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The maturation of single-cell technologies is transforming our understanding of health
and disease. Reflecting this promise, the number of studies reporting single-cell anal-
yses has grown exponentially over the past decade [1]. The vast majority of the raw
sequencing data generated by these studies are deposited in public repositories, reflect-
ing strong expectations on data availability enforced by the community, funding agencies,
and journals. However, similar standards for the deposition of processed data are still
in their infancy [2]. Here, we report on the availability of processed datasets accom-
panying published single-cell transcriptomics studies. We attempted to re-analyze 72
published scRNA-seq datasets but found that only 35 (49%) could be fully reconstructed
from publicly available data. Whereas both the raw sequencing reads and processed gene
expression matrices were almost always available, the cell types inferred from single-cell
gene expression profiles often were not. Our findings highlight the widespread omission
of metadata required to reproduce and extend published analyses.
Explosive growth in single-cell genomics has spurred investigators to generate hun-

dreds of datasets. This wealth of published data provides an unprecedented resource that
can be used to address many new biological questions. For instance, single-cell RNA-
seq (scRNA-seq) data have been integrated with genome-wide association study (GWAS)
results to identify cell types underlying complex traits [3, 4]. Publicly available single-cell
datasets also provide a fertile ground to evaluate new computational methods for single-
cell data [5] and a basis to assemble comprehensive cell atlases through data integration
efforts [6].
The need to provide both raw and processed functional genomics data in a standardized

format has long been recognized. A minimum information standard was proposed for
microarray data in 2001 (MIAME [7]) and subsequently updated for high-throughput
sequencing (MINSEQE). However, single-cell technologies differ in important ways from
conventional, “bulk” assays with respect to data reporting. One particularly significant
difference is that complete metadata at the level of samples is not sufficient to reproduce
analyses at the level of individual cells.
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An especially important aspect of cell-level metadata is the cell type inferred by
investigators for each individual cell. The assignment of cell types from single-cell gene
expression profiles is a laborious process that often involves multiple iterative rounds of
clustering, sub-clustering, and cluster merging. This practice relies on extensive man-
ual intervention by domain experts, who must negotiate between the results suggested
by unsupervised clustering of high-dimensional data, and a broader body of knowledge
about the biological system of interest. Despite efforts to automate this process [8, 9],
these manually assigned cell type labels remain, for most purposes, the gold standard [10].
Consequently, the absence of cell type annotations from deposited data hinders the re-use
of these datasets to address new biological questions. Moreover, the subjectivity inherent
in cell type annotation implies that without the annotations established by the original
authors, future investigators will be unable to reproduce published analyses.
A recent set of guidelines for reporting of single-cell experiments recognized the impor-

tance of cell type annotations [2]. However, these annotations were not included among
the mandatory entries for a single-cell dataset (significance level 1); instead, they were
deemed to “greatly improve data utility” (significance level 2). Here, we demonstrate that
the frequent absence of cell type annotations impedes the re-analysis of many published
datasets and prevents the reproduction of published findings. Consequently, we argue
that this critical piece of metadata should be required for public data deposition.
We came face-to-face with this problem in our efforts to develop computational

methods for comparative analysis of single-cell data [11, 12]. We sought to establish
a large compendium of published single-cell datasets that would allow us to bench-
mark our methods against existing tools. To establish this compendium, we attempted
to re-analyze a total of 72 published datasets (Additional file 1: Table S1). For each
dataset, we attempted to locate four pieces of information required to reproduce and
extend the published analysis, including (i) the processed gene expression matrix; (ii) the
experimental condition and (iii) biological replicate from which each cell barcode was
obtained (sample-level metadata); and (iv) the cell type assigned to each cell barcode
(cell-level metadata). We searched extensively for this information across multiple public
sources, including standard repositories such as the Gene Expression Omnibus, the sup-
plementary information accompanying the publication, GitHub repositories containing
published code, and study-specific websites, among other sources. In cases where one or
more pieces of information were not publicly available, we contacted the corresponding
authors to request the relevant data.
For the vast majority of the studies, both the raw sequencing reads (69/72, 96%;

Additional file 2: Figure S1a) and the processed gene expression matrix (68/72, 94%;
Fig. 1a and Additional file 2: Figure S1b) were publicly available. Both could gener-
ally be obtained from standard repositories, although a few datasets were distributed
through the supplementary information accompanying the publication, or study-specific
websites (Additional file 2: Figure S1c-d). Sample-level metadata, such as experimental
condition (Fig. 1b and Additional file 2: Figure S1e) or biological replicate (Addi-
tional file 2: Figure S1f), was typically provided, although it was unavailable for a
non-negligible number of studies (12/72, 17%). In marked contrast, nearly half of the
studies failed to include any cell type annotations (31/69, 45%, excluding three studies
in cell lines; Fig. 1c). Moreover, when present, these annotations often did not accom-
pany the structured deposition. Instead, they were obtained from a more scattered range
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Fig. 1 Availability of gene expression data and metadata for 72 published scRNA-seq datasets. a Availability
of processed gene expression matrices. b Availability of sample-level metadata, as exemplified by
experimental condition (e.g., treatment vs. control). c Availability of cell-level metadata, as exemplified by cell
type annotations for each cell barcode. d Sources from which cell type annotations were obtained. Light
shades represent datasets for which two or more additional manual processing steps were required to obtain
cell types. e Schematic overview of the differences in data reporting required for bulk vs. single-cell assays.
Processed single-cell data is characterized by an additional level of cell-level metadata not captured by the
sample-level metadata required for deposition of bulk datasets

of sources and occasionally required substantial manual intervention to reconstruct
(Fig. 1d).
In total, we were able to completely reconstruct only 35 of 72 datasets (49%) from pub-

licly available information. To obtain the relevant data from the remaining 37 datasets, we
contacted the authors of the corresponding studies. These efforts led us to reconstruct 18
additional datasets (for a total of 74%; Fig. 1a–c).
Our efforts establish that a considerable fraction of the data required to reproduce or

extend published analyses is not publicly available from any source. That a large fraction
of the unavailable data could be obtained by corresponding with the authors suggests
that this situation does not primarily reflect a desire on the part of investigators to keep
their data private. Instead, we conclude that the primary issue is a lack of standards for
the deposition of cell-level metadata, which has not been relevant to previous guidelines
developed for “bulk” data (Fig. 1e). Although guidelines have recently been proposed
for single-cell data deposition [2], these guidelines have primarily focused on describ-
ing experimental aspects of the study and suggest that cell-level metadata is not required
to provide a complete description of the data. While these guidelines provide an impor-
tant step towards improving the reusability of deposited data, we argue that metadata
deposited to public repositories must include the cell types assigned by investigators
for each cellular barcode. Otherwise, the field risks a scenario in which many published
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analyses cannot be reproduced, and much of the data deposited to public databases can-
not be productively re-used without substantial computational proficiency and domain
expertise.
A secondary issue is that no mechanism currently exists to enforce the format in which

processed single-cell datasets are provided. In the absence of a uniform format for pro-
cessed data deposition, we suggest that the responsibility for ensuring the availability of all
necessary metadata falls on the shoulders of peer reviewers. Consequently, a recommen-
dation by journals that reviewers inspect deposited data for the presence of appropriate
cell-level metadata has the potential to significantly improve reproducibility.
Although the availability of cell type annotations is critical to reproduce published anal-

yses, investigators must be careful not to take these annotations as the ground truth. The
manual and subjective process by which cell types are annotated and the limitations of
existing computational tools both have the potential to introduce error into published
annotations. Moreover, for some forms of re-analysis, investigators may find it beneficial
to update cell type annotations from scratch, either from a count matrix or the raw reads
themselves [13, 14]. However, even in scenarios where error is suspected or cell type anno-
tations are to be updated, the availability of the original cell type annotations provides a
valuable basis for comparison.
In view of the effort required to reconstruct this corpus of data, we provide all 35 pub-

licly available datasets (Additional file 2: Figure S2) that we curated and assembled in
analysis-ready formats to facilitate method development or secondary analyses (avail-
able from Zenodo: https://doi.org/10.5281/zenodo.4772064). All code used to download
and preprocess these datasets is available fromGitHub (https://github.com/neurorestore/
single-cell-repository).
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