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Abstract The discovery of a drug requires over a decade of intensive research and financial

investments – and still has a high risk of failure. To reduce this burden, we developed the

NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their

enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that

identifies reactive similarities between drug–drug and drug–metabolite pairs. We validated the

application, scope, and performance of NICEdrug.ch over similar methods in the field on golden

standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug

targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-

fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate

for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch

suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their

inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible

online to systematically identify the reactivity of small molecules and druggable enzymes with

practical applications in lead discovery and drug repurposing.

Introduction
To assure effective therapies for previously untreated illness, emerging diseases, and personalized

medicine, new small molecules are needed. However, the process to develop new drugs is complex,

costly, and time consuming. This is especially problematic considering that about 90% of drug candi-

dates in clinical trials are discarded due to unexpected toxicity or other secondary effects. This ineffi-

ciency threatens our health care system and economy (Wong et al., 2019). Improving how we

discover and design new drugs could reduce the time and costs involved in the developmental pipe-

line and hence is of primary importance to define efficient medical therapies.

Current drug discovery techniques often involve high-throughput screens with candidates and a

set of target enzymes presumably involved in a disease, which leads to the selection for those candi-

dates with the preferred activity. However, the biochemical space of small molecules and possible

targets in the cell is huge, which limits the possible experimental testing. Computational methods

for drug pre-screening and discovery are therefore promising. In silico, one can systematically search

the maximum biochemical space for targets and molecules with desired structures and functions to

narrow down the molecules to test experimentally.

There are two main in silico strategies for drug discovery: a data-driven approach based on

machine learning or a mechanistic approach based on the available biochemical knowledge.

Machine learning (ML) has been successfully used in all stages of drug discovery, from the prediction

of targets to the discovery of drug candidates, as shown in some recent studies (Reker et al., 2020;

Shilo et al., 2020; Stokes et al., 2020; Vamathevan et al., 2019). However, ML approaches require
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big, high-quality data sets of drug activity and associated physiology (Vamathevan et al., 2019),

which might be challenging to obtain when studying drug action mechanisms and side effects in

humans. ML also uses trained neural networks, which can lack interpretability and repeatability. This

can make it difficult to explain why the neural networks has chosen a specific result, why it unexpect-

edly failed for an unseen dataset, and the final results may vary (Vamathevan et al., 2019).

Mechanistic-based approaches can also rationally identify small molecules in a desired system

and do not require such large amounts of data. Such methods commonly screen based on structural

similarity to a native enzyme substrate (anti-metabolite) or to a known drug (for drug repurposing),

considering the complete structure of a molecule to extract information about protein–ligand fitness

(Jarvis and Ouvry, 2019; Verlinde and Hol, 1994). However, respecting enzymatic catalysis, the

reactive sites, and neighboring atoms play a more important role than the rest of the molecule when

assessing molecular reactivity (Hadadi et al., 2019). Indeed, reactive-site-centric information might

allow to identify (1) the metabolic fate and neighbors of a small molecule (Javdan et al., 2020),

including metabolic precursors or prodrugs and products of metabolic degradation, (2) small mole-

cules sharing reactivity (Lim et al., 2010), and (3) competitively inhibited enzymes (Ghattas et al.,

2016). Furthermore, neither ML nor mechanistic-based approaches consider the metabolism of the

patient, even though the metabolic fate of the drug and the existence of additional targets in the

cell might give rise to toxicity. To our knowledge, no available method accounts for human biochem-

istry when refining the search for drugs.

In this study, we present the development of the NICEdrug.ch database using a more holistic and

updated approach to a traditional mechanistic-based screen by (1) adding a more detailed analysis

of drug molecular structures and enzymatic targets based on structural aspects of enzymatic catalysis

and (2) accounting for drug metabolism in the context of human biochemistry. NICEdrug.ch assesses

the similarity of the reactivity between a drug candidate and a native substrate of an enzyme based

on their common reactive sites and neighboring atoms (i.e., the NICEdrug score) in an analogous

fashion as the computational tool BridgIT (Hadadi et al., 2019). It also identifies all biochemical

transformations in the cellular metabolism that can modify and degrade a drug candidate using a

previously developed reaction-prediction tool, termed Biochemical Network Integrated Computa-

tional Explorer (BNICE.ch) (Hatzimanikatis et al., 2005; Soh and Hatzimanikatis, 2010) and the

ATLAS of Biochemistry (Hadadi et al., 2016; Hafner et al., 2020). With NICEdrug.ch, we automati-

cally analyzed the functional, reactive, and physicochemical properties of around 250,000 small mol-

ecules to suggest the action mechanism, metabolic fate, toxicity, and possibility of drug repurposing

for each compound.

To prove the predictive power of NICEdrug.ch in large-scale analysis, we collected and tested

over 70,000 drug–enzyme pair inhibition data from available bioassays and high-throughput screen-

ing studies. Our comparison of predicted and experimentally tested drug–enzyme pairs shows that

NICEdrug.ch predictive accuracy is over 70%. Remarkably, half of the drugs in this comparison show

100% accuracy. We have listed five potential sources of disagreement for the remaining half (accu-

racy of 65%) including drugs acting through non-competitive inhibition, which are out of the scope

of NICEdrug.ch. Moreover, we have evaluated the accuracy of NICEdrug.ch predictions on drugs

and metabolites that share reactivity, drug toxicity, and drug targets using golden standard data-

sets, i.e., a set of experimentally observed drug metabolites (Flynn et al., 2020; Kirchmair et al.,

2015), a collection of cytotoxicity bioassay records from PubChem (Svensson et al., 2017;

Webel et al., 2020; Yin et al., 2019), and a collection of drug–protein interactions reported in Pub-

Chem bioassays (Kim et al., 2021; Wang et al., 2012).

We apply NICEdrug.ch to study drug action mechanisms and identify drugs for repurposing

related to four diseases: cancer, high cholesterol, malaria, and COVID-19. We also sought for mole-

cules in food, as available in fooDB the largest database of food constituents (Scalbert et al., 2011),

with putative anti SARS-CoV-2 activity. Finally, we provide NICEdrug.ch as an online resource

(https://lcsb-databases.epfl.ch/pathways/Nicedrug/). Overall, NICEdrug.ch combines knowledge of

molecular structures, enzymatic reaction mechanisms (as included in BNICE.ch; Finley et al., 2009;

Hadadi and Hatzimanikatis, 2015; Hatzimanikatis et al., 2005; Henry et al., 2010; Soh and Hatzi-

manikatis, 2010; Tokic et al., 2018), and cellular biochemistry (currently human, Plasmodium, and

Escherichia coli metabolism) to provide a promising and innovative resource to accelerate the dis-

covery and design of novel drugs.
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Results

NICEdrug.ch discovers 200,000 bioactive molecules one reaction away
from known drugs in a human cell
To build the initial NICEdrug.ch database, we gathered over 70,000 existing small molecules pre-

sumed suitable for treating human diseases from three source databases: KEGG, ChEMBL, and

DrugBank (Figure 1—figure supplement 1, method). We eliminated duplicate molecules, curated

available information, computed thermodynamic properties, and applied the Lipinski rules

(Lipinski et al., 2001) to keep only the molecules that have drug-like properties in NICEdrug.ch (Fig-

ure 1, ‘Materials and methods’). NICEdrug.ch currently includes 48,544 unique small molecules from

the source databases.

To evaluate the reactivity of the 48,544 drugs and drug candidates, we searched for all possible

reactive sites on each molecule with BNICE.ch (Hatzimanikatis et al., 2005; Figure 1, ‘Materials and

methods’). All of the 48,544 molecules contain at least one reactive site and hence might be reactive

in a cell. In total, we identified more than 5 million potential reactive sites (183 k unique) on the

48,544 molecules and matched them to a corresponding enzyme by assigning them to an Enzyme

Commission (EC) number. All of these enzymes belong to the human metabolic network

(Supplementary file 1, ‘Materials and methods’). Interestingly, 10.4% of identified reactive sites cor-

respond to the p450 class of enzymes, which are responsible for breaking down compounds in the

human body by introducing reactive groups on those compounds, also known as phase I of drug

metabolism (Figure 1—figure supplement 2A). The sites that were identified varied greatly from

simple and small (i.e., comprising a minimum number of one atom) to more complex sites that cov-

ered a large part of the molecule. The biggest reactive site includes 30 atoms (Figure 1—figure sup-

plement 2B).

Given the important role of metabolism in the biochemical transformations and toxicity of drugs

(Dumoulin et al., 2020), we investigated the metabolism of the 48,544 input molecules in human

cells. We predicted the hypothetical biochemical neighborhoods of all NICEdrug.ch small molecules

in a human cell (i.e., reacting with known human metabolites and cofactors) using a retro-biosyn-

thetic analysis with BNICE.ch (Figure 1—figure supplement 1, ‘Materials and methods’). With this

approach, we discovered 197,246 unique compounds connected to the input drugs and drug candi-

dates via one step or reaction (products of the first generation), and the associated hypothetical bio-

chemical neighborhood consists of 630,449 reactions (Figure 1—figure supplement 2). The 197,246

unique compounds are part of a new set of bioactive molecules in NICEdrug.ch that might act as

drugs or prodrugs in a human cell. We stored the total number of 245,790 small molecules (including

the curated set of 48,544 drugs and drug candidates and the new set of 197,246 bioactive com-

pounds), their calculated properties, and biochemistry in our open-access database of drug metabo-

lism, NICEdrug.ch.

To use NICEdrug.ch to identify drug-drug or drug–metabolite pairs that have shared reactivity

and target enzymes, we developed a new metric called the NICEdrug score (Figure 1—figure sup-

plement 3). The NICEdrug score uses information about the structure of the reactive site and its sur-

roundings (as computed using the BridgIT methodology) and is stored in the form of a fingerprint

(‘Materials and methods’). The fingerprint of a molecule’s reactive site and the neighborhood around

this reactive site—termed the reactive site-centric fingerprint—serves to compare this site-specific

similarity with other molecules. We recently showed that the reactive site-centric fingerprint of a

reaction provides a better predictive measure of similar reactivity than the overall molecular struc-

ture, as the overall structure can be much larger than the reactive site and skew the results by indi-

cating high similarities when the reactivity is actually quite different (Hadadi et al., 2019). Here, we

generated reactive site-centric fingerprints for all 20 million reactive sites identified in the 48,544

drug–drug candidates and 197,246 one-step-away molecules included in NICEdrug.ch. The 20 mil-

lion reactive site-centric fingerprints for the total 245,790 small molecules are available in NICEdrug.

ch to be used in similarity comparisons and classifying molecules (‘Materials and methods’).

We propose the usage of NICEdrug.ch to generate reports that define the hypothetical reactivity

of a molecule, the molecule’s reactive sites as identified by target enzymes, and the NICEdrug score

between drug–drug and drug–metabolite pairs. The NICEdrug.ch reports can be used for three

main applications: (1) to identify the metabolism of small molecules; (2) to suggest drug repurposing;

and (3) to evaluate the druggability of an enzyme in a desired cell or organism (Figure 1), as we
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Figure 1 continued on next page
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show in the next sections. Currently, NICEdrug.ch includes metabolic information for human cells, a

malaria parasite, and Escherichia coli, and it is easily extendible to other organisms in the future.

Validation of NICEdrug.ch against biochemical assays
To prove the potential of NICEdrug.ch to predict the druggability (through competitive inhibition) of

an enzyme by a small molecule, we compare a set of 70 k NICEdrug.ch drug–enzyme pair predic-

tions with available biochemical assays and high-throughput compound screenings

(Supplementary file 2, ‘Materials and methods’). The set of 70 k drug–enzyme pairs involves all

available active and inactive inhibition data for 2570 small molecules and 198 enzymes in the Pub-

Chem Bioassays database (Wang et al., 2012). A comparison between the drugs’ predicted and

measured bioactivity against enzymes results in a predictive accuracy of NICEdrug.ch of 0.73. Inter-

estingly, we identify two clusters of drugs: a set of 1269 small molecules for which the NICEdrug.ch

predictions are 100% accurate and a set of 1301 drugs with 65% accuracy. We investigated the rea-

sons for the mismatches and identify five explanations (Supplementary file 2, ‘Materials and

methods’).

We have also compared the scope and application of NICEdrug.ch and other available computa-

tional drug discovery tools (Supplementary file 2), and we show how NICEdrug.ch outperforms the

scope and predictive potential of all these tools (Supplementary file 2, ‘Materials and methods’).

We also quantitatively compared the accuracy of NICEdrug.ch predictions over similar methods

in the field using golden standard datasets. These experimental datasets describe drugs and metab-

olites that share reactivity, drug toxicities, and drug targets. Hence, they serve to evaluate the NICE-

drug.ch reactivity, druggability, and repurposing reports.

Evaluation of NICEdrug.ch reactivity report
To evaluate the NICEdrug.ch reactivity report, we first used an experimental set including 29 small

molecules and their 55 unique metabolic products (labeled in public databases) (Flynn et al., 2020).

We compared the predictive accuracy of NICEdrug.ch with other tools predicting reactivity, i.e.,

XenoNet (Flynn et al., 2020), GLORY (de Bruyn Kops et al., 2021; de Bruyn Kops et al., 2019),

SyGMa (Ridder and Wagener, 2008), and BioTransformer (Djoumbou-Feunang et al., 2019). NICE-

drug.ch predicted 53 of the 55 metabolic products from the small molecule dataset, rendering a

sensitivity score of 0.96. The two metabolites missing are venetoclax and SCHEMBL18637099, which

are produced through at least one reaction with an unknown reaction mechanism and hence are out

of the scope of NICEdrug.ch. The tools XenoNet, GLORY, SyGMa, and BioTransformer showed a

sensitivity score of 0.89, 0.83, 0.74, and 0.72 on the same dataset. To this end, not only NICEdrug.

ch outperforms previous tools, but it also provides information on the metabolic pathways and reac-

tion mechanisms involved in the production of each metabolic product (see ‘Materials and methods’,

Supplementary file 2). We next evaluated the NICEdrug.ch reactivity with a second dataset includ-

ing 16 pairs of drugs and metabolite that share reactivity (Kirchmair et al., 2015) (‘Materials and

methods’, Supplementary file 2). NICEdrug.ch correctly identified the pathways metabolizing 15 of

the drugs and the associated metabolites sharing reactivity (Supplementary file 2).

Evaluation of NICEdrug.ch toxicity report
As done before (Svensson et al., 2017; Webel et al., 2020; Yin et al., 2019), we used cytotoxicity

bioassay records from PubChem (Svensson et al., 2017) involving 1777 drugs to evaluate the NICE-

drug.ch toxicity report. Other available tools predict drug toxicity using machine learning. The accu-

racy of the machine-learning-based methods ranged from 0.67 to 0.78, as previously reported

Figure 1 continued

small molecule, (5b) drug repurposing, and (5c) druggability of an enzymatic target. See also Figure 1—figure supplement 1; Figure 1—figure

supplement 2; Figure 1—figure supplement 3, and Supplementary file 1 .

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of number of molecules in NICEdrug.ch and their structural curation.

Figure supplement 2. Distribution of reactive sites and metabolic reactions as of EC numbers linked to all molecules in NICEdrug.ch.

Figure supplement 3. Description of NICEdrug score.
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(Svensson et al., 2017; Yin et al., 2019). For the same dataset, NICEdrug.ch shows an accuracy of

0.94, with a precision, recall, and F1 of 0.94, 0.92, and 0.96, respectively (‘Materials and methods’,

Supplementary file 2).

Evaluation of NICEdrug.ch druggability report
We compared the NICEdrug.ch druggability report with the widely used ‘network-based inference

(NBI)’ tool for drug–target interaction (DTI) prediction. As a basis for this comparison, we used the

high-quality drug–enzyme bioassay data from PubChem (Kim et al., 2021; Wang et al., 2012),

which includes 651 records reporting the inhibition of 78 enzymes by 297 molecules. The area under

the curve (AUC), a commonly used criterion for assessing computational target prediction methods

(Mayr et al., 2018), quantified a remarkable improvement in the overall performance of NICEdrug.

ch (0.85) over the NBI tool (0.61). Further analysis found that the optimal druggability scores is 0.46,

with precision, recall, and F1 values of 0.88, 0.89, and 0.89, respectively (‘Materials and methods’,

Supplementary file 2).

NICEdrug.ch suggests inhibitory mechanisms of the anticancer drug 5-
FU and avenues to alleviate its toxicity
As a case study, we used NICEdrug.ch to investigate the mode of action and metabolic fate of one

of the most commonly used drugs to treat cancer, 5-fluorouracil (5-FU), by exploring its reactivity

and the downstream products or intermediates that are formed during the cascade of biochemical

transformations. 5-FU interferes with DNA synthesis as an anti-metabolite (Longley et al., 2003),

meaning that its various intermediates like 5-fluorodeoxyuridine monophosphate (FdUMP) are simi-

lar enough to naturally occurring substrates and they can act as competitive inhibitors in the cell.

We therefore used NICEdrug.ch to study the intermediates of 5-FU that occurred between one

to four reaction steps away from 5-FU (Supplementary file 3), which is a reasonable range to occur

in the body after 5-FU treatment (Testa, 2010). This analysis identified 407 compounds (90 biochem-

ical and 317 chemical molecules) that have the biochemical potential to inhibit certain enzymes.

Because the NICEdrug score that analyses reactive site and neighborhood similarities can serve as a

better predictor of metabolite similarity, we assessed the NICEdrug score of the intermediates com-

pared to human metabolites. This resulted in a wide range of NICEdrug scores between the differ-

ent 5-FU intermediates and human metabolites, ranging from no similarity at a NICEdrug score of 0

to the equivalent substructure on a compound at a NICEdrug score of 1. More importantly, some of

the 407 metabolite inhibitors (as explained next) were known compounds that have been investi-

gated for their effects on 5-FU toxicity, but most of these compounds were newly identified by

NICEdrug.ch and could therefore serve as avenues for future research into alleviating the side effects

of this drug.

We investigated these 407 compounds in more detail, looking first at the set of already validated

metabolite inhibitors. 5-Fluorouridine (two steps away from 5-FU) and UDP-L-arabinofuranose (four

steps away from 5-FU) are very similar to uridine, with NICEdrug scores of 0.95 and 1, respectively.

Uridine is recognized as a substrate by two human enzymes: cytidine deaminase (EC: 3.5.4.5) and 5’-

nucleotidase (EC: 3.1.3.5) (Figure 2). Therefore, NICEdrug.ch predictions show that the degradation

metabolism of 5-FU generates downstream molecules similar to uridine, which likely leads to the

inhibition of these two enzymes. This effect has already been investigated as a potential method for

reducing the toxicity of 5-FU, wherein it was proposed that high concentrations of uridine could

compete with the toxic 5-FU metabolites (Ma et al., 2017).

NICEdrug.ch also identified a few potential metabolites that have not been previously studied for

their effects. These metabolites share a reactive site with native human metabolites and differ in the

reactive site neighborhood, and we refer to them as para-metabolites (Sartorelli and Johns, 2013).

6-Methyl-2’-deoxyadenosine, purine-deoxyribonucleoside, and 20-deoxyisoguanosine structurally

resemble the reactive site neighborhood of deoxyadenosine, with respective NICEdrug scores of 1,

1, and 0.91. Similarly, 2-aminoadenosine, 2-chloroadenosine, and 2-methylaminoadenosine (four

steps from 5-FU) have the same reactive site neighborhood as adenosine, with NICEdrug scores of

1, 1, and 0.96, respectively. Adenosine and deoxyadenosine are both native substrates of the adeno-

sine kinase (EC: 2.7.1.20) and 50-nucleotidase (EC: 3.1.3.5) (Figure 2). Therefore, we suggest that the

5-FU derivatives 2-aminoadenosine and 2-chloroadenosine are competitive inhibitors for the two
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enzymes adenosine kinase and 50-nucleotidase. With these new insights from NICEdrug.ch, we

hypothesize that co-administering adenosine or deoxyadenosine and uridine (Figure 2) with 5-FU

might be required to reduce its toxic effects and hopefully alleviate the side effects of the 5-FU can-

cer treatment.

Metabolic degradation of 5-FU leads to compounds with Fluor in their
reactive site that are less reactive and more toxic than other
intermediates
In the previous case study, we showed inhibitors that contain the identical active site to the native

enzyme. However, a slightly different reactive site might still be able to bind to an enzyme and com-

pete with a native substrate, also defined as anti-metabolite (Matsuda et al., 2014). We explored

this scenario by defining relaxed constraints in two steps. We first identified all atoms around a reac-

tive site to compare the binding characteristics between the native molecule and putative inhibitor.

Next, we compared the reactive site of the native molecule and putative inhibitor and scored the lat-

ter based on similarity (‘Materials and methods’). Following these two steps, we assessed the similar-

ity between intermediates in the 5-FU metabolic neighborhood and human metabolites. Among all

407 compounds in the 5-FU metabolism (Supplementary file 3), we found eight that show a close

similarity to human metabolites (NICEdrug score above 0.9, Figure 3) that might be competitive

inhibitors or anti-metabolites. Inside the reactive site, the original hydrogen atom is bioisosterically

replaced by fluorine. F–C bonds are extremely stable and therefore block the active site by forming

Tegafur
(0.91)

*

5-Fluorodeoxy-
uridine

(1)
*

F-dUMP
(1)
*

5flurimp
(0.94)

5-Fluoro-
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(0.94)

5-Fluorodeoxy-
uridine
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(1)

5-Fluorodeoxy-
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5-Fluoro-
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triphosphate
(0.94)

5,10-methylene-THF         dihydrofolate

dUMP dTMP

dTMP synthase
R02101
2.1.1.45

1 step5-FU 2 steps 3 steps

Figure 3. A different reactive site but similar neighborhood defines top anti-metabolites in 5-FU metabolism and inhibited human metabolic enzyme.

Eight anti-metabolites of dUMP in the 5-FU metabolic neighborhood (represented as defined in ‘Materials and methods’). Note that the reactive site of

the anti-metabolites is different than the one of the native human metabolite, but the neighborhood is highly similar, which determines the high

NICEdrug score (value in parenthesis). We show the inhibited human enzyme (dTMP synthase) and reaction, and its native product. See also

Supplementary file 3
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a stable complex with the enzyme. The inhibitory effect of the intermediates tegafur, 5-fluorodeox-

yuridine, and FdUMP (one to two reaction steps away) has been confirmed in studies by

Kobayakawa and Kojima, 2011 and Bielas et al., 2009. In addition, NICEdrug.ch also predicts that

5flurim, 5-fluorodeoxyuridine triphosphate, 5-fluorodeoxyuridine triphosphate, 5-fluorouridine

diphosphate, and 5-fluorouridine triphosphate, some of which occur further downstream in the 5-FU

metabolism, also act as anti-metabolites (Figure 3). Based on the insights from NICEdrug.ch, we

suggest the inhibitory and side effect of 5-FU treatment might be more complex than previously

thought. 5-FU downstream products are structurally close to human metabolites and might form sta-

ble complexes with native enzymes. This knowledge could serve to further refine the pharmacoki-

netic and pharmacodynamic models of 5-FU and ultimately the dosage administered during

treatment.

NICEdrug.ch identifies toxic alerts in the anticancer drug 5-FU and its
products from metabolic degradation
The concept of drug toxicity refers not to overdoses but instead to the toxic effects at medical doses

(Guengerich, 2011), which often occur due to the degradation products generated through drug

metabolism. Extensive efforts have been expended to identify toxic molecules or, more generally, to

extract the substructures that are responsible for toxicity (called structural alerts). The Liver Toxicity

Knowledge Base (LTKB) and the super toxic database include 1036 and about 60 k toxic molecules,

respectively (Schmidt et al., 2009; Thakkar et al., 2018). ToxAlert provides around 1200 alerts

related to different forms of toxicity (Sushko et al., 2012). However, the number of molecules that

are analyzed and labeled as toxic in databases is disproportionally low compared to the space of

compounds. Additionally, structural alerts are indicated for many compounds, and current alerts

might identify redundant and over-specific substructures, which questions their reliability

(Yang et al., 2017).

To quantify the toxicity of downstream products of drugs in NICEdrug.ch, we collected all of the

molecules cataloged as toxic in the LTKB and super toxic databases (approved toxic molecules)

along with their lethal dose (LC50), as well as the existing structural alerts provided by ToxAlert. We

measured the similarity of an input molecule with all approved toxic molecules using the reactive

site-centric fingerprints implemented in BridgIT and the NICEdrug score (‘Materials and methods’).

Next, we scanned both the toxic reference molecule and the input molecule for structural hints of

toxicity, referred to here as NICEdrug toxic alerts. We kept common NICEdrug toxic alerts between

the reference, which is a confirmed toxic compound, and input molecule. With this procedure in

place, NICEdrug.ch finds for each input molecule the most similar toxic molecules, along with their

common toxic alerts, and serves to assess the toxicity of a new molecule based on the mapped toxic

alerts. Additionally, the NICEdrug toxic alerts and toxicity level of drug intermediates can be traced

with NICEdrug.ch through the whole degradation pathway to reveal the origin of the toxicity.

As an example, we herein tested the ability of NICEdrug.ch to identify the toxicity in 5-FU metab-

olism. First, we queried the toxicity profile of all intermediates in the 5-FU metabolic neighborhood,

integrating both known and hypothetical human reactions (‘Materials and methods’). In this analysis,

we generated all compounds up to four steps away from 5-FU. Based on the toxicity report of each

potential degradation product, we calculated a relative toxicity metric that adds the LC50 value,

NICEdrug score, and number of common NICEdrug toxic alerts with all approved toxic drugs

(‘Materials and methods’). We generated the metabolic neighborhood around 5-FU and labeled

each compound with our toxicity metric (Supplementary file 3). Interestingly, we show that the top

most toxic intermediates match the list of known three toxic intermediates in 5-FU metabolism

(Figure 4; Krauß and Bracher, 2018). Based on the toxicity analysis in NICEdrug.ch for 5-FU, we

hypothesize there are highly toxic products of 5-FU drug metabolism that had not been identified

either experimentally or computationally and it might be necessary to experimentally evaluate their

toxicity to recalibrate the dosage of 5-FU treatment.

The nicedrug.ch reactive site-centric fingerprint accurately clusters statins of
type I and II and guides drug repurposing
Because potential side effects of a drug are documented when the drug passes the approval pro-

cess, repurposing approved drugs for other diseases can reduce the medical risks and development

MohammadiPeyhani et al. eLife 2021;10:e65543. DOI: https://doi.org/10.7554/eLife.65543 9 of 39

Tools and resources Computational and Systems Biology Medicine

https://doi.org/10.7554/eLife.65543


*
F-dUMP

(29.6)

*

4 steps
5flurimp

(30)

*
5-Fluorouridine-3P

(34)

5-Fluorouridine
(31) 5-Fluorouridine (1, 7, 4)

Hepatotoxic DB
(NICEdrug score, severity, !alerts)

Cytidine
(29.4)

Azacitidine
(33)

o Genotoxic carcinogenicity, mutagenicity
o Non-biodegradability
o Acute aquatic toxicity
o Pyridinium-related toxicity
o Skin sensitization

Supertoxic DB
(NICEdrug score, log(LC50), !alerts)

Enocitabine (0.98, 4, 8)

Azacitidine (1, 4, 11)

CMP(1, 4, 7)

5-Fluorouridine (0.99, 7, 16)

CHEMBL3228489 (0.87, 4, 6)

Thymidine (0.78, 2, 3)

Cytidine (1, 3, 8)

Azacitidine (1, 8, 11)

Deoxythymidine (0.82, 2, 2)

Deoxythymidine (0.77, 2, 2)

Deoxythymidine (0.77, 2, 2)

5-FU

3 steps

2 steps

1 step

!alerts: number of NICEdrug common toxic alerts
* Toxicity validated

oxic carcinogenicity mutagenic

 2)Deoxythymidine (0.82, 2, 2

*
5-Fluoro-

deoxyuridin-3P
(28.9) Clevudine (0.8, 4, 6) Deoxythymidine (0.82, 2, 2)

Suggested toxic 
metabolic neighbor
(NICEdrug toxicity score)

Figure 4. Comparing downstream products to known toxic molecules and analyzing their common structural toxic alerts explains metabolic toxicity of

5-FU. Example of six suggested toxic molecules in the 5-FU metabolic neighborhood (represented as defined in ‘Materials and methods’). We show

toxic compounds from the supertoxic and hepatotoxic databases that lead to the highest NICEdrug toxicity score (number under toxic intermediate

Figure 4 continued on next page
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expenses (Himmelstein et al., 2017). For instance, the antitussive noscapine has been repurposed

to treat some types of cancers (Mahmoudian and Rahimi-Moghaddam, 2009; Rajesh, 2011).

Because NICEdrug.ch can search for functional (i.e., reactivity), structural (i.e., size), and physico-

chemical (i.e., solubility) similarities between molecules while accounting for human biochemistry, we

wanted to determine whether NICEdrug.ch could therefore suggest drug repurposing strategies.

As a case study, we investigated the possibility of drug repurposing to replace statins, which are

a class of drugs often prescribed to lower blood cholesterol levels and to treat cardiovascular dis-

ease. Indeed, data from the National Health and Nutrition Examination Survey indicate that nearly

half of adults 75 years and older in the United States use prescription cholesterol-lowering statins

(Bibbins-Domingo et al., 2016). Since some patients do not tolerate these drugs and many still do

not reach a safe blood cholesterol level (Kong et al., 2004), there is a need for alternatives. Being

competitive inhibitors of the cholesterol biosynthesis enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme

A reductase (HMG-CoA reductase) (Jiang et al., 2018; Mulhaupt et al., 2003), all statins share the

same reactive site. BNICE.ch labeled this reactive site, in a linear or circular form, as corresponding

to an EC number of 4.2.1.- (Istvan and Deisenhofer, 2001). NICEdrug.ch includes 254 molecules

with the same reactive site that are recognized by enzymes of EC class 4.2.1.-, ten of which are

known statins. We used the NICEdrug score to cluster the 254 molecules into different classes

(Supplementary file 4, Figure 5). Two of the classes correspond to all currently known statins, which

are classified based on their activity into types 1 and 2, wherein statins of type two are less active

and their reactive site is more stable compared to type 1. This property is well distinguished in the

clustering based on the NICEdrug score (Figure 5A).

In addition to properly classifying the 10 known statins (Figure 5B,C, molecules non-marked), we

identified seven other NICEdrug.ch molecules that clustered tightly with these statins (Figure 5B,C,

molecules marked with *). These new molecules share the same reactive site and physicochemical

properties, and they have the highest similarity with known statins in atoms neighboring the reactive

site. In a previous study by Endo and Hasumi, 1993, these seven NICEdrug.ch molecules were intro-

duced as Mevastatin analogues for inhibiting cholesterol biosynthesis. Therefore, they were already

suggested as possible candidates for treating high blood cholesterol and could be a good option

for repurposing. Furthermore, we found eight known drugs not from the statin family among the

254 scanned molecules (Supplementary file 4). One of them, acetyl-L-carnitine (Figure 5C, molecule

marked with **), is mainly used for treating neuropathic pain (Li et al., 2015), though Tanaka et al.,

2004 have already confirmed that it also has a cholesterol-reducing effect.

Overall, NICEdrug.ch was able to characterize all known enzymatic reactions that metabolize sta-

tins, including proposed alternatives and new hypothetical reactions that could be involved in their

metabolism within human cells (Figure 5A, Figure 5—figure supplement 1). The identification of

seven drugs that clustered around the statins and were already designed as alternatives to statins

confirms the power of NICEdrug.ch and the NICEdrug score to search large databases for similar

compounds in structure and function. Furthermore, the discovery of the eight compounds unrelated

to known statins offer multiple candidate drugs for repurposing along with a map of their metabo-

lized intermediates for the treatment of high cholesterol, though further preclinical experiments

would be required to verify their clinical benefits.

NICEdrug.ch suggests over 500 drugs and drug candidates to target
liver-stage malaria and simultaneously minimize side effects in human
cells, with shikimate 3-phosphate as a top candidate
Efficiently targeting malaria remains a global health challenge. Malaria parasites (Plasmodium) are

developing resistance to all known drugs, and antimalarials cause many side effects (World Health

Organization, 2018). We applied NICEdrug.ch to identify drug candidates that target liver-stage

developing malaria parasites and lessen or avoid side effects in human cells.

Figure 4 continued

name, ‘Materials and methods’). We highlight functional groups linked to five NICEdrug toxic alerts (legend bottom right). See also Supplementary file

3.
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Figure 5. Clustering of molecules with statin reactive sites based on NICEdrug score suggests drugs for repurposing. (A) Pairwise NICEdrug score

between all molecules with statin reactive sites (heat map) and number of metabolic reactions in which they participate (right). We highlight clusters of

statins of type 1 (cluster a) and type 2 (cluster b), and clusters of most similar molecules to type one statins (cluster c) and type two statins (cluster d).

Within the metabolic reactions, we indicate the total number of reactions (dark color) and the number of reactions that involve the statin reactive site

Figure 5 continued on next page
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We previously reported 178 essential genes and enzymes for liver-stage development in the

malaria parasite Plasmodium berghei (Stanway et al., 2019; Supplementary file 5, ‘Materials and

methods’). Of 178 essential Plasmodium enzymes, 32 enzymes are not essential in human cells

(Wang et al., 2015; Supplementary file 5, ‘Materials and methods’). We extracted all molecules cat-

alyzed by these 32 enzymes uniquely essential in Plasmodium, which resulted in 68 metabolites and

157 unique metabolite–enzyme pairs (Supplementary file 5, ‘Materials and methods’). We used

NICEdrug.ch to examine the druggability of the 32 essential Plasmodium enzymes with the curated

48,544 drugs and drug candidates (Figure 1) and the possibility of repurposing them to target

malaria.

We considered as candidates for targeting liver-stage malaria as the drugs or their metabolic

neighbors that show a good NICEdrug score (NICEdrug score above 0.5) with any of the 157 Plas-

modium metabolite–enzyme pairs. We identified 516 such drug candidates, targeting 16 essential

Plasmodium enzymes (Supplementary file 6, ‘Materials and methods’). Furthermore, 1164 other

drugs appear in the metabolic neighborhood of the 516 identified drugs (between one and three

reaction steps away). Interestingly, of the 516 identified drug candidates, digoxigenin, estradiol-

17beta, and estriol have been previously validated as antimalarials (Antonova-Koch et al., 2018),

and NICEdrug.ch suggests their antimalarial activity relies on the competitive inhibition of the KRC

enzyme (Figure 6). This enzyme is part of both the steroid metabolism and the fatty acid elongation

metabolism, which we recently showed is essential for Plasmodium liver-stage development

(Stanway et al., 2019). Among the 516 NICEdrug.ch antimalarial candidates, there are also 89 mole-

cules present in the metabolic neighborhood of antimalarial drugs approved by Antonova-

Koch et al., 2018, which suggests these antimalarials might be prodrugs (Supplementary file 6).

Being an intracellular parasite, antimalarial treatments should be efficient at targeting Plasmo-

dium as well as assure the integrity of the host cell (Figure 6A). To tackle this challenge, we identi-

fied 1497 metabolites participating in metabolic reactions catalyzed with essential human enzymes

(Supplementary file 5, ‘Materials and methods’) and excluded the antimalarial drug candidates that

shared reactive site-centric similarity with the extracted human metabolite set (to satisfy NICEdrug

score below 0.5). Of all 516 drug candidates that might target liver-stage Plasmodium, a reduced

set of 64 molecules minimize the inhibition of essential human enzymes (Supplementary file 6,

‘Materials and methods’) and are hence optimal antimalarial candidates.

Among our set of 64 optimal antimalarial candidates, a set of 14 drugs targeting the Plasmodium

shikimate metabolism, whose function is essential for liver-stage malaria development

(Stanway et al., 2019), arose as the top candidate because of its complete absence in human cells.

The set of drug candidates targeting shikimate metabolism include 40 prodrugs (between one and

three reaction steps away) that have been shown to have antimalarial activity (Antonova-Koch et al.,

2018; Supplementary file 6). NICEdrug.ch identified molecules among the prodrugs with a high

number of toxic alerts, like nitrofen. It also identified four molecules with scaffolds similar (two or

three steps away) to the 1-(4-chlorobenzoyl)pyrazolidin-3-one of shikimate and derivatives. This

result suggests that downstream compounds of the 40 prodrugs might target the Plasmodium shiki-

mate pathway, but also might cause side effects in humans (Supplementary file 6).

To this end, NICEdrug.ch identified shikimate 3-phosphate as a top candidate antimalarial drug.

We propose that shikimate 3-phosphate inhibits the essential Plasmodium shikimate biosynthesis

pathway without side effects in the host cell (Figure 6, Supplementary file 6). Excitingly, shikimate

3-phosphate has been used to treat E. coli and Streptococcus infections without appreciable toxicity

for patients (Dı́az-Quiroz et al., 2018). Furthermore, recent studies have shown that inhibiting the

Figure 5 continued

(light color). (B) Examples of statins and Mevastatin analogues of type one from cluster c (blue) and of type two from cluster d (gold). We left the known

statins unmarked, which are appropriately clustered together based on the NICEdrug score, and we mark with * new molecules that cluster with statins

and that NICEdrug.ch suggests could be repurposed to act as statins. Reactive sites in type one statins and type two statins are colored in blue and

orange, respectively. The reactive site neighborhood as considered in the NICEdrug score is also marked. See also; Figure 5—figure supplement 1 ,

and Supplementary file 4.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Clustering based on NICEdrug score, molecular weight, and reactivity of statin like molecules.
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A

B

C

Figure 6. NICEdrug.ch suggests shikimate 3-phosphate as a top candidate to target liver-stage malaria and

minimize side effects in host human cells. (A) Schema of ideal scenario to target malaria, wherein a drug efficiently

inhibits an essential enzyme for malaria parasite survival and does not inhibit essential enzymes in the host human

cell to prevent side effects. (B) Shikimate 3-phosphate inhibits enzymes in the Plasmodium shikimate metabolism,

Figure 6 continued on next page
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shikimate pathway using 7-deoxy-sedoheptulose is an attractive antimicrobial and herbicidal strategy

with no cytotoxic effects on mammalian cells (Brilisauer et al., 2019). Experimental studies should

now validate the capability of shikimate 3-phosphate to efficiently and safely target liver malaria,

and could further test other NICEdrug.ch antimalarial candidates (Supplementary file 6).

NICEdrug.ch identifies over 1300 molecules to fight COVID-19, with
N-acetylcysteine as a top candidate
SARS-CoV-2 is responsible for the currently on-going COVID-19 pandemic and the death of over

three million people (as of today, 11 May 2021 [Dong et al., 2020]), and there is currently no con-

firmed treatment for it. Attacking the host factors that allow replication and spread of the virus is an

attractive strategy to treat viral infections like COVID-19. A recent study has identified 332 interac-

tions between SARS-CoV-2 proteins and human proteins, which involve 332 hijacked human proteins

or host factors (Gordon et al., 2020). Here, we first used NICEdrug.ch to identify inhibitors of enzy-

matic host factors of SARS-CoV-2. Targeting such human enzymes prevents interactions between

human and viral proteins (PPI) (‘Materials and methods’, Figure 7A). Of the 332 hijacked human pro-

teins, we identified 97 enzymes (‘Materials and methods’, Supplementary file 7) and evaluated their

druggability by inhibitors among the 250,000 small molecules in NICEdrug.ch and 80,000 molecules

in food (‘Materials and methods’, Figure 7A). NICEdrug.ch suggests 22 hijacked human enzymes

can be drug targets and proposed 1301 potential competitive inhibitors from the NICEdrug.ch data-

base. Of 1301 potential inhibitors, 465 are known drugs, 712 are active metabolic products of 1419

one-step-away prodrugs, and 402 are molecules in fooDB (Supplementary file 7). We found among

the top anti SARS-CoV-2 drug candidates the known reverse transcriptase inhibitor didanosine

(Figure 7B, Supplementary file 7), which other in silico screenings have also suggested as a poten-

tial treatment for COVID-19 (Alakwaa, 2020; Cava et al., 2020). Among others, NICEdrug.ch also

identified: (1) actodigin, which belongs to the family of cardiotonic molecules proven to be effective

against MERS-CoV but without mechanistic knowledge (Ko et al., 2020), (2) three molecules in gin-

ger (6-paradol, 10-gingerol, and 6-shogaol) inhibiting catechol methyltransferase, and (3) brivudine,

a DNA polymerase inhibitor that has been used to treat herpes zoster (Wassilew, 2005) and prevent

MERS-CoV infection (Park et al., 2019), and NICEdrug.ch suggests it for repurposing (Figure 7—

figure supplement 1, Supplementary file 7).

Drugs like remdesivir, EIDD-2801, favipiravir, and inhibitors of angiotensin converting enzyme 2

(ACE2) have been used to treat COVID-19 (Jeon et al., 2020), and act through a presumably effec-

tive inhibitory mechanism (Figure 7—figure supplement 2). For instance, the three drugs remdesi-

vir, EIDD-2801, and favipiravir are believed to inhibit the DNA-directed RNA polymerase (EC:

2.7.7.6). Here, we used the NICEdrug.ch reactive site-centric fingerprint to search for alternative

small molecules in NICEdrug.ch and fooDB that could be repurposed to target ACE2 and DNA-

directed RNA polymerase. NICEdrug.ch identified a total of 215 possible competitive inhibitors of

ACE2. Among those is captopril, a known ACE2 inhibitor (Kim et al., 2003), and D-leucyl-N-(4-car-

bamimidoylbenzyl)-L-prolinamide, a NICEdrug.ch suggestion for drug repurposing to treat COVID-

19. We also found 39 food-based molecules with indole-3-acetyl-proline (a molecule in soybean) as

top ACE2 inhibitor candidate (Figure 7—figure supplement 2, Supplementary file 8). To target

the same enzyme as remdesivir, EIDD-2801, and favipiravir, NICEdrug.ch identified 1115 inhibitors

of the DNA-directed RNA polymerase, like the drug vidarabine, which shows broad spectrum activity

against DNA viruses in cell cultures and significant antiviral activity against infections like the herpes

viruses, the vaccinia virus, and varicella zoster virus (Suzuki et al., 2006). We further found 556 mole-

cules in food that might inhibit DNA-directed RNA polymerase, like trans-zeatin riboside triphos-

phate (FDB031217) (Supplementary file 8).

One of the host factors identified by Gordon et al., 2020 is the histone deacetylase 2 (HDAC2),

which acetylates proteins and is an important transcriptional and epigenetic regulator. The acetyl

Figure 6 continued

which is essential for liver-stage development of the parasite. Shikimate 3-phosphate does not inhibit any enzyme

in the human host cell since it is not a native human metabolite, and it does not show similarity to any native

human metabolite. (C) Mechanistic details of inhibition of aroC by shikimate 3-phosphate and other NICEdrug

candidates. See also Supplementary file 5; Supplementary file 6.
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C

Figure 7. NICEdrug.ch strategy to fight COVID-19, and NICEdrug.ch candidate inhibitors of SARS-CoV-2 host factors: reverse transcriptase and

HDAC2. (A) Schema of NICEdrug strategy to target COVID-19, wherein a drug (top-left) or molecules in food (top-right) efficiently inhibit a human

enzyme hijacked by SARS-CoV-2. Inhibition of this host factor reduces or abolishes protein–protein interactions (PPI) with a viral protein and prevents

SARS-CoV-2 proliferation. (B) Inhibition of the reverse transcriptase (EC: 1.1.1.205 or P12268) and the PPI with SARS-CoV-nsp14 by didanosine based on

Figure 7 continued on next page
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and carboxylate moieties are the reactive sites of the forward (N6-acetyl-l-lysyl-[histone]) and reverse

(acetate) biotransformation of HDAC2, respectively (Figure 7). NICEdrug.ch recognized a total of

640 drugs for repurposing that can inhibit HDAC2, including 311 drugs sharing the acetyl moiety

and showing a NICEdrug score above 0.5 with respect to N6-acetyl-L-lysyl-[histone], and 329 drugs

sharing the carboxylate moiety and presenting a NICEdrug score above 0.5 with acetate (‘Materials

and methods’). Among the drugs sharing the acetyl reactive site, we identified the known HDAC2

inhibitor melatonin (Wu et al., 2018), and to our knowledge new candidates like N-acetylhistamine

and N-acetylcysteine. We also located 22 molecules in food with potential HDAC2 inhibitory activity,

like N8-acetylspermidine (FDB022894) (Figure 7C, Supplementary file 8). Drugs sharing the carbox-

ylate reactive site (as identified with NICEdrug) include the known HDAC2 inhibitors valproate, buty-

rate, phenyl butyrate (Abdel-Atty et al., 2014) and statins (Kong et al., 2004; Figure 7C,

Supplementary file 8). Interestingly, statins have been shown to have protective activity against

SARS-CoV-2 (Lodigiani et al., 2020; Zhang et al., 2020). In addition, the NICEdrug.ch candidate

N-acetylcysteine is a commonly used mucolytic drug that is sometimes considered as a dietary sup-

plement and has putative antioxidant properties. Indeed, N-acetylcysteine is believed for long to be

a precursor of the cellular antioxidant glutathione (Mårtensson et al., 1989), but has unknown phar-

macological action. NICEdrug.ch suggests that N-acetylcysteine might present a dual antiviral activ-

ity: firstly, N-acetylcysteine is converted to cysteine by HDAC2 and by that means, it is competitively

inhibiting the native function of HDAC2 and interactions with viral proteins (Figure 7C,

Supplementary file 8). Cysteine next fuels the glutathione biosynthesis pathway and produces glu-

tathione in two steps.

Given the high coverage of validated molecules with activity against SARS-CoV-2 that NICEdrug.

ch captured in this unbiased and reactive site-centric analysis, we suggest there might be other mol-

ecules in the set of 1300 NICEdrug.ch candidates that could also fight COVID-19. Excitingly, there

are many molecules that can be directly tested since these are drugs that have already passed all

safety regulations or are molecules present in food, like N-acetylcysteine for which we further reveal

an action mechanism behind its potential anti-SARS-CoV-2 activity. Other new candidates for which

no safety data is available should be further validated experimentally and clinically. The mechanistic

analyses provided by NICEdrug.ch could also guide new pharmacokinetic and pharmacodynamic

models simulating SARS-CoV-2 infection and treatment.

Discussion
To systematically illuminate the metabolism and all enzymatic targets (competitively inhibited) of

known drugs and hypothetical prodrugs to aid in the development of new therapeutic compounds,

we used a proven reaction–prediction tool BNICE.ch (Hatzimanikatis et al., 2005) and an analysis of

neighboring atoms of reactive sites analogous to BridgIT (Hadadi et al., 2019) and performed the

first large-scale computational analysis of drug biochemistry and toxicity in the context of human

metabolism. The analysis involved over 250,000 small molecules, and curation and computation of

bio- and physico-chemical drug properties that we assembled in an open-source drug database

NICEdrug.ch that can generate detailed drug metabolic reports and can be easily accessed and

used by researchers, clinicians, and industry partners. NICEdrug.ch revealed 20 million potential

reactive sites at the 250,000 small molecules of the database, and there exist over 3000 enzymes in

the human metabolism that can be inhibited with the 250,000 molecules. This is because NICEdrug.

ch can identify potential metabolic intermediates of a drug and scans these molecules for substruc-

tures that can interact with catalytic sites across all enzymes in a desired cell.

Figure 7 continued

NICEdrug.ch. (C) Inhibition of the HDAC2 (EC: 3.5.1.98) and the PPI with SARS-CoV-nsp5 by molecules containing acetyl moiety (like melatonin,

N-acetylcysteine, and N8-acetylspermidine), and molecules containing carboxylate moiety (like valproate, stains, and butyrate) based on NICEdrug.ch.

See also Figure 7—figure supplement 1; Figure 7—figure supplement 2, Supplementary file 7; Supplementary file 8.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. NICEdrug candidate inhibitors of SARS-CoV-2 host factors: galactosidase, catechol methyltransferase, and DNA polymerase.

Figure supplement 2. NICEdrug candidate inhibitors of ACE2.
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NICEdrug.ch adapts the metric previously developed for reactions in BridgIT (Hadadi et al.,

2019) to precisely compare drug–drug and drug–metabolite pairs based on similarity of reactive site

and the neighborhood around this reactive site, which we have recently shown outperforms previ-

ously defined molecular comparison metrics (Hadadi et al., 2019). Since NICEdrug.ch shows high

specificity in the identification of such reactive sites and neighborhood, it provides a better mecha-

nistic understanding than currently available methods (Robertson, 2005). Despite these advances, it

remains challenging to systematically identify non-competitive inhibition or targeting of non-enzy-

matic biological processes. We suggest coupling NICEdrug.ch drug metabolic reports with other in

silico and experimental analyses accounting for signaling induction of small molecules and other

non-enzymatic biological processes like transport of metabolites in a cell. The combined analysis of

drug effects on different possible biological targets (not uniquely enzymes) will ultimately increase

the coverage of molecules for which a mechanistic understanding of their mode of action is

assigned.

A better understanding of the mechanisms of interactions and the specific nodes where the com-

pounds act can help re-evaluate pharmacokinetic and pharmacodynamic models, dosage, and treat-

ment. Such understanding can be used in the future to build models that correlate the

pharmacodynamic information with specific compounds and chemical substructures in a manner sim-

ilar to the one used for correlating compound structures with transcriptomic responses. We have

shown for one of the most commonly used anticancer drugs, 5-FU, that NICEdrug.ch identifies and

ranks alternative sources of toxicity and hence can guide the design of updated models and treat-

ments to alleviate the drug’s side effects.

The mechanistic understanding will also further promote the development of drugs for repurpos-

ing. While current efforts in repurposing capitalize on the accepted status of known drugs, some of

the issues with side effects and unknown interactions limit their development as drugs for new dis-

eases. Given that drug repurposing will require new dosage and administration protocols, the under-

standing of their interactions with the human metabolism will be very important in identifying,

developing, and interpreting unanticipated side effects and physiological responses. We evaluated

the possibility of drug repurposing with NICEdrug.ch as a substitute for statins, which are broadly

used to reduce cholesterol but have many side effects. NICEdrug.ch and its reactive site-centric

comparison accurately cluster both family types of statins, even though they are similar in overall

molecular structure and show different reactivity. In addition, NICEdrug.ch suggests a set of new

molecules with hypothetically less side effects (Endo and Hasumi, 1993; Tanaka et al., 2004) that

share reactive sites with statins.

A better mechanistic understanding of drug targets can guide the design of treatments against

infectious diseases, for which we need effective drugs that target pathogens without side effects in

the host cell. This is arguably the most challenging type of problem in drug design, and indeed

machine learning has continuously failed to guide such designs given the difficulty in quantifying

side effects – not to mention in acquiring large, consistent, and high-quality data sets from human

patients. To demonstrate the power of NICEdrug.ch for tackling this problem, we sought to identify

drugs that target liver-stage malaria parasites and minimize the impact on the human host cell. We

identified over 500 drugs that inhibit essential Plasmodium enzymes in the liver stages and minimize

the impact on the human host cell. Our top drug candidate is shikimate 3-phosphate targeting the

parasite’s shikimate metabolism, which we recently identified as essential in a high-throughput gene

knockout screening in Plasmodium (Stanway et al., 2019). Excitingly, our suggested antimalarial

candidate shikimate 3-phosphate has already been used for Escherichia and Streptococcus infections

without appreciable side effects (Dı́az-Quiroz et al., 2018).

Finally, minimizing side effects becomes especially challenging in the treatment of viral infections,

since viruses fully rely on the host cell to replicate. As a last demonstration of the potential of NICE-

drug.ch, we sought to target COVID-19 by identifying inhibitors of 22 known enzymatic host factors

of SARS-CoV-2 (Gordon et al., 2020). NICEdrug.ch identified over 1300 molecules that might target

the 22 host factors and prevent SARS-CoV-2 replication. As a validation, NICEdrug.ch correctly iden-

tified known inhibitors of those enzymes and further suggested safe drugs for repurposing and other

food molecules with activity against SARS-CoV-2. Among the NICEdrug.ch suggestions for COVID-

19, based on the knowledge on its mechanism and safety, we highlight N-acetylcysteine as an inhibi-

tor of HDAC2 and SARS-CoV-2.
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Overall, we believe that a system-level or metabolic network analysis, coupled with an investiga-

tion of reactive sites, will likely accelerate the discovery of new drugs and provide additional under-

standing regarding metabolic fate, action mechanisms, and side effects and can complement on-

going experimental effects to understand drug metabolism (Javdan et al., 2020). To fully capture,

understand, and predict drug metabolism, it is necessary to evaluate two aspects: (1) the metabolic

fate of small molecules and (2) the absorption and distribution of small molecules to the actual tar-

get cells and enzymes. This study concentrates on the first aspect, whereas the second aspect will

be addressed in future work on NICEdrug.ch.

We suggest the generation of drug metabolic reports to understand the reactivity of new small

molecules, the possibility of drug repurposing, and the druggability of enzymes. Our results and

high predictive accuracy (above 70%) using NICEdrug.ch suggest that this database can be a novel

avenue towards the systematic pre-screening and identification of drugs and antimicrobials. In addi-

tion to human metabolic information, NICEdrug.ch currently includes information for the metabolism

of P. berghei and E. coli. Because we are making it publicly available (https://lcsb-databases.epfl.ch/

pathways/Nicedrug/), our hope is that scientists and decision takers in pharmaceutical industry alike

can make use of this unique database to better inform their research and clinical decisions – saving

time, money, and ultimately lives.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm OpenBabel 2.4.1 doi:10.1186/1758-2946-3-33

Software, algorithm BridgIT doi:10.1073/pnas.1818877116

Software, algorithm ATLAS of
biochemistry

doi:10.1021/acssynbio.6b00054;
doi:10.1021/acssynbio.0c00052

Software, algorithm MORPHEUS https://clue.io/morpheus

Software, algorithm NICEdrug.ch
(curated bioactive
molecules and
analysis of drug
metabolism)

This paper;
http://nicedrug.ch/

See Materials
and methods

Representation of metabolic neighborhood in figures of this manuscript
We represent the metabolic neighborhood of a drug with reactions or steps away (arrows), where

each step away (circle connected to arrow) involves a set of compounds. We extract compounds at

each step that present a high NICEdrug score (value under metabolite name) with the native sub-

strate of a reaction in the human cell. Reactive sites common to neighbor metabolites and native

human metabolites are shaded with colors matching the color of the enzymes (packmen) that are

inhibited. The neighborhood (seven atoms away, as considered in NICEdrug score) of the reactive

sites is circled in the metabolites and native human metabolites with the same color as the reactive

sites and enzymes. Compounds marked with * are confirmed inhibitors and references are provided

in the main text.

Representation of enzymatic inhibition in figures of this manuscript
We represent the enzymes and catalyzed reactions inhibited by NICEdrug candidates. Highlighted

are the reactive site and neighborhood (as considered in the NICEdrug score) in candidate drugs

and metabolites, which are native substrates of the human enzymes. The SARS-CoV-2 proteins inter-

action with the enzyme is presumed to be diminished or abolished upon inhibition of the human

enzyme. Compounds marked with * are confirmed inhibitors and references are provided in the

main text.
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Curation of input molecules used in the construction of NICEdrug.ch
We constructed the NICEdrug.ch database to gather small molecules suitable for treatment of

human diseases. We collected the SMILES structure, synonyms, and any available bio- and physico-

chemical property included from three source databases: KEGG, ChEMBL, and DrugBank, which

added up to 70,976 molecules by January 2018 (Figure 1—figure supplement 1, A). Only molecules

that were fully structured were imported to our database. We further curated the imported mole-

cules by removing duplicate structures and merging annotations from different databases into one

molecule entry in the database. For removing duplicate structures we used canonical SMIELS (Wei-

ninger, 1988) generated by openbabel (O’Boyle et al., 2011) version 2.4.0. This unification method

is based on atoms and their connectivity in a molecule in terms of a molecular graph that is captured

by the canonical SMILES. Therefore, different resonance forms, stereoisomers, as well as dissociated

and charged states of the same compound are mapped to one entry in database. Furthermore, we

filtered all molecules collected from the ChEMBL database based on Lipinski rules in an attempt to

discard chemicals less likely to show drug properties. The Lipinski rules are as follows (Lipinski et al.,

2001): (1) the molecular weight should be less than 500 Dalton, (2) the number of hydrogen bond

donors should be less than five, (3) the number of hydrogen bond acceptors should be less than 10,

and (4) an octanol-water partition coefficient (log P) should be less than five. According to Lipinski

rules, an active oral drug does not violate more than one of the above criteria. We calculated criteria

one, two. and three based on the structural information from SMILES of molecules. To assess crite-

rion four, we relied on reported data in the source database. We kept in the NICEdrug.ch database

all those compounds for which the partition coefficient was not available.

We performed a separate analysis to account for non-unique graph representations of aromatic

rings, also called kekulé structures. The existence of aromatic rings and the fact that bond-electrons

are shared within the ring make several single-double bond assignments possible, which results in

multiple kekulé representations for a single molecule (Figure 1—figure supplement 1, B). We

included all such kekulé structures to account for alternative atom-bond connectivity and associated

reactivity. We call ‘effective forms’ to the kekulé representations that show different reactive sites

than their canonical structures. For example, there can be two effective forms plus the canonical

structure (Figure 1—figure supplement 1, B). In total, we found 42,092 effective forms for 29,994

aromatic compounds in NICEdrug.ch database and we kept them for further analysis.

We also computed the thermodynamic properties of all drugs in NICEdruch.ch. Specifically, we

computed the Gibbs free energy of formation (fG
0� ) using the group contribution method of Mavro-

vouniotis (Jankowski et al., 2008).

The NICEdrug.ch database includes a total number of 48,544 unique and curated small molecules

(Figure 1—figure supplement 1A).

Identification of reactive sites in drugs and drug candidates
The 3D structures of enzyme pockets are complex and mostly unknown. Therefore, evaluating and

comparing docking of two small molecules in the pocket of a specific target is impossible most of

the times. Using BNICE.ch, we focused on the complementary structure of active sites on substrates,

also called reactive site. To recognize the potential reactive sites on molecules, we scanned mole-

cules using expert-curated generalized reaction rules of BNCIE.ch (Hadadi et al., 2016), which

mimic the identification of substrates by the enzyme pocket and account for the promiscuous activity

of enzymes. Theses reaction rules incorporate the information of biochemical reactions and have

third-level Enzyme Commission (EC) identifiers. Each BNICE.ch reaction rule accounts for three levels

of information: (1) atoms in reactive sites of compounds, (2) connectivity and configuration of atom

bonds in the reactive site, and (3) mechanism of bond breakage and formation during the reaction.

As of May 2020, BNICE.ch contains 450 bidirectional generalized reaction rules that can reconstruct

8118 KEGG reactions (Hadadi et al., 2016). Here, we include all BNICE.ch rules to identify all possi-

ble reactive sites on a given molecule in two steps. First, a BNICE.ch rule identifies all atoms in a

compound that belong to the rule’s reactive site. Second, the rule evaluates the connectivity of the

atoms previously identified. The candidate compounds for which a BNICE.ch rule identified a reac-

tive site were validated as metabolically reactive and considered for analysis in NICEdrug.ch.

It is important to note that thanks to the generalized reaction rules, which abstract the knowledge

of thousands of biochemical reactions, BNICE.ch is able to reconstruct known biotransformations
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and also propose novel metabolic reactions. This was demonstrated in the reconstruction of the

ATLAS of Biochemistry (Hadadi et al., 2016), which involves up to 130,000 reactions between known

compounds.

Analysis of drug metabolism in human cells
To mimic biochemistry of human cells and simulate human drug metabolism, we collected all avail-

able information (metabolites and metabolic activities or EC numbers of enzymes) on human metab-

olism from three available databases: the human metabolic models Recon3D (Brunk et al., 2018)

and HMR (Pornputtapong et al., 2015), and the Reactome database (Croft et al., 2011). These

three databases include a total of 2266 unique human metabolites and 2066 unique EC numbers of

enzymes (Supplementary file 1).

To explore the biochemical space beyond the known human metabolic reactions and compounds,

we used (1) the generalized enzymatic reaction rules of BNICE.ch that match up to the third EC level

the collected human enzymes and (2) all of the collected human metabolome. We evaluated the

reactivity of each drug or drug candidate in a human cell using the retro-biosynthesis algorithm of

BNICE.ch, which predicts hypothetical biochemical transformations or metabolic neighborhood

around the drug candidate of study. We generated with BNICE.ch metabolic reactions in which each

drug candidate and all known human metabolites could participate as substrate or products. We

also allowed a set of 53 known cofactors to react with the human metabolites (Supplementary file

1).

We define the boundaries of the metabolic neighborhood of a molecule with a maximum number

of reactions or steps away that separate the input molecule (drug candidate of study) from the fur-

thest compound. In BNICE.ch, a generation n of compounds involves all metabolites that appear for

the first time in the metabolic neighborhood of a drug candidate after n reactions or steps hap-

pened. For example, in the case study of 5-FU, we find the compound 5-fluorouridine in generation

2 or two steps away, which means that there are two metabolic reactions that separate 5-FU and 5-

fluorouridine (Figure 2).

In NICEdrug.ch, there exist 197,246 compounds in generation 1 (one step away) from all input

drug candidates. The 197,246 compounds are part of the potential drug metabolic neighborhood in

human cells. Out of all generation 1 molecules, 13,408 metabolites can be found in human metabolic

models and HMDB database (Wishart et al., 2018), 16,563 metabolites exist in other biological

databases, and the remaining 167,245 metabolites are catalogued as known compounds in chemical

databases (i.e., PubChem). Note that HMDB includes native human metabolites and non-native

human compounds, like food ingredients.

The 197,246 products that are onestep away of all NICEdrug.ch molecules are part of a hypothet-

ical biochemical neighborhood of 630,449 drug metabolic reactions. Of all drug metabolic reactions,

5306 reactions are cataloged in biological databases, and the remaining 625,143 reactions are novel.

A majority of the reactions involved oxidoreductases (42.54%), broken down into 27.45% of lyases,

7.15% of hydrolases, 6.28% of transferases, 1% of isomerases, and 15.58% of ligases. Interestingly,

based on the previously identified reactive sites, of the 265,935 (42.54% of 625,143) oxidoreductase

reactions, 49.92% are catalyzed by the p450 family of enzymes, which are known to be responsible

for the metabolism of drug (Figure 1—figure supplement 2C).

Using NICEdrug.ch database for analysis of the metabolic
neighborhood of a drug candidate
In NICEdrug.ch webserver, users can look up for a drug using the drugs’ name and other identifiers

like ChEMBL, DrugBank, and KEGG. NICEdrug.ch will report a unique identifier for the compound

that will be input for upcoming analysis modules. The reactivity module allows to study the meta-

bolic network around an input molecule. The input to this module is as follows: (1) the unique identi-

fier of the drug of interest and (2) a maximum number of reactions or steps away that shall separate

the input drug to the furthest compound in the metabolic neighborhood.

The output of this analysis is a report in the form of a csv file that includes all compounds and

metabolic reactions in the metabolic neighborhood of the input drug. One can also export the

neighborhood in the form of a visual graph, in which nodes are molecules and edges are reactions.
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Definition of the NICEdrug score
Based on the theory of lock and key, two metabolites that can be catalyzed by the same enzyme

may have similar reactive sites and also neighboring atoms. In order to quantify the similarity inside

and around reactive sites of two molecules, we developed a metric called NICEdrug score (Fig-

ure 1—figure supplement 3), which is inspired on BridgIT (Hadadi et al., 2019). BridgIT assesses

the similarity of two reactions, considering the reactive site of the participating substrates and their

surrounding structure until the seventh atom out of the reactive site.

The NICEdrug score is an average of two similarity evaluations: (1) the atom-bond configuration

inside reactive site (a parameter) and (2) the seven atom-bond chain molecular structure around the

reactive site (b parameter). The NICEdrug score, and its parameters a and b, range between 0 and 1

when they indicate no similarity and identical structure, respectively. Different constraints on the a

and b parameters determine the identification of different types of inhibition like para-metabolites

and anti-metabolites (see other sections in this ‘Materials and methods’).

We show the evaluation of NICEdrug scores for three example compounds (Figure 1—figure

supplement 3). In this example, Digoxin, Labriformidin, and Lanatoside C all share the reactive site

corresponding to EC number 5.3.3.- (a=1). Starting from the atoms of the identified reactive site,

eight description layers of the molecule were formed, where each layer contains a set of connected

atom-bond chains. Layer zero includes types of atoms of reactive site and their count. Layer one

expands one bond away from all of the atoms of reactive site and accounts for atom-bond-atom

connections. This procedure is continued until layer 7, which includes the sequence of eight atoms

connected by seven bonds. Then, we compare the fingerprint of each molecule to the other partici-

pants of the class based on the Tanimoto similarity scores. A Tanimoto score near 0 designates no

or low similarity, whereas a score near one designates high similarity in and around reactive site.

Lanatoside C and Digoxin share the same substructure till eight layers out of reactive site which is

presented in the NICEdrug score by preserving score one in all layers, so the overall Tanimoto score

for these two compounds in the context of EC number 5.3.3.- is 1 (a=1 and b=1). However, the

structure of two compounds are not exactly the same, and actually Lanatoside C has eight more car-

bon atoms and six more oxygen atoms, shaped as an extra benzenehexol ring and an ester group.

Although this part is far from the reactive site, based on the NICEdrug score, they both can perfectly

fit inside the binding pocket of a common protein related to this reactive site. This hypothesis is

proved by experiments reported in KEGG and DrugBank. According to DrugBank and KEGG, Lana-

toside C has actions similar to dioxin and both of them have the same target pathways: cardiac mus-

cle contraction and adrenergic signaling in cardiomyocytes. Furthermore, target protein for both of

them is ATP1A.

Also, the NICEdrug score effectively captures and quantifies differences around the reactive site.

The substructure around the reactive site in Labriformidin is slightly different (a=1 and b <1). The dif-

ference is calculated trough different layers of the NICEdrug score.

In the case study of 5-FU, in order to predict competitive inhibition, we analyzed all the metabo-

lites that share reactive site with 5-FU or its downstream products (a=1) and then we ranked the

most similar metabolites based on their similarity in neighborhood of reactive site to 5-FU or its

downstream products (b). To assess the structural differences in the reactive sites themselves (a), we

implemented the Levenshtein edit distance algorithm (Levenshtein, 1966) to determine how many

deletions, insertions, or substitutions of atom/bonds are required to transform one pattern of reac-

tive site into the other one. Here, the edit distance explains the difference between the reactive sites

of the intermediate and the human metabolite. However, even slight changes in the reactive site

affect its interaction with the binding site. To ensure that the divergence retained the appropriate

topology, we compared the required edit on reactive site with interchangeable groups, termed bioi-

sosteric groups (Papadatos and Brown, 2013). These bioisosteric groups contain similar physical or

chemical properties to the original group and largely maintain the biological activity of the original

molecule. An example of this is the replacement of a hydrogen atom with fluorine, which is a similar

size that does not affect the overall topology of the molecule. For this analysis, we used 12 bioisos-

teric groups adapted from the study by Papadatos and Brown, 2013.

To predict irreversible Inhibitors in metabolism of 5-FU, we kept only molecules with a similarity

score greater than 0.9 to metabolites (b>0.9), to preserve a high similarity in the neighborhood of
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the reactive sites. Then, we checked which ones contained reactive sites that differed only in the

replacement of bioisosteric groups (a~1).

How to interpret the NICEdrug score
The NICEdrug score defines the similarity of two reactive site-centric fingerprints. If two molecules

show a high NICEdrug score, there is a high probability that they will both fit inside the enzymatic

pocket of the same protein. In a previous study, we introduced the reaction reactive site-centric fin-

gerprint to compare all ligands of a reaction simultaneously, also called BridgIT fingerprint

(Hadadi et al., 2019). We compared reactions based on their BridgIT fingerprint and their catalyzing

enzymes based the homology of the protein sequence.

We then compared the similarity between catalyzing enzymes with the similarity of BridgIT finger-

prints for their corresponding reactions. This comparison served to assess how accurately the BridgIT

fingerprint predicts protein sequence similarity and putative catalyzing proteins for a reaction. A

high similarity between protein sequences and BridgIT fringerprints represented a true positive. We

found that with a threshold of 0.3 and 0.5 for the BridgIT fingerprint we reached an accuracy of 0.8

and 0.85, respectively, being the E-value from the BLAST of the protein sequences 10�10 and 10�50

(Hadadi et al., 2019).

This analysis guided the definition of the NICEdrug score based on the reactive site-centric finger-

print. In this manuscript, we defined the threshold of 0.3 for the NICEdrug score to assign similarity

in reactivity between two molecules and of 0.5 to identify enzyme targets for a small molecule.

Moreover, the threshold on the NICEdrug score is consistent with the results of large-scale

druggability analysis (‘Materials and methods’, evaluation of the NICEdrug.ch druggability report),

where we identified an optimal similarity threshold of 0.46 with values of accuracy, precision, recall,

and F1 of 0.84, 0.88, 0.89, and 0.89, respectively.

Classification of drugs based on the NICEdrug score
Classification of compounds with similar structure is normally used to assign unknown properties to

new compounds. For instance, one can infer ligand-protein binding for a drug when its action mech-

anism or the structure of the target proteins are not known. In this study, we have demonstrated

four strategies to classify drugs (Figure 1), which are from less to more stringent: classifying (1) mol-

ecules that participate in reactions with the same EC up to the third level, (2) molecules that in addi-

tion share a BNICE.ch reaction rule, (3) molecules that in addition to both previous points share

reactive site, and (4) molecules that show high similarity of reactive site and neighborhood based on

the NICEdrug score.

The EC number guarantees that molecules are catalyzed with similar overall reaction mechanism.

Generalized reaction rules from BNICE.ch further capture different submechanisms inside an EC

number (Hadadi et al., 2016). A BNICE.ch reaction rule might involve more than one reactive site.

Hence, information of reactive sites provide further insights into the molecule’s reactivity. Further-

more, similarity of reactive sites and their neighborhoods based on the NICEdrug score increase the

comparison resolution and this is the basis of the classification in NICEdrug.ch.

In NICEdrug.ch database, there exist 95,342 classes that comprise all drugs and human com-

pounds sharing EC, BNICE.ch rule, and reactive site (classification based on our strategy 3). We com-

puted the NICEdrug score between all pairs of molecules in a class and this information is available

in NICEdrug.ch.

Identification of drugs acting as para-metabolites based on NICEdrug
score
Small molecules that share reactive site and are structurally similar to native human metabolites

enter and bind the pocket of native enzymes and competitively inhibiting catalysis acting as para-

metabolites (Ariens, 2012). In this study, we define para-metabolite as any drug or any of its meta-

bolic neighbors that (1) shares reactive site with native metabolites (a=1) and (2) preserves a high

NICEdrug score with respect to the reactive site neighborhood (b>0.9).
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Identification of drugs acting as anti-metabolites based on NICEdrug
score
Small molecules that do not share reactive site but are structurally similar to native human metabo-

lites might enter the binding pocket of native enzymes and inhibiting catalysis acting as anti-metabo-

lites (Ariens, 2012). In this study, we define anti-metabolite as any drug or any of its metabolic

neighbors that (1) differs slightly in reactive site from a native metabolite (a~1) and (2) preserves

high similarity in the reactive site neighborhood (b>0.9). We hypothesize that a low divergence in

the reactive site, still allows a non-native compound to enter and bind the enzyme pocket since it is

structurally similar enough to the native substrate.

Identification of NICEdrug toxic alerts
We obtained all NICEdrug toxic alters from ToxAlert database (Sushko et al., 2012). ToxAlert data-

base includes about 1200 structural toxic alerts associated with particular types of toxicity. Toxic

alerts are provided in the form of SMART patterns that are searchable in SMILES structure of mole-

cules. NICEdrug.ch uses openbable tool (O’Boyle et al., 2011) to search for these structural alerts

on SMILES of compounds.

Collection of reference toxic molecules in NICEdrug.ch
Studying the adverse effects of chemicals on biological systems has led to development of data-

bases cataloging toxic molecules. The Liver Toxicity Knowledge Base (LTKB) integrates 1036 mole-

cules annotated with human Drug-induced liver injury risk (severity). Super toxic DB include about 60

k toxic molecules, which are annotated with their toxicity estimate, LC50/LD50 i.e., lethal dose or con-

centration at which 50% of a population dies.

As a resource of approved toxic molecules, we collected all of the molecules cataloged as toxic in

LTKB and super toxic databases. We used this collection as a reference to compare the similarity of

drugs or/and products of drug metabolism with approved toxic molecules.

Definition of a toxicity score in NICEdrug.ch
The number of molecules labeled as toxic in databases is disproportionally low compared to the

space of compounds. On the other hand, toxic alerts are defined for a big number of compounds

and are linked to redundant molecular structures.

We measured the similarity of drugs and their metabolic neighbors with the collection of refer-

ence toxic molecules using the NICEdrug score. We assigned toxic alerts to molecules in NICEdrug.

ch if a molecule and toxic molecule shared a molecular substructure linked to the toxic alert.

Finally, NICEdrug.ch provides a toxicity report in the form of a csv file for each molecule in the

metabolic neighborhood including six values linked to the most similar toxic molecules in both toxic

reference databases (LTKB and supertoxic databases): (1) the NICEdrug score between the drug and

those most similar toxic molecules, (2) the severity degree of the hepatotoxic compound, and log

(LC50) of the supertoxic compound, and (3) the number of common toxic alerts between the drug

and the most similar toxic molecules. The list of toxic alerts is also provided.

We combined the six values of the toxicity report into a toxicity score defined as follows:

i

X
NICEdrug score �ðlogðLC50Þor severity degreeÞ

�number of common NICEdrug toxic alerts

i2 fthe most similar approved toxic molecules in LTKB and supertoxic databasesg

The toxicity score in NICEdrug.ch served to quantify the toxicity of each molecule in the meta-

bolic neighborhood of a drug, recapitulate known toxic molecules, and suggest new toxic com-

pounds (Figure 4).

Analysis of essential enzymes and linked metabolites in Plasmodium
and human cells
We extracted information of essential genes and enzymes for liver-stage malaria development from

our recent study (Stanway et al., 2019). In this study, we developed the genome-scale metabolic
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model of Plasmodium berghei, which shows high consistency (approximately 80%) with the largest

gene knockout datasets in Plasmodium blood (Bushell et al., 2017) and liver stages (Stanway et al.,

2019). There are 178 essential genes for P. berghei’s growth simulating liver-stage conditions

(Stanway et al., 2019). Here, we identified the substrates of those essential metabolic enzymes,

which comprise a set of 328 metabolites (Supplementary file 5). To further minimize on the host

cell, we filtered out those Plasmodium enzymes that share fourth-level EC with human essential

enzymes. We used available CRISPR gene essentiality data in various human cell lines (Wang et al.,

2015) to identify essential genes and enzymes in human cells (Supplementary file 5). We further

identified essential metabolites in human cells (Supplementary file 5) using the latest human

genome-scale metabolic model (Robinson et al., 2020) and the metabolic information associated to

the essential human genes. Subtracting essential parasite and human enzymes resulted in the analy-

sis of 32 essential Plasmodium enzymes catalyzing 68 metabolites and 157 unique metabolite-

enzyme pairs in the parasite (Supplementary file 6).

Identification of drugs to target malaria and minimize side effects on
human cells
Those molecules that themselves and their downstream products cannot act as inhibitors of essential

metabolic enzymes in the human host cell, while they can target essential Plasmodium enzymes are

attractive antimalarial candidates.

We first used NICEdrug.ch to look for small molecules that share reactive site with the 32 essen-

tial Plasmodium enzymes and they have good similarity score in reactive site neighborhood to native

substrates of essential enzymes of parasite, i.e. NICEdrug score above 0.5 (Supplementary file 6).

We also identified prodrugs that might lead to downstream products with similar reactive site and

neighborhood (NICEdrug above 0.5) to any of the essential Plasmodium metabolites

(Supplementary file 6). We suggest those drugs and downstream products act as anti-metabolites

and competitively inhibit the essential enzymes in the parasite. Overall, we identified 516 drugs that

directly compete with essential metabolites and 1164 prodrugs that need to be biochemically modi-

fied between one to three times in human cell to render inhibition of essential enzymes.

We next combined information of essential Plasmodium and human metabolites to screen further

the drug search using NICEdrug.ch. Of the hypothetical 516 antimalarial candidates, we identified

64 drugs that share reactive site with parasite metabolites (NICEdrug score above 0.5) and not with

human metabolites (NICEdrug score below 0.5), making them good candidates for drug design

(Supplementary file 6).

Prediction of inhibitors among food-based molecules
We used the reactive site-centric fingerprint available in NICEdrug.ch to identify molecules in food

that share reactive site with native substrates of human enzymes and hence might inhibit those

enzymes. We retrieved the total set of 80,000 compounds from FooDB (Scalbert et al., 2011) and

treated them as input molecules into the NICEdrug pipeline (Figure 1) to identify reactive sites and

evaluate their biochemistry, as done for all molecules in NICEdrug.ch.

Identification of small molecules to target COVID-19
A recent study reported 332 host factors of SARS-CoV-2 (Gordon et al., 2020). Of the 332 proteins,

97 have catalytic function and EC number assigned, and are potential targets of small molecules.

We evaluated the druggability of these 97 enzymes using NICEdrug.ch.

To generate a druggability report, NICEdrug.ch first gathers the metabolic reactions associated

with the protein EC numbers. NICEdrug.ch uses 11 databases (including HMR, MetaCyc, KEGG,

MetaNetX, Reactome, Rhea, Model SEED, BKMS, BiGG models, and Brenda) as source of metabolic

reactions. All these databases involve a total of 60 k unique metabolic reactions.

Of the 97 host factor enzymes, we identified 22 enzymes that are linked to fully defined metabolic

reactions. Fully defined metabolic reactions fulfill three criteria. (1) There is a secondary structure

available for all the reaction participants, which means there are available mol files. (2) There is a fully

defined molecular structure for all the reaction participants, which means molecules with unspecified

R chains are discarded. (3) There is a BNICE.ch enzymatic reaction rule assigned to the reaction

(Supplementary file 7).
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NICEdrug.ch identified 22 host factor enzymes with 24 unique linked EC numbers and 145 unique

fully defined reactions. NICEdrug.ch extracts the metabolites participating in these reactions and

identifies their reactive site for a reactive-site centric similarity evaluation against a list of molecules.

To this end, NICEdrug.ch reports the list of molecules ranked based on the NICEdrug score. The

molecule with the highest NICEdrug score shares the highest reactive site-centric similarity with the

native substrate of the target enzyme (Supplementary file 7).

We found 1301 molecules that show NICEdrug score above 0.5 with respect to substrates of the

22 SARS-CoV-2 hijacked enzymes (Supplementary file 7). Of 1301 molecules, 465 are drugs cata-

loged in DrugBank, KEGG drugs, or ChEMBL databases; 712 are active molecules one step away of

1419 prodrugs; and 402 are food molecules (Supplementary file 7).

To better understand the classes of drugs or food molecules, we classified drugs based on their

KEGG drug groups (Dgroups) and food molecules based on their food source. Of 465 drugs identi-

fied, 43 drugs are assigned to 55 different Dgroups and 402 food molecules belong to 74 different

food sources (Supplementary file 7).

Comparison of NICEdrug.ch predictions and biochemical assays
PubChem’s BioAssay (Wang et al., 2012) is an open-access database that stores the results of high-

throughput screening of diverse set of compounds against different target proteins from the litera-

ture (Wang et al., 2012). For example, it describes the effect of a drug to target or inhibit one

enzyme by defining a drug–enzyme pair as active or inactive. This collection of data provides an

opportunity to investigate the predictive power of NICEdrug.ch.

For each drug in NICEdrug.ch, we collected all evidences about its activity in PubChem’s BioAs-

say database. In a preprocessing step, we removed interactions with non-enzymatic targets (lacking

an annotated EC number), multifunctional enzymes (a target enzyme with more than one EC num-

ber), and translocase enzymes (new EC class 7, which is out of the scope of NICEdrug.ch).

The final set of molecules and enzymes in NICEdrug.ch for which there is bioassay data available

is 2570 small molecules and 198 enzymes. These drugs and enzymes result in over 90 k drug–enzyme

pairs, along with their bioassay results (active or inactive). Next, we evaluated the druggability of the

198 enzymes with the 2570 drugs using NICEdrug.ch. We assumed an enzyme is druggable when

the NICEdrug.ch score between the drug and the enzyme’s native substrate is above 0.3. The NICE-

drug.ch ID of the drug and the third-level EC number of the enzyme are the input parameters for

this test, which can be reproduced in the NICEdrug.ch server using the druggability report. The

third-level of the EC number (instead of the full four digits or fourth-level EC) are commonly used as

a description of the biochemistry of an enzyme irrespective to the specific substrates

(Almonacid et al., 2010; George et al., 2004; Gherardini et al., 2007; Hegyi and Gerstein, 1999;

Todd et al., 2001). Therefore, two enzymes with the same third level of EC number are expected to

catalyze similar biotransformations. In this test, a hit is defined true positive if the predicted drug–

enzyme (result of the druggability report of NICEdrug.ch) is described as active in the PubChem bio-

assay result.

The analysis of 2570 small molecules and 198 enzymes with NICEdrug.ch shows the predictions

and bioassay results are correlated with an accuracy of 0.73, specificity 0.84, and precision 0.24

(Supplementary file 2). Interestingly, a closer inspection shows that the result for 1269 drugs match

with 100% accuracy the NICEdrug.ch predictions (true positive hits = 237, true negative hits =

22,764). For the remaining set of 1301 drugs, NICEdrug.ch predictions correlate with the bioassays

with an accuracy of 0.65. We hypothesize that the reduced correlation of this set is due to the fact

that these molecules do not act as competitive inhibitors. For example, dopamin affects the activity

of the enzyme adenylate cyclase through signaling (Bibb, 2005).

To have a better understanding of the potential mismatches in the NICEdrug.ch-bioassay com-

parisons, we investigated the prediction performance over five benchmarked drugs: Tolcapone,

Pravastatin, Oxfenicine, Dopamine, and Acarbose. The set of selected drugs cover diverse structural

complexity, ranging from small (such as dopamine) to more complex molecules (such as acarbose)

with different functionalities. We observed that false predictions in this set are related to (1) not fully

characterized enzymes, e.g. multistep or orphan reactions; (2) large diversity in the third level of the

EC number of these enzymes; (3) non-metabolic effect, e.g., signaling effect, of these drugs; and (4)

contrary bioassay results (Supplementary file 2).
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Qualitative comparison of NICEdrug.ch with other metabolic prediction
tools
We aimed to compare NICEdrug.ch and other available tools that predict drug metabolism

(Supplementary file 2). These tools use rule-based or machine learning algorithms to (1) identify the

reactive site, also known as site of metabolism, on the small molecule, and/or (2) predict the meta-

bolic products of a small molecule through the generation of a reaction (Djoumbou-Feunang et al.,

2019).

Computational tools, such as ADME WORKS Predictor (from https://www.fujitsu.com/jp/group/

kyushu/en/solutions/industry/lifescience/admeworks/predictor/), ADMET Predictor (Metabolism

module from https://www.simulations-plus.com/software/admetpredictor/), admetSAR

(Cheng et al., 2012a), PreADMET (from https://preadmet.bmdrc.kr/), SMARTCyp (Rydberg et al.,

2010), SOMP (way2Drug) (Rudik et al., 2015), MetaSite (Cruciani et al., 2005), RS-WebPredictor

(Zaretzki et al., 2013), and IDSite (Li et al., 2011), are specific to phase I of metabolism and the bio-

chemistry of CYP450 enzymes.

Other tools like Meteor Nexus (Marchant et al., 2008), SyGMa (Ridder and Wagener, 2008),

BioTransformer (Djoumbou-Feunang et al., 2019), Meta-PC (Klopman et al., 1997), TIMES

(Mekenyan et al., 2004), and MetaPath (Handorf and Ebenhöh, 2007) are more general and cover

both phase I and phase II of metabolism. Among the tools covering phase II of metabolism, Meteor

Nexus, Meta-PC, and TIMES are only commercially available. Moreover, these tools are mostly

focused on mammalian metabolism (e.g. Meteor Nexus).

All available tools present various limitations. In particular, these methods (1) evaluate a small and

specific class of metabolic reactions; (2) account only for phase I or phase II of metabolism; and (3)

consider uniquely one reaction step to identify reactive sites or metabolic products. In addition, (4)

often the mechanism of reaction is not precisely described; and (5) reactions are not enzymatically

characterized. Moreover, (6) most of the tools are not freely distributed.

These limitations call for a broader set of computational tools that allow to study and predict the

metabolic fate, competitive inhibition, and side effects of small molecules in the context of cellular

metabolism like human cells, microbes, parasites, etc.

The NICEdrug.ch resource capitalizes on the predictive power of the BNICE.ch

(Hatzimanikatis et al., 2005; Soh and Hatzimanikatis, 2010) and BridgIT (Hadadi et al., 2019)

tools, which identify reactive sites, predict catalysis, and annotate reactions with candidate enzymes.

NICEdrug.ch applies these tools in the context of drug metabolism and comprises both phases I and

II of such metabolism. NICEdrug.ch extends BridgIT by including reactive site-centric comparisons

between molecules, which underlie the principles of competitive inhibition. Additionally, NICEdrug.

ch allows to evaluate the toxicity of a drug or its metabolic products by identifying molecular struc-

tures linked to toxicity. NICEdrug.ch is available as an open-access resource. The outputs of NICE-

drug.ch provide comprehensive visualized reports on the reactivity of any organic molecule

(including its metabolic fate or degradation and metabolic precursors or prodrugs), the repurposing

of drugs, and the assessment of the druggability of enzymes.

Supplementary file 2 provides an overview of the principles, scope, availability, application, and

annotation capabilities of the tools to predict drug metabolism. This comparative analysis demon-

strates the ability of NICErug.ch to address the shortcomings of other tools, for example, by improv-

ing performance, expanding scope, and allowing accessibility.

Quantitative comparison of drug–metabolite prediction
Published frameworks that are comparable to NICEdrug.ch’s reactivity report include GLORY

(de Bruyn Kops et al., 2021; de Bruyn Kops et al., 2019), BioTransformer (Djoumbou-

Feunang et al., 2019), XenoNet (Flynn et al., 2020), SyGMa (Ridder and Wagener, 2008), and

other machine-learning based approaches (Coley et al., 2017). All of these methods receive a mole-

cule as an input and predict a set of metabolites as putative products of a metabolic reaction or

pathway. Unlike NICEdrug.ch however, they do not describe the reaction mechanisms and metabolic

pathways used for each prediction.

Here, we compare the metabolites produced from a given input molecule by the different plat-

forms and compare the output to the molecules produced by the NICEdrug.ch reactivity report for

the same compound. We used a curated test set of 29 substrates and their experimentally identified
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55 products (labeled in public databases). This set was used in the publication of XenoNet (pub-

lished in 2020), and we compare it against GLORY, BioTransformer, and SyGMa. NICEdrug.ch pro-

duced a reactivity report for each of the 29 parent molecules in the list. We then measured the

quality of the predictions using a sensitivity measure, as it has been proposed in the other studies

(Flynn et al., 2020). Sensitivity is defined as the proportion of true positives among all experimen-

tally observed metabolites. A metabolite is counted to be a true positive when it is both predicted

and experimentally observed as a metabolic product of the input molecule. The sensitivity values on

the same test set for NICEdrug, XenoNet, GLORY, SyGMa, and BioTransformer are 0.96, 0.89, 0.83,

0.74, and 0.72, respectively. Therefore, NICEdrug outperformed the mentioned tools by predicting

a higher number of true metabolites, that is 53 of 55 metabolites (96%). The two remaining metabo-

lites that NICEdrug.ch did not predict are as follows:

1. Venetoclax N-oxide, N-oxidized form of venetoclax (an apoptosis regulator).
2. SCHEMBL18637099, reported as O-dealkylation metabolite of crizotinib (an inhibitor of recep-

tor tyrosine kinase).

The conversion of venetoclax to venetoclax N-oxide requires the biotransformation of an aniline

to a nitrobenzene ring. To the best of our knowledge, there is currently no known metabolic reaction

in public databases explaining this conversion. In this case, the lack of mechanistic knowledge hin-

ders the formulation of enzymatic reaction rules and consequently the prediction of this specific

reaction by NICEdrug.ch. In fact, NICEdrug.ch (based on BNICE.ch) intentionally formulates reaction

rules only based on known reactions; thus, our enzymatic reaction rules are 100% biologically

interpretable.

SCHEMBL18637099 is the product of the O-dealkylation of crizotinib, which consists of a two-

step reaction mechanism. The first step is catalyzed by CYP type of enzymes, catalyzing the hydrox-

ylation on a carbon attached to an oxygen, followed by a second spontaneous step, cleaving a C–O

bond and producing the final product (SCHEMBL18637099) (Silverman, 2004). It is worth mention-

ing that using NICEdrug.ch, one can predict the first intermediate of the enzymatic step, but predict-

ing mechanism of non-enzymatic reactions remains out of the scope of NICEdrug.ch.

In addition to the structure of predicted downstream drug metabolites, NICEdrug.ch provides

information about the pathways, where each reaction is annotated with a candidate enzyme from

phase I or II of drug metabolism. Thirty-nine of the 55 reference metabolites are directly produced

from the parent drug in a single reaction step. From the remaining metabolites, (1) eight are pre-

dicted in two reaction steps, (2) two in three reaction steps, and (3) the last four metabolites are pre-

dicted to be produced using four reaction steps (Supplementary file 2).

Among the previously mentioned tools, only Biotransformer postulates hypotheses on reactions

from drug metabolism. Here, we discuss in detail the performance of Biotransformer and NICEdrug

to predict the metabolism of 5-FU compound. 5-FU is an anticancer drug and application of NICE-

drug.ch on predicting its downstream toxic metabolites and ways to alleviate its toxicity is discussed

in detail in the paper. According to the KEGG database, 5-FU participates in seven metabolic reac-

tions catalyzed by five enzymes present in human cells. One of the metabolic reactions is catalyzed

by CYP type of enzymes (EC 1.14.14.1), five other reactions are oxidoreductases and transferases,

and the mechanism of the last reaction (explaining the conversion of Carmofur and 5-FU) is not yet

characterized, i.e., this reaction remains orphan and incomplete.

Using the online version of Biotransformer, one can find only a novel biotransformation suggested

to be catalyzed by a CYP enzyme. NICEdrug.ch takes advantage of a broad coverage of BNICE.ch

reaction rules. With such rules, NICEdrug.ch is able to characterize known metabolic reactions and

reconstruct all known and non-orphan metabolic reactions involved in metabolism of 5-FU (1CYP

and five oxidoreductases and transferases). Moreover, NICEdrug.ch predicts 92 novel metabolic

reactions explaining alternative conversion scenarios of 5-FU in a human cell. Specially, one of the

novel predicted reactions involves the conversion between Carmofur and 5-FU in which water and

hexylcarbamic acid act as cofactor and co-substrate, respectively. To further explore the metabolic

vicinity of 5-FU, we predicted two metabolic conversions (steps) away from 5-FU. Biotransformer

suggests there are uniquely two novel metabolic reactions (EC 2.4.1.17 and 3.5.2.2) up to two steps

away from 5-FU. While NICEdrug.ch identifies a total of 754 reactions in the two-step away meta-

bolic neighborhood of 5-FU. Of the 754 reactions predicted by NICEdrug.ch, 25 reactions are

approved in biochemical databases (Kanehisa et al., 2017), which suggests NICEdrug.ch is a better
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predictor of drug metabolism than Biotransformer. This is because NICEdrug.ch predicts the metab-

olism of small molecules using catalysis rules derived from known metabolic reactions. These rules

additionally allow to account for enzyme promiscuity.

Finally, we close this section by testing the performance of NICEdrug.ch on the prediction of all

experimentally validated drug–metabolite pairs as discussed in a review paper (Kirchmair et al.,

2015) published in Nature Reviews Drug Discovery as a reference list. We assessed the performance

of NICEdrug.ch to predict precursor drug or prodrug metabolism and identify drug–metabolite

pairs.

The reference list includes 16 drug–metabolite pairs that are (1) prodrugs, (2) drugs with active or

highly active metabolites, and (3) metabolites that have comparable or improved therapeutic prop-

erties and are marketed as drugs. Our comparison of predicted and experimentally tested drug–

metabolite pairs shows that NICEdrug.ch is remarkably able to correctly find approved metabolites

and pathways of metabolism for 15 (of 16) drugs in the reference list (Supplementary file 2). The

only remaining drug that was not processable with NICEdrug.ch platform is cisplatin, an inorganic

platinum-based small molecule and hence out of the scope of NICEdrug.

Quantitative comparison of recognizing cytotoxicity in bioassay data
Accurate computational prediction of drug toxicity is a major challenge in drug discovery. The cyto-

toxicity assays are the best descriptors of in vitro and clinical toxicity (Webel et al., 2020; Yin et al.,

2019). Here, we focused on the collection of cytotoxicity bioassay records from PubChem, which

have often been used to evaluate accuracy of the computational tools for this means

(Svensson et al., 2017; Webel et al., 2020; Yin et al., 2019). This PubChem dataset includes high-

throughput screening results for 1777 drug candidates (test dataset), of which 108 are labeled toxic

and the rest are non-toxic. To examine the performance of NICEdrug.ch, we predict the toxicity of

the 1777 drug candidates. We compute the NICEdrug.ch toxicity score as defined in the manuscript

for each molecule in the test dataset. Afterwards, we compared the performance of NICEdrug.ch

and other computational tools (Svensson et al., 2017; Yin et al., 2019). We use the accuracy as a

metric, which describes the % of toxic and non-toxic predictions that match the experimental results

from the overall set of prediction (Figure 8A).

As one can see, with a threshold of 10% NICEdrug toxicity score, we can correctly identify 76

toxic molecules of 108 approved toxic molecules and identify 1126 non-toxic molecules of 1669

approved non-toxic molecules in the test set. At a threshold of 74%, accuracy reaches a maximum

value of 0.94, and in higher thresholds in consequence of rejecting some true positives, accuracy

slightly decreases to 0.937 (for a threshold value of 1). Other toxicity prediction tools, based on

machine learning (Svensson et al., 2017; Yin et al., 2019), show an accuracy between 0.67 and 0.78

for the same test dataset as reported before (Svensson et al., 2017; Yin et al., 2019). Compared to

these methods, NICEdrug.ch yields a good prediction quality on molecule toxicity identification, as

demonstrated by the high accuracy, high precision, and recall for a threshold of 0.74.

From all molecules that are labeled toxic in the test set, there is uniquely one for which NICE-

drug.ch did not predict toxicity (the NICEdrug.ch toxicity score is zero). This molecule is aphidicolin,

an antibiotic with antiviral and antimitotical properties. Aphidicolin is a tetracyclic diterpenoid that

has a tetradecahydro-8,11a-methanocyclohepta[a]naphthalene skeleton and is defined as a revers-

ible inhibitor of EC 2.7.7.7 (DNA-directed DNA polymerase) (Hastings et al., 2013). To compute the

toxicity score, NICEdrug.ch identifies toxic alerts in the molecules (‘Materials and methods’, defini-

tion of the toxicity score in NICEdrug.ch). This molecule does not include any known toxic alert, and

hence NICEdrug.ch does not predict it as toxic. This is consistent with the result of toxicity predic-

tion tools that are only based on toxic alerts (Sushko et al., 2012).

In addition, we searched for aphidicolin in other PubChem bioassays (AID 847 and 364), and we

found the results of AID 847 and 364 in contrary show aphidicolin is not toxic. This means, in the

specific case of aphidicolin, toxicity analysis remains inconclusive and context dependent.

Finally, we investigated the overall predictive performance of NICEdrug.ch with a receiver operat-

ing characteristic (ROC) curve (Figure 2). The area under the curve (AUC) is 0.75, indicating good

generalized performance on the test dataset.

This analysis shows that NICEdrug.ch is able to alert when a new molecule (or the compounds

downstream from its metabolism) shares toxic molecular structures with a known toxic compound.
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Hence, NICEdrug.ch’s annotation of molecules with structural toxic alerts indicates a compound’s

potential toxic effects.

Quantitative comparison of identifying drug–enzyme interaction
We compared the predictive performance of NICEdrug.ch with the widely used ‘network-based

inference (NBI)’ tool for DTI prediction (Cheng et al., 2012b; Wu et al., 2020). NBI predictions are

based on drug–target bipartite network topology similarity.

To compare NICEdrug.ch’s druggability report with NBI, we gathered a large dataset including

the highest quality drug–protein interactions records from PubChem bioassays (Kim et al., 2021;

Wang et al., 2012). We removed from the collected dataset the contrary bioassay records and all

bioassays with targets having partial EC annotation, which means it does not contain a four-level EC

number-. The final dataset includes 651 bioassay records, reporting inhibition of 78 enzymes by 297

molecules. As a performance assessment criterion, we used the AUC of the ROC curve, which is

commonly used as a metric for assessing computational prediction methods (Mayr et al., 2018).

We observed that NICEdrug.ch significantly outperforms NBI with an AUC of 0.85, compared to

0.61 for NBI (Figure 8C). Compared to the NBI method, NICEdrug.ch only uses the structural infor-

mation of drug molecules and yields a higher predictive performance, which is remarkable, since

other methods that are only based on drug structure have reported lower performance compared to

NBI (Cheng et al., 2012b; Wu et al., 2020). Therefore, this comparison highlights the added value

of similarity evaluation centered around reactive sites, which is the backbone of NICEdrug.ch

comparisons.

We next analyzed the accuracy, precision, recall, and F1 of NICEdrug.ch predictions as a function

of the discrimination threshold (DT), also known as cut off threshold of the NICEdrug score

(Supplementary file 2). The accuracy ranged from 0.28 (for a DT value of 0.02) to 0.84 (for a DT

value of 0.46) (Figure 8B). The classification of predictions was overly conservative for DT values

greater than 0.46 because it was rejecting true positives. In summary, (1) for DTs between 0 and

0.46, by increasing DT the accuracy increases by reducing the number of false positives, after that

(2) for DTs greater than 0.46, the rejection of true positives caused the accuracy to decrease from

0.84 toward 0.72 for a DT value of 1. Based on this analysis, we chose 0.46 as an optimal DT value

A B C

Figure 8. Quantitative comparison of drug toxicity (A) and drug–enzyme pairs (B, C). (A) Evaluation of NICEdrug.ch toxicity predictions on the test

dataset of 1777 drug candidates from PubChem. Y-axis represents the value of a metric, namely accuracy (red), precision (green), recall (blue), and F1

(yellow) based on putative threshold for NICEdrug toxicity score. X-axis represents the predicted NICEdrug.ch toxicity score. (B) Evaluation of overall

performance of NICEdrug.ch and NBI tool in predicting interaction of enzymes and drug pairs in terms of ROC curves and value of AUC. (C) Quality of

enzymes and drug pairs predictions using NICEdrug.ch in terms of statistical measures including: precision, recall, F1, and accuracy.
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for drug–target studies. The values of precision, recall, and F1 corresponding to the optimal DT are

0.88, 0.89, and 0.89 (Supplementary file 2).
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tools to predict drug metabolism. (B) Evaluation of NICEdrug.ch potential to predict the druggability

(through competitive inhibition) of an enzyme by a small molecule based on available biochemical

assays and high-throughput compound screenings results. (C) Detailed comparison of NICEdrug.ch

druggability results for tolcapone (a neuropsychiatric agent), pravastatin (a cardiovascular agent),

oxfenicine (a vasodilator), dopamine (a cardiovascular agent) and acarbose (an antidiabetic agent)

against available biochemical assays. (D) Result of large-scale quantitative comparison of drug-

metabolite, toxicity and drug-enzyme predictions using NICEdrug and other drug discovery tools.

(E) Literature derived examples demonstrating NICEdrug performance in predicting pathways of

drug metabolism.

. Supplementary file 3. Metabolic neighborhood of 5-FU, related to Figures 2–4. (1) List of com-

pounds in the 5-FU metabolic neighborhood including up to four reactions or steps away. (2)

Description of reactions in the 5-FU metabolic neighborhood including up to four reactions or steps

away.

. Supplementary file 4. NICEdrug analysis for all molecules with reactive site of statins in NICEdrug.

ch, related to Figure 5. (A) Matrix of NICEdrug score between each pair of the whole set of 254 mol-

ecules in NICEdrug.ch with reactive site of statins. (B) Description of nine drugs candidates for repur-

posing to replace statins based on NICEdrug.ch. These drugs can act as competitive inhibitors of

HMG-CoA reductase like statins.

. Supplementary file 5. Essential genes or enzymes and linked metabolites in liver-stage Plasmodium

and a human cell, related to Figure 6. (A) List of essential genes and associated reactions in liver-

stage Plasmodium, as obtained from the study (Stanway et al., 2019). (B) List of essential genes

and associated reactions in a human cell, as obtained from the study (Wang et al., 2015). (C) List of

metabolites linked to essential genes in liver-stage Plasmodium. (D) List of metabolites linked to

essential genes in a human cell.

. Supplementary file 6. Description of drugs, prodrugs, metabolites and enzymes analyzed in the

study of malaria, related to Figure 6. (A) NICEdrug druggability analysis of essential genes or

enzymes in liver-stage Plasmodium: all drugs sharing reactive-site centric similarity with the Plasmo-

dium metabolites and comparison with human metabolites. (B) NICEdrug druggability analysis of

essential genes or enzymes in liver-stage Plasmodium: all prodrugs (up to three steps away of 346

drugs) sharing reactive-site centric similarity with the Plasmodium metabolites and comparison with

human metabolites. (C) Description of drugs and prodrugs identified in the malaria analysis with

NICEdrug.ch and validated in the study by Antonova-Koch et al., 2018 along with their similar Plas-

modium metabolite and human metabolite.

. Supplementary file 7. Hijacked human enzymes by SARS-CoV-2, and drugs and food-based com-

pounds that can inhibit them based on the NICEdrug score, related to Figure 7. (A) Hijacked human

proteins by SARS-CoV-2 as identified by Gordon et al., 2020 with an annotated enzymatic function

(EC number), also called here ‘SARS-CoV-2 hijacked enzymes’. (B) NICEdrug druggability report for

SARS-CoV-2 hijacked enzymes including all NICEdrug small molecules. (C) Best candidate drugs

against COVID-19: NICEdrug druggability report for SARS-CoV-2 hijacked enzymes including drugs

with NICEdrug score above 0.5 compared to the native human substrate. (D) Summary of NICEdrug
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best candidate drugs against COVID-19 and their classification according to the drug category in

the KEGG database. (E) NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including

prodrugs (up to three steps away of any NICEdrug small molecule) with NICEdrug score above 0.5

compared to the native human substrate. (F) Best candidate food-based molecules against COVID-

19: NICEdrug druggability report of SARS-CoV-2 hijacked enzymes including food-based molecules

with NICEdrug score above 0.5 compared to the native human substrate. (G) Summary of the NICE-

drug best candidate food-based molecules against COVID-19 and their classification according to

the fooDB source.

. Supplementary file 8. NICEdrug analysis of inhibitory mechanisms of currently used anti SARS-

CoV-2 drugs, related to Figure 7. (A) All drug molecules and (B) prodrugs in NICEdrug.ch sharing

reactive site with the native substrates of the human enzyme HDAC2 and their NICEdrug score with

this substrate. (C) All molecules cataloged in fooDB sharing reactive site with the native substrates

of the human enzyme HDAC2 and their NICEdrug score with this substrate. (D) All drug molecules

and (E) prodrug molecules in NICEdrug.ch sharing reactive site with the native substrates of the

human enzyme ACE2 and their NICEdrug score with this substrate. (F) All molecules cataloged in

fooDB sharing reactive site with the native substrates of the human enzyme ACE2 and their NICE-

drug score with this substrate. (G) All molecules in NICEdrug.ch or cataloged in fooDB sharing reac-

tive site with the native substrates of the human enzyme DNA-directed RNA polymerase and their

NICEdrug score with this substrate.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source data files have been provided for all figures (1 to 8). Furthermore, the NICEdrug.ch workflow

is implemented in an open-access platform (http://nicedrug.ch/), where users can explore metabolic

fate, toxicity, drug repurposing, and enzyme druggability for more than 250k small molecules.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Kim S, Chen J,
Cheng T, Gindulyte
A, He J, He S, Li Q,
Shoemaker BA,
Thiessen PA, Yu B,
Zaslavsky L, Zhang
J, Bolton EE

2021 PubChem bioassay data http://pubchem.ncbi.
nlm.nih.gov

PubChem bioassay
data, pubchem.ncbi.
nlm.nih.gov

Wishart D 2020 FooDB database https://foodb.ca/ FooDB database,
foodb.ca/

Kanehisa M, Goto S 2018 KEGG database https://www.genome.jp/
kegg/

KEGG database,
www.genome.jp/
kegg/

Wishart DS, Knox
C, Guo AC,
Shrivastava S,
Hassanali M,
Stothard P, Chang
Z, Woolsey J

2018 Drugbank database https://www.drugbank.
ca/

Drugbank, version5.1.
6

Gaulton A, Hersey
A, Nowotka M,
Bento AP,
Chambers J,
Mendez D, Mutowo
P, Atkinson F, Bellis
LJ, Cibrián-Uhalte
E, Davies M,
Dedman N,
Karlsson A,
Magariños MP,
Overington JP,

2017 ChEMBL database https://www.ebi.ac.uk/
chembl/

ChEMBL, CHEMBL24
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MK, Prlić A, Sastry A, Danielsdottir AD, Heinken A, Noronha A, Rose PW, Burley SK, Fleming RMT, Nielsen J,
Thiele I, et al. 2018. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature
Biotechnology 36:272–281. DOI: https://doi.org/10.1038/nbt.4072, PMID: 29457794

Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, Metcalf T, Modrzynska K, Schwach F, Martin RE,
Mather MW, McFadden GI, Parts L, Rutledge GG, Vaidya AB, Wengelnik K, Rayner JC, Billker O. 2017.
Functional profiling of a plasmodium genome reveals an abundance of essential genes. Cell 170:260–272.
DOI: https://doi.org/10.1016/j.cell.2017.06.030, PMID: 28708996

Cava C, Bertoli G, Castiglioni I. 2020. In silico discovery of candidate drugs against Covid-19. Viruses 12:404.
DOI: https://doi.org/10.3390/v12040404

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. 2012a. admetSAR: a comprehensive source and
free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling 52:
3099–3105. DOI: https://doi.org/10.1021/ci300367a, PMID: 23092397

Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y. 2012b. Prediction of drug-target
interactions and drug repositioning via network-based inference. PLOS Computational Biology 8:e1002503.
DOI: https://doi.org/10.1371/journal.pcbi.1002503, PMID: 22589709

Coley CW, Barzilay R, Jaakkola TS, Green WH, Jensen KF. 2017. Prediction of organic reaction outcomes using
machine learning. ACS Central Science 3:434–443. DOI: https://doi.org/10.1021/acscentsci.7b00064, PMID: 2
8573205

Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G, Jassal B, Jupe S,
Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, et al.
2011. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research 39:D691–
D697. DOI: https://doi.org/10.1093/nar/gkq1018, PMID: 21067998

Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R. 2005. MetaSite: Understanding
Metabolism in Human Cytochromes from the Perspective of the Chemist. Journal of Medicinal Chemistry 48:
6970–6979. DOI: https://doi.org/10.1021/jm050529c
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Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M,
Kim M, et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:
459–468. DOI: https://doi.org/10.1038/s41586-020-2286-9, PMID: 32353859

Guengerich FP. 2011. Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug
Metabolism and Pharmacokinetics 26:3–14. DOI: https://doi.org/10.2133/dmpk.DMPK-10-RV-062

Hadadi N, Hafner J, Shajkofci A, Zisaki A, Hatzimanikatis V. 2016. ATLAS of biochemistry: a repository of all
possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synthetic Biology
5:1155–1166. DOI: https://doi.org/10.1021/acssynbio.6b00054, PMID: 27404214

Hadadi N, MohammadiPeyhani H, Miskovic L, Seijo M, Hatzimanikatis V. 2019. Enzyme annotation for orphan
and novel reactions using knowledge of substrate reactive sites. PNAS 116:7298–7307. DOI: https://doi.org/
10.1073/pnas.1818877116, PMID: 30910961

Hadadi N, Hatzimanikatis V. 2015. Design of computational retrobiosynthesis tools for the design of de novo
synthetic pathways. Current Opinion in Chemical Biology 28:99–104. DOI: https://doi.org/10.1016/j.cbpa.2015.
06.025, PMID: 26177079

Hafner J, MohammadiPeyhani H, Sveshnikova A, Scheidegger A, Hatzimanikatis V. 2020. Updated ATLAS of
biochemistry with new metabolites and improved enzyme prediction power. ACS Synthetic Biology 9:1479–
1482. DOI: https://doi.org/10.1021/acssynbio.0c00052, PMID: 32421310
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