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COMPLEXITY ANALYSIS OF STOCHASTIC GRADIENT METHODS FOR
PDE-CONSTRAINED OPTIMAL CONTROL PROBLEMS WITH UNCERTAIN

PARAMETERS

Matthieu Martin1,*, Sebastian Krumscheid2 and Fabio Nobile3

Abstract. We consider the numerical approximation of an optimal control problem for an elliptic
Partial Differential Equation (PDE) with random coefficients. Specifically, the control function is a
deterministic, distributed forcing term that minimizes the expected squared 𝐿2 misfit between the state
(i.e. solution to the PDE) and a target function, subject to a regularization for well posedness. For the
numerical treatment of this risk-averse Optimal Control Problem (OCP) we consider a Finite Element
discretization of the underlying PDE, a Monte Carlo sampling method, and gradient-type iterations to
obtain the approximate optimal control. We provide full error and complexity analyses of the proposed
numerical schemes. In particular we investigate the complexity of a conjugate gradient method applied
to the fully discretized OCP (so called Sample Average Approximation), in which the Finite Element
discretization and Monte Carlo sample are chosen in advance and kept fixed over the iterations. This
is compared with a Stochastic Gradient method on a fixed or varying Finite Element discretization, in
which the expectation in the computation of the steepest descent direction is approximated by Monte
Carlo estimators, independent across iterations, with small sample sizes. We show in particular that
the second strategy results in an improved computational complexity. The theoretical error estimates
and complexity results are confirmed by numerical experiments.
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1. Introduction

Many problems in engineering and science, e.g., shape optimization in aerodynamics or heat transfer in
thermal conduction problems, deal with optimization problems constrained by partial differential equations
(PDEs) [8,13,25,27,34]. Often, these types of problems are affected by uncertainties due to a lack of knowledge,
intrinsic variability in the system, or an imprecise manufacturing process. These uncertainties could appear for
instance in the material properties or boundary conditions and are often described probabilistically in terms of
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3 CSQI, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
*Corresponding author: mat.martin@criteo.com

c○ The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021025
https://www.esaim-m2an.org
mailto:mat.martin@criteo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


1600 M. MARTIN ET AL.

random variables or random fields. Such Optimal Control Problems (OCPs) are sometimes also referred to as
problems of Optimization Under Uncertainty (OUU).

In this work we focus on the numerical approximation of the problem of controlling the solution of an
elliptic PDE with random coefficients by a distributed unconstrained control. Specifically, the control acts as
a deterministic volumetric forcing term, so that the controlled solution is as close as possible to a given target
function.

While there is a vast literature on the numerical approximation of PDE-constrained optimal control problems
in the deterministic case (see, e.g., [8,27] and the references therein), as well as on the numerical approximation
of (uncontrolled) PDEs with random coefficients (e.g., [4, 23, 35]), the analysis of PDE constrained control
problems under uncertainty is much more recent and incomplete, although the topic has received increasing
attention in the last few years.

The different frameworks of PDE-constrained OCPs under uncertainty considered in the literature can be
roughly grouped in two categories.

In the first category, the control is random [1, 6, 10, 32, 43, 48]. This situation arises when the randomness
in the PDE is observable hence an optimal control can be built for each realization of the random system.
The corresponding optimality system might still be fully coupled in the random parameters, e.g., if the random
objective function also involves some statistics of the state variables (e.g., deviation from the nominal response).
The dependence on the random parameters is typically approximated either by polynomial chaos expansions or
sampling-based Monte Carlo (MC) techniques.

This is, for example, considered in [32] where the authors prove analytic dependence of the control on the
random parameters and study its best 𝑁 -term polynomial chaos approximation for a linear parabolic PDE-
constrained OCP. In [10] the authors combine a stochastic collocation method with a Finite Element (FE)
based reduced basis method to alleviate the computational effort. The works [6, 43, 48] address the case of a
fully coupled optimality system discretized by either Galerkin or collocation approaches and propose different
methods, such as sequential quadratic programming or block diagonal preconditioning, to solve the coupled
system efficiently. Sampling-based Monte Carlo and Multilevel Monte Carlo approaches are considered in [1]
instead, where the case of random coefficients with limited spatial regularity is addressed.

In the second category, the control is deterministic [2,7,22,28–30,49]. This situation arises when randomness
in the system is not observable at the time of designing the control, so that the latter should be robust in the
sense that it minimizes the risk of obtaining a solution which leads to high values of the objective function.
The precise notion of a risk is problem dependent and thus has to be modeled appropriately. In this context,
risk typically refers to a suitable statistical measure of the objective function to be minimized, such as those
involving expectations, expectations plus variances, a quantile, or a conditional expectation above a quantile (so
called Conditional Value at Risk, CVaR [42]). The corresponding OCP often leads to a fully coupled optimality
system of equations in the random parameters. It is noteworthy that the idea of minimizing a risk to obtain a
solution with favorable properties goes back to the origins of robust optimization [47].

Numerical methods for OCPs of the second category typically depend on the choice of the risk measure. For
example, in [2] the authors consider a risk measure based on the mean and variance of a scalar objective function
and they use second order Taylor expansions combined with randomized estimators to reduce the computational
effort. The work [49] contains a study of a risk measure that involves the expected squared 𝐿2 misfit between
the state and a target function, with an additional penalty term involving the squared 𝐿2 deviation of the state
form its mean value. The authors propose a gradient type method in which the expectation of the gradient is
computed by a Multilevel Monte Carlo method. In [7], the authors also consider a similar risk measure and
propose a reduced basis method on the space of controls to significantly reduce the computational effort. A
more general class of risk measures (including the CVaR) for OCPs has been considered in [31], where also
the corresponding optimality system of PDEs are derived. The subsequent work [29] introduces a trust-region
(Newton) conjugate gradient algorithm combined with an adaptive sparse grid collocation as PDE discretization
in the stochastic space for the numerical treatment of these more general OCPs. For the robust OCP with the
CVaR as risk measure the study [30] introduces derivative-based optimization methods that are build upon
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introducing smooth approximations to the CVaR. Finally, in [22] the authors consider a boundary OCP where
the deterministic control appears as a Neumann boundary condition.

In this work, we follow the second modeling category and consider a similar risk averse OCP as in [7, 49]
which consists in minimizing the expected squared 𝐿2 misfit between the state and a given target function
as objective function, additionally equipped with an 𝐿2 regularization on the (deterministic) control. For this
setting we consider numerical gradient based methods, either deterministic or stochastic, where adjoint calculus
is used to represent the gradient of the objective function. Both the primal problem and the adjoint problem
are discretized by finite elements and Monte Carlo estimators are used to approximate expectations defining
the risk measure. The reason for studying sampling-based Monte Carlo approximations instead of polynomial
chaos type methods is to develop methods that can potentially handle many random parameters and possibly
rough random coefficients.

Our main contribution is to provide a full error and complexity analysis for the considered gradient based
methods, accounting for the three sources of errors, namely, the Finite Element approximation, the statistical
Monte Carlo error, and the error due to the finite number of gradient based iterations.

We note that other error analyses have been presented before, such as [10] for the case of a random control
with a discretization in the physical space by Finite Elements and in probability by a stochastic collocation, as
well as [22] for the case of a deterministic boundary control that minimizes a quadratic risk measure, using a
Finite Element discretization both in physical space and in probability. Finally we mention the recent work [24]
where the authors consider as a risk measure the same expected quadratic loss function as in this work and study
a quasi-Monte Carlo approximation (i.e., a deterministic quadrature in the probability space) of the expected
loss which may offer a further complexity improvement, provided that the system’s state equation is sufficient
regular with respect to the uncertain parameters. In contrast, here we focus on the subtle interplay of Finite
Element discretization errors, Monte Carlo sampling errors and different numerical optimization techniques in
the context of general-purpose methods.

The first method that we consider is a gradient based method (e.g., conjugate gradient) on a fully discretized
version of the OCP (so called Sample Average Approximation – SAA), in which the Finite Element discretization
and the Monte Carlo sample are chosen initially and kept fixed over the iterations. If 𝑁 is the sample size of the
Monte Carlo estimator, this method entails the solution of 𝑁 state and 𝑁 adjoint problems at each iteration of
the gradient method, which could be troublesome if a small tolerance is required, entailing a very large 𝑁 and
small Finite Element mesh size.

We then turn to stochastic gradient methods in which the gradient is re-sampled independently at each
iteration and the Finite Element mesh size can be refined along the iterations. At each iteration this corresponds
to taking an independent Monte Carlo estimator with only one realization (𝑁 = 1) or a very small, fixed sample
size (𝑁 = �̄�) independently of the required tolerance, with possibly a finer Finite Element mesh. We follow, in
particular, the Robbins–Monro strategy [39,41,44] of reducing progressively the step-size to achieve convergence
of the Stochastic Gradient iterations. These Stochastic Gradient (SG) techniques have been extensively applied
to machine learning problems [14,16,19,33], but have not yet been used much for PDE-constrained optimization
under uncertainty. Here, we show that a Stochastic Gradient method improves the complexity of the conjugate
gradient (or equivalent) method applied to the fully discretized OCP by a logarithmic factor. Although the
computational gain is not dramatic, we see potential in this approach as only one state problem and one
adjoint problem have to be solved at every iteration of the gradient method. Moreover, we believe that the
whole construction is more amenable to an adaptive version, which, in combination with an appropriate error
estimator, allows for a self-controlling algorithm. We leave this for future work, but mention the related recent
work [20] on mesh refinement approaches in the context of a stochastic gradient method for PDE-constrained
OCPs subject to uncertainties.

The rest of the paper is organized as follows. In Section 2 we introduce the optimal control problem under
uncertainty and recall its well posedness as well as the corresponding optimality conditions. In Sections 3–5
we then introduce the Finite Element discretization, the Monte Carlo approximation, and the gradient based
methods, respectively, including their full error analysis. In particular, Theorem 5.2 in Section 5 provides an error
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bound for the conjugate gradient (or equivalent) method applied to the fully discrete OCP, whereas Corollary 5.4
gives the corresponding computational complexity. In Section 6 we analyze the Stochastic Gradient method with
fixed finite element discretization over the iterations (with error bound given in Thm. 6.1 and the corresponding
complexity result in Cor. 6.3), whereas in Section 7 we analyze the Stochastic Gradient version in which the
Finite Element mesh is refined over the iterations (the main result being stated in Thm. 7.1 and Cor. 7.3). In
Section 8, we discuss a 2D test problem and confirm numerically the theoretical error bounds and complexities
derived in the preceding Sections. Finally, in Section 9 we draw some conclusions.

2. Problem setting

We start introducing the state problem that will be part of the OCP discussed in the following. Specifically,
we consider the problem of finding the solution 𝑦 : 𝐷 × Γ → R of the elliptic random PDE{︂

−div(𝑎(𝑥, 𝜔)∇𝑦(𝑥, 𝜔)) = 𝜑(𝑥, 𝜔), 𝑥 ∈ 𝐷, 𝜔 ∈ Γ,
𝑦(𝑥, 𝜔) = 0, 𝑥 ∈ 𝜕𝐷, 𝜔 ∈ Γ,

(2.1)

where 𝐷 ⊂ R𝑛 is open and bounded, denoting the physical domain, (Γ,ℱ , 𝑃 ) is a complete probability space,
and 𝜔 ∈ Γ is an elementary random event. The diffusion coefficient 𝑎 is an almost surely (a.s.) continuous and
positive random field on 𝐷, and 𝜑 is a possibly stochastic source term (which could include a deterministic
control term).

Before addressing the optimal control problem related to the random PDE (2.1), we will first recall the well
posedness results for (2.1). We begin by recalling some usual functional spaces needed for the analysis that
follows. Let 𝐿𝑝(𝐷), 1 ≤ 𝑝 ≤ +∞, denote the space of 𝑝-Lebesgue integrable functions. Throughout this work,
we will denote by ‖ · ‖ ≡ ‖ · ‖𝐿2(𝐷) the 𝐿2(𝐷)-norm induced by the inner product ⟨𝑓, 𝑔⟩ =

∫︀
𝐷

𝑓𝑔d𝑥 for any
𝑓, 𝑔 ∈ 𝐿2(𝐷). Furthermore, we introduce the Sobolev spaces

𝐻1(𝐷) =
{︀
𝑦 ∈ 𝐿2(𝐷), 𝜕𝑥𝑖

𝑦 ∈ 𝐿2(𝐷), 𝑖 = 1, . . . , 𝑛
}︀

and
𝐻1

0 (𝐷) =
{︀
𝑦 ∈ 𝐻1(𝐷), 𝑦|𝜕𝐷 = 0

}︀
,

on which a Poincaré inequality holds: ∃𝐶𝑝 > 0 : ‖𝑦‖ ≤ 𝐶𝑝‖∇𝑦‖, ∀𝑦 ∈ 𝐻1
0 (𝐷). We use the equivalent 𝐻1-norm

on the space 𝐻1
0 (𝐷) defined by ‖𝑦‖𝐻1

0 (𝐷) = ‖∇𝑦‖ for any 𝑦 ∈ 𝐻1
0 (𝐷), and we denote by 𝐻−1(𝐷) =

(︀
𝐻1

0 (𝐷)
)︀*

the topological dual of 𝐻1
0 (𝐷). For 𝑟 ∈ N we further recall the subspace 𝐻𝑟(𝐷) of 𝐿2(𝐷) composed of functions

with all weak partial derivatives up to order 𝑟 in 𝐿2(𝐷) with norm ‖𝑦‖𝐻𝑟(𝐷) and semi-norm |𝑦|𝐻𝑟(𝐷) given by

‖𝑦‖2𝐻𝑟(𝐷) =
∑︁
|𝛼|≤𝑟

⃦⃦⃦⃦
𝜕|𝛼|𝑦

𝜕𝑥𝛼

⃦⃦⃦⃦2

𝐿2(𝐷)

and |𝑦|2𝐻𝑟(𝐷) =
∑︁
|𝛼|=𝑟

⃦⃦⃦⃦
𝜕|𝛼|𝑦

𝜕𝑥𝛼

⃦⃦⃦⃦2

𝐿2(𝐷)

,

respectively, where 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛 is a multi-index. Finally, we introduce the Bochner spaces 𝐿𝑝(Γ,𝒱),
which are formal extensions of Lebesgue spaces 𝐿𝑝(Γ), for functions with values in a separable Hilbert space 𝒱
as

𝐿𝑝(Γ,𝒱) =
{︂

𝑦 : Γ → 𝒱, 𝑦 measurable,
∫︁

Γ

‖𝑦(𝜔)‖𝑝
𝒱d𝑃 (𝜔) < +∞

}︂
,

equipped with the norm ‖𝑦‖𝐿𝑝(Γ,𝒱) =
(︀∫︀

Γ
‖𝑦(𝜔)‖𝑝

𝒱d𝑃 (𝜔)
)︀ 1

𝑝 ; see, e.g., [18] for details.
As it is common for the well posedness of the elliptic PDE (2.1), we assume that the diffusion coefficient 𝑎

in (2.1) is uniformly elliptic.

Assumption 2.1. The diffusion coefficient 𝑎 ∈ 𝐿∞(𝐷 × Γ) is bounded and bounded away from zero a.e. in
𝐷 × Γ, i.e.

∃ 𝑎min, 𝑎max ∈ R such that 0 < 𝑎min ≤ 𝑎(𝑥, 𝜔) ≤ 𝑎max a.e. in 𝐷 × Γ.
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Now we are in the position to recall the well posedness of the random PDE (2.1), which is a standard result,
see e.g., [3, 35].

Lemma 2.2 (Well posedness of (2.1)). Let Assumption 2.1 hold. If 𝜑 ∈ 𝐿2(Γ, 𝐻−1(𝐷)), then problem (2.1)
admits a unique solution 𝑦 ∈ 𝐿2(Γ, 𝐻1

0 (𝐷)) s.t.

‖𝑦(·, 𝜔)‖𝐻1
0 (𝐷) ≤

1
𝑎min

‖𝜑(·, 𝜔)‖𝐻−1(𝐷) for a.e. 𝜔 ∈ Γ

and ‖𝑦‖𝐿2(Γ,𝐻1
0 (𝐷)) ≤

1
𝑎min

‖𝜑‖𝐿2(Γ,𝐻−1(𝐷)).

Finally, as we will occasionally need 𝐻2-regularity in the following Sections, we also introduce the following
sufficient conditions on the domain 𝐷 and on the gradient of 𝑎.

Assumption 2.3. The domain 𝐷 ⊂ R𝑛 is polygonal convex and the random field 𝑎 is such that 𝑎(·, 𝜔) ∈
𝐶0,1(𝐷) for a.e. 𝜔 ∈ Γ with ess sup𝜔 ‖𝑎(·, 𝜔)‖𝐶0,1(𝐷) < ∞.

Then, using standard regularity arguments for elliptic PDEs, one can prove the following result [18,21].

Lemma 2.4. Let Assumptions 2.1 and 2.3 hold. If 𝜑 ∈ 𝐿2(Γ, 𝐿2(𝐷)), then problem (2.1) has a unique solution
𝑦 ∈ 𝐿2(Γ, 𝐻2(𝐷)). Moreover there exists a constant 𝐶, independent of 𝜑, such that

‖𝑦‖𝐿2(Γ,𝐻2(𝐷)) ≤ 𝐶‖𝜑‖𝐿2(Γ,𝐿2(𝐷)).

We are now ready to introduce the optimal control problem linked with the PDE (2.1), which we will study
in the rest of the paper.

2.1. Optimal control problem

We define the state problem for the OCP as the elliptic PDE (2.1), by specializing its right hand side to:{︂
−div(𝑎(𝑥, 𝜔)∇𝑦(𝑥, 𝜔)) = 𝑔(𝑥) + 𝑢(𝑥), 𝑥 ∈ 𝐷, 𝜔 ∈ Γ,
𝑦(𝑥, 𝜔) = 0, 𝑥 ∈ 𝜕𝐷, 𝜔 ∈ Γ,

(2.2)

with source term 𝑔 ∈ 𝐿2(𝐷) and control 𝑢 ∈ 𝐿2(𝐷). Hereafter, we use the notation 𝑈 = 𝐿2(𝐷) to denote the
set of all admissible (deterministic) control functions, and 𝑌 = 𝐻1

0 (𝐷) to denote the state space of solutions
to (2.2). To emphasize the dependence of the solution of the PDE on the control function and on a particular
realization 𝑎(·, 𝜔) of the random field, we will use the notation 𝑦𝜔(𝑢). When the particular realization of 𝑎 is
not relevant, or when no confusion arises, we will also simply write 𝑦(𝑢) from times. In this work, we focus on
the objective functional

𝐽(𝑢) = E[𝑓(𝑢, 𝜔)] with 𝑓(𝑢, 𝜔) =
1
2
‖𝑦𝜔(𝑢)− 𝑧𝑑‖2 +

𝛽

2
‖𝑢‖2, (2.3)

where 𝑧𝑑 is a given target function which we would like the state 𝑦𝜔(𝑢) to approach as close as possible,
in a mean-square-error sense. The coefficient 𝛽 > 0 is a constant of the problem that models the price of
energy, i.e. how expensive it is to add some energy in the control 𝑢 in order to decrease the first distance term
E

[︀
‖𝑦𝜔(𝑢)− 𝑧𝑑‖2

]︀
. The ultimate goal then is the unconstrained OCP, of determining the optimal control 𝑢⋆ so

that
𝑢⋆ ∈ arg min

𝑢∈𝑈
𝐽(𝑢), s.t. 𝑦𝜔(𝑢) ∈ 𝑌 solves (2.2) a.s. (2.4)

It is noteworthy that the random PDE setting (2.2) above could be generalized by using a formalism similar
to the one presented in the recent work [37]. In particular, two of the authors of the present work consider
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a general class of OCPs, for which the randomness may appear in the source term or in the control to state
operator. Furthermore, that formalism may allow for randomness to appear in boundary conditions.

As we aim at minimizing the objective functional 𝐽 , we will use the theory of optimization and calculus of
variations. Specifically, we introduce the optimality condition for the OCP (2.4), in the sense that the optimal
control 𝑢⋆ satisfies

⟨∇𝐽(𝑢⋆), 𝑣⟩ = 0 ∀𝑣 ∈ 𝑈. (2.5)

Here, ∇𝐽(𝑢) denotes the 𝐿2(𝐷)-functional representation of the Gateaux derivative of 𝐽 at 𝑢 ∈ 𝑈 , namely∫︁
𝐷

∇𝐽(𝑢)𝛿𝑢 d𝑥 = lim
𝜖→0

𝐽(𝑢 + 𝜖𝛿𝑢)− 𝐽(𝑢)
𝜖

∀ 𝛿𝑢 ∈ 𝐿2(𝐷).

Existence and uniqueness results for the OCP (2.4) can be obtained as a particular case of the more general
results in, e.g., the work [31]. We state the result in the next Lemma, without proof.

Lemma 2.5. Suppose Assumption 2.1 holds. Then the OCP (2.4) admits a unique control 𝑢⋆ ∈ 𝑈 . Moreover

∇𝐽(𝑢) = 𝛽𝑢 + E [𝑝𝜔(𝑢)] , (2.6)

where 𝑝𝜔(𝑢) = 𝑝 is the solution of the adjoint problem (a.s. in Γ){︂
−div(𝑎(·, 𝜔)∇𝑝(·, 𝜔)) = 𝑦(·, 𝜔)− 𝑧𝑑 in 𝐷,
𝑝(·, 𝜔) = 0 on 𝜕𝐷.

(2.7)

One can derive a similar expression as (2.6) for the gradient of the functional 𝑓 for a.e. 𝜔 ∈ Γ, namely:
∇𝑓(𝑢, 𝜔) = 𝛽𝑢 + 𝑝𝜔(𝑢). Consequently, in the setting of problem (2.4), we have

∇𝐽(𝑢) = ∇E[𝑓(𝑢, 𝜔)] = E [∇𝑓(𝑢, 𝜔)] .

For notational convenience, we introduce the weak formulation of the state problem (2.2), which reads

find 𝑦𝜔(𝑢) ∈ 𝑌 s.t. 𝑏𝜔(𝑦𝜔(𝑢), 𝑣) = ⟨𝑔 + 𝑢, 𝑣⟩ ∀𝑣 ∈ 𝑌 for a.e. 𝜔 ∈ Γ, (2.8)

where 𝑏𝜔(𝑦, 𝑣) :=
∫︀

𝐷
𝑎(·, 𝜔)∇𝑦∇𝑣𝑑𝑥. Similarly, the weak form of the adjoint problem (2.7) reads:

find 𝑝𝜔(𝑢) ∈ 𝑌 s.t. 𝑏𝜔(𝑣, 𝑝𝜔(𝑢)) = ⟨𝑣, 𝑦𝜔(𝑢)− 𝑧𝑑⟩ ∀𝑣 ∈ 𝑌 for a.e. 𝜔 ∈ Γ. (2.9)

We can thus rewrite the OCP (2.4) equivalently as:⎧⎨⎩min𝑢∈𝑈𝐽(𝑢) = 1
2E[‖𝑦𝜔(𝑢)− 𝑧𝑑‖2] + 𝛽

2 ‖𝑢‖
2

s.t. 𝑦𝜔(𝑢) ∈ 𝑌 solves
𝑏𝜔(𝑦𝜔(𝑢), 𝑣) = ⟨𝑔 + 𝑢, 𝑣⟩ ∀𝑣 ∈ 𝑌 for a.e. 𝜔 ∈ Γ.

(2.10)

3. Finite Element approximation in physical space

In this section we introduce the semi-discrete OCP obtained by approximating the underlying PDE by a Finite
Element (FE) method and recall an a-priori error bound on the optimal control. Let us denote by {𝜏ℎ}ℎ>0 a
family of regular triangulations of 𝐷. Furthermore, let 𝑌 ℎ be the space of continuous piece-wise polynomial
functions of degree 𝑟 over 𝜏ℎ that vanish on 𝜕𝐷, i.e. 𝑌 ℎ =

{︀
𝑦 ∈ 𝐶0(𝐷) : 𝑦|𝐾 ∈ P𝑟(𝐾) ∀𝐾 ∈ 𝜏ℎ, 𝑦|𝜕𝐷 = 0

}︀
⊂

𝑌 = 𝐻1
0 (𝐷). Finally, we set 𝑈ℎ = 𝑌 ℎ. We can then reformulate (2.10) as a finite dimensional OCP in the FE

space: ⎧⎨⎩min𝑢ℎ∈𝑈ℎ𝐽ℎ(𝑢ℎ) := 1
2E[‖𝑦ℎ

𝜔(𝑢ℎ)− 𝑧𝑑‖2] + 𝛽
2 ‖𝑢

ℎ‖2
s.t. 𝑦ℎ

𝜔(𝑢ℎ) ∈ 𝑌 ℎ and
𝑏𝜔(𝑦ℎ

𝜔(𝑢ℎ), 𝑣ℎ) = ⟨𝑢ℎ + 𝑔, 𝑣ℎ⟩ ∀𝑣ℎ ∈ 𝑌 ℎ for a.e. 𝜔 ∈ Γ.
(3.1)
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Remark 3.1. The choice 𝑈ℎ = 𝑌 ℎ is natural for this problem. In fact, one could consider the OCP in which
the PDE is discretized in 𝑌 ℎ, whereas the control 𝑢 ∈ 𝑈 is not discretized. It is not difficult to show that the
optimal control for such OCP is actually finite dimensional and belongs to 𝑌 ℎ, thus leading to the equivalent
formulation (3.1).

For the discrete OCP (3.1) we have analogous well-posedness and optimality results as those stated in
Lemma 2.5 for the continuous problem.

Lemma 3.2. The discrete OCP (3.1) admits a unique solution 𝑢ℎ
⋆ ∈ 𝑈ℎ and ∇𝐽ℎ can be characterized as

∇𝐽ℎ(𝑢ℎ) = 𝛽𝑢ℎ + E
[︀
𝑝ℎ

𝜔(𝑢ℎ)
]︀

(3.2)

where 𝑝ℎ
𝜔(𝑢ℎ) is the solution of the FE adjoint problem

find 𝑝ℎ
𝜔

(︀
𝑢ℎ

)︀
∈ 𝑌 ℎ s.t. 𝑏𝜔

(︀
𝑣ℎ, 𝑝ℎ

𝜔(𝑢ℎ)
)︀

= ⟨𝑦ℎ
𝜔

(︀
𝑢ℎ

)︀
− 𝑧𝑑, 𝑣

ℎ⟩ ∀𝑣ℎ ∈ 𝑌 ℎ.

Notice, in particular, that, since 𝑈ℎ = 𝑌 ℎ, it follows that E
[︀
𝑝ℎ(𝑢ℎ)

]︀
∈ 𝑈ℎ for any 𝑢ℎ ∈ 𝑈ℎ, hence ∇𝐽ℎ(𝑢ℎ) =

𝛽𝑢ℎ + E
[︀
𝑝ℎ(𝑢ℎ)

]︀
∈ 𝑈ℎ.

Following similar arguments as in (Theorems 3.4 and 3.5 of [27]) and using the optimality condition and the
weak form of the state and adjoint problems, we can prove the following.

Lemma 3.3. Let 𝑢⋆ be the optimal control solution of problem (2.10) and denote by 𝑢ℎ
⋆ the solution of the

discrete OCP (3.1). Then it holds that

𝛽

2
‖𝑢⋆ − 𝑢ℎ

⋆‖2 +
1
2

E
[︀
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢ℎ

⋆)‖2
]︀
≤ 1

2𝛽
E

[︀
‖𝑝(𝑢⋆)− ̃︀𝑝ℎ(𝑢⋆)‖2

]︀
+

1
2

E
[︀
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢⋆)‖2

]︀
, (3.3)

where, ̃︀𝑝ℎ(𝑢⋆) = ̃︀𝑝ℎ
𝜔(𝑢⋆) is such that

𝑏𝜔(𝑣ℎ, ̃︀𝑝ℎ
𝜔(𝑢⋆)) = ⟨𝑣ℎ, 𝑦𝜔(𝑢⋆)− 𝑧𝑑⟩ ∀𝑣ℎ ∈ 𝑌 ℎ for a.e. 𝜔 ∈ Γ. (3.4)

Moreover, there exists a constant 𝐶 > 0 independent of ℎ such that

‖𝑢⋆ − 𝑢ℎ
⋆‖2 + E

[︀
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢ℎ

⋆)‖2
]︀

+ ℎ2E
[︁
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢ℎ

⋆)‖2𝐻1
0

]︁
≤ 𝐶

{︁
E

[︀
‖𝑝(𝑢⋆)− ̃︀𝑝ℎ(𝑢⋆)‖2

]︀
+ E

[︀
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢⋆)‖2

]︀
+ ℎ2E

[︁
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢⋆)‖2𝐻1

0

]︁}︁
. (3.5)

Proof. The result in the deterministic case is detailed in (Theorems 3.4 and 3.5 of [27]). We can thus write the
inequalities (3.3) and (3.4) for almost every realization 𝜔 ∈ Γ, and then take the expectation to conclude. �

The FE error ‖𝑢⋆ − 𝑢ℎ
⋆‖ on the optimal control is thus completely determined by the FE approximation

properties of the state and adjoint problems. The next result also follows by standard arguments (see e.g., [27])
and shows that, for smooth data, the 𝐿2 error ‖𝑢⋆ − 𝑢ℎ

⋆‖ on the optimal control converges at rate . ℎ𝑟+1.

Lemma 3.4. Let Assumptions 2.1–2.3 hold and suppose that 𝑦(𝑢⋆), 𝑝(𝑢⋆) ∈ 𝐿2(Γ, 𝐻𝑟+1(𝐷)). Then we have

‖𝑢⋆ − 𝑢ℎ
⋆‖2 + E

[︀
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢ℎ

⋆)‖2
]︀

+ ℎ2E
[︁
‖𝑦(𝑢⋆)− 𝑦ℎ(𝑢ℎ

⋆)‖2𝐻1
0

]︁
≤ 𝐶ℎ2𝑟+2

{︀
E

[︀
|𝑦𝜔(𝑢⋆)|2𝐻𝑟+1

]︀
+ E

[︀
|𝑝𝜔(𝑢⋆)|2𝐻𝑟+1

]︀}︀
. (3.6)

In view of the analysis that will be presented later, we state a Lipschitz and a strong convexity result for the
functional 𝑓(𝑢, 𝜔) for a.e. 𝜔 ∈ Γ, as well as its discrete version 𝑓ℎ(𝑢ℎ, 𝜔) := 1

2‖𝑦
ℎ
𝜔(𝑢ℎ)− 𝑧𝑑‖2 + 𝛽

2 ‖𝑢
ℎ‖2. Proofs

of these results can be found in [36].
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Lemma 3.5 (Lipschitz condition). For the elliptic problem (2.2) and 𝑓(𝑢, 𝜔) as in (2.3) it holds that:

‖∇𝑓(𝑢1, 𝜔)−∇𝑓(𝑢2, 𝜔)‖ ≤ 𝐿‖𝑢1 − 𝑢2‖ ∀𝑢1, 𝑢2 ∈ 𝑈 and a.e. 𝜔 ∈ Γ, (3.7)

with 𝐿 = 𝛽 + 𝐶4
𝑝

𝑎2
min

, where 𝐶𝑝 is the Poincaré constant. For the corresponding Finite Element approximation
leading to (3.1) the same inequality holds with the same constant:

‖∇𝑓ℎ(𝑢ℎ
1 , 𝜔)−∇𝑓ℎ(𝑢ℎ

2 , 𝜔)‖ ≤ 𝐿‖𝑢ℎ
1 − 𝑢ℎ

2‖ ∀𝑢ℎ
1 , 𝑢ℎ

2 ∈ 𝑈ℎ and a.e. 𝜔 ∈ Γ.

Lemma 3.6 (Strong Convexity). For the elliptic problem (2.2) and 𝑓(𝑢, 𝜔) as in (2.3) it holds that

𝑙

2
‖𝑢1 − 𝑢2‖2 ≤ ⟨∇𝑓(𝑢1, 𝜔)−∇𝑓(𝑢2, 𝜔), 𝑢1 − 𝑢2⟩ ∀𝑢1, 𝑢2 ∈ 𝑈 and a.e. 𝜔 ∈ Γ, (3.8)

with 𝑙 = 2𝛽. The same estimate holds for the corresponding Finite Element approximation that yields (3.1),
namely:

𝑙

2
‖𝑢ℎ

1 − 𝑢ℎ
2‖2 ≤

⟨︀
∇𝑓ℎ(𝑢ℎ

1 , 𝜔)−∇𝑓ℎ(𝑢ℎ
2 , 𝜔), 𝑢ℎ

1 − 𝑢ℎ
2

⟩︀
∀𝑢ℎ

1 , 𝑢ℎ
2 ∈ 𝑈ℎ and a.e. 𝜔 ∈ Γ.

4. Approximation in probability

In this section we consider the semi-discrete (i.e., approximation in probability only) optimal control problem
obtained by replacing the exact expectation E[·] in (2.3) by a suitable quadrature formula ̂︀𝐸[·]. Specifically, for
a random variable 𝑋 : Γ → R, 𝜔 ↦→ 𝑋(𝜔), let ̂︀𝐸[𝑋] =

∑︀𝑁
𝑖=1 𝜁𝑖𝑋(𝜔𝑖) be a quadrature formula, where 𝜁𝑖 denote

the quadrature weights and 𝜔𝑖 ∈ Γ the quadrature points. The semi-discrete problem then reads:⎧⎨⎩min𝑢∈𝑈
̂︀𝐽(𝑢) = 1

2
̂︀𝐸[‖𝑦𝜔(𝑢)− 𝑧𝑑‖2] + 𝛽

2 ‖𝑢‖
2

s.t. 𝑦𝜔𝑖
(𝑢) ∈ 𝑌 and

𝑏𝜔𝑖
(𝑦𝜔𝑖

(𝑢), 𝑣) = ⟨𝑔 + 𝑢, 𝑣⟩ ∀𝑣 ∈ 𝑌 𝑖 = 1, . . . , 𝑁.
(4.1)

The quadrature formula ̂︀𝐸[·] could either be based on deterministic quadrature points or randomly distributed
points leading, in this case, to a Monte Carlo type approximation. In the following, we detail the case of a
Monte Carlo type quadrature, whereas the case of a deterministic Gaussian-type quadrature is addressed in
Appendix A. It is noteworthy that, although we present the results only for the semi-discrete problem (i.e.,
continuous in space, discrete in probability) for the sake of notation, they extend straightforwardly to the fully
discrete problem in probability and physical space. Indeed, the fully discrete problem is obtained by replacing
the (spatial) functions and corresponding functions spaces in (4.1) by their finite dimensional Finite Element
approximations.

In the case of a Monte Carlo (MC) approximation, the quadrature formula reads 𝐸
−→𝜔
MC[𝑋] := 1

𝑁

∑︀𝑁
𝑖=1 𝑋(𝜔𝑖),

where −→𝜔 = {𝜔𝑖}𝑁
𝑖=1 is a collection of independent and identically distributed (i.i.d.) points drawn randomly

on Γ according to the probability measure 𝑃 . We recall that the use of MC type approximations might be
advantageous over a quadrature/collocation approach in cases where the state and adjoint solutions are rough
or highly oscillatory, which is, for example, the case when 𝑎(·, ·) is a rough random field and/or has a short
correlation length. Moreover, the Monte Carlo quadrature formula has always positive weights, which is an
important feature to guarantee that the approximate functional ̂︀𝐽 preserves the strong convexity property.
We stress that, when using a Monte Carlo quadrature formula, the optimal control ̂︀𝑢⋆ is a stochastic function
since it depends on the 𝑁 i.i.d. random points −→𝜔 = {𝜔𝑖}𝑁

𝑖=1. The next theorem gives an error bound on the
approximate optimal control of the OCP (4.1).

Theorem 4.1. Let ̂︀𝑢⋆ be the optimal control of problem (4.1) with ̂︀𝐸 = 𝐸
−→𝜔
MC and 𝑢⋆ be the exact optimal

control of the continuous problem (2.10). Then we have

𝛽

2
E

[︀
‖̂︀𝑢⋆ − 𝑢⋆‖2

]︀
+ E

[︁
𝐸
−→𝜔
MC‖𝑦(𝑢⋆)− 𝑦(̂︀𝑢⋆)‖2

]︁
≤ 1

𝑁

1
2𝛽

E[‖𝑝(𝑢⋆)‖2].
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Proof. The two optimality conditions for OCPs (2.10) and (4.1) read

⟨∇𝐽(𝑢⋆), 𝑣⟩ = 0, and ⟨∇𝐽MC(̂︀𝑢⋆), 𝑣⟩ = 0 ∀𝑣 ∈ 𝑈 (4.2)

respectively, where ∇𝐽MC(̂︀𝑢⋆) = 𝛽̂︀𝑢⋆ + 𝐸
−→𝜔
MC[𝑝(̂︀𝑢⋆)] and 𝑝(̂︀𝑢⋆) = 𝑝𝜔(̂︀𝑢⋆) denotes the solution of the adjoint

problem
𝑏𝜔(𝑣, 𝑝𝜔(̂︀𝑢⋆)) = ⟨𝑣, 𝑦𝜔(̂︀𝑢⋆)− 𝑧𝑑⟩ ∀𝑣 ∈ 𝑌 for a.e. 𝜔 ∈ Γ.

Choosing 𝑣 = ̂︀𝑢⋆ − 𝑢⋆ in (4.2) and subtracting the two optimality conditions, we obtain:

⟨𝛽(𝑢⋆ − ̂︀𝑢⋆) + E[𝑝(𝑢⋆)]− 𝐸
−→𝜔
MC[𝑝(̂︀𝑢⋆)], ̂︀𝑢⋆ − 𝑢⋆⟩ = 0,

which implies

𝛽‖𝑢⋆ − ̂︀𝑢⋆‖2 = ⟨E[𝑝(𝑢⋆)]− 𝐸
−→𝜔
MC[𝑝(𝑢⋆)], ̂︀𝑢⋆ − 𝑢⋆⟩ (4.3)

+ ⟨𝐸
−→𝜔
MC[𝑝(𝑢⋆)]− 𝐸

−→𝜔
MC[𝑝(̂︀𝑢⋆)], ̂︀𝑢⋆ − 𝑢⋆⟩.

The first term on the right hand side of (4.3) can be bounded as

⟨E[𝑝(𝑢⋆)]− 𝐸
−→𝜔
MC[𝑝(𝑢⋆)], ̂︀𝑢⋆ − 𝑢⋆⟩ ≤

1
2𝛽
‖E[𝑝(𝑢⋆)]− 𝐸

−→𝜔
MC[𝑝(𝑢⋆)]‖2 +

𝛽

2
‖̂︀𝑢⋆ − 𝑢⋆‖2 .

To bound the second term, we first notice that for any 𝑖 = 1, . . . , 𝑁

⟨̂︀𝑢⋆ − 𝑢⋆, 𝑝𝜔𝑖
(𝑢⋆)− 𝑝𝜔𝑖

(̂︀𝑢⋆)⟩ = 𝑏𝜔𝑖
(𝑦𝜔𝑖

(̂︀𝑢⋆)− 𝑦𝜔𝑖
(𝑢⋆), 𝑝𝜔𝑖

(𝑢⋆)− 𝑝𝜔𝑖
(̂︀𝑢⋆))

= ⟨𝑦𝜔𝑖(𝑢⋆)− 𝑦𝜔𝑖(̂︀𝑢⋆), 𝑦𝜔𝑖(̂︀𝑢⋆)− 𝑦𝜔𝑖(𝑢⋆)⟩
= −‖𝑦𝜔𝑖

(𝑢⋆)− 𝑦𝜔𝑖
(̂︀𝑢⋆)‖2 ,

which leads to
⟨̂︀𝑢⋆ − 𝑢⋆, 𝐸

−→𝜔
MC[𝑝(𝑢⋆)]− 𝐸

−→𝜔
MC[𝑝(̂︀𝑢⋆)]⟩ = −𝐸

−→𝜔
MC[‖𝑦(𝑢⋆)− 𝑦(̂︀𝑢⋆)‖2] .

Finally we take the expectation of (4.3) with respect to (w.r.t.) the random sample −→𝜔 = {𝜔𝑖}𝑁
𝑖=1 and exploit

the fact that the Monte Carlo estimator is unbiased, that is E
[︁
𝐸
−→𝜔
MC[𝑋]

]︁
= E[𝑋] for any random variable

𝑋 ∈ 𝐿1(Γ). We thus find

𝛽

2
E[‖̂︀𝑢⋆ − 𝑢⋆‖2 + E

[︁
𝐸
−→𝜔
MC‖𝑦(𝑢⋆)− 𝑦(̂︀𝑢⋆)‖2

]︁
≤ 1

2𝛽
E

[︁
‖E[𝑝(𝑢⋆)]− 𝐸

−→𝜔
MC[𝑝(𝑢⋆)]‖2

]︁
=

1
2𝛽

E

[︃
‖ 1
𝑁

𝑁∑︁
𝑖=1

𝑝𝜔𝑖
(𝑢⋆)− E[𝑝(𝑢⋆)]‖2

]︃

=
1

2𝛽
E

[︃
1

𝑁2

𝑁∑︁
𝑖=1

‖𝑝𝜔𝑖
(𝑢⋆)− E[𝑝(𝑢⋆)]‖2

]︃

=
1

2𝛽

1
𝑁

E
[︀
‖𝑝(𝑢⋆)− E[𝑝(𝑢⋆)]‖2

]︀
≤ 1

2𝛽

1
𝑁

E[‖𝑝(𝑢⋆)‖2] ,

which concludes the proof. �

Theorem 4.1 shows that the semi-discrete optimal control ̂︀𝑢⋆ converges at the usual MC rate of 1/
√

𝑁 in the
root mean squared sense, with the constant being proportional to

√︀
E[‖𝑝(𝑢⋆)‖2].
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5. Numerical solution of the fully discrete problem

Now we focus on a class of optimization methods to approximate the fully discrete minimization problem
obtained by using the Monte Carlo estimator to approximate the expectation in (3.1) and a FE approximation
of the state and adjoint equations, as discussed in the previous two sections. That is, here we consider the fully
discrete OCP: ⎧⎨⎩min𝑢ℎ∈𝑈ℎ𝐽MC(𝑢ℎ) = 1

2𝐸
−→𝜔
MC[‖𝑦ℎ

𝜔(𝑢ℎ)− 𝑧𝑑‖2] + 𝛽
2 ‖𝑢

ℎ‖2
s.t. 𝑦ℎ

𝜔𝑖
(𝑢ℎ) ∈ 𝑌 ℎ and

𝑏𝜔𝑖(𝑦
ℎ
𝜔𝑖

(𝑢ℎ), 𝑣ℎ) = ⟨𝑔 + 𝑢ℎ, 𝑣ℎ⟩ ∀𝑣ℎ ∈ 𝑌 ℎ, 𝑖 = 1, . . . , 𝑁.
(5.1)

The 𝑁 constraints in (5.1) can be written in algebraic form as

𝐴𝑖y𝑖 = g + 𝑀u ,

where u ∈ R𝑁ℎ is the vector of the 𝑁ℎ degrees of freedom corresponding to the control 𝑢ℎ ∈ 𝑈ℎ, y𝑖 ∈ R𝑁ℎ is
the vector of degrees of freedom corresponding to the finite element state solution 𝑦ℎ

𝜔𝑖
(𝑢ℎ) ∈ 𝑌 ℎ, 𝑀 ∈ R𝑁ℎ×𝑁ℎ

is the FE mass matrix, and 𝐴𝑖 ∈ R𝑁ℎ×𝑁ℎ is the FE stiffness matrix corresponding to the diffusion coefficient
𝑎(·, 𝜔𝑖).

Defining the block matrices and vectors

𝒜 =

⎡⎢⎣𝐴1

. . .
𝐴𝑁

⎤⎥⎦ , ℳ =

⎡⎢⎣𝑀
. . .

𝑀

⎤⎥⎦ , 1 =

⎡⎢⎣ 𝐼𝑁ℎ

...
𝐼𝑁ℎ

,

⎤⎥⎦

𝑦 =

⎡⎢⎣y1

...
y𝑁

⎤⎥⎦ , 𝑝 =

⎡⎢⎣p1

...
p𝑁

⎤⎥⎦ , 𝑔 = 1g, 𝑧𝑑 = 1z𝑑,

where the p𝑖 solve the adjoint systems 𝐴𝑇
𝑖 p𝑖 = 𝑀y𝑖 − z𝑑, the optimality condition for (5.1) reads 𝛽𝑀u +

1
𝑁

∑︀𝑁
𝑖=1 𝑀p𝑖 = 0, which leads to the coupled linear system⎡⎢⎢⎣ 𝒜 0 −ℳ1

−ℳ 𝒜𝑇 0

0 1𝑇ℳ 𝑁𝛽𝑀

⎤⎥⎥⎦
⎡⎣𝑦

𝑝
u

⎤⎦ =

⎡⎣ 𝑔

− 𝑧𝑑

0

⎤⎦ . (5.2)

By eliminating the state and adjoint unknowns, this can be recast into a linear system in the control variable
only

𝐺u = 𝜒 , (5.3)

with 𝐺 = 𝑁𝛽𝑀 + 1𝑇ℳ𝒜−𝑇ℳ𝒜−1ℳ1 and 𝜒 = 1𝑇ℳ𝒜−𝑇
(︀
𝑧𝑑 −ℳ𝒜−1𝑔

)︀
.

System (5.3) can, for example, be solved by an iterative method such as gradient or conjugate gradient type
methods. At each iteration, a matrix-vector multiplication will involve the solution of 𝑁 state and 𝑁 adjoint
equations, resulting in 2𝑁 PDE solves per iteration.

Both iterative solvers are examples of solution schemes that offer an exponential convergence in the number
of iterations. Alternative to the formulation (5.3) one could rewrite system (5.2) in the form[︃

𝐶 𝐵𝑇

𝐵 0

]︃ [︃
𝑤

𝑝

]︃
=

[︃
𝑣

𝑔

]︃
, with 𝑤 =

[︂
𝑦
u

]︂
, (5.4)

which could be solved, e.g., by GMRES or MINRES iterative methods. In the next Theorem 5.2 we analyze the
complexity of the fully discrete problem in terms of computational work needed to achieve a given tolerance.
Instead of particularizing the result to one specific iterative solver, we make the assumption that an exponentially
convergent iterative solver is employed. More precisely:
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Assumption 5.1. Let ̂︀𝑢ℎ
⋆ be the exact solution to (5.1). Furthermore, let ̂︀𝑢ℎ

𝑗 denote the approximate solution to
the OCP (5.1) obtained after 𝑗 iterations of the iterative solver used to solve (5.1). We assume that the chosen
iterative solver satisfies

E
[︀
‖̂︀𝑢ℎ

𝑗 − ̂︀𝑢ℎ
⋆‖2

]︀
≤ 𝐶1𝑒

−𝜌𝑗 , ∀𝑗 ∈ N , (5.5)

for some constants 𝐶1, 𝜌 > 0 that are independent of ℎ and 𝑁 .

This assumption is sound since the condition number of the matrix 𝐺 in (5.3) can be bounded uniformly in
ℎ and 𝑁 and scales as 𝛽−1. Similarly, the system (5.4) can be optimally preconditioned, so that the exponential
convergence rate does not depend on the discretization parameters.

Based on Assumption 5.1 concerning the iterative solver, we now provide an error bound for the approximate
solution ̂︀𝑢ℎ

𝑗 , as a function of all discretization parameters 𝑗, ℎ, and 𝑁 .

Theorem 5.2. Let 𝑢⋆ be the solution of the optimal control problem (2.10). Moreover, let ̂︀𝑢ℎ
𝑗 be the 𝑗-th iter-

ation of a linear solver applied to (5.3) and suppose that the solver satisfies Assumption 5.1. Then under the
assumptions of Lemma 3.4, there exist constants 𝐶1, 𝐶2, 𝐶3 > 0 independent of ℎ and 𝑁 such that

E
[︀
‖̂︀𝑢ℎ

𝑗 − 𝑢⋆‖2
]︀
≤ 𝐶1𝑒

−𝜌𝑗 +
𝐶2

𝑁
+ 𝐶3ℎ

2𝑟+2 . (5.6)

Proof. The global error can be decomposed as follows:

E
[︀
‖̂︀𝑢ℎ

𝑗 − 𝑢⋆‖2
]︀
≤ 3 E

[︀
‖̂︀𝑢ℎ

𝑗 − ̂︀𝑢ℎ
⋆‖2

]︀⏟  ⏞  
linear solver

+3 E[‖̂︀𝑢ℎ
⋆ − 𝑢ℎ

⋆‖2]⏟  ⏞  
MC

+3 E[‖𝑢ℎ
⋆ − 𝑢⋆‖2]⏟  ⏞  

FE error

.

The first term E
[︀
‖̂︀𝑢ℎ

𝑗 − ̂︀𝑢ℎ
⋆‖2

]︀
quantifies the convergence of the finite dimensional optimization algorithm, which

is exponential w.r.t. the iteration number thanks to the hypotheses.
The second term E[‖̂︀𝑢ℎ

⋆ − 𝑢ℎ
⋆‖2] accounts for the standard MC error and can be controlled as in Theorem 4.1

(applied to the FE approximation) leading to

E[‖̂︀𝑢ℎ
⋆ − 𝑢ℎ

⋆‖2] ≤ 1
𝛽2𝑁

E[‖𝑝(̂︀𝑢ℎ
⋆)‖2].

Finally, the term E[‖𝑢ℎ
⋆ − 𝑢⋆‖2] can be controlled by the result in Lemma 3.4, namely by

‖𝑢ℎ
⋆ − 𝑢⋆‖2 ≤ 𝐶

(︀
E

[︀
|𝑦𝜔(𝑢⋆)|2𝐻𝑟+1

]︀
+ E[|𝑝𝜔(𝑢⋆)|2𝐻𝑟+1 ]

)︀
ℎ2𝑟+2,

so that the claim follows. �

We conclude this Section by analyzing the computational complexity of solving the fully discrete OCP (5.1),
or equivalently (5.3), using an exponentially convergent iterative solver. We assume that the state and adjoint
problems, using a triangulation with mesh size ℎ, can be solved in computational time 𝐶ℎ . ℎ−𝑛𝛾 . Here,
𝛾 ∈ [1, 3] is a parameter representing the efficiency of the linear solver used (e.g., 𝛾 = 3 for a direct solver and
𝛾 = 1 + 𝜖 with 𝜖 > 0 arbitrarily small for an optimal multigrid solver), while 𝑛 is the dimension of the physical
space. Hence the overall computational work 𝑊 of 𝑗 gradient iterations is proportional to 𝑊 ≃ 2𝑁𝑗ℎ−𝑛𝛾 .

Remark 5.3. We briefly recall the asymptotic boundedness notation “.” (also known as (a.k.a.) the Landau
big O(·) notation) as well as “≃”, a.k.a. 𝛩, which will be useful for stating the complexity results that follow.
That is, we write

𝑓(𝑥) . 𝑔(𝑥) as 𝑥 →∞ ⇔ ∃𝑀,𝑥0 > 0 s.t. |𝑓(𝑥)| ≤ 𝑀𝑔(𝑥) forall 𝑥 ≥ 𝑥0,

𝑓(𝑥) ≃ 𝑔(𝑥) as 𝑥 →∞ ,⇔ 𝑓(𝑥) . 𝑔(𝑥) and 𝑔(𝑥) . 𝑓(𝑥) as 𝑥 →∞.
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Corollary 5.4. In order to achieve a given tolerance . tol, i.e. to guarantee that E
[︀
‖̂︀𝑢ℎ

𝑗 − 𝑢⋆‖2
]︀
. tol2, the

total required computational work 𝑊 is bounded by

𝑊 . tol−2− 𝑛𝛾
𝑟+1 | log(tol)|.

Proof. To achieve a tolerance . tol, we can equidistribute the precision tol2 over the three terms in (5.6). This
leads to the choices:

𝑗max ≃ − log(tol), ℎ ≃ tol
1

𝑟+1 , 𝑁 ≃ tol−2.

Hence the total cost for computing a solution ̂︀𝑢ℎ
𝑗max

that achieves the required tolerance is 𝑊 ≃ 2𝑁𝑗maxℎ
−𝑛𝛾 =

tol−2− 𝑛𝛾
𝑟+1 | log(tol)| as claimed. �

6. Stochastic gradient with fixed mesh size.

In the previous Section, we have considered an approach to approximately solve the OCP (2.10) in which the
Monte Carlo sample size 𝑁 is fixed a-priori, based on accuracy requirements, the sample is generate once and
for all, and then the coupled system (5.2) is solved by an iterative scheme, each iteration involving the solution
of 𝑁 primal and 𝑁 adjoint problems.

As an alternative, in this section we consider an approach based on stochastic optimization ideas. Specifi-
cally, we will use randomized methods known in the literature as Stochastic Approximation (SA) or Stochastic
Gradient (SG) [16, 40, 41, 46, 47]. At the basis of these methods is a steepest decent algorithm to tackle the
optimization problem. For example, the classic version of such a method, the so-called Robbins–Monro method,
works as follows. Within the steepest descent algorithm the exact gradient ∇𝐽 = ∇E[𝑓 ] = E[∇𝑓 ] is replaced
by a single evaluation ∇𝑓(·, 𝜔𝑗), where the random variable 𝜔𝑗 is re-sampled independently at each iteration of
the steepest-descent method:

𝑢𝑗+1 = 𝑢𝑗 − 𝜏𝑗∇𝑓(𝑢𝑗 , 𝜔𝑗). (6.1)

Here, 𝜏𝑗 is the step-size of the algorithm (also called learning rate) and decreases as 1/𝑗, over the iterations, in
the usual approach.

Alternatively, the single evaluation ∇𝑓(·, 𝜔𝑗) can be replaced by a sample average over 𝑁𝑗 i.i.d. realizations
(so called mini-batches [12,15,17]) at every iteration, which are drawn independently of the previous iterations.
More precisely, let −→𝜔𝑗 = (𝜔(1)

𝑗 , · · · , 𝜔
(𝑁𝑗)
𝑗 ) ∼ 𝑃⊗𝑁𝑗 , then we define the recursion as

𝑢𝑗+1 = 𝑢𝑗 − 𝜏𝑗𝐸
−→𝜔𝑗

MC[∇𝑓(𝑢𝑗 , ·)], (6.2)

where 𝐸
−→𝜔𝑗

MC[∇𝑓(𝑢, ·)] = 1
𝑁𝑗

∑︀𝑁𝑗

𝑖=1∇𝑓(𝑢, 𝜔
(𝑖)
𝑗 ) is the usual Monte Carlo estimator using a sample of size 𝑁𝑗 at

iteration 𝑗. Notice that the Robbins–Monro method is a special case of this scheme, namely with 𝑁𝑗 = 1
for all 𝑗. In what follows, we investigate optimal choices of the sequences {𝜏𝑗}𝑗 and {𝑁𝑗}𝑗 , and the overall
computational complexity of the corresponding algorithm. We first analyze the convergence of the Stochastic
Gradient algorithm (6.2) when applied to the OPC (2.10) in the continuous setting, i.e. with no Finite Element
discretization. The proof of the next theorem follows closely the general one in Sect. 5.9 of [47], although here
we do not assume uniform boundedness of E

[︀
‖∇𝑓(𝑢, ·)‖2

]︀
with respect to 𝑢, nor do we project the control 𝑢

onto a bounded set at each iteration, which leads to slight technical modifications. For the sake of completeness,
we give the full proof of the theorem.

Theorem 6.1. Let 𝑢⋆ be the solution of the continuous OCP (2.10) and denote by 𝑢𝑗 the 𝑗-th iterate of (6.2).
Then it holds that

E
[︀
‖𝑢𝑗+1 − 𝑢⋆‖2

]︀
≤ 𝑐𝑗E

[︀
‖𝑢𝑗 − 𝑢⋆‖2

]︀
+

2𝜏2
𝑗

𝑁𝑗
E[‖∇𝑓(𝑢⋆, 𝜔)‖2], (6.3)

with 𝑐𝑗 := 1−𝜏𝑗 𝑙+𝐿2
(︁

1+ 2
𝑁𝑗

)︁
𝜏2
𝑗 and 𝐿, 𝑙 the convexity and Lipschitz constants defined in Lemmas 3.6 and 3.5,

respectively.
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Proof. Using inequalities (3.7) and (3.8), we can derive a recursive formula to control the error between successive
iterations. Let us introduce the filtration ℱ𝑗 = 𝜎 {−→𝜔𝑘, 𝑘 ≤ 𝑗 − 1}, i.e. the sigma algebra generated by all random
variables used up to iteration 𝑗 − 1. Notice that 𝑢𝑗 is measurable with respect to ℱ𝑗 . Moreover, we introduce
the notation E [·|ℱ𝑗 ] to denote conditional expectation with respect to such filtration. Using the fact that
E[∇𝑓(𝑢⋆, ·)] = 0, we have:

𝑢𝑗+1 − 𝑢⋆ = 𝑢𝑗 − 𝑢⋆ − 𝜏𝑗𝐸
−→𝜔𝑗

MC[∇𝑓(𝑢𝑗 , ·)] + 𝜏𝑗E[∇𝑓(𝑢⋆, ·)]

= 𝑢𝑗 − 𝑢⋆ − 𝜏𝑗E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ] + 𝜏𝑗E[∇𝑓(𝑢⋆, ·)] + 𝜏𝑗

(︀
E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]− 𝐸

−→𝜔𝑗

MC[∇𝑓(𝑢𝑗 , ·)]
)︀

= 𝑢𝑗 − 𝑢⋆ − 𝜏𝑗𝑇1 − 𝜏𝑗𝑇2,

with 𝑇1 := E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]− E[∇𝑓(𝑢⋆, ·)] and 𝑇2 := 𝐸
−→𝜔𝑗

MC[∇𝑓(𝑢𝑗 , ·)]− E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]. Hence,

‖𝑢𝑗+1 − 𝑢⋆‖2 =‖𝑢𝑗 − 𝑢⋆‖2 + 𝜏2
𝑗 ‖𝑇1‖2 + 𝜏2

𝑗 ‖𝑇2‖2

− 2𝜏𝑗⟨𝑢𝑗 − 𝑢⋆, 𝑇1⟩ − 2𝜏𝑗⟨𝑢𝑗 − 𝑢⋆, 𝑇2⟩+ 2𝜏2
𝑗 ⟨𝑇1, 𝑇2⟩.

Concerning the terms containing 𝑇1, we find:

‖𝑇1‖2 = ‖E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]− E[∇𝑓(𝑢⋆, ·)]‖2

= ‖E [∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)|ℱ𝑗 ] ‖2

=
∫︁

𝐷

(︀
E [∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)|ℱ𝑗 ]

)︀2d𝑥

≤
∫︁

𝐷

E
[︀
|∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)|2|ℱ𝑗

]︀
d𝑥

= E
[︀
‖∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)‖2|ℱ𝑗

]︀
≤ 𝐿2E

[︀
‖𝑢𝑗 − 𝑢⋆‖2|ℱ𝑗

]︀
, [Lipschitz condition (3.7)]

where we have used Jensen’s inequality for conditional expectation: 𝜑(E [𝑋|ℱ𝑗 ]) ≤ E [𝜑(𝑋)|ℱ𝑗 ] for 𝜑 convex;
see, e.g., [50]. Taking now the full expectation yields:

E[‖𝑇1‖2] ≤ 𝐿2E
[︀
E

[︀
‖𝑢𝑗 − 𝑢⋆‖2|ℱ𝑗

]︀]︀
= 𝐿2E[‖𝑢𝑗 − 𝑢⋆‖2],

and

E[⟨𝑢𝑗 − 𝑢⋆, 𝑇1⟩] = E[⟨𝑢𝑗 − 𝑢⋆, E [∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)|ℱ𝑗 ]⟩]
= E [E [⟨𝑢𝑗 − 𝑢⋆,∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)⟩|ℱ𝑗 ]]

≥ E
[︂
E

[︂
𝑙

2
‖𝑢𝑗 − 𝑢⋆‖2|ℱ𝑗

]︂]︂
[Strong Convexity (3.8)]

=
𝑙

2
E[‖𝑢𝑗 − 𝑢⋆‖2].

We now focus on the term 𝑇2 and notice that it can be written as

𝑇2 =
1

𝑁𝑗

𝑁𝑗∑︁
𝑖=1

(︁
∇𝑓(𝑢𝑗 , 𝜔

(𝑖)
𝑗 )− E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]

)︁
=

1
𝑁𝑗

𝑁𝑗∑︁
𝑖=1

𝑌𝑖,

with 𝑌𝑖 = ∇𝑓(𝑢𝑗 , 𝜔
(𝑖)
𝑗 )− E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ]. We have then

E
[︀
‖𝑇2‖2

]︀
= E

⎡⎢⎣∫︁
𝐷

⎛⎝ 1
𝑁𝑗

𝑁𝑗∑︁
𝑖=1

𝑌𝑖

⎞⎠2
⎤⎥⎦ = E

⎡⎣∫︁
𝐷

1
𝑁2

𝑗

𝑁𝑗∑︁
𝑖,𝑙=1

𝑌𝑖𝑌𝑙

⎤⎦ = E

⎡⎣∫︁
𝐷

1
𝑁2

𝑗

𝑁𝑗∑︁
𝑖,𝑙=1

E [𝑌𝑖𝑌𝑙|ℱ𝑗 ]

⎤⎦ .
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Observe that, conditional upon ℱ𝑗 , the random variables 𝑌𝑖, 𝑖 = 1, . . . , 𝑁𝑗 , are mutually independent and have
zero mean, i.e. E [𝑌𝑖|ℱ𝑗 ] = 0 and E [𝑌𝑖𝑌𝑙|ℱ𝑗 ] = 0 when 𝑖 ̸= 𝑙. Therefore it follows that

E
[︀
‖𝑇2‖2

]︀
= E

⎡⎣∫︁
𝐷

1
𝑁2

𝑗

𝑁𝑗∑︁
𝑖=1

E
[︀
𝑌 2

𝑖 |ℱ𝑗

]︀⎤⎦
= E

[︂∫︁
𝐷

1
𝑁𝑗

E
[︁
(∇𝑓 (𝑢𝑗 , ·)− E [∇𝑓(𝑢𝑗 , ·)|ℱ𝑗 ])2 |ℱ𝑗

]︁
d𝑥

]︂
≤ E

[︂∫︁
𝐷

1
𝑁𝑗

E
[︁
(∇𝑓(𝑢𝑗 , ·))2 |ℱ𝑗

]︁
d𝑥

]︂
=

1
𝑁𝑗

E
[︀
‖∇𝑓(𝑢𝑗 , ·)‖2

]︀
≤ 2

𝑁𝑗
E

[︀
‖∇𝑓(𝑢𝑗 , ·)−∇𝑓(𝑢⋆, ·)‖2 + ‖∇𝑓(𝑢⋆, ·)‖2

]︀
≤ 2𝐿2

𝑁𝑗
E

[︀
‖𝑢𝑗 − 𝑢⋆‖2

]︀
+

2
𝑁𝑗

E
[︀
‖∇𝑓(𝑢⋆, ·)‖2

]︀
. [Lipschitz condition (3.7)]

Finally, we have that

E[⟨𝑢𝑗 − 𝑢⋆, 𝑇2⟩] = E[E [⟨𝑢𝑗 − 𝑢⋆, 𝑇2⟩|ℱ𝑗 ]]
= E[⟨𝑢𝑗 − 𝑢⋆, E [𝑇2|ℱ𝑗 ]⟩]

=
1

𝑁𝑗

𝑁𝑗∑︁
𝑖=1

E[⟨𝑢𝑗 − 𝑢⋆, E [𝑌𝑖|ℱ𝑗 ]⟩]

= 0,

and, similarly, E[⟨𝑇1, 𝑇2⟩] = E[E [⟨𝑇1, 𝑇2⟩|ℱ𝑗 ]] = E[⟨𝑇1, E [𝑇2|ℱ𝑗 ]⟩] = 0, which concludes the proof. �

We now consider the FE version of (6.2):

𝑢ℎ
𝑗+1 = 𝑢ℎ

𝑗 − 𝜏𝑗𝐸
−→𝜔𝑗

MC[∇𝑓ℎ(𝑢ℎ
𝑗 , 𝜔)] , (6.4)

with −→𝜔𝑗 := (𝜔(1)
𝑗 , · · · , 𝜔

(𝑁𝑗)
𝑗 ), and focus on the particular setting (𝜏𝑗 , 𝑁𝑗) = (𝜏0/𝑗,𝑁).

Theorem 6.2. Suppose that the assumptions of Lemma 3.4 hold and let 𝑢ℎ
𝑗 denote the 𝑗th iterate of (6.4) with

𝜏0 > 1/𝑙, 𝜏𝑗 = 𝜏0
𝑗 and 𝑁𝑗 = 𝑁, ∀𝑗. Then we have

E[‖𝑢ℎ
𝑗 − 𝑢⋆‖2] ≤ 𝐷1𝑗

−1 + 𝐷2ℎ
2𝑟+2, (6.5)

for suitable constants 𝐷1, 𝐷2 > 0 independent of 𝑗 and ℎ.

Proof. It follows from Theorem 6.1 that the factor 𝑐𝑗 in (6.3) for the particular case of (𝜏𝑗 , 𝑁𝑗) = (𝜏0/𝑗,𝑁)
becomes:

𝑐𝑗 = 1− 𝜏0𝑙

𝑗
+

𝜏2
0 𝐿2

𝑗2

(︁
1 +

2
𝑁

)︁
·

Next we use the recursive formula (6.3) and set, as in Section 3, 𝑢ℎ
⋆ to be the exact optimal control for the

FE problem defined in (3.1). We emphasize that (3.1) has no approximation in the probability space. Setting
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𝑎𝑗 = E[‖𝑢ℎ
𝑗 −𝑢ℎ

⋆‖2] and 𝛽𝑗 = 2𝜏2
𝑗

𝑁
E[‖∇𝑓(𝑢ℎ

⋆ , ·)‖2], from (6.3) applied to the sequence of Finite Element solutions
{𝑢ℎ

𝑗 }𝑗>0 we find

𝑎𝑗+1 ≤ 𝑐𝑗𝑎𝑗 + 𝛽𝑗

≤𝑐𝑗𝑐𝑗−1𝑎𝑗−1 + 𝑐𝑗𝛽𝑗−1 + 𝛽𝑗

≤ · · ·

≤
(︁ 𝑗∏︁

𝑖=1

𝑐𝑖

)︁
⏟  ⏞  

=𝜅𝑗

𝑎1 +
𝑗∑︁

𝑖=1

𝛽𝑖

𝑗∏︁
𝑙=𝑖+1

𝑐𝑙⏟  ⏞  
=ℬ𝑗

. (6.6)

For the first term 𝜅𝑗 , computing its logarithm, we have,

log(𝜅𝑗) =
𝑗∑︁

𝑖=1

log(1− 𝜏0𝑙

𝑖
+

𝑀

𝑖2
) ≤

𝑗∑︁
𝑖=1

−𝜏0𝑙

𝑖
+

𝑗∑︁
𝑖=1

𝑀

𝑖2
,

where we have set 𝑀 = 𝜏2
0 𝐿2

(︀
1 + 2

𝑁

)︀
. Thus

log(𝜅𝑗) ≤ −𝜏0𝑙 log 𝑗 + 𝑀 ′, with 𝑀 ′ =
∞∑︁

𝑖=1

𝑀

𝑖2
,

and 𝜅𝑗 . 𝑗−𝜏0𝑙. For the second term ℬ𝑗 in (6.6) we have:

ℬ𝑗 =
𝑗∑︁

𝑖=1

𝛽𝑖

𝑗∏︁
𝑘=𝑖+1

𝑐𝑘 ≤
𝑗∑︁

𝑖=1

𝑆

𝑖2

𝑗∏︁
𝑘=𝑖+1

(︁
1− 𝜏0𝑙

𝑘
+

𝜏2
0 𝐿2

𝑘2

)︁
⏟  ⏞  

=𝐾𝑖𝑗

, with 𝑆 =
2𝜏2

0

𝑁
E[‖∇𝑓(𝑢ℎ

⋆ , 𝜔)‖2].

For the term 𝐾𝑖𝑗 we can proceed as before

log(𝐾𝑖𝑗) =
𝑗∑︁

𝑘=𝑖+1

log
(︂

1− 𝜏0𝑙

𝑘
+

𝑀

𝑘2

)︂

≤
𝑗∑︁

𝑘=𝑖+1

(︁
− 𝜏0𝑙

𝑘
+

𝑀

𝑘2

)︁
≤ −𝜏0𝑙(log(𝑗 + 1)− log(𝑖 + 1)) + 𝑀

(︂
1
𝑖
− 1

𝑗

)︂
,

which shows that

𝐾𝑖𝑗 ≤ (𝑗 + 1)−𝜏0𝑙(𝑖 + 1)𝜏0𝑙 exp
(︂

𝑀

(︂
1
𝑖
− 1

𝑗

)︂)︂
.

It follows that

ℬ𝑗 ≤ (𝑗 + 1)−𝜏0𝑙 exp
(︂
−𝑀

𝑗

)︂
⏟  ⏞  

≤1

𝑗∑︁
𝑖=1

𝑆𝑖𝜏0𝑙−2 exp
(︂

𝑀

𝑖

)︂
⏟  ⏞  
≤exp(𝑀)

≤ 𝑆 exp(𝑀)(𝑗 + 1)−𝜏0𝑙

𝑗∑︁
𝑖=1

𝑖𝜏0𝑙−2 . 𝑗−1,



1614 M. MARTIN ET AL.

for 𝜏0 > 1/𝑙. Eventually, we obtain the following upper bound, for two constants 𝐷3 > 0 and 𝐷4 > 0 independent
of ℎ and 𝑗:

𝑎𝑗+1 ≤ 𝐷3𝑗
−𝜏0𝑙𝑎1 + 𝐷4𝑗

−1. (6.7)

From the condition 𝜏0 > 1
𝑙 , we conclude that

𝑎𝑗+1 ≤ 𝐷1𝑗
−1, (6.8)

with 𝐷1 possibly depending in ‖𝑢ℎ
0 − 𝑢ℎ

⋆‖. Finally splitting the error as

E[‖𝑢ℎ
𝑗 − 𝑢⋆‖2] ≤ 2E[‖𝑢ℎ

𝑗 − 𝑢ℎ
⋆‖2] + 2E[‖𝑢ℎ

⋆ − 𝑢⋆‖2],

and using (3.6) in Lemma 3.4 to bound the second term, the claim follows. �

Algorithm 1 contains a detailed pseudo-code description of the SG method (6.4) with a fixed FE mesh size
ℎ applied to the OCP (3.1).

Algorithm 1: Stochastic Gradient algorithm with fixed mesh size.
Data:
Given a desired tolerance tol, choose 1

𝑙 < 𝜏0, 𝑗max ≃ tol−2, and ℎ ≃ tol
1

𝑟+1

initialization:
𝑢 = 0;
for 𝑗 = 1, . . . , 𝑗max do

sample 𝑁 realizations 𝑎
(𝑖)
𝑗 = 𝑎(·, 𝜔(𝑖)

𝑗 ), 𝑖 = 1, . . . , 𝑁 , of the random field;

solve 𝑁 state problems → 𝑦(𝑎(𝑖)
𝑗 , 𝑢), 𝑖 = 1, . . . , 𝑁 , using FE on mesh ℎ;

solve 𝑁 adjoint problems → 𝑝(𝑎(𝑖)
𝑗 , 𝑢), 𝑖 = 1, . . . , 𝑁 , using FE on mesh ℎ;̂︂∇𝐽 = 𝛽𝑢 + 1

𝑁

∑︀𝑁
𝑖=1 𝑝(𝑎(𝑖)

𝑗 , 𝑢)

𝑢 = 𝑢− 𝜏0
𝑗

̂︂∇𝐽

end

We conclude this section by analyzing the complexity of the method described in Algorithm 1.

Corollary 6.3. To achieve a given tolerance . tol in a root mean squared sense, i.e. to guarantee that E[‖𝑢ℎ
𝑗 −

𝑢⋆‖2] . tol2, the total required computational work 𝑊 is bounded by

𝑊 . tol−2− 𝑛𝛾
𝑟+1 ·

Here, we recall that the state and adjoint problems can be solved, using a triangulation with mesh size ℎ, in
computational time 𝐶ℎ . ℎ−𝑛𝛾 , 𝛾 ∈ [1, 3], and 𝑟 is the degree of the polynomial FE space.

Proof. To achieve a tolerance . tol2 for the error E[‖𝑢ℎ
𝑗 − 𝑢⋆‖2], we can equidistribute the precision tol2 over

the two terms in (6.5). This leads to the choice:

𝑗max ≃ tol−2, ℎ ≃ tol
1

𝑟+1 .

The cost for solving one deterministic PDE with the FE method is proportional to ℎ−𝑛𝛾 . Hence the total cost
for computing a solution 𝑢ℎ

𝑗 that achieves the required tolerance is

𝑊 ≃ 2𝑁𝑗ℎ−𝑛𝛾 . tol−2− 𝑛𝛾
𝑟+1 ,

as claimed. �
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Table 1. Complexity analysis overview for different optimization methods.

MC with linear solver SG – Variable step-size SG – Variable step-size and 𝑁𝑗

𝜏𝑗 = 𝜏0 𝜏𝑗 = 𝜏0/𝑗 𝜏𝑗 = 𝜏0/𝑗

𝑁 ≃ tol−2 𝑁𝑗 = 𝑁 𝑁𝑗 = 𝑗𝜏0𝑙−1

ℎ ≃ tol
1

𝑟+1 ℎ ≃ tol
1

𝑟+1 ℎ ≃ tol
1

𝑟+1

𝑗max ≃ − log(tol) 𝑗max ≃ tol−2 𝑗max ≃ tol
− 2

𝜏0𝑙 | log(tol)|
1

𝜏0𝑙

𝑊 . tol−2− 𝑛𝛾
𝑟+1 | log(tol)| 𝑊 . tol−2− 𝑛𝛾

𝑟+1 𝑊 . tol−2− 𝑛𝛾
𝑟+1 | log(tol)|

Remark 6.4. We have investigated also other choices for (𝜏𝑗 , 𝑁𝑗) in the SG method (6.4). However, among
the cases considered, we have found that (𝜏𝑗 , 𝑁𝑗) = ( 𝜏0

𝑗 , 𝑁) leads to the best complexity. For example we have
studied the SG with step-size 𝜏𝑗 = 𝜏0/𝑗, 𝜏0𝑙 > 1 and increasing the MC sample size as 𝑁𝑗 ∼ 𝑗𝜏0𝑙−1 across
iterations. With this choice the estimate in (6.5) becomes

𝑎𝑗+1 ≤ 𝐷4𝑗
−𝜏0𝑙 log(𝑗), (6.9)

which leads to the choice 𝑗max ≃ tol−
2

𝜏0𝑙 | log(tol)|
1

𝜏0𝑙 and a final complexity

𝑊 ≃ 2
𝑗∑︁

𝑖=1

𝑖𝜏0𝑙−1ℎ−𝑛𝛾 ≃ 2𝑗𝜏0𝑙ℎ−𝑛𝛾 =. tol−2− 𝑛𝛾
𝑟+1 | log(tol)|,

which is analogous to that of the full optimization algorithm discussed in Section 5. The proof of the bound
(6.9) is detailed in Appendix B for completeness.

Remark 6.5. In general convex stochastic optimization problems, the constant 𝑙 may be challenging to estimate
in practice, which makes it difficult to fulfill the condition 𝜏0 > 1/𝑙. To bypass this difficulty, one could consider
the so-called Averaged Stochastic Gradient method [46] instead, in which the step size 𝜏𝑗 = 𝜏0/𝑗𝜂, 𝜂 ∈ (0, 1), is
chosen with 𝑁𝑗 = 𝑁 and the averaged control 1

𝑗

∑︀𝑗
𝑖=1 𝑢𝑖 is considered. The analysis of this alternative method

is postponed to a future work. We remark, however, that in our setting the constant 𝑙 is directly related to the
regularization parameter, namely 𝑙 = 2𝛽, so the need for averaging the control is not so compelling.

Table 1 summarizes the complexity results for the SG method in both the fixed sample size and increasing
sample size regimes, as well as the complexity of a linear solver (e.g., CG) applied to the fully discretized
OCP. There, the total work (𝑊 ) to achieve a given tolerance (tol) is presented. We see from the table that
the SG version with fixed sample size 𝑁 (second column) improves the complexity only by a logarithmic factor
compared to the MC method in conjunction with a linear solver for the optimization problem (first column).
The advantage we see in this SG version compared to the MC method with linear solver is that we do not have
to fix the sample size 𝑁 in advance and can, instead, simply monitor the convergence of the SG iterations until
a prescribed tolerance is reached. However, in Algorithm 1, we do have to choose the FE mesh size in advance.
It is therefore natural to look at a further variation of the SG algorithm in which the FE mesh is refined during
the iterations until a prescribed tolerance is reached. This is detailed in the next Section.

7. Stochastic gradient with variable mesh size

In this section, we discus a variant of the stochastic gradient (SG) method that also refines the FE mesh size
across iterations of the steepest decent optimization routine. That is, the new mesh size ℎ𝑗 is now depending
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on the current iteration 𝑗. Here we study only sequences of nested meshes of size ℎ𝑗 = 2−ℓ(𝑗) with ℓ : N → N
being a non-decreasing function. The complete SG procedure with decreasing FE mesh size then reads:

𝑢
ℎ𝑗+1
𝑗+1 = 𝑢

ℎ𝑗

𝑗 − 𝜏𝑗𝐸
−→𝜔𝑗

MC[∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)], (7.1)

with −→𝜔𝑗 := (𝜔(1)
𝑗 , · · · , 𝜔

(𝑁𝑗)
𝑗 ). Notice that if non-nested meshes are used across the iterations, a projection

operator has to be added in (7.1) to transfer information from one mesh to another. We first derive a recurrence
formula for the error in the spirit of (6.3).

Theorem 7.1. Let 𝑢
ℎ𝑗+1
𝑗+1 be the approximated control obtained from the SG with variable mesh size (7.1) and

𝑢⋆ the exact control for the continuous optimal problem (2.10). Then, under the assumptions of Lemma 3.4, we
have:

E[‖𝑢ℎ𝑗+1
𝑗+1 − 𝑢⋆‖2] ≤ 𝑐𝑗E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] +
4𝜏2

𝑗

𝑁𝑗
E[‖∇𝑓(𝑢⋆, ·)‖2] + 4𝜏𝑗

(︀
𝜏𝑗(1 +

2
𝑁𝑗

) +
1
𝑙

)︀
𝐶ℎ2𝑟+2

𝑗 , (7.2)

where 𝑐𝑗 = 1 − 𝜏𝑗 𝑙
2 + 𝜏2

𝑗 𝐿2
(︀
2 + 2

𝑁𝑗

)︀
, 𝑙 and 𝐿 are the convexity constant and the Lipschitz constant of 𝑓 , resp.,

and 𝐶 > 0 is a constant that depends on the 𝐻𝑟+1-semi-norm of 𝑦(𝑢⋆) and 𝑝(𝑢⋆).

Proof. Subtracting the optimal continuous control 𝑢⋆ from both sides of the recurrence formula (7.1), we get

𝑢
ℎ𝑗+1
𝑗+1 − 𝑢⋆ = 𝑢

ℎ𝑗

𝑗 − 𝑢⋆ − 𝜏𝑗𝐸
−→𝜔𝑗

MC[∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)]± 𝜏𝑗E[∇𝑓ℎ𝑗 (𝑢⋆, ·)]

± 𝜏𝑗E
[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)|ℱ𝑗

]︁
+ 𝜏𝑗E[∇𝑓(𝑢⋆, ·)]

= 𝑢
ℎ𝑗

𝑗 − 𝑢⋆ + 𝜏𝑗

(︁
E[∇𝑓ℎ𝑗 (𝑢⋆, ·)]− E

[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)|ℱ𝑗

]︁)︁
+ 𝜏𝑗

(︁
E

[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)|ℱ𝑗

]︁
− 𝐸

−→𝜔𝑗

MC[∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)]
)︁

+ 𝜏𝑗

(︀
E[∇𝑓(𝑢⋆, ·)−∇𝑓ℎ𝑗 (𝑢⋆, ·)]

)︀
.

Then setting, similar as in the proof of Theorem 6.1,

𝑇1 := E
[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)|ℱ𝑗

]︁
− E[∇𝑓ℎ𝑗 (𝑢⋆, ·)],

𝑇2 := 𝐸
−→𝜔𝑗

MC[∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)]− E
[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)|ℱ𝑗

]︁
,

𝑇3 := E[∇𝑓(𝑢⋆, ·)−∇𝑓ℎ𝑗 (𝑢⋆, ·)],

we can rewrite the last equality as

𝑢
ℎ𝑗+1
𝑗+1 − 𝑢⋆ = 𝑢

ℎ𝑗

𝑗 − 𝑢⋆ − 𝜏𝑗𝑇1 − 𝜏𝑗𝑇2 + 𝜏𝑗𝑇3.

We compute the mean of the squared norm of 𝑢
ℎ𝑗+1
𝑗+1 − 𝑢⋆ as

E[‖𝑢ℎ𝑗+1
𝑗+1 − 𝑢⋆‖2] = E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] + 𝜏2
𝑗 E[‖𝑇1‖2] + 𝜏2

𝑗 E[‖𝑇2‖2] + 𝜏2
𝑗 E[‖𝑇3‖2]

− 2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇1⟩]− 2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇2⟩] + 2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇3⟩]
+ 2𝜏2

𝑗 E[⟨𝑇1, 𝑇2⟩]− 2𝜏2
𝑗 E[⟨𝑇2, 𝑇3⟩]− 2𝜏2

𝑗 E[⟨𝑇1, 𝑇3⟩] . (7.3)

Next, we bound each of these ten terms on the right-hand side. First, the term 𝜏2
𝑗 E[‖𝑇1‖2] can be bounded as

in the proof of Theorem 6.1 leading to:

𝜏2
𝑗 E[‖𝑇1‖2] ≤ 𝜏2

𝑗 𝐿2
ℎ𝑗

E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2],
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with 𝐿ℎ𝑗
being the Lipschitz constant for the function 𝑓ℎ𝑗 , which is bounded by 𝐿 (see Lem. 3.5). For the term

𝜏2
𝑗 E[‖𝑇3‖2], we find,

𝜏2
𝑗 E[‖𝑇3‖2] = 𝜏2

𝑗 ‖E[∇𝑓(𝑢⋆, ·)−∇𝑓ℎ𝑗 (𝑢⋆, ·)]‖2

= 𝜏2
𝑗 ‖E[𝑝(𝑢⋆)− 𝑝ℎ𝑗 (𝑢⋆)]‖2

≤ 𝜏2
𝑗 E[‖𝑝(𝑢⋆)− 𝑝ℎ𝑗 (𝑢⋆)‖2]

≤ 2𝜏2
𝑗 E[‖𝑝(𝑢⋆)− ̃︀𝑝ℎ𝑗 (𝑢⋆)‖2] + 2𝜏2

𝑗 E[‖̃︀𝑝ℎ𝑗 (𝑢⋆)− 𝑝ℎ𝑗 (𝑢⋆)‖2]

≤ 2𝐶𝜏2
𝑗 E[|𝑝(𝑢⋆)|2𝐻𝑟+1 ]ℎ2𝑟+2 + 2𝐶𝜏2

𝑗 E[|𝑦(𝑢⋆)|2𝐻𝑟+1 ]ℎ2𝑟+2 [using Lem. 3.4]

≤ 2𝜏2
𝑗 𝐶(𝑦(𝑢⋆), 𝑝(𝑢⋆))ℎ2𝑟+2.

Next, for 𝜏2
𝑗 E[‖𝑇2‖2] we use the same steps as in Theorem 6.1 to find

𝜏2
𝑗 E[‖𝑇2‖2] ≤

2𝜏2
𝑗 𝐿2

ℎ𝑗

𝑁𝑗
E

[︁
‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2
]︁

+
2𝜏2

𝑗

𝑁𝑗
E

[︁
‖∇𝑓ℎ𝑗 (𝑢⋆, ·)‖2

]︁
.

The second term of the right hand side can be further bounded uniformly w.r.t. ℎ𝑗 as

E[‖∇𝑓ℎ𝑗 (𝑢⋆, ·)‖2] ≤ 2E[‖∇𝑓ℎ𝑗 (𝑢⋆, ·)−∇𝑓(𝑢⋆, ·)‖2] + 2E[‖∇𝑓(𝑢⋆, ·)‖2]
≤ 4𝐶(𝑦(𝑢⋆), 𝑝(𝑢⋆))ℎ2𝑟+2

𝑗 + 2E[‖∇𝑓(𝑢⋆, ·)‖2],

where we have used the same steps as for 𝑇3 to bound E[‖∇𝑓ℎ𝑗 (𝑢⋆, ·)−∇𝑓(𝑢⋆, ·)‖2]. Finally, for the cross terms
we have

2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇1⟩] = 2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, E
[︁
∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)−∇𝑓ℎ𝑗 (𝑢⋆, ·)|ℱ𝑗

]︁
⟩]

= 2𝜏𝑗E[E
[︁
⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆,∇𝑓ℎ𝑗 (𝑢ℎ𝑗

𝑗 , ·)−∇𝑓ℎ𝑗 (𝑢⋆, ·)⟩|ℱ𝑗

]︁
]

≥ 𝜏𝑗 𝑙E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2], [using Strong convexity]

and as in Theorem 9,

2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇2⟩] = 2𝜏2
𝑗 E[⟨𝑇1, 𝑇2⟩] = 2𝜏2

𝑗 E[⟨𝑇2, 𝑇3⟩] = 0.

Moreover

2𝜏𝑗E[⟨𝑢ℎ𝑗

𝑗 − 𝑢⋆, 𝑇3⟩] ≤ 2𝜏𝑗
𝑙

4
E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] +
2𝜏𝑗

𝑙
E[‖𝑇3‖2]

≤ 2𝜏𝑗
𝑙

4
E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] +
4𝜏𝑗

𝑙
𝐶(𝑦(𝑢⋆), 𝑝(𝑢⋆))ℎ2𝑟+2,

and finally

2𝜏2
𝑗 E[⟨𝑇1, 𝑇3⟩] ≤ 𝜏2

𝑗 E[‖𝑇1‖2] + 𝜏2
𝑗 E[‖𝑇3‖2]

≤ 𝜏2
𝑗 𝐿2

ℎ𝑗
E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] + 2𝜏2
𝑗 𝐶(𝑦(𝑢⋆), 𝑝(𝑢⋆))ℎ2𝑟+2.

Putting everything together, we finally obtain (7.2), as claimed. �

A natural choice to tune the parameters 𝜏𝑗 , 𝑁𝑗 and ℎ𝑗 would be to set, guided by the usual Robbins–Monro
theory, 𝜏𝑗 = 𝜏0/𝑗, 𝑁𝑗 = 𝑁 and balancing all terms on right hand side of (7.2). This leads to the following.
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Theorem 7.2. Suppose that the assumptions of Lemma 3.4 hold and let 𝑢
ℎ𝑗

𝑗 denote the 𝑗-th iterate of the SG
method with variable mesh size (7.1). For the particular choice (𝜏𝑗 , 𝑁𝑗 , ℎ𝑗) = (𝜏0/𝑗,𝑁, ℎ02−ℓ(𝑗)), with ℓ(𝑗) =⌈︁

ln2(𝑗)
2𝑟+2

⌉︁
, and assuming 𝜏0 > 1/𝑙, we have:

E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] ≤ 𝐹1𝑗
−1 (7.4)

for a suitable constant 𝐹1 independent of 𝑗.

Proof. With the choice of 𝜏𝑗 , 𝑁𝑗 and ℓ(𝑗) in the statement of the theorem, the two last terms 4𝜏2
𝑗

𝑁𝑗
E[‖∇𝑓ℎ𝑗

(𝑢⋆, ·)‖2]
and 4𝜏𝑗

(︀
𝜏𝑗(1 + 2

𝑁𝑗
) + 1

𝑙

)︀
𝐶ℎ2𝑟+2

𝑗 in the inequality (7.2) have the same order . 𝑗−2. Then, we apply the same
reasoning as in Theorem 6.2 to conclude the proof. �

Algorithm 2 details the SG Robbins–Monro method with variable mesh size (7.1) applied to the OCP (2.10).

Algorithm 2: Stochastic Gradient algorithm with variable mesh size.
Data:
Given a desired tolerance tol, choose 𝜏0 > 1

𝑙 , ℎ0 and 𝑗max ≃ tol−2

initialization:
𝑢 = 0
for 𝑗 = 1, . . . , 𝑗max do

update mesh size to ℎ = ℎ02−⌈
ln2 𝑗
2𝑟+2 ⌉

sample 𝑁 realizations 𝑎
(𝑖)
𝑗 = 𝑎(·, 𝜔(𝑖)

𝑗 ), 𝑖 = 1, . . . , 𝑁 , of the random field

solve 𝑁 state problems → 𝑦(𝑎(𝑖)
𝑗 , 𝑢), 𝑖 = 1, . . . , 𝑁 , on mesh ℎ

solve 𝑁 adjoint problems → 𝑝(𝑎(𝑖)
𝑗 , 𝑢), 𝑖 = 1, . . . , 𝑁 , on mesh ℎ̂︂∇𝐽 = 𝛽𝑢 + 1

𝑁

∑︀𝑁
𝑖=1 𝑝(𝑎(𝑖)

𝑗 , 𝑢)

𝑢 = 𝑢− 𝜏0
𝑗

̂︂∇𝐽

end

Concerning the complexity of the Algorithm 2, one can derive the following complexity result.

Corollary 7.3. With the choice (𝜏𝑗 , 𝑁𝑗 , , ℎ𝑗) = (𝜏0/𝑗,𝑁, ℎ02−ℓ(𝑗)) as in Theorem 7.2, in order to achieve a
given tolerance . tol in a root mean squared sense, i.e. to guarantee that E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] . tol2, the total
required computational work 𝑊 is bounded by:

𝑊 . tol−2− 𝑛𝛾
𝑟+1 .

Proof. To guarantee that the mean squared error tolerance is met, in view of Theorem 7.2 it suffices to ensure
that tol2 . 𝑗−1

max, which holds for 𝑗max ≃ tol−2. Then the total work required is bounded by

𝑊 =
𝑗max∑︁
𝑝=1

2𝑁ℎ−𝑛𝛾
𝑝 = 2𝑁

𝑗max∑︁
𝑝=1

2𝑛𝛾⌈ ln2 𝑝
2𝑟+2 ⌉ .

But since ⌈ ln2 𝑝
2𝑟+2⌉ ≤

ln2 𝑝
2𝑟+2 + 1, one can bound:

𝑊 ≤ 2𝑁

𝑗max∑︁
𝑝=1

2𝑛𝛾
(︀

ln2 𝑝
2𝑟+2+1

)︀
≤ 2𝑛𝛾+1𝑁

𝑗max∑︁
𝑝=1

𝑝
𝑛𝛾

2𝑟+2

≤ 2𝑛𝛾+1𝑁
2𝑟 + 2

2𝑟 + 2 + 𝑛𝛾
(𝑗max + 1)

𝑛𝛾
2𝑟+2+1

.
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0.5

Figure 1. Mesh and target function 𝑧𝑑. (A) Structured mesh triangulation with ℎ = 2−3.
(B) Target function 𝑧𝑑 for the optimal control problem.

As 𝑗max ≃ tol−2, we finally bound the computational work by

𝑊 . tol−2− 𝑛𝛾
𝑟+1 .

�

Notice that the asymptotic complexity remains the same as for the Stochastic Gradient algorithm with fixed
mesh size (6.4); cf. Corollary 6.3. However, as the SG method with variable mesh size uses computations on
coarser meshes for the first few iterations, we nonetheless expect a practical improvement due to reducing the
proportionality constant. We will assess such improvement by numerical experimentation in the next Section.

8. Numerical results

In this section we verify the assertions of Theorems 5.2, 6.2 and 7.2, as well as the computational complexity
derived in the corresponding Corollaries 5.4, 6.3 and 7.3. Specifically, we illustrate the order of convergence for
the three versions of the iterative optimization method presented in Sections 5–7 respectively. For this purpose,
we consider problem (2.2) in the domain 𝐷 = (0, 1)2 with 𝑔 = 1 and the random diffusion coefficient

𝑎(𝑥1, 𝑥2, 𝜉) = 1 + exp (var (𝜉1 cos(1.1𝜋𝑥1) + 𝜉2 cos(1.2𝜋𝑥1)
+𝜉3 sin(1.3𝜋𝑥2) + 𝜉4 sin(1.4𝜋𝑥2))) , (8.1)

with (𝑥1, 𝑥2) ∈ 𝐷, 𝑣𝑎𝑟 = exp(−1.125) and 𝜉 = (𝜉1, . . . , 𝜉4) with 𝜉𝑖
𝑖.𝑖.𝑑.∼ 𝒰([−1, 1]). Figure 2 shows three typical

realizations of the random field. The target function 𝑧𝑑 has been chosen as 𝑧𝑑(𝑥1, 𝑥2) = sin(𝜋𝑥1) sin(𝜋𝑥2) (see
Fig. 1b) and we have taken 𝛽 = 10−4 in the objective function 𝐽(𝑢) in (2.3). For the FE approximation, we have
considered a structured triangular grid of size ℎ (see Fig. 1a) where each side of the domain 𝐷 is divided into
1/ℎ sub-intervals and used piece-wise linear finite elements (i.e. 𝑟 = 1). All computations have been performed
using the FE library Freefem++ [26]. This relatively simple setting, with only 4 uniform random variables, has
been chosen to be able to compute an accurate reference solution by a stochastic collocation method on a fine
FE mesh.

8.1. Reference solution

To compute a reference solution of problem (2.2), we use a full tensorized Gauss-Legendre (GL) quadrature
formula with 9 points in each direction (i.e. with a total number of knots 𝑁 = 94) and a fine triangulation with
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Figure 2. Three realizations of the diffusion random field (8.1). (A) 𝜉1 = 0.261619 𝜉2 =
−0.903332 𝜉3 = −0.687648 𝜉4 = −0.782205 (B) 𝜉1 = 0.403356 𝜉2 = 0.400192 𝜉3 = −0.306743
𝜉4 = −0.951377 (C) 𝜉1 = 0.432194 𝜉2 = −0.584671 𝜉3 = 0.0566697 𝜉4 = −0.512156.

IsoValue
-1.73898
0.869488
2.60846
4.34744
6.08641
7.82539
9.56437
11.3033
13.0423
14.7813
16.5203
18.2592
19.9982
21.7372
23.4762
25.2151
26.9541
28.6931
30.4321
34.7795

Figure 3. Optimal control reference solution computed with ℎ = 2−8 on tensorized Gauss-
Legendre quadrature formula with 𝑁 = 94 nodes.

ℎ = 2−9; see, e.g., references [9,45] and Appendix A for estimates of the quadrature error. As this approximated
problem with fixed Gauss nodes is now deterministic, we have used a stopping condition based on the norm of
the gradient, and have chosen the conjugate gradient (CG) algorithm applied on the linear system (5.3) as the
iterative optimization scheme. In Figure 3 we show the optimal control obtained after 𝑗 = 16 iterations when
the stopping criterion ‖𝐸GL

(9,9,9,9)[∇𝐽(𝑢ℎ
𝑗 )]‖ ≤ 10−8 was met, where 𝑢ℎ

𝑗 is the 𝑗th CG iterate and ̂︀𝐸 = 𝐸GL
(9,9,9,9)

denote the tensor Gaussian quadrature used in (4.1) to approximate the true expectation. The 𝐿2-norm of the
final control using this Gaussian quadrature is ‖̂︀𝑢ℎ=2−8

𝑗=16 ‖ = 16.4128.
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Figure 4. 𝐿2-error on the optimal control of the fully discretized OCP with mesh size ℎ = 2−9

and increasing MC sample size 𝑁MC. Mean and std of the error estimated by sample averages
over 10 independent realizations.

8.2. Conjugate gradient on fully discretized OCP

We investigate here the convergence of the method described in Section 5, with the particular choice of the
CG method applied to the linear system (5.3) as iterative solver. We recall the error bound (5.6) in the case of
piece-wise linear FE (i.e. 𝑟 = 1):

E[‖̂︀𝑢ℎ
𝑗 − 𝑢‖2] ≤ 𝐶1𝑒

−𝜌𝑗 +
𝐶2

𝑁MC
+ 𝐶3ℎ

4. (8.2)

For each tolerance tol, using formula (8.2), we compute the optimal mesh size ℎ = ℎ(tol), the optimal sample
size in the MC approximation 𝑁MC = 𝑁MC(tol), and, finally, the minimum number of iterations required in
the iterative optimization method, 𝑗 = 𝑗(tol). To optimally balance the error contributions in (8.2), we need
further to estimate the constants 𝐶1, 𝐶2, 𝐶3, 𝜌. This is detailed hereafter.

– In order to estimate the constant 𝐶2, we used the same finest mesh as the one used to compute our reference
solution, namely ℎ = 2−9, and ran the CG method up to 20 iterations on the linear system (5.3) discretized
by Monte Carlo with a sample of increasing size 𝑁MC = 20, 21, · · · , 210. For every sample size 𝑁MC we
repeated the simulation 10 times (with 10 independent MC samples) and averaged the final 𝐿2(𝐷) error
on the control. We numerically found 𝐶2 ≈ 0.430527. Figure 4 presents these results, where the mean and
standard deviation (std) of the 𝐿2 error have been approximated by sample averages using the 10 independent
realizations.

– To estimate the constant 𝐶3, we have discretized the OCP by a Gaussian quadrature with 𝑁 = 24 knots
(2 Gauss–Legendre points per random variable) and a sequence of decreasing mesh sizes ℎ = 2−1, . . . , 2−8.
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Figure 5. 𝐿2-error on the optimal control of the fully discrete OCP with 𝑁 = 24 Gauss-
Legendre quadrature knots and decreasing mesh sizes.

The optimal control has been computed by sufficiently many CG iterations and the error estimated with
respect to a reference solution with ℎ = 2−9 and the same Gaussian quadrature with 𝑁 = 24 knots. We
found 𝐶3 ≈ 436.516. Figure 5 shows the convergence of the error on the control (in the 𝐿2-norm), versus
the discretization parameter ℎ. We observe a convergence rate of ℎ2, which is consistent with the theoretical
result in (8.2).

– To estimate the constants 𝐶1 and 𝜌, we have discretized the OCP by a Gaussian quadrature with 𝑁 = 54

tensorized Gauss–Legendre knots and ℎ = 2−9. We have run the CG algorithm and recorded the 𝐿2 error
on the control, computed with respect to a converged solution, over the iterations. We found 𝜌 = 4.941 and
𝐶1 = 17.9140.

Figure 6 shows the computational complexity of the considered method, i.e. the fully discretized OPC solved
by the CG algorithm, with optimally chosen parameters 𝑁MC, ℎ, and 𝑗. Here we plot the mean 𝐿2 error on
the optimal control versus the computational cost model 𝑊 = 2𝑁MC𝑗( 1

ℎ − 1)2 (we assume here an optimal
ideal linear algebra solver which achieve 𝛾 = 1 for the FE discretized PDE). The mean error and its standard
deviation have been estimated by repeating the whole procedure 20 times.

The observed slope is consistent with our theoretical result 𝑊 ∼ tol−3 up to logarithmic terms.

8.3. Stochastic gradient with fixed mesh size

We implement here the Stochastic Gradient method described in Section 6 using 𝑁 = 1 samples at each
iteration (recall that the complexity does not depend on 𝑁) and learning rate 𝜏𝑗 = 𝜏0

𝑗+10 , with 𝜏0 = 2
𝛽 . It is

noteworthy that there may be applications for which a mini-batch approach with 𝑁 > 1 may provide additional
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Figure 6. Mean relative 𝐿2-error on the optimal control versus the computational work model
𝑊 = 2𝑁MC𝑗( 1

ℎ −1)2 for the fully discretized OPC solved by the CG algorithm (with optimally
chosen parameters 𝑁MC, ℎ, 𝑗). Mean and standard deviation of the error estimated over 20
repetitions.

benefits. However, for the OCP problem considered in this work we did not observe any performance benefits by
using 𝑁 > 1, so that we used 𝑁 = 1 throughout. We have first assessed the convergence of the SG iterations on
the FE discretized OCP (3.1), using a mesh size ℎ = 2−4. The reference solution was computed using the same
FE mesh size, a Gaussian quadrature with 𝑁 = 54 knots to approximate the expectation and CG iterations up
to convergence. Figure 7 clearly shows the 1√

𝑗
convergence rate of the SG algorithm w.r.t. the iteration counter

𝑗, as predicted by Theorem 6.2.
We have then studied the complexity of the SG Algorithm (where the error is computed with respect to the

solution of the continuous OCP (2.10)). For convenience, we recall the error bound (6.5):

E[‖𝑢ℎ
𝑗 − 𝑢⋆‖2] ≤ 𝐷1𝑗

−1 + 𝐷2ℎ
2𝑟+2.

To optimally balance the two error contributions, we have estimated the constants 𝐷1 and 𝐷2 as described
next.

– The constant 𝐷1 can be inferred from the results in Figure 7. A least squares fit of the mean 𝐿2 error versus
the iteration counter 𝑗 gives 𝐷1 ≈ 2.143.

– The constant 𝐷2 is the same as the constant 𝐶3 in (8.2), hence we kept the same estimate 𝐷2 ≈ 436.5.

With these constants estimated, for a given required tolerance tol we can estimate the correct number of SG
iterations 𝑗(tol) and mesh size ℎ(tol) to fulfill the accuracy requirement. Figure 8 shows the estimated mean 𝐿2

error, using SG Algorithm 1, as a function of the computational cost model 𝑊 = 2𝑗( 1
ℎ − 1)2. The slope is the

one predicted in Corollary 6.3 (with 𝑟 = 1 and 𝛾 = 1), namely 𝑊 . tol−3.
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Figure 7. SG Algorithm applied to the FE discretized OPC (3.1) with ℎ = 2−4. Mean 𝐿2

error as a function of iteration counter, estimated by sample average over 100 independent
realizations.

8.4. Stochastic gradient with variable mesh size

We present here the results for the Stochastic Gradient method described in Section 7 with �̄� = 1 and
learning rate 𝜏𝑗 = 𝜏0

𝑗+15 , with 𝜏0 = 2
𝛽 . The mesh refinement strategy over the iterations is the one described in

Algorithm 2 with ℎ0 = 2−4.
The rational behind this choice of ℎ0 is the following: from (7.2) we have that

E[‖𝑢ℎ𝑗+1
𝑗+1 − 𝑢⋆‖2] ≤ 𝑐𝑗E[‖𝑢ℎ𝑗

𝑗 − 𝑢⋆‖2] + 𝑀𝐶 + 𝐹𝐸

where the Monte Carlo error behaves asymptotically for 𝑗 → ∞ as 𝑀𝐶 = 4𝜏2
𝑗

�̄�
E[‖∇𝑓(𝑢⋆, ·)‖2] ∼ 4𝜏2

0
𝑗2 𝐶2 with

𝐶2 ≈ 0.43 estimated in Section 8.2, and the Finite Element error behaves as 𝐹𝐸 = 4𝜏𝑗

(︀
𝜏𝑗(1+ 2

�̄�
)+ 1

𝑙

)︀
𝐶3ℎ

2𝑟+2
𝑗 ∼

4𝜏0(3𝜏0+
1
𝑙 )

𝑗2 𝐶3ℎ
4
0, with 𝐶3 ≈ 436.5 estimated in Section 8.2. Equilibrating the two error contributions 𝑀𝐶 and

𝐹𝐸, leads to an ℎ0 of the order of the chosen one.
We have run the algorithm for 𝑗max = 10 000 iterations, and repeated the simulation 100 times to estimate

the mean error and its standard deviation.
Figure 9 shows the mean 𝐿2 error computed with respect to the same reference solution described at the

beginning of this section, versus the iteration counter. Figure 10 shows, instead, the mean 𝐿2 error at iteration
𝑗 versus the computational cost model 𝑊𝑗 =

∑︀𝑗
𝑘=1 2( 1

ℎ𝑘
− 1)2, as well as one particular realization of the

algorithm. In both plots, the observed convergence rate of the mean error is consistent with the results in
Theorem 7.2 and Corollary 7.3, resp. In Figure 10 we have also added, for comparison purposes, the complexity
results of the other two methods, namely CG on the fully discretized OCP and SG on the semi-discretized
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Figure 8. Mean relative 𝐿2 error on the optimal control versus the computational work model
𝑊 = 2𝑗( 1

ℎ − 1)2 for the SG Algorithm 1 (with optimally chosen parameters 𝑗 and ℎ). Mean
and standard deviation of the error estimated over 20 repetitions.

Figure 9. SG Algorithm with variable mesh size, and initial stepsize 𝜏0 = 2/𝛽. Mean 𝐿2 error
E[‖𝑢− 𝑢⋆‖], averaged over 100 experiments, as a function of the iteration counter 𝑗.
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Figure 10. Comparison between the three different solution methods: CG with fixed mesh
and MC sample; SG with fixed mesh, SG with variable mesh. The estimated mean relative 𝐿2

error E[‖𝑢−𝑢⋆‖] is plotted as a function of the theoretical computational work 𝑊 . Upper error
bar corresponds to 3 standard deviations. For the latter method, also one particular realization
is shown.

OCP, with optimal choices of discretization parameters. It is clear from this plot that all methods perform very
similarly for the problem at hand.

9. Conclusions

In this work, we have analyzed and compared the complexity of three gradient based methods for the numerical
solution of a risk-averse optimal control problem involving an elliptic PDE with random coefficients, where a
Finite Element discretization is used to approximate the underlying PDEs and a Monte Carlo sampling is
used to approximate the expectation in the risk measure. The first version considered is when the OCP is
discretized upfront, using a fixed finite element mesh and a fixed Monte Carlo sample, and then solved by an
efficient iterative method such as a Conjugate Gradient. The second version is a Stochastic Gradient method in
which the finite element discretization is still kept fixed over the iterations, but the expectation in the objective
function is re-sampled independently at each iteration, with a small (fixed) sample size. Finally, the third version
is again a Stochastic Gradient method, but now with successively refined FE meshes over the iterations. We
have shown in particular, that the stochastic gradient methods improve the computational complexity by log
factors, compared to applying the CG (or equivalent) linear solver to the fully discretized OCP. Our complexity
analysis is based on a-priori error estimates and a-priori choices for the FE mesh size, the Monte Carlo sample
size, and the gradient iterations to obtain a prescribed tolerance. We stress that the complexity bound derived
in Corollary 6.3 is tight, as for a given control 𝑢, computing the value of objective functional 𝐽(𝑢) only using
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MC and FE methods has a complexity of tol−(MC-rate+FE-rate) already, where MC-rate = 2 and FE-rate = 𝑛𝛾
𝑟+1 ,

which is the asymptotic complexity stated in Corollary 6.3. One could potentially obtain a better complexity
by considering higher order discretization schemes, either for space or for probability, by exploiting ideas from
our recent work [37] or considering a hierarchical/multigrid discretization in probability [38].

In addition to the improved complexity, another benefit of the stochastic gradient methods is that they are
more amenable to adaptive versions, in which, e.g., the mesh size and possibly the Monte Carlo sample size are
refined over the iterations based on suitable a-posteriori error indicators. The study of such adaptive versions
is postponed to future work.

Another interesting direction for future work is the extension of stochastic gradient methods to more general
risk measures. For example, we mention that Stochastic Gradient methods have been already used in combination
with the CVaR risk measure [5], although not in the context of PDE-constrained optimal control problems. One
way of introducing more general risk measures in our context could be to consider the objective functional

𝐽(𝑢) =
1
2

∫︁
𝐷

𝜎
(︁
𝑦𝜔(𝑢)(𝑥)− 𝑧𝑑(𝑥)

)︁
𝑑𝑥 +

𝛽

2
‖𝑢‖2.

In this work we have focused on the “mean-squared” risk measure 𝜎(·) = E[(·)2] but this could be replaced by any
other coherent and more risk averse measure. Indeed, since every coherent risk measure 𝜎 satisfies the monotonic
and convexity assumptions, the objective functional 𝑢 ↦→ 𝐽(𝑢) will be convex provided the solution map from
𝑢 to 𝑦 is convex. Therefore, the theory developed here could still be applied thanks to the regularization term
that ensures that the strong convexity assumption is satisfied.

Appendix A. Reference solution by Stochastic Collocation

In this appendix, we briefly describe the computation of the reference solution used in the numerical result
of Section 8, which is based on a stochastic collocation method on a tensor grid of Gauss Legendre points.
Moreover, we provide an error estimate for such an approximation based on stochastic collocation. While the
numerical example in Section 8 only depends on 4 random variables, here we show that the stochastic collocation
approximation is exponentially convergent and that a highly accurate solution can be obtained with a moderate
number of collocation points; recall that 94 points were used in the numerical experiments. We suppose that
quadrature to approximate the expectation is not random, but uses deterministic points 𝜉𝑖, for 𝑖 = 1, . . . , 𝑁 .
The estimated optimal control ̂︀𝑢 is then deterministic as well. The following theorem then provides an error
bound.

Theorem A.1. Denoting by 𝑢⋆ the optimal control solution of the exact problem (2.10) and by ̂︀𝑢 the solution
of the semi-discrete collocation problem (4.1) using a deterministic quadrature formula ̂︀𝐸 as approximation for
E, we have

𝛽

2
‖̂︀𝑢− 𝑢⋆‖2 + E[‖𝑦(𝑢⋆)− 𝑦(̂︀𝑢)‖2] ≤ 1

2𝛽
‖E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)]‖2. (A.1)

Proof. The expressions of the gradient of 𝐽 and ̂︀𝐽 are given by ∇𝐽(𝑢⋆) = 𝛽𝑢⋆ +E[𝑝(𝑢⋆)], ∇ ̂︀𝐽(̂︀𝑢) = 𝛽̂︀𝑢+ ̂︀𝐸[𝑝(̂︀𝑢)],
respectively, and the corresponding optimality conditions read

⟨∇𝐽(𝑢⋆), 𝑣⟩ = 0, ⟨∇ ̂︀𝐽(̂︀𝑢), 𝑣⟩ = 0, ∀𝑣 ∈ 𝑈. (A.2)

Then choosing 𝑣 = ̂︀𝑢− 𝑢⋆ in (A.2), and combining both we find

⟨𝛽(𝑢⋆ − ̂︀𝑢) + E[𝑝(𝑢⋆)]− ̂︀𝐸[𝑝(̂︀𝑢)], ̂︀𝑢− 𝑢⋆⟩ = 0,

that is,
𝛽‖𝑢⋆ − ̂︀𝑢‖2 = ⟨E[𝑝(𝑢⋆)]− E[𝑝(̂︀𝑢)] + E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)], ̂︀𝑢− 𝑢⋆⟩. (A.3)



1628 M. MARTIN ET AL.

In order to bound the first part of the error in (A.3), ⟨E[𝑝(𝑢⋆)]−E[𝑝(̂︀𝑢)], ̂︀𝑢−𝑢⋆⟩, we can write for any 𝜔 ∈ 𝛺

⟨̂︀𝑢− 𝑢⋆, 𝑝𝜔(𝑢⋆)− 𝑝𝜔(̂︀𝑢)⟩ = 𝑏𝜔(𝑦𝜔(̂︀𝑢)− 𝑦𝜔(𝑢⋆), 𝑝𝜔(𝑢⋆)− 𝑝𝜔(̂︀𝑢))
= ⟨𝑦𝜔(𝑢⋆)− 𝑦𝜔(̂︀𝑢), 𝑦𝜔(̂︀𝑢)− 𝑦𝜔(𝑢⋆)⟩
= −‖𝑦𝜔(𝑢⋆)− 𝑦𝜔(̂︀𝑢)‖2.

Then, taking expectation, we find

⟨E[𝑝(𝑢⋆)]− E[𝑝(̂︀𝑢)], ̂︀𝑢− 𝑢⋆⟩ = −E[‖𝑦(𝑢⋆)− 𝑦(̂︀𝑢)‖2].

For the second contribution, ⟨E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)], ̂︀𝑢− 𝑢⋆⟩, Cauchy–Schwarz and Young’s inequalities yield

⟨E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)], ̂︀𝑢− 𝑢⋆⟩ ≤
1

2𝛽
‖E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)]‖2 +

𝛽

2
‖̂︀𝑢− 𝑢⋆‖2,

from which the claim follows. �

The quantification of the quadrature error E[𝑝(̂︀𝑢)]− ̂︀𝐸[𝑝(̂︀𝑢)], i.e., the right hand side in (A.1), heavily depends
on the smoothness of the adjoint function in the stochastic variables. The numerical example considered in
Section 8 has a diffusion coefficient that is a particular version of the more general class of diffusion coefficients
of the form

𝑎(𝑥, 𝜉) = 𝑎0(𝑥) +
𝑀∑︁
𝑖=1

√︀
𝜆𝑖𝜉𝑖𝑏𝑖(𝑥) ,

with 𝑎0 > 0 a.e. in 𝐷, ‖𝑏𝑖‖𝐿∞(𝐷) = 1,
∑︀𝑀

𝑖=1

√
𝜆𝑖 < ess inf𝑥∈𝐷 𝑎0(𝑥), and 𝜉𝑖 ∼ 𝒰([−1, 1]) i.i.d. uniform random

variables. We denote by 𝜉 = (𝜉1, · · · , 𝜉𝑀 ) the corresponding random vector. Hence, in this case the probability
space (Γ,ℱ , 𝑃 ) is Γ = [−1, 1]𝑀 , ℱ = ℬ(Γ) the Borel 𝜎-algebra on Γ, and P(𝑑𝜉) = ⊗𝑀

𝑖=1
𝑑𝜉𝑖

2 the uniform
product measure on Γ. Moreover, as 𝜉𝑖 ∼ 𝒰([−1, 1]) here, we chose as a quadrature formula the tensor Gaussian
quadrature built on Gauss-Legendre quadrature points. In particular, we consider a tensor grid with 𝑞𝑖 points
in the 𝑖-th variable and denote the corresponding quadrature by 𝐸GL

𝑞 [·], where 𝑞 = (𝑞1, · · · , 𝑞𝑀 ) ∈ N𝑀 is a
multi-index.

To any vector of indexes (𝑘1, . . . , 𝑘𝑀 ) ∈ {1, · · · , 𝑞1} × · · · × {1, · · · , 𝑞𝑀} we associate the global index

𝑘 = 𝑘1 + 𝑞1(𝑘2 − 1) + 𝑞1𝑞2(𝑘3 − 1) + . . . ,

and we denote by 𝑦𝑘 the point 𝑦𝑘 = [𝑦1,𝑘1 , 𝑦2,𝑘2 , ..., 𝑦𝑀,𝑘𝑀
] ∈ Γ. We also introduce, for each 𝑛 = 1, 2, . . . , 𝑁 , the

Lagrange basis {𝑙𝑛,𝑗}𝑞𝑛

𝑗=1 of the space 𝑃𝑞𝑛−1 ,

𝑙𝑛,𝑗 ∈ 𝑃𝑞𝑛−1(Γ𝑛), 𝑙𝑛,𝑗(𝑦𝑛,𝑘) = 𝛿𝑗𝑘, 𝑗, 𝑘 = 1, . . . , 𝑞𝑛,

where 𝛿𝑗𝑘 is the Kronecker symbol, and 𝑃𝑞−1(Γ) ⊂ 𝐿2(Γ) is the span of tensor product polynomials with degree
at most 𝑞 − 1 = (𝑞1 − 1, . . . , 𝑞𝑀 − 1), that is, 𝑃𝑞−1(Γ) =

⨂︀𝑀
𝑖=1 𝑃𝑞𝑖−1(Γ𝑖). Hence the dimension of 𝑃𝑞−1 is

𝑁𝑞 =
∏︀𝑁

𝑖=1 𝑞𝑖. Finally we set 𝑙𝑘(𝑦) =
∏︀𝑁

𝑛=1 𝑙𝑛,𝑘𝑛(𝑦𝑛).
For any continuous function 𝑔 : Γ → R we introduce the Gauss Legendre quadrature formula 𝐸GL

𝑞 [𝑔] approx-
imating the integral

∫︀
Γ

𝑔(𝑦) d𝑦 as

𝐸GL
𝑞 [𝑔] =

𝑁𝑞∑︁
𝑘=1

𝜔𝑘𝑔(𝑦𝑘), 𝜔𝑘 =
𝑀∏︁

𝑛=1

𝜔𝑘𝑛
, 𝜔𝑘𝑛

=
∫︁

Γ𝑛

𝑙2𝑘𝑛
(𝑦) d𝑦 . (A.4)
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We now analyze the error introduced by the quadrature formula. The first step is to investigate the smoothness
of the map 𝜉 ↦→ 𝑝(̂︀𝑢, 𝜉). For this, it is convenient to extend the state and adjoint problems to the complex domain.
To do so, with slight abuse of notation let

𝑎(𝑥, 𝑧) = 𝑎0(𝑥) +
𝑀∑︁
𝑖=1

√︀
𝜆𝑖𝑧𝑖𝑏𝑖(𝑥)

with 𝑧 = (𝑧1, · · · , 𝑧𝑀 ) ∈ C𝑀 and let

𝒰0 =
{︀
𝑧 ∈ C𝑀 : ℛ𝑒(𝑎(𝑥, 𝑧)) > 0 a.e. in 𝐷

}︀
.

We consider the state and adjoint problems extended to the complex domain: ∀𝑧 ∈ 𝒰0 find 𝑦(·, 𝑧) ∈ 𝐻1
0 (𝐷; C)

such that ∫︁
𝐷

𝑎(𝑥, 𝑧)∇𝑦(𝑥, 𝑧)∇𝑣(𝑥)d𝑥 =
∫︁

𝐷

(̂︀𝑢(𝑥) + 𝑔(𝑥))𝑣(𝑥)d𝑥 ∀𝑣 ∈ 𝐻1
0 (𝐷; C) , (A.5)

and find 𝑝(·, 𝑧) ∈ 𝐻1
0 (𝐷; C) s.t.∫︁
𝐷

𝑎(𝑥, 𝑧)∇𝑝(𝑥, 𝑧)∇𝑣(𝑥)d𝑥 =
∫︁

𝐷

(𝑦(𝑥, 𝑧)− 𝑧𝑑(𝑥))𝑣(𝑥)d𝑥 ∀𝑣 ∈ 𝐻1
0 (𝐷; C) . (A.6)

It is well known that problem (A.5) and (A.6) are well posed in 𝒰0. Let now Σ ⊂ 𝒰0 be

Σ :=

{︃
𝑧 ∈ C𝑁 :

𝑀∑︁
𝑖=1

√︀
𝜆𝑖|𝑧𝑖| ≤

𝑎min

2

}︃

with 𝑎min = essinf𝑥∈𝐷 𝑎0(𝑥). The next lemma states that both 𝑧 ↦→ 𝑦(·, 𝑧) and 𝑧 ↦→ 𝑝(·, 𝑧) are holomorphic
functions in 𝒰0 with uniform bounds on Σ. The result for 𝑧 ↦→ 𝑦(·, 𝑧) is well known and can be found in reference
[11] for example, so that we only give the proof for 𝑧 ↦→ 𝑝(·, 𝑧).

Lemma A.2. Both functions 𝑧 ↦→ 𝑦(·, 𝑧) and 𝑧 ↦→ 𝑝(·, 𝑧) are holomorphic on 𝒰0, and both have a uniform
bound on Σ, in the sense that

max𝑧∈Σ‖𝑦(·, 𝑧)‖𝐻1
0
≤ 𝐶𝑃

‖𝑔 + ̂︀𝑢‖
𝑎min

(A.7)

and

max𝑧∈Σ‖𝑝(·, 𝑧)‖𝐻1
0
≤ 𝐶𝑃

‖𝑧𝑑‖
𝑎min

+ 𝐶3
𝑃

‖𝑔 + ̂︀𝑢‖
𝑎2
min

· (A.8)

Proof. It is well known (see e.g., [11]) that the function 𝑧 ↦→ 𝑦(·, 𝑧) is holomorphic on 𝒰0 with bound (A.7).
This property translates to the adjoint function 𝑧 ↦→ 𝑝(·, 𝑧) ∈ 𝐻1

0 (𝐷; C) which is holomorphic in 𝒰0 as well with
bound

max𝑧∈Σ‖𝑝(·, 𝑧)‖𝐻1 ≤ 𝐶𝑃 max𝑧∈Σ
‖𝑦(·, 𝑧)− 𝑧𝑑‖

𝑎min

≤ 𝐶𝑃
‖𝑧𝑑‖
𝑎min

+ 𝐶𝑃 max𝑧∈Σ
‖𝑦(·, 𝑧)‖

𝑎min

≤ 𝐶𝑃
‖𝑧𝑑‖
𝑎min

+ 𝐶3
𝑃

‖𝑔 + ̂︀𝑢‖
𝑎2
min

.

�

Based on the last regularity result and following [4], we can state the following error estimate for the quadrature
error.
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Theorem A.3. Denoting by ̂︀𝑢 the solution of the semi-discrete (in probability) optimal control problem (4.1)
with ̂︀𝐸 = 𝐸GL

𝑞 [·] and 𝑝(̂︀𝑢) the corresponding adjoint function, there exist 𝐶 > 0 and {𝑟1, · · · , 𝑟𝑀} independent
of 𝑞 s.t.

‖E[𝑝(̂︀𝑢)]− 𝐸GL
𝑞 [𝑝(̂︀𝑢)]‖2 ≤ 𝐶

𝑀∑︁
𝑛=1

𝑒−𝑟𝑛𝑞𝑛 ,

with 𝑞𝑛 the number of points used in the quadrature in direction 𝑛.

Appendix B. Proof for increasing Monte Carlo sampling in SG

Here we detail the proof of the bound (6.9) in Remark 6.4. In that case the factor 𝑐𝑗 in (6.3) becomes

𝑐𝑗 := 1− 𝜏𝑗 𝑙 + 𝐿2
(︁

1 +
2

𝑁𝑗

)︁
𝜏2
𝑗 = 1− 𝜏0𝑙

𝑗
+ 𝐿2

(︁
1 + 2𝑗1−𝜏0𝑙

)︁𝜏2
0

𝑗2
,

for 𝜏𝑗 = 𝜏0/𝑗 and 𝑁𝑗 ∼ 𝑗𝜏0𝑙−1 with 𝜏0𝑙 − 1 > 0.
We use the recursive formula (6.3) and set, as before, 𝑢ℎ

⋆ to be the exact optimal control for the FE problem
defined in (3.1). We emphasize that (3.1) has no approximation in probability space. Setting 𝑎𝑗 = E[‖𝑢ℎ

𝑗 −𝑢ℎ
⋆‖2]

and 𝛽𝑗 = 2𝜏2
𝑗

𝑁𝑗
E[‖∇𝑓(𝑢ℎ

⋆ , 𝜔)‖2], we have from (6.3) applied to the sequence of FE solutions {𝑢ℎ
𝑗 }𝑗>0 that

𝑎𝑗+1 ≤ 𝑐𝑗𝑎𝑗 + 𝛽𝑗

≤𝑐𝑗𝑐𝑗−1𝑎𝑗−1 + 𝑐𝑗𝛽𝑗−1 + 𝛽𝑗

≤ · · ·

≤
(︁ 𝑗∏︁

𝑖=1

𝑐𝑖

)︁
⏟  ⏞  

=𝜅𝑗

𝑎1 +
𝑗∑︁

𝑖=1

𝛽𝑖

𝑗∏︁
𝑙=𝑖+1

𝑐𝑙⏟  ⏞  
=ℬ𝑗

. (B.1)

For the first term 𝜅𝑗 , computing its logarithm, we have

log(𝜅𝑗) ≤
𝑗∑︁

𝑖=1

log(1− 𝜏0𝑙

𝑖
+

𝑀 ′

𝑖2
) ≤

𝑗∑︁
𝑖=1

−𝜏0𝑙

𝑖
+

𝑗∑︁
𝑖=1

𝑀 ′

𝑖2
,

where we have set 𝑀 ′ = 3𝜏2
0 𝐿2 as we have 1− 𝜏0𝑙 < 0 and thus 𝑗1−𝜏0𝑙 ≤ 1 for every 𝑗 ≥ 1. Therefore

log(𝜅𝑗) ≤ −𝜏0𝑙 log 𝑗 + 𝑀 ′′, with 𝑀 ′′ =
∞∑︁

𝑖=1

𝑀 ′

𝑖2

and 𝜅𝑗 . 𝑗−𝜏0𝑙. For the second term ℬ𝑗 in (B.1) we have

ℬ𝑗 =
𝑗∑︁

𝑖=1

𝛽𝑖

𝑗∏︁
𝑘=𝑖+1

𝑐𝑘 ≤
𝑗∑︁

𝑖=1

𝑆′𝑖−𝜏0𝑙−1

𝑗∏︁
𝑘=𝑖+1

(︁
1− 𝜏0𝑙

𝑘
+

3𝜏2
0 𝐿2

𝑘2

)︁
⏟  ⏞  

=𝐾𝑖𝑗

,
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with 𝑆′ = 2𝜏2
0 E[‖∇𝑓(𝑢ℎ

⋆ , 𝜔)‖2]. For the term 𝐾𝑖𝑗 we find that

log(𝐾𝑖𝑗) =
𝑗∑︁

𝑘=𝑖+1

log
(︂

1− 𝜏0𝑙

𝑘
+

𝑀 ′

𝑘2

)︂

≤
𝑗∑︁

𝑘=𝑖+1

(︁
− 𝜏0𝑙

𝑘
+

𝑀 ′

𝑘2

)︁
≤ −𝜏0𝑙(log(𝑗 + 1)− log(𝑖 + 1)) + 𝑀 ′

(︂
1
𝑖
− 1

𝑗

)︂
,

which shows that

𝐾𝑖𝑗 ≤ (𝑗 + 1)−𝜏0𝑙(𝑖 + 1)𝜏0𝑙 exp
(︂

𝑀 ′
(︂

1
𝑖
− 1

𝑗

)︂)︂
.

It follows that

ℬ𝑗 ≤ (𝑗 + 1)−𝜏0𝑙 exp
(︂
−𝑀 ′

𝑗

)︂
⏟  ⏞  

≤1

𝑗∑︁
𝑖=1

𝑆′𝑖−𝜏0𝑙−1(𝑖 + 1)𝜏0𝑙 exp
(︂

𝑀 ′

𝑖

)︂
⏟  ⏞  
≤exp(𝑀 ′)

≤ 𝑆′ exp(𝑀 ′)(𝑗 + 1)−𝜏0𝑙

𝑗∑︁
𝑖=1

(𝑖 + 1)−1 . 𝑗−𝜏0𝑙 log(𝑗),

for 𝜏0 > 1/𝑙. Eventually, we obtained the following upper bound for two constants 𝐷3 > 0 and 𝐷4 > 0:

𝑎𝑗+1 ≤ 𝐷3𝑗
−𝜏0𝑙𝑎1 + 𝐷4𝑗

−𝜏0𝑙 log(𝑗). (B.2)

We conclude that
𝑎𝑗+1 ≤ 𝐷4𝑗

−𝜏0𝑙 log(𝑗), (B.3)

with 𝐷4 possibly depending on ‖𝑢ℎ
0 − 𝑢ℎ

⋆‖. Finally, splitting the error as

E[‖𝑢ℎ
𝑗 − 𝑢⋆‖2] ≤ 2E[‖𝑢ℎ

𝑗 − 𝑢ℎ
⋆‖2] + 2E[‖𝑢ℎ

⋆ − 𝑢⋆‖2]

and using (3.6) to bound the second term, the claim follows.
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[14] A. Défossez and F. Bach, Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions, Artificial
Intelligence and Statistics, 38 (2015) 205–213.

[15] O. Dekel, R. Gilad-Bachrach, O. Shamir and L. Xiao, Optimal distributed online prediction using mini-batches. J. Mach.
Learn. Res. 13 (2012) 165–202.

[16] A. Dieuleveut and F. Bach, Nonparametric stochastic approximation with large step-sizes. The Ann. Stat. 44 (2016) 1363–1399.

[17] J. Duchi and Y. Singer, Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10 (2009)
2899–2934.

[18] L.C. Evans, Partial differential equations, Graduate studies in mathematics. Am. Math. Soc. (1998).

[19] N. Flammarion and F. Bach, From averaging to acceleration, there is only a step-size, Conference on Learning Theory, (2015)
658–695.

[20] C. Geiersbach, W. Wollner. A stochastic gradient method with mesh refinement for PDE constrained optimization under
uncertainty. SIAM J. Sci. Comput. 42 (2020) A2750–A2772.

[21] P. Grisvard, Elliptic problems in nonsmooth domains, Reprint of the 1985 original [ MR0775683], With a foreword by Susanne
C. Brenner. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA, 69
(2011).

[22] M. D. Gunzburger, H.-C. Lee and J. Lee, Error estimates of stochastic optimal Neumann boundary control problems. SIAM
J. Numer. Anal. 49 (2011) 1532–1552.

[23] M. D. Gunzburger, C. G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with
random input data. Acta Numerica 23 (2014) 521–650.

[24] P. A. Guth, V. Kaarnioja, F. Y. Kuo, C. Schillings, and I. H. Sloan. A quasi-Monte Carlo method for optimal control under
uncertainty. SIAM-ASA J. Uncertain. Quantif. 9 (2021) 354–383.

[25] S. B. Hazra, Large-scale PDE-constrained optimization in applications. Springer-Verlag, Berlin (2010).

[26] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265.

[27] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and
Applications 23. Springer, New York (2009).

[28] D. P. Kouri, An Approach for the Adaptive Solution of Optimization Problems Governed by Partial Differential Equations
with Uncertain Coefficients, ProQuest LLC, Ann Arbor, MI, Ph.D. thesis. Rice University (2012).

[29] D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic
collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847–A1879.

[30] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the conditional value-at-risk. SIAM J.
Optim. 26 (2016) 365–396.

[31] D. P. Kouri and T. M. Surowiec, Existence and optimality conditions for risk-averse PDE-constrained optimization. SIAM/ASA
J. Uncertain. Quantif. 6 (2018) 787–815.

[32] A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric
elliptic and parabolic PDEs. SIAM J. Control Optim. 51 (2013) 2442–2471.

[33] H. J. Kushner and G. G. Yin, Stochastic approximation algorithms and applications, Applications of Mathematics (New York).
Springer-Verlag, New York (1997).

[34] G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht, M. Hinze, R. Rannacher and S. Ulbrich (eds.), Trends in PDE
constrained optimization. Birkhäuser/Springer, Cham (2014).
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