10K 20K 30K 40K 50K
Subentries

fi
xe

d

2x1536

4x1536

6x1536

8x1536

lin
ke

d
 l
is

t

2x2048

3x2048

4x2048

AvailableMaximumAverage

Figure 3.10 – Average and maximum subentry utilization during the execution of ljournal with a 3×
512 cuckoo MSHR. Allocating a fixed number of subentries per MSHR results in less than 1% average
utilization and resource waste. Linked-list architectures provide a more efficient usage of the subentry
memory.

Configuration

0M 10M 20M 30M 40M 50M 60M 70M 80M
Cycles in Stall

fi
xe

d

2x1536

4x1536

6x1536

8x1536

lin
ke

d
 l
is

t

2x2048

3x2048

4x2048

Figure 3.11 – Number of cycles lost due to subentry-related stalls. Stalls occur when (a) filling all suben-
tries of an MSHR for the fixed architectures or (b) handling the linked list or running out of subentry rows
for the linked list architectures. The smallest linked list architecture has three times fewer stall cycles than
the largest fixed architecture despite having three times fewer subentries.

and a MOMS with no cache and a 3×512 cuckoo MSHR buffer per bank. As shown in Figure 3.10,

with a fixed number of subentries per MSHR, stalls are so frequent (Figure 3.11) that they

prevent misses from accumulating in the buffers, resulting in very low utilization but also fewer

opportunities for request merging and thus a higher traffic to external memory (Figure 3.12).

We believe this problem is more pronounced in a MOMS than in a traditional nonblocking

cache because it is far more likely to encounter at least one MSHR that needs more than a given

number of subentries when handling thousands of misses rather than a few tens of them. Our

linked list-based architectures provide much higher average and maximum buffer utilization,

fewer stall cycles and decrease the number of external memory requests by a factor 1.3× to 2×.

Configuration

0M 5M 10M 15M 20M 25M 30M 35M 40M 45M 50M

External Memory Requests

fi
xe

d

2x1536

4x1536

6x1536

8x1536

lin
ke

d
 l
is

t

2x2048

3x2048

4x2048

Figure 3.12 – Number of external memory requests during the execution of ljournal with a 3×512 cuckoo
MSHR and no cache. By increasing subentry utilization, linked list architectures increase the number of
accelerator requests that can be served by the same external memory request, resulting in a 37% decrease
of external memory traffic.

37

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

Benchmark

amazon-2 dblp-201 eu-2005 flickr in-2004 ljournal mawi1234 pds-80 rail4284 road_usa webbase- youtube

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

1
0

2
4

4
0

9
6

1
6

3
8

4

C
a
ch

e
 s

iz
e
 (

b
y
te

s,
 p

e
r

b
a
n
k)

2
6

2
1

4
4

1
3

1
0

7
2

6
5

5
3

6
3

2
7

6
8

0

0

1

2

M
A

C
C

/c
y
cl

e

0

1

2

M
A

C
C

/c
y
cl

e

0

1

2

M
A

C
C

/c
y
cl

e

0

1

2

M
A

C
C

/c
y
cl

e

0

1

2

M
A

C
C

/c
y
cl

e

Number of outstanding reads (per accelerator)

Figure 3.13 – Throughput as a function of ROB size—and thus number of outstanding requests—cache
size, and benchmark. The effectiveness of MSHRs and subentries in supplying bandwidth increases with
the number of outstanding reads, meaning that MSHRs and subentries not only need to be available
but also to be used in order for MOMSes to operate efficiently. This is particularly evident whenever the
cache array is too small or the benchmark too irregular to achieve high hit rate, which makes the overall
performance more dependent on efficient miss handling.

3.3.4 Number of Outstanding Memory Requests

While all the results shown so far have been obtained using accelerators that can send up to

8,192 outstanding reads, Figure 3.13 shows the impact of changing the size of the SpMV reorder

buffer, and thus the maximum number of outstanding reads, from 512 to 32,768. We consider the

systems with the largest number of MSHRs and subentries among those presented in Figure 3.7

(4×1024 MSHRs and 3×4096 subentries per bank) and the same five cache sizes (0, 32 kB, 64 kB,

128 kB, and 256 kB per bank).

The benchmarks with the most gradual area/performance curve in Figure 3.7—flickr, ljournal,
pds-80, and youtube—show a similar trend with respect to the number of outstanding reads,

saturating at around 8k or 16k requests as the bottleneck becomes the number of MSHRs and

subentries. On the other hand, benchmarks small or regular enough to essentially achieve peak

38

3.3. Experimental Results

Table 3.1 – Resource utilization of MOMSes and traditional cache with 16 MSHRs with 8 subentries each
per bank, compared to the resource utilization of the rest of the experimental system. Fixed infrastructure,
which uses 40–50% of LUTs and FFs of the entire system, includes AXI SmartConnects and the MIG soft
memory controller. For MOMSes, we report ranges corresponding to the configurations discussed in
Section 3.3.1. The smallest MOMSes has very similar LUT and FF utilization than the traditional cache
baseline while consuming 90–95% fewer BRAMs.

LUT FF DSP BRAM

A) 4 accelerators 19k 23k 32 62
B) Fixed infrastructure 39k 37k 0 1
C) MOMS 21k–23k 29k–31k 4–16 12–314.5
D) Traditional cache 20k 30k 0 253
A + B + C 78k–80k 91k–93k 36–48 75–377.5
Utilization of A + B + C 36–37% 21% 4–5% 14–69%

Table 3.2 – Resource utilization of the four-bank MOMS with 256 kiB cache as a function of the number
of MSHRs. The number of MSHRs mostly affects BRAM and DSP utilization, which are used for MSHR
storage and cuckoo hashing respectively. On the other hand, LUTs and FFs, used in the logic that handles
MSHR lookup and update, change by at most 6% and 5% respectively.

LUT FF DSP BRAM

1×512 MSHRs, 3×512 subentries 21.3k 29.0k 4 260.5
3×512 MSHRs, 3×2048 subentries 22.2k 29.0k 12 282.5
4×1024 MSHRs, 3×4096 subentries 22.6k 30.5k 16 314.5

performance even with small traditional nonblocking caches do not benefit from increasing

the maximum number of outstanding reads. Overall, the importance of increasing the size of

the reorder buffer is higher whenever the cache is smaller. This confirms the intuition that,

whenever MOMSes are crucial for achieving high performance—that is, when caches are absent,

small, or the workloads are too irregular to benefit from them—their effectiveness increases

with the size of the pool of incoming requests that can be considered for merging to the same

memory request.

3.3.5 Resource Utilization

Table 3.1 shows the resource utilization of the entire system, with MOMS and baseline traditional

nonblocking cache described in Section 3.3.1. For MOMSes, we provide ranges that correspond

to the configurations presented in Section 4.3.1.

Indicatively, the minimum cache that is worth implementing due to the minimum block RAM

depth—a single 32 kB way (512 lines × 512 data bits)—has similar block RAM requirements as

3×512 MSHRs with 3×2048 subentries. In general, on the ZC706, the cache requires 8.5 block

RAMs per 32 kB per cache way, the MSHR buffer requires 0.5 block RAMs per 512 MSHRs per

cuckoo hash table for storage plus 0.5 block RAMs per 512 MSHRs for the request queue to the

external memory arbiter, and the subentry buffer requires 1 block RAM per 512 subentry rows of

39

Chapter 3. From Tens to Tens of Thousands Outstanding Misses

up to 3 subentries each, plus 1 block RAM every 1,024 subentry rows for the FRQ. Each cuckoo

hash function also uses 1 DSP block.

BRAMs are the dominant resource in MOMSes and traditional caches and, especially the former,

has large variations depending on the number of MSHRs, subentries, and cache size. Cache-

less MOMSes have up to 90–95% fewer BRAMs than traditional caches. The FF utilization of

MOMSes is comparable and generally slightly lower than that of the traditional cache, as FFs are

repurposed from MSHR and subentry storage to, mostly, pipeline registers. The LUT utilization

is 4–10% higher in MOMSes due to more complex logic. Overall, the LUT and FF utilization

of MOMSes is comparable to that of accelerators and has minimal variations depending on

the number of MSHRs and subentries, as shown in Table 3.2. In addition to traditional caches,

MOMSes use at most 5% of the available DSPs for cuckoo hashing.

3.4 Conclusion

Conventional wisdom has it that some form of local buffering such as caching is the best way

to optimize the access to external memory, hence the vast effort in maximizing the hit rate

under all possible scenarios. Nonblocking caches are one of the few architectures for miss

optimization instead. In this chapter, we took the key idea behind nonblocking caches to the

extreme: we designed a scheme to handle three orders of magnitude more misses without stalls

compared to classic nonblocking caches based on fully-associative MSHRs. We presented an

efficient FPGA implementation of such MSHR-rich cache, where we map tens of thousands of

MSHRs and subentries to the abundant FPGA block RAM and all stages of miss handling are

pipelined with minimal stalls. On twelve sparse matrix-vector multiplication benchmarks, we

showed that, under a limited block RAM budget, repurposing some block RAMs from cache to

MSHRs can provide higher performance gains when the access pattern is such that a relevant

amount of misses cannot be avoided. This is especially true for the benchmarks with the lowest

temporal locality, but even on more regular access patterns, MSHRs can complement caches by

optimizing long-distance reuse, providing similar performance gains as a larger cache at lower

area costs. Having discussed how to increase the reuse of every memory response, in the next

chapter we will introduce a technique to increase the available bandwidth by optimizing the

memory access pattern that is sent to the memory controller.

40

4 Increasing Available Bandwidth
by Using Bursts

In Chapter 3, we showed that miss-optimized memory systems represents a general, dynamic

solution to boost performance of latency-insensitive, bandwidth-bound applications that read

data irregularly. The key idea is to reuse the same wide memory response to serve multiple

narrow requests from the accelerators (Figure 4.1b) on-the-fly, without relying on long-term

storage in cache. We showed that repurposing some on-chip memory from cache to MSHRs

generally proves to be beneficial, especially when the DRAM controller exposes the entire DRAM

burst through a wide data port.

However, this is not the case on DRAM controllers with multiple narrow ports, which are

commonly found on SoC platforms. In those cases, individual memory requests do not provide

enough opportunities for reuse and still result in data wastage on the memory side as they

are narrower than a DRAM burst. Similarly, when individual accesses cannot possibly exploit

the entire memory bandwidth due to limitations on the maximum number of outstanding

reads—which is the case for all of our memory systems—optimizing the reuse of individual

memory requests is generally useful but leaves some performance on the table. Finally, the

approach operates only at the granularity of single memory requests: such requests are sent to

the memory controller in an arbitrary order, with no special care given to minimize DRAM row

conflicts.

To address these scenarios, we show in this chapter how to extend MSHRs to support bursts of

variable length on the memory side (Figure 4.1c). When possible, we make bursts longer and

exploit more of a DRAM burst or row without being limited to the data width exposed by the

specific memory controller. Conversely, when spatial locality is insufficient, we keep burst short

and minimize contention in the controller or avoid requesting unnecessary DRAM bursts. We

will show that supporting bursts (1) makes MOMSes beneficial even behind DRAM controllers

with multiple narrow ports and (2) further boosts read throughput behind wide memory ports

by increasing DRAM row utilization and, when memory controllers are optimized for bursts,

memory-level parallelism. In practice, with respect to the memory system characterization we

41

Chapter 4. Increasing Available Bandwidth by Using Bursts

(a)

(b)

(c)

datapath
external
memory

datapath

datapath

external
memory

external
memory

Figure 4.1 – Total availability and utilization of DRAM-based external memory bandwidth under short
irregular access patterns. Thick big rectangles: eight-beat bursts transferred from external memory to the
datapath on the FPGA, color-coded by DRAM row. Shaded smaller rectangles: portions of data actually
used by the accelerators. Dashed lines: cycles where no transfers occur due to a DRAM row conflict. If
requests from the accelerators are forwarded directly to the memory (a), most of the burst content will be
discarded and frequent row conflicts hamper the available DRAM bandwidth. Miss-optimized memory
systems (b) improve the utilization of each burst. In addition, sending variable-length bursts on the
memory side (c) reduce DRAM row conflicts, which further increase the effective bandwidth available to
the accelerators.

performed in Section 2.6.4, we make use of the higher performing curves corresponding to burst

lengths greater than one.

4.1 Key Ideas

In this section, we first define the new mapping between MSHRs and memory regions of variable

length (Section 4.1.1) and present its practical implementation in Section 4.1.2. To avoid reducing

the efficiency of the pipeline in the MSHR buffer and to maintain a reasonable area overhead,

we had to accept the possibility for the new MSHR buffer to send out redundant requests in

some circumstances. However, in Section 4.1.3 we use a qualitative model to demonstrate that

those circumstances are expected to be rare, especially when the incoming access pattern is

irregular, which is the target scenario for MOMSes.

4.1.1 Generalizing MSHRs from Single Cache Lines to Variable-Length Memory Ar-
eas

In nonblocking caches, MSHRs have the granularity of single cache lines (Figure 4.2a). Since

cache lines are handled fully independently from each other, there are no guarantees that

cache lines that are close in the address space, thus most likely on the same DRAM row, will be

requested close to each other in time. If the separation between the requests is larger than the

reorder window of the DRAM controller, unnecessary row conflicts will occur.

A simple way to make use of larger portions of DRAM rows would be to increase the granularity

of each MSHR to multiple cache lines (Figure 4.2b). Burst transfers can then be used to request

This chapter is based on the work published at the Proceedings of the 29th International Conference on Field-
Programmable Logic and Applications, 2019 [12] and on Transactions on Reconfigurable Technology and Systems,
2021 [15].

42

4.1. Key Ideas

tag
min

max

(a) (b) (c)

tag tag

memory
space

Figure 4.2 – MSHR memory range and structure. Portions of cache lines that have been requested by
some accelerators are shown in gray. MSHRs usually refer to single cache lines (a). Increasing the memory
range covered by each MSHR to a set of cache lines that will be requested as a burst (b) reduces DRAM
row conflicts but may result in data wastage as the size of the burst increases. By dynamically adjusting
the range of the burst (c), we make memory accesses more sequential than in (a) while minimizing data
wastage.

queue
pointer

new
request

existing
requests

deqPtr enqPtr

(a)

deqPtr enqPtr

burst bounds will
be readjusted (b)

deqPtr enqPtr

old burst invalidated,
full burst requested (c)

Figure 4.3 – Burst update policies. Requests that fall within the current burst range (a) do not require any
updates; otherwise, burst bounds can be updated if the burst memory request is still in the output queue
(b). If the memory request has already left the queue (c), the current burst is invalidated and a new burst
of maximum length is requested.

such cache line groups efficiently. However, any cache line within the burst that is not actually

needed will cause bandwidth and energy wastage. As we show in Section 4.3.1, this often results

in lower performance than operating with single memory requests.

To strike a balance between DRAM row utilization and bandwidth wastage, we propose to

have each MSHR covering multiple cache lines but to dynamically adjust the bounds of the burst

requested to memory based on the cache lines that are actually needed (Figure 4.2c). In particular,

each MSHR collects misses to 2N cache lines, which corresponds to the maximum burst length.

Two additional fields in the MSHR, minBurstOffset and maxBurstOffset, store the indexes of

the first and last cache line that have at least one pending miss. These indexes define the bounds

of the shortest contiguous burst that can serve all the pending misses.

4.1.2 Dynamically Adjusting Burst Bounds

Algorithm 2 describes how we implement miss handling with variable-length MSHRs. On a

primary miss, a new MSHR is allocated and a memory request is inserted in the output queue; its

burst initially covers only the primary miss’ cache line. To enable future updates of the request,

we store its address in the output queue (queuePtr) in the MSHR; queuePtr is initialized to

the queue’s enqueue pointer, enqPtr. Secondary miss handling is described in Figure 4.3 and

implemented by the circuit in Figure 4.4. Secondary misses that are covered by the current

burst bounds (Figure 4.3a) require no updates to the MSHR. If the current burst does not cover

43

Chapter 4. Increasing Available Bandwidth by Using Bursts

Algorithm 2 MSHR burst offset handling

Input: a miss at address addr = (tag, burstOffset, cacheLineOffset)
Result: Updated MSHR buffer and queue

1: M ← MSHRBuffer.lookup(tag)
2: if M does not exist then . primary miss: allocate new MSHR
3: M.tag ← tag
4: M.minBurstOffset ← burstOffset
5: M.maxBurstOffset ← burstOffset
6: M.queuePtr ← enqPtr
7: M.ignoreNextResponse ← false
8: MSHRBuffer.add(M)
9: OutputQueue.enq(M)

10: else if M.minBurstOffset ≤ burstOffset ≤ M.maxBurstOffset then
11: . (a) already within the request: do nothing
12: else if deqPtr < M.queuePtr < enqPtr then . (b) adjust request bounds
13: M.minBurstOffset ← min(burstOffset, M.minBurstOffset)
14: M.maxBurstOffset ← max(burstOffset, M.maxBurstOffset)
15: MSHRBuffer.update(M)
16: OutputQueue.update(M.queuePtr, M)
17: else . (c) request should be adjusted but has already been sent
18: M.ignoreNextResponse ← true
19: M.minBurstOffset ← 0
20: M.maxBurstOffset ← maxBurstLength-1
21: OutputQueue.enq(M)
22: MSHRBuffer.update(M)

the new miss, burst offsets can be adjusted as long as the memory request is still in the output

queue—i.e., it has not been sent to memory yet (Figure 4.3b). We compare queuePtr to the

current enqPtr and deqPtr to determine whether the request can still be updated.

Once the request has been sent out to memory, its burst bounds cannot be updated any more

(Figure 4.3c). To handle secondary misses that fall in this case, we could, in principle, request an

additional burst only for the new cache line. However, if the second burst is not guaranteed to

cover the entire burst range, the problem may appear again once the second burst has also been

sent out to memory. In the worst case, up to 2N memory requests per MSHR may be needed.

Since each burst would need a separate minBurstOffset and maxBurstOffset, the size of each

MSHR would dramatically increase. Moreover, since we would also need to look up all the bursts

associated to a given MSHR to determine whether any of them covers the new secondary miss

or whether any of them can still be updated, the circuit in Figure 4.4, often already on the critical

path of the entire system, would become even more complex.

To handle the cases shown in Figure 4.3c with an acceptable impact on the critical path, we take

the pragmatic tradeoff of marking the in-flight request as invalid and we ask again for the full

44

4.1. Key Ideas

tag

burstOffset cacheLineOffsetrequest
address

current
MSHR tag

minBurstOffset
maxBurstOffset

queuePtr

≤

≤

≥

>
<

deqPtr

enqPtr

max

min

0
1

0
1

1
0

0
1

1
0

maxBurstLength-1

0

updated
MSHR

update
required

update
allowed

Figure 4.4 – Burst bounds update circuit. The updated MSHR on the right overwrites the current MSHR on
the left in the following cycle; tag and queuePtr are never modified after MSHR allocation. Considering
that realistic burst offsets and queue pointers are on 1–4 bits and 9–12 bits respectively (see Section 4.3),
the policies shown in Figure 4.3 can be implemented with a relatively lightweight circuit.

memory region—essentially, we take this for an indication of sufficiently high spatial locality.

As discussed in Section 2.6, this policy allows us to achieve the same operating frequency as

single-request MSHRs. However, discarding responses cause bandwidth wastage and should be

reduced to a minimum, which is achieved by having MSHRs spend the largest fraction of their

lifetime in the output queue rather than in the memory controller. If (1) accelerators generate

more memory requests than the memory controller can sustain and (2) there are more MSHRs

than maximum in-flight requests in the memory controller, this happens naturally, as the next

section will show.

4.1.3 Minimizing Burst Invalidations

Consider a memory controller that can sustain nmem memory requests per cycle, accelerators

that overall can generate nacc requests per cycle and a memory system that has Nb banks to

handle nb requests per cycle, with nb ≥ nacc > nmem . Without loss of generality, we consider

the hit rate to be negligible, thus all requests will be misses: if not, nacc is replaced by nmi ss =
(1−H)nacc , where H is the hit rate. At startup, the MSHR buffer is empty; therefore, all requests

are primary misses. This means that each accelerator request will allocate an MSHR and generate

a memory request; therefore, the number of allocated MSHRs will increase by nacc −nmem per

cycle. In other words, as long as nacc > nmem , accelerator requests naturally tend to accumulate

inside the MSHR and subentry buffers without having to forcefully stall them. As the number of

allocated MSHRs grows, so does the probability for future misses to be secondary rather than

primary, which in turn increases the average number of accelerator requests that each memory

response will serve. As a result, the MSHR allocation rate decreases to (nacc −ns)−nmem per

cycle, ns being the secondary misses per cycle. If MSHRs and subentries were unlimited, the

system will tend to ns,eq = nacc −nmem , i.e., each memory response is reused nacc
nmem

times on

average and the number of MSHRs remains constant at some value NMSHR,eq . If the system runs

out of MSHRs or subentries before reaching equilibrium, it will start to stall incoming requests:

45

Chapter 4. Increasing Available Bandwidth by Using Bursts

cr
os
sb
ar

$
VL

MSHR
buffer

subentry
buffer

m
u
lt

i-
p

o
rt

e
d

m
e
m

o
ry

 i
n
te

rf
a
ce

e
x
te

rn
a
l
m

e
m

o
ry

co
n
tr

o
lle

r

...

m
ul
ti-
po
rt
ed

pa
ra
lle
l

ac
ce
le
ra
to
r

data
buffer

$
VL

MSHR
buffer

subentry
buffer

data
buffer

......

Figure 4.5 – Top-level view of the burst-based MOMS. We highlighted the main differences compared to
the single-request MOMS: variable-length (VL) MSHR buffer and updatable queue.

this reduces nacc to nacc ′ and moves the equilibrium point to ns,eq ′ = nacc ′−nmem < ns,eq . The

larger the MSHR and subentry buffers, the closer ns,eq ′ will be to the ideal ns,eq .

An application with good locality will reach ns,eq very quickly with few MSHRs; the poorer

the locality, the higher NMSHR,eq . If Nmem,I F is the total number of in-flight requests that the

memory controller can sustain, then each memory request will spend Nmem,I F

NMSHR,eq
of its lifetime

inside the memory controller and the rest inside the MSHR buffer output queue. Therefore, the

higher NMSHR,eq , the more likely the burst bounds of an MSHR can still be adjusted without

having to invalidate the first burst, and NMSHR,eq will naturally tend to be higher for applications

with poor locality where most of the full burst will likely not be used.

To reduce invalidations on regular applications that tend to have a low NMSHR,eq , we tried to

artificially stall memory requests until a minimum number of used MSHRs was reached or a

timeout since the last received request expired. In practice, excessive stalling was usually more

harmful than invalidations unless extensive application-specific fine tuning of the minimum

MSHR occupation and the timeout were performed, which is incompatible with the desired

generality of the proposed memory system.

4.2 System Architecture

Figure 4.5 shows the top-level organization of DynaBurst, which extends the single-request

MOMS discussed in Chapter 3. Within each bank, the variable-length (VL) MSHR buffer extends

the previous buffer based on cuckoo hashing with stash by including the logic to maintain burst

offsets and response invalidation discussed in Section 4.1. Entries in the new output queue

include burst bounds along with the tag and the queue must now allow updates of existing

entries. In practice, the queue remains a dual-ported BRAM except that the write address is not

restricted to the enqueue counter. Its depth still corresponds to the size of the MSHR buffer:

even if each MSHR can generate an additional memory request with the full burst, it does so

46

4.2. System Architecture

rdaddr

rddata

wraddr
wrdata

51

insertion
logic

rowentry
rdaddr

rddata

wraddr
wrdata

51
rowentry

FRQ

49

arbiter

rdaddr

rddata

wraddr
wrdata

51
row data

25
56

FRQ

51

arbiter

(1) (2) (3)

Row format:

insertion
logic

response
generator

entry0 nextptr
lastvalid

addr

valid ptrburst
tag

burst
offset

cache line
offset

entry1

burst
offset

56 0 2

25 1 3 0 051

25 1 3 56 0 2 1 051

25 1 3 56 0 2 1 1 4951

13 0 0 0 049

25 1 3 56 0 2 1 051

13 0 0

25 1 3 56 0 2 1 1 4951

0
1

Figure 4.6 – Block diagram and operation of the subentry buffer with variable-length bursts: allocation
of a subentry when the row is (1) not full or (2) full and (3) deallocation of all subentries and response
generation. The operation is very similar to the case of single requests shown in Figure 3.5 except for the
burst offset that has to be stored and used to retrieve the cache lines during response generation.

only if the partial burst has already left the queue, so the queue will never host more than one

request per MSHR at a time.

Subentries, which previously contained request ID and offset within the cache line, are aug-

mented with a burst offset, i.e., the offset of the corresponding cache line within the burst,

which will be used to retrieve the corresponding cache line once the response returns. The

response token generated by the data buffer now also contains the burst length so that, once all

the responses have been generated, the entire burst can be deallocated from the buffer. Figure

4.6 and 4.7 demonstrate the operation of the new subentry buffer and data buffer.

data buffer
pointer

burst
length

ID

burst offset

1 27E
subentry response

token

3

cache line offset

data
buffer

tag

Figure 4.7 – Retrieval of responses from the data buffer. The tag is used to retrieve the MSHR and the
pointer to the first row of subentries. The data buffer pointer is used to retrieve the cache line from the
subentry buffer (yellow). Responses to the individual pending misses can be generated by iterating over
all subentries and extracting the relevant word (purple) based on the burst and cache line offsets. Once
all responses have been generated, the burst length is used to deallocate the burst from the data buffer.

47

Chapter 4. Increasing Available Bandwidth by Using Bursts

Finally, most of the considerations about pipeline efficiency discussed in Section 3.2.4 still apply

except that the minimum penalty due to responses improves from one cycle per response to

one cycle per burst.

4.3 Evaluation

For all systems we consider three configurations in terms of MSHRs and subentries. All con-

figurations on the ZC706 have six subentries per row, which is twice the number of subentries

per row that we considered when evaluating our single-request architecture in Section 3.3.1.

Indeed, with MSHRs covering multiple cache lines, we expect an increase of secondary misses.

The configurations on the AWS F1 have eight subentries per row since the two extra subentries

can be implemented using the same amount of URAMs for the subentry buffer, given the larger

width of URAM primitives compared to BRAM ones.

The ZC706 PS systems use a 512-entry, 64-bit wide data buffer per bank. We considered (1) one,

(2) two, and (3) four 512-entry MSHR cuckoo hash tables with (1) 512, (2) 1,024, and (3) 2,048

subentry rows per bank. To each configuration, we add 8, 16, 32, 64 kiB of cache per bank (4-way

set associative, except for the 2-way 8 kiB), or no cache. Finally, variants with maximum burst

length of (i) 2, (ii) 4, (iii) 8, and (iv) 16 beats are generated for each of those 15 architectures.

Similarly, the 60 ZC706 PL systems have (1) one 512-, (2) three 512-, and (3) four 1024-entry

MSHR cuckoo hash tables with (1) 512, (2) 2,048, and (3) 4,096 subentry rows per bank; 32–256

kiB of cache per bank or no cache, and the maximum burst lengths from 2 to 16. PL systems

have a 32-entry, 512-bit wide data buffer per bank.

The AWS F1 systems are similar to the ZC706 PL systems as they both connect to 512-bit wide

memory ports. The main differences arise from the use of URAM for the subentry buffer and the

cache: because of the larger minimum width and depth of URAM compared to BRAM (72×4,096

vs 36×512), we only consider 256 kiB of cache per bank or no cache and subentry buffers always

have 4,096 rows.

We will compare each of these architectures to alternative generic memory systems: (1) single-

request MOMSes—with same amount of MSHRs, subentry rows, and cache and (2) a traditional

nonblocking cache with 16 associatively-searched MSHRs, each with 8 subentries, with the

closest BRAM utilization on ZC706 and with 256 kiB of cache per bank on AWS. Systems (2)

are the same baselines used in Section 3.3.1 and contain the maximum number of MSHRs and

subentries that ensure timing closure at 200 MHz (ZC706 PL) or 250 MHz (AWS F1) and that

result in a FF utilization similar to the MOMS architectures (all systems; see Section 4.3.5).

48

4.3. Evaluation

-50% -40% -30% -20% -10% 0% 10% 20% 30%

Speedup versus single requests

2
4
8
16
2
4
8
16

-50% -40% -30% -20% -10% 0% 10% 20% 30%-50% -40% -30% -20% -10% 0% 10% 20% 30%

M
a
x
im

u
m

 b
u
rs

t
le

n
g
th variable-length

fixed-length

Speedup versus single requests Speedup versus single requests

(b) ZC706 PS system(a) ZC706 PL system (c) AWS system

Figure 4.8 – Speedup obtained in MOMSes by sending bursts of memory requests compared to single-
request MOMSes, both with dynamically adjusted burst bounds and always requesting full bursts (geo-
metric mean across all benchmarks and all configurations). Using bursts of a suitable size is beneficial to
all systems and minimizing each burst’s length is always better than using bursts of fixed length.

4.3.1 Benefits of Dynamically Adjusting the Burst Length and Impact of Maximum
Burst Length

Figure 4.8 shows the speedup of using bursts compared to restricting to single memory requests.

Adjusting burst bounds is always useful, on all design points. On the ZC706 PS system, four

beats of 64 bits (256 bits) corresponds to the PS DRAM burst size (8×32 bits), which makes even

fixed bursts of up to four beats beneficial compared to single requests which waste 75% of the

burst content. In addition, bursts of size 4 are the shortest ones that can possibly saturate the

ZC706 PS DRAM bandwidth, as shown in Section 2.6.4. Still, trimming bursts yields even higher

speedups as contention among the memory controller ports is minimized. This effect does

not appear on the ZC706 PL and AWS systems as single responses already consist of full DRAM

bursts.

The maximum burst length controls the tradeoff between using larger parts of DRAM bursts/rows

and wasting bandwidth due to requesting unnecessary data, either between pending misses on

distant cache lines or due to frequent burst invalidations (see Figures 4.2 and 4.3). This tradeoff

explains the bitonic speedup curve on both ZC706 systems and the single useful maximum burst

length on the AWS system.

Overall, the ZC706 PS system gains the most from using bursts. Indeed, restricting to single

64-bit memory requests leaves few opportunities for reuse among 32-bit accelerator requests.

The ZC706 PL systems benefit from bursts only by better exploiting the memory access pipeline

and through DRAM row conflict minimization, which still brings significant speedup on specific

design points as discussed in Section 4.3.3. The AWS memory system benefits from bursts

even more than the ZC706 PL one as the single-request bandwidth is capped to 50% of the

maximum instead of 70%. However, the larger available bandwidth per PE makes the bandwidth

optimizations between MOMS and DRAM controller generally less critical than on the ZC706.

4.3.2 Architectural Exploration

We further analyze the architectures with the ideal maximum burst length for the respective

system—4 for ZC706 PL systems and 8 for ZC706 PS and AWS systems respectively. Figure 4.9

49

Chapter 4. Increasing Available Bandwidth by Using Bursts

Traditional cache of same size

Traditional cache
with closest BRAM utilization
Single-request MOMS

Burst MOMS

Cache Size (bytes, per bank) / MSHRs (per bank)
0

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

32768

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

65536

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

131072

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

262144

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

0.0

0.5

1.0

1.5

M
A

C
C

s/
cy

cl
e

1
6

1
6

1
6

1
6

1
6

(a) ZC706 PL system

0 8192 16384 32768 65536

0

1

2

3

1
x
5

1
2

2
x
5

1
2

4
x
1

0
2

4

1
6

1
x
5

1
2

2
x
5

1
2

4
x
1

0
2

4

1
6

1
x
5

1
2

2
x
5

1
2

4
x
1

0
2

4

1
6

1
x
5

1
2

2
x
5

1
2

4
x
1

0
2

4

1
6

1
x
5

1
2

2
x
5

1
2

4
x
1

0
2

4

1
6

M
A

C
C

s/
cy

cl
e

(b) ZC706 PS system

0

1
6

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

262144

1
6

1
x
5

1
2

3
x
5

1
2

4
x
1

0
2

4

0

2

4

6

M
A

C
C

s/
cy

cl
e

Cache Size (bytes, per bank) /
MSHRs (per bank)

(c) AWS system

Figure 4.9 – Throughput, in geometric mean across all benchmarks, of a traditional nonblocking cache, a
single-request MOMS and variable-length burst MOMS with maximum burst length of 4 for the ZC706 PL
system and 8 for the ZC706 PS and AWS systems. For the ZC706 systems, without URAM, we additionally
compare each MOMS to the traditional nonblocking cache with the closest BRAM utilization to analyze
performance within a fixed area budget.

compares the throughput of traditional caches, single-request and burst MOMSes for different

cache sizes and MSHR count.

If the memory controller has multiple narrow ports (ZC706 PS system), repurposing some

BRAMs from cache to MSHRs/subentries never pays off unless bursts are used. The speedup

increases with the number of MSHRs and at four cuckoo hash tables becomes comparable to

the single-request results on the PL system. Even there, bursts provide additional speedup on

most of the architectures, especially where single-request architectures were the most useful.

This includes the most lightweight system, whose baseline with the closest area has no cache

at all, and on intermediate configurations with 3×512 MSHRs/bank and moderate cache size.

On AWS, we cannot compare traditional caches at constant BRAM utilization since both caches

and MSHRs/subentries use a mix of BRAM and URAM. Complementing caches with MOMSes

is always useful compared to being limited to a few tens of associative MSHRs but there is no

clear winner between single-request and burst MOMSes. Burst MOMSes have a significant

50

4.3. Evaluation

e
u
-2

0
0

5

w
e
b
b
a
se

d
b
lp

-2
0

1
0

ro
a
d
_u

sa

ci
t-

P
a
te

n
ts

w
ik

ip
e
d
ia

fl
ic

kr

ra
il4

2
8

4

0

1

2

M
A

C
C

s/
cy

cl
e

0

2

4

M
A

C
C

s/
cy

cl
e

0

2

4

6

8

ro
a
d
_u

sa

0

5

10

in
-2

0
0

4

co
n
t1

1
_i

m
a
w

i1
2

3
4

a
m

a
zo

n

ljo
u
rn

a
l

p
d
s-

8
0

y
o
u
tu

b
e

e
u
-2

0
0

5

in
-2

0
0

4

d
b
lp

-2
0

1
0

a
m

a
zo

n

w
e
b
b
a
se

m
a
w

i1
2

3
4

p
d
s-

8
0

fl
ic

kr

w
ik

ip
e
d
ia

ci
t-

P
a
te

n
ts

ljo
u
rn

a
l

y
o
u
tu

b
e

ra
il4

2
8

4

co
n
t1

1
_i

ro
a
d
_u

sa

in
-2

0
0

4

e
u
-2

0
0

5

ci
t-

P
a
te

n
ts

w
ik

ip
e
d
ia

ljo
u
rn

a
l

m
a
w

i1
2

3
4

ra
il4

2
8

4

y
o
u
tu

b
e

d
b
lp

-2
0

1
0

a
m

a
zo

n

w
e
b
b
a
se

fl
ic

kr

ro
a
d
_u

sa

co
n
t1

1
_i

p
d
s-

8
0

d
b
lp

-2
0

1
0

w
e
b
b
a
se

a
m

a
zo

n

in
-2

0
0

4

co
n
t1

1
_i

e
u
-2

0
0

5

ra
il4

2
8

4

p
d
s-

8
0

fl
ic

kr

m
a
w

i1
2

3
4

y
o
u
tu

b
e

ljo
u
rn

a
l

w
ik

ip
e
d
ia

ci
t-

P
a
te

n
ts

(a) ZC706 PL system, 32 kiB cache/bank, 4x512 MSHRs/bank

(b) ZC706 PS system, 32 kiB cache/bank, 3x512 MSHRs/bank

(c1) AWS system, no cache, 1x512 MSHRs/bank

(c2) AWS system, 256 kiB cache, 3x512 MSHRs/bank

Traditional cache of same size Traditional cache with closest BRAM utilization Single-request MOMS Burst MOMS

M
A

C
C

s/
cy

cl
e

M
A

C
C

s/
cy

cl
e

e
u
-2

0
0

5

w
e
b
b
a
se

d
b
lp

-2
0

1
0

ro
a
d
_u

sa

ci
t-

P
a
te

n
ts

w
ik

ip
e
d
ia

fl
ic

kr

ra
il4

2
8

4

0

1

2

M
A

C
C

s/
cy

cl
e

0

2

4

M
A

C
C

s/
cy

cl
e

0

2

4

6

8

ro
a
d
_u

sa

0

5

10

in
-2

0
0

4

co
n
t1

1
_i

m
a
w

i1
2

3
4

a
m

a
zo

n

ljo
u
rn

a
l

p
d
s-

8
0

y
o
u
tu

b
e

e
u
-2

0
0

5

in
-2

0
0

4

d
b
lp

-2
0

1
0

a
m

a
zo

n

w
e
b
b
a
se

m
a
w

i1
2

3
4

p
d
s-

8
0

fl
ic

kr

w
ik

ip
e
d
ia

ci
t-

P
a
te

n
ts

ljo
u
rn

a
l

y
o
u
tu

b
e

ra
il4

2
8

4

co
n
t1

1
_i

ro
a
d
_u

sa

in
-2

0
0

4

e
u
-2

0
0

5

ci
t-

P
a
te

n
ts

w
ik

ip
e
d
ia

ljo
u
rn

a
l

m
a
w

i1
2

3
4

ra
il4

2
8

4

y
o
u
tu

b
e

d
b
lp

-2
0

1
0

a
m

a
zo

n

w
e
b
b
a
se

fl
ic

kr

ro
a
d
_u

sa

co
n
t1

1
_i

p
d
s-

8
0

d
b
lp

-2
0

1
0

w
e
b
b
a
se

a
m

a
zo

n

in
-2

0
0

4

co
n
t1

1
_i

e
u
-2

0
0

5

ra
il4

2
8

4

p
d
s-

8
0

fl
ic

kr

m
a
w

i1
2

3
4

y
o
u
tu

b
e

ljo
u
rn

a
l

w
ik

ip
e
d
ia

ci
t-

P
a
te

n
ts

(a) ZC706 PL system, 32 kiB cache/bank, 4x512 MSHRs/bank

(b) ZC706 PS system, 32 kiB cache/bank, 3x512 MSHRs/bank

(c1) AWS system, no cache, 1x512 MSHRs/bank

(c2) AWS system, 256 kiB cache, 3x512 MSHRs/bank

Traditional cache of same size Traditional cache with closest BRAM utilization Single-request MOMS Burst MOMS

M
A

C
C

s/
cy

cl
e

M
A

C
C

s/
cy

cl
e

Figure 4.10 – Throughput of traditional nonblocking cache, single-request MOMS and burst MOMS on
individual benchmarks for architectures where burst MOMSes have the largest speedup compared to
traditional caches. Benchmark are sorted by increasing burst MOMS speedup compared to traditional
caches. For AWS, we include an architecture where the single-request MOMS performs particularly well
(c2). On ZC706, burst MOMSes are beneficial to most of the largest and/or irregular benchmarks, where
traditional caches have the lowest performance. On AWS, burst MOMSes are particularly useful where
memory bandwidth is more critical (c1); when the memory bottleneck is less evident, single-request
MOMSes introduce less caches pollution and perform slightly better than both traditional caches and
burst MOMSes (c2).

advantage with no cache and few MSHRs, where bandwidth maximization is more critical and,

for a fixed number of MSHRs, burst MSHRs can handle more cache lines than single-request

ones. Single-request MOMSes appear to be more beneficial than burst MOMSes when paired to

a cache, which suggests that more sporadic misses are better handled individually; however, they

also seem to interfere more unpredictably with DMAs as the 4×1024 single-request MOMSes

starved accelerators of sequential data more often than 3×512, resulting in lower performance,

which was not the case for the burst MOMSes. This phenomenon can only occur on AWS as on

the ZC706 systems DMAs and MOMSes were connected to different memories.

4.3.3 Detailed Speedup Profile

Figure 4.10 shows the throughput on individual benchmarks provided by the best-performing

MOMS on each system. Small and/or regular benchmarks, characterized by high cache hit

rate, benefit more from a larger cache than from more MSHRs, which is reasonable. Where

caches are less effective, bursts make MOMSes useful also on the PS system, achieving up to 3.4×
speedup. On the ZC706 PL system, burst architectures improve the performance of MOMSes

on 10 benchmarks out of 15, in six cases by more than twice. The trend is confirmed by the

absolute performance on the traditional nonblocking cache: the speedup is the highest on

the benchmarks where the traditional nonblocking cache was performing worse. On AWS, the

smallest cache-less burst MOMS (c1) generally performs better than the single-request one,

51

Chapter 4. Increasing Available Bandwidth by Using Bursts

ZC706 PL systemZC706 PS system

Used Burst Beats
0 1 0 2 0 2 3 2 3 4

0%

20%

40%

60%

1 2 3 4

16%

84%

Used

Not used

S
h
a
re

 o
f

d
a
ta

 r
e
a
d

 f
ro

m
 m

e
m

o
ry

1 2 3 4 5 6 7 8

0%

10%

20%

30%

40%

1 4 4 4 4 7 4 70 0 2 0 2 3 0 2 3 0 2 3 5 0 2 3 5 6 0 2 3 5 6 2 3 5 6 8

42%

58%

Used

Not used

Used Burst Beats

1 2 3 4 5 6 7 8

0%

10%

20%

30%

40%

1 4 4 4 4 7 4 70 0 2 0 2 3 0 2 3 0 2 3 5 0 2 3 5 6 0 2 3 5 6 2 3 5 6 8

39%

61%

Used

Not used

S
h
a
re

 o
f

d
a
ta

 r
e
a
d

 f
ro

m
 m

e
m

o
ry

Requested Burst Length (64-bit beats) Requested Burst Length (512-bit beats)

road_usa

Requested Burst Length (64-bit beats)

Used Burst Beats

Requested Burst Length (512-bit beats)

0 1 0 2 0 2 3 2 3 4
0%

20%

40%

60%

1 2 3 4

Used

Not used

11%

89%

youtube

Used Burst Beats

eu-2005eu-2005

Figure 4.11 – Distribution of requested, used, and wasted cache lines per burst as a function of the burst
length, normalized by the total number of cache lines requested from memory, for the same ZC706
systems evaluated in Figure 4.10. Pie charts: used and wasted cache lines, aggregated over all burst
lengths. Top (bottom) row: benchmarks where introducing bursts is advantageous (harmful) compared
to single-request systems. Benchmarks that get the highest speedup from bursts obtain a large share of
useful data through bursts of all possible sizes. When the performance is poor, invalidations and single
requests are more frequent.

by up to a factor 2.8×. On the same design point, the best of the two MOMSes—which uses

at most 7% and 5% of the available BRAMs and URAMs respectively—achieves 49% to 124%

(average 72%) of the performance of the traditional cache that uses 2.3× more on-chip memory

bits. When it includes a large cache (c2), the single-request MOMS generally handles the fewer

misses better than the burst MOMS, which may introduce unnecessary cache lines that pollute

the cache.

4.3.4 Analysis of Burst Usage

To better understand the mechanisms behind the improvement of memory access performance

on most of the benchmarks and investigate the reasons for the slowdown on some benchmarks,

we simulated a bad and a good performing benchmark on the ZC706 PS and PL systems and

analyzed how many of the cache lines requested from memory are actually used. More specifi-

cally, Figure 4.11 shows, for each burst length, how many of the requested cache lines have been

actually used at least once and how many have been wasted, normalized by the total number of

requested cache lines.

52

4.3. Evaluation

By construction, in bursts of two or more beats, at least two distinct cache lines will be always

used. Invalidated bursts are completely discarded; hence, the bars corresponding to zero used

cache lines count the number of cache lines wasted because of invalidations. Bursts of maximum

length can never be invalidated. Data wastage in bursts where two or more cache lines have

been used are instead due to requests hitting cache lines covered by the same MSHR but that

are not consecutive.

In the high-performing benchmarks, a large share of useful data is retrieved through bursts of

all lengths, which the memory controller can serve more efficiently than single requests as we

showed in Section 2.6.4. Indeed, even if the total share of wasted data is similar in both ZC706

PS benchmarks, and higher than in the ZC706 PL system, the speedup provided by bursts is

significantly higher in road_usa than in eu-2005.

Where burst MOMSes are particularly effective, most of the bursts converge to their optimal

length by the time requests are sent to memory as invalidations are almost non-existing. Con-

versely, on the regular benchmarks, single requests are more common and bursts of maximum

length are almost exclusively due to prior invalidations. In those cases, the cache already filters

most of the memory accesses and the few remaining misses are better served by single-request

architectures.

4.3.5 Resource Utilization

Table 4.1 shows the resource utilization of the entire system, with MOMS and baseline traditional

nonblocking cache described in Section 3.3.1. For MOMSes, we provide ranges that correspond

to the configurations presented at the beginning of this section.

On the AWS F1 FPGA, we used URAM for the cache data and the subentry buffer. While the

FPGA has 4× more memory bits in URAMs than BRAMs, the larger minimum depth of each

block, 4,096 entries instead of 512, increases the minimum size of the cache and subentry buffer

that are worth implementing to 256 kiB and 4,096 rows respectively, per bank. Such cache

requires 8 URAMs and 4 BRAMs (for tag and valid arrays) instead of 68 BRAMs if URAMs were

not available. As for the subentry buffer, 4,096 rows of eight subentries each require 3 URAMs

for all the maximum burst lengths that we considered, instead of 25–29 BRAMs.

BRAMs and URAMs are the dominant resource in MOMSes and traditional caches and, especially

the former, has large variations depending on the number of MSHRs, subentries, and cache size.

On ZC706, cache-less MOMSes have up to 90–95% fewer BRAMs than traditional caches; on AWS,

60% fewer URAMs. The FF utilization of MOMSes remains comparable and generally slightly

lower than that of the traditional cache despite the burst handling logic. The LUT utilization

is 5–85% higher in MOMSes due to more complex logic. Still, even the largest MOMS uses at

most 16% of FPGA LUTs, which is dwarfed by the 30–50% of LUTs locked in fixed infrastructure.

Overall, the LUT and FF utilization of MOMSes is comparable to that of accelerators. In addition

to traditional caches, MOMSes use at most 5% of the available DSPs for cuckoo hashing. On

53

Chapter 4. Increasing Available Bandwidth by Using Bursts

Table 4.1 – Resource utilization of MOMSes and traditional cache with 16 MSHRs with 8 subentries each
per bank, compared to the resource utilization of the rest of the experimental system. Fixed infrastructure,
which uses 50–70% of LUTs and FFs of the entire system, includes AXI SmartConnects, soft memory
controllers and, in (c), AWS shell. For MOMSes, we report ranges corresponding to the configurations
discussed in Section 4.3.1. Accelerators on the ZC706 systems use DMAs with 64-bit data ports as they
are connected to 64-bit memory controllers (PL) or to be able to fit 8 accelerators (PS), while on the
AWS system they use more resources as they are 512-bit wide as the memory controllers. On ZC706,
the smallest MOMSes has very similar LUT and FF utilization than the traditional cache baseline while
consuming 90–95% fewer BRAMs. On AWS, the cache-less architecture save 60% of the URAMs.

(a) PL system on ZC706

LUT FF DSP BRAM

A) 4 accelerators 19k 23k 32 62
B) Fixed infrastructure 39k 37k 0 1
C) MOMS 23k–27k 30k–35k 4–16 12–363
D) Traditional cache 20k 30k 0 253
A + B + C 81k–85k 90k–95k 36–48 75–426
Utilization of A + B + C 37–39% 21–22% 4–5% 14–78%

(b) PS system on ZC706

LUT FF DSP BRAM

A) 8 accelerators 38k 51k 64 124
B) Fixed infrastructure 73k 71k 0 1
C) MOMS 20k–35k 26k–36k 8–32 24–322
D) Traditional cache 19k 36k 0 202
A + B + C 131k–146k 148k–158k 72–96 149–447
Utilization of A + B + C 60–67% 34–36% 8–11% 27–82%

(c) AWS F1

LUT FF DSP BRAM URAM

A) 16 accelerators 142k 140k 128 696 0
B) Fixed infrastructure 575k 694k 12 275 43
C) MOMS 104k–135k 151k–165k 16–64 152–314 48–176
D) Traditional cache 76k 155k 0 42 128
A + B + C 821k–852k 985k–999k 156–204 1123–1285 91–219
Utilization of A + B + C 69–72% 44–45% 2.3–3.0% 54–59% 5.0–23%
Bottom SLR 69–71% 42% 1.7–2.2% 55–59% 3.8–14%
Middle SLR 51–55% 36–37% 0.6–1.7% 25–33% 7.5–41%
Top SLR 89–91% 54% 4.5–5.0% 83–87% 3.8–14%

54

4.4. Conclusion

Table 4.2 – Resource utilization of the 16-bank MOMS on AWS F1 with 256 kiB cache, 3×512 MSHR,
8×4096 subentries per bank as a function of the maximum burst length. The overhead of burst handling
is mostly due to the logic shown in Figure 4.4 and to the burst offset bits in each MSHR and is within 21%
for LUTs, 7% for FFs, and 15% for BRAM.

LUT FF DSP BRAM URAM

1 109k 153k 48 218 176
2 124k 159k 48 242 176
4 125k 160k 48 250 176
8 129k 161k 48 250 176
16 132k 163k 48 250 176

AWS, despite multiple SLRs, we achieve timing closure at 250 MHz with around 70% LUT and

60% BRAM utilization across the entire device and 80–90% on the top SLR.

Table 4.2 shows the impact of maximum burst length on the resource utilization. The burst

handling logic shown in Figure 4.4 has at most a 21% LUT and 7% FF overhead, while the

minimum and maximum burst offsets and queue pointer in each MSHR account for a worst-

case 15% BRAM overhead.

4.4 Conclusion

Irregular memory access patterns bring DRAM memories far from their optimal operating point,

which reduce the benefit of datapath parallelization. We showed in the previous chapter that

MOMSes improve throughput of latency-insensitive applications by dynamically reusing the

data returned from DRAM as much as possible and often more efficiently than a traditional

nonblocking cache with the same area. In this chapter, we extended MOMSes by requesting

variable-length bursts from memory, which increase the absolute amount of DRAM bandwidth

available to the FPGA by using larger portions of DRAM bursts and DRAM row buffer and

by increasing memory-level parallelism. Using bursts makes MOMSes beneficial also behind

DRAM controllers with multiple narrow ports, commonly found on SoC platforms, and further

increases their usefulness when memory ports are wide, especially when single requests alone

cannot achieve peak bandwidth utilization. In the next chapter, we will present an alternative

technique to increase DRAM bandwidth when single requests are not excessively penalized over

bursts which does not incur in data wastage associated to burst handling.

55

5 Increasing Available Bandwidth
by Large-Scale Request Reordering

The original MOMS described in Chapter 3 groups incoming requests that can be served by the

same, often wide, memory request (e.g., 512 bit). However, memory requests are sent out in no

particular order, which may cause frequent row conflicts when accesses are irregular (frequent

gaps in Figure 5.1a). By organizing incoming requests according to grouping regions spanning

4–8 memory requests, the variable-length burst extension discussed in Chapter 4 sends bursts of

(contiguous) memory requests instead. To minimize memory traffic, we assemble all incoming

requests hitting a grouping region into a single burst that is as short as possible. As these bursts

are aligned with the rows of DRAM, they significantly reduce the number of row conflicts.

This only requires minor modifications to the miss-optimized architecture; however, it has two

important limitations. Firstly, the burst may include inner data blocks that are not needed

(e.g., red and green requests in Figure 5.1b). Secondly, once the burst request has been sent

to memory, its bounds cannot be updated any more; subsequent requests for words that are

not covered by the in-flight burst trigger the invalidation of the current burst (i.e., its data will

be discarded) and a new request for a burst covering the whole grouping region will be sent

out (cyan and blue requests respectively in Figure 5.1b). We showed in Section 4.3.4 that both

mechanisms result in wasting up to 40% of the data received from memory.

The main idea of MOMSes is to accommodate thousands of requests to maximize the number

of incoming requests that can be served by the same memory response. To accumulate those

incoming requests without stalling, we use a deep queue to buffer the outgoing memory requests

as they are generated. So far, we focused on gaining visibility of thousands of incoming requests;

however, the output queue also gives them access to thousands of future memory requests. In

this chapter, we discuss how to use this information to minimize DRAM row conflicts by explicitly

reordering individual memory requests across a window that is three orders of magnitude larger

than that of a typical DRAM controller downstream. Similarly to the way incoming requests are

grouped based on the respective cache line (Chapter 3) or burst (Chapter 4), we group memory

requests based on their DRAM bank and row, and memory accesses belonging to the same group

57

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

Chapter 3:
single-request

external
memory

external
memory

external
memory

(a)

(b)

(c)

datapath

datapath

datapath

Chapter 4:
bursts

this chapter:
request reordering

Figure 5.1 – Impact of different miss-optimized architectures on the memory access pattern and thus
on DRAM bandwidth. In this example, incoming requests are half the size of the DRAM controller word
size; colors identify the DRAM row that was read. The single-request MOMS (Chapter 3) requests single
words without applying reordering (a), which may lead to frequent row conflicts that reduce the available
bandwidth. The improvement presented in Chapter 4 (b) sends variable-length bursts that cause fewer
row conflicts but that may include data that is not needed (the columns fully white) or request some
data twice (the crossed blue request, which has been requested again in the following full burst). The
architecture proposed in this chapter (c) explicitly reorders individual requests, minimizing row conflicts
without data wastage.

cr
os
sb
ar

$
MSHR
buffer

subentry
buffer

a
rb

it
e
r/

d
e
m

u
x

e
x
te

rn
a
l
m

e
m

o
ry

co
n
tr

o
lle

r

...

m
ul
ti-
po
rt
ed

pa
ra
lle
l

ac
ce
le
ra
to
r

data
buffer

$
MSHR
buffer

subentry
buffer

data
buffer

... bank0 bankN -1 R
C
R

cr
os
sb
ar

RCR

RCR

...

ad
dr
e
ss

ge
ne
ra
to
r

b

Figure 5.2 – Top-level architecture of the MOMS with row conflict reducers (RCRs), where we highlighted
the main differences from the single-request MOMS presented in Chapter 3. The RCRs are inserted
between the MSHR buffers and the external memory controller. Each of them is assigned to a bank of the
DRAM. The RCR crossbar steers requests between MOMS banks and RCRs. The responses bypass the
RCRs and reach the MSHR buffers directly.

will be sent out contiguously to the DRAM controller. Doing so reduces DRAM row conflicts

without incurring in the data wastage associated with bursts (Figure 5.1c).

5.1 Key Idea: Where and How to Reorder?

As mentioned in Section 2.3, in order to maximize the effective DRAM bandwidth we must 1)

minimize row changes within each bank and 2) exploit the fact that banks can operate in parallel.

Both requirements can be satisfied if 1) once a row has been opened, we send as many requests

(column accesses) to that row as possible and 2) afterwards, instead of opening a new row in

the same bank, we move to another bank. The latter allows the memory controller to overlap

precharge and activation in two different banks; modern reordering DRAM controllers may even

anticipate the next row activation to completely hide its latency [82].

This chapter is based on the work published at the Proceedings of the IEEE International Conference on Field
Programmable Technology, 2019 [24].

58

5.2. Row Conflict Reducer

start deallocation

allocations
d
e
a
llo

ca
ti

o
n
s

row
address
buffer

column
address
buffer

output
buffer

row address
deallocation queue

Figure 5.3 – Architecture of an RCR. Incoming tags are decomposed into row and column addresses; the
row is searched and, if needed, allocated into the row address buffer. Each entry in the row address buffer
includes a pointer to a region into the column address buffer that contain all column addresses that have
been received for that row. The deallocation queue contains a copy of all received row addresses in FIFO
order. Whenever the output buffer is free, it triggers the deallocation and readback of the oldest row and
all the respective received column addresses.

To achieve these goals, we extend the original MOMS as shown in Figure 5.2. The Row Conflict

Reducers (RCRs) are responsible for the memory access reordering. Since MOMSes already

return responses out-of-order, further reordering of output requests can be applied without any

impact on the functionality of the system. Each DRAM bank, being completely independent

from the others, has a corresponding RCR that organizes its requests. A crossbar is inserted

between the MSHR buffers and the RCRs as the number of MOMS banks, as well as the policy

that is used to partition requests among them, are not necessary the same as for DRAM banks.

To maximize bank parallelism, the address generator picks groups of requests that target a given

row in round-robin order from each RCR.

5.2 Row Conflict Reducer

The goal of the row conflict reducer is to group the incoming requests by row address. The

architecture of the RCR is shown in Figure 5.3 and consists of 1) row address buffer, 2) column

address buffer, and 3) row address deallocation queue.

The miss handling logic between accelerators and RCRs interprets the request address according

to Figure 5.4a and sends only the tag to the RCRs. The way the tag address is decomposed into

DRAM bank, row, and column address (Figure 5.4b) depends on the addressing scheme used

by the DRAM controller; we assume here that it contains the entire row and bank addresses,

and part of the column address as the lowest significant bits, often with the highest entropy, are

usually assigned to parts of the column address [46].

The bank address is used by the crossbar to determine which RCR bank will handle the request

and is thus implicit inside each RCR. Inside each RCR, memory requests are handled very

similarly to the way incoming requests are processed by the miss handling logic, with row and

column address analogous to cache line tag/MSHR and offset/subentry, as summarized in Table

5.1(a). When an RCR receives a request, it first searches the corresponding row address inside

59

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

Tag
MOMS
Bank

Subentry
Offset

Subword
Offset

29 8 7 6 5 2 1 0

Row Address
DRAM
Bank Column Address

DRAM
Subword

0231213151629

a)

b)

Figure 5.4 – Interpretation of memory addresses by the miss-handling logic (a) and DRAM memory (b).
The miss handling logic decomposes the incoming byte address as the tag of the cache line, the address
of the MOMS bank, the subentry offset (the word offset in the cache line) and the subword offset (a);
and the external memory controller as row address, bank address, column address and DRAM subword
offset (b). The numbers refer, without loss of generality, to the ZC706 PL system described in Section 2.6.2,
where accelerators request 32-bit words, the memory system implements 4 cache banks, the external
memory controller has a 512-bit wide bus and uses bank interleaving address scheme [46], the DRAM has
eight banks (e.g. DDR3), each bank returns 64-bit words and 10 bits are used as column address. Because
memory requests are 512-bit wide, the six least significant bits do not need to be stored into the RCRs as
they are are always zero.

Table 5.1 – Analogies and differences between MOMS miss handling and RCR memory request handling.
The two processes operate at different scales but have large conceptual overlaps.

(a) analogies

miss handling memory request handling

primary grouping key cache line tag DRAM row address
secondary address cache line offset DRAM column address
bank address MOMS bank address DRAM bank address
primary storage MSHR buffer row address buffer
secondary storage subentry buffer column address buffer

(b) differences

miss handling memory request handling

output address dependencies primary grouping key
primary grouping key
and secondary address

deallocation time after receiving a response after sending out the request
uniqueness of secondary addresses within a group no yes

the row address buffer. If it is the first request to a given row, an entry is allocated in the row

address buffer for the row address, together with some storage for the column addresses inside

the column address buffer. The column address of the request is stored into the column address

buffer and finally the row address is placed into the row address deallocation queue which will be

used to easily iterate over existing row address buffer entries. If the row address of an incoming

request has already been stored in the row address buffer, only a column address allocation for

the respective row occurs.

Two important differences between miss handling logic and RCRs are the way 1) outputs are

sent out and 2) entry deallocation occurs, as summarized in Table 5.1(b). The output of the

miss handling logic does not need any information from the subentries, which are used only

after the memory response returns to assemble the responses to individual pending misses; for

this reason, both MSHR and subentries cannot be deallocated until the arrival of the memory

60

5.2. Row Conflict Reducer

response. The output of an RCR, instead, needs information from both the row and column

address buffers as the whole incoming address must be forwarded to memory; moreover, both

row and column addresses can be immediately deallocated as soon as the respective memory

requests have been sent out.

For the reason outlined above, when the output buffer is empty, the row address deallocation

queue issues the deallocation of the oldest row address. The deallocation triggers retrieval

and deletion of the respective row address buffer and column address buffer entries, which

are forwarded to the external memory controller through the output buffer. As long as the

rate of production of memory requests by the miss handling logic is higher than the rate of

consumption of rows by the memory controller, rows will accumulate inside the row address

deallocation queue, extending the lifetime of rows inside the row address buffer and thus the

time window during which they can collect column accesses. This is analogous to the conditions

that ensure that incoming requests naturally accumulate inside the miss handling logic without

having to forcefully increase their latency, discussed in Section 4.1.3.

5.2.1 Row Address Buffer and Deallocation Queue

Just like the MSHR buffer, the row address buffer must support scalable content-addressable

lookup and deletion in constant time, as well as fast insertion. Therefore, the row address buffer

is also implemented as a cuckoo hash table with stash which stores row addresses together with

a pointer to an entry in the column address buffer (analogous to the MSHR’s pointer to the

subentry buffer). The row address deallocation queue stores a copy of the row addresses and is

implemented as a circular buffer. To be able to utilize the entire row address buffer, the size of

the Row Address Queue matches that of the address buffer.

5.2.2 Column Address Buffer

The column address buffer stores the requested column addresses grouped by their row address.

We could, in principle, store the column addresses in linked lists just like the analogous subentry

buffer stores the subentries. The subentry buffer used linked lists because there is no theoret-

ical upper bound for the number of allocated subentries per MSHR as the same word can be

requested multiple times.

However, since only primary misses trigger the generation of a memory request, and because

the miss handling logic guarantees that there is only one primary miss per cache line tag, the

RCR is guaranteed not to receive the same tag multiple times. This means that the maximum

number of DRAM column addresses associated to a given DRAM row can never be larger than

the number of all the possible column addresses in a row. Moreover, since each possible column

address in a row can only have two states (requested or not), the column information associated

to each row is a simple bit mask where each bit is set to 1 only if the corresponding column has

61

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

been requested. This greatly simplifies the update logic which only needs to either set a bit or

clear all of them when the column mask is initialized.

5.2.3 Output Buffer and Address Generator

The output buffer inside each RCR triggers the row address deallocations when it is empty. It

takes a row address and a column bit mask and forwards them together to the Address Generator

(Figure 5.2). The address generator contains a round-robin arbiter and the logic to reconstruct

the original sequence of tags by iterating over the ones in the column mask. The tags are then

forwarded to the DRAM controller. This ensures that the access pattern at the output of the

address generator complies with the requirements discussed in Section 5.1.

5.3 Evaluation

We compare our RCR-based MOMS to the original MOMS discussed in Chapter 3 and to its burst-

based extension presented in Chapter 4 on the ZC706 PL system introduced in Section 2.6.2.

We also tested the dual ZC706 PS configuration, where the irregular accesses are performed on

the PS memory instead, where the burst MOMS excels. With that configuration, however, the

RCR-based system performs worse than both baselines on most of the data points. This suggests

that an access pattern where accesses to the same row are sent consecutively, normally beneficial

to the PL controller (as shown in the following subsections), is instead pathological for the PS

controller. Since we could not identify a way to explicitly expose row hit opportunities through

the access pattern sent to the PS controller, we will not discuss this configuration further.

On the other hand, the AWS memory system has two important differences compared to the

ZC706 PL one. Firstly, as discussed in Section 2.3, DDR4 memories achieve ideal throughput

only if consecutive requests hit different bank groups. This requirement could be easily satisfied

by grouping RCRs by bank group and changing the arbitration policy of the address genera-

tor. However, the second difference has more profound implications and make the memory

system unsuitable to cleanly demonstrate the usefulness of row conflict reduction. The Xilinx

UltraScale+ MIG controller exposes an autoprecharge signal that can be used to control, on

a per-transaction basis, whether to immediately precharge a bank following a column access

or to leave the row open [113]. If this signal were exposed by the AWS shell to the user logic,

then it would be possible to immediately precharge a bank following the last access to a given

row, making row conflict reduction even more effective. Instead, the autoprecharge signal is

tied inside the encrypted shell to bit 8 of the incoming byte address [7], as shown in Figure 2.7.

While this is optimal for sequential accesses when coupled with the specific address mapping

used [7], it results in an address-dependent open/closed row policy in a general case, which

would require an overly complicated ad-hoc adaptation of the RCRs to make them useful on this

specific platform. Our goal is to propose solutions that are instead as platform-independent as

possible and we believe the approach would be perfectly viable if we had direct access to the

62

5.3. Evaluation

MSHR Size / Cache Size (bytes per bank)
1x512 entries (S)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

3x512 entries (M)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

4x1024 entries (L)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

0%

5%

10%

15%

20%

25%

S
p
e
e
d
u
p

Geometric mean of speedup vs.
single-request MOMS

MSHR Size / Cache Size (bytes per bank)
1x512 entries (S)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

3x512 entries (M)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

4x1024 entries (L)

0

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

Geometric mean of speedup vs.
 burst-based MOMS

RCR Size (Max in-flight row addresses, per bank)
2x64 2x512

Figure 5.5 – Geometric mean of the speedup of the RCR-based MOMS using the smaller and the larger
RCRs across all the benchmarks, compared to the single-request and variable-length burst MOMS. RCRs
provide positive geomean speedup on all architectures and compared to both baselines. They are
especially useful when paired to smaller caches or no cache as the performance becomes more sensitive
to the memory bandwidth. Systems (M) and (L) have enough MSHRs to saturate the smallest RCRs and
thus need the larger RCRs to achieve their full potential.

DDR4 controller as we do for the ZC706 PL DDR3 controller, with the possibility of being even

more effective if we could control the row policy on a per-transaction basis. Given that this is

not possible at the moment, we will focus on the optimization of the irregular accesses on the

ZC706 PL memory instead.

We used the following MSHR and subentry configurations (per bank) to evaluate our architecture:

(1) small (S): one 512-entry MSHR hash table and 512 subentry rows, (2) medium (M): three

512-entry hash tables and 2,048 subentry rows, and (3) large (L): four 1,024-entry hash tables and

4,096 subentry rows. Subentry rows have six subentries each. Each of these configurations was

paired to five different cache sizes: 0 KB, 32 KB, 64 KB, 128 KB, and 256 KB (per bank), resulting

in 15 configurations that, we think, representatively span every parameter. Each of them has

been compared to a single-request MOMS and one with a maximum burst length of 4 (which

provided the best performance on the ZC706 PL system) with the same configuration.

We implemented each of the configurations described above using two different RCR variations.

The smaller system uses row address buffers with two 64-entry hash tables, whereas the larger

RCRs use two 512-entry hash tables.

5.3.1 Global Speedup and Impact of RCR Size

Figure 5.5 shows the speedup provided by the proposed architecture for all the configurations

(geometric mean across all benchmarks). The speedup tends to be higher on smaller caches

as the number of memory accesses is larger and the system is more sensitive to the memory

performance. However, the RCRs achieve positive geometric mean speedup on all configurations

compared to both baselines.

63

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

On systems (S), the number of outstanding memory requests is always limited by the small

number of MSHRs rather than the RCR slots. Therefore, there are no significant differences

in performance between the two RCR architectures. Conversely, systems (M) and (L) have

enough MSHRs to saturate the 2×64 RCRs; with the larger RCRs, they can accept more requests

before stalling and they can reorder the memory accesses more efficiently, resulting in greater

speedups.

5.3.2 Memory Bandwidth Utilization

To validate the hypothesis that the RCRs provide speedup by increasing the available DRAM

bandwidth, we compared usage and availability of the memory interface using single-request

MOMSes, burst MOMSes, and MOMSes with 2×512 RCRs. On every cycle during the execution

of a benchmark, the memory address (input) channel will be either (1) idle (valid is low: no

request is being sent to memory), (2) active (valid and ready are both high: a new request is being

accepted), or (3) busy (valid is high but ready is low: the memory is applying backpressure).

Ideally, the channel will always be either idle or active according to the system’s needs (depending

on benchmark, cache hit rate, and fraction of secondary misses). However, as the fraction of idle

cycles decreases, busy cycles also appear due to DRAM refresh overlapping nonidle cycles and,

especially, row conflicts. In practice, busy cycles represent unavailable DRAM bandwidth.

Figure 5.6 shows the fraction of active cycles as a function of the fraction of nonidle cycles

(active and busy) during the execution of each benchmark, on each configuration. In other

words, it shows the obtained bandwidth as a function of requested bandwidth: in the ideal case

they would be identical, meaning that there are no busy cycles. Without RCRs, the obtained

bandwidth essentially matches the requested one as long as it is below 10% of the peak; beyond

this point, it depends on the access pattern but it is never greater than 55% and can be as low

as 38% of the requested one. The RCRs shift the majority of the points upwards, increasing the

obtained bandwidth especially to the benchmarks that need it the most: close to 100% requested

bandwidth, where the RCRs provide the larger speedups, the obtained bandwidth range shifts

from 38–55% to 50–68%, hitting the throughput limitation of single requests (see Section 2.6.4).

Bursts have a similar benefit and can be even better than RCRs at raw bandwidth saturation:

however, if we only consider the 512-bit data beats that are used at least once, RCRs outperform

burst-based MOMSes on most data points, which correspond to all benchmarks except for

pds-80. This explains the average positive speedup achieved by the RCRs even compared to the

burst-based MOMSes.

5.3.3 Speedup on Individual Benchmarks

To further investigate the relationship between benchmark properties, requested bandwidth,

and RCR performance, we explore the speedup of the proposed solution on individual bench-

marks. We analyze an architecture where RCRs have the highest (Figure 5.7) and lowest (Fig-

ure 5.8) mean speedup with respect to the corresponding burst MOMS. Even on individual

64

5.3. Evaluation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Requested Bandwidth

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
b
ta

in
e
d
 B

a
n

d
w

id
th

Type
Single-request

Burst-based, transferred data

Burst-based, used data

RCR

Speedup vs single-request
≤ -10%

0%

20%

40%

60%

≥ 80%

Figure 5.6 – Fraction of requested and obtained DRAM bandwidth during the execution of all benchmarks
on all configurations, color-coded by MOMS architecture. The circle size is proportional to the speedup
with respect to the single-request MOMS. Backpressure from the DRAM controller, a symptom of row
conflicts, severely limits the DRAM bandwidth available to the single-request MOMSes. Both bursts and
RCRs provide their highest speedups to data points that need the largest bandwidth. Burst MOMSes have
higher bandwidth utilization but waste part of it internally. RCRs increase bandwidth utilization without
incurring in data wastage and outperform the burst MOMSes on most data points in terms of bandwidth
actually used.

65

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

Benchmark

w
e
b
b
a
se

-

e
u
-2

0
0

5

in
-2

0
0

4

m
a
w

i1
2

3
4

co
n
t1

1_
l

d
b
lp

-2
0

1

a
m

a
zo

n
-2

ro
a
d_

u
sa

ljo
u
rn

a
l

y
o
u
tu

b
e

fl
ic

kr

ra
il4

2
8

4

p
d
s-

8
0

w
ik

ip
e
d
i

ci
t-

P
a
te

-20%

0%

20%

40%

60%

S
p
e
e
d
u
p

Speedup vs single-request MOMS
Benchmark

p
d
s-

8
0

co
n
t1

1_
l

ro
a
d_

u
sa

w
e
b
b
a
se

-

m
a
w

i1
2

3
4

a
m

a
zo

n
-2

d
b
lp

-2
0

1

y
o
u
tu

b
e

ra
il4

2
8

4

ljo
u
rn

a
l

e
u
-2

0
0

5

in
-2

0
0

4

w
ik

ip
e
d
i

ci
t-

P
a
te

fl
ic

kr

Speedup vs burst-based MOMS

RCR Size (Max in-flight row addresses, per bank)
2x64
2x512

0.1231 0.9984
Requested Bandwidth

Figure 5.7 – Speedup provided by the RCRs on individual benchmarks, on a configuration particularly
favorable to RCRs (system (L) with no cache). The proposed solution never slows down the single-request
MOMS; moreover, it outperforms the burst MOMS on most of the memory-bound benchmarks and on
two regular benchmarks where bursts, due to data wastage, have a net negative impact on performance.

Benchmark

e
u
-2

0
0

5

in
-2

0
0

4

d
b
lp

-2
0

1

w
e
b
b
a
se

-

a
m

a
zo

n
-2

m
a
w

i1
2

3
4

ro
a
d_

u
sa

co
n
t1

1_
l

fl
ic

kr

ra
il4

2
8

4

ljo
u
rn

a
l

p
d
s-

8
0

y
o
u
tu

b
e

w
ik

ip
e
d
i

ci
t-

P
a
te

-20%

0%

20%

40%

60%

S
p
e
e
d
u
p

Speedup vs. single-request MOMS
Benchmark

y
o
u
tu

b
e

p
d
s-

8
0

fl
ic

kr

w
e
b
b
a
se

-

a
m

a
zo

n
-2

m
a
w

i1
2

3
4

ljo
u
rn

a
l

d
b
lp

-2
0

1

ro
a
d_

u
sa

co
n
t1

1_
l

in
-2

0
0

4

e
u
-2

0
0

5

w
ik

ip
e
d
i

ra
il4

2
8

4

ci
t-

P
a
te

Speedup vs burst-based MOMS

RCR Size (Max in-flight row addresses, per bank)
2x64
2x512

0.0201 0.9956
Requested Bandwidth

Figure 5.8 – Speedup provided by the RCRs on individual benchmarks, on a configuration where the
RCR-based MOMS is moderately competitive to the burst-based MOMS (system (M) with 64 kB of cache
per bank). RCRs still have neutral or positive impact compared to the single-request MOMS; while bursts
provide slightly better performance on three bandwidth-intensive benchmarks, the 2×512 RCRs achieve
higher performance on 12 benchmarks out of 15 (up to 45% improvement).

benchmarks, the larger RCR has generally neutral or positive impact, depending on how often

the smaller RCR gets saturated. Compared to the single-request MOMS, there is a clear separa-

tion between benchmarks that have low requested bandwidth, where the RCRs practically have

no impact, and those that use most of the available bandwidth, where speedups are consistently

positive (with the larger RCR). Considering all architectures, the speedup can be as high as 81%

(cit-Pate on system (L) with 256 kB of cache per bank).

The trend versus the burst-based MOMS is more complex: on a few bandwidth-hungry bench-

marks, bursts are slightly more efficient than RCRs at increasing performance. As shown in

Figure 5.6, bursts can be more efficient than RCRs at increasing bandwidth; moreover, bursts

that contain more data than necessary may act as a prefetching mechanism when coupled

with a cache as in Figure 5.8. However, data wastage seems to be more common than useful

phenomena as most of the bandwidth-bound benchmarks benefit more from RCRs than from

66

5.3. Evaluation

Table 5.2 – Area utilization of the proposed solution and overhead compared to the baselines (MOMS
alone, not counting accelerators and fixed infrastructure). LUT, FF, and DSP overheads are due to the
RCR crossbar and logic, while the BRAM overhead for row and column address buffers is essentially
compensated by the elimination of the MSHR output queue. Based on the resource blend of a typical
FPGA, the overheads are concentrated on the least critical resources.

Configuration (S) (M) (L)

RCR 2×64 2×512 2×64 2×512 2×64 2×512

LUT
count 29k 32k 30k 33k 32k 35k

vs. single-request MOMS +30% +45% +36% +51% +41% +56%
vs. burst MOMS +23% +37% +18% +30% +20% +33%

FF
count 40k 40k 41k 41k 41k 42k

vs. single-request MOMS +37% +40% +36% +39% +35% +38%
vs. burst MOMS +16% +18% +14% +16% +13% +15%

BRAM
count 272.5 276.5 300.5 304.5 340.5 344.5

vs. single-request MOMS +4% +6% +2% +3% -3% -2%
vs. burst MOMS +3% +5% +1% +2% -5% -4%

DSP
count 20 20 28 28 32 32

vs. single-request MOMS +16 +16 +16 +16 +16 +16
vs. burst MOMS +16 +16 +16 +16 +16 +16

bursts, sometimes by a significant margin, with the notable exception of pds-80 which is indeed

the only benchmark where burst-based MOMSes achieve higher used bandwidth than RCRs

even after factoring in data wastage. At the other end of the spectrum, most regular benchmarks

are insensitive to both RCRs and bursts as the single-request MOMS already provides them with

enough bandwidth. However, in the case of eu-2005 and in-2004 in Figure 5.7, data wastage is

such that bursts have a net negative impact on performance. The RCRs, while not providing

speedup in some cases, have at least no negative impact on performance—in other words, RCRs

offer better worst case performance than bursts.

5.3.4 Resource Utilization

Table 5.2 shows the resource utilization of the systems that have been tested (with the largest

cache size). LUT and flip-flop overhead ranges between +13% and +56% and is due to the RCR

crossbar and the eight RCRs logic, which is almost a replica of the MSHR and subentry buffers

one but for twice as many RCRs than banks. BRAM overhead is much smaller and even negative

for systems (L). This is because the MSHR output queue in the baselines, which can contain

up to one tag per MSHR, is replaced by row and column address buffers which, through the bit

mask (see Section 5.2.2), encodes the same information more efficiently. Finally, because each

cuckoo hash function requires a DSP, the two hash tables in each of the eight RCRs require 16

67

Chapter 5. Increasing Available Bandwidth by Large-Scale Request Reordering

additional DSPs, which are still a negligible amount compared to the 900 DSPs available on the

ZC706 FPGA.

5.4 Conclusion

As discussed in Chapter 1, compute engines have consistently outperformed memory in through-

put for decades, and FPGAs are no exception. To make things worse, Section 2.3 showed that

the DRAM bandwidth decreases even further when applications perform irregular memory

accesses, hindering most of the benefits of hardware acceleration. Our MOMSes strive to use

the limited DRAM bandwidth as efficiently as possible, which is beneficial when frequent ac-

cesses to DRAM are unavoidable. While they maximize reuse of individual memory responses,

single-request MOMSes discussed in Chapter 3 do not tackle the reduction in available memory

bandwidth caused by frequent DRAM row conflicts due to the irregular access pattern. Sending

bursts of memory requests, as presented in Chapter 4, mitigates the problem but incurs in data

wastage, which reduces or may even cancel out any advantage. In this chapter, we show how

memory requests generated by miss-optimized memory systems can be efficiently reordered to

reduce DRAM row conflicts without requesting any unnecessary data. This is similar to what

modern DRAM controllers do, but on three orders of magnitude more requests thanks to the

deep memory request queue exposed by the miss-optimized memory system. This maximizes

the opportunities for DRAM row reuse and therefore the available bandwidth without incurring

in data wastage, extending the advantage of using MOMSes to support throughput-oriented

parallel accelerators with irregular memory access pattern. After having discussed techniques

to increase the utilization of the memory channel, in the next chapter we will discuss how to

maximize the utilization of FPGA resources when scattered across multiple dices and how to

reduce contention on the MOMS resources that are shared among multiple accelerators.

68

6 Going Large: Multi-Die and
Multi-Level Architectures

In Chapter 4 we demonstrated our burst-based approach on a 16-bank MOMS, which is the

largest system that we could implement on the AWS F1 FPGA at the maximum clock frequency of

the memory controllers, 250 MHz. While for up to eight inputs and banks we could simply scale

up the system shown in Figure 4.5 with no architectural modifications, doubling the number of

inputs and banks to 16 without frequency degradation was not as straightforward. This is despite

the AWS F1 FPGA has 4−−5× more resources than the ZC706 FPGA and is two generations ahead

(Xilinx UltraScale+ versus Zynq-7000). In addition, the maximum throughput on all systems is

never greater than 60% of the theoretical peak of one response per bank per cycle, even on the

highest performing benchmarks.

In this chapter, we discuss two design enhancements that improve MOMSes scalability, allow-

ing them to fully take advantage of large multi-die FPGAs and to get closer to the theoretical

throughput upper bound. Firstly, we describe how to floorplan a MOMS over a multi-die FPGA

and how to handle the die crossings to achieve high resource utilization without clock frequency

degradation. Secondly, we discuss alternative MOMS configurations that reduce the impact

of bank conflicts: analogous to cache hierarchies, we evaluate private and two-level MOMSes

alongside with the shared MOMSes considered so far.

6.1 Spanning Over Multiple Dies Without Sacrificing Performance

When we tried to implement 16 accelerators and banks on the AWS F1 FPGA, the clock frequency

dropped from 250 MHz to 189 MHz despite the fact that the utilization of all FPGA resources

remained below 30–50%. Looking at the physical layout produced by the placer for this larger

system, shown in Figure 6.1, we observe that at least the ten combinational paths with the lowest

worst negative slack happen to cross the boundary of a die (or Super Logic Region, SLR, in

Xilinx’s terminology). Indeed, even though FPGA CAD tools expose multi-die FPGAs as single

devices, special care is needed to handle die crossings as they are particularly scarce and slow

This chapter is partly based on the work published at the Proceedings of the 48th Annual International Symposium on
Computer Architecture, 2021 [14].

69

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

Figure 6.1 – Layout of the placed-and-routed MOMS with 16 inputs and banks on the AWS F1 FPGA when
no multi-die-aware design modifications and constrains are used. The three dies are enclosed in purple
boxes; the logic belonging to the shell is shown in orange, while the user logic is in blue. The ten paths
with the lowest worst negative slack are shown in white: all of them happen to cross a die boundary.

compared to intra-die interconnections. As a result, the presence of multiple dies must be taken

into account early in the design process by (1) making sure that all inter-die connections are

registered on both ends and do not include any combinational components, (2) minimizing the

number of inter-die connections [110], and (3) spreading the logic as much as possible among

dies to maximize the total resource availability and minimize routing congestion.

To satisfy (1), on all the signals that connect logic on different dies and do not use handshake

signals we inserted two registers back-to-back per inter-die crossing and applied the appropriate

RTL attributes to instruct the CAD tool to map them to flip flops rather in LUT-based shift

registers that cannot be fractured across different dies ((* shreg_extract = "no" *), in the

case of Xilinx). For inter-die connections that have handshake signals, we used the crossing logic

shown in Figure 6.2 either described in RTL or, when the crossing occurs between two distinct

IPs instantiated in the Xilinx IP Integrator, as a pair of AXI Register Slice Xilinx IPs configured

with registered inputs on the destination endpoint as shown in Figure 6.3.

70

6.1. Spanning Over Multiple Dies Without Sacrificing Performance

Data

Valid

Ready

Q
u
e
u
eD

V

R4-stage
shift register

Data

Valid

Ready

D

V

R

die ydie x

Figure 6.2 – Inter-die crossing circuit for signals with handshake. All the crossings are buffered on both
ends with no combinational logic in between. Since it takes two cycles for the ready signal on die y to
propagate to die x and, by that time, there may be up to two tokens in the crossing registers, the queue
needs at least four slots to buffer all of them.

Figure 6.3 – Circuit that allow high-performance AXI4 connections that cross a die boundary at the level
of the Xilinx IP Integrator (reprinted from the AXI Register Slice documentation [111]). This is equivalent
to the custom-built circuit in Figure 6.2 that is used when the crossing occurs inside an IP described in
RTL.

As for (2), we statically assign MOMS banks to memory channels and assign banks to the same

die as the respective channel. This ensures that the 512-bit data bus from memory channel to

MOMS banks does not cross any die boundary. Note that the input ports see a single memory

space, which is obtained by interleaving the address space of the multiple memory channels.

This provides workload balancing among channels in a manner that is completely transparent

to the input ports. Since requests are already assigned to MOMS banks in an interleaved fashion,

grouping together MOMS banks that are interleaved consecutively automatically interleaves

requests among memory channels without requiring a second crossbar between MOMS banks

and memory channels.

Since the AWS F1 FPGA has two DDR4 channels in the central die and one in each of the other

dies, the central die hosts twice as many banks than each of the top and bottom dies (eight

and four respectively in our final 16-bank configuration). To minimize the number of inter-die

crossings to and from the MOMS crossbar, we assigned also the crossbar to the central die.

Besides the irregular reads that occur through the MOMS, each SpMV accelerator also consumes

three vectors that are read sequentially and produces an output stream of data: as discussed in

Section 2.6.3, each memory channel serve the sequential requests of four accelerators. While, as

a general rule, we assigned the SpMV accelerators to the same die as the respective sequential

71

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

sh
ar

ed
 M

O
M

S
 c

ro
ss

ba
r

$
MSHR
buffer

subentry
buffer

m
u
lt

i-
p

o
rt

e
d

m
e
m

o
ry

 i
n
te

rf
a
ce

e
x
te

rn
a
l
m

e
m

o
ry

co
n
tr

o
lle

r

...

m
u

lti
-p

o
rt

e
d

p
a

ra
lle

l
a

cc
e

le
ra

to
r

data
buffer

$
MSHR
buffer

subentry
buffer

data
buffer

...

... shared MOMS bank

$
MSHR
buffer

subentry
buffer

data
buffer

private MOMS bank

$
MSHR
buffer

subentry
buffer

data
buffer

Figure 6.4 – Structure of a two-level MOMS. Private MOMS banks essentially correspond to a single
shared MOMS bank that are dedicated exclusively to a single input port. Private-only MOMSes lack the
shared MOMS crossbar and banks and are directly connected to the memory interface.

request memory channel, we move to the top die all the accelerators that, following this rule,

should be allocated to the central die. Indeed, the central die is already the most congested as it

hosts twice as many MOMS banks and has 25–35% of its resources assigned to the AWS shell.

Applying these guidelines result in the multi-die-aware system presented in Section 2.6.3 and

shown in Figure 2.6.

6.2 Private and Two-Level MOMSes

In the previous section, we showed that ignoring the multi-die structure of the FPGA prevented

MOMSes from efficiently utilizing more than 25–40% of the AWS F1 FPGA resources. It appears

from Figures 3.7, 3.13, and 4.10 that a similar hard limitation affects the internal bandwidth

between accelerators and MOMS banks, on all platforms: indeed, while Nb banks are able to

supply up to Nb responses per cycle, the maximum throughput is limited in practice to approxi-

mately 0.6Nb , on all platforms. As explained in Section 3.2.4, sharing the miss handling pipeline

between incoming requests and memory responses does reduce the maximum throughput of

the miss handling logic. However, in the worst case of zero hit rate and one memory response per

channel per cycle (an overly conservative assumption, as shown in Figure 5.6), the throughput

would decrease to Nb −Nmem requests per cycle. In the case of the PL ZC706 and AWS systems

with Nb
Nmem

= 4, this would correspond to 75% of the ideal throughput, which is still significantly

higher than the observed 60%. Moreover, even the most regular benchmarks with the largest

caches, where the shared miss handling pipeline is rarely used, cannot run at more than 60% of

the theoretical throughput.

Rather than in the miss handling logic, we found that this limitation is due to the conflicts among

MOMS banks at the level of the MOMS crossbar. Indeed, while the shared MOMS architecture

we investigated so far has the advantage of enabling requests from different accelerators to

be merged to the same memory request, the main drawback is that all the requests reach the

MOMS crossbar and compete for the shared MOMS banks. We will show in Section 6.3.3 that, as

a result, as many as 40% of the MOMS banks and accelerators remain unused even in the best

case where the bottleneck towards external memory is eliminated.

72

6.2. Private and Two-Level MOMSes

cr
o
ss

b
a
r

e
x
te

rn
a
l
m

e
m

o
ry

co
n
tr

o
lle

r

m
u
lti
-p
o
rt
e
d

p
a
ra
lle
l

a
cc
e
le
ra
to
r

...

...

$
MSHR
buffer

subentry
buffer

data
buffer

private MOMS bank

$
MSHR
buffer

subentry
buffer

data
buffer

Figure 6.5 – Structure of a private MOMS. The multi-ported memory interface of shared and two-level
MOMSes, which contain one round-robin arbiter per output port, is replaced by a full crossbar.

To overcome this limitation, we extend the design space at the system level to include private

and two-level MOMSes. In private MOMSes, banks are moved before the crossbar and become

private to each accelerator. This completely eliminates bank conflicts but may result in data

duplication inside each private cache and redundant memory requests as only requests from

the same accelerators are considered for merging. Two-level MOMSes combine the advantages

of private and shared MOMSes: each private MOMS bank processes requests at the same

throughput as its accelerator1 and reduces the number of requests that reach the shared MOMS,

resulting in lower contention.

Figure 6.4 shows the resulting system block diagram of two-level MOMSes. Private MOMSes

in two-level configurations can process responses out-of-order as they arrive from the shared

MOMS; however, the response needs to contain the address of the original request as it is used

to retrieve the respective MSHR and to store the response in the private cache. To minimize the

amount of information to store in the two-level MOMS as a whole, private MOMS banks do not

pair IDs to their requests and the shared MOMS only stores the index of the port that originated

the request in the ID field of each subentry. We instead propagate the MSHR tag of the response

to the subentry buffers in the shared MOMS, which is normally not necessary in a shared-only

MOMS; the subentry buffer will then append the offset of each response and forward the entire

address to the private MOMS bank together with the data.

The structure of a private-only MOMS can be derived from that in Figure 6.4 by removing the

shared MOMS crossbar and banks and connecting the private MOMS banks directly to the

memory channels through a full crossbar, as shown in Figure 6.5. This crossbar is slightly more

complex than the set of arbiters used for the same purpose by the shared MOMS as each input

must be connected to every output. This is unlike the case of shared MOMS banks, each of

which is connected to a single memory channel.

While some of the considerations that apply to private/shared/two-level MOMSes can also be

said about caches, there are also important differences related to the different goal of caches and

1Neglecting the impact of the miss pipeline sharing inside private MOMS banks; while this is generally a reasonable
assumption, it may in fact become the main bottleneck in a few cases that will be presented in Section 6.3.1.

73

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

MOMSes. The main goal of caches is to minimize latency, which is possible only if the data is

retrieved locally at least in the L2 cache. Incidentally, high hit rate also means high throughput as

many requests can be served without extra memory traffic; however, relying solely on the cache

for maximizing throughput may require large cache arrays on irregular applications. When

latency is essentially irrelevant, secondary misses (or MSHR hits) are equivalent to cache hits in

that both can be served without extra memory traffic, while requiring less on-chip memory when

there is little temporal locality. A two-level MOMS leverages this insight to reduce traffic both

towards the memory, as discussed in the previous chapters, and towards the shared MOMS, in a

more area-efficient way than if they relied solely on cache hits as a normal cache would. From

the perspective of miss handling, two-level MOMSes group misses hierarchically: secondary

misses in private MOMS banks are grouped to a single request to the shared MOMS which, in

turn, may be a secondary miss in the shared MOMS and thus be grouped with other requests

from different ports to the same memory request. This hierarchical grouping has the added

benefit of reducing the likelihood of having long linked lists of subentries in any given level,

which increases the throughput of the subentry buffers (see Section 3.2.4).

The system-level organization of a MOMS—private, shared, or two-level—is essentially orthogo-

nal to the bandwidth optimization techniques discussed in Chapters 4 and 5, which can still

be applied to the outermost MOMS level (i.e., the one connected directly to the external mem-

ory). Indeed, the effectiveness of both variable-length bursts and RCRs relates the internal

architecture of DRAMs and bring no benefit when used behind a second MOMS level.

6.3 Evaluation

After comparing the throughput of various two-level, shared, and traditional architectures in

Section 6.3.1, we will assess the contribution of the private and shared caches to the overall

performance in Section 6.3.2. We then discuss the impact of private MOMSes on the contention

on the shared MOMS in Section 6.3.3 and conclude in Section 6.3.4 with the resource utilization

of the new architectures.

6.3.1 Architecture Exploration

Table 6.1 presents the configurations that we evaluated on the AWS F1 system. In general, we

targeted the same configuration for private and shared MOMSes, whenever existing, except

for configuration 20/8 2L where we had to reduce the number of shared MSHRs and remove

the private cache to obtain a routable design. Private-only systems with 20 accelerators were

not routable. Like the 16/16 S configuration already used in Chapter 4 and shown in Figure 2.6,

two-level and shared systems have a quarter of the accelerators in the bottom die and the rest in

the top die. Private systems have instead a quarter of accelerators in the middle die and only half

of them to the top die, as the lack of a shared MOMS result in a less congested central die. All

MOMSes are burst-based with maximum burst length of 8, which in Chapter 4 we found to be the

highest performing on this system and application. In two-level MOMSes, private MOMS banks

74

6.3. Evaluation

Table 6.1 – Configurations evaluated in our experiments. The number of MSHRs, subentries, and the
cache size are per private MOMS or per shared MOMS bank.

system accelerators
private shared

MSHRs subentries cache banks MSHRs subentries cache

16/8 2L 16 4x1024 9x4096 128 kB 8 4x1024 11x4096 256 kB
16/8 2Lt 16 16 8 per MSHR 128 kB 8 16 8 per MSHR 256 kB
16/8 S 16 none 8 4x1024 11x4096 256 kB
16/8 St 16 none 8 16 8 per MSHR 256 kB
16/16 2L 16 4x1024 9x4096 128 kB 16 4x1024 11x4096 256 kB
16/16 2Lt 16 16 8 per MSHR 128 kB 16 16 8 per MSHR 256 kB
16/16 S 16 none 16 4x1024 11x4096 256 kB
16/16 St 16 none 16 16 8 per MSHR 256 kB
20/8 2L 20 4x1024 9x4096 none 8 3x512 11x4096 256 kB
20/8 2Lt 20 16 8 per MSHR 128 kB 8 16 8 per MSHR 256 kB
20/8 S 20 none 8 4x1024 11x4096 256 kB
20/8 St 20 none 8 16 8 per MSHR 256 kB
16 P 16 4x1024 9x4096 256 kB none
16 Pt 16 16 8 per MSHR 256 kB none

send 64-bit requests to the shared MOMS, which is twice the size of the accelerator request size.

Increasing this private-to-shared data size decreases the number of requests hitting the shared

MOMS, which reduces contention and the slowdown due to the request/response pipeline

sharing inside private MOMS banks (presented in Section 3.2.4). However, it also increases the

number of inter-die connections as private MOMSes are on the same die as accelerators and

none of them is on the same die as the shared MOMS crossbar. This in practice leads to a sharp

drop in clock frequency or even unroutability on most designs above 64 bits.

To widen the design space, we accept timing violations at the target frequency of 250 MHz as

long as designs can run at 227 or 218 MHz, which are the immediately lower frequency available

from the AWS shell. To account for the frequency differences, we report the performance in

GFLOPS instead of multiply-accumulations (MACCs) per cycle as in the previous chapters, where

GFLOPS = 2×MACCs/cycle× fclk .

Figure 6.6 shows the resulting throughput by benchmark and architecture. In geometric mean,

the highest performing architecture on most benchmarks is a two-level MOMS; among them,

the 16/16 2L is only 10% and 6% faster than the 20/8 2L (with fewer shared MSHRs and no

private cache) and 16/8 2L respectively, whereas the 16/16 S is 30% faster than the other shared

MOMSes. The 16/8 2L MOMS outperforms the 16/16 S MOMS and the best performing 16/16

2L MOMS is about 10% faster than the 16/16 S MOMS. This confirms that private MOMSes

effectively relieve the shared MOMS from part of the workload, which enables using fewer shared

MOMS banks than accelerators. Private-only MOMSes are by far the slowest architectures; the

gap with the other architectures is smaller on eu-2005 and in-2004 which are the smallest and

the most regular benchmarks and thus offer enough private reuse opportunities, as shown in

Figure 6.7. These are also the benchmarks where the advantage of two-level MOMSes compared

to the shared ones is the largest; more generally, the performance on the private MOMS alone

appears to be a good predictor of the benefit of two-level architectures compared to shared-only.

75

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

benchmark / number of accelerators / number of shared MOMS banks

amazon-2008

16

0 8 16

20

8

cit-Patents

16

0 8 16

20

8

youtube

16

0 8 16

20

8

cont11_i

16

0 8 16

20

8

dblp-2010

16

0 8 16

20

8

eu-2005

16

0 8 16

20

8

flickr

16

0 8 16

20

8

in-2004

16

0 8 16

20

8

ljournal

16

0 8 16

20

8

pds-80

16

0 8 16

20

8

rail4284

16

0 8 16

20

8

webbase_1M

16

0 8 16

20

8

wikipedia

16

0 8 16

20

8

geomean

16

0 8 16

20

8

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t

(G
FL

O
P
S
)

private MOMS

private traditional

shared MOMS

shared traditional

two level MOMS

two level traditional

0

1

2

3

4

5

T
h
ro

u
g

h
p
u
t

(G
FL

O
P
S

)

Figure 6.6 – Throughput of the shared, two-level, and private MOMSes and traditional caches presented
in Table 6.1. Two-level MOMSes generally outperform shared MOMSes even with fewer shared MOMS
banks, whereas two-level traditional caches do not bring significant improvements and are sometimes
even slower than shared traditional caches. Private-only systems are always slower as there are not
enough private reuse opportunities.

Traditional architectures are generally slower than the corresponding MOMS version and most

of the two-level traditional architectures are slower than the shared MOMS, despite the private

cache. In fact, on six benchmarks out of 13, two-level traditional caches are even slower than

shared ones due to the extra stalls introduced by the private cache when running out of MSHRs

or subentries, which throttles the throughput of requests that reach the shared cache.

Figure 6.7 shows that most benchmarks have few private reuse opportunities, which we measure

as the ratio of the number of accelerator requests over the number requests generated by the

private MOMS. Our workload partitioning scheme, where we interleave consecutive sparse

matrix rows across different accelerators, was indeed conceived with shared MOMSes in mind

as it requires an inter-accelerator request merging step to exploit any inter-row locality that

may exist. Figures 6.8 and 6.9 shows that indeed most of the total reuse can be attributed to the

shared MOMS. We tried partitioning the matrix rows in as many blocks as there are accelerators

and assigning consecutive rows to the same accelerator: while this increases the performance of

private MOMSes and the relative benefit of two-level versus shared MOMSes, it results in lower

absolute best performance on most benchmarks due to the fewer reuse opportunities overall,

defeating the purpose of maximizing throughput.

76

6.3. Evaluation

benchmark / number of accelerators / number of shared MOMS banks

16

0 8 16

20

8

cit-Patents

16

0 8 16

20

8

cont11_i

16

0 8 16

20

8

dblp-2010

16

0 8 16

20

8

eu-2005

16

0 8 16

20

8

flickr

16

0 8 16

20

8

in-2004

16

0 8 16

20

8

ljournal

16

0 8 16

20

8

pds-80

16

0 8 16

20

8

rail4284

16

0 8 16

20

8

webbase_1M

16

0 8 16

20

8

wikipedia

16

0 8 16

20

8

youtube

16

0 8 16

20

8

0

5

10

15

P
ri

v
a
te

 r
e
u
se

2
.8

0

1
.4

1

1
.4

0

1
.3

1

0
.8

1

1
.0

4

1
.0

4

1
.0

1

1
.5

7

1
.1

0

1
.1

0

1
.3

1 3
.1

4

1
.5

7

1
.5

6

1
.4

2

2
5

.1
0

4
.6

3

4
.6

1

2
.7

4

2
.5

0

2
.2

0

2
.2

0

1
.3

1

1
3

.6
6

4
.7

3

4
.7

0

3
.2

6

2
.3

1

1
.7

6

1
.7

5

1
.4

2

1
.0

0

1
.0

8

1
.0

8

1
.0

5

3
.6

1

1
.7

1

1
.7

1

1
.6

5

2
.4

8

1
.9

3

1
.9

2

1
.5

5

1
.1

8

1
.4

5

1
.4

4

1
.1

8

1
.5

7

1
.6

2

1
.6

1

1
.3

0

private MOMS

two level MOMS

amazon-2008

Figure 6.7 – Average number of incoming requests per private MOMS request (private reuse) in the
private and two-level architectures. In most benchmarks, the private MOMS of two-level architectures
only reduces requests by a factor between 1 and 2; the benchmarks with the highest private reuse are
those where the gap between two-level and shared MOMSes is the largest. Private-only architectures
achieve a slightly higher reuse thanks to the private cache and the longer output data size (512 bits versus
64 bits). This is however insufficient to outperform shared and two-level MOMSes.

benchmark / number of accelerators / number of shared MOMS banks

amazon-2008

16

8 16

20

8

cit-Patents

16

8 16

20

8

cont11_i

16

8 16

20

8

dblp-2010

16

8 16

20

8

eu-2005

16

8 16

20

8

flickr

16

8 16

20

8

in-2004

16

8 16

20

8

ljournal

16

8 16

20

8

pds-80

16

8 16

20

8

rail4284

16

8 16

20

8

webbase_1M

16

8 16

20

8

wikipedia

16

8 16

20

8

youtube

16

8 16

20

8

0

50

100

150

200

250

300

S
h
a
re

d
 r

e
u
se

1
1

.6

1
5

.7

6
4

.8

9
1

.3

1
1

.7

1
5

.1

1
.1

1
.2

1
.6 1
.7

1
.0

1
.3

2
0

.3

2
2

.4

2
8

.1

3
1

.1

1
6

.3

2
2

.4 4
1

.4 6
5

.5

4
1

.7 6
5

.1

4
6

.4 6
5

.9

3
6

.5

8
5

.6

6
1

.2

2
7

1
.2

5
6

.2 7
8

.5

1
3

.0 2
4

.7

6
8

.1

1
5

3
.4

1
8

.1

2
3

.0

2
7

.9

1
0

3
.1

3
1

.9

1
3

6
.0

3
9

.4

1
0

1
.2

2
.6

3
.4 3
.5

4
.8

2
.9

3
.2

3
0

.8

3
2

.9

3
0

.7

3
3

.5

3
1

.5

3
2

.8

3
.9

4
.4

2
4

.1 4
0

.3

4
.1

4
.4 1

8
.3 3
0

.9

2
1

.4 4
0

.3

2
1

.0

3
0

.2

1
.4

1
.9

2
.1 2
.9

1
.6

2
.0

4
.3

5
.7 1

8
.0

2
6

.0

4
.5

5
.7

shared MOMS

two level MOMS

Figure 6.8 – Average number of requests received by the shared MOMS per request generated by the
shared MOMS to memory (shared reuse). The shared reuse ranges from a few units to a few hundreds; it
is generally lower on the two-level MOMSes as the per-accelerator reuse opportunities have been already
harvested by the private MOMS.

A low private reuse can not only make private MOMSes in a two-level architecture useless,

but may also introduce a new bottleneck that lowers the performance compared to shared-

only MOMSes due to the MSHR/subentry pipeline sharing between requests and responses

discussed in Section 3.2.4. While this sharing has usually limited impact on shared MOMSes as

most architectures have more banks than memory channels, private MOMSes cannot benefit

from a multi-banked structure to share the workload associated to handling the responses. In the

worst case where all the requests received by a private MOMS bank are primary misses, requests

and responses will be in a 1:1 ratio, meaning that the private MOMS bank will process requests

at only 50% of the ideal throughput. This phenomenon is the cause of the low performance of

the 16/16 2L system on cont11_i. This is however the only case of performance degradation due

to private MOMSes and two-level MOMSes generally outperform, or at least achieve the same

performance, as shared MOMSes, usually even with fewer shared MOMS banks.

77

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

benchmark / number of accelerators / number of shared MOMS banks

amazon-2008

16

0 8 16

20

8

cit-Patents

16

0 8 16

20

8

cont11_i

16

0 8 16

20

8

dblp-2010

16

0 8 16

20

8

eu-2005

16

0 8 16

20

8

flickr

16

0 8 16

20

8

in-2004

16

0 8 16

20

8

ljournal

16

0 8 16

20

8

pds-80

16

0 8 16

20

8

rail4284

16

0 8 16

20

8

webbase_1M

16

0 8 16

20

8

wikipedia

16

0 8 16

20

8

youtube

16

0 8 16

20

8

0

50

100

150

200

250

300

T
o
ta

l
re

u
se

2
.8 1

6
.4

1
5

.7

9
0

.5
9

1
.3

1
5

.3
1

5
.1

0
.8

1
.2

1
.2

1
.7

1
.7

1
.1

1
.3

1
.6

2
2

.4
2

2
.4

3
1

.0
3

1
.1

2
1

.4
2

2
.4

3
.1

6
5

.1
6

5
.5

6
5

.0
6

5
.1

6
5

.8
6

5
.9

2
5

.1
1

6
8

.7
8

5
.6

2
8

1
.9

2
7

1
.2

1
5

3
.8

7
8

.5

2
.5

2
8

.7
2

4
.7

1
4

9
.5

1
5

3
.4

2
3

.8
2

3
.0

1
3

.7
1

3
2

.2
1

0
3

.1

1
5

0
.0

1
3

6
.0

1
2

8
.5

1
0

1
.2

2
.3

4
.5 3
.4

6
.2 4
.8

4
.2

3
.2

1
.0

3
3

.4
3

2
.9

3
3

.1
3

3
.5

3
3

.2
3

2
.8

3
.6

6
.7 4
.4

4
1

.2
4

0
.3

6
.8

4
.4

2
.5

3
5

.2
3

0
.9

4
1

.1
4

0
.3

3
2

.6
3

0
.2

1
.2

2
.0 1
.9

3
.0

2
.9

1
.9

2
.0

1
.6 7
.0

5
.7

2
8

.9
2

6
.0

5
.9

5
.7

private MOMS

shared MOMS

two level MOMS

Figure 6.9 – Average number of incoming requests per request sent to memory in all MOMS architectures.
Two-level MOMSes generally achieve an overall level of reuse that is higher or comparable to that of
shared MOMSes. Lacking a shared grouping stage, the total reuse in private-only MOMSes remain 1–2
orders of magnitude below that of the other architectures.

6.3.2 Impact of Caches

Figure 6.10 shows the throughput only of the MOMSes with and without private and shared

caches. In two-level designs, removing the shared cache reduces the throughput by 34% in

geometric mean; on the other hand, the impact of the private cache is essentially negligible (3%

geometric mean) except on eu-2005 and flickr. In addition, two-level MOMSes without private

cache still outperform shared-only MOMSes in most cases and in geometric mean. This suggests

that having a large number of MSHRs and subentries at the expenses of a cache is even more

useful in private MOMSes than it is in a shared-only MOMS, especially when part of a two-level

MOMS. It also confirms our intuition that, when the number of reuses is small, MSHRs and

subentries are more effective than caches when it comes to improving throughput.

6.3.3 Contention on the Shared MOMS

To understand the impact of the two-level architecture on contention, Figure 6.11 shows the

bandwidth requested from the shared MOMS in 16/16 architectures as a function (a) of the

bandwidth requested by the accelerators and (b) of the bandwidth requested at the crossbar

input, as summarized at the top of the figure. The meaning of bandwidth requested is the same

used in Section 5.3.2 for the memory port: it represents the fraction of cycles where the request

interface has its valid signal raised, irrespective of whether the downstream logic is applying

backpressure or not. The idea is to quantify the amount of contention at the level of the shared

MOMS crossbar: in an architecture with as many shared MOMS banks as inputs, when there is

no contention, the requested bandwidth at the crossbar output would correspond to that at the

input as all the input requests are forwarded to the output at the same throughput. Conversely,

in the extreme case where all the crossbar inputs are always active and always targeting the

same output among Nb , the requested bandwidth at the crossbar input would be 100% but at

the output it would only be 1
Nb

as Nb −1 banks never receive any request. Therefore, contention

for shared MOMS banks introduces a drop in requested bandwidth at the crossbar output as

some banks will be inactive while others are serializing requests received from multiple inputs.

78

6.3. Evaluation

benchmark / number of accelerators / number of shared MOMS banks

amazon-2008

16

0 8 16

20

8

cit-Patents

16

0 8 16

20

8

cont11_i

16

0 8 16

20

8

dblp-2010

16

0 8 16

20

8

eu-2005

16

0 8 16

20

8

flickr

16

0 8 16

20

8

in-2004

16

0 8 16

20

8

ljournal

16

0 8 16

20

8

pds-80

16

0 8 16

20

8

rail4284

16

0 8 16

20

8

webbase_1M

16

0 8 16

20

8

wikipedia

16

0 8 16

20

8

youtube

16

0 8 16

20

8

geomean

16

0 8 16

20

8

0

1

2

3

4

5

6

T
h
ro

u
g

h
p

u
t

(G
FL

O
P
S

)

all

no private

no shared

none

private MOMS

shared MOMS

two level MOMS

0

1

2

3

4

5

6

T
h
ro

u
g

h
p

u
t

(G
FL

O
P
S

)

Figure 6.10 – Impact of private and shared caches in private, shared, and two-level MOMSes. While
shared caches have a tangible impact on throughput in two-level architectures (34% geometric mean),
the benefit of private caches is much smaller (3%) and even cache-less private MOMSes are sufficient for
two-level MOMSes to outperform shared MOMSes.

79

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bandwidth requested at the accelerators output

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
a
n
d

w
id

th
 r

e
q

u
e
st

e
d

 a
t

th
e
 c

ro
ss

b
a
r

o
u

tp
u
t

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bandwidth requested at the crossbar input

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
a
n
d

w
id

th
 r

e
q

u
e
st

e
d

 a
t

th
e
 c

ro
ss

b
a
r

o
u

tp
u
t

Throughput (GFLOPS)
1.715

3.000

4.000

5.000

5.545

shared MOMS

two level MOMS

benchmark
amazon-2008

cit-Patents

cont11_i

dblp-2010

eu-2005

flickr

in-2004

ljournal

pds-80

rail4284

webbase_1M

wikipedia

youtube

(a) (b)

m
u

lti
-p

o
rt

e
d

p
a

ra
lle

l
a

cc
e

le
ra

to
r

private MOMS banks
(optional)

...

sh
ar

ed
 M

O
M

S
cr

os
sb

ar ...

shared MOMS banks

m
e
m

o
ry

in
te

rf
a
ce

e
x
te

rn
a
l

m
e
m

o
ry

co
n
tr

o
lle

r

...

horizontal axis in (a)

horizontal axis in (b)

vertical axis

Figure 6.11 – Requested bandwidth at the shared MOMS crossbar output as a function of the requested
bandwidth at the accelerators output and at the crossbar input for the 16/16 shared and two-level
MOMSes. When the requested bandwidth at the crossbar input is high, the probability for a given output
to be requested by multiple inputs, thus leaving some outputs without inputs, increases. In other words,
when there is contention, the requested bandwidth at the crossbar output will be lower than that at
the crossbar input. In the shared-only configuration, contention is high for most points and there is a
large mismatch between the bandwidth requested by the accelerators and that at the input of the shared
MOMS. In the two-level configuration, private MOMS banks reduce the bandwidth requirements at the
crossbar input and thus contention.

80

6.3. Evaluation

This can be seen graphically in Figure 6.11b as the gap between the ideal line with 45 degrees

slope and the actual y coordinate.

In a shared-only architecture, the two representations in Figure 6.11 are identical as the accel-

erator outputs are connected directly to the crossbar input. On this architecture, two factors

can shift points to the left. Very irregular benchmarks with few reuse opportunities such as

cit-Pate and wikipedi may reach the maximum number of outstanding reads per accelerator,

which corresponds to the reorder buffer (ROB) depth (8,192). Conversely, on high-performing

benchmarks such as eu-2005, the DMAs may become the bottleneck if they are unable to match

the throughput of the irregular requests. The first factor appears to be the dominating one on

the left side of the figure, while the second one for the right side. In the shared-only architecture,

only the two leftmost points, which are severely limited by the ROB and by the few reuse oppor-

tunities, are essentially on the ideal line. All the other points are significantly below the ideal

line and the gap between requested bandwidth at the crossbar input and output is as high as

30%. As a result, the shared MOMS is never requested more than 62% of its available bandwidth,

which is consistent with the throughput ceiling that we found in the previous chapters across all

benchmarks and on all systems.

In a two-level MOMS, the private MOMS introduces two more mechanisms that reduce the

bandwidth requirement at the crossbar input: (3) grouping some of the requests received from

the accelerators and (4) throttling the accelerators due to the request/response pipeline sharing.

Both mechanisms generally shift all the points down and Figure 6.11a shows that this mostly

happens because of a decrease in bandwidth requirement at the crossbar input rather than

an increase in contention. Indeed, most points are now on the left side of the chart, where

contention is low. In other words, private MOMS banks decrease the bandwidth demand on the

shared MOMS to a point where the crossbar can easily handle it without becoming a bottleneck.

Mechanism (4), obviously unwanted, is responsible for decreasing the bandwidth at the crossbar

input level (i.e., shifting point leftwards from Figure 6.11b to 6.11a for the same benchmark) by a

factor that is larger than the amount of private reuse shown in Figure 6.7. This is particularly

evident, for example, on cit-Pate.

6.3.4 Resource Utilization and Operating Frequency

Table 6.2 shows the resource utilization of the MOMSes and caches listed in Table 6.1. In the

16/8 and 16/16 systems2, the net cost3 of each private MOMS bank is 62%–66% LUTs, 62% FFs,

140% BRAMs and 50% URAMs of that of a shared MOMS bank. The DSP utilization is negligible

in all cases as the FPGA contains 6840 DSP blocks and will not be discussed further. The higher

BRAM utilization of a private MOMS bank compared to a shared MOMS one is due to the larger

2The shared MOMS in the 20/8 2L system has fewer MSHRs than the one in the 20/8 S system, making the
comparison less intuitive.

3Computed as the difference between the 2L and the S system areas divided by the number of inputs. This
accounts for the slight reduction in resource utilization of the shared MOMS in a two-level system compared to a
shared-only one due to the narrower ID and offset of each request.

81

Chapter 6. Going Large: Multi-Die and Multi-Level Architectures

Table 6.2 – Resource utilization and clock frequency of the designs listed in Table 6.1. Each private MOMS
bank is equivalent to approximately 60%, 140%, and 50% of a shared MOMS bank in terms of LUTs/FFs,
BRAMs, and URAMs utilization.

system LUTs FFs BRAMs URAMs DSPs frequency (MHz)

16/8 2L 138k 170k 598 176 96 250
16/8 2Lt 93k 150k 286 128 0 227
16/8 S 80k 99k 158 96 32 250
16/8 St 56k 92k 22 64 0 250
16/16 2L 193k 236k 754 256 128 227
16/16 2Lt 124k 197k 274 192 0 227
16/16 S 132k 164k 314 176 64 227
16/16 St 76k 155k 42 128 0 227
20/8 2L 154k 180k 356 128 104 250
20/8 2Lt 111k 173k 312 144 0 218
20/8 S 87k 106k 158 104 32 250
20/8 St 65k 100k 22 64 0 250
16 P 149k 227k 356 176 64 227
16 Pt 105k 210k 76 128 0 227

size of the tags in cache and MSHR buffer as a result of the shorter cache line size (64 bits versus

512 bits), which is also the reason for the lower LUT and FF utilization. Removing the private

cache, which was shown to have an almost negligible impact of performance, would lower the

overhead of each private MOMS bank to 57%–61%, 52%, 59%, and 10% respectively. Therefore,

without private cache, the 16/8 2L system would achieve essentially the same performance

as the 16/16 S system with 40% fewer on-chip memory bits (+10% BRAMs, -57% URAMs) and

similar LUT and FF utilization.

The 16 P MOMS has a slightly higher resource utilization than the 16/16 S one owing to the

wide, 512-bit data crossbar that redistributes requests from the four memory channels to the 16

private MOMS banks, which replaces the 32-bit 16/16 input crossbar and the four 4-to-1 512-bit

memory arbiters in the 16/16 S system.

6.4 Conclusion

In this chapter, we zoomed out of the MOMS microarchitecture and looked at optimizations

opportunities at the system level. Firstly, we discussed how to floorplan MOMSes on multi-

die FPGAs to balance the resource utilization across dies and minimize inter-die crossings.

This enable MOMSes to actually make use of the large amount of FPGA resources available

on multi-die FPGAs with essentially no clock frequency degradation. Secondly, we presented

private and two-level MOMSes to eliminate or reduce the impact of contention on the shared

MOMS. Owing perhaps to the limited private reuse opportunities, only in eu-2005, flickr, and

in-2004 we succeeded in the original goal of bringing the absolute performance above 60%

82

6.4. Conclusion

of the ideal throughput of 16 accelerators, which is 4.8 and 4.35 GFLOPS at 250 and 227 MHz

respectively. Nevertheless, we showed that two-level MOMSes outperform shared MOMSes

alone by 24% in geometric mean when using the same number of shared banks and that a two-

level MOMS with no private cache and half the number of shared MOMS banks has essentially

the same performance as a shared-only architecture while using 40% fewer on-chip memory

bits. While the advantage of private-only and two-level MOMSes is arguably limited on the

SpMV accelerators evaluated so far, we will show in the next chapter that these architectures will

be key enablers for FPGAs to compete and even outperform CPUs and GPUs in large scale graph

processing.

83

7 Enabling Efficient Large-Scale
Graph Processing

In the previous chapters, we focused on the MOMS architecture and used a variety of SpMV

benchmarks that generate widely different access patterns to characterize the impact of every

contribution: dramatically scaling up the number of MSHRs and subentries (Chapter 3), sending

bursts to memory (Chapter 4), reordering single requests by DRAM row (Chapter 5), and mitigat-

ing the impact of internal bottlenecks using two-level architectures (Chapter 6). We showed that

MOMSes can bring significant speedups even to very simple accelerators, partly relieving the

burden of memory system design on the developer of the accelerator.

In this chapter, we show a concrete example of the impact that MOMSes can have on high-

performance computing by showing an example of MOMS-accelerator codesign for large-scale

graph processing. We demonstrate that MOMSes can overcome the shortcomings of other

memory systems for graph acceleration on FPGA, which are especially evident when dealing with

large graphs with tens to a hundred million nodes. We pair the MOMS with a high-throughput

parallel accelerator that emits hundreds of thousands of outstanding requests and processes

responses out-of-order as they are delivered by the MOMS. The resulting system achieves

a 3× geometric mean speedup compared to the state-of-the-art on FPGA, 1.1×–5.8× higher

bandwidth efficiency and 3.0×–15.3× better power efficiency than multicore CPUs, and supports

much larger graphs than the state-of-the-art on GPUs.

7.1 Limitations of the State-of-the-Art

Graphs are the most effective data representation in a wealth of domains, including social

networks [59, 81], drug discovery, [95], genomics [17], and robot navigation [16]; this makes the

efficient processing of large graphs crucial in many disciplines.

While graph problems are usually embarrassingly parallel, the performance of graph algorithms

on traditional platforms is in practice limited by the bandwidth of the memory system as ei-

This chapter is based on the work published at the Proceedings of the 48th Annual International Symposium on
Computer Architecture, 2021 [14].

85

Chapter 7. Enabling Efficient Large-Scale Graph Processing

Processing
elements

Traditional
cache

External
memory

External
memory

Processing
elements

Scratchpad

External
memory

Processing
elements

Ideal
system

(a)

(b)

(c)

Figure 7.1 – Performance of different memory systems when accesses are irregular. Cache lines belonging
to the same tile are identified by different shades of the same color. Traditional caches (a) are effective
only when the reuse distance is short enough, which is rarely the case with large-scale graph workloads.
Statically-managed scratchpads (b) need strictly ordered accesses and transfer efficiently tiles of data;
thus, they guarantee that all accesses are hits, but usually also transfer data that are never used. An
ideal, infinite cache (c) would request only useful cache lines and exactly once. Miss-optimized memory
systems push caches in this direction for a reasonable area cost.

ther the edge or the node set are typically accessed irregularly [28, 29]. GPUs are also a poor

fit for algorithms with irregular control flow and memory access patterns, and require some

heavy preprocessing of the graph to achieve good performance [53, 101]. This is problematic

on dynamic graphs or in the common scenario where graphs are generated by another appli-

cation and are used no more than a few times [69]. ASICs provide excellent performance by

customizing processing pipelines and the memory system to the access patterns typical of graph

processing [38, 116]. However, their fabrication requires months and involves large NRE costs,

especially if they are to be implemented on the advanced technology nodes used to evaluate

their performance in simulation. While FPGAs cannot reach the performance of ASICs, they are

now available in data centers [80, 4, 107]. Today, anyone can deploy immediately and for less

than a dollar per hour an FPGA graph accelerator, even tightly integrated in a more complex

pipeline directly in the cloud. The accessibility and cost of FPGAs is now comparable to that of

GPUs, while retaining the hardware flexibility of ASICs. This makes them an attractive platform

to accelerate algorithms with divergent control and irregular memory accesses.

While both vertex- [67] and edge-centric [85] approaches have been proposed on FPGA, the

latter choice appears to be more common among recent solutions targeting large-scale graphs

[26, 88]. Considering that the edge set is usually larger than the node set, streaming the edges

indeed limits the range of the irregular memory accesses to the smallest one of those sets. And,

if the entire node set fits in on-chip memory, random accesses to external memory are entirely

eliminated. When this is not the case, sorting the edges by source and destination node turns

node accesses to sequential; this, however, makes preprocessing more expensive and super

linear in the number of edges. Since accesses are generally too irregular to make traditional

caches effective (Figure 7.1a), state-of-the-art FPGA accelerators for graph processing [26, 88]

mitigate the problem by partitioning the node set in tiles (intervals) and accessing the node

set in a tiled fashion (Figure 7.1b). This only requires edges to be partitioned by source and

destination interval, which has lower complexity than sorting. However, transferring nodes at

the granularity of tiles may cause unnecessary data transfers as not all nodes are always accessed

86

7.2. Key Ideas

in every iteration. In addition, the number of tile transfers between on- and off-chip memory is

quadratic in the number of nodes, leading to even more redundant data transfers. As a result,

node transfers dominate the total execution time if the node set is much larger than the amount

of on-chip memory.

7.2 Key Ideas

The main idea of this chapter is to use a MOMS to support the irregular read accesses typical

of graph processing. Our intuition is that the common skewed edge distribution results in

many opportunities for request merging as some nodes are requested orders of magnitude more

often than others; however, low-degree nodes are still common enough for traditional caches to

stall too frequently and hurt throughput, whereas MOMSes tolerate a large number of misses

much better. And, by taking advantage of the dynamic, fine-grained operation of MOMSes, we

avoid the redundant data transfers typical of tiling, as suggested in Figure 7.1c. Because the

MOMS only handles reads, we still buffer destination nodes in on-chip memory; however, the

number of statically scheduled node transfers is now linear in the number of intervals rather

than quadratic. This reduces the node transfer overhead for large graphs and, at the same

time, lowers the amount of on-chip memory required without increasing the complexity of

preprocessing beyond the linear cost of edge partitioning.

Our graph accelerator is adaptable to wide classes of graph algorithms. It is based on multiple

out-of-order processing elements (PEs) each handling thousands of hardware threads—one per

edge—in a simultaneous multithreading fashion to mask the latency of memory and MOMS.

The system has been designed with modern multi-die FPGAs in mind, using the techniques

described in Chapter 6. Our graph accelerator has been evaluated on the Xilinx UltraScale+

FPGAs available on the Amazon AWS F1 instances. This sets us apart from prior FPGA solutions

which have been tested only in simulation [26, 88] and whose performance is unclear once

connected to shells or to DRAM controllers physically constrained to separate dies.

7.3 Graph Processing Model

In this section, we describe the node and edge partitioning that represents the bulk of our

lightweight preprocessing (Section 7.3.1; an optional extra node relabeling step will be intro-

duced in Section 7.4.4), the programming model implemented by our accelerator (Section 7.3.2),

and discuss how graphs are encoded and stored in the FPGA off-chip memory (Section 7.3.3).

7.3.1 Graph Partitioning

As described more in detail in Section 7.3.2, we adopt an edge-centric model which iterates

over the entire edge set and, in principle, may access both source and destination nodes in

an arbitrary order. Interval-based partitioning is a common lightweight (O(M)) preprocessing

87

Chapter 7. Enabling Efficient Large-Scale Graph Processing

0

2 3 4

6

51

0

2
3

4

6
5

1

0 2 3 4 651

0 1

2 0

3 2

0 3
1 5 1 6

4 1 6 5

D0 D1 D2 D3

S0

S1

E0→0 E0→1 E0→2 E0→3

E1→0 E1→1 E1→2 E1→3

Figure 7.2 – Example of interval-based graph partitioning for the graph shown on the left, assuming Ns =
4 and Nd = 2. Edges are partitioned in shards Es→d based on the respective source and destination node
intervals.

technique that provides an arbitrary degree of locality to the accesses to the node set [60, 85].

Nodes are partitioned in Q disjoint intervals and edges into Q2 shards, where shard Ei→ j contains

all the edges that have source and destination node in intervals Si and D j respectively. Shards

can then be streamed while the respective source and destination intervals are both in on-chip

memory, which provides high performance irrespective of the access pattern.

Because we use a MOMS to avoid buffering source nodes in on-chip memory, we could, in

principle, partition edges in Q shards based on the destination interval alone. However, we keep

the source node partitioning for two reasons: (1) to avoid processing edges whose source interval

does not contain any node that has been updated in the previous iteration and (2) to apply the

edge compression mechanism introduced by ForeGraph [26] and described in Section 7.3.3.

Therefore, as shown in Figure 7.2, we partition edges into Qs ×Qd shards based on Qs source

and Qd destination node intervals; such intervals can now have different sizes Ns and Nd since

they serve different purposes.

7.3.2 Programming Model

Template 3 presents the programming model implemented by our accelerator. It represents

an execution framework that can be configured to implement a variety of graph algorithms by

customizing the functions init(), gather(), apply(), the initial node values VDR AM ,i n , a per-node

constant vector Vconst , a global constant scalar const, and two control flags use_local_src and

always_active. The model is based on the edge-centric Gather-Sum-Apply-Scatter (GAS) [35, 49]

and generalizes the model used by ForeGraph [26] and FabGraph [88]. Table 7.1 shows three

examples of graph algorithms implemented using our model. The main purpose of the init()

function, not present in the original GAS model, is to enable additional optimizations in some

algorithms. For example, we can implement PageRank as in ForeGraph [26]: instead of reading

88

7.3. Graph Processing Model

Template 3 Programming Model
1: continue = true
2: iter = 0
3: while iter < max_iter and continue do
4: active_srcs_next = {false}
5: continue = false
6: for d ∈ [0,Qd −1] do . In parallel across multiple PEs
7: for all i ∈ Dd do . Transferring Dd from DRAM to BRAM
8: VBR AM [i] = init(Vconst [i],VDR AM ,i n [i],const)

9: for all s ∈ [0,Qs −1] do . Streaming edges
10: if active_srcs[s] then
11: for all e in Es→d do
12: if esr c ∈ Dd and use_local_src then
13: new = gather(VBR AM [esrc],VBR AM [edst],ew)
14: else
15: new = gather(VDR AM ,i n [esrc],VBR AM [edst],ew)

16: if new 6=VBR AM [edst] or always_active then
17: active_srcs_next[src_interval(d)] = true
18: continue = true
19: VBR AM [edst] = new

20: for i ∈ Dd do . Transferring Dd from BRAM to DRAM
21: VDR AM ,out [i] = apply(VBR AM [i])

22: active_srcs = active_srcs_next

both score (PR) and outdegree (OD) irregularly and recomputing the normalized score d × PR
OD

for each source node, we read the constant OD sequentially once upon BRAM initialization

and use it to normalize the score before sending it to DRAM. This reduces the size of each

irregular read from 64 to 32 bits and allows to compute the normalized score only once per

node; denormalizing the score has negligible overhead as it only requires sequential memory

operations and can be done only once after the last iteration.

The model supports both synchronous and asynchronous execution, unlike ForeGraph [26]

and FabGraph [88] that only support the latter. For synchronous execution, VDR AM ,i n and

VDR AM ,out are swapped after every iteration, meaning that the node values that are read during

Table 7.1 – Examples of algorithm-specific parameters for Template 3.

PageRank SCC SSSP

Vconst [i] OD[i] not used not used

initial VDR AM ,i n[i] 0.15
N×OD[i] i i = source ? 0 : ∞

const 0.85
N not used not used

(vc , vDR AM ,c) (c, vconst) vDR AM

gather(u, v, w) v[0]+u min(u, v) min(u +w, v)

apply(v) 0.15× v[0]
v[1] v v

use_local_src false true true
always_active true false false

89

Chapter 7. Enabling Efficient Large-Scale Graph Processing

v0 v1

end

..
.

..
.

..
.

..
.

..
.

dstsrc
isEnd

e0→0,1

ptrsize
isActive

DDR word size

weight

...

...

...

...

...

(a)
VDRAM,* and Vconst

(b)
edges

(c)
edge pointers

e0→0,0

e1→0,0 e1→0,1

end

ep0→0 ep1→0

epQs-1→0

ep0→1 ep1→1

epQs-1→1

Figure 7.3 – Graph layout in memory, consisting of (a) node initialization values, (b) edges in compressed
format and organized by shard, and (c) edge pointers.

execution are updated only at the end of each iteration. For asynchronous execution, VDR AM ,i n

and VDR AM ,out point to the same array in memory: as a result, the gather() function at line

15 will read updated values as soon as they appear in DRAM. If, in addition, (1) VBR AM and

VDR AM ,i n use the same format and (2) the algorithm remains correct even when gather() uses

partial node values, use_local_src can be set to true: whenever the source node is in the current

destination group, it will be read from the local BRAM, using the most up-to-date version

available in the system and reducing the traffic to DRAM. For the examples in Table 7.1, SCC and

SSSP satisfy both requirements while PageRank never satisfies (2) as partial scores in BRAM may

underestimate the final score.

7.3.3 Graph Encoding and Memory Layout

Our accelerator accepts graphs described in coordinate format (COO): a list of tuples (src, dst,

weight (optional)), one per edge. Our preprocessing only requires edges to be partitioned ac-

cording to their shard; this preprocessing has O(M) complexity as opposed to other approaches

[38, 116] that require edges to be sorted at least by source node (sometimes implicitly if graphs

have to be converted to CSR format), which has O(Mlog M) complexity.

The entire memory layout is shown in Figure 7.3. The first section contains the vertex arrays:

the initial VDR AM ,i n , Vconst (if used by the algorithm) and allocates memory for VDR AM ,out if

the execution is synchronous. This is followed by all the edges organized by shard. Because

the highest bits of source and destination nodes are implicit in the shard, each edge explicitly

stores only the offsets (i.e., the lowest bits) within the respective source and destination groups.

Since each word retrieved from the DRAM is usually wide enough to contain multiple edges and

because the number of edges in a shard is not necessarily a multiple of the number of edges

90

7.4. System Architecture

DDR
channel

0

PE
0

Miss-optimized
memory system

Burst read
addr crossbar

Burst read
data crossbar

Write addr/data
crossbar

Arbiter

Demux

DDR
channel

C-1

Arbiter

Demux
PE
K-1

sc
h
e
d

u
le

r

P
C

I-
E

x
p

re
ss

..
.

..
.

Burst read addr Burst read data Write addr/data Random read addr Random read data

Figure 7.4 – Top-level system architecture. PEs pull jobs from the scheduler, which exposes a single job
per destination interval. Burst reads and writes for node initialization, writeback, and edge streaming are
forwarded to the respective memory channel, which are interleaved every 2,048 bytes. Irregular short
reads to retrieve the source node values are handled by a MOMS.

per DRAM word, we append a special terminating edge at the end of each shard to ensure PEs

will ignore any following data in the last DRAM word. It is indeed not possible for PEs to use an

edge counter for this purpose as edges may return out-of-order from multiple DRAM channels

(see Section 7.4.2). By using 15 bits for the destination node offset, 16 bits for the source node

offset, and one bit for the isTerminatingEdge flag, we always use 32 bits per unweighted edge

even for graphs that have tens of millions of nodes. This is similar to the edge compression

technique used in ForeGraph and FabGraph [26, 88] except for the isTerminatingEdge flag to

support out-of-order responses from multiple DRAM channels. For weighted graphs, source

and destination are followed by the edge weight. Because each shard may contain an arbitrary

number of edges, we use an array of edge pointers to identify starting address and size of each

shard, as well as whether the respective source group is enabled or not (thus whether the shard

should be streamed in at all or not, to implement line 10 of Template 3). All this fits into 64 bits.

7.4 System Architecture

In this section, we describe the hardware architecture of our accelerator, starting from the

top-level system organization (Section 7.4.1) and down to the internals of a PE (Section 7.4.2),

highlighting the challenges involved in managing the out-of-orderness of the memory system

due to both the MOMS and to the presence of multiple independent memory channels (Sec-

tion 7.4.3). Having described the system-level structure and the workload partitioning among

PEs, we present two optional preprocessing techniques that trade workload balancing for cache

line reuse (Section 7.4.4).

7.4.1 Top-Level Architecture

Figure 7.4 shows the top-level system architecture of our system. We target boards that comprise

an FPGA connected to one or more external memory channels. In the latter case, we interleave

91

Chapter 7. Enabling Efficient Large-Scale Graph Processing

read addr
from PE

..
.

C
ro

ss
b

a
r

DDR channel

A
rb

it
e
r

D
e
m

u
x

ArbiterDemux Demux Arbiter

read data
to PE

..
.

C
ro

ss
b

a
r

read data
to PE

..
.

C
ro

ss
b

a
r DDR channel

A
rb

it
e
r

D
e
m

u
x

DDR channel

A
rb

it
e
r

D
e
m

u
x

DemuxArbiter

C
ro

ss
b

a
r

read data
to PE

..
.

read data
to PE

DemuxArbiter

read addr
from PE

read addr
from PE

read addr
from PE

read addr
from PE

..
.

C
ro

ss
b

a
r

DDR channel

A
rb

it
e
r

D
e
m

u
x

read data
to PE

..
.

C
ro

ss
b

a
r

read data
to PE

read addr
from PE

die 2

die 1

die 0

Figure 7.5 – Multi-die aware interconnect architecture for burst reads (the one for burst writes is analo-
gous). Requests and responses are first routed to the target die and then to the target resource within the
die.

the addresses of each channel every 2,048 bytes of global address space seen by the PEs to

maximize aggregate bandwidth. The interleaving step defines a tradeoff between workload

balancing among channels (and thus aggregate available bandwidth) and maximum burst

length as we do not split and reassemble bursts across different channels. For our AWS F1 system

described in Section 2.6, we found that interleaving the four DDR4 channels every 2,048 bytes,

which defines a maximum burst length of 32 64-byte DRAM words, provides a good balance.

The scheduler contains memory-mapped registers that are used to transfer configuration param-

eters such as (1) the number of node groups and (2) the addresses in memory of the node and

edge pointers arrays shown in Figure 7.3. The same interface is also used to start the accelerator

and to notify its completion to the main processor. During execution, PEs pull jobs from the

scheduler through an arbiter. Each job is associated to a node destination group and consists of

(1) the base address from which the PE will read Vconst [i] and VDR AM ,i n for its node group (2)

the base address in VDR AM ,out to which the PE will write the final value of the node group, (3)

the base address of the edge pointers for the node group, and (4) the index of the node group,

used by the PE to notify the completion of the job. All of these pointers are computed by the

scheduler by incrementing the global base pointers by an appropriate stride that depends on the

size of the node destination groups and on the number of source and destination node groups.

In order to maximize resource utilization, PEs are scattered across multiple dies. Two distinct

paths exist between PEs and DRAM controllers: a multi-die-aware MOMS, used for the random

92

7.4. System Architecture

control

DMA
ext

local

a
d
d
r

ID
a

a
d
d
r

d
a
ta

data

ID
d

a
rb

it
e
r

rd addr

rd data wr data

wr addr

=

 s
ch

e
d

u
le

r

MOMS

dst interval index

src interval index

use_local_src
demux

sequential transfers
interconnect

(1)

(3a)
(2)

src and dst offset,
weight

MOMS
interface

BRAM/URAM with stalling
and forwarding logic

gather()
pipeline

d
st

 o
ff

se
t,

w
e
ig

h
t

src offset,
dst offset,
weight

node offset

shift
register

src value

w
e
ig

h
t

lo
ca

l/
e
x
te

rn
a
l

dst value

(3b)

(4)
(5)

01

Figure 7.6 – Architecture of a PE. After obtaining a job (1), edges are fetched by the DMA (2) by dereferenc-
ing the active edge pointers. Source node values are fetched through the MOMS (3a) unless use_local_src
(see Template 3) is enabled (3b). The MOMS interface, shown in Figure 7.7, stores the state associated to
each edge while waiting for responses. Once available, node values and edge weight are forwarded to the
gather() pipeline (4) and the destination node value is updated in BRAM (5). The logic that handles node
initialization and writeback is not shown but simply implements direct connections between DMA and
BRAM through init() and apply() respectively.

short reads that retrieve the value of source nodes by dereferencing the edge source indices, and

one for burst reads and writes, used in all the other transfers (initial destination node values, edge

pointers, edges, and final node values). The multi-die-aware MOMS is described in Section 6.1.

The burst network is, from a high-level perspective, equivalent to the bus interconnect logic

commonly provided by IP vendors except for being platform independent and multi-die aware.

Unlike the interconnect system used by the DMAs of our SpMV accelerators, which was discussed

in the previous chapters and is shown in Figure 2.6, every PE must be connected to every other

channel, potentially on different dies. This is because jobs are dynamically scheduled to PEs

and thus may access data on any channel, unlike the SpMV DMAs, each of which was statically

allocated to a single channel. The PE interconnect logic is made multi-die aware by (1) splitting

each of the three crossbars (for read address, read data, and write address/data) into a first

crossbar per die that routes transactions to the appropriate die through the crossing shown in

Figure 6.2 and (2) a set of arbiters per die that forward transactions to the appropriate resource

in the same die (DRAM controller or PEs for requests or responses respectively) as shown in

Figure 7.5.

7.4.2 PE Architecture

Figure 7.6 shows the internal structure of a PE. Each PE contains a DMA unit that handles all the

sequential data transfers: node initialization, edge pointer retrieval, edge streaming (DRAM to

PE), and node writeback (PE to DRAM). Upon acceptance of a job, the PE will first read the initial

value of all the nodes in the destination group. To minimize the initialization time and because

DRAM controllers often expose ports that are much wider than node values, we write four node

93

Chapter 7. Enabling Efficient Large-Scale Graph Processing

Free id queue

State memory
wr addr

wr data

rd addr

rd data

addr IDa IDd

src
addr

dst
addr

in

dst
addr
out

addr

src
addr

IDa

dst
addr

in

IDd

dst
addr
out

(a) (b)

weight
in

weight
out

Figure 7.7 – Available MOMS interfaces, which are responsible for retrieving the state associated to each
out-of-order MOMS response. For weighted graphs we use the architecture (a), which uses a queue to
keep track of the available ids and which stores, for each id, the destination node offset and edge weight
in the state memory BRAM. For unweighted graphs, the state reduces to the destination node offset.
Considering that its size is comparable to that of the unique ids produced by the architecture (a), we
implement the optimized interface (b) that uses the destination node offset directly as an id without
duplicating information that is anyway stored in the MOMS.

values per cycle. Once the node initialization is completed, the PE requests edge pointers and, if

the respective source group is active, the PE will start requesting edges from that group.

For each received edge, the source node value will be either retrieved from DRAM through the

MOMS or from the local BRAM, if use_local_src is active and the source node is in the current

destination interval. Once the source node value is provided by either the MOMS or the BRAM,

it is sent to the gather() pipeline together with the edge state. Because writing the output of the

gather() pipeline is a read-modify-write operation on the destination node, we use forwarding

(whenever possible) or stalling logic to ensure that the gather() pipeline always receives the

latest version of the destination node value. For algorithms where always_active is false (such

as SCC and SSSP), the gather() pipeline also returns an updated flag, which is set whenever a

destination node has been updated and is used to implement line 16 of Template 3.

Once all the edges have been streamed, the destination node memory is written back to DRAM

and the PE notifies the completion of the job to the scheduler together with the destination

group’s updated flag, if it exists.

7.4.3 Handling Efficiently Out-of-Order Responses

When the data is interleaved across multiple DRAM channels, responses may return out-of-order

whenever they hit multiple channels, even when each individual channel responds in-order.

Since nodes must be initialized in a specific order, to prevent out-of-order responses and avoid

expensive burst reordering, the PE will never issue more than one outstanding read burst for

initial node values. We found this not to be an issue if we use a 64-entry, 512-bit wide DMA

queue and issue the next 32-beat burst as soon as the queue has enough space to hold it. Bursts

for edges, on the other hand, may be shorter than 32 beats as the number of edges in a shard is

not necessarily a multiple of the number of edges in a 32-beat burst and we found that limiting

each PE to a single outstanding request for edges results too frequently in an empty read queue.

94

7.4. System Architecture

However, unlike node initial values, edges may be streamed out-of-order, provided that each

burst is paired to the corresponding source group as, in our compressed edge format, it defines

the high bits of the source node. Therefore, we tag each edge burst request with an ID that is

unique for each source group and use the ID that returns with the edge data to stream the right

source edge prefix to the downstream logic.

To maximize both MLP and the effectiveness of the MOMS when requesting source nodes from

DRAM through the MOMS, the PE must send thousands of outstanding reads to the MOMS.

Since each edge can be processed independently, we treat them as separate threads: when the

source node data request is sent to the MOMS, we store the thread state (destination node offset

and edge weight) and suspend it; when a response returns, we retrieve the respective state and

resume the thread execution. This mechanism is implemented by the MOMS interface and the

MOMS itself as shown in Figure 7.7. For weighted graphs, we tag each request with a unique ID

of size IDsize provided by the free ID queue, which we also use to store and retrieve destination

node offset and edge weight in the state memory. The BRAM cost per thread of this solution is

IDsize bits in the free ID queue, IDsize bits in the MOMS subentry buffer (see Figure 3.5), plus the

15 bits for the destination node offset and one edge weight in the state memory. For unweighted

graphs, the state reduces to the 15-bit destination node offset, whose size is comparable to IDsize

(as we target thousands of simultaneous threads). Therefore, pairing each destination offset to a

unique ID using the circuit in Figure 7.7a would require approximately 3× IDsize bits. We lower

this size to IDsize bits per thread by using directly the destination offset as an ID, as shown in

Figure 7.7b. In other words, we use the MOMS itself to store the entire edge state. By doing so, in

addition, the maximum number of threads is only limited by the MOMS capacity instead of the

smallest between the capacities of the MOMS and of the state memory.

7.4.4 Node Reordering

Graphs described in coordinate format implicitly assign a unique integer label to each node,

which also defines the address of the node value in memory. However, this labeling is, in

principle, arbitrary, and while it does not affect algorithm correctness, it has a dramatic impact

on performance. Because node values are usually smaller than a cache line, placing nodes that

are tightly connected with each other close in the memory space improves the cache hit rate

[30] or, in the case of MOMS, the opportunities for memory response reuse. Faldu et al. [30]

indeed showed that, in many graph benchmarks, labeling preserves tight clusters.

On the other hand, jobs corresponding to different destination intervals may be processed in

parallel; therefore, it is desirable to arrange nodes in destination intervals in such a way that

the number of in-edges per interval is as balanced as possible. With respect to Figure 7.2, this

means distributing edges as uniformly as possible among columns Di . Note that, to use bursts

to transfer destination intervals between on- and off-chip memory, nodes belonging to the

same destination interval should be contiguous in memory as in Figure 7.2. Both ForeGraph

[26] and FabGraph [88] statically schedule intervals to PEs and read source nodes from on-chip

95

Chapter 7. Enabling Efficient Large-Scale Graph Processing

scratchpads that are private to each PE. Therefore, the workload balancing among PEs is very

critical. Because of cluster preservation, paired with the common power-law degree distribution,

they found that placing consecutive nodes in the same interval—i.e., computing the destination

interval of node i as ni ,d =
⌊

ni
Nd

⌋
—results in a very skewed workload distribution. Therefore,

they both propose to use a hash-based relabeling such that node i is placed in interval ni ,d = ni

mod Qd instead, which results in a more uniform workload distribution.

In our case, however, the PE-level balancing is less critical as jobs are dynamically scheduled to

PEs and 1–2 orders of magnitude more numerous than PEs. By letting each PE pull a new job

whenever idle instead of forcing each of them to process the same number of jobs, we found that

our NPE PEs generally achieve a good workload balance even without hash-based relabeling as

long as the largest jobs are smaller than M
NPE

. In contrast, maximizing cache line reuse becomes

more critical. In particular, hash-based partitioning may destroy any cluster that is preserved in

the original labeling [30], hurting cache line reuse. Therefore, we keep cache lines as they are

and hash entire cache lines among destination intervals.

Orthogonally to cache line reordering, we also evaluate a technique introduced by Faldu et al.

called DBG reordering [30] prior to cache line hashing to handle graphs whose initial labeling

does not preserve tightly connected communities. DBG coarsely partition nodes in 8 groups

according to their out-degree, following the intuition that clustering nodes with high out-degree

together will lead to higher cache line reuse. This has O(N) complexity, which, for most graphs,

is even lower than the O(M) cost of partitioning and cache line reordering. We evaluate the cost

and benefit of these techniques in Section 7.5.3.

7.5 Evaluation

After presenting our experimental setup, FPGA-specific die assignments, and benchmarks in

Section 2.6, we analyze the impact of the number of PEs and of different MOMS architectures on

PageRank, SCC, and SSSP in Section 7.5.2. We then analyze the impact and cost of the various

preprocessing techiques (Section 7.5.3), the impact of number of memory channels, and thus

bandwidth, on performance (Section 7.5.4), and assess the contribution of the cache arrays to

the measured throughput (Section 7.5.5). In Section 7.5.6 we compare our performance with the

state-of-the-art on CPUs, GPUs, and FPGAs and we conclude in Section 7.5.7 by presenting the

resource utilization and operating frequency of our designs.

7.5.1 Experimental Setup

The system has been written in RTL using Chisel 3 and synthesized using Vivado 2019.1. The

code is fully parametric in terms of number of PEs and memory channels and their distribution

on the different dies, as well as node size and type, init(), gather(), and apply() functions, MOMS

organization, and many other dimensions.

96

7.5. Evaluation

Table 7.2 – Benchmarks properties.

Benchmark N M

WT wiki-Talk [63] 2.39M 5.02M
DB dbpedia-link [57] 18.3M 172M
UK uk-2005 [27, 19] 39.5M 936M
IT it-2004 [27, 19] 41.3M 1.15B
SK sk-2005 [27, 19] 50.6M 1.95B
MP twitter_mpi [57, 21] 52.6M 1.96B
RV twitter_rv [59] 61.6M 1.47B
FR com-friendster [63, 117] 65.6M 1.81B
WB webbase-2001 [27, 19] 118M 1.02B
24 RMAT-24 [22, 52] 16.8M 268M
25 RMAT-25 [22, 52] 33.6M 537M
26 RMAT-26 [22, 52] 67.1M 1.07B

Our evaluation has been performed on the AWS F1 board described in Section 2.6. The FPGA

spans over three dies (SLRs in Xilinx terminology), with 25–35 % of the resources of the bottom

and central dies reserved for the shell. The central SLR hosts two memory controllers (one

of which is in the shell) while the other two dies have one controller each. We assign the

shared MOMS crossbar to the central die and each bank to the respective memory channel’s

die. We found that assigning 30%, 15%, and 55% of the PEs to the bottom, central, and top die

respectively provide a good area balancing. Private MOMS, when existing, are assigned to the

same die as the respective PE.

Each PE holds 32,768 destination nodes in URAM; each node requires 32 bits in SCC and SSSP

and 64 bits in PageRank. For the PageRank PEs, which operate on single-precision floating point,

we implemented the gather() and apply() functions in Table 7.1 using Vivado HLS. Because its

gather() pipeline has a 4-cycle latency, it may have to be stalled to handle RAW hazards. The

gather() functions of SCC and SSSP, which operate on 32-bit unsigned integers, are implemented

in Chisel and fully combinational, meaning that no stalls are required. The state memory and the

free ID queue of the SSSP PEs have 8,192 slots and are implemented in BRAM. We run PageRank

for 10 iterations and the other algorithms until convergence.

As benchmarks, we used a set of real world and synthetic large graphs, whose main properties

are summarized in Table 7.2. For SSSP, we added random integer weights between 0 and 255

[116]. If not specified, we enable both hashing and DBG.

7.5.2 Architecture Exploration

We performed an extensive design space exploration and we present the most significant design

points in Figure 7.8. All MOMSes are of single-request type (as presented in Chapter 3). With

RCRs not available on the AWS F1 platform (see Section 5.3), we found the benefit brought by

97

Chapter 7. Enabling Efficient Large-Scale Graph Processing

WT DB UK IT SK RV MP FR WB 24 25 26 geomean

0
500

1000

1500

2000

2500

3000

A
v
g

.
M

T
E
P
S

WT DB UK IT SK RV MP FR WB 24 25 26 geomean

0

500

1000

1500

2000

2500

M
T
E
P
S

20
22
24
20/8
20/16
22/8
22/16
24/8
26/8 20/8

22/8
16/8 64k

16/16
18/16

20/8 128k
22/8 64k

20/8
22/8 128k

20
22
24
20/8
20/16
22/8
22/16
24/8
26/8 20/8

22/8
24/8

16/16
20/8 128k

22/8 64k
20/8 128k

22/8 64k

16/8 128k

WT DB UK IT SK RV MP FR WB 24 25 26 geomean

0

500

1000

1500

2000

M
T
E
P
S

16
20

20/8

20/8
20/16
24/8
26/8

22/8
24/8
16/8

16/8 128k

20/8
20/8 128k

16/16

PageRank

SCC

SSSP

Private
Shared MOMS
Shared traditional
Two-level MOMS
Two-level traditional

Figure 7.8 – Throughput on PageRank, SCC, and SSSP for different architectures. For shared and two-level
architectures, the label X/Y Zk indicates X PEs and Y MOMS banks with Z kB of private cache. The
two-level architectures with 16 banks generally provide the highest performance, balancing PE peak
throughput, amount of conflicts in the shared MOMS, memory efficiency, and routing congestion.

burst-based MOMSes on this application generally insufficient to compensate for the corre-

sponding area and delay increase on this application. We set a target frequency of 250 MHz and

discard systems that run at less than 185 MHz.

Each shared MOMS bank contains 256 kB of direct-mapped cache in URAM, 4,096 MSHRs

(four 1,024-entry cuckoo hash tables), and 32,768 subentries (4,096 rows with eight subentries

each, in URAM). Private MOMSes also have 4,096 MSHRs and 49,152 subentries (4,096 rows

with 12 subentries each, in URAM) and have an output data width of 64 bits when part of a

two-level MOMS: higher widths dramatically increase the number of inter-die crossing and thus

routing congestion, resulting in longer critical paths or routing failures. Private MOMSes have

256 kB of 4-way set-associative cache when there is no shared MOMS; in two-level architectures,

we increased the private cache as much as possible until timing degradation. Still, many two-

level MOMSes have no private cache at all since they bring little benefit to most benchmarks.

Traditional caches have 16 MSHRs and 8 subentries per MSHR per private cache and per shared

bank—more associative MSHRs lower the maximum frequency for no performance gain.

As shown in Figure 7.8, two-level architectures provide the highest performance in geometric

mean as fewer requests reach the shared MOMS, leading to fewer conflicts, while providing

reuse among multiple PEs without extra memory requests. Whenever they can be routed, the

architectures with 16 shared banks generally outperform those with more PEs and 8 banks,

suggesting that inter-PE conflicts remain critical. This is confirmed by the poor performance

of shared MOMSes, which cannot benefit from some filtering from the private MOMS. Private

98

7.5. Evaluation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hit rate (in any cache)

0

500

1000

1500

2000

2500

3000

3500

T
h
ro

u
g

h
p

u
t

(M
T
E

P
S

)

24

25

26

DB

FR

IT

MP

RV

SK

UK

WB

WT

private MOMS

shared MOMS

shared traditional

two level MOMS

two level traditional

Figure 7.9 – Throughput on SCC versus cache hit rate for the architectures shown in Figure 7.8, including
the same architectures completely without caches (with only MSHRs and subentries). Compared to
traditional caches, MOMSes achieve higher performance at lower (or even zero) cache hit rate, meaning
that caches arrays can be made smaller or even removed altogether with essentially no performance
penalty.

MOMSes alone tend to be limited by the excessive amount of redundant requests. There are

however important exceptions: IT, SK, and, to a lesser extent, UK and WT perform well also

without shared MOMSes as they have higher locality and the benefit from the elimination of

conflicts is higher than the increase in memory traffic. They also benefit from traditional two-

level caches whenever they leave space for more PEs than two-level MOMSes or run at higher

frequency.

SCC achieves the highest throughput among all the applications. PageRank is throttled by RAW

stalls due to the 4-cycle gather() pipeline, especially frequent on IT, SK, UK, and WB. For SSSP, (1)

the overhead of state memory and free ID queue reduces parallelism and operating frequency

and (2) weighted edges consume twice the bandwidth than unweighted ones.

Figure 7.9 shows the throughput on SCC as a function of the cache hit rate (in either cache

level) for the architectures shown in Figure 7.8. While traditional architectures need high hit

rates to reach their peak performance, MOMSes often outperform them despite the lower hit

rate, suggesting that caches are less critical in MOMSes. To validate this hypothesis, we also

considered the same systems with all the caches deactivated and hence always achieving a 0% hit

rate. While traditional caches naturally lose practically all of their performance, MOMSes have

little throughput degradation on most benchmarks, meaning that, even in graph processing,

thousands of MSHRs can essentially replace caches at a fraction of the area cost when latency is

irrelevant.

99

Chapter 7. Enabling Efficient Large-Scale Graph Processing

benchmark

WT DB UK IT SK RV MP FR WB 24 25 26

0

500

1000

1500
A

v
g

.
M

T
E
P
S

Hashing only
Hashing and DBGDBG only

Nothing

g
e
o
m

e
a
n

Figure 7.10 – PageRank throughput on the 18/16 two-level MOMS architecture depending on the prepro-
cessing used. Most benchmarks benefit from both hashing and DBG.

Table 7.3 – Preprocessing time in seconds.

partitioning hashing DBG

WT 0.04 0.05 0.03
DB 0.94 1.17 0.31
UK 2.68 6.65 0.99
IT 3.78 6.36 1.32
SK 6.71 12.0 3.40
RV 12.7 10.4 2.76
MP 15.5 14.4 2.55
FR 20.7 18.0 3.06
WB 4.48 4.99 1.43
24 1.58 1.91 0.56
25 3.16 4.66 0.65
26 8.40 7.97 1.58

7.5.3 Preprocessing Cost and Impact

Figure 7.10 shows the PageRank performance on the 18/16 architecture depending on the

preprocessing technique used (trends are similar on the other applications). Most benchmarks

benefit from hashing, especially the ones with fewer nodes, which results in fewer jobs and a

more critical load balancing. In addition, when the labeling does not preserve the original graph

communities (FR, MP, RV, and the RMATs) using DBG [30]—thus “breaking" the initial cache

lines—provides a significant speedup.

Table 7.3 shows the preprocessing time of all the benchmarks on a 20-core Intel Xeon E5-2698

excluding disk I/O. We use OpenMP to parallelize most of the operations. Our preprocessing

is generally lightweight and all the steps besides partitioning are optional, allowing to trade

preprocessing time for runtime efficiency or to quickly explore the preprocessing design space

to maximize the performance for a given application.

100

7.5. Evaluation

WT DB UK IT SK RV MP FR WB 24 25 26

0

1

2

3

G
T
E
P
S

DB UK IT SK RV MP FR 24 25 26

WT DB UK IT SK RV MPFR WB 24 25 26

1 DDR4 channel
2 DDR4 channels
4 DDR4 channels

2 4 24

PageRank

SCC

g
e
o
m

e
a
n

g
e
o
m

e
a
n

g
e
o
m

e
a
n

2 41 2 41 2 41 2 412 41 2 412 41 2 41 2 412 41 2 41

241 241 241 241 241 241 241 241 241 241 241

SSSP

Proposed
FabGraph

0

1

2

3

G
T
E
P
S

0

1

2

3

G
T
E
P
S

Figure 7.11 – Scalability of throughput as a function of the number of DDR4 channels for the two-level
16/16 MOMS architecture and for PageRank on FabGraph. The 4-channel PageRank and SSSP system
have lower operating frequency than the 2-channel ones due to the higher number of die crossings,
which increase congestion. For SCC, where the frequency is constant, the throughput of our system
generally scales linearly with the available memory bandwidth except for the benchmarks that become
compute-bound already with two memory channels (IT, SK, UK, WB, and WT). One 16 GB channel does
not have enough memory to run SSSP on FR and MP. FabGraph numbers are optimistic estimations
based on the theoretical bandwidth and disregarding any multi-die-related implementation issues and
RAW conflicts.

7.5.4 Memory Bandwidth Scalability

Figure 7.11 shows the throughput as a function of the number of DDR4 channels, for the two-

level 16/16 MOMS and for PageRank on FabGraph. We used the theoretical model described

by Equations (2) to (7) in the FabGraph paper [88] to estimate its performance considering that

edges are always active; we compute for it a very optimistic estimation that uses the ideal DRAM

bandwidth of 16 GB/s per channel, ignoring the 50% bandwidth limitation imposed by the AWS

shell on single request, any other implementation difficulties related to multi-die design, and the

handling of RAW conflicts of a floating-point PageRank implementation (FabGraph implements

PageRank using integers and thus the initiation interval of its key pipeline is 1 instead of the

realistic 4).

101

Chapter 7. Enabling Efficient Large-Scale Graph Processing

cache MSHR
buffer

subentry
buffer

data
buffer

hit data

requests
in

m
is

s
a
d
d
re

ss
/i
d

miss data

ro
u
n
d
-ro

b
in

a
rb

it
e
r

responses
out

memory
requests

out

memory
responses

in

Figure 7.12 – Detail of the hit and miss data paths from MOMS to accelerator. The round-robin ar-
biter, highlighted in red, becomes the main bottleneck on private MOMSes when there are many reuse
opportunities and little contention on the shared MOMS.

We can identify two categories of benchmarks: (1) compute-bound (IT, SK, UK, WB, and WT)

and (2) memory-bound (all the others). Benchmarks of the first category have good locality

and need less than four channels to achieve peak performance, being rather limited by PE

parallelism and, in PageRank, RAW conflicts that occur because our gather() function has a

4-cycle latency. These are indeed the benchmarks that benefit the most from private MOMSes

or traditional caches in Figure 7.8. On PageRank and SSSP, some compute-bound benchmarks

even decrease their performance on 4-channel systems as they operate at lower frequency due

to the higher number of die crossings resulting from the use of all dies. The performance of the

memory-bound benchmarks, instead, scales essentially linearly with the memory bandwidth.

In geometric mean, FabGraph performs better than our system on one memory channel but

scales less than ideally because the performance becomes more and more limited by the internal

bandwidth between their L1 and L2 cache, between which transfers are particularly numerous

on large graphs. In addition, being a simulation-only analysis, it does not take into account how

handling multiple dies affects routing congestion.

7.5.5 Impact of Caches

Figure 7.9 already showed that MOMSes do not need high cache hit rates to achieve peak per-

formance and that cache-less MOMSes are often more competitive than traditional caches.

Figure 7.13 shows more in detail the impact on performance of adding caches and/or dramati-

cally scaling up the MSHR array by comparing the SCC throughput of a two-level 16/16 MOMS

and traditional cache, with and without 4 MiB of shared cache (256 kiB per bank). While the

traditional cache has a 2.4× throughput decrease without the cache array, the MOMS main-

tains essentially the same performance (both in geometric mean), meaning that MSHRs can

essentially replace the cache array with little difference in terms of throughput. In addition, the

MOMS without cache is 19% faster than the traditional cache with cache array. Both results

indicate that, for graph processing, the contribution of MSHRs to throughput is higher than that

of cache, despite the area cost of MSHRs and subentries in the MOMS in terms of memory bits

is 11% smaller than that of the cache arrays. In fact, IT, SK, and 26 perform even better without

102

7.5. Evaluation

WT
M

O
M

S

tr
a
d
it

io
n
a
l

DB

M
O

M
S

tr
a
d
it

io
n
a
l

UK

M
O

M
S

tr
a
d
it

io
n
a
l

IT

M
O

M
S

tr
a
d
it

io
n
a
l

SK

M
O

M
S

tr
a
d
it

io
n
a
l

RV

M
O

M
S

tr
a
d
it

io
n
a
l

MP

M
O

M
S

tr
a
d
it

io
n
a
l

FR

M
O

M
S

tr
a
d
it

io
n
a
l

WB

M
O

M
S

tr
a
d
it

io
n
a
l

24

M
O

M
S

tr
a
d
it

io
n
a
l

25

M
O

M
S

tr
a
d
it

io
n
a
l

26

M
O

M
S

tr
a
d
it

io
n
a
l

geomean

M
O

M
S

tr
a
d
it

io
n
a
l

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(M
T
E
P
S
)

no cache

with cache

Figure 7.13 – Throughput on SCC for the 16/16 two-level MOMS and traditional cache, with and without
shared cache. In geometric mean, the cache array has no impact on the MOMS performance, which
is faster than the full traditional cache with cache array. Some benchmarks achieve an even higher
throughput without cache because the longer latency allow private MOMSes to accumulate more requests,
increasing the private reuse.

shared cache: this happens because shared hits have much lower latency than misses and do not

leave enough time for the private MOMS to accumulate enough secondary misses. As a result,

the private MOMS need to handle more responses, which steal pipeline slots from requests, as

discussed in Section 3.2.4. The solution would be to avoid sharing the pipeline between requests

and responses, which we leave as future work.

Figure 7.14 shows the same performance data for the 20/8 two-level system, which has 2.5 MiB

and 2 MiB of private and shared cache respectively. The general trends are similar to those

discussed for the 16/16 system: large MSHR and subentry buffers are more critical than large

caches, and MOMSes without cache have essentially the same performance as the full traditional

caches using 25% fewer memory bits. Shared caches are generally more useful than private ones,

which is consistent with our findings on SpMV in Section 6.3.2, except for IT and SK which posses

significant private reuse opportunities. Perhaps surprisingly, the IT benchmark runs at a slightly

higher throughput with no cache at all compared to having a private cache only. In fact, many

reuse opportunities at both levels, signaled by the high absolute performance, mean that most

of the bottlenecks have been eliminated (memory, shared MOMS contention, request/response

pipeline sharing): this uncovers one more point of contention on the return path between

responses that are produced by the cache (hits) and by the subentry buffer (misses), which are

merged using a round-robin arbiter just before the response output of a MOMS bank, as shown

in Figure 7.12. The moderate private hit rate of 37% results in high contention which, due to

the high throughput, propagates past the 32-entry queue on the cache hit side and stalls the

request input, throttling the incoming requests. Despite this issue, increasing the queue depth

resulted in a clock frequency decrease due to the higher congestion and therefore the current

queue depth still provides the highest performance.

103

Chapter 7. Enabling Efficient Large-Scale Graph Processing

WT
M

O
M

S

tr
a
d
it

io
n
a
l

DB

M
O

M
S

tr
a
d
it

io
n
a
l

UK

M
O

M
S

tr
a
d
it

io
n
a
l

IT

M
O

M
S

tr
a
d
it

io
n
a
l

SK

M
O

M
S

tr
a
d
it

io
n
a
l

RV

M
O

M
S

tr
a
d
it

io
n
a
l

MP

M
O

M
S

tr
a
d
it

io
n
a
l

FR

M
O

M
S

tr
a
d
it

io
n
a
l

WB

M
O

M
S

tr
a
d
it

io
n
a
l

24

M
O

M
S

tr
a
d
it

io
n
a
l

25

M
O

M
S

tr
a
d
it

io
n
a
l

26

M
O

M
S

tr
a
d
it

io
n
a
l

geomean

M
O

M
S

tr
a
d
it

io
n
a
l

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(M
T
E
P
S
)

no cache

private only

shared only

private and shared cache

Figure 7.14 – Throughput on SCC for the 20/8 two-level MOMS and traditional cache, with and without
private and/or shared cache. As in the 16/16 two-level MOMS, the contribution of caches to the MOMS
throughput is essentially negligible, especially for the private cache.

Table 7.4 – Memory bandwidth and power consumption of the platforms considered in Figure 7.15. *The
GPU power is overestimated as it includes the power consumed by the entire board.

Platform External memory bandwidth Power

This work, FabGraph FPGA 64 GB/s 23 W
Gunrock GPU 900 GB/s 300 W*
Ligra, GraphMat CPU 233 GB/s 224 W

7.5.6 Comparison with the State of the Art

For each of the three graph applications, we consider (1) the two architecture-preprocessing com-

binations with the highest geometric mean throughput and (2) the architecture-preprocessing

combination with the highest performance on a given benchmark. We consider scenario (1)

as representative of a general-purpose, possibly hardened graph processor, while scenario (2)

shows the highest possible performance that can be achieved by taking advantage of the repro-

grammability of FPGAs and using an architecture that is highly optimized for a specific situation.

We compare them to (a) FabGraph [88], (b) Gunrock [101], (c) Ligra [90], and (d) GraphMat

[10, 93] whenever the respective graph application is available.

For FabGraph, we use the theoretical model as in Section 7.5.4, which can only be applied to

PageRank and ignores RAW stalls. We ran Gunrock on the NVIDIA Tesla V100 with 16 GB of

HBM2 memory available on the AWS p3 instances. We evaluated Ligra and GraphMat on a dual

socket 2.5 GHz Intel Xeon E5-2680 v3 with 12 cores and 24 logical threads each, connected to

16 1,833 MT/s DDR4 channels. Only Ligra can benefit from DBG and, thus, we added it to the

graph.

104

7.5. Evaluation

1
2
3
4
5
6
7
8
9

sp
e
e
d

u
p

 o
v
e
r

Li
g

ra
 w

/o
 D

B
G

1
2
3
4
5
6
7
8
9

sp
e
e
d

u
p

 o
v
e
r

G
ra

p
h

M
a
t

Ligra
Ligra DBG

GraphMat
Gunrock

Gunrock

W
T

D
B

U
K IT S
K

R
V

M
P

FR W
B

2
4

2
5

2
6

0K

1K

2K

3K

4K

5K

M
T
E
P
S

PageRank

17x

12x 21x 51x 15x

SCC

SSSP

FabGraph
Proposed

Gunrock

Ligra
GraphMat

best
two-level 20/8

Ligra with DBG

two-level 18/16

best
two-level 22/8 64k

two-level 16/16

best

private 16
two-level 16/8

Ligra with DBG

g
e
o
m

e
a
n

W
T

D
B

U
K

IT S
K

R
V

M
P

FR W
B

2
4

2
5

2
6

g
e
o
m

e
a
n

W
T

D
B

U
K

IT S
K

R
V

M
P

FR W
B

2
4

2
5

2
6

g
e
o
m

e
a
n

Figure 7.15 – Comparison with state of the art on CPU, GPU, and FPGA. In many cases, our results are, in
absolute terms, competitive to or better than those of the best contender. Considering the bandwidth
and power gap among the platforms outlined in Table 7.4, our solutions are 1.1×–5.8× more bandwidth-
efficient and 3.0×–15.3× more bandwidth-efficient than CPUs and GPUs on PageRank and SCC. Gunrock
is more bandwidth- and energy-efficient than our solutions on DB and UK on SSSP but runs only for
small benchmarks.

105

Chapter 7. Enabling Efficient Large-Scale Graph Processing

LUT FF BRAM URAM DSP

0%

20%

40%

60%
two-level 22/8 64k
two-level 16/16

two-level 22/8
64k

two-level 16/8

two-level 18/16
two-level 20/8

PageRankSCC SSSP

LUT FF BRAM URAM DSP

0%

20%

40%

60%

two-level 22/8 64k
two-level 16/16

two-level 22/8
64k

two-level 16/8

two-level 18/16
two-level 20/8

Figure 7.16 – Relative utilization of resources for the top two architectures of each application. Designs
are mostly limited by LUTs, used especially in the interconnect networks, and BRAM.

Table 7.4 summarizes bandwidth and power consumption. For the FPGA, we report the maxi-

mum power reported by the fpga-describe-local-image API [8] while for the CPU we read

the Intel RAPL registers [42] using CPU Energy Meter [91]. Both measurements exclude external

memory and are therefore comparable. Unfortunately, we could not obtain the same kind

of data for the GPU and thus we use the TDP, which corresponds to the absolute maximum

consumption of the entire board, including HBM2 memory.

On PageRank, our generic architectures outperform the original Ligra, FabGraph, and Gunrock

by 2.1×, 1.4×, and 2.1× (geomean) respectively, while the geomean speedup of the specialized

architectures increases to 4.5×, 3.0×, and 4.5× respectively and to 1.3× and 1.9× over GraphMat

and Ligra with DBG respectively. On SCC and SSSP, our architectures remain competitive with

the CPU baselines in absolute terms and are 1.1–3.5× (generic) and 2.3–5.8× (specialized) more

bandwidth-efficient and 3.0–9.4× (generic) and 6.1–15.3× (specialized) more power efficient. On

SSSP, Gunrock achieves excellent performance by keeping track of the frontier at the granularity

of single nodes as opposed to larger source intervals; however, with only 16 GB of memory, it

can only run the five smallest benchmarks, while with the same amount of memory we could

run all benchmarks except FR and MP.

7.5.7 Resource Utilization and Operating Frequency

Figure 7.16 shows the resource utilization of the highest performing designs of Section 7.5.6.

While LUTs and FFs are mostly used in the interconnect, BRAMs and URAMs are used in both

PEs and MOMSes. DSPs are in general underutilized, even in the floating-point PageRank. Note

that we report the average utilization across the area not occupied by the shell; the utilization

per SLR, which is the main factor that affects routability, is higher and peaks at 90% of LUTs

in the central SLR for the two-level 16/16 PageRank system without significantly affecting the

operating frequency, which remains between 196 MHz and 227 MHz for all of these designs.

106

7.6. Conclusion

7.6 Conclusion

Graph processing is a key building block of applications in very different domains; yet, achieving

good performance is challenging due to the irregular workload distribution, control flow, and

memory accesses, especially when graphs are large. We observed that many graph accelerators,

especially on FPGA, are based on the assumption that performance practically only comes from

statically managed local buffers and/or extensive preprocessing. We challenge this prejudice

and show that throughput-oriented out-of-order PEs can instead benefit from the dynamic

fine-grained operation of caches and, even more, of MOMSes, without expensive preprocessing.

We demonstrate our approach on PageRank, SCC, and SSSP, achieving 3× geometric mean

speedup compared to state-of-the-art on FPGAs, 1.1×–5.8× higher bandwidth efficiency and

3.0×–15.3× power efficiency than multicore CPUs, and the ability to scale to very large-scale

graphs compared to reference GPU implementations. To the best of our knowledge, our system

is the first that can run graph processing on multi-die FPGAs, pushing the boundary of efficient

large-scale graph analytics on a single node in the cloud. This chapter also demonstrates the

versatility of MOMSes which increase the available bandwidth, and thus speed up, simple

sparse matrix-vector accelerators as well as out-of-order graph accelerators using the same exact

architecture.

107

8 Conclusions

With memories consistently lagging behind compute engines in terms of throughput, more

and more applications are or will soon become memory-bound. Irregular memory access

patterns exacerbate the problem as traditional memory hierarchies based on caches become

ineffective and the DRAM bandwidth drops by another order of magnitude. Common solutions

generally follow the principles of increasing local data reuse and making external memory

accesses sequential; however, concrete implementations of such principles may be hard to

obtain and are often application-specific. Therefore, a general solution to alleviate the problem

is in high need whenever application-specific techniques are not available or are unacceptably

expensive in terms of design effort. The latter aspect is especially important today as FPGAs

aspire to become as attractive to software programmers as CPUs and GPUs. While high-level

synthesis is making it easier to build efficient compute pipelines using software-like high-level

languages, very limited automation is available when it comes to the development of custom

memory systems, which still requires extensive computer and memory architecture knowledge.

8.1 A Cache for Throughput-Oriented Applications with Irregular

Access Pattern

In this thesis, we present miss-optimized memory systems (MOMSes), a general architecture

that increases the throughput that a parallel accelerator can obtain from DRAM memory. Just

like caches are the go-to architecture when latency is important and when the access pattern

has spatial and temporal locality, MOMSes represent an application-agnostic solution when

the access pattern is too irregular for traditional caches to be effective, throughput is crucial

but latency is irrelevant, and the application is parallel enough to generate a large number of

outstanding read memory requests. While this set of requirements may sound restrictive, it

includes important applications such as sparse linear algebra, graph processing, and ray tracing.

At its essence, a MOMS is an extreme form of nonblocking cache that can tolerate hundreds

of thousands of outstanding misses instead of a few tens. Like traditional nonblocking caches,

missing cache lines are requested only once and then used to serve all their pending misses.

109

Chapter 8. Conclusions

The number of misses that can be handled is limited by the number of miss status holding

registers (MSHRs) and of subentries, where each MSHR keeps track of one missing cache line

and each subentry handles one miss. By dramatically increasing the number of misses that are

handled simultaneously, we increase the probability for a miss to target a cache line that has

been already requested to serve another miss, meaning that it will be served without generating

extra memory traffic. In Chapter 3, we showed that the key to achieve this is to leverage the

abundant and high-throughput BRAMs to store the miss bookkeeping information and to make

subentry allocation more flexible. Firstly, we moved MSHRs from fully-associative registers to

cuckoo hash tables. Secondly, instead of statically allocating a fixed number of subentries per

MSHR, we moved all subentries to a central buffer and dynamically allocate them to MSHRs.

This avoids stalling the entire miss handling logic if one of the thousands of MSHRs runs out of

subentries as a traditional cache would.

By promoting the miss-handling logic from a patch to mitigate the impact of the (ideally, few)

misses to an element that is as central as the cache array itself, we introduced new Pareto-optimal

points in the area-throughput design space of generic memory systems for throughput-oriented

applications. In other words, repurposing some of the BRAMs from cache arrays to MSHRs and

subentries can provide significant throughput boosts when the access pattern is too irregular to

achieve a hit rate that is high enough for traditional caches to be effective.

8.2 Exploiting Every Bit of Memory Bandwidth and FPGA Resources

The baseline MOMS described in Chapter 3 tackles one of the properties that make DRAMs a

poor fit for many applications with irregular access pattern: the mismatch between memory

access granularity and the size of the data types that are accessed irregularly. Our MOMSes

combine thousands of unrelated short memory accesses, even from different accelerators, to

use as much as possible of the long responses returned by the memory.

After focusing on individual memory requests, we looked at optimization opportunities across

memory requests. We indeed observed that many DRAM controllers on FPGA are optimized for

burst accesses and do not expose the full DRAM bandwidth when only single accesses are used.

Using bursts also increases the reuse of DRAM rows, further increasing the DRAM throughput. In

Chapter 4, we extended MOMSes to group incoming requests by small sets of contiguous cache

lines. Those cache lines will be retrieved using a single burst request of the shortest possible

length, in order to minimize memory traffic. This requires only minimal changes to the MOMS

architecture, which however conceptually sets apart MOMSes from traditional nonblocking

caches as now MSHRs are allocated at the granularity of bursts instead of cache lines. Using

bursts makes MOMSes cost-effective also when the external memory is exposed through narrow

ports and improve the performance on most benchmark on all of our experimental platforms,

sometimes by a significant margin.

To handle bursts with minimal area overhead, we accept that the MOMS may send some

redundant requests or request data that is not used to serve any miss. While the increased

110

8.3. Revisiting Caches for Graph Processing

bandwidth obtained through bursts usually outweighs the impact of such inefficiencies, they

nonetheless mask some of the achievable speedup and may even result in a net slowdown when

single-request MOMSes are already very effective. For DRAM controllers that do not excessively

penalize single accesses and expose enough details on their DRAM command scheduling policy,

Chapter 5 presented an alternative bandwidth optimization technique that does not introduce

any bandwidth wastage. Our row conflict reducers (RCRs) are to out-of-order DRAM controllers

what baseline MOMSes are to traditional nonblocking caches: where general-purpose DRAM

controllers reorder some tens of requests to minimize DRAM row conflicts, we operate on the

thousands of memory requests that are in the output queue of the MOMS. This maximizes

DRAM row reuse, just like the baseline MOMS maximizes cache line reuse, while still operating

on individual requests and thus without being affected by the limitations of burst handling. Row

conflict reducers provide the greatest speedup where burst-based MOMSes were performing

worse and never slow down the baseline MOMS.

Finally, in Chapter 6 we addressed the bottlenecks that are inside the MOMS and the limitations

that MOMSes face when scaled to large FPGAs. We discussed how to floorplan a MOMS on a

multi-die FPGA and how to handle die crossings to use the large amount of resources available on

those FPGAs without clock frequency degradation. In addition to the shared MOMS architecture,

where all the accelerator requests are handled by a centralized set of MOMS banks, we also

introduced private MOMSes, which handle requests on a per-accelerator basis, and two-level

MOMSes which combine private and shared MOMSes. While accelerators face contention when

accessing the shared MOMS, they can benefit exclusively from their own private MOMS bank,

which can therefore handle requests at the same throughput as they are generated. Private

MOMSes alone outperform shared MOMSes when each individual accelerator exposes enough

opportunities for reuse, while two-level MOMSes are the best general-purpose architecture as

they allow memory requests to be reused by multiple accelerators while being less limited by

contention on the shared MOMS.

8.3 Revisiting Caches for Graph Processing

Even though cache parameters such as associativity, number of lines, line size, and replacement

policy may require some fine-tuning to bring a given application to its absolute highest perfor-

mance performance point, their architecture remains essentially the same irrespective of the

application, and even a suboptimal cache generally provides some latency and throughput gain

as long as the access pattern has temporal and spatial locality. Similarly, while the set of optimal

MOMS parameters is often application-specific, the MOMS architecture remains essentially the

same across applications and simply implementing the key concept of dramatically scaling up

the number of MSHRs is generally beneficial as long as the application is latency-insensitive and

can expose a large number of outstanding reads. In Chapters 3 to 6, we proved this for a broad

range of sparse matrix-vector multiplication benchmarks; in Chapter 7, we demonstrate another

important example of generality by designing a MOMS-based accelerator for graph processing.

The accelerator is based on parallel processing elements (PEs) that implement an instance of

111

Chapter 8. Conclusions

the commonly used gather-apply-scatter programming model. They can generate thousands

of outstanding read requests to fetch source nodes directly from DRAM through the MOMS

and process the responses out-of-order. By getting rid of statically scheduled scratchpads that

are commonly used in state-of-the-art graph processing accelerators, they obviate the data

transfer overheads that become significant on large graphs as the fine-grained operation of

MOMSes results in fewer redundant transfers. This ultimately results in higher performance

than state-of-the-art solutions on FPGAs and higher bandwidth and energy efficiency than those

on CPUs and GPUs. By only requiring a lightweight preprocessing whose cost is linear in the

number of edges, our MOMS-based solution is also suitable for graphs that are dynamically

updated or that, once generated, are reused only a few times [69].

8.4 Future Perspectives

More applications. We showed that the same MOMS architecture is beneficial to two accel-

erators that are very different but share the following properties: (1) being bandwidth-bound

and latency-insensitive, (2) producing a data-dependent irregular memory access pattern to

a large memory space, which makes traditional solutions—caches, on-chip buffering, or data

restructuring—either ineffective, impractical, or too expensive, and (3) processing a massively

parallel workload and exposing it to the memory system through a large number of outstanding

read requests. There are a number of other applications that possess such properties: as a result,

they have been particularly challenging to accelerate so far and it may be worth investigating

whether MOMSes can alleviate their memory bottleneck. For example, ray tracing is a computer

graphics application that involves computing the intersection between millions of rays and the

millions of triangles in a 3D scene that is the closest to the ray origin. Rays can be processed

independently from each other, which provides huge opportunities for parallelism, but quickly

diverge in space as they are reflected or refracted, which results in irregular accesses to the data

structure that stores the scene [79]. A MOMS could increase the access bandwidth of this data

structure in the common case where it is too large to be entirely stored in on-chip memory. From

the computer vision domain, one of the kernels of simultaneous location and mapping (SLAM)

[74] involves thousands of independent irregular accesses to a large 3D array which represents a

reconstruction of the environment where a camera is located. Remapping, an OpenCV function

[78], takes pixels from one place in a 2D image and locates them in another position in a new

image: every pixel in the output image can be handled independently from the others and

involves one or more reads from the input image, with an access pattern that is as arbitrary as

the transformation that is implemented. Xilinx provides an HLS implementation of remapping

based on line buffers, whose cost in terms of BRAMs/URAMs can be significant for large offsets

between input and output pixel position [115], whereas accessing the input image directly from

DRAM through a MOMS may require fewer on-chip memory resources.

More memory technologies and network. There are two factors that make DRAMs a poor

fit for applications that perform irregular short memory accesses: (1) their minimum access

granularity is large compared to the application’s native data size, resulting in high data wastage

112

8.4. Future Perspectives

on every access and (2) only specific access patterns (such as fully sequential or bursts that

are long enough) can achieve peak bandwidth. MOMSes mitigate the impact of both by (1)

maintaining a pool of thousands of short memory requests to maximize the opportunities to

reuse each long memory response and (2) transforming the access pattern generated naturally

by the accelerators into another one that the memory can serve with higher bandwidth. While

the scales can differ, those factors are not unique to the DDR3 and DDR4 memories that have

been considered in our experiments. Therefore, it may be worth investigating MOMS-like

architectures to increase the available bandwidth when applications of the kind discussed

earlier in this subsection are connected to other memories such as high-bandwidth memories

(HBMs) [102], disks, or even network.

Avoid sharing the request-response pipeline. Throughout the chapters we eliminated a num-

ber of internal and external bottlenecks that limit the performance of MOMSes. One last internal

bottleneck is represented by the pipeline sharing between requests and responses discussed

in Section 3.2.4. This is the main bottleneck of private or two-level MOMSes when the private

reuse is high and was particularly evident in the scenarios where we measured the highest

absolute performance on graph processing (see Figure 7.8). Addressing this issue would require

duplicating the ports of the MSHR and subentry buffers by either replicating the memories [61]

or double-pumping them. The most challenging aspect would probably be to carefully solve any

conflicts that may occur between the two pipelines, a completely new problem as requests and

responses are currently serialized into a single pipeline at the input of the MSHR buffer. This

would include, for example, handling a new request that reaches the MSHR buffer in the same

exact cycle as the data for the same cache line, which would mandate appending a subentry to

an MSHR that is going to be deallocated in the same cycle, or traversing a subentry linked list to

append a new request while the same linked list is being deallocated.

Improving the input crossbar. The two-level architectures proposed in Chapter 6 overcome the

bottleneck introduced by the shared MOMS by reducing the traffic that reach the shared crossbar

to a point where it can be handled without slowdowns. An orthogonal solution would be to

replace the current shared crossbar with another interconnect that can actually sustain a 100%

throughput. The current crossbar consists of one pipelined round-robin arbiter per output, each

with a two-slot FIFO in front of every input. While it is formally a crossbar with input queues and

virtual output queues (IQ-VOQ), we suspect that the VOQs are too shallow and the scheduling

algorithm too simple to achieve a throughput that is tangibly higher than that of a simple IQ

crossbar, which is about 58% when requests are independent and identically distributed among

a large number of inputs and outputs [50]. Therefore, it may be worth evaluating the benefit of

deeper queues, more complex scheduling algorithms (some of which are theoretically capable

of achieving 100% throughput [71]), and to replace the crossbar with a network-on-chip, such as

the hardened ones available on recent Xilinx Versal FPGAs [114].

Application-specific parameter tuning. We showed that, on SpMV and graph processing, most

MOMSes provide some speedup on most benchmarks compared to a traditional nonblocking

cache of similar area; however, there is no single MOMS configuration that provides the highest

113

Chapter 8. Conclusions

throughput to all benchmarks and the performance differences between MOMSes on the same

benchmark can be significant. While we emphasized the generality of MOMSes, it may be

advantageous to fine-tune the parameters of a MOMS once the application is defined, especially

on FPGAs. We believe machine learning could be a promising direction to explore to address

this problem, for example by training a model that, given a relevant set of features of the

applications, can enable exhaustive design-space explorations by estimating the performance

of every possible MOMS architecture in a matter of seconds instead of the hours required for a

full synthesis, place, and route.

8.5 Final Remarks

Compute performance has been improving at a tremendous pace for decades; unfortunately,

memory performance has not been following as quickly. While a number of ingenious solutions

manage to mitigate or close the gap in many scenarios, notably in the common case where both

temporal and spatial locality are present or when memory accesses are known at design time,

others still lacked a general solution or methodology to bring the throughput of the memory

closer to that of the compute resources. This thesis enlarges the set of applications that can

benefit from generic memory system optimizations, widening the scope and decreasing the cost

of hardware acceleration.

114

Bibliography

[1] 360 Research Reports. Hybrid Memory Cube (HMC) and High-bandwidth Memory (HBM)

Market 2020. https://www.wfmj.com/story/42593932/hybrid-memory-cube-hmc-and-

high-bandwidth-memory-hbm-market-2020-cagr-of-276-with-top-countries-data-

latest-trends-market-size-share-global-industry, 2020.

[2] Tanuj Kr Aasawat, Tahsin Reza, and Matei Ripeanu. How well do CPU, GPU and hybrid

graph processing frameworks perform? In Proceedings of the 2018 International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), pages 458–466, Vancouver,

BC, Canada, 2018.

[3] Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael Pellauer, and Joel Emer.

LEAP scratchpads: automatic memory and cache management for reconfigurable logic.

In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 25–28, Monterey, California, USA, February 2011.

[4] Amazon.com, Inc. AWS announces seven new compute services and capabilities to sup-

port an even wider range of workloads. https://press.aboutamazon.com/news-releases/

news-release-details/aws-announces-seven-new-compute-services-and-capabilities.

[5] Amazon.com, Inc. What’s the spec of the FPGA on-board DDR in F1—AWS FPGA Devel-

opment Discussion Forum. https://forums.aws.amazon.com/thread.jspa?messageID=
816012, 2017.

[6] Amazon.com, Inc. AWS Shell Interface Specification. https://github.com/aws/aws-fpga/

blob/master/hdk/docs/AWS_Shell_Interface_Specification.md, 2018.

[7] Amazon.com, Inc. F1 DRAM random access bandwidth—AWS FPGA development discus-

sion forum. https://forums.aws.amazon.com/thread.jspa?messageID=897290, 2019.

[8] Amazon.com, Inc. Does fpga-describe-local-image -S 0 -M include DRAM? https://

forums.aws.amazon.com/thread.jspa?messageID=950323󨀳, 2020.

[9] AnandTech. AMD Opteron Coverage - Part 1: Intro to Opteron/K8 Architecture. https:

//www.anandtech.com/show/1098/6, 2003.

115

https://www.wfmj.com/story/42593932/hybrid-memory-cube-hmc-and-high-bandwidth-memory-hbm-market-2020-cagr-of-276-with-top-countries-data-latest-trends-market-size-share-global-industry
https://www.wfmj.com/story/42593932/hybrid-memory-cube-hmc-and-high-bandwidth-memory-hbm-market-2020-cagr-of-276-with-top-countries-data-latest-trends-market-size-share-global-industry
https://www.wfmj.com/story/42593932/hybrid-memory-cube-hmc-and-high-bandwidth-memory-hbm-market-2020-cagr-of-276-with-top-countries-data-latest-trends-market-size-share-global-industry
https://press.aboutamazon.com/news-releases/news-release-details/aws-announces-seven-new-compute-services-and-capabilities
https://press.aboutamazon.com/news-releases/news-release-details/aws-announces-seven-new-compute-services-and-capabilities
https://forums.aws.amazon.com/thread.jspa?messageID=816012
https://forums.aws.amazon.com/thread.jspa?messageID=816012
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://forums.aws.amazon.com/thread.jspa?messageID=897290
https://forums.aws.amazon.com/thread.jspa?messageID=950323󨀳
https://forums.aws.amazon.com/thread.jspa?messageID=950323󨀳
https://www.anandtech.com/show/1098/6
https://www.anandtech.com/show/1098/6

Bibliography

[10] Michael J Anderson, Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary,

Theodore L Willke, and Pradeep Dubey. Graphpad: Optimized graph primitives for

parallel and distributed platforms. In Proceedings of the 2016 International Parallel and

Distributed Processing Symposium (IPDPS), pages 313–322, Chicago, Illinois, USA, 2016.

[11] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P. Sadayap-

pan. Fast sparse matrix-vector multiplication on GPUs for graph applications. In Proceed-

ings of the 2014 International Conference for High-Performance Computing, Networking,

Storage and Analysis, pages 781–792, New Orleans, Louisiana, USA, November 2014.

[12] Mikhail Asiatici and Paolo Ienne. DynaBurst: Dynamically assemblying DRAM bursts over

a multitude of random accesses. In Proceedings of the 29th International Conference on

Field-Programmable Logic and Applications, pages 254–262, 2019.

[13] Mikhail Asiatici and Paolo Ienne. Stop Crying Over Your Cache Miss Rate: Handling Effi-

ciently Thousands of Outstanding Misses in FPGAs. In Proceedings of the 27th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 310–319, February

2019.

[14] Mikhail Asiatici and Paolo Ienne. Large-scale graph processing on FPGAs with caches

for thousands of simultaneous misses. In Proceedings of the 48th Annual International

Symposium on Computer Architecture, page to appear, Valencia, Spain, June 2021.

[15] Mikhail Asiatici and Paolo Ienne. Request, coalesce, serve, and forget: Miss-optimized

memory systems for bandwidth-bound cache-unfriendly applications on FPGAs. Trans-

actions on Reconfigurable Technology and Systems (TRETS), page to appear, 2021.

[16] Tim Bailey, Eduardo Mario Nebot, JK Rosenblatt, and Hugh F Durrant-Whyte. Data

association for mobile robot navigation: A graph theoretic approach. In Proceedings of the

2000 International Conference on Robotics and Automation, volume 3, pages 2512–2517,

San Francisco, California, USA, 2000.

[17] Raji Balasubramanian, Thomas LaFramboise, Denise Scholtens, and Robert Gentleman. A

graph-theoretic approach to testing associations between disparate sources of functional

genomics data. Bioinformatics, 20(18):3353–3362, 2004.

[18] Samuel Bayliss and George A. Constantinides. Application specific memory access, reuse

and reordering for SDRAM. In Proceedings of the 7th International Symposium on Applied

Reconfigurable Computing, pages 41–52, Belfast, Ireland, March 2011.

[19] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. UbiCrawler: A

scalable fully distributed web crawler. Software: Practice & Experience, 34(8):711–726,

2004.

[20] Calin Cascaval and David A. Padua. Estimating cache misses and locality using stack

distances. In Proceedings of the 17th annual International Conference on Supercomputing,

pages 150–159, Phoenix, Arizona, USA, November 2003.

116

Bibliography

[21] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. Mea-

suring User Influence in Twitter: The Million Follower Fallacy. In Proceedings of the 4th

International Conference on Weblogs and Social Media (ICWSM), Washington DC, USA,

May 2010.

[22] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model

for graph mining. In Proceedings of the 2004 International Conference on Data Mining,

pages 442–446, Brighton, United Kingdom, 2004.

[23] Tao Chen and G. Edward Suh. Efficient data supply for hardware accelerators with prefetch-

ing and access/execute decoupling. In Proceedings of the 49th International Symposium

on Microarchitecture, page 46, Taipei, Taiwan, October 2016.

[24] Gabor Csordas, Mikhail Asiatici, and Paolo Ienne. In search of lost bandwidth: Extensive

reordering of DRAM accesses on FPGA. In Proceedings of the IEEE International Conference

on Field Programmable Technology, pages 188–196. IEEE, 2019.

[25] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. FPGP: Graph processing framework

on FPGA a case study of breadth-first search. In Proceedings of the 24th International

Symposium on Field-Programmable Gate Arrays, pages 105–110, Monterey, California,

USA, 2016.

[26] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong Yang. Fore-

graph: Exploring large-scale graph processing on multi-FPGA architecture. In Proceedings

of the 25th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 217–226, Monterey, California, USA, 2017.

[27] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM

Trans. Math. Softw., 38(1), December 2011.

[28] Assaf Eisenman, Lucy Cherkasova, Guilherme Magalhaes, Qiong Cai, and Sachin Katti.

Parallel graph processing on modern multi-core servers: New findings and remaining

challenges. In Proceedings of the 24th International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (MASCOTS), pages 49–58,

London, United Kingdom, 2016.

[29] Assaf Eisenman, Ludmila Cherkasova, Guilherme Magalhaes, Qiong Cai, Paolo Faraboschi,

and Sachin Katti. Parallel graph processing: Prejudice and state of the art. In Proceedings

of the 7th International Conference on Performance Engineering, pages 85–90, 2016.

[30] Priyank Faldu, Jeff Diamond, and Boris Grot. A closer look at lightweight graph reordering.

In Proceedings of the 2019 International Symposium on Workload Characterization (IISWC),

pages 1–13, Orlando, Florida, USA, 2019.

[31] Keith I. Farkas and Norman P. Jouppi. Complexity/performance tradeoffs with non-

blocking loads. In Proceedings of the 21st Annual International Symposium on Computer

Architecture, pages 211–222, Chicago, Illinois, USA, 1994.

117

Bibliography

[32] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. Space efficient hash

tables with worst case constant access time. Theory of Computing Systems, 38(2):229–248,

2005.

[33] Nithin George, Hyoukjoong Lee, David Novo, Tiark Rompf, Kevin Brown, Arvind Sujeeth,

Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware system synthesis from

domain-specific languages. In Proceedings of the 24th International Conference on Field-

Programmable Logic and Applications, pages 1–8, Munich, Germany, September 2014.

[34] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu. A yoke

of oxen and a thousand chickens for heavy lifting graph processing. In Proceedings of the

21st international conference on Parallel architectures and compilation techniques (PACT),

pages 345–354, 2012.

[35] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Power-

graph: Distributed graph-parallel computation on natural graphs. In Presented as part of

the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 17–30, Bellevue, Washington, USA, 2012.

[36] Sven Goossens, Benny Akesson, and Kees Goossens. Conservative open-page policy for

mixed time-criticality memory controllers. In Proceedings of the Design, Automation and

Test in Europe, pages 525–530, Grenoble, France, 2013.

[37] Yongbin Gu and Lizhong Chen. Dynamically linked MSHRs for adaptive miss handling in

GPUs. In Proceedings of the International Conference on Supercomputing, pages 510–521,

2019.

[38] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi.

Graphicionado: A high-performance and energy-efficient accelerator for graph analytics.

In Proceedings of the 49th Annual International Symposium on Microarchitecture, pages

1–13, Lanzarote, Spain, 2016.

[39] hblok.net. Historical Cost of Computer Memory and Storage. https://hblok.net/blog/

posts/2017/12/17/historical-cost-of-computer-memory-and-storage-4/, 2017.

[40] Intel Corp. Hybrid Memory Cube Controller IP Core User Guide, May 2016.

[41] Intel Corp. Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)

Reference Manual, August 2018.

[42] Intel Corp. Intel 64 and IA-32 Architectures Software Developer Manuals. https:

//software.intel.com/en-us/articles/intel-sdm, 2020.

[43] Intel Corp. Intel® Stratix 10 Embedded Memory User Guide. https://www.intel.com/

content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-

memory.pdf, 2021.

118

https://hblok.net/blog/posts/2017/12/17/historical-cost-of-computer-memory-and-storage-4/
https://hblok.net/blog/posts/2017/12/17/historical-cost-of-computer-memory-and-storage-4/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-memory.pdf

Bibliography

[44] Engin Ipek, Onur Mutlu, José F Martínez, and Rich Caruana. Self-optimizing memory con-

trollers: A reinforcement learning approach. In Computer Architecture News, volume 36,

pages 39–50. ACM, 2008.

[45] Muhammad Irfan, Zahid Ullah, and Ray CC Cheung. Zi-CAM: a power and resource

efficient binary content-addressable memory on FPGAs. Electronics, 8(5):584, 2019.

[46] Bruce Jacob, Spencer Ng, and David Wang. Memory systems: cache, DRAM, disk. Morgan

Kaufmann, 2010.

[47] JEDEC. DDR3 SDRAM standard JESD79-3F. https://www.jedec.org/standards-

documents/docs/jesd-79-3d, 2012.

[48] JEDEC. DDR4 SDRAM standard JESD79-4B. https://www.jedec.org/standards-

documents/docs/jesd79-4a, 2017.

[49] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level programming abstractions

for distributed graph processing. Transactions on Knowledge and Data Engineering,

30(2):305–324, 2018.

[50] Mark Karol, Michael Hluchyj, and Samuel Morgan. Input versus output queueing on a

space-division packet switch. IEEE Transactions on Communications, 35(12):1347–1356,

1987.

[51] Jeremy Kepner and John Gilbert. Graph algorithms in the language of linear algebra. SIAM,

2011.

[52] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable SIMD-efficient graph

processing on GPUs. In Proceedings of the 24th International Conference on Parallel

Architectures and Compilation Techniques, pages 39–50, San Francisco, California, USA,

2015.

[53] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. CuSha: vertex-centric

graph processing on GPUs. In Proceedings of the 23rd International Symposium on High-

Performance Parallel and Distributed Computing, pages 239–252, Vancouver, BC, Canada,

2014.

[54] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread cluster

memory scheduling: Exploiting differences in memory access behavior. In Proceedings of

the 43rd International Symposium on Microarchitecture, Atlanta, Georgia, USA, December

2010.

[55] Adam Kirsch and Michael Mitzenmacher. Using a queue to de-amortize cuckoo hashing

in hardware. In Proceedings of the 45th Annual Allerton Conference on Communication,

Control, and Computing, volume 75, pages 751–758, Monticello, Illinois, USA, September

2007.

119

https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a

Bibliography

[56] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceed-

ings of the 8th Annual International Symposium on Computer Architecture, pages 81–87,

Minneapolis, Minnesota, USA, May 1981.

[57] Jérôme Kunegis. KONECT: The Koblenz network collection. In Proceedings of the 22nd

International Conference on World Wide Web, page 1343–1350, New York, NY, USA, 2013.

Association for Computing Machinery.

[58] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and ASICs. Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 26(2):203–215, 2007.

[59] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter, a social

network or a news media? In Proceedings of the 19th International Conference on World

Wide Web, pages 591–600, 2010.

[60] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph computation

on just a PC. In Presented as part of the 10th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 12), pages 31–46, Bellevue, Washington, USA, 2012.

[61] Charles Eric Laforest, Zimo Li, Tristan O’rourke, Ming G Liu, and J Gregory Steffan. Com-

posing multi-ported memories on FPGAs. Transactions on Reconfigurable Technology and

Systems (TRETS), 7(3):1–23, 2014.

[62] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. GPOP: A scalable

cache-and memory-efficient framework for graph processing over parts. ACM Transactions

on Parallel Computing (TOPC), 7(1):1–24, 2020.

[63] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

[64] Sheng Li, Ke Chen, Jay B. Brockman, and Norman P. Jouppi. Performance impacts of

non-blocking caches in out-of-order processors. HPL Tech Report, Hewlett Packard Labs,

2011.

[65] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K Reinhardt,

and Thomas F Wenisch. Disaggregated memory for expansion and sharing in blade servers.

ACM SIGARCH Computer Architecture News, 37(3):267–278, 2009.

[66] Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I. August. CGPA: Coarse-grained

pipelined accelerators. In Proceedings of the 51st Design Automation Conference, pages

1–6, San Francisco, California, USA, June 2014.

[67] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty

Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In

Proceedings of the 2010 International Conference on Management of Data, pages 135–146,

Indianapolis, Indiana, 2010.

120

http://snap.stanford.edu/data

Bibliography

[68] Mario D. Marino and Kuan-Ching Li. System implications of LLC MSHRs in scalable

memory systems. Microprocessors and Microsystems, 52:355–364, 2017.

[69] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20,

2014.

[70] Sally A McKee, Assaji Aluwihare, Benjamin H Clark, Robert H Klenke, Trevor C Lan-

don, Christopher W Oliver, Maximo H Salinas, Adam E Szymkowiak, Kenneth L Wright,

William A Wulf, and James H Aylor. Design and evaluation of dynamic access ordering

hardware. In International Conference on Supercomputing, pages 125–132, 1996.

[71] Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Walrand. Achieving

100% throughput in an input-queued switch. IEEE Transactions on Communications,

47(8):1260–1267, 1999.

[72] Onur Mutlu. Memory Systems and Memory-Centric Computing Systems — Lecture 1:

Memory Trends and Basics. https://people.inf.ethz.ch/omutlu/pub/onur-ACACES2018-

Lecture1-Topic1-MemoryTrendsAndBasics-July-9-2018-afterlecture-with-backup.pdf,

2018.

[73] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems. In Computer Architecture News,

volume 36, pages 63–74. ACM, 2008.

[74] Luigi Nardi, Bruno Bodin, M Zeeshan Zia, John Mawer, Andy Nisbet, Paul HJ Kelly, Andrew J

Davison, Mikel Luján, Michael FP O’Boyle, Graham Riley, Nigel Topham, and Steve Furber.

Introducing SLAMBench, a performance and accuracy benchmarking methodology for

SLAM. In Proceedings of the 2015 International Conference on Robotics and Automation

(ICRA), pages 5783–5790, Seattle, Washington, USA, 2015.

[75] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for

graph analytics. In Proceedings of the 24th Symposium on Operating Systems Principles,

pages 456–471, 2013.

[76] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. Tigr: Transforming irregular

graphs for GPU-friendly graph processing. ACM SIGPLAN Notices, 53(2):622–636, 2018.

[77] NVIDIA Corp. NVIDIA Tesla V100 GPU Architecture. https://images.nvidia.com/content/

volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017.

[78] OpenCV. Remapping tutorial. https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html,

2021.

[79] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From theory

to implementation. Morgan Kaufmann, 2016.

121

https://people.inf.ethz.ch/omutlu/pub/onur-ACACES2018-Lecture1-Topic1-MemoryTrendsAndBasics-July-9-2018-afterlecture-with-backup.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-ACACES2018-Lecture1-Topic1-MemoryTrendsAndBasics-July-9-2018-afterlecture-with-backup.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html

Bibliography

[80] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,

John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray,

Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram

Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao,

and Doug Burger. A reconfigurable fabric for accelerating large-scale datacenter services.

In Proceedings of the 41st Annual International Symposium on Computer Architecture,

pages 13–24, Minneapolis, Minnesota, USA, 2014.

[81] Louise Quick, Paul Wilkinson, and David Hardcastle. Using Pregel-like Large Scale Graph

Processing Frameworks for Social Network Analysis. In Proceedings of the 2012 Interna-

tional Conference on Advances in Social Networks Analysis and Mining, pages 457–463,

Istanbul, Turkey, 2012.

[82] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson, and John D. Owens. Memory

access scheduling. In Proceedings of the 27th International Symposium on Computer

Architecture (ISCA), pages 128–138, Vancouver, BC, Canada, 2000.

[83] Hemant G Rotithor, Randy B Osborne, and Nagi Aboulenein. Method and apparatus for

out of order memory scheduling. US Patent US7127574, October 2006.

[84] Nick Routley. Visualizing the Trillion-Fold Increase in Computing Power. https://

www.visualcapitalist.com/visualizing-trillion-fold-increase-computing-power/, 2017.

[85] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-centric graph

processing using streaming partitions. In Proceedings of the 24th Symposium on Operating

Systems Principles, pages 472–488, Farmington, Pennsylvania, USA, 2013.

[86] Karl Rupp. Microprocessor Trend Data. https://github.com/karlrupp/microprocessor-

trend-data, 2021.

[87] Jun Shao and Brian T Davis. A burst scheduling access reordering mechanism. In Proceed-

ings of the 13th International Symposium on High-Performance Computer Architecture,

pages 285–294, Phoenix, Arizona, 2007.

[88] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. Improving performance of

graph processing on FPGA-DRAM platform by two-level vertex caching. In Proceedings of

the 27th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages

320–329, Seaside, California, USA, 2019.

[89] Zhiyuan Shao, Chenhao Liu, Ruoshi Li, Xiaofei Liao, and Hai Jin. Processing grid-format

real-world graphs on DRAM-based FPGA accelerators with application-specific caching

mechanisms. Transactions on Reconfigurable Technology and Systems (TRETS), 13(3):1–33,

2020.

[90] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework for

shared memory. In Proceedings of the 18th Symposium on Principles and Practice of

Parallel Programming, pages 135–146, Shenzen, China, 2013.

122

https://www.visualcapitalist.com/visualizing-trillion-fold-increase-computing-power/
https://www.visualcapitalist.com/visualizing-trillion-fold-increase-computing-power/
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

Bibliography

[91] SoSy Lab - LMU Munich. CPU Energy Meter. https://github.com/sosy-lab/cpu-energy-

meter, 2020.

[92] Statista. Distribution of DRAM market revenue worldwide from 2010 to 2020, by archi-

tecture. https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-

architecture/, 2020.

[93] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R Dul-

loor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and Pradeep Dubey.

GraphMat: High performance graph analytics made productive. Proceedings of the VLDB

Endowment, 8(11), 2015.

[94] Synopsys, Inc. DDR4 Bank Groups in Embedded Applications - DesignWare Techni-

cal Bulletin. https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-

groups.html, 2012.

[95] Ichigaku Takigawa and Hiroshi Mamitsuka. Graph mining: procedure, application to drug

discovery and recent advances. Drug discovery today, 18(1-2):50–57, 2013.

[96] TechPowerUp. AMD Xbox One X GPU. https://www.techpowerup.com/gpu-specs/xbox-

one-x-gpu.c2977, 2021.

[97] Michael Thomadakis. The Architecture of the Nehalem Processor and Nehalem-EP SMP

Platforms. JFE Technical Report, 03 2011.

[98] James Tuck, Luis Ceze, and Josep Torrellas. Scalable cache miss handling for high memory-

level parallelism. In Proceedings of the 39th Annual International Symposium on Microar-

chitecture, pages 409–422, Orlando, Florida, USA, December 2006.

[99] Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu. DASH:

Deadline-aware high-performance memory scheduler for heterogeneous systems with

hardware accelerators. Transactions on Architecture and Code Optimization (TACO),

12(4):65, 2016.

[100] Verified Market Research. DRAM Market Size And Forecast. https://

www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-

2025/, 2020.

[101] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D

Owens. Gunrock: A high-performance graph processing library on the GPU. In Proceedings

of the 21st Symposium on Principles and Practice of Parallel Programming, pages 1–12,

Barcelona, Spain, 2016.

[102] Zeke Wang, Hongjing Huang, Jie Zhang, and Gustavo Alonso. Shuhai: Benchmarking

high bandwidth memory on FPGAs. In Proceedings of the 28th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 111–119,

Fayetteville, Arizona, USA, 2020.

123

https://github.com/sosy-lab/cpu-energy-meter
https://github.com/sosy-lab/cpu-energy-meter
https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-architecture/
https://www.statista.com/statistics/553383/worldwide-dram-market-share-by-architecture/
https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html
https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html
https://www.techpowerup.com/gpu-specs/xbox-one-x-gpu.c2977
https://www.techpowerup.com/gpu-specs/xbox-one-x-gpu.c2977
https://www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-2025/
https://www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-2025/
https://www.verifiedmarketresearch.com/product/global-dram-market-size-and-forecast-to-2025/

Bibliography

[103] Wikipedia. List of fastest computers. https://en.wikipedia.org/wiki/

List_of_fastest_computers, 2021.

[104] Wikipedia. Roofline model. https://en.wikipedia.org/wiki/Roofline_model, 2021.

[105] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual

performance model for multicore architectures. Communications of the ACM, 52(4):65–76,

April 2009.

[106] Philipp Woelfel. Efficient strongly universal and optimally universal hashing. In Inter-

national Symposium on Mathematical Foundations of Computer Science, pages 262–272,

Szklarska Poreba, Poland, September 1999.

[107] Xilinx, Inc. Baidu deploys Xilinx FPGAs in new public cloud acceleration ser-

vices. https://www.xilinx.com/news/press/2017/baidu-deploys-xilinx-fpgas-in-new-

public-cloud-acceleration-services.html.

[108] Xilinx, Inc. 7 Series FPGAs Memory Interface Solutions (UG586), March 2011.

[109] Xilinx, Inc. Zynq-7000 SoC Technical Reference Manual (UG585), July 2018.

[110] Xilinx, Inc. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949), 2019.

[111] Xilinx, Inc. AXI Register Slice v2.1. https://www.xilinx.com/support/documentation/

ip_documentation/axi_register_slice/v2_1/pg373-axi-register-slice.pdf, 2020.

[112] Xilinx, Inc. UltraScale Architecture Memory Resources (UG573), 2020.

[113] Xilinx, Inc. Ultrascale architecture-based fpgas memory ip v1.4 (pg150). https:

//www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/

v1_4/pg150-ultrascale-memory-ip.pdf, 2021.

[114] Xilinx, Inc. Versal Architecture and Product Data Sheet: Overview (DS950), February 2021.

[115] Xilinx, Inc. Vitis Vision Library. https://github.com/Xilinx/Vitis_Libraries/tree/master/

vision, 2021.

[116] Mingyu Yan, Xing Hu, Shuangchen Li, Abanti Basak, Han Li, Xin Ma, Itir Akgun, Yujing

Feng, Peng Gu, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. Alleviat-

ing irregularity in graph analytics acceleration: A hardware/software co-design approach.

In Proceedings of the 52nd Annual International Symposium on Microarchitecture, pages

615–628, Columbus, Ohio, USA, 2019.

[117] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[118] Shijie Zhou, Rajgopal Kannan, Viktor K Prasanna, Guna Seetharaman, and Qing Wu.

HitGraph: High-throughput graph processing framework on FPGA. Transactions on

Parallel and Distributed Systems, 30(10):2249–2264, 2019.

124

https://en.wikipedia.org/wiki/List_of_fastest_computers
https://en.wikipedia.org/wiki/List_of_fastest_computers
https://en.wikipedia.org/wiki/Roofline_model
https://www.xilinx.com/news/press/2017/baidu-deploys-xilinx-fpgas-in-new-public-cloud-acceleration-services.html
https://www.xilinx.com/news/press/2017/baidu-deploys-xilinx-fpgas-in-new-public-cloud-acceleration-services.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_register_slice/v2_1/pg373-axi-register-slice.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_register_slice/v2_1/pg373-axi-register-slice.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://github.com/Xilinx/Vitis_Libraries/tree/master/vision
https://github.com/Xilinx/Vitis_Libraries/tree/master/vision

Bibliography

[119] Yuan Zhou, Khalid Musa Al-Hawaj, and Zhiru Zhang. A new approach to automatic

memory banking using trace-based address mining. In Proceedings of the 25th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 179–188, Monterey,

California, USA, February 2017.

125

MIKHAIL ASIATICI

EXPERIENCE

Research Intern April 2021 – Present

Microsoft Research Cambridge, United Kingdom

 Accelerating B-Tree operations on Catapult FPGAs within Project Honeycomb

PhD Student in Computer and Communication Sciences September 2016 – Present

École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

 Developed the first generic memory system to increase read bandwidth of throughput-oriented hardware

accelerators with irregular memory access patterns

Intern and Scientific Assistant September 2015 – August 2016

École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

 Adapted an automated methodology to generate complete high-performance hardware systems from

algorithms written in a high-level Domain-Specific Language to Intel and Xilinx Zynq FPGAs

 Developed a methodology and the infrastructures required to integrate FPGAs in a cloud computing

ecosystem by virtualizing FPGA resources and supporting dynamic partial reconfiguration

PhD Student in Electrical Engineering (Micro and Nanosystems) November 2014 – August 2015

Royal Institute of Technology (KTH) Stockholm, Sweden

 Modelled and characterized a capacitive MEMS accelerometer at temperatures of up to 400 °C

 Developed Through Silicon Vias (TSV) to enable 2.5D and 3D integration in circuits for high temperature (200

°C) applications

 Awarded additional research funding from the Program of Excellence in Electrical Engineering

Cooperation Associate March 2014 – August 2014

European Organization for Nuclear Research (CERN) Geneva, Switzerland
 Designed and implemented a readout circuit for SiPM photodetectors, a LabView software interface for

acquisition and signal processing and a trigger system for microfluidic scintillation detectors

Research Intern June 2013 – August 2013

University of Glasgow Glasgow, United Kingdom
 Designed and simulated an acoustic sensor based on a phononic crystal for surface acoustic waves for liquid

sensing and particle counting

Hardware Engineering Intern March 2012 – July 2012

National Institute of Metrological Research (INRiM) Turin, Italy
 Designed and implemented an acquisition system for ambient temperature based on Pt100 sensors with

higher accuracy than state-of-the-art commercial systems

127

EDUCATION

MSc in Nanotechnologies for ICT September 2012 – October 2014

Politecnico di Torino – INPG – EPFL Turin, Italy – Grenoble, France – Lausanne, Switzerland

BSc in Electronic Engineering September 2009 – July 2012

Politecnico di Torino Turin, Italy

LANGUAGES

 Italian: native English: fluent French: fluent

PUBLICATIONS

 M.Asiatici, P.Ienne, “Request, Coalesce, Serve, and Forget: Miss-Optimized Memory Systems for Bandwidth-

Bound Cache-Unfriendly Applications on FPGAs" – Transactions on Reconfigurable Technology and Systems

(TRETS) (2021) – to appear

 M.Asiatici, P.Ienne, “Large-Scale Graph Processing on FPGAs with Caches for Thousands of Outstanding

Misses" – 48th International Symposium on Computer Architecture (ISCA 2021) – to appear

 M. Asiatici, D. Maiorano, P. Ienne, “FPGAs in the Datacenters: the Case of Parallel Hybrid Super Scalar String

Sample Sort” - 31st International Conference on Application-specific Systems, Architectures and Processors

(ASAP 2020)

 G. Csordas, M.Asiatici, P.Ienne, “In Search of Lost Bandwidth: Extensive Reordering of DRAM Accesses on

FPGA” –2019 International Conference on Field-Programmable Technology (FPT 2019)

 M.Asiatici, P.Ienne, “DynaBurst: Dynamically Assemblying DRAM Bursts over a Multitude of Random Accesses"

– 29th International Conference on Field Programmable Logic and Applications (FPL 2019)

 A. Guerrieri, S. Kashani-Akhavan, M. Asiatici, P. Ienne, “Snap-On User-Space Manager for Dynamically

Reconfigurable System-on-Chips”, IEEE Access, vol. 7, p. 103938-103947 (2019)

 M.Asiatici, P.Ienne, “Stop Crying Over Your Cache Miss Rate: Handling Efficiently Thousands of Outstanding

Misses in FPGAs” – 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '19),

 M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, F.

Niklaus , “Through-glass vias for glass interposers and MEMS packaging applications fabricated using

magnetic assembly of microscale metal wires”, IEEE Access, vol. 6, p. 44306-44317 (2018)

 M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, F.

Niklaus, “Through-Glass Vias for MEMS Packaging”, Micronano System Workshop (MSW), (2018)

 M. Asiatici, N. George, K. Vipin, S. A. Fahmy, P. Ienne, “Virtualized Execution Runtime for FPGA Accelerators in

the Cloud” – IEEE Access, vol. 5, p. 1900-1910 (2017)

 M. Asiatici, M. Laakso, A. C. Fischer, F. Niklaus, “Through Silicon Vias With Invar Metal Conductor for High-

Temperature Applications” – J. Microelectromech. Syst., vol. 26, issue 1, p. 158-168 (2016)

 M. Asiatici, A. C. Fischer, H. Rödjegård, S. Haasl, G. Stemme, F. Niklaus “Capacitive inertial sensing at high

temperatures of up to 400° C” , Sensors and Actuators A: Physical, vol. 238, p. 361-368 (2016)

128

Ce document a été imprimé au Centre d’impression EPFL,
imprimerie climatiquement neutre, certifiée myClimate.

