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Abstract: In recent years, wind farm layout optimization (WFLO) has been extendedly developed
to address the minimization of turbine wake effects in a wind farm. Considering that increasing
the degrees of freedom in the decision space can lead to more efficient solutions in an optimization
problem, in this work the WFLO problem that grants total freedom to the wind farm area shape
is addressed for the first time. We apply multi-objective optimization with the power output
(PO) and the electricity cable length (CL) as objective functions in Horns Rev I (Denmark) via
13 different genetic algorithms: a traditionally used algorithm, a newly developed algorithm, and
11 hybridizations resulted from the two. Turbine wakes and their interactions in the wind farm
are computed through the in-house Gaussian wake model. Results show that several of the new
algorithms outperform NSGA-II. Length-unconstrained layouts provide up to 5.9% PO improvements
against the baseline. When limited to 20 km long, the obtained layouts provide up to 2.4% PO increase
and 62% CL decrease. These improvements are respectively 10 and 3 times bigger than previous
results obtained with the fixed area. When deriving a localized utility function, the cost of energy is
reduced up to 2.7% against the baseline.

Keywords: wind farm layout optimization; wind farm area shape; genetic algorithms; gaussian wake
model; multi-objective optimization; pareto front; evolutionary computation; horns rev

1. Introduction

Wind turbine wakes are responsible for considerable power losses in a wind farm
(e.g., [1-3]), which can reduce power output up to 60% under certain wind directions and
wind turbine alignments [4]. During the last two decades, wind farm layout optimization
(WFLO) has been extendedly used to optimize the turbine positions in a wind farm, to
minimize their wake effects and therefore improve its overall performance. Although
numerous WFLO studies from multiple different perspectives have been carried out (see
the review from [5] and references therein), a relevant WFLO question not sufficiently
tackled so far arises on investigating which can be the most appropriate area shape for a
wind farm in a future wind power project.

Within an optimization problem, increasing the degrees of freedom of the decision
space can lead to the increase of the problem complexity (and therefore its computational
cost), but also reach more efficient solutions (e.g., [6-8]). In the case of WFLO, the degrees
of freedom can be raised through e.g., increasing the resolution of the search space, or
removing constraints, such as that on the turbine hub height [9-11], the rotor diameter [12],
or the wind farm boundaries. To this last respect, the possibility to optimize the wind
farm shape has been traditionally neglected in the wind energy industry [13]. This is
because usually wind farm projects are set up in two separate stages: first, the macro-siting
stage takes place, where a certain delimited area is granted by the public administrations,
according to public interest reasons such as environmental, safety and sea usage criteria [14].
Only after that stage is over, the micro-siting (layout design) stage takes place [15,16], and
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the layout of the turbines is set by the wind farm managers (with or without WFLO). This
causes that the initial available area is usually not set according to wind farm performance
criteria. For this reason, if the wind farm area shape and the turbine layout are optimized
simultaneously within a single tool, it is reasonable to expect that a higher wind farm
performance is attained, still respecting the conditions of the public administrations.

The literature involving the optimization of the wind farm area shape has been so far
scarce. Some precursor works measure the used amount of surface (convex hull) by the
wind farm, but keeping the boundaries fixed during the whole optimization [17,18]. Tong
et al. [19] assessed a range of optimization-fixed rectangular wind farm aspect ratios and
orientations (in separate runs), and highlight the sensitivity of the wind farm shape (in
terms of the rectangle aspect ratio) to the overall performance compared to other design
aspects. Stanley and Ning [12] carried out gradient-based WFLO on different design
variables including the expansion of the area size, while keeping the same area shape
unaltered. Finally, Wu et al. [13] proposed the single-objective optimization on the annual
energy production, providing flexibility to the area of the wind farm, by allowing the
optimization of the best performing parallelogram and orientation for the wind farm area
shape. In this context, in this work we address the task to optimize the wind farm by
completely removing any restriction on its area shape, at the time of involving multiple
objective functions at a time.

In contrast to a single-objective optimization, multi-objective (MO) optimization prob-
lems [20,21] allow more than one objective (or cost) function to be optimized at a time. This
results especially suitable for realistic problems, in which their complexity requires the opti-
mization of multiple aspects. A certain problem is especially MO-suitable when its objective
functions are not only independent, but also in conflict [22], so that the optimization of its
objective functions is complementary (e.g., if one of them is single-optimized, the perfor-
mance of the rest will tend to decrease). MO optimization has been used in many different
fields, especially in problems involving some economic variable with a problem-specific
feature, e.g., residential comfort [23], safety of infrastructures [24], energetic performance
(e.g., [25]) or environmental objective functions (e.g., [26-28]), including those addressing
wind power (e.g., [29-31]). Other fields in which MO optimization has provided successful
insight include finance, (e.g., [32,33]), optimal control design (e.g., [34,35]) or industrial
processes (e.g., [36,37]).

Regarding multi-objective WFLO (MO-WFLO), two variables that fall particularly in
conflict when considering a variable (or unconstrained) wind farm area shape are the power
output maximization (PO) and the electricity cable length (CL) reduction. In general, the
fact of separating turbines in a wind farm will involve a PO increase due to the decrease in
the impact of their wake effects, but also will imply a CL growth, which means an increased
cost. This is in contrast with a fixed area WFLO, where results from single-objective PO
optimization alone can involve systematic reductions in CL, usually producing solutions
with turbines tending to locate on the wind farm perimeter (e.g., [38,39]). During the last
decade, several MO-WFLO works have been produced, most of them comparing the wind
farm energy production (or output power) against another objective function, such as
the level of noise [40-42] an objective function of constraints [43], or the economic cost
(e.g., [38,44-47]). Using economic objective functions during the optimization has the
associated problem that they are subject to the continuous change in the local and global
economy. To this regard, some studies have compared non-economic variables as PO
against CL (as the aforementioned scheme) [17,18,48,49]. In turn, a few MO-WFLO works
have compared energy or power with more than one aspect. For instance, in addition to
CL, Li et al. [17] compares power to the used area in an independent exercise, whereas [18]
consider energy production against CL, used area and an environmental impact as three
different additional objective functions (as emphasized above, in these works the wind
farm area limits are kept fixed throughout the whole evolution).

Regarding the optimization technique applied, some WFLO works have used deter-
ministic methods (e.g., [11,50-53]). However, most contributions have done so by means
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of stochastic optimization. From these, most have relied on meta-heuristic techniques
such as ant colony optimization [54], particle swarm [55-57] or the most largely used,
evolutionary (or genetic) algorithms (e.g., [39,58-65]). Stochastic optimization has been
shown well suited for WFLO, as they allow exploring large search spaces without the
need to assess every single wind farm solution therein. This suitability has been especially
proven in combination with objective functions that include the use of an analytical model
to represent wind turbine wakes [66-68], as their computational simplicity allows assessing
multiple (thousands) of wind farm potential solutions in a reasonable time.

In this work, we address the multi-objective CL vs. PO problem by performing a
fully unconstrained (free) wind farm area shape optimization (i.e., without any a priori
predefined family of shapes), by means of a newly developed, shape self-adaptive MO
optimization procedure. In addition, we conceive that the developed routine must keep the
total available area (in terms of km?) constrained, to keep the same amount of sea surface
usage, and to ensure that any potential improvement is due to the shape optimization
instead of a mere area increase. Here we design a novel MO, WFLO-oriented algorithm
inspired by our previous algorithm in [39], and compare it to the Non-dominated Sorting
Genetic Algorithm version II (NSGA-II [69]), a MO algorithm widely used in the context
of industrial processes [36,37,70], including those considering wind energy (e.g., [40,71]).
Furthermore, a set of 11 additional algorithms, with different variations from the two are
also developed and tested. All the algorithms are applied under a realistic framework,
i.e., considering a high-resolution wind climatology and infinitesimal turbine positioning
ability, factors that have been shown crucial when aiming to obtain reliable wind farm
layouts and non-spurious performance [39,49,72]. In addition, our PO objective function
uses the analytical wake model from the Ecole Polytechnique Fédéral de Lausanne (hereafter
the EPFL Gaussian model [68]), which has shown higher accuracy than other models
traditionally employed. In the last part of the article, after the MO optimization, an
economical utility function with the particularities of a local decision maker is derived and
implemented on the solutions obtained during the MO optimizations.

2. Methodology
2.1. Analytical Modelling of the Wind Farm Flow

The high variability of the near-surface wind requires assessing multiple different
wind directions and magnitudes for a given wind farm, to obtain a realistic insight of its
wind power capability [4,73,74]. On the other hand, a WFLO problem usually requires
assessing at least tenths of thousands of different wind farm layout configurations. This
framework is far from being computationally feasible with the usage of computational fluid
dynamics simulations (e.g., large eddy simulations, LES) to model the wake interactions
in a wind farm. This caveat can be overcome through the implementation of simple and
computationally inexpensive analytical wake models, where time-averaged flow conditions
are calculated through simple analytic expressions and only over the specific points of
interest inside a wind farm (essentially in front of the downstream turbines affected by a
wake). Traditionally, very simple analytical top-hat profile wake models have been applied
(especially [66] but also [67]) due to their simplicity, practicality and being computationally
very cheap. In recent years, based on the idea of self-similarity in a wake, a Gaussian-
profiled wake model has been developed [68,74] which satisfies the conservation of mass
and momentum in the far wake flow. This, added to the fact that this model has shown
higher accuracy than previously and traditionally used models [66,67], led us to consider
it for this work. According to it, the velocity deficit AU, normalized with respect to the
incoming velocity Us, can be defined as follows (see [68] for details on its derivation):
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where x, y and z are the streamwise, spanwise and vertical coordinates, respectively,
zj, is the hub height, k* represents the growth rate of the wake, C; stands for the thrust
coefficient of the turbine, D is the turbine rotor diameter and ¢ represents the initial wake
expansion parameter.

The resulting incoming wind speed U; in a turbine j in a wind farm must consider
the contribution of all wind speeds Uj; in all the turbines i located upstream from it, as
well as their interactions, U;;. Niayifar and Porté-Agel [74] showed that the linearization
of the wake superposition, inspired by the pollution plume mass conservation shown
in [75], produced best validation results against LES experiments [76] compared to other
approaches, and thus became the scheme followed in this work:

j-1
Uj = Ueo — Z%(Ui - Uy) , )

i=
where Uj; is the wake velocity of turbine i in the position of turbine j. Finally, a value of
power output Pp, is assigned to each velocity U; obtained, according to the power curve
corresponding to the considered turbine model. Studies based on LES [76] and scanning
wind LiDARs [77] have shown that the growth rate k* of a wake produced by a turbine j
can be associated with the turbulence intensity level I immediately upwind the turbine
rotor. In this work we consider the linear relationship derived empirically between k* and
I derived by [74]. Finally, the turbine added turbulence intensity, i.e., the increase of the
turbulence intensity level produced by each turbine rotor in the wind farm, is defined by
the expression proposed by [78].

2.2. Multi-Objective Wind Farm Layout Optimization (MO-WFLO)

Although some single-solution MO algorithms can be found in the literature (e.g., [79]),
most MO algorithms provide a wide range of solutions, in which the obtained values of
their objective functions gradually change. This means that the set of solutions transits from
solutions entirely optimized only for one of the objective functions (but are least optimized
for the rest of objective functions), until some intermediate solutions that have all objective
functions optimized approximately at the same level. Decision variables of each solution x
are represented in the decision space (), whereas the values of the M objective functions
for each solution x, F(x) = (f(x)1,f(x)2, - - - , f(x) m), are represented on the objective space
A. The intersection of the two optimal objective functions (i.e., here CL,,t and PO, )t) at
the objective space (see Figure 1) defines the ideal objective vector (IOV).

Most MO algorithms generate their range of solutions according to the so-called Pareto
fronts [80] over the A space (see e.g., [81]). Here, for each solution x (i.e., each possible
wind farm layout), decision variables Xj, X, X3, - - - , X7 represent the vector positions
(xt,yt) of the T turbines in the wind farm, whereas the objective function values for that
solution are F(x) =(POx,CLy).

Pareto fronts are based on the concept of non-domination [20,21,82]. Non-domination
is an objective method that compares each solution with the rest, extracting those solutions
that are better performing. A certain solution x is said to be non-dominated with respect to
any solution x” (i.e., x X x) if there is no x” that outperforms x on all objective functions
at the same time. The Pareto front F is thus defined by the front of size S in the A
space formed by the objective function values (F(x1), F(x2),- - -, F(xs)) whose associated
solutions (x1,Xp, - - - ,Xg) are non-dominated by any other solution x":

F:={F(x) e A|[IX € Q]x = x]} . (3)

Formally, if a set of solutions is non-dominated with respect to the whole number of
existing solutions € A, the Pareto front is said to be optimal. As we will refer exclusively
to non-dominated solutions within this case, hereafter it will be just referred to as the
Pareto front F. Here, non-domination refers to those solutions strictly better performing
than all the rest of solutions in at least one of the objective functions CL or PO. The MO-
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WEFLO framework applied in this work is illustrated in Figure 1. As any MO optimization,
here the Pareto front F is to be evaluated at every time step and updated with any new
solution (here F(x) = (POx,CLy)) that fulfills the Pareto front definition. After reaching
some termination condition, the attained set of solutions provided by F during the MO
optimization is delivered to a decision maker (stakeholders, institutions, etc.) which
evaluates them and eventually selects a final one according to its particular requirements.

CF1 Power Output

CF2 Cable Length reduction
<

B Ideal Objctive Vector Pareto Front P'
@ Dominated Solutions @ Single CF-optimal Pareto solution
O Non-Dominated Solutions (Pareto Solutions)

Figure 1. Scheme of the MO-WFLO objective space considered in this work.
2.3. Formulation of the MO-WFLO Problem

As argued in the introduction, an unconstrained (variable) area shape approach of
the WFLO problem can stimulate the conflict between CL reduction and PO increase, thus
making it especially appropriate for MO optimization. Following this idea, here we address
a MO-WFLO with the PO maximization and CL minimization as objective functions. PO
can be defined as the overall output power in all turbines throughout multiple wind speeds
and directions defining its climatology, as follows:

T S B
PO=YY )P0, @

t=1s=1b=1

Po,,, being the power output of turbine f in a wind farm with a T turbines, according
to the incoming wind speed b and angular sector s of a wind rose with S sectors and B speed
bins per sector. The power curve (normally provided by the turbine manufacturer) provides
the power generated by the turbine as a function of the incoming wind velocity [83]. Here
Po, , is derived by applying the turbine power curve to the corresponding incoming wind
velocity U; obtained with the wake model. In turn, the CL objective function is computed
by means of the minimum spanning tree function [84].

WEFLO problems can be subject to multiple constraints. However, two of them are
present in most WFLO contributions, one being related to the minimum distance D,;;;,
between turbine rotors, and the other one linked to the spatial limitation of the wind
farm area, usually in both shape and size. Here, the spatial constraint related to the wind
farm area becomes only linked to the maximum size of the wind farm A;,;x, whereas its
boundaries do not entail anymore a proper constrain, but are permanently updated during
the optimization process. The wind farm area is determined by the convex hull of the
turbine positions according to the algorithm from [85]. In this work we allowed a fully
unconstrained area shape variation while continuously keeping the amount of original
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area (in km?) constrained, to ensure that the potential benefit of the optimization was due
exclusively to the area shape variation and not to an area size increase. To attain this, we
developed a self-adaptive area updating routine at each generation, which was applied to
all the algorithms considered. Specifically, the area update takes place after crossover and
mutation, where three options are possible for an individual WF (for wind farm) regarding
its relative size Ay with respect to the maximum area constraint, Ajy:

° Awr < Amax
An area Aj is defined through the expansion of WF until reaching Ayqx size, while
keeping its shape proportional to the original WF area. This area will be used as limit
for any new position of those turbines which need to be relocated (if any) due to a
violation of the D,,;,, constraint.

® Awr > Apax
The WF is updated by shrinking its size until reaching A4y, while keeping the shape
proportional to the original WF area. This area will be the limit for those turbines
which need to be relocated (if any) due to a violation of the D,,;, constraint, and for
those turbines which are left out of the new area.

° Awr = Amax
No action is taken.

With all the above, the variable-shape (hereafter VariShape) MO-WFLO problem can
be formulated as follows:

e  f(x);: Maximize PO: PO = Y.L Y5, Zszl Po,,,-

*  f(x)2: Minimize CL: minimum spanning tree.

¢  Constraint for the minimum distance X between turbines: X > D,;,,
e Constraint for the maximum area: Awr < Apax.

As a reference for the optimization performance, the optimal attainable values for
the objective functions alone can be defined. The minimum CL (CL,) is ruled by the
distance constraint D,,;,, between two turbines, CLopt = Dy, - (T — 1), whereas the max-
imum attainable PO (PO,:) represents a situation where no wake effects are involved,
hence defined by the power output of a wind turbine alone times the amount of turbines
considered, so that POyt = T - 25521 Zthl POS,;;'

2.4. MOEA Optimization Algorithms

Since their proliferation in the 1990s, population-based algorithms as evolutionary (or
genetic) algorithms have been the most largely used algorithm types for MO optimization
(e.g., [69,86,87], Coello et al. [81] and references therein). This is related to the fact that
population-based algorithms such as MO evolutionary algorithms (MOEA) are capable
of generating multiple solutions of a complex problem, which allows an evolving of the
Pareto front in a balanced trade-off between the different objective functions involved [88].

MOEAs, and evolutionary algorithms in general, are characterized by evolving their
population throughout a series of generations (iterations), until a termination condition is
encountered, and the best performing individual (solution) (or set of individuals) at the last
generation is retained. Each of these iterations typically involve a series of steps, namely
fitness, selection and breeding (generally including crossover and mutation operators).

In this work, a set of 13 different MOEAs is considered, 12 of them being newly
developed here. The set of MOEAs includes:

¢ The NSGA-II [69] algorithm.

*  Anewly designed MOEA inspired by the crossover-elitist genetic algorithm (CEGA) [39],
(hereafter V-CEGA).

*  Asetof 11 additional algorithms, mainly resulting from the hybridization of NSGEA-II
and V-CEGA, or to a lesser extent from small variations from V-CEGA or NSGA-II.

For all of them, a population size (N) based on evolution efficiency was set to 300 indi-
viduals (in the order of the amount in [39]). Additionally, a preset termination condition
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consisting of a running time limit of 144 wall clock hours (8640 min.) was applied to all algo-
rithms, to ensure their equal performance opportunity. Following, the main particularities
of the considered algorithms (selection, breeding and structure) are described.

2.4.1. NSGA-II Algorithm

The NSGA-II [69] algorithm, a MOEA widely used for energy optimization processes
(e.g., [70,71]) including WFLO (e.g., [40]), is characterized by arranging its solutions in the
objective space according to subsequent non-dominated fronts to grant elitism. During
selection, in first place the Pareto front is computed, and the individuals belonging to that
front are selected. Subsequently, those solutions are omitted and the new front computed,
and its members selected. This operation is carried out n times until the sum of the
individuals selected reaches or exceeds the number of elements required. On the last front,
the exceeding elements (if any) are dismissed according to their crowding distance, and
the individuals with smallest distance between them and the surrounding solutions are
dismissed (see [69] for more details).

NSGA-II works (in real-coded algorithms) with a simulated binary crossover (SBX, [89])
and polynomial mutation (PMUT) as breeding operators [90]. In addition, it has an algo-
rithm structure in which, in each generation, the selection is computed after the breeding,
extending the population from N to 2N during the breeding, and reducing it again to
a size of N after the selection. For this work, probabilities p and distribution indices #
for crossover c and mutation m were set following [69], namely p. = 0.9, p; = 0.1 and

He = m = 20.

2.4.2. Vertex-Selection Crossover-Elitist Genetic Algorithm (V-CEGA)

A new MO algorithm was designed for this work, to adapt the WFLO problem to
MO optimization. The algorithm is inspired by the CEGA algorithm from [39] (V-CEGA
algorithm, V for Vertex selection), with a newly introduced selection procedure adapted to
MO optimization. Following, details on the selection and breeding (crossover and mutation
operators) applied at each generation are provided:

*  Selection
Once the objective functions have been evaluated for all individuals and their values
are deployed throughout the objective space, a few of them are selected to generate
new offspring individuals. The number of selected individuals Ng,; is defined by
the population size N and the generation gap GG, so that Ny;; = N - (1 — GG).
Following [39,91] a value of GG = 0.9 was set for V-CEGA, this meaning that at each
generation 10% of the population is selected, whereas the dismissed 90% need to
be renewed . Once N and GG are set, the V-CEGA selection follows a self-adaptive
scheme with two possible procedures depending on the amount of non-dominated
solutions § at the Pareto front. If S < N,;, then the whole Pareto front is selected,
as well as the N,,; — S F(X') solutions nearest to any solution F(x). If on the contrary
S > N (which is most usual), in first place the algorithm systematically selects three
points in the objective space: the two Pareto front solutions that are optimal at each
objective function individually (vertices V1,V5), plus the Pareto solution showing the
minimum distance dy, to the Ideal Objective Vector (IOV, here equal to (CLopt,POopt)),
namely the frontal vertex Vr. To ensure that the selection of Vr is kept independent
from the possible difference of magnitudes of the two objective functions, Vr is defined
after normalizing the objective space. This normalization (Figure 2) is performed
with respect to the distances form V; and V; to IOV, respectively d; and d», so that
they are similar after the normalization. To achieve that, the x coordinates of the
solutions in the objective space (PO values in this case) are multiplied by the d;/d;
ratio, so after that d; (the distance between the new vertex V; position and IOV) is
equal to dy. In second place, further (dominated) solutions F(x') are randomly selected
until the selection size (Nj,;) is reached. To harness all non-dominated solutions from
past generations, if an individual F(x;) is not selected in a past generation but still
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represents a non-dominated solution in the following generation (after fitness), it is
reinstated into the Pareto Front, and therefore susceptible to be selected and become
part of N,

Breeding

During the breeding, which in this work involves both crossover and mutation, new
individuals are created from the selected population until the population size N is
restored. In V-CEGA, the breeding procedures have been preserved identically as
in CEGA [39]. During the CEGA crossover, which is especially conceived for the
WEFLO problem, each of the new individuals (here 90% of the population) are created
from two parents randomly chosen from the selected ones (here 10%). The way the
information from the two parents is used to create the offspring is based on elitist
criteria, which relies on the relative power output of each turbine with respect to
the rest. The crossover is controlled by a single parameter P, which indicates the
fraction of PO with respect to the most performing turbine at the individual with the
higher power output, and is used as a threshold. The turbines at 2; which exceed that
threshold are retained. Finally, the rest of turbines remaining to reach the number of
turbines T in the wind farm are those turbines at a; which are placed closest to the
dismissed ones in a4.

Following the crossover, a certain amount of mutation is introduced to the individuals
to enrich the population diversity. In this way, each offspring has a certain probability
pu, of being mutated. In turn, each turbine at a mutating individual has a probability
pm, of varying its position a distance X (in m). With respect to its original position
X; = (x},y;), a mutated turbine position X]’ = (x;, y;) is defined as:

Xi=Xj+p(Rmz < pmy| Rt < pmy) - X+ (R — Runa) )

where Rm,,, (9 =1, 2,3, 4) are random numbers belonging to the uniform distribution
U(0,1). The breeding operators P, and pyy,, pm, and Xjs were set respectively to 0.9,
and 0.99, 0.8 and 70 following the CEGA parameterization in [39]. After breeding, a
new generation is fully set, and the new elements are ready to be submitted to fitness.

1 W Ideal Objctive Vector

B S — — — Initial Pareto Front
L 7o % O Non-Dominated Solutions
v = Normalized Pareto Front
V2 & @ Non-Dominated Solutions (after normalization)

Figure 2. Scheme of the computation of Vr.

2.4.3. Hybrid Algorithms and Variations from V-CEGA and NSGA-II

V-CEGA has three main elements that are substantially different with respect to

NSGA-IL In first place, in V-CEGA breeding is adapted to the WFLO problem, with
a strategy that allows chromosome elitism inside the wind farm (only low performing
turbines are ‘moved’ to positions provided from the other parent) and has proven highly
effective [39] Secondly, selection is clearly different, as shown in the previous sections.
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Finally, the algorithm structure is different: in V-CEGA the structure is Fitness-Selection-
Breeding, with a 10% selected population that recovers the initial population N during
breeding. On the contrary, NSGA-II has a Breeding-Fitness-Selection structure, with
population increasing momentarily to 2N during breeding, to be reduced again to N
during selection. To investigate the behavior of each of these three elements (breeding,
selection and structure), a series of hybrid algorithms have been developed by combining
these three components from V-CEGA and NSGA-II one by one. This provided an overall
of 6 hybrid algorithms (see Table 1).

In addition to these, other algorithms with smaller variations where derived. For
comparison. versions of V-CEGA and NSGA-II were also set up with a single point
crossover (SPX, [89]), namely V-CEGA-SPX and NSGAII-SPX. In turn, two additional
variations of V-CEGA where derived, one with SBX (but CEGA mutation, V-CEGA-SBX)
and one with PMUT (but CEGA crossover), V-CEGA-PMUT. Finally, a V-CEGA variation
not reinstating the possible dismissed non-dominated solutions in the past generation
was also considered for comparison (V-CEGA-noHF). Overall, up to 13 algorithms were
considered. Table 1 summarizes them according to their three differentiating features
(breeding, selection and structure).

Table 1. Summary of the key features of the set of designed algorithms.

Breeding Selection Structure
NSGA-II NSGA-II NSGA-II NSGA-II
NSGAII-SPX SPX NSGA-II NSGA-II
hybrid1 NSGA-II V-CEGA NSGA-II
hybrid2 V-CEGA NSGA-II NSGA-II
hybrid3 NSGA-II NSGA-II V-CEGA
hybrid4 NSGA-II V-CEGA V-CEGA
hybrid5 V-CEGA NSGA-II V-CEGA
hybridé V-CEGA V-CEGA NSGA-II
V-CEGA-PMUT PMUT V-CEGA V-CEGA
V-CEGA-SBX SBX V-CEGA V-CEGA
V-CEGA-SPX SPX V-CEGA V-CEGA
V-CEGA-noHF V-CEGA V-CEGA V-CEGA
V-CEGA V-CEGA V-CEGA V-CEGA

2.5. Case Study and Local Conditions

In this work, the Horns Rev I wind farm (HR) is considered to be a case study.
HR is an offshore wind farm (WF) in operation located 21 km off the western coast of
Denmark, and consists of 80 2-MW Vestas V-80 wind turbines arranged in a regular grid
(Figure 3). HR (with its 80 V-80 turbines) has been widely considered to be the framework
for wind farm layout optimization works (e.g., [39,72,92,93]). In addition, the real, gridded
HR layout is adopted as baseline benchmark for Power Output (PO) and Cable Length
(CL) objective functions. The HR extension (19.61 km?) was set as the constraint for the
maximum wind farm area A,y in this work, whereas the power curve of the V80 turbine
was adopted from [83]).

Due to its high computational cost, a fully resolved wind rose would not be fea-
sible to be applied to each individual throughout the thousands of generations during
the optimization process. Therefore, a relatively simplified (but still resolved enough)
wind rose (72 directions and 1 wind speed) was applied during the evolution (WRevol,
Figure 4b). In turn, the wind rose used for evaluation of the obtained solutions (WReval,
Figure 4a) is fully resolved, with 120 wind directions (3° resolution) and 22 wind speeds
(1 m/s resolution). WRevol was derived in such a way that the wind speeds at each
sector provided the same wind power output as in WReval, which ranged between
9.9 and 8.3 m/s. The roughness lengths was set to 0.0002 (following [39,74,94]), whereas
the undisturbed turbulence intensity I was set to 0.076 (following the average level for the
offshore wind farm in [95]). This I value produces a near wake region of ~2D (see [68] for
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details), a region not defined for the EPFL Gaussian wake model. To ensure avoiding it, a
D,in of 2.5D was imposed for this work.

S

Figure 4. Wind roses from Horns Rev used respectively for evaluation (a) and evolution (b).

2.6. Wind Farm Maximum Length Constraint

Theoretically, the unconstrained area shape MO-WFLO presents an unbounded result
in the region of the PO maximization, related to a wind farm length. With no further
constraint, a continuously maximized PO might lead to an infinitely long and thin wind
farm area solution (hereafter called ‘long-WF’ solution). For this reason, a constraint on
the maximum length of the wind farm for solutions attaining rather unpractical lengths
was considered. The maximum length constraint was set to 3 times the maximum length
of the benchmark case, HR, which provides a limit of 20.26 km. This distance was set as
a balance between optimization flexibility on one side, and the current wind farm sizing
state-of-the-art on the other. To this last extent, 20 km can be still accepted as a realistic size,
as several offshore wind farms in the North Sea even exceed this length, including several
ones in Denmark (e.g., Anholt [96] or Horns Rev 3 [97]). In addition to the constrained
case (1C), an unconstrained maximum WF length scenario (no-1C) was also considered
for comparison.

3. Results

The 13 algorithms were run on a 16-core computer cluster, each core equipped with
64 GB DDR3 RAM and 2.6 GHz. After the algorithms run, their performance was assessed
and compared to the baseline case (Horns Rev I wind farm, HR) based on their objective
functions (Section 3.1) and their Pareto fronts (Section 3.2). In the same section, all the
Pareto fronts obtained for each algorithm are used to derive a single, aggregated Pareto
front (F,gg), that depicts all the non-dominated solutions attained in this work. Finally, a
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utility function for a decision maker in Denmark is designed and applied to the aggregated
Pareto front as an example of application following a MO optimization (Section 3.5). As
a general remark, it must be pointed out that only the ‘hybrid3’ algorithm exceeded the
maximum WF length constraint during its evolution, so only this algorithm presents results
for both IC and no-IC cases. Results on all the other algorithms are considered to be 1C
results, as in practice none of their solutions exceeded the length constraint.

3.1. Maximum Power Output and Minimum Cable Length

Before addressing the Pareto fronts in general, here we analyze the results regarding
the two objective functions one by one. To this regard, the followed variable-shape MO-
WEFLO strategy generated a wide range of solutions that remarkably increased the Power
Output and decreased the Cable Length compared to the baseline Horns Rev I layout.
Moreover, several of the newly developed algorithms largely outperformed NSGA-II, on
either PO or CL objective functions. Overall, up to 9 of the 12 newly developed algorithms
exceeded the baseline PO, in addition to the ‘hybrid3-no-1C” version. In turn, all solutions
from all 13 algorithms attained shorter Cable Length values than the baseline. In detail, the
set of solutions attained by NSGA-II presented values ranging from a 0.2% PO improvement
to a 61.4% CL reduction against the HR baseline (HR-b). In turn, the algorithms introduced
in this work showed PO improvements up to 5.9% in the no-IC case (‘hybrid3’), and up
to 2.4% in the 1C case (‘hybrid6’). This last result implies an improvement 10 times bigger
compared to the PO improvement attained with the fixed wind farm through the CEGA
algorithm in [39], which reached a 0.24% PO increase against HR-b. Finally, regarding CL,
the developed algorithms reached up to 62.1% reduction ('V-CEGA-noHF’) against HR-b.

The way algorithms evolved through either PO or CL differed remarkably from
one algorithm to another (Figure 5). Although algorithms evolving through PO rather
quickly in general stagnate relatively fast (e.g., ‘hybrid4’, ‘“V-CEGA-SBX’, 'NSGA-II'), others
evolving more slowly attain better final performance (e.g., ‘hybrid2’, hybrid6’). These
behaviors agree with a rather convergence-oriented (exploitation) and diversity-oriented
(exploration) algorithms, respectively. An exception to these behaviors, with an apparently
balanced evolution trade-off between diversity and convergence, would be represented
by the algorithm ‘hybrid5’ (always addressing PO evolution alone), which finally attains
the biggest improvement (IC case). Regarding CL-reduction evolution, differences are
much smaller, improvements ranging between 60.1% and 62.1% CL-reduction. There,
“V-CEGA-SBX’ shows a very well-balanced evolution, evolving less than many algorithms
initially, although finally attaining the largest CL reduction.
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Figure 5. Evolution of the maximum PO (a) and minimum CL (b) obtained at each generation for the algorithms considered.

Dashed black/orange line (a) shows the evolution of ‘hybrid3” with no constraint.
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3.2. Non-Dominated Solutions Regarding the Aggregated Pareto Front

The main goal in a multi-objective optimization is to obtain the most performing
Pareto front as possible (i.e., to obtain a Pareto front as close as possible to the IOV). For this
reason, the overall performance of a given MO optimization algorithm must be measured
throughout the whole set of solutions forming its Pareto front. For instance, two or more
MO algorithms can be compared through the relative position of their Pareto fronts [98].
On this basis, the performance of a certain amount of MO algorithms can be compared
by computing the aggregated Pareto front formed by all Pareto fronts produced by each
algorithm individually, and then measuring the contribution to that aggregated front by
each algorithm. In this work we have derived this contribution by calculating the ratio of
the aggregated front length produced by each algorithm. This has been done as follows:

(1) First, the aggregated Pareto front is computed (i.e., the solutions forming the aggre-
gated Pareto front are selected).

(2) Next, the midpoints of the segments formed by all solutions two by two are calculated.

(3) Then, a score is provided to each solution, equal to the length between its two sur-
rounding midpoints. As vertices V; and V; are surrounded by only one midpoint,
they receive a score equal to the distance to it.

(4) The final score of as given algorithm is the sum of the scores associated with its
solutions, divided by the whole length of the aggregated front.

The relative performance of each algorithm was computed according to the aggregated
Pareto front ratio (Rz,,,) for the whole evolution. Figure 6 shows Rz, . in terms of %
of the whole aggregated Pareto front at each time step, for both unconstrained (a) and
constrained (b) maximum wind farm length cases. Results show that up to the first 20% of
the simulation, ‘hybrid5’ clearly leads the evolution, gartering up to 75% of the aggregated
Pareto front. Then, for the unconstrained maximum WF length case, its prevalence is
sharply and completely substituted by "hybrid3’, which joins the long-WF region and takes
the lead clearly exceeding all the rest of algorithms until the end of the evolution. On the
constrained maximum WF length case, this substitution also happens, but it is gradual and
partial, this in some degree produced by the length limitation of ‘hybrid3’. This allows the
irruption of other algorithms as ‘hybrid2’, and in part also “V-CEGA-PMUT’ towards the
end of the evolution.
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Figure 6. Temporal evolution of the non-dominance ratio R Fass by each algorithm during the optimization, for the cases

without (a) and with (b) max. WF length constraint. Non-dominance is computed considering the aggregated Pareto front

formed by all algorithm solutions at each time step. The algorithm ‘hybrid5” holds most of the aggregated Pareto front up to
the first 36 h of simulation, whereas "hybrid3” and ‘hybrid2’ finally obtain the lead.
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Figure 7 depicts the final aggregated Pareto front on the objective space at the end of
the simulation (Fpgs), for both IC and no-IC cases. ‘hybrid3’ gathers more than half of the
Fagg front, clearly dominating the region of the PO objective function when no maximum
length constraint is applied, whereas it is substituted by "hybrid2” and ‘hybrid5’ (attaining
a remarkably smaller PO) when it is indeed applied. ‘hybrid2’ (and still partly ‘hybrid3’)
dominate the central zone of the Fy¢,, whereas ‘'V-CEGA-PMUT’ gathers most of the
CL-reduction region (although the absolute minimum CL is attained with “V-CEGA-SBX").

The attained aggregated Pareto front shows that the set of algorithms designed for
this work operate in a complementary manner. At the same time, it can be noted that
a major part of the F,¢, can be represented by only a few of the considered algorithms.
For instance, in the no-1C case, an approach with ‘hybrid3’ (especially on the PO region)
and ‘V-CEGA-PMUT’ (especially on the CL region) alone can generate a well-balanced
Pareto front, very near the F,¢. and covering more than 70% of it. In turn, for the 1C
case the considered algorithms work more complementary, and some more algorithms are
recommended to be considered. Essentially, hybrid2” and ‘hybrid5” would cover most
of the PO region, whereas ‘V-CEGA-PMUT’ and ‘hybrid3” would cover a large section of
the CL and the PO-CL transition region, respectively. These 4 algorithms cover 78% of
Fagg (>66% without ‘hybrid3’). It must be pointed out, though, that these selections (IC
and no-1C cases) would not cover the minimum CL (provided by ‘V-CEGA-SBX") solution
(although a solution with just 260 m more CL would be included).
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Figure 7. (a) Pareto fronts obtained from each algorithm at the final generation (see legend for color codes), and aggregated

Pareto front applying (solid black line) and not applying (dashed black line) a maximum wind farm length constraint.

(b) Ratio of non-dominance of each algorithm at the final generation, for both the constrained and unconstrained maximum
wind farm length cases. Results highlight the largest role by the algorithm ‘hybrid3” in the Aggregated Pareto front at the
end of the run when no constrain is applied, and by "hybrid2” when it is applied.
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3.3. Performance Comparison of the Applied Algorithms

Beyond highlighting the algorithms with a biggest role on the F¢. (and thus best
suitable for VariShape MO-WFLO), comparing algorithms two by two can provide some
clues on their suitability. For instance, NSGA-II (red circles) is clearly outperformed by
NSGA-SPX (red diamonds) throughout the whole range of non-dominated solutions. This
demonstrates that overall, SBX is indeed not the most appropriate crossover strategy for
the VariShape MO-WFLO problem. Instead, SBX only appears to be partly useful in two
very specific circumstances. First, it seems to operate correctly in the extreme CL-reduction
region (via ‘V-CEGA-SBX’), where distances between turbines are so small that its big
associated diversity strength can find optimum solutions more easily than others, without
excessively distorting the layouts of the offspring individuals. Secondly, it seems to provide
some useful results within ‘hybrid3’, where, with no maximum length constraint, its
high diversity potential seems to favor the layout elongation rather faster than the rest
of algorithms.

Regarding the slight variations on V-CEGA, it is proven that using a reservoir that
keeps previous non-dominated solutions and reintroduces them along further generations
results in an appropriate strategy, ‘“V-CEGA’ outperforming ‘V-CEGA-noHF’ throughout
all the Pareto fronts. Overall, it is shown that the slight variations on V-CEGA regarding
crossover ("V-CEGA-SBX’, "V-CEGA-SPX’) fail to improve the CEGA crossover in V-CEGA,
whereas only a combination of CEGA crossover and polynomial mutation ("V-CEGA-
PMUT’) provides partly a successful outcome (over the CL region).

Regarding the hybridized versions and their three characterizing features (breeding,
selection and structure), it is worth highlighting that the V-CEGA breeding, through
its presence in "hybrid2” and ‘hybrid5’, holds the best performance overall when the
problem is constrained with a realistic maximum WF length, covering most of the F¢¢
including all the PO region. This seems to work particularly well with NSGA-II selection,
as both hybrids hold it, showing that V-CEGA selection is an element that does not seem
highly efficient when taken outside the full V-CEGA algorithm (as it happens in hybrids
1 and 4). Interestingly, comparing NSGA-II and V-CEGA alone shows that they complement
intermittently through their aggregated Pareto front, NSGA-II holding though the central
part of the front, and V-CEGA rather through most of the CL and PO regions. This
demonstrates the value of having designed new hybrid algorithms that, when combined,
outperformed both original ones.

3.4. Results of the Aggregated Pareto Pront

When having an overall look to the whole F;¢, a rather balanced outcome is obtained
for the no-IC case, with a rather progressive transition from the CL to the PO-dominant
objective function regions, a symptom of having addressed the VariShape MO-WFLO
problem in a balanced manner. This progressive transition is partially broken when the
maximum length constraint is applied, this revealing a prohibited region in the objective
space just after exceeding the baseline PO level. Despite that, it can be highlighted that
within the 1C case, the F¢¢ solutions are still able to further progress through the PO region
(although in a more flattened manner) up to a PO level 2.4% higher than HR-b ("hybrid5").

Figure 8 depicts the wind farm solutions corresponding to the ¢ (selection). For
practical reasons, one every two solutions are represented on the 1C case (including V;
and V»), plus a selection of five ‘hybrid3’ solutions from the no-1C version. As it can be
observed, a progressive transition becomes clear, from very concentrated layouts (with a
bigger performance in CLs) to more expanded ones (similar to those attained in [13]), until
reaching significantly elongated shapes (with bigger performance in PO). Interestingly,
results within the constrained length case also show that the relative minimum width of
the solutions throughout /¢, ends up by increasing again as they approach the region
with highest PO values, an outcome that is subject of further investigation. It is shown
that solutions produced by algorithm ‘hybrid3” (no-1C case) allow this algorithm to obtain
the highest PO values, but with the drawback of having very long wind farm lengths
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(>40 km). On the other hand, when the maximum WF length constraint is applied, most of
these solutions are removed from the Fjg¢, and the maximum PO is provided by several
solutions belonging to ‘hybrid5’ with a wider shape and remarkably more moderate lengths
(~17 km).
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Figure 8. Set of obtained solutions (wind farm layouts) throughout the obtained aggregated Pareto front in the final
generation. Top labels at each solution show the PO and CL values obtained, while bottom labels indicate the algorithm
producing it. Solutions are sorted from minimum CL (top left) to maximum PO (down right), following the aggregated
Pareto front (black line at Figure 7). The dashed square marks out a selection of the solutions exclusively obtained with no
maximum WF length constrain.
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3.5. Decision Maker in Denmark

A decision maker (DM) is a human [81] or artificial [99] entity in charge to make a
choice for a final solution out from the set of solutions provided by the MO optimization.
The DM carries out its choice relying on a utility function, which characterizes the set of
solutions according to some particularized criteria that responds to its own needs [81]. In
this work we have modeled a utility function for a DM localized in Denmark and have
applied it to the F,¢. obtained solutions, to provide an example of a DM selection of a
single final solution.

The levelized cost of energy (LCOE) based on the local conditions in Denmark was
established here as the DM utility function. LCOE is a widely employed economic indicator
that measures the relationship between the lifetime costs of a power-generating asset with
respect to its lifetime energy production. In this work we have followed the LCOE used
in [100] and other offshore wind power works [101]:

C]y +Coy +pr

Lcop==—_W>" ©)
Y

Z:3}:1 (14r)Y

where C I,/ Coy, C F, and Ey are respectively the investment cost, the operation and main-
tenance cost, the fuel cost and the produced energy at year y, whereas r is the discount
rate, throughout a lifespan period ) of 25 years. Naturally, here Cr, = 0. Details on the
expressions for Cy, Co, and E;, can be found in Appendix A.

The obtained LCOE values for the JF,¢, ranged between 0.0654 EUR/kWh and
0.0505 EUR/kWh (IC) or 0.0489 EUR/kWh (no-IC). These values are in line with other
LCOE estimates for offshore wind power [102,103]. The two latter values (minimum LO-
CEs) represent 2.7% (1C) and 5.7% (no-1C) LCOE reduction with respect to the baseline
LCOE (0.0519 EUR/kWHh). Figure 9 shows some relevant examples of solutions (expanded
from Figure 8) corresponding with the LCOE extremes obtained. In addition, the solution
showing the maximum possible CL reduction while obtaining a PO similar to the baseline
is also depicted (Figure 9b).

Considering the particularities of the utility function employed, it can be observed
that minimum LCOEs are obtained for those F 4, solutions providing the highest POs, for
both no-IC or IC cases. Comparing the two initial objective functions (CL and PO) with
the derived utility function LCOE for the whole set of ]-"ugg solutions, some relationships
can be highlighted. Figure 10 shows LCOE plot-scattered against PO and CL for these
solutions. CL is shown to be strongly inversely related to LCOE for small CL values,
whereas it becomes nearly unrelated to it for the biggest CL lengths (from ~25 km). In
turn, PO appears directly related to LCOE for all PO values, although this relationship
starts stagnating for big PO values (for both IC and no-IC cases). Overall, for the particular
features defining the derived LCOE (cable price, turbine cost, etc.), the set of Fagg solutions
shows not having reached an absolute minimum LCOE value, and suggest smaller LCOE
values could be reached with bigger PO solutions. However, this does not prevent from
the fact that if other values of the utility function are used (e.g., a more expensive cable
price), an absolute minimum LCOE may be attained for the obtained set of ]-',lgg solutions.
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Figure 9. Samples of solutions throughout the obtained aggregated Pareto front in the final generation (F¢¢) holding

LCOE extremes obtained for a decision maker in Denmark: (a) max. LCOE (and minimum Cable Length), (b) similar PO
as baseline, (¢) min. LCOE (and max. PO) with max. WF length constraint and (d) min. LCOE (and max. PO) without
max. WF length constraint. Numbers in pink stand for its sorting positions in the Fg¢ (from min. CL to max PO). Circles

represent the turbine rotors proportional to their relative size.
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4. Conclusions

In this work we have carried out the optimization of the wind farm area shape using
multi-objective (MO) optimization on 13 different genetic algorithms. These included a
novel algorithm for wind farm layout MO, a traditionally used MO algorithm (NSGA-II),
and 11 hybridized versions combining elements from the two. The objective functions
considered were the overall power output (PO) and the electricity cable length (CL),
which were evaluated through the EPFL Gaussian analytical wake model [68,74] and the
minimum spanning tree function [84], respectively. Finally, an expression for the levelized
cost of energy was derived and applied to the obtained solutions in the Pareto Front.

Providing total freedom to the area shape during the optimization has shown high
added value to the WFLO problem, especially taking into account that the total surface
(amount of km?) was always kept below or equal to the baseline case (Horns Rev I,
Denmark). Results showed a power output improvement compared to the baseline up
to 10 times larger (2.4%) than the attained through single-objective WFLO [39] with fixed
area (0.24%). These results were attained by imposing a constraint (1C) to the maximum
wind farm length (~20 km, 3 times the maximum Horns Rev I length). Aside, a length-
unconstrained case (no-1C) provided improvements up to 5.9%. These results were obtained
through two newly developed MO algorithms, product of the hybridization between V-
CEGA (a MO-adaption of the CEGA algorithm [39]) and the traditionally used NSGA-
II [69] MO algorithm. The Pareto front resulting from aggregating the individual Pareto
fronts from the 13 algorithms provided solutions ranging from 62.1% CL reduction (but
22% smaller PO) to 2.4% (5.9%) PO improvement and 14% (3.3%) CL reduction for the
constrained (unconstrained) maximum length. The solution holding a similar baseline PO
provided a 14% CL reduction.

Although NSGA-II or V-CEGA alone did not show low performance overall, they were
outperformed by non-dominated solutions from hybridized algorithms throughout ~95%
of the aggregated front (either through 1C or no-1C), which supports a hybridization-based
algorithm design strategy. Although the different algorithms provided complementary
solutions, results showed that just three (two) algorithms were enough to cover 66% (70%)
of the 1C (no-1C) aggregated front, and included most of the relevant solutions attained.
In this way, the variable area shape MO-WFLO problem with 1C (no-1C) showed highest
efficiency through "hybrid2’, “"V-CEGA-PMUT’ and ‘hybrid5” (‘hybrid3’ and ‘V-CEGA-
PMUT’) algorithms (see algorithms description, Section 2.4).

In the performance of the algorithm operators, results indicate that simulated binary
crossover SBX (used e.g., in NSGA-II) is not the most appropriate crossover for the MO-
WFLO problem addressed. This can be explained as WFLO, in general, is highly sensitive
to the relative variation of the turbine positions due to their associated strong effect on
wake induced power losses, a relative positioning that is highly disrupted with the halfway
positioning scheme applied in the SBX crossover. This contrasts with other crossovers
as CEGA (or to a smaller extent SPX), in which the relative positions among turbines is
modified in a smoother way. In turn, the vertex-based selection method seems to be only
efficient when hybridized in combination with the V-CEGA structure.

Multi-Objective optimization allowed to derive a wide range of solutions, progres-
sively transiting from strongly compacted, rounded wind farms (in the minimum CL
region), to very elongated ones with ~17 km (>40 km) length within the IC (no-IC) case (in
the maximum PO region), or to more CL-PO optimization-balanced solutions. The choice
on the final solution is left to the decision maker (e.g., wind farm managers) according
to its particular needs. In this work, a case-study utility function based on the levelized
cost of energy (LCOE) was derived for a potential decision maker located in Denmark,
for all solutions located in the obtained aggregated Pareto front. Results showed that the
proposed MO-WFLO methodology is capable of providing 2.7% (5.7%) smaller LCOEs
within the IC (no-IC) case compared to the baseline value (0.0519 EUR/kWh), and indicate
that the optimum LCOE values for the particular economic parameters considered fall
around the maximum PO area of the objective space.
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List of Acronyms and Symbols

Amax maximum area of the wind farm
Awr area of the wind farm

CEGA  crossover-elitist genetic algorithm
CL cable length

CLexp  export cable length
CLgyp substation cable length

C thrust coefficient

Ce, cost of cable installation

Cy, wind farm investment cost in year y

Cév wind farm operations and maintenance costs in year y
CT‘ wind turbine cost

D turbine rotor diameter

d d distance to IOV, normalized distance to IOV
DM decision maker

€ initial wake expansion parameter

e crossover distribution index for NSGA-II
N mutation distribution index for NSGA-II

Ey Energy produced in year y

EPFL Ecole Polytechnique Fédéral de Lausanne
f(x) objective function

F(x) solution in the objective space A

F Pareto front

Fagg aggregated Pareto front

GG generation gap

HR Horns Rev I wind farm

HR-b baseline layout of the Horns Rev I wind farm
I turbulence intensity level

()% ideal objective vector

k* wake growth rate

A objective space

L electricity cable transport losses

IC constrained maximum wind farm length

LCOE  levelized cost of energy
LES large eddy simulation

M number of objective functions
Mopt optimum ideal value of the objective function
MO multi-objective

MOEA  multi-objective evolutionary algorithm
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N number of individuals in the population

Nqer number of individuals in the selected population
NSGA-II Non-dominated Sorting Genetic Algorithm version II
Q)] decision space

Py crossover operator in CEGA and V-CEGA

Pe crossover probability in NSGA-II

Pm mutation probability in NSGA-II

M mutation operator in CEGA, V-CEGA

P electricity cable price

PO power output

Porsp power output at turbine t, angular sector s and velocity bin b
PMUT polynomial mutation

R random number € U

R, aggregated Pareto front ratio

4 discount rate

S offshore substation

S size of the Pareto front

SBX simulated binary crossover

SPX single point crossover

T number of turbines

u uniform distribution ¢/(0, 1)

Ueo streamwise incoming velocity

U; streamwise incoming velocity in turbine j

Uij streamwise incoming velocity in turbine j produced by wake in turbine i
AU streamwise velocity deficit

v,V Pareto front vertex, normalized Pareto front vertex
V-CEGA vertex crossover-elitist genetic algorithm

WFLO wind farm layout optimization

WF wind farm

X, Y,z streamwise, spanwise and vertical coordinates in the wind farm
X non-dominated solution in the decision space ()

x' dominated solution in the decision space ()

X Euclidean distance in the wind farm

Yy wind farm lifespan

Zp turbine hub height

Appendix A

In this appendix, the values for Cy,, Ey, Co, and r used in this work that take part of
the LCOE definition,

y CytCoy
LCOE = L0 (A1)
Zy:l (I+r)¥

are briefly described:

Cy,: In this study, we consider that all the investment is done during the first year, so if
y #1,thenC I, = 0. HR investment costs were summarized into the V-80 turbines cost, the
substation cost and cost of the three different electricity cables involved. First, according
to details in [105], to each turbine (installation included) a cost Ct of 4 M€ was assigned.
The substation S, according to its features, with a transformer station (34 kV to 170 kV)
and a heliport, received an estimated cost of 2.2 million EUR according to data from [106]
(installation included). Then, three different electricity cable types were considered. First,
the array cable interconnects the turbines inside the wind farm (variable for each solution,
and represented by CL). For HR, CL was found to be a 100 mm thickness cable [107]. This
equals to a 240 mm? cable standard [108], which has a price of Pcr =253 EUR/m [109].
Then, the substation cable CLy,;, connects the turbines with the substation. It consists
of a 34 kV 130 mm thick cable [107], which stands for a 400 mm? cable standard [108],
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with a price Py, of 340 EUR/m [109]. This cable length was set constant (20 km). Finally,
the export cable CLgxp, which connects the substation and the shore (21 km [108]), is a
630 mm? cable [108], which has a price Peyp of 675 EUR/m [65]. The cables installation
cost Cc was set to 260 EUR/m [110] for all cable types. With all this, Cj, can be defined as:

C[l =Cr-T+S+CL- (PCL + Cc) + CLgyp - (Psub + Cc) . (CLgxp . (PEXP + Cc) . (A2

Ey: Ey, which is equal to the annual energy produced (AEP), is the result of multiplying
the power output PO by the number of hours a year, 8760, minus the energy losses
experienced throughout all the different type of cables. The ratio of energy losses can be
computed as follows:

Lc = (1 - Lurruy) . (1 - Lsuhst) . (1 - Lexport) ’ (A3)

where Lasray, Lsupst and Lexport are the losses within the array cable, the substation cable
and the export cable, respectively. Larray, 1 — Lgypst and Lexport have a tabulated value of
6% loss every 1000 km [111], 5% loss every 1000 km [111] and 1.55% loss every 50 km [112].
With this, Ey, can be defined as:

E, = PO-8760- L. , (A4)
so that
0.06 - CL 0.06 - 20 0.0155 - 21
E,=PO-8760- (1 - - =) . (1—- — ). (1 =2 . A
y ©- 8760 ( 1000 ) ( 1000 ) ( 50 ) (A5)

Co,: Maintenance and operation costs Co per kWh were set to 0.03 EUR/kWh as

a midpbint between the range of 0.015-0.045 EUR/kWh [113], so it can be given by
this expression:

Co, = Ey-Co - (A6)

r: Finally, the discount rate r for an unlevered offshore wind company in Denmark
was found to be 7% (“Nordics” in [114]).
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