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Abstract

Microorganisms are frequently organized into crowded structures that affect the nutrients

diffusion. This reduction in metabolite diffusion could modify the microbial dynamics, mean-

ing that computational methods for studying microbial systems need accurate ways to

model the crowding conditions. We previously developed a computational framework,

termed CROMICS, that incorporates the effect of the (time-dependent) crowding conditions

on the spatio-temporal modeling of microbial communities, and we used it to demonstrate

the crowding influence on the community dynamics. To further identify scenarios where

crowding should be considered in microbial modeling, we herein applied and extended

CROMICS to simulate several environmental conditions that could potentially boost or

dampen the crowding influence in biofilms. We explore whether the nutrient supply (rich- or

low-nutrient media), the cell-packing configuration (square or hexagonal spherical cell

arrangement), or the cell growing conditions (planktonic state or biofilm) modify the crowd-

ing influence on the growth of Escherichia coli. Our results indicate that the growth rate, the

abundance and appearance time of different cell phenotypes as well as the amount of by-

products secreted to the medium are sensitive to some extent to the local crowding condi-

tions in all scenarios tested, except in rich-nutrient media. Crowding conditions enhance the

formation of nutrient gradient in biofilms, but its effect is only appreciated when cell metabo-

lism is controlled by the nutrient limitation. Thus, as soon as biomass (and/or any other

extracellular macromolecule) accumulates in a region, and cells occupy more than 14% of

the volume fraction, the crowding effect must not be underestimated, as the microbial

dynamics start to deviate from the ideal/expected behaviour that assumes volumeless cells

or when a homogeneous (reduced) diffusion is applied in the simulation. The modeling and

simulation of the interplay between the species diversity (cell shape and metabolism) and

the environmental conditions (nutrient quality, crowding conditions) can help to design effec-

tive strategies for the optimization and control of microbial systems.

Author summary

In nature, many organisms grow in crowded biofilms that protect against stressful condi-

tions, making their control/eradication a challenge. Modeling these microbial systems is a
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valuable tool for studying the interactions among cells and exploring strategies for manip-

ulating the system. Even though the composition of biofilms changes over time due to the

accumulation of biomolecules in the medium as well as the growth of cells—both in size

and number, many current modeling methods do not explicitly take into account for

these changes. This study analyzes how sensitive the biofilm simulation is to these crowd-

ing conditions to determine whether they can be safely ignored or need to be included for

accurate results. We compared different simplifications of the crowding effect on spatio-

temporal microbial simulations under several scenarios. We found that the traditional use

of a reduced diffusion constant fails to capture the heterogeneous nature of a biofilm and

could introduce deviations to the dynamics of the system (biomass, phenotypes, metabolic

production), especially in poor nutrient mediums. The crowding conditions modeling in

microbial systems can provide a guidence for selecting effective treatments to disrupt and

control biofilms associated to chronic diseases.

Introduction

The spatio-temporal modeling of microbial systems can shed light on the dynamics and spe-

cies interactions [1–4], the pattern formation [5–7] as well as the response of microbial com-

munities to enviromental changes, e.g. the secretion and accumulation of weak acid products

[8], the addition of new species to the system [1], the exposure to antibiotics [9] or to a nutrient

shift [10]. Frequently, microbial communities are forced to grow in space constraints, where

the proximity to cells and other solid components (proteins, DNA, polysaccharides) reduce

the availability and diffusion of nutrients as well as the motility of the cells [11,12]. The crowd-

ing conditions (i.e. the volume fraction occupied by cells and macromolecules) change over

time accentuating the heterogeneous nature of the system, where the spatial differences in the

local availability of the nutrients affects the dynamics of the whole community. Although the

crowding effect has been acknowledged in the microbial modeling, e.g. by reducing the nutri-

ent diffusion, less attention has been paid on the impact of the crowding assumption/simplifi-

cation on microbial simulations. We herein focused on this aspect, analyzing how the

environmental conditions could increase/reduced the importance of the crowding assump-

tions on biofilm simulations.

Several frameworks have already been proposed to integrate the metabolic information of

microbial species, estimated using either Monod kinetics [5–7,9] or techniques such as Flux

Balance Analysis [1–4,8,10], and the spatial distribution of the nutrients in the system (com-

puted from the diffusion equation). The ability of these models to successfully predict the

behavior and interactions within microbial communities makes them a valuable tool for the

study of complex ecosystems. Frequently, however, these models either neglect or over/under-

estimate the influence of the crowding conditions on microbial systems by assuming diluted

systems or certain degree of homogeneity, e.g. using a reduced diffusion constant [4] or a con-

stant cell volume [3]. This could lead to a miscalculation of the microbial behavior in crowded

systems, such as in calculating the effects of antibiotics on treating a biofilm infection.

Recently, we developed CROwding Modeling of In-silico Community Systems (CRO-

MICS), a methodology that captures the effect of crowding conditions on the spatio-temporal

modeling of microbial communities (Manuscript submitted). CROMICS combines techniques

such as individual-based modeling (IbM) and thermodynamics flux analysis (TFA) [13] to

simulate the behavior of individual cells, where the metabolic capabilities of each species are

estimated from the stoichiometry of the metabolic networks. Additionally, the scaled particle
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theory (SPT) [14,15] is used to model the effect of crowding on the effective diffusion coefficient

and concentration of metabolites. In the original CROMICS version, cells and metabolites are

allowed to move in a square lattice (or cubic grid for 3D systems), and also the metabolic fluxes

estimation of each cell neglects any restriction imposed by the proteome availability to carry out

the metabolic functions. Here, CROMICS has been extended to improve the cell metabolism

predictions and study the effect of lattice geometries on the microbial simulations.

The cell has a finite proteome capacity, the way in which proteome resources are distributed

determines the growth rate and the synthesis of by-products, e.g. under aerobic conditions fast

growing Escherichia coli incompletely oxidizes glucose secreting acetate as way to optimize the

limited enzymes available. In this paper, specifically, we implement a proteome allocation ver-

sion of TFA (here identified aTFA) to ensure that the computed metabolic fluxes are given by

(i) the optimal distribution of the cell proteome to carry out the cell growth and synthesis of

enzymes [16], and (ii) in the direction of the Gibbs free energy drop [13]. CROMICS can simu-

late the diffusion of nutrients across a lattice-on system using a crowding Lattice Boltzmann

(cLBM) scheme [17]. To explore the effect of different cellular arrangements, we have herein

extended cLBM (originally implemented for a cubic grid) to simulate an additional lattice

geometry: the hexagonal grid. Additionally, the IbM rules for the cell motion/disribution in

the hexagonal grid system were also updated.

We showed previously that crowding conditions can modify the microbial competition

(Manuscript submitted), and herein sought to systematically evaluate different crowding sim-

plifications and environmental conditions (nutrient supply, spherical cell arrangement, and

planktonic/biofilm cell growing conditions) to determine the scenarios in which the crowding

conditions have a greater impact in biofilms. The simulation results of the E. coli growth indi-

cated that the use of a (constant) reduced diffusion coefficient as a way of simplifying the

crowding effect can alter the production of biomass and metabolic by-products by changing

the local availability of nutrients compared to the distributions computed when the cell size is

explicitly considered in the simulation. Only rich-nutrient media can dampen the crowding

influence on the simulation. Overall, these results highlight the influence of the crowding con-

ditions, even in microbial systems other than biofilms, and the importance of selecting of an

appropriate crowding assumption depending of the characteristic of the system.

Results and discussion

Case study: Biofilm formation by E. coli
To investigate the influence of crowding conditions on the microbial growth of clustered sys-

tems, we simulated the aerobic growth of E. coli iJ01366 [18] on glucose in a 2D system. The

system consists of a monolayer of cubic boxes of Δx per side, which can allocate up to 10,000

spherical cells of maximum radius Rmax,cell. The cell volume is assumed to be proportional to

the cell mass Mcell and the specific volume constant υsp, i.e. 4pR3
cell=3 ¼ Mcellusp. Thus, Rmax,cell

was computed based on the maximal cell dry mass Mmax,sp as Rmax,cell = (3Mmax,spυsp/4π)1/3 (Eq

22). All of the parameters and constants for the system are given in Table 1. To test this system,

an initial seed of 820 cells were randomly allocated at the bottom of the system. The mass of

each cell was randomly taken from a normal distribution, with a mean of 4.89 × 10−13 gDW

and a standard deviation of 1.32 × 10−13 gDW [19]. Unless otherwise stated, the cells were con-

sidered to be attached to the surface and/or to the biofilm, meaning they can only move to a

neighboring box by cell shoving. Bounceback boundaries were set for both cells and metabo-

lites, meaning they were not allowed to leave the system.

As with other spatio-temporal models, the accuracy of the results computed by CROMICS

depends on the parameters Δx and Δt. Here, we used a fine discretization of the system where
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a maximum of one cell is allowed per box, thus Δx = 2Rmax,cell = 1.3 x 10−3 mm. To avoid

numerical instabilities, Δt was set to be proportional to the diffusion of the fastest metabolite

in the system. In this case, it was O2, so Δt = Δx2/4DO2 = 0.2 ms.

To select the amount of glucose supplied to the system in the simulation, we considered

that E. coli is found at the end of the small intestine where the glucose concentration is about

2.25 mM [27]. Here, we assumed that an infinite nutrient reservoir was located at the top

boundary, with a constant concentration of 2.25 mM of glucose and 0.21 mM of O2 (only glu-

cose and O2 can leave/enter the system through the top boundary). The O2 concentration

(0.21 mM) at the top boundary was computed using Henry’s law, assuming that the fresh

medium supplied was at equilibrium with a gas phase where the partial pressure of O2 was

0.162 atm, and with Henry’s law constant of 1.3 mmol L−1 atm−1 [28]. At time t = 0 h, all boxes

with available space contained medium with 0.5 mM of glucose and 0.21 mM of O2. Since sig-

nificant amounts of acetate are secreted under both aerobic and anaerobic conditions and in

order to keep the biofilm problem as simple as possible, only the diffusion of glucose, O2, and

acetate were tracked during the simulation. Because we assumed that cell radius Rcell was pro-

portional to M1=3

cell , the crowding conditions changed over time (this crowding assumption is

identified as C1, see Table 2). The radii of the metabolites glucose, O2, and acetate were fixed

to zero. All results were averaged over three replicate simulations.

Table 1. Parameters used in CROMICS simulations.

Parameter Description Value Units Ref.

Dw,glucose Glucose diffusion in water 6.7 x 10−7 mm2 ms-1 [12]

Dw,oxygen Oxygen diffusion in water 2 x 10−6 mm2 ms-1 [12]

Dw,acetate Acetate diffusion in water 1.21 x 10−6 mm2 ms-1 [12]

Dsp Diffusion of non-motile E. coli 2 x 10−10 mm2 ms-1 [20]

VM,glucose Maximum glucose uptake rate 10 mmol gDW
-1 h-1 [21]

KM,glucose Michaelis constant for glucose 1.5 x 10−2 mM [21]

VM,oxygen Maximum oxygen uptake rate 15 mmol gDW
-1 h-1 [21]

VM,acetate Maximum acetate uptake rate 17 mmol gDW
-1 h-1 [22]

υsp Cell specific volume 3.07 x 103 mm3 gDW
-1 a

υmet Metabolite specific volume 7.3 x 102 mm3 g-1 [23]

Mmin,sp Minimal dry mass of E. coli 8.3 x 10−14 gDW [19]

Mmax,sp Maximal dry mass of E. coli 1.172 x 10−12 gDW [19]

MWprotein Protein molecular weight in the intracellular space 7.2 x 104 Da [23]

vshrinkage Cell shrinkage rate 1.6 x 10−2 h-1 [24]

a Computed as υsp = ρsp-1 � Mcell,wet/ Mcell,dry, where ρsp = 1.105 g mL [25], Mcell,dry = 2.8 x 10−13 gDW, and Mcell,wet = 9.5 x 10−13 g [26].

https://doi.org/10.1371/journal.pcbi.1009158.t001

Table 2. Crowding assumptions tested in the simulation.

Assumption Description Ref.

C1 : RcellðtÞ / McellðtÞ
1
3

Deff ;met ¼ g
� 1
metDmet

Time-dependent crowding conditions. Cell radius Rcell is

proportional to M1=3

cell (Eq 22).

[29]

C2: Rcell = 6.2 x 10−4 mm

Deff ;met ¼ g
� 1
metDmet

Uniform crowding conditions inside the biofilm. All cells have the

same (average) volume (i.e. Rcell is constant).

[3,10]

C3: Rcell = 0

Deff,met = 0.25Dmet

Crowding conditions are neglected, but the metabolite diffusion is

reduced. A constant Deff is applied in the entire system (i.e. in boxes

with/without cells). Cells are volumeless.

[4,8,12]

C4: Rcell = 0

Deff,met = Dmet

Crowding conditions are neglected. Cells are volumeless, and Deff is

equal to the metabolite diffusion in water.

[1,4,5,24]

https://doi.org/10.1371/journal.pcbi.1009158.t002
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Although the system started with a homogeneous distribution of substrates, the microbial

activity rapidly formed a nutrient gradient inside and above the biofilm (S1 Fig), which caused

different phenotypes to emerge. One of these phenotypes is based on the ability of E. coli to

metabolize glucose under different oxygenation conditions. Since the amount of O2 supplied

to the system was limited (0.21 mM), the cells growing aerobically were only located in the

superficial layers of the biofilm (respiration phenotype: glucose + O2 ➔ acetate + biomass) (see

C1 in Fig 1A). In the presence of O2, ATP is obtained from respiratory pathways, where the

glucose is oxidized into CO2. However, fast-growing cells (vbio� 0.4 h-1) opt for an overflow

metabolism that produces acetate even if O2 is available in the medium [16]. This cellular strat-

egy assigns a higher fraction of the proteome to the synthesis of biomass building blocks at the

expense of energy production. Thus, energy biogenesis follows a fermentative pathway, which

is ~50% more protein-efficient than the respiratory one [30]. The allocation constraint [16]

included in aTFA allows to capture the overflow metabolism without any ad hoc restriction

that prevents the acetate secretion in cells with vbio< 0.4 h-1. When glucose is still abundant,

the optimal proteome allocation also prevented the (unrealistic) simultaneous consumption of

glucose and acetate [31]. This restriction is due to the fact that to produce the same amount of

biomass, the cell has to consume larger amounts acetate, therefore more enzymes are required

for the acetate catabolism, compared to the glucose necessary (and the corresponding

enzymes). In other words, the cell prefers (from the proteome point of view) to use glucose

than acetate. Nevertheless, recent studies showed that E. coli can consume both substrates

simultaneously when the extracellular acetate concentration is high [32]. In our simulations,

the sequence of substrate uptake was determined by the proteome allocation of the cells (using

aTFA), and not by the imposition of zero acetate uptake flux until glucose has been depleted.

A fermentation phenotype (glucose ➔ acetate + biomass) was identified at the bottom and

middle regions of the system where O2 was already depleted but where glucose was still avail-

able (C1 in Fig 1A). In such conditions, E. coli shifts the metabolism to a fermentative one that

synthesizes acetate, ethanol, and formate as the main by-products of glucose [33]. Even cells of

the same phenotype achieved different growth rate due to the nutrients gradient formed in the

biofilm (C1 in Fig 1B). As the simulation progressed, regions with inactive cells appeared at

the bottom of the biofilm (C1 in Fig 1A) in regions where the glucose supply was completely

exhausted. In light of this, snapshots of the spatial distribution of metabolites and phenotypes

Fig 1. Formation of the E. coli biofilm with a glucose supply of 2.25 mM using a square lattice. (A) Phenotype

distribution and (B) growth-rate gradients predicted for the E. coli biofilm at 3.7 h under the crowding assumptions

C1-4 (Table 2). Phenotypes identified were respiration: glucose + O2 ➔ (acetate) + biomass, fermentation: glucose ➔
acetate + biomass, and inactive cells. Some cavities were observed inside the biofilm in C3 simulations due to the slow

growth rate of the cells and the stochastic movements during the shoving process. (C) Probability P to find available

space for glucose diffusion in biofilm-boxes computed at different times. Error bars show the standard deviation in

three independent simulations.

https://doi.org/10.1371/journal.pcbi.1009158.g001
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predicted at different times under C1 are shown S1 Fig. The phenotypic differentiation of spe-

cies resulting from the cell adaptation to local enviromental conditions has been experimen-

tally observed in biofilms [34], where fast-growing cells were identified at the top of the

biofilm wherein O2 is availiable, while at the bottom, the anoxic regions are characterized by

dormant or slow-growing cells. Although not considered in this case study, the CO2 produced

during the glucose oxidation could reduce the partial pressure of O2 in the gas phase at equilib-

rium with the medium supplied, reducing in this way the concentration of O2 dissolved (com-

puted by the Henry’s law) that can enter to the system through the top boundary. Further

studies are required to determine the effect of CO2 production on the microbial dynamics.

Overall, these results showed that the spatio-temporal models can reproduce the metabolic

heterogeneity arising from the nutrients gradient formed in biofilms. In the following section,

we investigated how different representations of the crowding effect in the microbial model

modify the dynamics of the system.

Effect of the crowding assumptions

The crowding conditions are given by the volume fraction occupied by the cells and other bio-

film components (i.e. Vocc/Vtot). The presence of cells reduces the available volume for the

motion and reaction of solutes in a biofilm. In this sense, macromolecular crowding reduces

the replenishment of glucose and O2 inside the biofilm, and therefore modifies the behavior of

the population. Often, this crowding effect has been considered in biofilm simulations by

assuming a reduced and constant diffusion coefficient. However, the diffusion coefficient is a

function of the local composition of the biofilm [11]. In this section, we analyze how different

crowding assumptions could affect the biofilm simulations. For comparison purposes, four

different crowding assumptions were tested (Table 2). In the first assumption (C1), a more

detailed description of the time-dependent local crowding conditions was explicitly incorpo-

rated in the simulation by tracking the radii of the cells Rcell, at every time point, as described

in the Methods section. In the second assumption (C2), all cells had the same volume of 10−9

mm3, thus Rcell was constant and equal to 6.2 x 10−4 mm [3]. In the third assumption (C3), the

diffusion was fixed at Deff = 0.25D for all metabolites [12], and in the fourth assumption (C4),

the crowding conditions were completely neglected, i.e. Deff = D. In both C3 and C4, the cells

were considered volumeless during the diffusion process, though overlapping cells were pro-

hibited in the microbial spatial distributions.

The activity coefficient of metabolite met γmet (i.e. the ratio between the total volume and

the available volume, γ = Vtot/Vav) can be used as an indicator of two opposing effects of the

crowding conditions. γmet can be computed as a function of the cell radii using SPT (Eq 17).

On one hand, if the available volume decreases due to the presence of cells, that is γmet>1, the

effective diffusion of met Deff ;met ¼ g
� 1
metDmet (Eq 25) decreases, but on the other hand, its effec-

tive concentration (i.e. the amount of met per available volume) Ceff,met = Cmetγmet (Eq 15)

increased. The overall outcome of these two aspects determines the nutrients availability in the

system, and thus the microbial dynamics. To test how the different crowding assumptions can

affect the diffusion and the effective concentration separately, we computed the relative diffu-

sion of glucose (with radius Rglc = 0) and the anaerobic growth rate an E. coli cell in a box (6.86

x 10−9 mm3) with constant glucose concentration (i.e. mmol per total volume) Cglc = 0.01 mM

under C1-4. Three cell radii Rcell were tested 4 x 10−4 mm (corresponding to the minimal cell

dry mass), 7.4 x 10−4 mm, and 9.5 x 10−4 mm (corresponding to the maximal cell dry mass), so

the volume fraction occupied in the box (i.e. the crowding conditions) were 3.7%, 25% and

50.2%, respectively. Results showed that the relative diffusion Deff,glc/Dglc decreased as the

crowding increased only in C1, while in C2-C4 the relative diffusion remained constant
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independent on the crowding conditions (Fig 2A). Although SPT was used in C1 and 2 to com-

pute the γglc (Eq 17), the relative diffusion in C2 remain constant because it was assumed a con-

stant cell radius. Moreover, the increase of γglc in C1 due to the crowding conditions also

enhanced the effective glucose concentration in the box (Ceff,glc = Cglcγglc) and with this the glu-

cose uptake (given by the Michaelis-Menten equation). Thus, cell reached higher growth rate

and acetate production rate as the crowding increased in C1 (Fig 2B and 2C). However, since the

cell radius was considered constant in C2-4 (Table 2), the γglc computed by SPT was constant

too, and the metabolic fluxes estimated were unaffected by increaments in the crowding condi-

tions. We found that the difference in the metabolic fluxes computed in C1-4 (for all crowding

conditions) decreased when the glucose concentration increased (Cglc = 1mM) (Fig 2B and 2C),

that is the crowding effect became important under nutrient-limited conditions (as shown in the

next section). In C3, the crowding effect was partially taken into account by assuming a reduced

diffusion, but the effect was neglected on the metabolic activity by setting Rcell = 0, therefore γglc
= 1 as in the assumption C4. In this example, the observed increase in the metabolic activity of

the cell due to the crowding effect was possible because the amount of glucose in the box (i.e. the

concentration Cglc) was assumed constant. However, in biofilms, the replenishment of the

Fig 2. Diffusion and metabolic activity under different crowding assumptions. (A) Relative diffusion of glucose, (B)

acetate flux and (C) growth rate predicted for a single cell in a box of 6.86 x 10−9 mm. Three crowding conditions were

tested: 3.7% (using Rcell = 4 x 10−4 mm, diamond), 25% (Rcell = 7.4 x 10−4 mm, circle) and 50.2% (Rcell = 9.5 x 10−4 mm,

square), and two different glucose concentration (Cglc) were supplied: 0.01 mM (closed symbols) and 1mM (open

symbols). The relative diffusion was not affected by Cglc, therefore open and closed symbols overlap in (A). (D)

Phenotype distribution predicted after 0.1 h for a small biofilm system under assumption C1-4 (Table 2). A squared

lattice (Δx = 1.3 x 10−3 mm) was used to simulate a system of 0.57 mm by 0.0380 mm filled with 6 000 E. coli cells,

where glucose 2.25 mM was supplied from the top boundary. The simulation parameters are in Table 1. (E) Active

layer depth H (normalized by Δx) estimated in C1-4 for different Cglc supplied to system.

https://doi.org/10.1371/journal.pcbi.1009158.g002
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glucose consumed depends on the diffusion rate that decreases with the crowding, so the access

to nutrients is limited and, therefore, the metabolic activity of cells as well as the depth of the

active layer in the biofilm can be reduced in such crowded environments.

To investigate how the depth of the active layer (i.e. region with cell activity) in the biofilm

can be affected by the crowding assumptions made in the simulation, a small system of 0.57

mm by 0.0380 mm filled with 6,000 E. coli cells was simulated for 0.1 h (enough time to form

the nutrient gradient, but without cell division). The same simulation parameters were used as

in our base case study (Table 1). Unlike our base case study (described above) where nutrient

gradients are formed also above the biofilm, and therefore the nutrients available for the sur-

face cells depends on the distance from the top boundary at time t, in this example the surface

cells are exposed to a constant nutrient concentration. Under all assumptions C1-4, three phe-

notypes were identified: respiration, fermentation and inactive cells appeared at the top, mid-

dle and bottom of the system, respectively (Fig 2D). However, the active layer depth H (Fig

2D), region dominated by respiration and fermentation phenotypes, depended on nutrient dif-

fusion estimated in each crowding assumption. When the effective diffusion increased, the glu-

cose was able to penetrate deeper in the biofilm before being depleted by cells (Fig 2E), that is

HC3 (Deff,glc = 1.6 x 10−7 mm2 ms-1)<HC1 (Deff,glc = 5.1 x 10−7 ± 4 x 10−8 mm2 ms-1)<HC2

(Deff,glc = 5.7 x 10−7 mm2 ms-1)<HC4 (Deff,glc = 6.7 x 10−7 mm2 ms-1). Even more, when the

glucose supply increased H increased too in C1-4 (Fig 2E). In general, the explicit simulation

of the crowding conditions (C1) predicted a smaller H than ideal case C4. A small H (i.e. thin

active layer) has been associated to strong segregation of microbial species in biofilms [5]. In

this sense, the reduction of the available space due to the cell presence could also contribute to

some extend to the emerging biofilm structure.

Furthermore, to investigate the influence of the crowding assumptions in the biofilm devel-

opment, we simulated the E. coli growth in a system with a glucose supply of 2.25 mM (our

base case study). If the crowding conditions were explicitly incorporated in the simulation

(i.e., C1), only a fraction of the system volume was unoccupied by cells so that the amount of

nutrients that could be supplied to the system will be reduced due to space limitations. With

less nutrients available in the system, cells changed/reduced their metabolism and, thus, the

total biomass and acetate predicted at time 8.5 h under C1 was lower than when the crowding

effect was completely neglected (C4) (Biofilm-SqL in Fig 3A and 3B). Although assumptions

C2 and C3 integrated the crowding effect in the simulations, they did not provide significant

improvements in the accuracy of the predictions for biomass and acetate compared to those

obtained with C4. In C2, the assumption of a constant cell size captured the influence of the

position and abundance of the individuals on the local crowding conditions, but the volume

fraction occupied by the cells was only about 43% of that predicted by C1 at t = 8.5 h (S2 Fig).

This underestimation of the volume occupied by cells under C2, and therefore the overestima-

tion of the available volume, allowed more nutrients to penetrate the biofilm, and therefore

more biomass and acetate were produced compared to C1. Reducing the crowding modeling

complexity, in the case of C3, the entire system is considered homogeneous because the pres-

ence of cells did not affect the metabolites motion, instead a constant reduced diffusion was

applied. Under such conditions, the glucose and O2 coming from the top of the system took

about 4 times longer to get to the biofilm, which delayed the nutrient replenishment and in

consequence the production of biomass and acetate was lower compared to other Cs (Biofilm-

SqL in Fig 3A and 3B).

The different assumptions changed the number of active cells (respiration and fermentation

phenotypes) that appeared in each simulation. In general, the number of active cells predicted

for C4 was greater than the estimate for C1–3 (Biofilm-SqL in Fig 3C and 3D), likely because

the cells represented no obstacle for the metabolites, so more O2 and glucose could enter in the
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system and penetrate deeper into the biofilm—leading to more acetate and biomass produc-

tion (Biofilm-SqL in Fig 3A and 3B). In fact, the comparison of the spatial distribution of the

phenotypes at 3.7 h showed regions with inactive cells at the bottom of the system for condi-

tions C1–3, but not in C4, where inactive cells appeared after 3.9 h (Fig 1A). The delay in the

emergence of inactice cells, the abundance of respiration and fermentation phenotypes as well

as the biomass and acetate produced were associated to the ease of nutrients to diffuse inside

Fig 3. E. coli biofilm development at time 8.5 h with a glucose supply of 2.25 mM under different crowding

assumptions. Three growth conditions and cell-packing configurations were tested: the biofilm growth using either a

square lattice (Biofilm-SqL) or a hexagonal grid (Biofilm-HexL), and the planktonic mode of growth using a square

lattice (Planktonic-SqL). (A) Relative biomass computed as Biomass(obtained in each C)/Biomass(obtained in C4) at

time 8.5 h. (B) Relative acetate computed as Acetate(produced in each C)/Acetate(in C4). Relative number of cells

identified with phenotype (C) respiration: glucose + O2 ➔ (acetate) + biomass, (D) fermentation: glucose ➔ acetate

+ biomass, and (E) inactive cells in each C compared to those obtained in C4. The number showed on bar plot (E)

indicate the time in [h] when inactive cells appeared in the system. Crowding assumptions C1-4 are described in

Table 2. Error bars show the standard deviation in three independent simulations.

https://doi.org/10.1371/journal.pcbi.1009158.g003
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the biofilm, which was determined by the crowding assumption made in the simulation (Bio-

film-SqL in Fig 3). The deviations among the biomass and acetate estimated in C1, 2 and 4

started around the time inactive cells appeared in C1 (3.1 h) and increased over time (S3 Fig).

The active layer depth at 3.1 h was ~30% of HC1 predicted when surface cells were exposed to a

constant glucose concentration of 2.25 mM (as in the example shown in Fig 2E). In our base

case study, the active layer depth (H) increased over time in C1-4 (S3 Fig). This is because dur-

ing the biofilm expansion, the cells were pushed up to rich-nutrient regions near the top

boundary (with 2.25mM of glucose and 0.21 mM of O2), thus, the amount of nutrients that

penetrate in the biofilm increased over time.

The standard assumption in current methods for modeling crowding conditions involves

fixing the diffusion rate as Deff = 0.25D. However, when the constraint Deff = 0.25D is applied

over the whole system, this assumption (C3) provided the poorest approximation of the

crowding effect compared to the simulations where the explicit crowding conditions were con-

sidered (C1). In C3, the cell metabolism was slowed down due to the nutrients scarcity caused

by the slow re-supply of nutrients coming from the top boundary (as mentioned above). How-

ever, the reduction of metabolite diffusion due to the crowding effect is expected only in

regions with cells and macromolecules (i.e. biofilm-boxes), which can be captured by assump-

tion C2. We can show this by considering that in C2 cells occupy a constant volume in the

box, which is similar to assuming crowding conditions where the reduced Deff is only applied

in boxes occupied by bacteria. In C2, the motion of metabolites from one box to another is

limited by the probability P of finding available space, i.e. Deff = PD, which is the key consider-

ation on which cLBM is built [17]. For a volumeless metabolite, P = γmet
-1 is equal to the vol-

ume fraction not occupied by cells (Eq 16). Thus, if we assume that cells occupy the 75% of the

box at all times, then P is a constant value equal to 0.25, and C3 will behave similarly to C2.

From all assumptions tested, C2 provided the closest approximation to the more crowding

detailed C1, though its overestimation of P caused that cells were metabolically more active.

Based on the parameters selected in C2 for the average cell radius (Rcell) and the box size (Δx),

P was computed equal to 0.85 for glucose, a value well above than the (average) P computed

under C1 (Fig 1C). The probability P remained relatively constant after 2 h (P ~ 0.64) in C1,

suggesting that an adjustment in the Rcell constant used in C2 (so that P of C2 matches P of C1,

i.e. Rcell = 9.5 x 10−4 mm) could improve the accuracy of the C2 simulations of single species

biofilm compared to those computed by C1.

From above, the crowding effect of C1 and C3 can be represented by C2 when changing the

probability P. The difference between the probability used in C3 (P = 0.25) and the average

value computed in C1 (P = 0.64) is likely because C1 only considers the effect crowding condi-

tions, while the experimental observations used to fit P in C3 [12] also include the contribution

of the electrostatic interactions, increment of the viscosity of the medium, etc. However, the

simulation of more complex systems such as multi-species biofilms could require the more

detailed crowding assumption C1 or the use of more parameters (e.g. different Rcell for each

species) to account that the diffusion depends on the biofilm composition as was experimen-

tally observed [11]. C1 can be further expanded to incorporate other type of interactions

among the biofilm components that could affect the nutrients diffusion (e.g. electrostactic

interactions), and in this way improve the accuracy of microbial predictions in structured and

highly heterogeneous systems.

Additionally, for all crowding assumptions, a differentiated growth rate was also seen

among the populations due to the gradient of the nutrient concentration formed in the biofilm

(Fig 1B). This estimation of the local growth rate is very useful for antimicrobial studies, where

the efficacy of a treatment depends on the physiology of the microorganism. For example,

ribosome-targeting antibiotics inhibit ribosomal functions, such as translation [35]. Due to the
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positive correlation between the ribosome content and the growth rate [35], fast-growing cells

are especially susceptible to this type of antibiotic. The crowding assumption modified the

abundance of fast-growing cells in the system, e.g. cells with respiration phenotype can reach a

maximum growth rate of 0.66 h-1, while the fermentation one only 0.27 h-1 (Figs 1B and 3C

and 3D). In this sense, the accurate simulation of the crowding conditions could become

important in the design of strategies for biofilm control (e.g. antimicrobial dose and/or expo-

sure time) inasmuch as different growth-rate gradients could lead to ineffective or suboptimal

antimicrobial treatments.

Effect of the nutrient supply

The nutrient availability determines the cell metabolism, and thus the dynamics of the micro-

bial community. Frequently, the amount of nutrients supplied to the system changes over

time, such as when growing bacterial colonies on agar plates, where the carbon source has a

finite initial concentration. In other cases, the nutrients supply is a function of spatial location,

such as the glucose concentration variation from 0.2 to 50 mM along the intestine [27].

Even if crowding conditions hinder the diffusion of the metabolites, the exposure of a

microbial community to a more nutrient-rich medium could dampen this crowding effect.

Therefore, we analyzed the sensitivity of the microbial dynamics to the crowding conditions

when different glucose concentrations were constantly supplied at the top boundary of the sys-

tem. For this purpose, three different glucose concentrations were tested in our case study: 1.1,

10, and 25 mM, and we compared the results computed under the crowding assumptions C1–

4 described in the previous section. In all cases, the initial glucose concentration in all boxes

was fixed to 0.5 mM, while the top boundary glucose concentration was set to any of glucose

supply values tested.

As starting point, we simulated the growth of E. coli in a system with a high glucose supply

of 25 mM. With this excess glucose, the biofilm grew rapidly, and during the first 8.5 h, the dif-

ferences among the biomass and acetate estimated by the crowding assumptions C1, C2, and

C4 were negligible (Fig 4). This is likely because in these three scenarios the cells were not able

to metabolize all the glucose locally available, even if they worked at their maximum biological

capacity. In other words, microbial dynamics was sensitive to the crowding conditions (given

by C1 and 2) only when the nutrient gradient was formed and the cell metabolism was con-

trolled by nutrient limitations. Even more, only active cells (respiration and fermentation phe-

notypes) were identified in the system under C1–4, and these phenotypes were present in a

similar abundance in all cases. However, for C3 (with a reduced diffusion), the glucose and O2

supplied from the top of the system moves slowly through the biofilm, reducing the synthe-

sized acetate and biomass compared to the other crowding assumptions. Consequently, inac-

tive regions appeared only in C3 at the end of the simulation (Fig 4).

For an intermediate glucose supply of 10 mM, the system behaves similarly under the dif-

ferent crowding assumptions as the originally computed glucose concentration of 2.25 mM in

the previous section, i.e., C4 and C2 overestimate the biomass production, while C3 underesti-

mates the metabolic activity of the cells (Fig 4). This is likely because in both cases (glucose

supply of 10 and 2.25 mM), the glucose was totally depleted before reaching the biofilm bottom

(shown by the appearance of inactive cells). Thus, the metabolism of cells located at the inter-

mediary and bottom layers of the biofilm was controlled by the glucose scarcity. This corrobo-

rates the hypothesis that the crowding effect is only visible under nutrients limitations.

With a low glucose concentration of 1.1 mM, the biomass and acetate production in the sys-

tem was considerably reduced under all assumptions. As in the previous glucose concentra-

tions, zones with respiration and fermentation phenotypes, as well as inactive cells were

PLOS COMPUTATIONAL BIOLOGY The influence of the crowding assumptions in biofilm simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009158 July 22, 2021 11 / 24

https://doi.org/10.1371/journal.pcbi.1009158


Fig 4. E. coli biofilm development at time 8.5 h with different glucose supplies and crowding assumptions using a

square lattice. Three glucose supply (Glc) were tested: 25 mM, 10 mM and 1.1 mM. (A) Relative biomass computed as

Biomass(obtained in each C)/Biomass(obtained in C4) at time 8.5 h. (B) Relative acetate computed as Acetate

(produced in each C)/Acetate(in C4). Relative number of cells identified with phenotype (C) respiration: glucose + O2

➔ (acetate) + biomass, (D) fermentation: glucose ➔ acetate + biomass, (E) inactive cells, and (F) acetate consuming:

acetate + glucose + O2 ➔ biomass in each C compared to those obtained in C4. The number showed on bar plot (E)

indicate the time in [h] when inactive cells appeared in the system. Inactive cells were not identified in C4 when

glucose supply was set to 10mM. Crowding assumptions C1-4 are described in Table 2. Error bars show the standard

deviation in three independent simulations.

https://doi.org/10.1371/journal.pcbi.1009158.g004
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detected in the system under all Cs. Additionally, an acetate-consuming phenotype (acetate

+ glucose + O2 ➔ biomass) was identified in C2-4 simulations (Fig 4), where the acetate locally

secreted by cells with respiration and fermentation phenotypes is consumed by acetate-con-

suming cells. This indicates that the crowding assumption used in the modeling of microbial

systems not only affects the time when a phenotype appears but also the emergence of cross-

feeding interacions among cells (in this case represented by the acetate exchange between res-

piration/fermentation cells and acetate consumers). As mentioned above, the simultaneous

uptake of acetate and glucose is the result of the optimum proteome allocation of the cell

under the local environmental conditions. However, the cell adaptation to new conditions can

be a long process involving the gene expression and the synthesis of enzymes (not considered

in our simulations). The expression problem can further be integrated in spatio-temporal sim-

ulations by using methodologies such as expression and thermodynamics-enabled flux models

(ETFL) [36] into CROMICS. The emergence of phenotypes depends on several factors, such as

the presence of two or more carbon sources, the protein expression level, etc. For example, the

consumption of lactose by E. coli is determined by the expression of the lac operon, which is

regulated by the glucose concentration in the medium. When the gene expression depends on

the availability of a particular substrate, crowding conditions could modify the time required

by microorganisms to adapt to new environmental conditions (i.e. lag phase), and therefore

the time (and may be the spatial location) at which the new phenotype appears. In this sense,

the selection of an appropriate crowding assumption becomes highly relevant for modeling

microbial communities with cross-feeding interactions, because the synthesis of a cross-feed-

ing metabolite can be associated to especific phenotypes.

Effect of the microbial growth conditions: planktonic vs biofilm culture

The environmental conditions determine the living state of the microbial community—either

in a planktonic, free-floating mode or as a biofilm. In biofilms, the matrix of extracellular poly-

meric substances (EPS) functions to keep the cells attached to a surface and protect the micro-

organisms from flow shear forces. In such space-constrained systems, cellular motion is

limited, and the expansion of the community occurs through cell-shoving mechanisms. In a

free-swimming state, however, cells can randomly move across the system (Brownian motion)

or even bias their motion towards nutrient-rich regions (chemotaxis). Therefore, cells are

more easily redistributed in a planktonic-type system. Here, we wanted to analyze the influ-

ence of crowding conditions on both planktonic and biofilm growth modes.

For comparison purposes, we used the same base case study to simulate the microbial

growth of E. coli in both of cultures, differing only in that cells in the planktonic mode were

randomly distributed through the whole system and diffused by Brownian motion. The proba-

bility of cell motion was determined by the diffusion coefficient of non-motile E. coli (Dsp), i.e.,

Psp = nvoxDspΔt/Δx2.

Because cells in their planktonic state can move around, it is easier for the system to main-

tain a smaller number of individuals in the different regions such that there are less crowded

zones than in a biofilm. Such non-crowded or “diluted” conditions dominated the first four

hours of our planktonic simulation, where there was only a negligible crowding influence on

the biomass and acetate production. This means that C1, C2, and C4 had similar results during

the first hours, when cells occupied less than 14% of the total volume of the system. Neverthe-

less, as the system became more crowded due to the increasing number of cells (i.e. the volume

occupied was greater than 14%), the biomass and acetate predicted at t = 8.5h by C2 and C4

deviated from the C1 estimates (Planktonic-SqL in Fig 3A and 3B). As we saw for the biofilm

simulation that used 2.25 mM of glucose, the differences in the planktonic microbial growth
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under the four Cs were due to the ease of nutrient distribution in the systems. In other words,

the local availability of the metabolites depends on the free fraction volume, which both delays

the appearance of the different phenotypes and affects their abundance in the system (Plank-

tonic-SqL in Fig 3C–3E).

While a similar trend in the dynamics of the system were found under the different Cs,

there were also differences noted between planktonic cells and biofilms. For instance, a greater

number of cells with respiration phenotype were identified in the planktonic culture (Plank-

tonic-SqL in Fig 3C) as compared to the biofilm (Biofilm-SqL in Fig 3C). This is because a

greater number of cells can access regions richer in nutrients, i.e., those located near the nutri-

ent source (top of the system). Therefore, the planktonic cells grow faster than when in a bio-

film. Since the population grew faster in the planktonic state, the nutrient depletion rate was

also greater, and inactive cells appeared 6 min earlier than in the biofilm for C1.

In bioreactors, the well mixing is essential to guarantee the optimal production yield. The

perturbations of the species metabolism originated by the spatial differences in the nutrient

availability can cause the synthesis of undesirable by-products. Even more, as shown in our

simulations, the crowding effect on the microbial behavior becomes important as soon as the

biomass starts to accumulate in a region occupying more than 14% of the volume. An example

of where crowding conditions would need to be considered in the modeling of microbial

planktonic communities is the growth of Staphylococcus aureus in liquid cultures, which forms

cellular aggregates of 60–80 μm in diameter. These planktonic aggregates provide cells with a

higher metabolic activity than those in a biofilm, and also offer protection to the community

against antimicrobial treatments [37].

Effect of the grid geometry: Hexagonal vs square lattice

The cell size and the arrangement in which the cells are organized/distributed in the system

could affect the available volume for nutrient diffusion. For instance, the secretion of EPS mol-

ecules increases the spacing between cells, which could reduce the local crowding conditions.

In this section, we analyze how cell packing affects microbial growth in a biofilm. Two cell

arrangements were tested: hexagonal and squared. In a hexagonal arrangement, spherical cells

can occupy up to 60.4% of the space, while in a squared lattice, the densest packing is 52.3%.

For comparison purposes, the system defined in our base case study was divided into 100 x

100 boxes of a regular shape that can contain only one cell. For the hexagonal lattice (HexL), a

box was represented by a hexagonal prism of Δx = 1.1 x 10−3 mm per side and 1.3 x 10−3 mm

in height, whereas in the square lattice (SqL), the boxes were small cubes of Δx = 1.3 x 10−3

mm per side. Biofilm simulations on both types of lattice configurations and C1, showed that

the amount of biomass and acetate predicted in HexL was 40% and 37% of the values com-

puted for SqL (S3 Fig). Additionally, although the cells grew slowly in HexL, the fraction of

active cells (respiration and fermentation phenotypes) present at the end of the simulation was

slightly lower than in SqL (43% and 50%, respectively, Fig 3C and 3D). However, the inactive

cells appeared in the HexL system 1.6 h before SqL (Fig 3E).

This apparent influence of the crowding conditions on the biomass produced and the num-

ber of active cells in the system can be explained by the activity coefficient γ of the nutrients in

both HexL and SqL. As mentioned in the section Effect of the crowding assumptions, γmet

determines (i) effective diffusion (Eq 25), and (ii) the effective concentration of nutrients (Eq

15). When a cell (with radius Rmax,cell) occupies the maximum volume fraction allowed in a

HexL-box, the activity coefficient of glucose (Eq 16 for Rglc = 0) is estimated as γglc = 1/(1–

0.604) = 2.52, while in a SqL-box, γglc = 1/(1–0.523) = 2.09. Under such conditions, and assum-

ing a glucose concentration Cglc of 0.01 mM in both HexL and SqL boxes, aTFA predicts that
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the cell in HexL grows 0.01 h-1 faster and produces 0.34 mmol gDW-1 h-1 more acetate than in

SqL. Therefore, HexL systems are more sensitive to changes in the crowding conditions, e.g.

those originated by cell-size increments, than SqL configurations. On one hand, the microbial

growth decreases in HexL as a result of the reduced diffusion of metabolites, and thus, the

local availability of the nutrients. On the other hand, the metabolic activity of the cells is

enhanced due to the increase in the effective concentration of the nutrients.

Comparing the results computed under the different crowding assumptions in HexL, C2

and 4 predict higher biomass and acetate values compared to C1, while C3 underestimates

these values (Biofilm-HexL in Fig 3A and 3B). Although a similar trend was found in SqL,

some differences were predicted for the growth and phenotypic diversity in HexL simulations

when the different crowding assumptions were applied (Fig 3). For example, inactive cells also

appeared in the system almost immediately using C3 in HexL, while in SqL, this phenotype

only appears after 42 min (Fig 3E). Since biofilm in HexL grew slowly reaching a height of

0.04 ± 0.0068 mm in C1, while in SqL the height was 0.0917 ± 0.012 mm, cells were exposed to

different nutrient concentration in both HexL and SqL biofilms. To fairly assess the impact of

lattice configuration on the number of active cells, biofilms were compared at the time they

reached an average height of 0.04 mm under C1, that is after 3.5 h in SqL and 8.5 h in HexL.

The number of active cells (respiration and fermentation phenotypes) estimated by C1 in

HexL was 22% less than those predicted for C4, while in the SqL simulations, the difference

was 7%. These results indicate that the higher packing density achieved in HexL potentiates

the crowding effect on the diffusion and concentration of the nutrients in the system, and

therefore, that HexL simulations are more sensitive to the crowding assumption selected. In

our 2D simulations, cells can occupied up to 52.3% and 60.4% of the space in SqL and HexL

respectively, however, in 3D systems the densest packing volume of spheres could reaches 74%

(corresponding to close-packed face-centered cubic lattice). A maximum value of 64–65% has

been used to simulate the grow of bacterial colonies [3,38]. Since 3D systems can achieve

denser packaging values, the crowding effect may be more pronounced in such systems.

Frequently, microbial systems are composed of cells of different species, each one character-

ized by a cell size and shape. Along with other factors, such as the production of EPS mole-

cules, the cell size and shape determine the closest packing order of a system. Thus, a

multispecies biofilm can consist of regions with different packing orders, which may give a

competitive advantage to the species located with more free space between the individuals

and/or components, favoring nutrient penetration into the biofilm.

Conclusion

Crowding conditions can reduce the effective diffusion and enhance the effective concentra-

tion of the metabolites. The crowding assumption made in microbial simulations could over/

underestimate the nutrients availability and cause errors in the prediction of microbial growth,

synthesis of by-products, and even the emergence of new phenotypes. We found that the

crowding effect should be taken into account when cells occupy more than 14% of the local

volume fraction, either because the system has close packing structures (e.g. biofilm), or when

biomass accumulates in a region due to microbial adhesion mechanisms or the lack of well-

mixing. Only high nutrient concentrations can dampen the crowding effect, so it can be safely

neglected (using assumption C4) when rich-nutrient environments are simulated.

For poor-nutrient conditions or microbial systems with cross-feeding interactions where

exchange metabolites are in low concentrations, more realistic results can be obtained by apply-

ing a reduced effective diffusion Deff = xD only in boxes containing biomass (as in assumptions

C1 and C2). An average x value can be obtained experimentally or from detailed crowding
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simulations. The use of a more detailed representation of local crowding conditions (taking into

account for example the size and abundance of cells and other macromolecules in the medium,

as was done in C1) is more suitable for multispecies systems, where species can form heteroge-

neous cellular arrangements or close packing structures. These considerations suggest that

detailed crowding modeling can shed light on the effect of the disruption of biofilm architecture

on the cell metabolism, where species may repond differently to the chemical treatment, e.g.

secreting enzymes to deactivate antibiotics that also modify the local crowding conditions.

Methods

The CROMICS methodology

Recently, we developed CROMICS [29], an IbM model that computes the metabolic response of

individual cells to local environmental conditions in heterogeneous systems. For this purpose,

the total simulation time tsim is divided in time steps Δt, while the system is discretized into regu-

lar boxes, which contain nutrients and other solid components, such as EPS molecules. To study

the effect of the cellular arrangement or grid geometry on the microbial simulation, we adapted

CROMICS to test two lattice geometries in 2D systems: square and hexagonal. Thus, the 2D sys-

tem is represented by a monolayer of either hexagonal- or cubic-prism boxes. cLBM and IbM

are lattice-on methodologies, so they both use the same lattice geometry in the simulations.

Here, we assume that a box of side Δx can contain at most one spherical whose maximum cell

radius (just before cell division) is Rmax,cell (mm). Thus, the box volume Vbox (mm3) is equal to

8R3
max;cell and 4

p
3R3

max;cell for a square or hexagonal lattice, respectively. The (iterative) CROMICS

methodology (Fig 5A) can be summarized as follows at every time step Δt:

1. Compute the metabolic fluxes of each cell in the system. During a time Δt, each cell metabo-

lizes the nutrients located at the same box ij, synthesizes and releases some by-products to

the medium, and the cell increases in size. From the stoichiometric information of the met-

abolic pathways, the growth rate vbio as well as the uptake/production rate vf,ex are calcu-

lated using aTFA. Alternatively, NNs can be trained and used to approximate the flux

solutions vbio and vf,ex obtained by aTFA. See details in the section entitled Estimation of

the metabolic fluxes using aTFA.

2. The mass, radius, and phenotype of each cell as well as the number of metabolites present

in each box ij are updated using the metabolic fluxes vbio and vf,ex computed in step 1.

Table 3 summarized the complementary equations used to update the microbial cells and

metabolite information for the CROMICS simulations.

3. Compute the diffusion of the metabolites present in the medium. Since the crowding conditions

in each box change due to cell growth, the probability of the metabolites finding available space

in the neighboring boxes decreases, and therefore, the motion of the molecules is also reduced.

In this paper, we use cLBM to simulate the nutrient motion in the system (see details below).

4. Redistribution of the microbial cells in the system. Cell division and death, as well as the

motion of the cells across the lattice, are simulated by IbM rules that determine the new spa-

tial distribution of the individual cells. Thus, cell division takes place when cell mass Mcell

reaches the maximum dry mass Mmax,sp. The daughter cell is allocated in one (empty)

neighboring box. If no empty sites are found, then the daughter cell will shove the others

until all cells are allocated in different boxes. Conversely, when Mcell�Mmin,sp (the minimal

dry mass of a cell), the cell will die and disappear from the lattice. If cells are growing in a

liquid medium in a planktonic state, the random motion of a cell can be simulated using

the Monte Carlo (MC) algorithm.
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5. Update the time t = t + Δt, and return to step 1.

CROMICS is fully described in [29]. In this paper, we present only the new methods and

techniques incorporated into CROMICS.

Estimation of the metabolic fluxes using aTFA

The local availability of nutrients and the metabolic capabilities of the microbial species deter-

mine the metabolic flux distribution inside a cell and the maximum growth rate νbio attained

in the box ij. To estimate the metabolic fluxes, we implemented aTFA, a proteome allocation

constrained version of thermodynamics flux analysis [8]. aTFA is a mixed-integer linear

Fig 5. Workflow of CROMICS. (A) At every time step Δt, the metabolic fluxes of each cell in the system are estimated

using either (an allocation version) thermodynamic flux analysis (TFA) or neural networks. Then, the fluxes estimated

are used to update the cells size and metabolite abundance in the boxes. Metabolites are allowed to diffuse to

neighboring boxes, this step can be computed by crowding lattice Boltzmann method (cLBM) or the Crank-Nicholson

approximation. Finally, the spatial distributions of cells is computed using individual-based model (IbM) rules. Either

a square (B) or a hexagonal lattice (C) can be selected for the 2D simulation of clustered microbial system. Blue arrows

indicate the lattice directions, indicating the motion direction, for both cLBM and IbM approaches.

https://doi.org/10.1371/journal.pcbi.1009158.g005
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problem (MILP) seeking to maximize νbio (h-1), subject to mass conservation, thermodynamics

[13], and proteome allocation constraints [16], i.e.,

max vbio ð1Þ

s:t: N � v ð2Þ

0 � vf � zf v
U
f ð3Þ

Table 3. Complementary equations used by CROMICS for the spatio-temporal simulation of microbial systems.

Equation No. Notes

Upper limit of the uptake flux

vUf ;ex;met ¼
VM;metCeff ;met ðij;tÞ
KM;metþCeff ;met ðij;tÞ

vUf ;ex;met ¼ minðVM;met;rmetðij; tÞ=McellðtÞDtÞ

(13)

(14)

Active transport, given by the Michaelis-Menten equation.

Passive transport, e.g. O2 and acetate.

Effective concentration of metabolites

Ceff ;met ij; tð Þ ¼
rmet ðij;tÞ
106Vbox

gmet ij; tð Þ (15) The factor 10-6 converts units of mm3 into L.
rmet ðij;tÞ
106Vbox

represents the concentration in a box.

Activity coefficient of the metabolites scaled particle theory (SPT) [14,15]

lngmet ¼ � ln 1 � S3ð Þ þ
6S2

1� S3

� �
Rmet þ

12S1

1� S3
þ

18S2
2

ð1� S3Þ
2

� �
R2

met þ
8S0

1� S3
þ

24S1S2

ð1� S3Þ
2 þ

24S3
2

ð1� S3Þ
3

� �
R3

met

Sx (x = 1,2,3) is given by

Sx ¼ p

6Vbox

Xmacromolecules

l

rlNA
103 ð2RlÞ

x
þ F

 !

Where F for cell-permeable metabolites (e.g. O2) is

F ¼
Xcells

l

McellNA
MWprotein

2Rprotein

� �x

F for not cell-permeable metabolites

F ¼
Xcells

l

ð2RcellÞ
x

(17A)

(17B)

(18)

(19)

The box index (ij,t) has been dropped from γmet and Sx.

In Sx, 10
-3

is the conversion factor from mol to mmol.

γmet / Rprotein of the intracellular proteins of 72 kDa [22]. McellNA/
MWprotein is the number of proteins in a cell.

Update the number of metabolites in each box

rmetðij; t þ DtÞ ¼ vf ;ex;metðij; tÞMcellðij; tÞDt þ rmetðij; tÞ (20)

Update the mass, radius, and phenotype of each cell

Mcellðij; t þ DtÞ ¼ vbioðij; tÞMcellðij; tÞDt þMcellðij; tÞ

Rcell ij; t þ Dtð Þ ¼ 3

4p
Mcellðij; t þ DtÞusp

� �1=3

Phenotype ¼
1 if vf ;ex;met � y

2 f vf ;ex;met < y

(

(21)

(22)

(23) The threshold value θ was set as 10-4 mmol gDW
-1 h-1.

Radius of the metabolites or proteins

Rmet = (3MWmetυmet/4πNA)1/3 (24)

Effective diffusion coefficient

Deff,met(ij,t) = Dmetγmet(ij,t)−1 (25)

Nomenclature: Ceff,met, effective concentration (mmol L-1); Dmet, diffusion in water; Deff, effective diffusion coefficient; k, Boltzmann constant (Pa mm3 K-1); KM,met,

Michaelis-Menten constant (mmol L-1); Mcell, cell mass (gDW); MWmet, MWprotein, molecular weight of the metabolite met or intracellular proteins (g mol-1); NA,

Avogadro constant (molecules mol-1); Phenotype, phenotype of the cell (dimensionless); Rcell, Rmet, Rprotein, radii of the cell, metabolites, or proteins (mm); νbio, growth

rate (h-1); vf,ex,met, exchange flux of metabolite met to/from cells (mmol gDW
-1 h-1); vUf,ex,met, upper limit of the metabolic exchange flux (mmol gDW

-1 h-1); VM,met,

physiological maximal uptake flux (mmol gDW
-1 h-1); Vbox, box volume (mm3); γmet, activity coefficient of metabolite met (dimensionless); ρmet, amount of metabolite

met (mmol); υsp, υmet, specific volume constant for the microbial species sp or metabolite met (mm3 g-1); Δt, simulation time step (ms).

https://doi.org/10.1371/journal.pcbi.1009158.t003

PLOS COMPUTATIONAL BIOLOGY The influence of the crowding assumptions in biofilm simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009158 July 22, 2021 18 / 24

https://doi.org/10.1371/journal.pcbi.1009158.t003
https://doi.org/10.1371/journal.pcbi.1009158


DrG
0
f � Qþ Qzf < 0 ð4Þ

DrG
0
f � RT

Pm
a¼1
Zf ;aca � DrG

0o
f < 0 ð5Þ

cLa � ca � cUa ð6Þ

P
exwexvf ;ex þ

P
uwuvf ;u þ wRvbio ¼ �max ð7Þ

N is the [m x n] stoichiometric matrix of the m intracellular metabolites and n biochemical

and transport reactions, and v is the [n x 1] flux vector. As in the original TFA formulation,

each reversible reaction (and the corresponding flux) in this formulation is divided into its for-

ward and backward components. Eq 3 restricts the maximum flux value vUf (mmol gDW
-1 h-1)

that a reaction f can take for the current environmental conditions. The exchange flux vUf,ex,met

is determined by the local substrate concentration met and the active/passive transport inside

the cell (Eq 13 and 14 in Table 1).

The binary variable zf (zf = 1 when vf> 1, otherwise zf = 0) couples the thermodynamic and

mass constraints by preventing the flux through a reaction with positive Gibbs free energy

DrG0f (Eqs 3 and 4). In Eq 4, Q is a constant with a large value (arbitrary). The value of DrG0f is

given by the stoichiometric coefficient ηf,a and the logarithm of the intracellular concentration

Cint,a of the metabolites a involved in reaction f, i.e., ca = ln(Cint,a/C0) where the standard con-

centration C0 is equal to 1 M (Eq 5). In Eq 5, R is the ideal gas constant, T is the temperature,

and DrG0of is the standard Gibbs free energy, which was estimated by the group contribution

method [39]. The limits cLa and cUa were set to -13.81 and -2.99, respectively [13].

Finally, Eq 7 constraints the way the proteome fraction available in the cell, ϕmax, is divided

to carried out metabolic processes. Thus, a protein cost w is associated with each flux f that

depends on the type of processes that flux represents, e.g. the exchange/transport of metabo-

lites (identified with the suffix ex), enzymatic reactions (with suffix u), and ribosomal proteins

required to maintain a growth rate (with suffix R). The weighting parameters are set to wu =

1.55 x 10−3 gDW h mmol-1, wR = 0.169 h [16], and by assuming that the substrate uptake rate is

only limited by the substrate availability in the box (see below), then wex = 0.

CROMICS uses neural networks (NNs) as an alternative for estimating vbio and vf,ex,met.

The advantage of using NNs is the fast computational time for the exchange metabolic fluxes,

even when complex objective functions are required by the stoichiometric-based models. The

NN of a microbial species is trained using (as outputs) the metabolic flux solutions computed

by aTFA for 100,000 uptake-flux samples (inputs). These flux samples were used to constrain

the upper flux limits (vUf,ex,met) of the corresponding metabolites in the aTFA formulation (Eq

1c). An uptake-flux sample consists of n uptake fluxes, such as glucose, acetate, and O2 (as in

our case study), where the flux of each metabolite met was randomly taken from the range 0 to

VM,met, i.e., the physiological maximum uptake flux (mmol gDW
-1 h-1). Other exchange fluxes

in the GEM model were left unconstrained (i.e. vUf,ex,met = 1000 mmol gDW
-1 h-1). To reduce

the possible alternative flux solutions originating from underdetermined stoichiometric sys-

tems, two consecutive aTFA optimizations—the maximization of biomass and the subsequent

minimization of the sum of the fluxes subject to previously computed vbio [40]—were per-

formed to generate the training data for the NN. If no feasible solution was predicted by aTFA

due to the depletion of nutrients, then the cell was allowed to shrink at a rate of vshrinkage in an

attempt to maintain the cell energy requirements.
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For E. coli, a NN was created containing 2 hidden layers of 15 neurons each using the Neu-

ral Network toolbox of Matlab R2018b. The Pearson correlation coefficient r between the

fluxes predicted by NN and aTFA was estimated to be 0.999, while the normalized mean

squared error was 8.5 x 10−5 (S4 Fig).

Nutrient diffusion estimated using cLBM

Unlike the original formulation, where the diffusion of the metabolites is approximated using

a Crank-Nicholson scheme [29], in this paper, the motion of the metabolites across the system

is simulated using cLBM [17]. cLBM is a lattice Boltzmann approach that allows the simulation

of the diffusion of molecules in a 2D crowded media using a square lattice configuration.

Among the advantages of cLBM are its easy implementation, fast simulations due to the meso-

scopic nature of the method, easy incorporation of the complex geometries of porous medium,

and the incorporation of the effect of molecular size on the diffusion. In this paper, we

extended cLBM to simulate diffusion in a 2D hexagonal lattice (identified as HexL). The equa-

tions below are also valid for both HexL and the square lattice (identified as SqL) when the

appropriate LBM parameter/constant is considered in the simulations, as described below.

In cLBM, the system is discretized into boxes of volume Vbox that are separated by a dis-

tance Δx (mm), where collections of molecules moving across the lattice are followed at every

(discrete) time step Δt. The number of metabolites met, Fd,met (mmols per box), that jump

from box ij to one of the nvox contiguous boxes ijnext (see Fig 5B and 5C) under crowding con-

ditions is given by [17]

Fd;met ijnext; t þ Dtð Þ ¼ ðð1 � ometÞFd;metðijnext; tÞ þ ometF
eq
d;metðij; tÞÞ

1

gmetðijnext; tÞ
; d ¼ 1; . . . ; nvox ð8AÞ

F0;metðij; t þ DtÞ ¼ rmetðij; tÞ �
P

dFd;metðijnext; t þ DtÞ ð8BÞ

The factor 1/γmet in Eq 8A determines the probability of finding available space in the target

box ijnext to fit the incoming molecules met from ij. The activity coefficient γmet is calculated

using the scaled particle theory (SPT) (Eq 16). In this way, the crowding conditions affect both

the effective concentration Ceff,met (Eq 15) and the movement (diffusion) of metabolites across

the system (Eq 8).

In Eq 8A, the equilibrium distribution function Feq
d;met is expressed as [41]

Feq
d;metðij; tÞ ¼ rmetðij; tÞwd; ð9Þ

where wd is a weight factor that depends on the type of grid and the direction d in the scheme

lattice (Fig 5B and 5C), such that in SqL, wd = 0 for d = 0 and wd = 1/4 for d = 1,. . .,4, while in

HexL, wd = 3/9 for d = 0 and wd = 1/9 for d = 1,. . .,6.

The macroscopic density of metabolites met, ρmet (mmol per box), is computed as:

rmetðij; tÞ ¼
P

dFd;metðij; tÞ: ð10Þ

The relaxation parameter ωmet in Eq 8A indicates the relationship between the simulation

parameter Δx, Δt, and the diffusion coefficient in a dilute (non-crowded) medium, such as

water, Dw,met (mm2 s-1).

omet ¼
2

1þ pLDw;met
Dt
Dx2

: ð11Þ

The parameter pL is equal to 4 for SqL, and 8 for HexL [17,41]. The selection of the parame-

ters Δx and Δt, and therefore of ωmet, determine the accuracy of cLBM. Numerical difficulties

PLOS COMPUTATIONAL BIOLOGY The influence of the crowding assumptions in biofilm simulations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009158 July 22, 2021 20 / 24

https://doi.org/10.1371/journal.pcbi.1009158


are found for ωmet> 1, and more accurate simulations are obtained when ωmet approaches 1

[17].

In biofilm modeling, the simulated metabolites can have Dw,met of different orders of mag-

nitude. For example, the ratio Dw,glucose/Dw,oxygen is equal to 0.33 [12]. Thus, for a set of Δx and

Δt, ωglucose/ωoxygen = 0.66. This leads to inaccuracies in the diffusion results, since ωmet< 1 for

at least one of the metabolites. Furthermore, if met is the limiting substrate, the error can be

propagated to the calculations of the metabolic capabilities of microbial cell.

To improve the simulation accuracy of multispecies diffusing systems, we proposed a cor-

rection to cLBM for ωmet< 1, the details of which are provided in S1 Text. Based on Fick’s first

law, the number of molecules Fd,met (Eq 8A) that jump from one box to another during a time

Δt (where ωmet< 1), can be computed directly from Feq
d;met using a scaling factor Δt/Δt1 as:

Fd;met ijnext; t þ Dtð Þ ¼
Feq
d;metðij; tÞ

gmetðijnext; tÞ
Dt
Dt1

d ¼ 1; . . . ; nvox; ð12Þ

where Δt1 is the time step that makes ωmet = 1. The cLBM correction proposed for ωmet< 1

has been validated using the diffusion simulations computed by the MC algorithm [42]. A

comparison of the mean squared displacement predicted by the ω-correction shows a very

good agreement with those computed by MC (see S1 Text).

Supporting information

S1 Fig. Spatial distribution of the metabolites and phenotypes predicted for the E. coli bio-

film with a glucose supply of 2.25 mM at different times. Crowding assumption C1 was

used for the simulations.

(TIF)

S2 Fig. Volume fraction occupied by cells in the E. coli biofilm at different times under

crowding assumption C1 and 2. The glucose supply was set to 2.25 mM.

(TIF)

S3 Fig. Dynamics of the E. coli biofilm with a glucose supply of 2.25 mM under different

crowding assumptions. 2D microbial system was discretized using a square lattice. (A) Bio-

mass. (B) Acetate produced. (C) Active layer depth H normalized by Δx. (D) Number cells

identified with phenotype respiration: glucose + O2 ➔ (acetate) + biomass, fermentation: glu-

cose ➔ acetate + biomass, and inactive cells.

(TIF)

S4 Fig. Parity and residual plots of the metabolic fluxes predicted by the allocation version

of thermodynamics flux analysis (aTFA) and the neural network (NN) created for E. coli.
The NN with 2 hidden layers of 15 neurons each was trained using 100 K random samples.

The normalized mean square error between the fluxes predicted by aTFA and NN was esti-

mated to be 8.5 x 10−5, while the Pearson correlation r is 1. Fluxes vf are given in mmol gDW
-1

h-1, while the growth rate vbio is in h-1.

(TIF)

S1 Text. cLBM for the diffusion of multispecies systems with ωmet< 1.
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