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Clustering and control 
for adaptation uncovers 
time‑warped spike time patterns 
in cortical networks in vivo
James B. Isbister1,2*, Vicente Reyes‑Puerta3, Jyh‑Jang Sun3,4,6, Illia Horenko5 & 
Heiko J. Luhmann3

How information in the nervous system is encoded by patterns of action potentials (i.e. spikes) 
remains an open question. Multi-neuron patterns of single spikes are a prime candidate for spike 
time encoding but their temporal variability requires further characterisation. Here we show how 
known sources of spike count variability affect stimulus-evoked spike time patterns between neurons 
separated over multiple layers and columns of adult rat somatosensory cortex in vivo. On subsets of 
trials (clusters) and after controlling for stimulus-response adaptation, spike time differences between 
pairs of neurons are “time-warped” (compressed/stretched) by trial-to-trial changes in shared 
excitability, explaining why fixed spike time patterns and noise correlations are seldom reported. 
We show that predicted cortical state is correlated between groups of 4 neurons, introducing the 
possibility of spike time pattern modulation by population-wide trial-to-trial changes in excitability 
(i.e. cortical state). Under the assumption of state-dependent coding, we propose an improved 
potential encoding capacity.

The neural coding problem addresses how information is encoded by, and decoded from, patterns of action 
potentials (i.e. spikes) in the nervous system1–3. Whether information is encoded by spike counts or spike times, 
remains the subject of debate and study4–6. Responses following sensory stimulation can be analysed to determine 
principles of neural coding. Precise and reliable temporal spike patterns have been observed over repeated trials 
of single stimuli7–12 and can improve coding (over spike counts) in primary sensory cortices6,13. Nevertheless, a 
large proportion of spike time variability remains unexplained14. With the definitive form of spike time encod-
ing undetermined, population spike count (i.e. mean firing rate) encoding is commonly assumed, in which 
spike count variability averages out over a population15–18. Spike time encoding, however, offers the possibility 
of a fast, efficient and higher capacity coding form, that could leverage the known temporal sensitivity of neural 
integration19–21 and plasticity22. This paper aims to better characterise shared spike time variability in the soma-
tosensory cortex over repeated trials of single sensory stimuli, as this constrains the form in which spike times 
encode sensory information.

As single cortical neurons can generate highly reliable spike trains to direct stimulation in vitro23, in vivo 
response variability largely reflects cortical network dynamics24 and synaptic interactions25,26. Analysis of response 
variability shared between neurons over repeated trials of a single stimulus (“noise correlations”) allows the effect 
of underlying variability sources to be investigated. For spike counts, shared variability may be studied for pairs 
of neurons and at the population-level15 (Fig. 1a, left and centre). The latter includes analysis of latent factors 
and trial-to-trial variability in the low-dimensional trajectory of population activity27,28 (Fig. 1a, right). In the 
visual cortex, shared spike count variability is modulated by shared trial-to-trial variability in the excitability of 
neurons across a population. Particularly, neurons across the population respond with either higher or lower 
spike counts depending on the population excitability level on a single trial (Fig. 1a, centre). Such shared vari-
ability has been explained by an additive interaction of stimulus-evoked activity with spontaneous background 
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activity15,29,30 and an additional multiplicative interaction15. A population’s state at the start of a trial therefore 
affects the representation of a stimulus. Analysis of population dynamics in the motor cortex also supports 
the dependence of neural processing on a population’s state at the start of a trial27,28 (Fig. 1a, right). Here we 
characterise how precise spike time representations are modulated by the shared excitability-level of spatially 
separated neurons on single trials.

Multi-neuron first spike patterns following stimulus onset offer the simplest opportunity to study spike time 
encoding and are supported as a fundamental form of representation12,13,31, which may generalise to multi-
neuron single spike patterns (Fig. 1b). For example, the majority of neurons in the barrel field of the rodent 
somatosensory cortex (“barrel cortex”) respond to single whisker deflections with 0 or 1 spike12 and first spike 
patterns in primary visual cortex are sufficient to enable visual discrimination31. With regards to the timing 
characteristics of multi-neuron single spike patterns, previous analysis of the dataset used here found millisecond 
precise multi-neuron spike patterns were organised intra- and inter-laminar, as well intra- and inter-columnar 
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Figure 1.   Explanatory figures. (a) Illustration of shared spike count variability over repeated trials of a 
condition for a neuron pair (left), for a population (centre) and exhibited as alternative single trial trajectories 
through low-dimensional space (right). (b) Illustration of multi-neuron first spike patterns (left) and single spike 
patterns (right). (c) Left: Illustrative (artificial) first spike stimulus-response distribution for two neurons and a 
single stimulus condition. Each point represents the first spike times of the two neurons on a trial on which both 
neurons spiked. A spike time noise correlation is observable within the isolated cluster. The vertical distance 
from a point to the line y = x represents the relative spike time difference for the first spike pair. Right: If the 
angle of the noise correlation is 45◦ , the relative spike time difference remains fixed (with random noise) w.r.t. 
the latent process/processes underlying the correlation. If the angle is different from 45◦ , the relative spike time 
difference varies w.r.t. the process/processes. (d) The latent process underlying the noise correlation may be 
due to adaptative (left) and/or non-adaptative (right) changes in the shared excitability-level of the two neurons 
from trial-to-trial. (e) Fixed relative spike time differences vs time-warped spike time differences. For the latter, 
the relative spike time difference is dependent on the non-adaptative single trial shared excitability-level. (f) 
Illustration of correlated predicted cortical state for disjoint pairs of neurons.
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in the barrel cortex12, and that spike time patterns and (weakly noise correlated) spike counts encoded stimulus 
information (stimulation frequency and location)32. It has also been shown that first spike times can improve 
decoding of whisker stimulus information by 44% over spike counts13. Precise relative differences between the 
timings of spikes do not require reference to an onset signal to be decoded by downstream neurons (Fig. 1b) and 
have been observed experimentally8,9, including for this dataset12. Infrequent reporting of precise relative spike 
time differences, however, is a key argument against spike time coding. We propose that the temporal variability 
of spike time patterns requires more detailed characterisation.

The topographic representation of each whisker on the snout of a rodent in the barrel cortex, represents an 
excellent model to study timing characteristics of multi-neuron single spike patterns in response to controlled 
sensory stimulation33. Using a large dataset of spike sorted recordings in anesthetized adult rat barrel cortex 
(Methods), this paper aims to characterise the non-trivial timing variability of multi-neuron first spike patterns 
for groups of neurons separated across layers and columns of the barrel cortex. Firstly, for each stimulus condition 
and each pair of neurons, the first spike times of the first and second neuron in the pair were plotted against each 
other for trials of the stimulus condition on which both neurons spiked (Fig. 1c). Within such ‘first spike pair 
stimulus-response distributions’, spike time clusters (isolated regions of high response probability) were found 
to be positively correlated above chance-levels. Such positively correlated spike time clusters represent spike 
time noise correlations (i.e. co-modulation of first spike times by some underlying latent process(es); Fig. 1c).

To the authors’ knowledge, all previous investigations of precise spike time noise correlations have assumed 
fixed spike time differences, either with a zero34 or non-zero35 delay, which would correspond with correlation 
angles of 45◦ (Fig. 1c, upper right) in the stimulus-response distribution. In contrast, we find that cluster cor-
relation angles are often different from 45◦ . This shows that first spike times of neuron pairs co-vary with respect 
to some underlying latent process(es), such that the relative first-spike time difference varies with respect to 
this process(es) (Fig. 1c, lower right). This explains why precise fixed relative spike time patterns are seldom 
reported8,9,12.

After controlling for neural stimulus-response adaptation, which causes spike time latencies to increase over 
rapidly repeated whisker deflections26,32,36,37 (Fig. 1d), many clusters remained positively correlated with non-45◦ 
correlation angles. This cannot be explained by variability in stimulus or cortical onset, which would correspond 
with a fixed relative difference ( 45◦ correlation angle; Fig. 1d). Non-45◦ correlation angles suggest that relative 
first spike time differences are ‘warped’ (i.e. stretched/compressed) depending on the shared excitability-level 
of the two neurons on a single trial (Fig. 1d,e) and that the shared excitability-level varies from trial-to-trial due 
to a process other than adaptation. Co-modulation of spike times for neurons separated over multiple cortical 
columns and layers introduces the poss ibility that spike time patterns are modulated by low-dimensional trial-
to-trial population-wide changes in neuronal excitability not caused by adaptation. In support of this (although 
not conclusive), predictions of single trial excitability were correlated for a large proportion of pairs of clusters, 
which did not share a common neuron (Fig. 1f). If decoding neurons were also co-modulated by population-
wide changes in neuronal excitability, they could integrate spike time patterns in an excitability-dependent (or 
‘state-dependent’) manner. An improved potential encoding capacity is predicted under the classical and novel 
assumptions of ‘fixed-state’ and ‘state-dependent’ decoding, where state defines the shared population excitability-
level at the start of a trial.

Results
Single whisker deflections (sweeps) were made to single whiskers in blocks of typically 200 trials (Methods). 
For each block, single deflections were made at a certain frequency (between 0.066–10 Hz), such that the inter-
trial-interval was 1/f.

Confirmation of single spike patterns following stimulus onset.  Each neuron-type and layer group 
demonstrates a clear initial response to single whisker deflections (Fig. 2a). Moreover, the majority of respond-
ing neurons spike only once (Fig. 2b), suggesting low spike count encoding capacity. This also supports previous 
studies13 and analyses of the current dataset12 in implicating multi-neuron first spike patterns as a prime encod-
ing form. This paper aims to characterise the spike time variability of such multi-neuron single spike patterns. 
Low response reliability (Fig.  2c) complicates analysis of multi-neuron single spike patterns. For example, a 
matrix of first spike times (for a single stimulus condition) by neuron and trial index would contain a large 
number of missing values.

Confirmation of neuronal stimulus‑response adaptation for single neurons.  Consistent with 
previous reports26,36,37, including for the current dataset32, depressive spike count and spike time latency adapta-
tion were confirmed at stimulation frequencies ≥ 5Hz and ≥ 1Hz respectively, with the majority of adaptation 
occurring in the first 20 stimulus trials (Fig. 2d; Supplementary Fig. 1). Such adaptation was confirmed for all 
neuron groups, excluding spike time adaptation for the undersampled L2/3 I group (Supplementary Fig. 2a). 
Such spike time latency adaptation can underlie spike time noise correlations and therefore must be controlled 
for when testing for noise correlations caused by non-adaptative trial-to-trial changes in shared excitability. 
Controlling for adaptative trends must consider the heterogeneity of responses and adaptation over stimulus tri-
als (Supplementary Fig. 3). Autocorrelation and partial autocorrelation analysis of the the trial-to-trial sequence 
of first spike times of single neurons supported the presence of general adapatative trends without additional 
autocorrelative structure in the trial-to-trial sequence of single neuron first spike times (Supplementary Fig. 4).

Detection of spike time noise correlations.  Analysing the joint responses of two neurons allows noise 
correlations caused by adaptation and non-adaptative trial-to-trial changes in shared excitability to be discerned. 
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The first spike times of pairs of neurons were plotted against each other for trials of a single stimulus condition 
on which both neurons spiked. For example, for repeated 4Hz stimulation of a single whisker, Fig. 3a shows the 
first spike times of two neurons (L5AI and L4I) in the barrel column corresponding to the whisker (i.e. princi-
pal column) for trials on which both neurons spiked. First spike pairs appear to come from one of two clusters 
(isolated regions of high response probability) in the ‘first-spike pair stimulus-response distribution’. Moreover, 
the cluster of green first spike pairs appears to be correlated with a non-45◦ angle , such that the relative differ-
ence between the spike times of the two neurons varies with respect to some underlying latent process(es) (e.g. 
adaptation or non-adaptative trial-to-trial changes in shared excitability).

Such correlated clusters with apparent non-45◦ angles were observed in many first spike pair distributions 
(Supplementary Video 1), representing isolated regions of high response probability, which are noise correlated. 
The occurrence and angle of spike time noise correlations, and the nature of the underlying latent process(es), 
were quantified both for (i) isolated clusters and (ii) the original unclustered first spike pair response distribu-
tions (Fig. 3b).

For the clustered case, a two-stage algorithm was developed to extract isolated clusters which did not contain 
smaller isolated sub-clusters. Stage 1 of the algorithm utilised ‘density-based spatial clustering of applications 
with noise’ (DBSCAN)38,39, an established clustering algorithm which detects clusters based on the underlying 
probability density function. Stage 1 applied two additional steps, firstly discarding DBSCAN clusters, which (like 
the cluster of orange points in Fig. 3a) were likely to be non-isolated sub-parts of larger clusters, and secondly 
including points within a flat 4σ ellipse calculated for the DBSCAN cluster points so that correlation tests were 
unbiased (Methods).

Stage 1 extracted extracted 3929 well isolated clusters defined by the 4σ boundary of a flat 2D Gaussian ellipse 
(Methods; Fig. 3a). Stage 1 did not check for repetitions or similar clusterings produced by different values of 
the DBSCAN epsilon parameter (to avoid bias). Stage 1 clusters were statistically significantly correlated above 
chance levels (Fig. 3c, left; Fisher’s method: X 2(7858; N = 3929) = 17308:0; p < :001) as were the unclustered 
response distributions (Fig. 3c, right; Fisher’s method: X 2(8676; N = 4338) = 14863:4; p < :001).

The clustering algorithm found correlated clusters at chance-levels for two surrogate control datasets and was 
compared to Gaussian Mixture Model approaches (Supplementary Fig. 5; Methods).

An angled ‘Stage 2’ ellipse was calculated to better estimate the distribution underlying each correlated 
(p < 0.005) Stage 1 cluster (Methods; Fig. 3a). Each Stage 2 cluster came from a unique first spike pair response 
distribution. 247 unique Stage 2 clusters were extracted, 98.0% (242/247) of which remained correlated above 
chance (p < 0.005).

Unclustered response distributions were also further analysed, and 243 unclustered response distributions 
were determined as correlated (p < 0.005) . The detected Stage 2 clusters and correlated unclustered response 
distributions are shown in (Supplementary Videos 1 and 2 respectively). In the following sections, the same 

Figure 2.   Properties of initial responses of cortical neurons to sensory stimulation. (a) Max normalised post-
stimulus time histograms (PSTHs) over a 50ms window following stimulus onset (averaged over all trials) for 
all 8 neuron groups (excitatory in red, inhibitory in blue) in different cortical layers (L) and a 1Hz stimulus. 
Smoothed with a Gaussian kernel ( σ = 1.5 ms). (b) Normalised spike count histogram over all neurons, trials 
and stimuli (over 50 ms following cortical activity onset). Zero spike trials are not included. (c) Histogram of 
single neuron single stimulus condition did spike once reliabilities. Each value represents the proportion of 
trials of a stimulus condition that a single neuron spiked at least once. (d) The effect of adaptation over trials 
(by stimulus-frequency). Top: For each single neuron and stimulus condition combination, spike counts are 
normalised (mean subtracted followed by division by standard deviation). Means of these normalised spike 
counts (over single neuron and stimulus condition combinations) are then calculated for stimulation frequency 
groups (0–0.2, 1, ..., 10 Hz) and 10 trial bins (i.e. trials 0–9, ..., 90–99). These mean values are plotted with a 
95% confidence interval ( ±2σ ) for stimulation frequencies 1, 3, 6, 10 Hz here and the remaining frequencies 
in Supplementary Fig. 1. Bottom: Same as for spike counts (top) but for normalised first spike times. Data for 
remaining frequencies shown in Supplementary Fig. 1.
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analyses are performed on the correlated Stage 2 clusters and correlated unclustered response distributions. For 
a subset of first spike pair response distributions, correlations (p < 0.005) were detected for both the clustered 
and unclustered case (Fig. 3d, top).

Figure 3.   Correlated clusters and correlated unclustered response distributions. (a) First spike response 
distribution for two neurons (L5AI, L4I) over 50ms following cortical onset (1 outlier out of view). Point colours 
illustrate DBSCAN clustering (epsilon = 1.35; Methods). Green flat ellipse illustrates 4σ confidence interval of 
Stage 1 cluster. Dark blue angled ellipse illustrates 4σ confidence interval of Stage 2 cluster. Light blue ellipse 
illustrates 4σ ellipse of all spike pairs under independence and normality assumption. (b) Illustration of detected 
cluster in first spike pair response distribution (left) and unclustered first spike pair response distribution 
(right). (c) Linear regression p-values for Stage 1 clusters (left) and unclustered response distributions (right). 
(d) Top: number of correlations (p < 0.005) detected for the clustered (Stage 2 clusters) and unclustered case. 
Intersection shows the number of response distributions from which a correlation was detected by the clustering 
algorithm and for the unclustered case. Bottom: linear regression r-values of correlated (p < 0.005) Stage 2 
clusters (left) and unclustered response distributions (right). (e) Left: histogram of variance explained ( r2 ) by the 
spike time linear relationship of each Stage 2 cluster (dark blue) and the linear relationship of the unclustered 
response distributions from which Stage 2 clusters were extracted (grey). Right: histogram of change in linear 
regression p-values introduced by clustering for response distributions from which Stage 2 clusters were 
extracted. Particularly, histogram shows Stage 2 cluster linear regression p-values minus originating response 
distribution linear regression p-values. Clustering reduces p-values in most cases (dark blue). (f) Histogram 
showing for each Stage 2 cluster, the proportion of conjunctive (both neurons spike) trials contributing a sample 
to the cluster (grey) and the proportion of stimulus trials contributing a sample to the cluster (dark blue). (g) 
Histogram of r2-values of linear multi-output spike pair prediction from trial index (grey) and linear correlation 
(dark blue, blue) for Stage 2 cluster spike times (left) and unclustered response distributions (right).
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98.0% (242/247) of Stage 2 clusters and 99.2% (241/243) of correlated unclustered response distributions 
were positively correlated (Fig. 3d) suggestive of modulation by spike time latency adaptation or trial-to-trial 
changes in pairwise shared excitability.

Linear relationships explained a large proportion of spike time variance within Stage 2 clusters, but not within 
the response distributions from which Stage 2 clusters were extracted (Fig. 3e). In fact, clustering was necessary 
to uncover a large proportion of spike time noise correlations detected through clustering (Fig. 3e). This result 
partly explains why precise spike time noise correlations are rarely reported. Figure 3f confirms that noise cor-
related clusters consisted of responses from a subset of stimulus trials.

More variance was explained by the linear relationship between the spike time pairs than by linear models fit 
to predict the joint spike time pairs from trial number, suggesting that clustered and unclustered noise correla-
tions are modulated more by trial-to-trial changes in pairwise shared excitability than by adaptation (Fig. 3g; 
tested further below).

Non‑45◦ spike time noise correlation angles.  For Stage 2 clusters and correlated unclustered response 
distributions, relative spike time differences were correlated with the spike time of the first neuron in the pair 
(Fig. 4a). Correlations are therefore not explained by s1 = s0 + d + independent_noise where d is a fixed differ-
ence and s0 (the spike time of neuron 0) varies from trial-to-trial.

To test whether cluster correlation angles were different from 45◦ , the correlation angle θ of each correlated 
Stage 2 cluster and  correlated unclustered response distribution was estimated (defined by the bootstrapped 
angle that the first principal component made with the positive x-axis; Methods). θ45 = min(θ , 90− θ) was used, 
as only the ordering of the neurons determined whether θ was above or below 45◦ . It is important to note that 
the Henze–Zirkler null hypothesis of normality was rejected (p < 0.05) for 71.7% (177/247) of Stage 2 clusters 
and 76.5% (186/243) of correlated unclustered response distributions.

73.7% (182/247) and 47.7% (116/243) of θ45 angles were between and significantly different from 0◦ (p-value 
< 0.025) and of θ45 angles were between and significantly different from 0◦ (p-value < 0.025) and 45◦ (p-value 
< 0.025) for Stage 2 clusters and correlated unclustered response distributions respectively (Fig. 4b). This sug-
gests that the relative difference representation of a stimulus is changed by an underlying latent process(es). The 
clustering algorithm found correlated clusters with correlation angles at 45◦ for two additional surrogate control 
datasets (Supplementary Fig. 6; Methods). The clustering algorithm enabled estimations of correlation angles 
with smaller confidence intervals compared to the unclustered response distributions (Fig. 4c).

Stationary correlations.  The next sections control for neuronal stimulus-response adaptation to deter-
mine when non-45◦ correlations are due to shared trial-to-trial changes in the excitability of neuronal pairs. 
For Stage 2 clusters and correlated unclustered response distributions, spike times were either not modulated 
by adaptation, or the cluster spike times of one or both of the neurons were modulated by adaptation (Supple-
mentary Fig. 7). Clusters or response distributions were defined as ‘stationary’ if the spike times of both neurons 
were not modulated by adaptation, and ‘non-stationary’ otherwise (see Methods stationarity criteria). Figure 4a 
shows example stationary and non-stationary clusters. The non-stationary cluster shows a clear trial depend-
ence.

40.5% (100/247) of Stage 2 clusters and 43.2% (105/243) of correlated unclustered response distributions 
were determined as stationary.

Figure 4e shows the proportion of variance explained by the correlations of these stationary Stage 2 clusters 
and stationary correlated unclustered response distributions.

For stationary Stage 2 clusters, cluster spike times of the first neuron on cluster trials t, were not correlated 
with the cluster spike times of the second neuron on cluster trials t + 1 (i.e. trial-lag-1 cross-correlation; Sup-
plementary Fig. 8). The same was true for stationary correlated unclustered response distributions. This showed 
that removal of single trial correlations removed the correlations of the stationary clusters and unclustered 
response distributions, which would not be the case if general adaptative trends underlied the stationary cor-
relations. Moreover, chance-level autocorrelations and cross-correlations for multiple trial-lags confirmed that 
the stationary correlations were not affected by adaptative changes or autocorrelative structure (Supplementary 
Fig. 8), providing an important control test.

77.0% (77/100) of stationary Stage 2 clusters and 43.8% (46/105) of stationary correlated unclustered response 
distributions had θ45 angles between and significantly different from 0◦ and 45◦ (Fig. 4f) showing that relative 
first spike time differences are warped by shared trial-to-trial changes in the excitability of neuronal pairs. It is 
important to note that the Henze–Zirkler null hypothesis of normality was rejected (p < 0.05) for 75.0% (75/100) 
of stationary Stage 2 clusters and 76.2% (80/105) of stationary correlated unclustered response distributions.

Fixed‑state and state‑conditioned relative difference response distributions.  The paper 
compares the potential encoding capacity of the characterised clusters under three alternative relative spike 
time difference coding regimes named Relative Difference Regimes (RDR) 1-3. It is first necessary to consider 
how downstream neurons discriminate between stimuli. If two sensory stimuli elicit a behaviourally differ-
ent response, downstream neurons must be able to respond differently to samples from the response distribu-
tion of either stimulus. This is possible if the response distributions of the two stimuli are non-overlapping in 
dimensions that downstream neurons are sensitive to, such as spike counts or relative spike time differences 
(Fig. 5a). The smaller the region of stimulus-response distribution space that single stimulus-response distribu-
tions occupy, the higher the capacity for encoding the presence of different stimuli reliably.

Two possible relative difference coding regimes are firstly considered under the classical assumption of fixed-
state-decoding (i.e. decoding neurons are not modulated by processes of adaptation or shared trial-to-trial 
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changes in the excitability of neuronal pairs). Relative Difference Regime 1 (RDR 1) describes the assumption 
that pairs of neurons encode information through a fixed relative spike time difference. The standard deviation 
of relative differences over all spike pairs ( RDR1_σdiff  ) offers a quantification and prediction of the potential 
encoding capacity for relative differences under RDR 1. The assumption, however, does not capture the quanti-
fied structure of the observed response distributions (Fig. 5b; Supplementary Video 1).

Observation of first spike stimulus-response distributions (Fig. 5b; Supplementary Video 1) shows that clus-
ters correspond to regions of high response probability, which better estimate the underlying stimulus-response 
distributions. Relative Difference Regime 2 (RDR 2) describes the notion that correlated clusters may represent 
trials on which the neuron pair’s relative first spike time difference reliably contributes to the representation of 
the stimulus. Under the classical assumption of fixed-state-decoders, the standard deviation of relative differences 
( RDR2_σdiff  ) calculated for samples in a stationary Stage 2 cluster quantifies the size of the relative difference 
response distribution and the potential encoding capacity for relative differences under RDR 2. As stationary 

Figure 4.   Correlation angles and stationary clusters. (a) Histograms of linear regression p-values of the first 
neuron’s spike time and the spike time difference. (b) Mean θ45 angles with 95% empirical confidence intervals 
for positively correlated Stage 2 clusters (top) and unclustered response distributions (bottom). Green if 
significantly greater than 0◦ (p-value < 0.025) and less than 45◦ (p-value < 0.025). Grey otherwise. (c) Histogram 
of cluster angle 95% empirical confidence intervals. (d) Example of stationary (left) and non-stationary cluster 
(right) determined by the stationarity criteria (see Methods). Top row shows single neuron cluster spike times 
for each neuron (green and blue) plotted against cluster trial index. Bottom shows the cluster spike times of 
neuron A and B plotted against each other. Non-stationary cluster shows a clear trial dependence. (e) Top: 
Histogram of variance explained ( r2 ) by the spike time linear relationship of each stationary Stage 2 cluster (dark 
blue) and the linear relationship of the unclustered response distributions from which stationary Stage 2 clusters 
were extracted (grey). Bottom: r2 values shown for stationary unclustered response distributions (f) Predicted 
θ45 angles with 95% empirical confidence intervals for stationary Stage 2 clusters (top) and stationary correlated 
unclustered response distributions. Angles significantly different from 0◦ (p-value < 0.025) and 45◦ (p-value < 
0.025) coloured green. Grey otherwise.
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clusters are not affected by adaptation, all cluster samples can be used in estimating RDR2_σdiff  . The smaller 
first spike pair relative difference standard deviations ( σdiff  ) under RDR 2 compared to RDR 1 demonstrates an 
improved potential encoding capacity for RDR 2 (Fig. 5b,c; Supplementary Video 1).

RDR 3 considers that downstream decoding neurons may be modulated by the same shared trial-to-trial 
changes in the excitability that modulate cluster correlations (i.e. state-dependent-decoding). For example, a 
higher-level of excitability (i.e. continuous cortical state) on a single trial would decrease the latency of both 
neurons. Spike times of both neurons would then come from a smaller state-conditioned stimulus-response 
distribution. If the cluster correlation is different from 45◦ , as in Fig. 5b, different state values would correspond 
with different distributions of relative differences. A downstream neuron modulated by the same trial-to-trial 
changes in excitability (i.e. continuous cortical state) could respond in a state-dependent manner. Such (smaller) 
state-conditioned first spike difference stimulus-response distributions would provide a higher coding capacity 
under state-dependent decoding.

To first estimate the size of state-dependent first spike response distributions for each stationary Stage 2 clus-
ter, the following linear single factor model was fit to each zero-centred stationary Stage 2 cluster: si = �iη + σi 

Figure 5.   State-dependent coding predictions and relative difference regimes. (a) Illustration of two non-
overlapping stimulus-response distributions for (left) spike counts and (right) relative spike time differences. 
(b) Sampled first spike response distribution for two neurons (L5B E, L5A E). Point colours illustrate DBSCAN 
cluster (epsilon = 5.0). Dark blue angled ellipse illustrates 4σ boundary of Stage 2 ellipse (i.e. the area for 
which the standard deviation of relative differences is calculated under RDR 2). Coloured circles illustrate 
the 4σ boundary of the state-dependent response distribution predicted by factor analysis for single state 
values ( < 0, 0,> 0 ). The standard deviation of the predicted state-conditioned first spike relative difference 
distributions (for RDR 3) is calculated based on the size of this area (Methods). (c) The standard deviation of 
differences of RDR 1 vs RDR 2 (top) and RDR 2 vs RDR 3 (bottom) for criteria fulfilling stationary, differenced 
and ARIMA modelled clusters. (d) RDR 2 vs RDR 3 (bottom) for criteria fulfilling stationary, differenced and 
ARIMA modelled unclustered response distributions.
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for i ∈ [0, 1] (Methods). η represents the value of the continuous underlying state (i.e. shared level of excitability) 
with most values between [−3, 3] . �i is the gradient at which the spike time of neuron i varies w.r.t. the state η , 
and σi is the predicted standard deviation of the spike times si given η . Figure 5b illustrates state-dependent first 
spike response distributions for example values of η = [−2.0,−1.0, 0.0, 1.0, 2.0].

The estimated size of state-conditioned distributions of decodable relative spike time differences (RDR 3) 
was then calculated from the factor analysis model as σdiff =

√

σ 2
0 + σ 2

1  (see Methods). The estimated standard 
deviations of state-conditioned distributions of relative differences ( RDR3_σdiff  ) offers an improved potential 
coding capacity over RDR 2 (Fig. 5b,c; Supplementary Video 1) and thus also over RDR 1, but would require 
confirmation of modulation by a population-wide state, which varies from trial-to-trial. Figure 5d shows the 
predicted improvement of RDR3_σdiff  over RDR 2 for the correlated unclustered response distributions.

Non‑stationary clusters also modulated by shared trial‑to‑trial changes in the excitability of 
neuronal pairs.  To test whether shared non-adaptative trial-to-trial changes in the excitability of neuronal 
pairs also modulate the remaining non-stationary Stage 2 clusters and non-stationary correlated unclustered 
response distributions, and to estimate the size of underlying relative difference response distributions at a single 
point in time under RDR 2 and 3, single neuron adaptative trends of non-stationary clustered and unclustered 
spike times were removed using time series modelling. Two techniques with different advantages were applied 
to non-stationary spike times (Fig. 6a). For the clustered case, adaptative trends were not removed from spike 
times before clustering so as to ensure that clusters and spike time correlations were not introduced by such 
pre-processing.

Simple parametric models were not used to remove trends because non-stationarities in the trial-to-trial 
sequence of single neuron and cluster spike time did not always follow standard adaptative/non-stationary 

Figure 6.   Time series modelling and cluster frequency-dependence. (a) For an example cluster, the original 
spike times do not fulfil the stationarity criteria (Methods) but do after the application of differencing and 
ARIMA modelling. The factor analysis predicted state-dependent response distributions are therefore presented 
for the cluster after differencing and ARIMA modelling ( 4σ ellipse; bottom centre and bottom right). It is clear 
that the adaptative trends have been removed by differening and ARIMA modelling but the clusters remain 
correlated with similar angles to the original cluster. (b) Predicted angles and 95% empirical confidence intervals 
of differenced and ARIMA modelled criteria fulfilling Stage 2 clusters. Angles significantly different from 0◦ and 
45◦ coloured green. Grey otherwise. (c) Order of AR and MA models fit to the single neuron cluster spike times 
of differenced clusters. (d) Linear regression r2 values for criteria fulfilling differenced (left) and ARIMA (right) 
clusters. (e) Histogram showing number of stationary Stage 2 clusters and criteria fulfilling ARIMA modelled 
clusters (by stimulation frequency).
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trends (Supplementary Fig. 8-3; Methods). In these cases, standard parameteric models would not remove the 
non-stationarity and would risk introducing correlations were none where present.

Firstly, first order ‘differencing’40 was applied to remove adaptative trends of single neuron spike times deter-
mined as non-stationary by the stationarity criteria (Fig. 6a; Methods). Particularly, spike times on trials t were 
subtracted from spike times on trials t + 1 (for trials that contributed samples to the cluster or unclustered 
response distribution). As differencing increases the standard deviation of the time series, the differenced time 
series were rescaled appropriately (Methods). Negative autocorrelations known and shown here to be introduced 
by differencing (Supplementary Fig. 9) were ignored, because the resulting spike times allowed direct assessment 
of correlation angles after trend removal without further processing.

76.2% (112/147) of non-stationary clusters and 80.4% (111/138) of non-stationary correlated unclustered 
response distributions had differencing applied to at least one neuron. After differencing, 29.5% (33/112) and 
33.3% (37/111) of these clusters and unclustered response distributions fulfilled the stationarity and correla-
tion criteria (see Methods), of which 72.7% (24/33) and 54.1% (20/37) had θ45 angles between and significantly 
different from 0◦ (p-value < 0.025) and less than 45◦ (p-value < 0.025; Fig. 5b). It is important to note that the 
Henze–Zirkler null hypothesis of normality was rejected (p < 0.05) for 21.2% (7/33) and 62.2% (23/37) of the 
criteria fulfilling differenced Stage 2 clusters and unclustered response distributions.

The second technique fitted autoregressive (AR) and/or moving average (MA) models appropriately to the 
differenced time series (i.e. ‘ARIMA’ modelling41,42), in order to remove the autocorrelations present in the time 
series and/or introduced by differencing, and to return the time series to the original scale without rescaling 
(Methods). The ’I’ in ARIMA refers to the differencing applied previously in the first step. The AR model com-
ponent regresses the values of the time series on values of the time series on previous trials, where the time series 
is a trial-to-trial sequence of first spike times. The MA model component regresses the value of a time series on 
a moving average of the previous values. The order of the AR and MA components determines the number of 
previous trial first spike times that are used. An order of 0 means that no AR or MA component was applied. 
Orders were selected automatically (Methods).

96.4% (108/112) and 100.0% (111/111) of these differenced clusters and differenced unclustered response 
distributions had an AR and/or MA model applied to at least one neuron.

The majority of fitted AR or MA models were of the MA type with a trial lag of 1 (Fig. 6c, Supplementary 
9-3), as expected for removal of the negative autocorrelations introduced by differencing. That is, the algorithm 
automatically selects to remove the dependence of a spike time on the previous spiking trial’s spike time (a 
dependence that is introduced by the differencing operation).

37.0% (40/108) and 39.6% (44/111) of ARIMA modelled clusters and unclustered response distributions 
fulfilled the criteria, of which 72.5% (29/40) and 56.8% (25/44) had θ45 angles between and significantly different 
from 0◦ (p-value < 0.025) and less than 45◦ (p-value < 0.025; Fig. 6b, Supplementary Fig. 9-3). The Henze–Zirkler 
null hypothesis of normality was rejected (p < 0.05) for 21.2% (7/33) and 62.2% (23/37) of the criteria fulfilling 
ARIMA modelled Stage 2 clusters and unclustered response distributions. Autocorrelations and cross correlations 
were below chance levels for the criteria fulfilling ARIMA modelled clusters (Supplementary Fig. 10), showing 
that AR and MA modelling successfully removed the negative autocorrelations introduced by differencing.

These results demonstrated that the spike times and relative differences of a proportion of non-stationary 
Stage 2 clusters and unclustered response distributions are also modulated by shared non-adaptative trial-to-
trial changes in the excitability of neuronal pairs. Figure 6d and Supplementary Fig. 9-3 show the variance 
explained by the correlations after trend removal (differencing and ARIMA). The angles of the differenced and 
ARIMA modelled spike times corresponded with the correlation angles before the application of differencing 
and ARIMA modelling (Supplementary Fig. 11). This supports co-modulation by shared non-adaptative trial-to-
trial changes in the excitability of neuronal pairs and shows that the non-45◦ correlation angles are not artifacts 
of time series analysis.

The trend removed clusters allowed all cluster samples to be used in the estimation of the underlying cluster 
and corresponding distribution of relative differences (RDR 2) at a single point in time. Factor analysis was 
applied to the trend removed clusters to estimate state-dependent distributions of relative differences at a single 
point in time (RDR 3). Again, RDR 2 gave an improved potential encoding capacity over RDR 1, whilst RDR 3 
gave an improved potential encoding capacity over both RDR 1 and 2 (Fig. 6c,d).

Frequency dependence and spatial distribution of correlated clusters.  Stationary correlations 
were found at all stimulation frequencies, but mostly at lower frequencies (Fig. 6e, Supplementary Fig. 9-3), 
showing that lower frequencies are better suited for stimulus response distribution characterisation as adapta-
tion occurs to a lesser extent. ARIMA modelled clusters were found for all frequencies ≤ 8Hz (Fig. 6e, Sup-
plementary Fig. 9-3), demonstrating that the techniques can characterise noise correlations caused by shared 
non-adaptative trial-to-trial changes in the excitability of neuronal pairs in the presence of adaptation  and 
non-stationarity, which occur both at lower frequencies suited for response distribution characterisation (0.0–
0.2 Hz), and behavioural whisking frequencies (1–20 Hz43).

Spike time correlations (stationary and ARIMA trend removed) were found for E–E, I–I and E–I neuron 
pairs separated over multiple (up to 4) cortical columns and layers (Fig. 7a, Supplementary Fig. 11-2), dem-
onstrating shared non-adaptative trial-to-trial changes in the excitability of neuronal pairs over a large spatial 
distance. This introduces the possibility that spatially broad population-wide changes in neuronal excitability 
could modulate decoding neurons and allow them to respond in an state-dependent manner. The most cor-
relations were found between E-type neurons in L5A and L5B/6 of the principal and neighbouring columns, 
although differences in the number of spike sorted neurons extracted by layer and E/I type must be considered 
(Supplementary Fig. 2). Low numbers of correlated clusters were found for neuron pairs within the same group, 
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which could be a consequence of the local spike overlapping problem (i.e. spike detection difficulties when two 
or more neurons fire in close temporal and spatial proximity). For 32 neuron pairs, at least one neuron lied in 
a septum (i.e. between barrels).

Correlation of predicted cortical state.  Co-modulation of spike times for pairs of neurons separated 
over multiple cortical columns and layers introduced the possibility that spike time patterns are modulated by 
low-dimensional non-adaptative trial-to-trial population-wide changes in neuronal excitability. For the remain-
ing analyses, Stage 2 clusters and correlated unclustered response distributions, which were stationary or made 
stationary, were pooled. If a cluster in the pool came from a correlated unclustered response distribution also in 

Figure 7.   Neuron pair spatial separation and cortical state correlation. (a) Neuron pair spatial separation for 
criteria fulfilling correlated clusters (both stationary and ARIMA modelled). Line colour and thickness indicates 
the number of criteria fulfilling correlated clusters found for pairs of neurons in different layers and barrels 
and of different E/I-type. Red and blue correspond to E and I neuron types respectively. The numbers in the 
circles indicate the number of pairs of the same E/I type, layer and barrel. 32 neuron pairs were not added to the 
plot because at least one of the neurons in the pair lied in a septum (i.e. between barrels). (b) Example of two 
clusters which do not share a common neuron but have correlated cortical states over trials of a single stimulus. 
Left and centre: cluster spike times of two clusters coloured by predicted cortical state. Right:  predicted cortical 
states for the two clusters are correlated on trials on which all 4 neurons spike. (c) Top: histograms showing 
p-values of linear correlation between predicted states of pairs of correlated pairs of neurons, which do not 
share a common neuron. Inclusion criteria: 15 conjunctive trials. Cases: clustered (redorange), unclustered 
(green) and clustered and unclustered pooled (blue). Bottom: r-value histograms of linear state correlations 
(clustered and unclustered pooled). (d) Mean variance explained by each PCA dimension between groups of 4 
correlated neurons (on trials that all 4 neurons spiked).
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the pool, the correlated unclustered response distribution (rather than the cluster) was removed from the pool 
so that there was only one example per response distribution in the pool.

As an initial test, the value of each spike pair along the cluster’s (or unclustered response distribution’s) first 
principal component enabled a prediction of population-wide state (i.e. excitability) on a single trial (Fig. 7b). 
Such predicted single trial states were correlated over trials of single stimulus conditions for a large proportion 
of pairs of clusters and unclustered response distributions, which did not share a common neuron (Fig. 7c, top). 
Moreover, all statistically significant correlations (p < 0.05) were positive (Fig. 7c, bottom), providing evidence 
that trial-to-trial changes in excitability modulate the spike times of up to 4 neurons. Figure 7d also shows that 
the first PCA dimension explains ∼ 70% of explainable spike time variance between groups of 4 neurons (on 
trials that all 4 neurons spiked). Together, these results strengthen the possibility that spike time patterns are 
modulated by low-dimensional non-adaptative trial-to-trial population-wide changes in neuronal excitability.

Spike time and spike time difference prediction.  Over trials of single stimulus conditions, the pre-
dicted state of single correlated neuron pairs is correlated with the spike times (Fig. 8a) and spike time differences 
(Fig. 8b) of other correlated neuron pairs, which do not share a common neuron. Figure 8c (left) demonstrates a 
reduction in variability when spike times are conditioned on the predicted state of other single correlated neuron 
pairs. In some cases, such state-conditioned spike time variability was on a similar order to that predicted by the 
factor analysis model above (Fig. 8c, right). A reduction in spike time difference variability is also seen when 
non-45◦ correlations are conditioned on the predicted state of other correlated single neuron pairs (Fig. 8d, left), 
although variability was mostly higher than the variability predicted by the factor analysis model under RDR 
3. It is important to note that there is inherent noise in the state predicted from single pairs of neurons, which 
hampers spike time and spike time difference prediction. Future work may explore improved estimates of single 
trial state.

Discussion.  ‘Time-warped multi-neuron single spike patterns’ describes the novel finding that, after cluster-
ing and control for adaptation, pairwise relative spike time differences are ‘warped’ by trial-to-trial changes in 
the excitability of neuron pairs (Figs. 4f, 6b) separated over multiple cortical layers and columns (Fig. 7a). The 
results show that clustering, non-45◦ noise correlations and adaptation, together, explain a large proportion of 
spike time variability and should be considered collectively when aiming to detect spike time relative difference 
representations. Correlations between the predicted states of pairs of clusters not sharing a common neuron (4 
neurons total; Fig. 7c), strengthen the possibility that low-dimensional non-adaptative trial-to-trial population-
wide changes in neuronal excitability modulate spike time patterns.

The study differs from revealment of oscillatory activity and spike train alignment to behavioural events 
through optimisation of population-wide shift and/or stretch functions44, firing rate time-warp modelling45 and 
spike train alignment to behavioural events46. Here we characterise the millisecond and sub-millisecond structure 
of spike-timing stimulus-response distributions, whilst accounting for clustering and non-stationarity. A novel 
form of sensory representation (time-warped multi-neuron single spike patterns) is proposed with a potential 
for sub-millisecond relative spike time difference encoding (Fig. 5). Non-45◦ correlation angles also demonstrate 
different time-warp functions for the spike times of different neurons. One previous study modelled time-warp-
invariant integration47, which differs from state-dependent processing.

Sources of noise correlations are reviewed in48. Subthreshold membrane potential correlations are a prime 
candidate to underlie spike time noise correlations caused by trial-to-trial changes in shared excitability, as 
they are correlated across areas49 and affect action potential initiation50. Heterogeneous relationships between 
membrane potential changes and spike time latency could underlie non-45◦ correlations. The results open the 
opportunity to study the relationship between stimulus-evoked spike time noise correlations and noise correla-
tions during spontaneous activity (previously characterised for the dataset32). We suggest that the purpose of 
relative spike time difference modulation, may be to maintain spike time patterns/relationships, by balancing 
spike-timing-dependent synaptic depression and potentiation (Fig. 8e).

Single trial variability in population dynamics is thought to reflect differences in population excitability or 
state at the start of a trial27. As such, population dynamics may offer a proxy for a cortical state, which modulates 
spike time patterns. Furthermore, the characterised spike timing variability may reflect the relationship between 
variability in population dynamics and single neuron spike time (and pairwise spike time difference) variability. 
In another sense, the characterised spike timing variability may reflect variability in the trajectory of popula-
tion dynamics at a single neuron level and at high temporal resolution (Fig. 8f). Indeed, the characterisation of 
shared variability on a continuous spike timing scale could offer the opportunity to study population dynamics 
without loss of information through discretisation of neuronal responses, which typically uses bins of 10-20ms. 
The precise structure and latent factor dependence of relative difference representations uncovered here suggests 
that such representations may encode information that is additional to information decodable from classical 
binned spike count analysis (including classical modelling of population dynamics).

The results offer a large potential improvement for discriminable encoding under fixed-state-decoding and 
state-dependent-decoding regimes. Testing of decoding performance was limited by low cluster counts per 
stimulus condition and variability in cluster detection between stimulus conditions. For example, most clusters 
were detected at 0–4 Hz stimulations (Fig. 6e) and clusters were unlikely to be detected for many stimulus condi-
tions for the same neuron pair, likely due to more non-spiking trials for higher stimulation frequencies due to 
spike count adaptation above 4 Hz26,32,36,37 (Fig. 2d). This does not imply the characterised form of representation 
is not utilised at higher frequencies; but means that fewer samples are available for characterisation at higher 
frequencies.
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The detection of noise correlations over multiple cortical layers and columns (Fig. 7a) between groups of 
up to 4 neurons (Fig. 7c) suggests that trial-to-trial population-wide changes in neuronal excitability could be 

Figure 8.   State-conditioned spike times and differences. Discussion. (a) Left: p-value histogram of correlations 
between predicted states of single correlated neuron pairs with the spike times of other correlated neuron pairs 
(clustered and unclustered pooled). Right: r-value histogram of statistically significant (p < 0.05) correlations. 
(b) Same as (a) but for correlations with spike time differences with non-45◦ correlation angles. (c) Left: 
variability comparison. X-axis shows the standard deviation of single neuron spike times within stationary and 
made-stationary clusters and correlated unclustered response distributions (pooled). Y-axis shows the standard 
deviations of spike times conditioned on the predicted state of single correlated neuron pairs, which do not 
share a common neuron. Right: Comparison of predicted state-dependent spike time variability predicted by 
factor analysis (x-axis) vs spike time variability conditioned on the predicted state of single correlated neuron 
pairs, which do not share a common neuron (y-axis). (d) Same as (c) but for correlations with spike time 
differences with non-45◦ correlation angles. (e) Suggested role of relative difference modulation in balancing 
spike-timing-dependent plasticity. A fixed spike time is shown for the presynaptic neuron, although the 
figure explains why the presynaptic neuron’s spike time should also be modulated. (f) Illustration of possible 
correspondence between single trial variability in low-dimensional population dynamics and single trial spike 
times for correlated clusters. (g) Left: Illustration of continua of first spike time distributions, corresponding to 
first spike times (not relative differences) under RDR 2 (grey) and 3 (dark blue). Right: Illustration of continua of 
relative spike time difference distributions, which could correspond to RDR 2 or 3.
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low-dimensional. This would increase the likelihood that downstream neurons were modulated by the same 
changes and could respond in a state-dependent manner. Determining the dimensionality of excitability changes 
requires characterisation of noise correlations over larger groups of neurons. Determining the dimensionality of 
single spike pattern noise correlations is made challenging by the observed clustered nature of pairwise spike time 
response distributions and low spiking reliability for single neurons (Fig. 2c). The observed clusters, however, 
offer the opportunity to to study a reliable part of stimulus representations, and to explore the dimensionality 
of spike time pattern modulation.

Future exploration of the characterised phenomena, including determining dimensionality of excitability 
changes and assessing encoding performance, would benefit from high trial counts and experimental paradigms 
designed to minimise adaptation51. Use of dynamic non-stationary and non-parametric clustering may also be 
beneficial both in the presence and absence of adaptation (Methods).

As the central goal of the manuscript was to extract isolated regions of high response probability, we chose to 
use DBSCAN as this is known to perform more robustly than GMMs at capturing the structure of the underly-
ing probability density function when regions are non-Gaussian39. For example, because adaptation was likely 
to affect the shape of these regions by increasing latencies over trials, it was important to extract regions of high 
density for further analysis independently of an assumption of their structure. The non-Gaussianity of the isolated 
regions of high response probability was confirmed for a proportion of the extracted clusters. The first principal 
component and its angle offered a first approximation of the relationship of spike times and spike time differences 
with trial-to-trial changes in shared excitability (for the isolated regions of high response probability). Moreover, 
this approximation was able to explain the variance in spike times of other neuron pairs (Fig. 8a). Compared to 
the unclustered case, clustering better captured isolated regions of high-response probability for application of 
PCA, leading to novel detection of correlations and more precise cluster angle estimation (Fig. 4c). Moreover, a 
large proportion of clusters determined as Gaussian had correlation angles different from 45◦ . Future work may 
aim to model non-linear relationships with underlying state, which in turn could enable more precise estima-
tions of single trial state.

The encoding performance of RDR 2 and 3 would be best assessed over a range of similar stimuli. For example, 
small changes in whisker stimulation angle are likely to elicit slight changes to the response distributions, whilst 
not drastically changing the number of spiking trials per neuron. This would improve similarity in the number 
of clusters detected per stimulus and neuron pair. It can then be tested which response distribution properties 
improve decoding of transformation and correlate with behavioural performance. It is predicted that cluster 
(RDR 2) or state-dependent relative difference distributions (RDR 3) may change continuously with continuous 
stimulus transformations (Fig. 8g). More broadly, we propose that continua may be encoded in the cortex by 
time-warped relative spike time differences.

Methods
Neurophysiology.  The dataset used for this paper is reused from earlier studies, of which analyses, data 
collection and spike sorting methods have previously been reported5,12,32,52.

In summary, extracellular recordings were performed in 18 anaesthetised adult Wistar rats using 16 or 128 
electrode silicon probes (see below), inserted perpendicularly into the cortical representation of the whiskers 
in the primary somatosensory cortex, the so-called barrel cortex. Anaesthesia minimised the impact of motor 
signals and controlled for movement, which is a known source of variability in sensory cortices53. Neural laten-
cies in the principal barrel column are unaffected by the level of anaesthesia54. Single whisker deflections were 
made at various frequencies (0.066-10Hz) in blocks, each containing typically 200 trials (sweeps) with an inter 
trial interval of 1/f. This was repeated for each of the selected target whiskers (maximum 4). Experimental ses-
sions varied in terms of electrode placement, stimulated whiskers, stimulation frequencies and number of trials 
per unique stimulus. 12 experimental sessions stimulated at all frequency groups (0.066–0.2, 1, 2, ..., 10 Hz), 2 
at low frequencies and a subset of higher frequencies (0.066–0.2, 1, 2, 4, 7 and 10 Hz), and 4 at low frequencies 
only (0.066–0.2 Hz).

Data from all experimental sessions were used in all analyses. 8 experimental sessions used single shanks with 
16 electrodes, whilst 10 experimental sessions used 8 neighbouring shanks with 16 electrodes per shank cover-
ing 2–4 barrel-related columns (median 4). Neurons were classified as excitatory or inhibitory and assigned to a 
cortical layer L2/3, L4, L5A or L5B/6. Spiking activity is analysed following cortical activation onset, determined 
as 5.4 ms following stimulus onset (Supplementary Fig. 12).

Spikes were detected using groups of 2 to 4 channels defined as ‘virtual tetrodes’55,56. Spike detection was per-
formed using amplitude-thresholding57. Spike sorting was performed leveraging waveform feature engineering 
and open source software55,58. Neuron quality was verified using several additional steps57. Cells were classified 
as putative excitatory (E) and inhibitory (I) neurons based on the mean spike waveform59–61. Voltage-sensitive 
dye (VSD) imaging, current-source density analyses and histology were used to identify the appropriate whisker-
related cortical column and to determine the three-dimensional location of electrodes so that each neuron could 
be assigned to one cortical layer (L2/3, L4, L5A, L5B/6).

Stage 1 clusters.  1. DBSCAN clustering. A Python implementation62 of DBSCAN38,39 was used to detect 
clusters in first spike pair response distributions. Increasing the epsilon parameter increases the resulting cluster 
sizes. Clustering was performed using the following epsilon values sequentially: [0.4, 0.45, ..., 5.0]. The colour 
of points in Supplementary Fig. 13 represents the clusters to which points were assigned for epsilon = 1.35. If 
the previous lower epsilon value produced the same clustering, then the new clustering was discarded. Stage 1 
clusters with less than 30 elements were also discarded, although these data points may be part of larger clusters 
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extracted for higher epsilon values. Checks for similar or identical individual clusters were not made at this stage 
to avoid sampling bias, which could affect the uniformity of surrogate control tests.

2. Isolation test. This step aimed to ensure that clusters were not sub-parts of larger clusters but were instead 
well isolated clusters. For each cluster produced in step 1, an ‘intersection ellipse’ was created (dashed ellipses 
in Supplementary Fig. 13), with centre equal to the cluster mean and widths equal to wi = 3 ∗max(0.5, σi) for 
neurons i = 0, 1 , where σi is the standard deviation of samples in the cluster for neuron i. Any cluster with an 
intersection ellipse within or intersecting with another intersection ellipse was excluded from further analysis. 
In Supplementary Fig. 13, this corresponded to the blue, red and light blue dashed clusters.

3. Stage 1 clusters. For each remaining cluster, a flat bounding ellipse was created (solid green ellipse in Sup-
plementary Fig. 13) with centre equal to the cluster mean, and widths equal to wi = 4 ∗ σi for neurons i = 0, 1 , 
where σi is the standard deviation of samples in the cluster for neuron i. All elements within the bounding ellipse 
were assigned to the Stage 1 cluster. The use of non-angled ellipses was necessary for a controlled test of cluster 
correlations.

As 94.6% of Stage 2 clusters extracted over 90ms following cortical activation onset lay within 50ms following 
onset (Supplementary Fig. 12), analysis was constrained to spikes in the first 50ms following activation onset.

Correlation surrogate control datasets.  To test that correlations were not artifacts of the clustering 
algorithm and were above chance levels, the algorithm was applied to the following surrogate control datasets in 
which correlated clusters appeared at chance levels (Supplementary Fig. 5-1):

(i) All shuffled. Pairwise shuffling of elements of first spike pair distribution. For each first spike pair stimulus-
response distribution, first spike pairs are shuffled so that each spike time of one neuron is matched with a dif-
ferent spike time of the other neuron.

(ii) Single Gaussian. Spike pairs drawn from an independent bivariate normal distribution with the same 
mean and standard deviation as the original spikes. The number of samples drawn from the distribution was 
equal to the number of original samples.

Stage 2 clusters.  4. Angled ellipses. An angled ‘Stage 2’ ellipse was calculated to better estimate the distribu-
tion underlying each correlated (p < 0.005) Stage 1 cluster using a 3-stage bootstrap procedure. In the bootstrap 
step 1, a number of samples were taken with replacement from the Stage 1 cluster equal to the number of sam-
ples in the Stage 1 cluster. PCA was performed on the sample to attain a sample mean and covariance matrix. 
10,000 such bootstrap iterations were made. The sample means and covariance matrices were then averaged 
to construct a new bounding ellipse (similar to the rotated green ellipse in Supplementary Fig. 13) with centre 
equal to the bootstrapped mean, rotation equal to the angle that the principal component made with the positive 
x-axis, and widths equal to 4σi where σi is the square root of the variance explained by each principal component.

The bootstrap procedure was then repeated by sampling the elements within this new ellipse (bootstrap step 
2), with the averaged mean and covariance matrix used to construct a third ellipse for sampling in bootstrap step 
3. Elements within the final bounding ellipse defined by the averaged mean and covariance matrix of bootstrap 
step 3 were assigned to the Stage 2 cluster.

5. Cluster similarity check. Angled clusters which shared at least 15 elements to previous angled clusters 
(produced by lower epsilon values for the same response distribution) were excluded from further analysis. This 
means that no clusters were included, which contained well isolated ‘sub-clusters’ produced by lower epsilon 
values. As a result, all extracted Stage 2 clusters were from unique response distributions, guaranteeing that there 
were no repeated clusters.

Correlation angle.  The 10,000 sample first principal components produced in bootstrap stage 3 were used 
to estimate the angle that the first principal component makes with the positive x-axis (with empirical confi-
dence intervals). To account for symmetry, sample principal components with negative y-components were 
replaced by their anti-correlated vector so that all vectors had angles with the positive x-axis between 0 and 
180◦ . To allow averaging and angular difference calculations without the effects of discontinuity, the vectors 
were rotated anti-clockwise about the origin such that the anticlockwise angles of the vectors with the positive 
x-axis were between 0 and 360◦ (double their original angle). A mean first principal component vector was then 
calculated in this space by averaging over the bootstrap samples. For each cluster, the 250th and 9750th largest 
bootstrap sample angles were used to define a 95% empirical confidence interval (in this 360◦ space). The result-
ing mean vector was then rotated clockwise by half of its anti-clockwise angle with the positive x-axis so that it 
was between 0 and 180◦ . This was used as the final θ angle for the cluster. The confidence interval bounds were 
divided by 2 to create angle confidence intervals for the first principal component on the correct scale.

Cluster angle surrogate control datasets.  The following two angle surrogate control datasets were cre-
ated to verify the main clustering algorithm and compare it to the unclustered case:

(i) 45◦ control. To validate that differences from 45◦ were not artifacts of the algorithm, a surrogate control 
dataset was created by replacing each Stage 2 cluster and all samples within a 6σ circle of its mean (where σ was 
equal to the mean of the cluster spike time standard deviations of the two neurons) with samples drawn from a 
45◦ 2D Gaussian. The algorithm found correlated clusters with angles different from 45◦ at chance-levels (Sup-
plementary Fig. 6).

(ii) 2nd distractor cluster. An additional surrogate control dataset was created to demonstrate that the cluster-
ing algorithm, in the presence of a second uncorrelated cluster, detects the first correlated cluster and calculates 
its correct correlation angle (Supplementary Fig. 6-2). For each response distribution in which a Stage 2 cluster 
was extracted by the main clustering algorithm, a new response distribution was created with two new clusters. 



16

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15066  | https://doi.org/10.1038/s41598-021-94002-0

www.nature.com/scientificreports/

The first cluster was created by sampling a number of samples equal to the number of samples in the original 
Stage 2 cluster, drawn from a 45◦ Gaussian centred at the mean of the original Stage 2 cluster, with the new cluster 
spike time standard deviations of the two neurons equal to the mean of their original standard deviations. The 
second cluster was created by sampling a number of samples equal to the number of samples in the original Stage 
2 cluster, drawn from an uncorrelated 2D Gaussian centred to the right at a 15◦ angle from the first cluster with 
the cluster spike time standard deviations of the two neurons equal to those of the original Stage 2 cluster. The 
x coordinate of the mean point was equal to the mean of the original Stage 2 cluster plus 10 standard deviations 
of the x-axis neuron’s cluster spike times. For this surrogate control dataset, the clustering algorithm detected 
clusters with correlation angles different from 45◦ at chance-levels (Supplementary Fig. 6-2).

This differed to the unclustered approach, which found correlations with angles ∼ 15◦ , highlighting an advan-
tage of the clustering algorithm over the unclustered approach.

The Henze–Zirkler null hypothesis of normality was rejected (p < 0.05) for 6.5% (11/169) and 7.2% (12/166) 
of the Gaussian sampled clusters detected in the two angle control datasets, verifying that the algorithm and 
Henze–Zirkler test could detect normally distributed clusters.

Comparison to alternative clustering methods.  The clustering algorithm was compared to the follow-
ing two Gaussian Mixture Model approaches:

(i) Standard GMM. The first approach uses the classical Bayesian information criterion (BIC) to select an 
optimal number of Gaussians (between 1 and 10) for the mixture model of each pairwise response distribu-
tion. This approach was therefore not constrained to find isolated regions of high response probability. Indeed, 
for the initial Stage 1 clustering test, this algorithm detected clusters, which were fragmentations of regions of 
high-response probability (e.g. Supplementary Fig. 5-2), rather than isolated regions of high response prob-
ability (which were the focus of the study). In fact, the algorithm was biased to detect correlations, such that it 
found above-chance correlations for the two correlation control datasets (Supplementary Fig. 5-2). This made 
it unsuitable for detecting correlated clusters in the main dataset.

(ii) Custom GMM. An augmented GMM approach was used in which steps 2-4 of the main clustering algo-
rithm were additionally applied after the initial BIC based GMM clustering step (i). This clustering type therefore 
included checks for isolation. Supplementary Fig. 5-3a shows that correlations were found at chance-levels after 
the addition of these steps. However, almost all of the detected clusters included all samples from their originat-
ing response distribution (Supplementary Fig. 5-3b), showing that the algorithm did not find isolated regions 
of high-response probability that contained less than 95% of the samples in the original sample distribution. 
The algorithm did, however, find clusters with correlation angles different from 45◦ both before and after checks 
for stationarity (Supplementary Fig. 5-3c), although considerably fewer than the main clustering algorithm and 
unclustered approach. The Henze–Zirkler null hypothesis of normality was rejected (p < 0.05) for only 31.9% 
(15/47) of Stage 2 clusters extracted by the Custom GMM algorithm, confirming that the Custom GMM algo-
rithm was biased towards detecting clusters likely to be Gaussian distributed. The algorithm was also verified 
for the two angle control datasets (Supplementary Fig. 6-3). Moreover, the Henze–Zirkler null hypothesis of 
normality was rejected (p < 0.05) for 3.8% (1/26) and 3.3% (1/30) of the Gaussian sampled clusters detected in 
the two angle control datasets, further verifying the Henze–Zirkler test of normality when used in combination 
with clustering.

Stationary cluster and factor analysis criteria.  Clusters were determined to be stationary and suf-
ficiently correlated such that trial-to-trial changes in shared excitability could underlie the covariation if they 
passed the following tests: 

(1)	 Cluster spike times were correlated: linear regression p-value < 0.005, r-value > 0.3.
(2)	 Single neuron cluster spike times were not linearly correlated with trial index (p-value > 0.05).
(3)	 The cluster correlation was not explained by trial index. Particularly, a linear regressor predicting spike 

pairs from trial index must have r2 < 0.05.
(4)	 Both neurons KPSS stationary: p-value > 0.05. The Kwiatkowski–Phillips–Schmidt–Shin trend stationarity 

test (KPSS) tested whether cluster first spike times of single neurons were stationary around a deterministic 
trend.

(5)	 Cluster spike times of both neurons have a trial-lag-1 autocorrelation p-value > 0.05 (this requirement was 
relaxed for the differenced clusters but not ARIMA clusters). The trial-lag-1 autocorrelation describes the 
following. Consider the cluster spike times sj,t of neurons j = 0,1 on cluster trials t = 1,...,T where T is the 
number of cluster trials for the cluster. Trial-lag-1 autocorrelations tests the correlations between single 
neuron cluster spike times on trials t with spike times on trial t+1.

(6)	 Bartlett sphericity p-value > 0.05. Bartlett sphericity tests that the correlation matrix is significantly different 
from the identity, and is a standard pre-test for factor analysis.

(7)	 The factor correlation matrix had only one eigenvalue greater than 1, suggesting that a single factor under-
lies each cluster correlation.

Factor analysis angle and difference distribution.  θ and θ45 angles of factor analysis mean lines were 
estimated using the same technique as for PCA angles. Factor analysis θ angles were similar to the PCA θ angles 
for stationary, differenced and ARIMA modelled clusters (Supplementary Fig. 11).

As the factor analysis model assumes that noise for each neuron given η is normally distributed and independ-
ent between neurons, the state-dependent spike time relative difference standard deviation predicted by the 
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model is equal to σdiff =

√

σ 2
0 + σ 2

1  where σi is the state-dependent standard deviation of neuron i predicted 
by factor analysis.

Differencing.  Differencing was applied to single neuron cluster spike times if any of the following stationar-
ity criteria were not met for the cluster spike times of either neuron: (1) Trial index vs spike time linear regression 
p-value > 0.05, (2) KPSS stationarity p-value > 0.05, (3) Trial-lag-1 autocorrelation p-value > 0.05.

Differencing a series of first spike times subtracts the first spike time on trial t-1 from the first spike time trial 
t. Differencing reduces the number of samples by 1. For clusters for which the spike times of only one neuron 
was differenced, the first sample of the undifferenced neuron was removed, so that the number of samples was 
equal for both neurons. In this case a spike time for an undifferenced trial t was matched with the difference 
between the spike times on trial t and trial t−1.

Differencing increases the standard deviation of a time series S = (s1, . . . , st) by approximately 
√
2 . This is 

shown by considering differencing as approximate to negating two independent random variables 
S(1,t−1) = (s1, . . . , st−1) and S(2,t) = (s2, . . . , st) , where t is the number of samples in the original time series. As 
the standard deviation of S(0,t−1) and S(1,t) are approximate to the standard deviation of the original series S, the 
standard deviation of the differences is on the order of σdifferenced ≈

√

σ 2
(1,t−1) + σ 2

(2,t) ≈
√

2σ 2 =
√
2σ where 

σ is the standard deviation of the original time series. Differenced time series were therefore divided by 
√
2 to 

return the differenced time series to the scale of the original time series, which comparison to ARIMA models 
shows to be reasonable (Fig. 4f). The assessment of ‘raw’ differences, rather than the ARIMA residuals, however, 
allows a direct assessment of cluster angles after trend removal.

Differencing was applied to the spike times of clusters rather than to all first spike times of a single neuron 
in response to a single stimulus. This was to ensure that differences were calculated between spike times of the 
same trials for both neurons in a pair. That is, the difference between spike times on trial X and spike times on 
trial Y were compared for neuron pairs. Differencing was not alternatively applied to all samples of a first spike 
stimulus-response distribution, as this could give rise to correlations caused by switching between clusters.

Automated Box‑Jenkins method.  To determine the order of autoregressive (AR) and moving average 
(MA) components, the Box-Jenkins method is classically applied manually based on observation of autocorrela-
tions and partial autocorrelations. To deal with the negative autocorrelations introduced by differencing and to 
account for other autocorrelations, an automated and simplified version was developed based on the description 
of the Box-Jenkins method found at63.

For determination of the MA order, if the trial-lag-1 autocorrelation is negative and significant, the series is 
slightly overdifferenced and the Box-Jenkins method checks for a sudden cut off in the autocorrelation plot. The 
lag at which there is a cut-off is used as the MA order. To automate this, the algorithm checked if the trial-lag-1 
autocorrelation was negative ( r < −0.1 ). If so, the p-values of lagged autocorrelations were tested (lags 1–5). If 
there was a sudden increase in p-value from below 0.05, from one lag to another, by more than 0.15, then the 
value of the last significant autocorrelation was used as the MA order.

For determination of the AR order, if the trial-lag-1 autocorrelation is positive ( r > 0.1 ) and significant, 
the series is slightly underdifferenced, and the Box-Jenkins method checks similarly for a sudden cut-off in the 
partial-autocorrelation plot to determine the AR term.

Figure 5c confirms that the majority of ARIMA applications were of simple low-order MA components, 
as expected for the differenced time series. Moreover, autocorrelations and cross-correlations were reduced to 
chance-levels by ARIMA application, and ARIMA estimated cluster angles were similar to the original clusters 
(Supplementary Fig. 11).

Further discussion of methods.  To control the possible ill-posedness and the robustness problem of the 
underlying clustering problem in non-Gaussian situations with strong noise and small data samples, a robust 
clustering pipeline was designed which took into account the level of noise present in the data and the low num-
ber of samples in each response distribution. It follows that surrogate control datasets should match the general 
statistics of the response distributions. For these reasons surrogate control datasets were created by transforming 
pre-existing response distributions.

The joint roles of adaptation and trial-to-trial changes in excitability promote the use of dynamic cluster-
ing techniques in future work where adaptation is present64. The multiscale character of the underlying neural 
processes introduces the possibility of low-dimensional temporally persistent latent regime-switching processes, 
which are a common source of non-stationarity across nature64 and are also commonly ignored by analysis 
techniques65. Such processes are likely to contribute to the complexity of the observed time series, including 
clusters.

Techniques, which address these issues for limited sample sizes (i.e.66) should be applied in future research 
where adaptation is present to (i) characterise the multi-scale nature of regime switching processes, (ii) estimate 
stimulus representation independently of adaptation and invisible biases caused by multi-scale processes beyond 
depressive spike time latency adaptation65 and (iii) characterise the dimensionality of trial-to-trial changes in 
excitability . Understanding of (i) and (ii) will allow stricter control of adaptative and multi-scale processes for 
the understanding of (iii). This paper aimed to take a first step towards understanding such dynamical processes 
by characterising a reliable subset of responses (clusters).
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Data availability
All code and data needed to reproduce all figures of the manuscript are available at https://​github.​com/​james-​isbis​
ter/​spike​warp.​git and https://​github.​com/​james-​isbis​ter/​Isbis​terEt​Al-​SciRe​p2021-​Data.​git.
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