
Learning to Hit: A statistical Dynamical System based approach

Harshit Khurana, Michael Bombile and Aude Billard

Abstract—This paper proposes a manipulation scheme based
on learning the motion of objects after being hit by a robotic
end-effector. This allows for the object to be positioned at a
desired location outside the physical workspace of the robot.
An estimate of the object dynamics under friction and collisions
is learnt and used to predict the desired hitting parameters
(speed and direction), given the initial and desired location of
the object. Based on the obtained hitting parameters, the desired
pre-impact velocity of the end-effector is generated using a
stable dynamical system. The performance of the proposed DS
is validated in simulation and and is used to learn a model for
hitting using real robot. The approach is tested on real robot
with a KUKA LBR IIWA robot.

I. INTRODUCTION

Nowadays, robots are widely used in industry for instance
in repetitive tasks such as pick and place. Usually, in such
a task, the initial and final positions of the object are within
the reach of the robot, i.e. in its workspace. Robot swift
manipulation of objects in unstructured and dynamic envi-
ronment is crucial for the industry. For instance, in logistics,
the booming of e-commerce and its related challenges have
increase the need to speed up the pace of pick-and-place
operations. In some cases, this need can be achieved by
resorting to manipulation strategies that exploit impulsive
actions (either through pushing, hitting or throwing) to move
an object to its desired position. Such a strategy not only
could speed up the process, but also will allow the object
to be placed at a desired position well beyond the robot’s
natural manipulation boundaries. Thus in this work, we
are interested in this kind of manipulation strategy, more
particularly in those which exploit an intentional impact to
impart a movement to the object in order to place it at a
desired location.

When tossing objects, many challenges need to be over-
come to ensure that the object will land at the appropriate
location. The speed and orientation at impact are crucial. A
slight offset in either of these two variables may lead the
robot to fall short from its desired location, or conversely to
land offsite. Such failure may lead to damages to the object
or the environment. If humans are to work in the vicinity,
this may lead to injuries.

Unlike pushing, where the action is continuous and can be
adjusted before the object is released, when hitting or tossing
the object, the action is instantaneous. This means that the
action must be adjusted appropriately right from the start so
that it will yield the desired displacement.

Additional challenges arise from the uncertainty linked to
the dynamics of the object in the environment. The object

All authors are with the Learning Algorithms and Systems Laboratory,
EPFL, Lausanne, Switzerland, e-mail: {firstname.lastname}@epfl.ch.

in its motion is subjected to gravity forces, frictional forces
and other aerodynamic forces such as the drag, which are
generally only known approximately. If the object’s dynamics
is known, determining the evolution of its state from a known
initial state and action is a trivial problem. However, this
work is mainly concerned by the inverse problem which
consists of determining the initial action which would cause
the evolution of the state of the object to reach the desired
position. This problem is not trivial, generally admits several
solutions and is further complicated by uncertainties associ-
ated to physical phenomena involved. Thus, to address this
problem, we will follow a machine learning-based approach,
where the mapping between the desired position of the
object and the initial angle and speed of the object’s motion
is learned and used in new situations. Thus, besides the
generation of the hitting motion using dynamical systems
(DS), we follow a two-step approach to realize hitting-based
manipulation tasks by a robot. First, we learn the appropriate
hitting parameters (initial angle and speed) of the object
given its initial and desired positions. Second, we determine
a strategy to modulate the pre-impact speed of the robot’s
end-effector to produce the desired post-impact velocity of
the object regardless of the joint configuration at hitting time.

II. RELATED WORK

Manipulation outside the physical workspace of a robot
has been an innovative and creative task that has led to
wide research on motion of the robot and various controls
associated. Combining this with robots working in a semi-
structured environment with humans leads to the issue of
safety and we discuss the work present in this scenario. A
wide variety of methods have been implemented in the areas
of mechanics, probabilistic modeling of object motion such
as [1].

A wide group of work have studied the problem of pushing
an object [2]. The studies vary from analytical modelling [3]
to data driven modelling of motion. Pushing alone is a hard
task to predict and plan and hence early approaches tried to
identify parameters such as friction on-line [4], [5]. More
recent approaches gather dataset for learning the intricacies
of pushing an object using a manipulator, covering different
shapes, material properties, pushing speed, accelerations,
contact position and direction [6] and use the dataset to
model planar pushing [7], [8] using Gaussian Processes [9].
A probabilistic technique for modeling planar sliding of non
uniform objects was shown in [10]. It focuses on comparing
the real motion to different simulated motion with different
friction and mass models and attempts to close the sim-to-
real gap.

Pushing an object however remains constrained by the
robot’s workspace. Because of quasi-static assumptions it
requires a constant application of force to move and place
the object. Tossing has been offered as a means to extend this
workspace [11]. Similar to tossing, hitting can vastly expand
the robot’s workspace and as been studied in the context of
sport such as for playing golf [12], table tennis [13], juggling
[14], football (like RoboCup) [15], and Volleyball [16]. The
above have in common the aspect of hitting a ball, spherical
in shape, and in which case the hitting is invariant to the
orientation of the object. In terms of playing table tennis and
juggling a table tennis ball, the In minigolf [12], although the
final position of the ball matters, it is not required for the ball
to stop at the position. The hitting parameters are learnt from
the correct demonstrations which do not completely learn the
motion of the golf ball.

Compared to pushing, tossing and hitting an object brings
a number of additional challenges. Quasi-static assumption is
no longer valid as neither the velocity of the end-effector nor
the object are small. Hitting requires an impulse generation
that makes it harder to predict the post impact object velocity.
[14] estimates the coefficient of restitution and the drag
coefficient to improve the process of hitting, but is bound
by symmetric hitting of a spherical ball.

We propose a system which does not assume quasi-static
motion. It uses stable DS to generate motion and produce
non zero relative contact velocity between the robot and an
object. Moreover, it models from data, the object’s motion
dynamics and predicts its post impact behaviour.

III. APPROACH

We seek to generate robot motions to impact an object such
that the post-impact state of the object reaches a desired state
within some tolerance. This section describes how we build
a probabilistic model of the object’s motion and how we
learn the hitting task parameters. We then show how we can
combine the learned models with a sequence of dynamical
systems control law. The latter offers great resilience to
change in the target and the original location of the robot.

A. Probabilistic modeling of the object motion

A physics based model capturing the motion of an object
post-impact depends on the environment conditions such as
friction, contact and impact dynamics, drag forces etc, that
are hard to model. Given the fact that the post impact be-
haviour of an object depends on the pre-impact conditions of
the environment, we create a regression model from the pre-
impact hitting conditions to post-impact sliding observations.
The pre-impact hitting conditions are direction of hitting,
and speed of the robot end-effector represented as (vee, θ)

T ,
initial position of the object (xi, yi), and the post-impact
observations are the final position of the object on the sliding
surface, represented as (xf , yf).

Let G be the hitting function learnt. Using (xf , yf) and
(xi, yi), we calculate the desired displacement of the object
and the direction of the hit, which are the input to this
regression model. I and O represent the input and the output

of the regression model respectively. We have G(I) = O
with I = (ddes, θ) and O = vee.

Fig. 1: Representation of the object on the sliding plane.

B. Learning hitting task parameters

Hitting parameters are pre-impact end-effector velocity and
the direction of hitting the object.

Calculation of hitting direction is straightforward. The
object’s initial position is represented as χi = [xi; yi; zi] and
the desired final position of the object is χf = [xf ; yf ; zf],
for planar sliding, we have:

θ = tan−1 yf − yo
xf − xo

(1)

Calculation of the hitting speed is done by building a
probabilistic estimate of the relationship between the hitting
angle, speed and desired distance: Given the learned model of
the data with features (ddes, θ, vee)

T , we create a regression
model which separates the features as input and output of
the regression function. This is done via Gaussian Mixture
Regression (GMR), described in VII-A. GMR is a generative
model which allows us to compute the conditional distribu-
tions of the variables at hand [17].

C. DS-based motion generation

Once we have learnt the direction and the speed of the end
effector, we need to create an autonomous hitting motion
for the robot. To generate the flow, we need the end effector
to approach the object towards the face which needs to be
hit and move in the direction of the final desired position.
This is achieved with a combination of three different linear
dynamical systems.

• Main Dynamical System (f1(χ)) attracts the motion
of the system towards to the main attractor, (χ∗1) in the
direction of the final desired position of the object. This
allows the end effector to move in the direction of hitting.
• Auxiliary Dynamical System (f2(χ)) attracts the motion
of the system to a phantom attractor (χ∗2) placed in between
the object and the robot. This allows the robot to first move
towards the side of the object which needs to be hit.
• Modulated Dynamical System attracts the system to the
line joining the object and the final desired position. This
dynamical system generates motion to keep the robot’s end
effector from moving away the desired hitting path.
They are formulated below:

f2(χ) = Rz(θ)A2Rz(θ)
T (χ− χ∗2)

f1(χ) = Rz(θ)A1Rz(θ)
T (χ− χ∗1)

(2)

fm(χ) = Rz(θ)KmRz(θ)
Tχ⊥ (3)

where, χ⊥ is normal vector joining χee and the line formed
by χo and χ∗1. Rz is a rotation matrix depicting rotation
around z axis, since the object is being hit in the horizontal
/ world X − Y frame.

R =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

where θ is given by eq. (1). A2 and A1 are the eigenvalue
matrices of the respective dynamical systems, which ensure
their stability (A1, A2 < 0).
Km is the modulation coefficient that allows the action
of the modulated DS when the system is close to the line
joining the object position and the main attractor.

Km = diag(−e(−‖χ⊥‖/σ2)) (4)

The final DS is a linear combination of the dynamical sys-
tems defined above in equation (2) and (3) and renormalised
to the desired speed of the end effector.

f(χ) = α(χ)f2(χ) + (1− α(χ))f1(χ) + fm(χ) (5)

χ̇ = fh(χ) =
f(χ)

||f(χ)||
vd (6)

where, fh(χ) is the hitting dynamical system and vd is the
desired end effector speed.

Designing the weighting function α(χ): α(χ) shifts the at-
tractor of fh(χ) from auxiliary attractor to the main attractor,
depending on the current position of the end-effector. Fig. 2
depicts geometrically, the projections used in the calculation
of α(χ).

α(χ) =
||proj(χee − χo)||
||proj(χeei − χo)||

(7)

where, χee is the current end effector position and χeei is the
initial effector position in cartesian coordinates. At the start
of the motion, α(χ) = 1, which enables the end effector
to move towards the phantom attractor. As soon, as the end
effector starts moving, α(χ) moves from 1 to 0, at which
point the motion is towards the main attractor.

The motion generated by the dynamical system as repre-
sented in Eq. 6 is first tested in simulation to see how it hits
the object, with different initial positions of the robot, object
and varying hitting directions.

D. Stability proof for the Hitting Dynamical System

To prove the stability of f(χ), it is sufficient to prove the
stability of g(χ), where f(χ) = Rz(θ)g(χ)Rz(θ)

T , since
this is just a rotation of the dynamical system.

g(χ) = α(χ)A2(χ−χ∗2)+(1−α(χ))A2(χ−χ∗1)+Km(χ⊥)

Km(χ⊥) can be written as follows:

Km(χ⊥) = Km(χ− χ∗3)

Fig. 2: Geometrical understanding of α(χ): α(χ) is the
ratio of the length of vectors obtained by projecting relative
position vectors of end-effector and object in different states
before the impact on the plane with the normal as vector
joining the pre-impact object position and desired final posi-
tion.

For the sake of this proof, we denote 1− α(χ) = β(χ), and
α(χ) and β(χ) are represented as α and β.

A1 =

a11 0 0
0 a12 0
0 0 a13

 , A2 =

a21 0 0
0 a22 0
0 0 a23

Km =

k1 0 0
0 k2 0
0 0 k3

where, , a11, a12, a13, a21, a22, a23, k1, k2, k3 < 0.
g(χ) can be written as follows:

g(χ) = Lχ− LL−1χ∗4

= L(χ− L−1χ∗4) (8)

where

L =

αa21 + βa11 + k1 0 0
0 αa22 + βa12 + k2 0
0 0 αa23 + βa13 + k3

 and

χ∗4 =

αa21χ
∗
2 + βa11χ

∗
1 + k1χ

∗
3

αa22χ
∗
2 + βa12χ

∗
1 + k2χ

∗
3

αa23χ
∗
2 + βa13χ

∗
1 + k3χ

∗
3

Eq. 8 is a linear time invariant system and is globally
asymptotically stable if eigenvalues of L < 0. Since L is a
diagonal matrix, it means that all the diagonal entries of L
should be less than 0.
We have, 0 ≤ α, β ≤ 1, by design and aij < 0. This makes
sure that individual diagonal entries of L are less than
0, which means eigenvalues of L < 0, thus making g(χ)
globally asymptotically stable [18].

E. Robot dynamics and control

The dynamics of n degrees of freedom robot manipulator
in task space can be written as

M(x)ẍ+C(x, ẋ)ẋ+ g(x) + fe = fc (9)

where x ∈ R3×SO3 denotes the task space vector of position
and orientation. M(x) ∈ Rn×n and C(x, ẋ) ∈ Rn×n denote
the robot’s inertia, and centrifugal and Coriolis matrices.
g(x) ∈ R6 is the vector of gravity wrench. fe ∈ R6 represents
an external wrench applied by the robot, whereas fc ∈ R6

is the control wrench of the robot. Now assuming that the
gravity wrench is already compensated and separating the
position from the orientation task, to track a desired task
space velocity ẋdi while preserving passivity, the control force
and torque fci ∈ R3 can be designed such that [19]

fci = −Di(xi)(ẋi − ẋdi) = di1ẋ
d
i −Di(xi)ẋi (10)

with i = (p, o) which stand for position and orientation.
Di(xi) ∈ R3×3 is a state-damping matrix, whose first eigen-
vector di1 is aligned with ẋdi and the other are orthogonal.

For the hitting motion considered in this paper, we focus
essentially on the position component by generation χ̇dp using
autonomous dynamical system (χ̇dp = f(χp)) to be described
in section (III-C). Whereas for the orientation, the desired
angular velocity χ̇do = ωd is computed using quaternion error
between the current and the desired orientation (predefined).
Thus, we have

ωd = k.(δq− q)× q∗ (11)

where q and q∗ denotes respectively the current end-
effector quaternion orientation and its conjugate. δq =
Slerp(q, qd, 0.5) with qd the desired quaternion and Slerp
represents the spherical interpolation function. k is a positive
gain.

IV. EXPERIMENTS

A. Setup

The proposed method is evaluated with the scenario of a
robot hitting an object (a cardboard box) in a planar manner
on a table with unknown friction value. Fig. 3 shows the
setup consisting of a KUKA LBR IIWA7 which is a 7 DoF
robot, with a 26cm× 26cm× 23cm box, weighing 0.363kg.
The dynamical system mentioned in Sec. III generates motion
that passes through the center of mass of the object, which
is assumed to be at the geometrical center of the object,
considering uniform mass distribution. This allows for the
hit to not generate unwanted roational effects on the object,
so that it is able to slide on the surface. The motion of the
box is tracked and recorded through Optitrack motion capture
system with Prime 17W cameras with streaming frequency
250 Hz. Fig. 4 shows the difference between the commanded
speed of the end effector and the achieved speeds. The
achieved speed saturates around 1.1m/s.

B. Data Collection

We collect the data on how the object moves upon being hit
by the robot with a certain velocity and in a certain direction
using the Hitting DS, engineered to pass through the center
of mass of the known object. The data is collected using
a real KUKA iiwa 7 robot hitting an object, as shown in
Fig. 3. The commanded speed and commanded direction
are uniformly distributed in the space of [0, 2.5]m/s and
[−0.4, 0.4] radians. The data collected for learning of the
model are the commanded speed and direction, the end
effector velocity at the time of hitting the object, initial
position of the object and the final position of the object. The
collected data consists of 60 data points which are uniformly
spread around in the above mentioned space of direction and
speed.

C. Learning

• Modeling the mapping from end effector speed to the
final object position: A Gaussian Mixture Model is used to
model the entire dataset using Expectation - Maximisation.
Since, this leads to a local optimal solution, the modelling is
performed with different initialization to find the better fit.
Bayesian Information Criterion is used to select the optimal
number of Gaussians modelling the data. BIC calculates a
tradeoff between the likelihood of the model and number
of parameters used in the model. Fig. 5 shows one such
model for the data with 3 Gaussians. Through this we obtain
P (d, θ, vee).

Once, we have the model of the data, we predict the desired
hitting speed, given the initial and the final desired position of
the object using GMR, which calculates desired speed as ex-
pectation of conditional probability vd = E(P (v|d, θ)). The
calculation of expected mean and the variance of prediction
has been previously shown in Section. VII-A and III.

The model has been implemented using the architecture in
[20].

V. RESULTS

A. Implementation

Table. I shows the desired final positions of the object,
relative to its initial position. Using this, we calculate the
distance and direction and predict the hitting speed. The
desired final position spans across the table as shown in Fig.
7. For each of the final desired positions, the experiment is
repeated 5 times.

TABLE I: Experimental Data

No. χrel ddes θ(rad) vee(m/s)

1 (0, 0.5)T 0.5 0.0 0.817
2 (0.2, 0.5)T 0.54 -0.38 0.91
3 (−0.1, 0.6)T 0.61 0.16 0.94
4 (−0.1, 0.7)T 0.71 0.14 0.98
5 (−0.2, 0.5)T 0.54 0.38 0.96

B. Fastest contact speed

Feasible Fastest impact-safe hitting is currently achieved
at 1.1m/s and is also shown in Fig. 4

(a) Approaching phase (b) Hitting phase (c) Final position of the object

Fig. 3: Snapshots depicting three stages of the box hitting experiment. In (a) the robot is approaching the object. In (b)
the robot hits the object. We can see here that the impacting with a flat end effector leads to further uncertainty due to
differences in orientation of the box and the end-effector. In (c) we see the final position of the object being outside the
physical workspace of the robot

Fig. 4: Collected data: for different end effector speeds and
direction of hit, we measure the displacement of the object.

Fig. 5: GMM Model: Here we see the data modeled using
two gaussians in a GMM. Each gaussian is shown with three
iso-contour ellipsoids.

C. Error in prediction of Hitting Speed

While we select the number of gaussians in the model
using cross validation and BIC criteria, the RMSE in the
predicted speeds from the test data are calculated to have an
idea of the accuracy of the prediction. The average RMSE

for hitting speed prediction in the cross validation prediction
is 0.085m/s. The results of GMR are visualised in Fig. 6.

Fig. 6: An example of speed prediction for the cross valida-
tion test data - ellipsoid in blue depicts one standard deviation
in the prediction value.

D. Position Accuracy and Repeatability

The experiment is repeated five times for each desired final
position of the object. The measure employed is the relative
RMSE error in the distance covered by the object. Fig. 7
shows in black, the desired final positions of the box and the
bounding rectangles show the achieved final positions of the
box, using the hitting speed estimates from the GMR model.
All locations are reached within the tolerance except for one
outlier for the desired position [−0.1; 0.7]. Table II shows

TABLE II: Desired and achieved distances (in m)

No. ddes d1 d2 d3 d4 d5

1 0.5 0.49 0.54 0.53 0.52 0.54
2 0.54 0.47 0.66 0.53 0.63 0.69
3 0.61 0.63 0.66 0.69 0.68 0.69
4 0.71 0.97 0.71 0.71 0.67 0.74
5 0.54 0.48 0.50 0.64 0.61 0.46

the data comparing the achieved distances with the desired
distance. We test the model by RMSE and relative RMSE on
the distance covered by the object after being hit, which are

Fig. 7: Precision with which the box reached the desired
target. In black, the desired final positions of the box. The
bounding rectangles show the achieved final positions of the
box, using the hitting speed estimates from learned model.

TABLE III: Accuracy of distance coverage (in m)

No. ddes(m) RMSE(m) rel RMSE(%)

1 0.5 0.03 6.35
2 0.54 0.10 18.9
3 0.61 0.06 10.67
4 0.71 0.12 17.03
5 0.54 0.07 13.84

reported in table III. From Fig. 8, we see that there exists
the outlier we notice in Fig. 7. The outlier is attributed to
double hit from the end-effector due to a late joint orientation.
Including the outlier in the calculations, we have maximum
relative RMSE of 18.9%. We see more variance in reaching
the desired positions which have higher θ values. This is
because the end effector hits the object on its edge which
leads to higher uncertainty due to rotational effects induced.

E. Directional Accuracy

Table IV shows the errors in the desired and the achieved
direction of hitting and Fig. 9 depicts the variance in the
directional accuracy for the hit. The hitting accuracy is lowest
in test cases 2 and 5, which correspond to the desired
positions of (0.2, 0.5)T and (−0.2, 0.5)T . This is because
of the end effector hitting the object on its edge that leads
to higher uncertainty. This can be overcome by either more
data collection or first aligning the object with the direction
of hitting so that the end effector hits the object as desired.

TABLE IV: Accuracy of direction of motion (in rad)

No. θdes(rad) RMSE(rad) rel RMSE(%)

1 1.57 0.077 4.87
2 1.19 0.21 17.3
3 1.74 0.05 2.91
4 1.71 0.03 1.74
5 1.95 0.18 8.86

Fig. 8: Box Plot for the Test data: Shows the variance for the
different desired positions for the object. Higher variance in
noted when high directionality of hit is required.

Fig. 9: The directional accuracy is lower when the direction
of hit θ is not near 1.57 rad. The further we move from 1.57
rad, the more the variance increases.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed a DS based manipulation
scheme for hitting a known 3D object in a planar manner,
using data driven model for the object’s motion. Data driven
model has been chosen since modeling friction, drag, and
pressure distributions are a non trivial problem. Future work
involves learning motion models better with limited data
points, creating stable path planning dynamical systems that
are able to transfer momentum and generate accelerations,
hence aiding dynamic motions.

ACKNOWLEDGMENTS

The authors would like to thank for the support from the
European Commission, Project I-AM, and Farshad Khadivar

for his help in the implementation of the controller used in
this paper.

VII. APPENDIX

A. Background Knowledge
Gaussian Mixture Regression forms an integral part of this paper, and hence is

described briefly in this section. Assume we have the joint probability distribution of
the data which consists of both input and output. The probability that a data-point
ζ = [O; I] (O being the output and I , input) belongs to a GMM is as follows:

P (ζ) =
K∑

k=1

πkN (ζ;µk,Σk)

where πk are the prior probabilities of the gaussians of the GMM and N (ζ;µk,Σk)
are the Gaussian distributions composing the GMM. µk and Σk are the means and
covariance matrices of the kth gaussian and can be written as:

µk =

[
µIk

µOk

]
,Σk =

[
ΣIk ΣIOk

ΣOIk ΣOk

]
Once, we have the GMM, we compute the distribution of the output variable O, given
the input variable I and Gaussian k

P (O|I, k) ∼ N (µ̂k, Σ̂k)

where,

µ̂k = µOk + ΣOIkΣ
−1
Ik (I − µIk)

Σ̂k = ΣOk − ΣOIkΣ
−1
Ik ΣIOk

Using the above equations, we can sum over all the gaussians to generate conditional
expectation of O, given I .

µ̂ =

K∑
k=1

hkµ̂k, Σ̂ =

K∑
k=1

h
2
kΣk

where,

hk = πk
N (I;µk,Σk)∑K

k=1N (I;µk,Σk)

REFERENCES

[1] S. Kim and A. Billard, “Estimating the non-linear dynamics of
free-flying objects,” Robotics and Autonomous Systems, vol. 60, p.
1108–1122, 09 2012.

[2] J. Stüber, C. Zito, and R. Stolkin, “Let’s push things
forward: A survey on robot pushing,” Frontiers in
Robotics and AI, vol. 7, p. 8, 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/frobt.2020.00008

[3] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” The International Journal of Robotics Research,
vol. 15, no. 6, pp. 533–556, 1996.

[4] T. Yoshikawa and M. Kurisu, “Indentification of the center of friction
from pushing an object by a mobile robot,” in Proceedings IROS’91:
IEEE/RSJ International Workshop on Intelligent Robots and Systems’
91. IEEE, 1991, pp. 449–454.

[5] “Estimating the friction parameters of pushed objects,” in Proceedings
of 1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’93), vol. 1, 1993, pp. 186–193 vol.1.

[6] N. F. KT. Yu, M. Bauza and A. Rodriguez, “More than a million ways
to be pushed: A high-fidelity experimental dataset of planar pushing,”
in IROS. IEEE, 2016, pp. 30–37.

[7] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for
planar pushing,” in ICRA, 2017.

[8] F. H. M. Bauza and A. Rodriguez, “A data-efficient approach to precise
and controlled pushing,” in CoRL, 2018.

[9] C. E. Rasmussen, “Gaussian processes in machine learning,” in Sum-
mer School on Machine Learning. Springer, 2003, pp. 63–71.

[10] C. Song and A. Boularias, “A probabilistic model for planar sliding
of objects with unknown material properties: Identification and robust
planning,” 2020.

[11] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” 2019.

[12] S. M. Khansari-Zadeh, K. Kronander, and A. Billard, “Learning
to play minigolf: A dynamical system-based approach,” Advanced
Robotics, vol. 26, no. 17, pp. 27. 1967–1993, 2012. [Online].
Available: http://infoscience.epfl.ch/record/181052

[13] J. Tebbe, Y. Gao, M. Sastre-Rienietz, and A. Zell, “A table tennis robot
system using an industrial kuka robot arm,” in Pattern Recognition,
T. Brox, A. Bruhn, and M. Fritz, Eds. Cham: Springer International
Publishing, 2019, pp. 33–45.

[14] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011, pp. 5113–5120.

[15] H. Kitano, M. Asada, I. Noda, and H. Matsubara, “Robocup: robot
world cup,” IEEE Robotics Automation Magazine, vol. 5, no. 3, pp.
30–36, 1998.

[16] H. Nakai, Y. Taniguchi, M. Uenohara, T. Yoshimi, H. Ogawa, F. Ozaki,
J. Oaki, H. Sato, Y. Asari, K. Maeda, H. Banba, T. Okada, K. Tat-
suno, E. Tanaka, O. Yamaguchi, and M. Tachimori, “A volleyball
playing robot,” in Proceedings. 1998 IEEE International Conference
on Robotics and Automation (Cat. No.98CH36146), vol. 2, 1998, pp.
1083–1089 vol.2.

[17] H. G. Sung, Gaussian mixture regression and classification. Rice
University, 2004.

[18] C.-T. Chen, Linear System Theory and Design, 3rd ed. USA: Oxford
University Press, Inc., 1998.

[19] K. Kronander and A. Billard, “Passive interaction control with dynam-
ical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1,
pp. 106–113, 2016.

[20] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

