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A new model for the description of beam instabilities in synchrotrons featuring wakefields and space
charge forces is proposed, using the circulant matrix approach. The predictions of this model are discussed
in light of past ones, with a particular emphasis on the possible mitigation of the transverse mode coupling
instability by space charge forces. The existence of transient amplification in spite of the absence of
unstable eigenvalues in configuration featuring strong space charge forces is also addressed. It is shown that
this behavior can be recovered when considering an airbag distribution. Yet when considering a more
realistic Gaussian distribution, the radial modes lead to other types of mode coupling instabilities. The
predictions of the new model are then compared to results of an experiment conducted at the CERN Super
Proton Synchrotron, showing a reasonable agreement.
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I. INTRODUCTION

An accurate description of the beam instabilities in the
presence of space charge forces and other types of wake-
fields is rather difficult to obtain in the general case. By
approximating the beam distribution with an airbag and the
longitudinal potential with a square well (ABS), a descrip-
tion that remains valid for arbitrarily strong space charge
was found [1]. This description predicts that the transverse
mode coupling instability (TMCI) threshold increases for
increasing space charge forces. This prediction was also
confirmed considering linear synchrotron motion as well as

radial modes, yet maintaining a boxcar longitudinal dis-
tribution [2]. The absence of TMCI was also obtained
within the strong space charge approximation (SSC) [3–5].
With the latter, it is shown that even in the absence
of normal instabilities, i.e., characterized by an unstable
eigenvalue, instabilities of convective type remain [6].
All these predictions appear in contradiction to the two
particles approach (2PA) which shows that when increasing
the space charge strength, the original TMCI is indeed
suppressed, however it is replaced by a succession of
unstable and stable conditions, in the normal sense, i.e.,
characterized by unstable eigenvalues [7], as reported in
Fig. 1. In order to improve both the understanding of the
observed instability mechanisms, as observed for example
at CERN’s Super Proton Synchrotron (SPS) [8], and the
accuracy of the beam stability predictions, we propose
another semianalytical approach based on the circulant
matrix model (CMM) [9]. The classical analysis of the
unstable eigenvalues of the matrix will be complemented
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by a characterization of transient amplification mecha-
nisms, making use of the Kreiss constant theorem [10],
allowing us to bridge to the convective behavior recently
obtained within the SSC.
In Sec. II, we describe the analytical and the numerical

algorithm to obtain the one turn matrix including linearized
space charge forces and wakefields for an airbag and a
Gaussian distribution. In Sec. III, we recover the results
obtained within the ABS and SSC, i.e., the apparent
mitigation of the TMCI by space charge forces and the
transient amplification that may occur, even in configura-
tions featuring no unstable eigenvalues. In Sec. IV, we show
that the unstable conditions predicted by the 2PA are
recovered in the form of transverse mode couplings and
decouplings of various radial modes. Finally, in Sec. V we
compare qualitatively our model’s prediction to past
measurements at the SPS, before concluding in Sec. VI.
The numerical convergence of the new model as well as a
concrete example of transient amplification are discussed in
the Appendixes.
For simplicity, we consider in the following a broadband

resonator model for the wakefields [11], defined by a
resonant frequency fr, a shunt impedance Rr and a quality
factor Qr. Following [12], we define the normalized
intensity:

Inorm ¼ q2Nbβavg
2γrmc2Qs

frRr

Qr
; ð1Þ

with q andm the particle’s electric charge and mass, Nb the
number of particles in the bunch, βavg the average optical
function around the ring, γr the relativistic factor, c the
speed of light and Qs the synchrotron tune. For improved
readability we also restrict ourselves to a bunch length that
follows frτb ¼ 1 and a quality factor Qr ¼ 1, which is
rather close to the constant wake approach often used in

literature. Nevertheless, our approach is not limited to this
assumption, as shown for example in [13].

II. SPACE CHARGE WITHIN THE CIRCULANT
MATRIX MODEL

The CMM was first introduced to assess the suppression
of the transverse mode coupling instability (TMCI) with a
transverse feedback [9]. It turns out to be a rather versatile
model, capable of consistently describing the impact of
the transverse feedback with various other coherent forces
such as the beam-beam interactions or driving and detuning
wakefields [13–15]. The CMM has also successfully been
employed to understand the impact of second order
chromaticity on the head-tail instability [16]. These effects
are implemented in a code called BIMBIM [17]. The
implementation of a model of space charge forces in this
code therefore offers the potential for studying the interplay
with different effects.
Let us briefly recall the concept of the CMM. We start

with a polar discretization of the normalized longitudinal
phase space, as depicted on Fig. 2. The particles’ coor-
dinates are therefore related to the longitudinal position z
and the relative momentum deviation δ with

r2 ¼
�
z
σz

�
2

þ
�
δ

σδ

�
2

; ð2Þ

tanðθÞ ¼ δ

z
; ð3Þ

with σz and σδ the rms bunch length and relative momen-
tum spread respectively. In the azimuthal direction the
so-called slices are delimited by their boundaries

Θi ¼ 2π
iþ 0.5
Ns

; i ¼ 0;…; Ns; ð4Þ

FIG. 1. Beam stability obtained with the 2PA as a function
of the wakefield strength represented by ϒ and W, and the
space charge strength represented by K. The red areas mark
configurations featuring unstable eigenvalues. This plot was
taken from [7].

FIG. 2. Illustration of the discretization of the longitudinal
phase space in slices and rings within the CMM.
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with Ns the number of slices. For an airbag distribution,
no discretization is required in the radial direction. When
considering a Gaussian distribution, we chose a uniform
discretization truncating the distribution at Ntσz, the
boundaries are therefore given by

Rj ¼ Nt
j
Nr

; j ¼ 0;…; Nr; ð5Þ

with Nr the number of rings. In the following, we shall use
a truncation at 3σz. In order to describe the behavior of the
beam, we seek to obtain the one turn matrix for the centroid
motion of each discretized element, or beamlet, in the
transverse plane. The centroid motion is characterized by
its average position with respect to the close orbit xk and
average transverse momentum normalized to the total
momentum x0k. In the following, we shall only consider
a single transverse plane, but the method is in principle
applicable to more degrees of freedom. The synchrobeta-
tron motion in the lattice is then described by a matrix Ml
given by the Kronecker product of a rotation matrix with
tune Qβ, RðQβÞ, corresponding to the transverse motion
of the beamlets and a circulant matrix representing the
rotation within each ring due to the longitudinal focusing.
The latter is obtained with the Kronecker product of the
identity matrix with a size given by the number of rings INr

and a permutation matrix with a size given by the number
of slices PNs

exponentiated by the number of slices times
the synchrotron tune Qs [9]:

MlðQβ; QsÞ ¼ INr
⊗ PNsQs

Ns
⊗ RðQβÞ: ð6Þ

The implementation of space charge forces in this frame-
work requires the description of the interaction between the
beamlets. We start by writing the variation of the diver-
gence x0t, or kick, of a test particle at the transverse and
longitudinal positions xt and zt respectively, under the
influence of the electric field caused by a source beam with
average position hxi [18]. We use the highly relativistic
approximation such that electromagnetic fields can be
considered as purely transverse. In addition we use the
smooth approximation, i.e., constant optics functions
around the machine of circumference L:

Δx0t ¼
q2NbλsðztÞL

4πϵ0mc2β2rγ3rβavgϵt
ðxt − hxiÞδ̂ðztÞ; ð7Þ

with ϵ0 the vacuum permittivity, βr the relativistic velocity
factor and δ̂ð·Þ the Dirac delta function. The physical
transverse emittance of the beam is given by ϵt. λsðztÞ is
the normalized line density at the location of the test
particle. Generically, we define the normalized particle
distribution of the source beamlet Ψsðz; δÞ such that we can
compute the kick of beamlet s on the test particle t:

Δx0t;s ¼ Aσzðxt − hxisÞ
Z

dδΨsðzt; δÞ ð8Þ

with

A ¼ q2NbL
4πϵ0mc2β2rγ3rβavgϵtσz

: ð9Þ

We now conveniently replace the distribution of the
beamlet at the location of the test particle with a Dirac
delta function:

Ψsðzt; δÞ →
Z

dzΨsðz; δÞδ̂ðz − ztÞ ð10Þ

and we integrate the kick of an entire test beamlet with
distribution Ψtðz; δÞ:

hΔx0t;si ¼ Aσzðhxit − hxisÞ

×
⨌ dzsdδsdztdδtΨsðzs; δsÞΨtðzt; δtÞδ̂ðzs − ztÞRR

dztdδtΨtðzt; δtÞ
:

ð11Þ

This integral can then be expressed in the normalized polar
coordinate system written above, defining the distribution
of the beamlets in polar coordinates and simplifying the
notation Ψp

k ðrk; θkÞ≡Ψp
k :

hΔx0t;si ¼ Aðhxit − hxisÞ

×
⨌ drsdθsdrtdθtΨ

p
sΨp

t δ̂½rs sinðθsÞ− rr sinðθrÞ�RR
drtdθtΨ

p
t

:

ð12Þ

Based on this expression one can write a space charge
matrix describing the change of the transverse coordinates
of each beamlet based on their coordinates at the
previous turn:

xk → xk; x0k → x0k þ
X
s

hΔx0k;si: ð13Þ

The full one turn matrix including the phase space
rotation through the lattice and space charge forces is
obtained with an outer product of the matrix CðQsÞ and
the space charge matrix defined by Eq. (13). In the
following, we compute the space charge matrix for two
different distributions and study the properties of the
dynamical system notably via the eigenvalues of the one
turn matrix. The eigenvalues are expressed in terms of a
tune shift with respect to the unperturbed tune Qβ. By
convention, a positive imaginary part corresponds to an
exponentially growing amplitude.
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For convenience, we characterize the strength of the
space charge forces with the maximum induced tune shift
for a Gaussian beam in the smooth and round beam
approximation. It can be expressed based on Eq. (12):

ΔQSC ¼ A
βavg
4π

1ffiffiffiffiffiffi
2π

p : ð14Þ

A. Airbag distribution

The airbag distribution is often used to describe coherent
instabilities due to its simplicity and consequently its value

for the understanding of the instability mechanisms. We
define the discretized distributions as

Ψp
AB;iðr; θÞ ¼

� Ns
2π δ̂ðr − R0Þ; if θ ∈ ½Θi;Θiþ1½
0; otherwise:

ð15Þ

In order to obtain the equivalent rms bunch length and
momentum spread, the radius of the airbag should be set to
R0 ¼

ffiffiffi
2

p
. With a substitution we can solve the correspond-

ing integral in Eq. (12):

hΔx0t;si ¼
8<
:

A
8π2R0

ðhxit − hxisÞ
���� log

�
1þUsþ1

1−Usþ1

1−Us
1þUs

�����; if tþ s ¼ Ns and t ≠ s

0; otherwise
ð16Þ

with the new integration boundaries Ui ¼ cosΘi.

B. Gaussian distribution

The simplicity of the airbag distribution is not without
cost as it prevents the description of modes with a radial
component. In order to address those modes, we instead
consider a discretized Gaussian distribution in normalized
polar coordinates:

Ψp
G;i;jðr; θÞ ¼

8>><
>>:

r
2π e

−r2
2 ; if r ∈ ½Ri; Riþ1½

and θ ∈ ½Θi;Θiþ1½
0; otherwise:

ð17Þ

The integral in Eq. (12) can then be solved numerically.
Here we replaced the Dirac delta function by a boxcar
function of vanishing width and used a trapezoidal scheme
for the integration.

III. AIRBAG DISTRIBUTION

The variation of the coherent mode frequencies due to
space charge in the absence of wakefields is shown in
Fig. 3(a). In the absence of space charge forces, we find as
expected a series of modes equally spaced by integer
multiples of the synchrotron tune Qs around the transverse
tune Qβ, corresponding to the azimuthal modes of oscil-
lation. Consistently with the ABS model, we find that the
frequency of the azimuthal mode 0 is fixed at the unper-
turbed transverse tune, while the frequency of all others is
decreased, with a saturation at the unperturbed tune for the
positive azimuthal modes [1]. The modes’ frequencies are
slightly different from the ones obtained with the ABS,
which can be attributed to the difference in longitudinal
focusing between the two approaches.

When considering wakefields at fixed strength, yet
varying the strength of space charge forces, we observe
in Fig. 3(b) that the original TMCI is suppressed. Indeed,

FIG. 3. Evolution of the complex tune shifts of the coherent
modes as a function of the normalized space charge tune shift for
an airbag distribution, without wakefields (above) and with
wakefields featuring fixed wakefield strength corresponding to
a normalized intensity of 20 (below). In the absence of wake-
fields, all tunes are purely real. Otherwise, to ease the identi-
fication of the modes in the plots of the real and imaginary tune
shifts, the dots are color coded identically according to the
imaginary part. (a) Without wake elds (b) With wakefields.
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observing the imaginary part of the most unstable mode we
find that it decreases with increasing space charge strength
until reaching stabilization at a space charge tune shift of
approximately 5. The mechanism of stabilization can be
understood by observing the corresponding real tune shift
(red dots), starting approximately at −2Qs without space
charge and decoupling back into two stable modes. The
frequency of one of the formerly coupled mode is shifted
up towards the positive azimuthal modes, while the other’s
is shifted down towards negative azimuthal modes.
The suppression of the TMCI when increasing the space

charge strength obtained with the CMM based on an airbag
distribution is compatible with the findings of the ABS
model. The dependence of the imaginary part of the most
unstable mode on both the strength of the space charge
forces and of the wakefields is detailed in Fig. 4(a). The
unstable area for low space charge forces is comparable to
the one obtained with the 2PA (Fig. 1). On the other hand,
all the other unstable areas obtained with the 2PA for high

space charge strength are not recovered with the CMM.
As discussed later, this inconsistency is related to a
description of the radial degree of freedom, which is
lacking in both the CMM with an airbag distribution
and the ABS. Nevertheless the total absence of unstable
behavior remains rather surprising, given that even a much
simpler model such as the 2PA seems to yield a better
description of the instabilities. We therefore inspect the
sensitivity of the matrix to external perturbations using
the so-called pseudospectrum of the one turn matrix M,
defined as [19]

σpðM; ϵpÞ ¼ fλ ∈ Cj ∃ v⃗∶jjðM − λIÞ · v⃗jj < ϵpg: ð18Þ

As it yields the eigenvalues that can be obtained by adding
a perturbation of order ϵp to the matrix, the extension of
the pseudospectrum into the imaginary plane provides a
measure of the sensitivity of a dynamical system to
perturbation. Figure 5 shows with contours the pseudospec-
trum corresponding to different perturbation amplitudes by
computing ϵp at selected locations of the complex plane λ:

FIG. 4. Maximum tune shift (above) and the Kreiss constant
(below) obtained for an airbag distribution for various strength of
space charge forces and wakefields. The Kreiss constant becomes
infinite for configurations featuring unstable eigenvalues which is
marked by a white area. (a) Maximum tune shift (b) Kreiss
constant.

FIG. 5. Pseudospectrum of the one turn matrix with weak
(above) and strong (below) space charge forces, both being above
the decoupling of the original TMCI by space charge. The
normalized intensity is 20. (a) ΔQSC ¼ 6Qs (b) ΔQSC ¼ 50Qs.
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ϵpðM; λÞ ¼ sminðM − λIÞ; ð19Þ

with smin denoting the smallest singular value. By comparing
the pseudospectrum in the area of the complex plane where
the coherent tunes are aggregating, due to the positive
mode’s tunes approaching asymptotically the one of the
mode 0, we find that the pseudospectrum for a given small
perturbation drastically protrudes into the imaginary part
of the complex plane when space charge is strong. This
observation suggests that the proximity of the mode
frequencies results in an increased sensitivity to external
perturbations. To quantify this sensitivity with a measurable
quantity, we make use of the Kreiss matrix theorem [10]
giving in particular a lower bound to the maximum transient
amplification that may occur when considering powers
of the one turn matrix, i.e., when considering the beam
oscillation over several turns:

sup
t>0

jjMtjj > KðMÞ; ð20Þ

with t the turn counter. In a stable system, the Kreiss constant
KðMÞ is equal to one, meaning that no exponential growth
or transient amplification may be expected. For a system
normally unstable, i.e., featuring unstable eigenvalues, the
Kreiss constant is infinite. Systems featuring only stable
eigenvalues yet having a finite Kreiss constant larger than 1
are subject to transient amplification. Figure 4(b) shows the
Kreiss constant obtained for different intensities and space
charge strength using

KðMÞ ¼ max
ℑλ>0

jjλjj − 1

ϵpðM; λÞ : ð21Þ

We observe that when increasing the strength of space
charge forces the Kreiss constant increases significantly.
Even for intensities below the TMCI threshold in the absence
of space charge the Kreiss constant can be significantly
higher than one, such that transient amplification can also
be expected. The evolution of the transient behavior with
increasing space charge strength resembles the one obtained
within the 2PA (Fig. 1). The transient amplification obtained
here is compatible with the convective nature of the
instabilities obtained within the SSC [6]. In the latter, the
transverse oscillation signal was found to be significantly
higher for the tail of the bunch with respect to the head. This
strong asymmetry between the oscillation amplitude of the
head and tail can also be observed with the CMM. Figure 6
illustrates this effect with the superposition of the transverse
signals x̃ðs; tÞ defined as the average transverse position of
the bunch multiplied by the line charge density as a function
of the longitudinal position z, for 20 consecutive turns t. The
transverse signal is obtained from the expression of the
eigenvector corresponding to a given mode hxin;k with its
corresponding tune Qn:

x̃ðs; tÞ ¼ ℜ

�
ei2πQnt

X
k

ZZ
hxin;kΨp

k ðr; θÞ

× δ̂½s − r cosðθÞ�drdθ
�
: ð22Þ

The particular case of an azimuthal mode 4, with unper-
turbed frequencyQβ þ 4Qs is shown in Fig. 6, recognizable
by its four nodes at which no oscillations are observed.
Whereas the maximum amplitude of oscillation at the
antinodes is similar in the absence of space charge [Fig. 6(a)]
there is a strong asymmetry in the first antinode at the head
of the bunch (s ≈ 1) and the one at the tail (s ≈ −1) when
space charge forces are strong. It is an important feature of
the instability observed experimentally [8]. Nevertheless,
while the asymmetry is already present in the model with an
airbag distribution, the predicted signals do not resemble the
experimental ones. The signals tend to infinity on both edges
of the bunch. This is a known issue of the airbag model in a
linear rf system, which is why the ABS is often preferred.
Here the airbag distribution in a linear rf system only serves
as a first step towards a description of a more realistic
Gaussian distribution.

FIG. 6. Transverse signals obtained for the azimuthal mode 4
for different strengths of the space charge force and for an airbag
distribution. The normalized intensity is 20, i.e., well beyond the
TMCI threshold in the absence of space charge forces. The
positive longitudinal positions correspond to the head of the
bunch, i.e., the part of the beam that arrives first at a given
location around the ring. (a) ΔQSC=Qs ¼ 0 (b) ΔQSC=Qs ¼ 20.
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IV. GAUSSIAN DISTRIBUTION

The description of the longitudinal motion with an airbag
distribution entirely neglects the radial degree of freedom.
In this case, the unperturbed spectrum features additional
degenerate radial modes with frequencies determined
solely by the azimuthal mode number. By introducing
multiple layers of airbag within the square-well model, it
was already shown in [20] that space charge lifts the
degeneracy of the radial modes. In particular, the tunes of
some radial modes with positive azimuthal number are no
longer constrained above the unperturbed transverse tune.
This behavior is also observed with the CMM, as illustrated
by Fig. 7(a). There, a simplified, semiconverged configu-
ration featuring a sufficient amount of slices but only three
rings is shown for reasons that will become obvious later.
An important difference with respect to the results obtained
with an airbag distribution is the lifting of the degeneracy
of the radial modes’ frequencies introduced by space
charge. This feature is visible at the very left of the plot:
the three modes with identical tunes in the absence of space
charge forces drift apart as the strength of space charge
increases. This results in a much richer spectrum of modes
of oscillations and consequently potential for other mode
coupling instabilities which are discussed below.
We note that the frequency of the azimuthal and radial

mode 0 remains constant at the unperturbed machine tune,
the frequency of all other modes decreases with increasing
space charge forces at different paces.
Figures 7(b) and 7(c) show an example of the impact of

space charge forces in a configuration where, in the absence
of space charge, the beams are unstable due to the mode
coupling instability driven by the wakefields. Parts 7(b)
allow for a better readability of the modes’ behavior, yet the
low number of rings does not yield fully accurate estimates
of the modes’ frequencies and growth rate. As with the
airbag distribution, we find that the mode coupling insta-
bilities in the absence of space charge forces are decoupled
by the increasing space charge force. This is clearly visible
by following the behavior of the most unstable mode at the
left-hand side of the plot at a tune shift of approximately
−2Qs, which is weakened until a full decoupling at a
space charge tune shift of 3.4Qs. On the other hand, this
instability is replaced by another instability at a higher
space charge strength, resulting from the coupling of higher
order positive azimuthal modes. The behavior of the radial
modes involved in this instability is highlighted with black
lines. There is an interaction between radial modes of
azimuthal number 2 and 4 at a space charge tune shift of
4.7Qs. They are highlighted with a dash-dotted and a
dashed line respectively. An instability arises where the
latter reaches a frequency similar to the one of a radial
mode of azimuthal number 5, marked with a dotted line, at
a space charge tune shift of 6.1Qs. Since this model has not
converged, the behavior cannot be considered accurate,
however it helps for a qualitative understanding of the

behavior observed when considering the converged con-
figuration featuring 50 rings. Indeed, the decoupling of the
original mode coupling instabilities in the absence of space
charge and the replacement by a succession of mode
coupling and decoupling is well visible in Fig. 7(c),
however the density of the spectrum prevents a detailed
understanding of the role of each mode. The suppression of
the original mode coupling instability and the generation of
new ones when increasing the space charge strength seem

FIG. 7. Evolution of the complex tune shifts of the coherent
modes as a function of the normalized space charge tune shift
for a Gaussian distribution. A converged configuration featuring
100 slices and 50 rings is shown on the bottom plot (c), while a
semiconverged configuration featuring only three rings is shown
on the top (a) and middle plot (b). In the absence of wakefields, in
the top plot (a), all tunes are purely real. In the middle plot (b), the
behavior of three modes involved in the mode coupling instability
are highlighted with black lines. For both plots featuring wake-
fields (b) and (c), the strength of the wakefields is fixed and
corresponds to a normalized intensity of 20.

DESCRIPTION OF BEAM INSTABILITIES … PHYS. REV. ACCEL. BEAMS 24, 060101 (2021)

060101-7



in agreement with the predictions of the 2PA (Fig. 1).
The main difference with 2PA is the width of the mode
couplings, which is thin enough in the 2PA to allow
intermediate stable configurations. Here we find that the
mode couplings overlap with each other, such that there are
no intermediate ranges of stability.
The qualitative agreement with the 2PA approach is also

visible in the maximum imaginary part obtained with the
CMM on a wider range of intensities shown in Fig. 8. For a
given intensity leading to TMCI in the absence of space
charge forces, there exists an intermediate strength of the
space charge forces that mitigates the original TMCI. Yet,
at higher space charge strength, the space charge forces
lead to instabilities via the coupling of positive head-tail
modes. Compatibly with the 2PA, we find the TMCI
threshold vanishes for high space charge strength [7].
As with the airbag distribution, we compute the trans-

verse signal corresponding to the most unstable mode in a
configuration without space charge [Fig. 9(a)] and featuring
strong space charge, i.e., such that the original instability
mechanism is suppressed and replaced by another mode
coupling of positive azimuthal modes [Fig. 9(b)]. There are
no nodes in both cases. With strong space charge forces, the
maximum of the oscillation is displaced towards the tail
and the oscillation amplitude is suppressed at the head of
the bunch. This asymmetry in the oscillation amplitude
of the head and the tail is comparable to the one obtained
with the airbag distribution. However here the transverse
signals match qualitatively the measured ones [8], sug-
gesting that the model properly describes the instability
mechanism observed.

V. COMPARISON TO MEASUREMENTS
AT THE SPS

In order to validate the new model, we attempt to
reproduce the results of an experiment conducted at the
SPS and reported in [8]. This experiment was conducted

with two optics, so-called Q26 and Q20, featuring different
transition energies. Bunches of various intensities were
injected and their stability was evaluated through the losses
measured within the first 1000 turns. The space charge tune
shift, in units of the synchrotron tune, was kept approx-
imately constant at 28� 2 with the Q26 optics and 8� 2
with the Q20 optics.
Here we use the SPS impedance model instead of the

broadband resonator model [21]. As shown in [12,13], we
observe in Fig. 10 that both the driving and detuning
wakefields have an impact on the TMCI. It was checked
with the same model that the chromaticity as measured
during the experiment has a negligible impact on the
growth rate.
With the Q26 optics [Fig. 10(a)], the TMCI threshold

without space charge is predicted at an intensity of
1.5 × 1011 p , while weak instabilities are expected for
intensities between 0.5 and 1 × 1011 p. When including
space charge forces, the lower end of the error bar is
compatible with a TMCI threshold at 0.8 × 1011, which
is significantly lower than the 1.2 × 1011 measured. This

FIG. 9. Transverse signals obtained for the most unstable mode
for different strengths of the space charge force and for a
Gaussian distribution. The normalized intensity is 20. The
positive longitudinal positions correspond to the head of the
bunch, i.e., the part of the beam that arrives first at a given
location around the ring. (a) ΔQSC=Qs ¼ 0 (b) ΔQSC=Qs ¼ 20.

FIG. 8. Maximum imaginary tune shift for a Gaussian distri-
bution obtained with 100 slices and 50 rings for different
strengths of the wakefields and the space charge forces.
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important inaccuracy in the model may be attributed to the
linearization of the space charge forces; Landau damping is
thus entirely neglected. Nevertheless, the predicted growth
rates are in good agreement for bunches of sufficiently high
intensity, in the regime of fast losses. Indeed the growth rate
was measured at approximatively 6 × 10−3=turn for an
intensity of 1.5 × 1011. One may suppose that the linear
model is more accurate in this regime because Landau
damping is lost.
With the Q20 optics [Fig. 10(b)] and without space

charge, instabilities with rise times shorter than 1000 turns
are already expected at intensities between 1.4 and
2.4 × 1011 p. Above these intensities, the beam is expected

to be stable until an intensity of 3.5 × 1011 p. When
including space charge, we observe instabilities for all
intensities above approximately 1011. In this regime of
rather weak space charge forces, the uncertainty on the
beam parameters plays a significant role as it leads to larger
error bars, with respect to the regime of strong space charge
force with the Q26 optics. This feature is compatible with
the experimental data. Indeed, strong shot-to-shot varia-
tions were observed in the beam stability when operating
with the Q20 optics, which were not observed with the
Q26 optics. This behavior may be attributed to unmeasured
shot-to-shot variations of the transverse and longitudinal
emittances, having a marginal impact on the beam stability
with the Q26 optics due to the strong space charge forces,
but having a significant impact with lower space charge
forces when operating with the Q20 optics.
Experimentally, only weak instabilities were observed

with intensities above 1.5 × 1011 p, strong instabilities with
rise time shorter than 1000 turns occurred only above
3.5 × 1011 p. Again these features cannot be explained
within the CMM, likely due to the absence of Landau
damping in the model.
The introduction of space charge forces does not seem to

provide a significant improvement in the prediction of the
instability growth rate in the SPS with respect to the same
model without space charge, featuring only the driving and
detuning wakefields. In fact, it was already observed in [8]
that macroparticle simulations featuring only these ingre-
dients, i.e., excluding space charge forces, yielded pre-
dictions in reasonable agreement with experimental data
(except for the strong shot-to-shot variations with the Q20
optics). Nevertheless, the CMM model including space
charge forces shows that growth rates compatible with
experimental data can be obtained with a linearized model,
yet the introduction of the nonlinearities seem necessary for
a more accurate description.

VI. CONCLUSION

Several results obtained with simplified models featuring
different types of approximation were recovered with a
new dynamical model of beam instabilities in synchrotrons
featuring wakefields and space charge forces. First, the
behavior of the frequencies of the coherent modes under
the influence of space charge forces, the suppression of the
TMCI and the existence of significant transient growth in
spite of the lack of unstable eigenvalues were recovered
within the airbag model. In particular, the transient growth
was quantified by means of the Kreiss constant of the one
turn matrix obtained with the CMM. Second, the reduction
of the frequency of some radial modes featuring positive
azimuthal mode numbers below the unperturbed tune
caused by space charge forces was recovered [20]. With
the CMM we find that these modes can couple due to the
space charge forces and thus result in instabilities at high
space charge strength, as opposed to the prediction of the

FIG. 10. Maximum growth rate obtained for a Gaussian
distribution in configurations corresponding to an experiment
conducted at the SPS with two different optics labeled Q26
(above) and Q20 (below) [8]. The result of the CMM without
space charge forces but with either only the detuning wakefields
or both the detuning and driving wakefields are shown with blue
and green curves respectively. They were obtained with 80 slices
and 40 rings. The red lines and shaded areas represent the
configuration featuring both driving and detuning wakefields as
well as space charge forces, with a range given by the uncertainty
on the transverse and longitudinal emittances. They were ob-
tained with 140 slices and 60 rings. (a) Q26 (b) Q20.
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airbag model. This behavior, i.e., the mitigation of the
original TMCI and the generation of multiple mode
couplings with increasing space charge forces, is compat-
ible with the one obtained with the 2PA prediction. On the
other hand, the coupling of the radial modes seems in
contradiction with the results in [5]. Nevertheless, the
model used in the latter was obtained with the SSC
approximation, which is not met at the edge of a longi-
tudinal Gaussian distribution. Since the CMM is not based
on such an approximation, the difference can likely be
attributed to that.
We note that recently the existence of normal instabil-

ities, i.e., described by unstable eigenvalues, in the presence
of wakefields and strong space charge forces was also
obtained using Vlasov perturbation theory without the SSC
[22]. It is suggested that the transverse variation of the
space charge tune shift plays an important role in the
generation of the instability, following a mechanism
described in [23]. Since the space charge forces are
linearized with respect to the transverse position in the
CMM, transverse variations of the tune shift cannot impact
the instability mechanism described in this paper, con-
sequently they are of different nature.
The growth rates and transverse signals measured in an

experiment at the SPS were found in qualitative agreement
with the predictions of the CMM, yet some configurations
were found more stable experimentally than theoretically.
This difference may be attributed to the absence of
modeling of Landau damping in the linearized model of
space charge forces implemented in the CMM.
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APPENDIX A: CONVERGENCE

The variation of the main observable obtained from the
CMM, i.e., the maximum growth rate, is shown for a given
configuration and for different numbers of slices and rings
in Fig. 11. The result does not vary significantly for a
number of slices higher than 60 and for more than 2000
discretized elements and thus is considered converged.
These requirements increase with the space charge strength
as higher order positive head-tail modes are shifted down in
frequency and lead to mode coupling instabilities. The
number of rings has to be increased accordingly to allow for
a sufficiently accurate description of the forces. As a result,
the CMM becomes numerically challenging for high
space charge strength. Nevertheless, 100 slices and 50
rings were found sufficient for a wide range of realistic
parameters. This numerical configuration leads a matrix
size of 104 × 104 yielding acceptable computing time.

APPENDIX B: TRANSIENT AMPLIFICATION

The Kreiss constant allows to quantify the transient
behavior of a dynamical system, yet the correspondence to
physical observables is not trivial. In this section we seek
to illustrate this aspect with a concrete example, thus
also clarifying the link with the convective behavior
described in [6].
Figure 12 shows an example of transient behavior

observed in the presence of wakefields and space charge

FIG. 12. Evolution of the norm of a vector associated with two
different initial perturbations under multiplications by the one
turn matrix M. The one turn matrix corresponds to a normalized
intensity of 20, the space charge tune shift is 5, 10 and 20 for the
green, blue and red curves respectively. The airbag model was
considered with 100 slices. The solid and dashed lines correspond
to two different initial perturbations, corresponding to a dis-
placement of the head and tail of the bunch respectively. The
shaded curves show the Kreiss constant associated with the
corresponding one turn matrix.

FIG. 11. Maximum imaginary tune shift obtained for a
Gaussian distribution, a normalized space charge tune shift of
30, a normalized intensity of 20 for various discretizations of the
longitudinal phase space. The number of discretized elements is
quoted on the x axis as it relates directly to the computational
need, it is simply given by Ns · Nr. A converged value is
highlighted with a dashed black line.
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in a regime where all eigenvalues are stable, yet the Kreiss
constant is larger than 1. Two initial perturbations were
considered. The first one features a displacement of the
head of the bunch, with a position that is set to 0 for the
trailing half of the bunch and an offset proportional to
the longitudinal position for the leading half (solid lines).
The second features a similar perturbation of the trailing
half without perturbation of the leading half (dashed lines).
In both cases, the vector representing the initial perturba-
tion is normalized to 1. For the configuration where the
head of the bunch is perturbed, the norm of the vector
increases until a maximum before decaying again, thus
representing a transient amplification of the initial pertur-
bation. On the other hand, the perturbation of the tail of the
bunch is barely amplified, showing that the amplification of
the initial perturbation exhibits a strong dependence on the
initial conditions. Thus, this measure can hardly be used to
quantify and compare different configurations, whereas the
Kreiss constant allows for a quantitative measure of the
potential for transient amplification of a given matrix.
In these examples, the maximum of the amplification is
indeed of the order of the Kreiss constant, represented with
shaded lines on Fig. 12. We recall that the Kreiss constant
provides a lower bound for the maximum transient ampli-
fication. It was therefore expected that the maximum
reached in these examples is higher than the Kreiss
constant.
The main concern for accelerators is that transient

amplifications may become sufficiently large that beam
losses or emittance growth occur. The Kreiss matrix
theorem is of limited value to obtain accurate estimations
of these quantities, mostly because the upper bound is often
much larger than the values actually achieved [19] and the
lower bound is not sufficient to fully characterize the
potential detrimental effects on the beam quality.

Figure 13 shows the expected beam position along the
bunch after multiple turns for the configuration discussed
above, with an initial perturbation of the head of the bunch.
This initial perturbation leads to an amplification of the
motion towards the tail of the bunch, whereas the motion at
the head is not amplified. This amplification along the
bunch is comparable to the convective behavior quoted in
[6]. We note that, here, the amplification is bound in
amplitude. It occurs in the first thousand turns (black to
light red lines) before reaching a maximum and decaying
again (light red to yellow lines), compatibly with the
behavior observed in Fig. 12 (solid blue line). While
transient, the oscillation amplitude at the tail of the bunch
reaches more than 200 times the initial perturbation of
the head, which could indeed result in beam losses or
emittance growth.
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