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Abstract
With the development of quantum optics, photon correlations acquired a prominent role as

a tool to test our understanding of physics, and played a key role in verifying the validity of

quantum mechanics. The spatial and temporal correlations in a light field also reveal informa-

tion about its origin, and allow us to probe the nature of the physical systems interacting with

it. Additionally, with the advent of quantum technologies, they have acquired technological

relevance, as they are expected to play an important role in quantum communication and

quantum information processing.

This thesis develops techniques that combine spontaneous Raman scattering with Time

Correlated Single Photon Counting, and uses them to study the quantum mechanical nature

of high frequency vibrations in crystals and molecules. We demonstrate photon bunching

in the Stokes and anti-Stokes fields scattered from two ultrafast laser pulses, and use their

cross-correlation to measure the 3.9 ps decay time of the optical phonon in diamond. We then

employ this method to measure molecular vibrations in CS2, where we are able to excite the

respective vibrational modes of the two isotopic species present in the sample in a coherent

superposition, and observe quantum beating between the two signals. Stokes scattering,

when combined with a projective measurement, leads to a well defined quantum state. We

demonstrate this by measuring the second order correlation function of the anti-Stokes field

conditional on detecting one or more photons in the Stokes field, which allows us to observe a

phonon mode’s transition form a thermal state into the first excited Fock state, and measure

its decay over the characteristic phonon lifetime. Finally, we use this technique to prepare

a highly entangled photon-phonon state, which violates a Bell-type inequality. We measure

S = 2.360±0.025, violating the CHSH inequality, compatible with the non-locality of the state.

The techniques we developed open the door to the study of a broad range of physical systems,

where spectroscopic information is obtained with the preparation of specific quantum states.

They also hold potential for future technological use, and promote vibrational Raman scatter-

ing to a resource in nonlinear quantum optics – where it used to be considered as a source of

noise instead.

Keywords: Quantum Optics, Raman Spectroscopy, Photon Correlations, Vibrational Dynamics,

Phonons, Molecular Vibrations, Entanglement
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Résumé
Avec le développement de l’optique quantique, la mesure des corrélations entre photons a

acquis un rôle prépondérant en tant qu’outil permettant de tester notre compréhension de la

physique, et joue un rôle clé en ce qui concerne la vérification de la validité de la mécanique

quantique. Les corrélations spatiales et temporelles existant au sein d’un champ lumineux

révèlent également des informations sur l’origine de ce dernier et nous permettent de sonder

la nature des systèmes physiques qui interagissent avec lui. De plus, suite à l’avènement des

technologies quantiques, ces corrélations ont acquis une pertinence technologique, car elles

sont appelées à jouer un rôle important dans la communication quantique et le traitement de

l’information quantique.

Cette thèse développe des techniques qui combinent la diffusion Raman spontanée avec le

comptage de photons uniques corrélés dans le temps, et les utilise pour étudier la nature

quantique des vibrations à haute fréquence dans les cristaux et les molécules. Nous démon-

trons le regroupement de photons dans les champs Stokes et anti-Stokes diffusés par deux

impulsions laser ultrarapides, et utilisons leur corrélation croisée pour mesurer un temps de

déclin de 3,9 ps du phonon optique dans le diamant. Nous utilisons ensuite cette méthode

pour mesurer les vibrations moléculaires dans le CS2, où nous sommes capables d’exciter les

modes vibratoires respectifs des deux espèces isotopiques présentes dans l’échantillon dans

une superposition cohérente, et d’observer le battement quantique entre les deux signaux.

La diffusion Stokes, lorsqu’elle est combinée à une mesure projective du nombre de photon,

conduit à un état quantique pur. Nous le démontrons en mesurant la fonction de corrélation

de second ordre du champ anti-Stokes conditionnée par la détection d’un ou plusieurs pho-

tons dans le champ Stokes, ce qui nous permet d’observer la transition d’un mode phononique

d’un état thermique vers le premier état de Fock excité, et de mesurer son déclin pendant la

durée de vie caractéristique du phonon. Enfin, nous utilisons cette technique pour préparer

un état photon-phonon hautement intriqué, qui viole une inégalité de Bell. Nous mesurons le

paramètre S = 2,360±0,025, violant l’inégalité CHSH, compatible avec la non-localité de l’état.

Les techniques que nous avons développées ouvrent la voie vers l’étude d’un large éventail de

systèmes physiques, où des informations spectroscopiques sont obtenues par la préparation

d’états quantiques spécifiques. Elles présentent également un potentiel pour une utilisation

technologique future, et élèvent la diffusion Raman vibrationnelle au rang de ressource pour

l’optique quantique non linéaire alors qu’elle était auparavant considérée comme une source

de bruit.

Mots-clés : Optique quantique, spectroscopie Raman, corrélations entre photons, dynamique
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vibratoire, phonons, vibrations moléculaires, intrication quantique.

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

1 Prologue 1

2 Photon correlations in quantum optics 5

2.1 Second Order Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Non-Classical Values for the Second Order Correlation Function . . . . . 7

2.2 Examples of Photon States and their Statistics . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Thermal States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Fock States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Two-Mode Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Cross-Correlation Function of a Two-Mode Squeezed State . . . . . . . . 12

2.3.2 Conditional Auto-Correlation Function in a Two-Mode Squeezed State . 13

2.3.3 Independent Auto-Correlation Functions of Two-Mode Squeezed State . 13

2.4 Correlations due to entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Interaction between light and vibration 17

3.1 The Raman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Stokes and anti-Stokes interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Readout through anti-Stokes Scattering . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated

by a Single Phonon 23

4.1 Main Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Collective Vibrational Quantum Coherence in Spontaneous Raman Scattering 33

5.1 Main text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Preparation and decay of a single quantum of vibration at ambient conditions 45

6.1 Main Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



Contents

6.2.2 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.3 Statistics of the heralded intensity correlation . . . . . . . . . . . . . . . . 50

6.3 Experimental Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Setup and measurement procedure . . . . . . . . . . . . . . . . . . . . . . 52

6.3.2 Ambient thermal state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.3 Fock state prepartion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.4 Fock state dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Bell correlations between light and vibration 59

7.1 Main Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.2 Data Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.3 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.4 Modelling of the source and detection devices . . . . . . . . . . . . . . . . 73

7.2.5 Cross-Correlation Measurement . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.6 The Interference Pattern for α= 0 . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.7 Interference Pattern for α=π/4 . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2.8 CHSH Value from the Interference Patterns . . . . . . . . . . . . . . . . . 79

7.2.9 Inferring Phonon Coherence Time from the CHSH Value . . . . . . . . . 79

7.2.10 Estimating experimental parameters . . . . . . . . . . . . . . . . . . . . . 80

7.2.11 Extracting the rate of pure dephasing . . . . . . . . . . . . . . . . . . . . . 81

7.2.12 Evolution of the CHSH parameter under ideal conditions . . . . . . . . . 81

7.2.13 Evaluation of the CHSH value from finite statistics . . . . . . . . . . . . . 84

8 Epilogue 87

8.1 Position-momentum entanglement in Raman scattering . . . . . . . . . . . . . 88

8.2 Photon correlations away from phonon frequencies . . . . . . . . . . . . . . . . 89

8.3 Advances for practical applications . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9 Code for "Two-Color Pump-Probe Measurement of Photonic Quantum Correlations

Mediated by a Single Phonon" 91

9.1 Code for data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Code for "Preparation and decay of a single quantum of vibration at ambient condi-

tions" 95

10.1 Code for data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10.2 Code for data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11 Jones calculus for "Bell Correlations between light and vibration" 107

11.0.1 Jones calculus to model the experiment . . . . . . . . . . . . . . . . . . . . 107

11.0.2 Corner density matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



Contents

11.0.3 Unbalanced initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

11.0.4 Pure initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.0.5 Initial state with a mixed component . . . . . . . . . . . . . . . . . . . . . 110

12 Code for "Bell Correlations between light and vibration" 115

12.1 Code for data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.2 Code for data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13 Numerical model for "Collective Vibrational Quantum Coherence in Spontaneous

Raman Scattering" 129

Bibliography 135

Bibliography 143

Curriculum Vitae 145

ix





1 Prologue

Light has always played a fundamental role in how we understand the world. When leaves

absorbs the red and blue present in sunlight we see their color as green. When light scatters

through the atmosphere we see the sky as blue. When light is absorbed by our skin we feel

the energy being transferred into our bodies as heat. Through our senses we can only directly

perceive the spectrum and intensity of electromagnetic radiation, but light carries with it a lot

more information. It should come as no surprise that the use of light has played a fundamental

role in the development of the physical theories we use to explain the universe around us,

and that those developments have in turned changed our understanding of the nature of light

itself.

It has been known since time immemorial that an object emits light when it is heated, and

yet it wasn’t until the beginning of the last century that we had a good understanding of why.

One of the key pieces of the puzzle that led to the formulation of quantum mechanics was the

shape of the spectrum of light emitted by a black body. The light emitted by an object – which

in an ideal scenario depends only on its temperature – was well described at low frequencies

by the Rayleigh–Jeans law. At high frequencies, however, the theory predicted extremely

high amounts of radiation, a problem which was termed the "Ultraviolet Catastrophe", and

solving this problem required a radical departure from previous ways of thinking. In 1900, Max

Plank proposed an equation that was able to reproduce the observed shape of the black body

radiation, which he was later able to deduce from first principles(1; 2). His model consisted

of having a collection of charged oscillators inside a cavity, and by requiring that the energy

levels of the oscillators be discrete – as opposed to the continuous energy levels that would

result from a typical oscillator like a mass on a spring – he was able to reproduce the observed

spectrum. This insight had a tremendous significance for the development of physics, even

if this fact was not immediately apparent, and earned him the 1918 Nobel Prize in Physics.

Indeed, it was this fundamental change from continuous to discrete energies that kick-started

the development of quantum mechanics when Einstein applied it to light in 1905 (3), and

proposed the existence of the photon.

The information carried by light is not limited to its frequency and intensity. It has been well

1



Chapter 1. Prologue

known since the 1800s that light has some wave-like behavior, and with this knowledge came

the foundation of the field of interferometry. In classical interference experiments two fields

are added at the amplitude level, giving rise to interference when looking at the intensity

of light (which depends on the electric field squared). The intensity interferometer (which

depends on the electric field to the fourth power), was devised by Hanbury Brown and Twiss

(4). Their device, which consisted of two radio-detectors, looked at the correlation between

the intensities they measured as they changed their direction, and used this correlation to de-

termine the angular spread of stellar bodies. They further studied this phenomenon in a series

of table top experiments using a high pressure mercury lamp and a partially reflective mirror

that separated the signal between two photo-detectors (5). The initial results were highly

controversial, and attempts to reproduce them initially failed due to what was later revealed

to be insufficient temporal resolution (6), but progressive experimental improvements made

it clear that the effect was also taking place with visible light. Hanbury Brown and Twiss were

able to demonstrate that, when both detectors were measuring photons emitted at the same

time, they were twice as likely to detect fluctuations together as when they were measuring

photons emitted at different times. These experimental observation lead to the formulation of

a comprehensive theory of quantum optics (7; 8; 9), for which Roy Glauber received half of

the 2005 nobel prize in physics. The experimental work described in this thesis relies heavily

on the measurement of photon correlations, and they will be described in greater detail in

Chapter 2.

So far we have only talked about the properties of light that is being emitted by an object,

but there is also a lot to be learned from what happens to light when it interacts with matter.

Raman spectroscopy is one of the most widely used forms of spectroscopy, and provides

information about the ways in which molecules and crystals vibrate. Named after C.V. Raman,

who was first able to experimentally demonstrate the technique in 1928 (10), the technique

requires shining intense monochromatic light (at the visible or near infra-red wavelengths) on

a sample, and uses the difference in wavelength between the incident and scattered radiation

to determine the characteristic vibrational frequencies of the material.

Charged particles interact with a varying electromagnetic field according to the laws of elec-

trodynamics. This allows the electrons in a material to interact with an incident light field, and

the electrons can in turn interact with the underlying nuclei, providing a mechanism for light

to couple to movements in the underlying molecule or crystal lattice. The quantum nature

of atomic vibrations means that energy can only be exchanged by integer multiples of the

energy of the vibrational quanta ("phonons"). This gives rise to two different types of Raman

scattering: Stokes scattering, where an incident photon creates a quantum of vibration – losing

its energy in the proces – and anti-Stokes scattering, where an incident phonon annihilates a

quantum of vibration – gaining its energy in the process.

It is now quite natural to ask: What happens to the correlations in the optical fields during

Raman Scattering?

2



The question was first theoretically addressed in 1977, when it was found that under certain

conditions Raman scattering from a laser pulse should result in the correlated emission of

Stokes and anti-Stokes scattered photons (11). It was only in the last decade that this question

was explored experimentally, where non-classical correlations were demonstrated using solids

(12) and molecular liquids (13). These experiments provide a snapshot of what occurs when

the creation and annihilation of a phonon can occur within the same laser pulse, but looking

at it’s temporal evolution requires a second laser pulse in order to introduce a pump-probe

measurement scheme. Researchers trying to develop quantum memories implemented such

a scheme, using the polarization of light to distinguish the signals coming from the first and

second laser pulses (14). With this they were able to demonstrate the storage of a photon

inside diamond (15; 16; 17) and hydrogen (18) vibrational memories, as well the possibility to

change their wavelength during the readout process (19; 20).

We now take our previous question a step further and asks: Can we use the correlations in the

Raman-scattered light fields to study and manipulate the state of the underlying vibration?

We answer this question in the affirmative. This thesis explores how Raman scattering can

be combined with Time Correlated Single Photon Counting in order to look at the correla-

tions in the light fields scattered by crystals and molecules at room temperature. It uses the

correlations to obtain knowledge about the quantum state and behavior of the underlying

vibration. Additionally, it shows how to exploit the measurement process in order to control

and manipulate the state into which the vibration is prepared.

We start by presenting a brief introduction to the theory behind photon statistics and photon

correlations in Chapter 2, followed by a brief description of the way light interacts with

vibrations, presented in Chapter 3.

Chapter 4 shows how to extend the methods developed for quantum memories to make them

more widely applicable. The experimental protocols developed for quantum memories, as

discussed above, require the samples to have specific polarization-dependent selection rules

in their Raman cross-section. By using two laser frequencies, we encode information in the

frequency domain instead of polarisation, circumventing this restriction. This gives us the

ability to measure photon-phonon correlations in a much broader range of samples.

When Stokes scattering takes place in a liquid, the interaction gives rise to a phonon existing

in a state of superposition involving all the molecules in the interaction volume. In Ch. 5

we use our newly developed technique to measure carbon disulfide (CS2) in its liquid form,

and provide a striking demonstration of this phenomenon. There are two dominant isotopes

present in our sample, CS32
2 and CS32S34, that have a symmetric stretch mode separated by 8.6

cm−1 (258 GHz). By using laser pulses that – due to the uncertainty relation between time and

energy – do not provide enough spectral information to distinguish them, we are able to create

a phonon that exists in a superpositon shared by the two isotopes. The beating between the

two isotopes oscillating at different frequencies then translates into a beating in the photon

correlation measurement.

3



Chapter 1. Prologue

We follow this by taking a closer look at the photon statistics of the scattered signals in Chapter

6, and use them to obtain information about the underlying vibrational state. We use diamond

for this demonstration, and show that we can take a vibrational mode that exists initially in a

thermal state, and prepare it in the n=1 Fock state, which is intrinsically quantum mechanical.

We continue building towards more complex quantum states in Chapter 7. In this chapter, we

show how to take advantage of the strong correlations present in the Raman-scattered fields

in order to prepare an entangled state. We present a scheme that uses the erasure of temporal

information in order to create a phonon in a temporal superpositon, and use this to produce

and entangled state where the correlations are strong enough to violate a Bell inequality.

We finish by exploring future potential research direction in Chapter 8

4



2 Photon correlations in quantum op-
tics

In this chapter we briefly cover the theoretical foundations of photon correlations, empha-

sizing the tools which are required to understand and model the experiments of Sections 4 -

7.

We start by recalling the solution to the quantum harmonic oscillator (21). For a one-dimensional

oscillator of mass m, and angular frequency ω, the Hamiltonian of the system is

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (2.1)

where x̂ and p̂ are the position and momentum operators, respectively. The Hamiltonian can

be rewritten in terms of the creation and annihilation operators

â =
√

mω

2~

(
x̂ + i

mω
p̂

)
â† =

√
mω

2~

(
x̂ − i

mω
p̂

) (2.2)

The Hamiltonian then becomes

H = ~ω
(

â†â + 1

2

)
(2.3)

with energy levels En = ~ω
(
n + 1

2

)
The second quantization approach uses these operators to quantize the electromagnetic field,

and expresses them in the Fock representation (also known as the number representation)

(22).

The creation and annihilation operators acting on a state written in the Fock basis act as

â†|n〉 =p
n +1|n +1〉

â|n +1〉 =p
n +1|n〉

(2.4)

5



Chapter 2. Photon correlations in quantum optics

From the definitions in Eq. 2.4 it is clear that the photon number operator (or more generally

the bosonic number operator) is obtained by combining the operators as

n̂|n〉 = â†â|n〉 = n|n〉 (2.5)

Throughout this work we will be constantly dealing with experiments that involve multiple

independent bosonic modes, so it is worth explicitly stating that[
âk , â†

l

]
= âk â†

l − â†
l âk = δkl (2.6)

i.e. the creation and annihilation operators do not commute unless they are describing

different modes. Additionally, for the number operator the commutation relationships are

[â, n̂] = â[
â†, n̂

]
=−â†

(2.7)

The non-commutativity of the ladder operators with the photon number operator plays an

important role in the description of coherent states, as will be explained in Sec. 2.2.1.

2.1 Second Order Correlation Function

As mentioned in Ch. 1, the intensity interferometer was first developed by Hanbury Brown and

Twiss in 1954 in order to measure the angular spread of stellar bodies (4), and later adapted

for use in optics (5). It consists of two photodetectors, which in modern experiments are

typically avalanche photodiods or superconducting nanowire single-photon detectors, and an

electronic mean to find the correlation between the signals. The two detectors can be used

to look at different optical fields (measuring the second order cross-correlation function),

or a single field (measuring the second order auto-correlation function), in which case the

detectors are placed at the outputs of a beamsplitter.

The second order correlation function for two optical fields described by â1 and â2 is defined

as

g (2)
a1,a2

(τ) =
〈

â†
1(t )â†

2(t +τ)â2(t +τ)â1(t )
〉

〈
â1(t )†â1(t )

〉〈
â†

2(t +τ)â2(t +τ)
〉 (2.8)

Measurements under realistic detection conditions

One of the properties that makes the second order correlation function so useful as an experi-

mental measure is it’s insensitivity to losses (23). This only holds, however, in the absence of

detection and experimental noise. In order to account for the presence of dark counts, which

are unavoidable when considering a real experiment, we must introduce realistic detection

6



2.1 Second Order Correlation Function

Figure 2.1: Value of the second order correlation function g (2)(0) as a function of the probability
of detecting a noise ’click’. The results shown were obtained for the state |ψ〉 = |1〉, with a
detection efficiency η= 0.1.

operators, as developed in (24)

D̂ = 1− (1−pdc )(1−η)â† â (2.9)

where η is the detection efficiency, and pdc is the dark count rate.

We show the effect of detector imperfections in Fig. 2.1, where we model a measurement of

the n=1 Fock state to illustrate how visibility is reduced as the dark count rate increases, ant it

is effectively lost when pdc becomes comparable with the detection efficiency.

2.1.1 Non-Classical Values for the Second Order Correlation Function

The quantum-mechanical description of the second order coherence allows it to take any

non-negative value. In contrast, some values of g (2)
a1,a2

(τ) are incompatible with a classical

description of light. We go through the three most common criteria for non-classicality in the

following sections.

7



Chapter 2. Photon correlations in quantum optics

Cauchy-Schwarz Inequality

For two vectors~x and~y , the Cauchy-Schwarz inequality states that ‖~x ·~y‖2 ≤ ‖~x‖‖~y‖. When

dealing with a classical field, g (2) is expressed in terms of intensities, and the inequality is

directly applicable. This is not the case when working with operators, and as a consequence

we have the inequality

g (2)
a1,a2

(0) ≤
√

g (2)
a1,a1

(0)g (2)
a2,a2

(0) (2.10)

and a violation indicates non-classical behavior (25).

Sub-Poissonian Statistics

A light field has sub-Poissonian statistics when its variance ∆n2 < 〈n〉. In terms of the second

order correlation function, it simply means that g (2)
a1,a2

(0) < 1.

Photon Anti-Bunching

Photon anti-bunching is defined as g (2)
a1,a2

(0) < g (2)
a1,a2

(τ), which indicates that the photon field

becomes more correlated after a certain time τ. This phenomena does not have a classical or

semi-classical explanation (26). It was first demonstrated by measuring the light emitted by a

single atom excited by resonant fluorescence (27), which provided the first direct evidence for

quantum energy jumps.

2.2 Examples of Photon States and their Statistics

In this section we show different photon states that will be of interest when interpreting the

experimental results shown in this thesis. We summarize the differences in their photon

statistics in Fig. 2.2, which shows the probability of having a certain number of photons for a

state with mean photon number 〈n〉 = 1.

2.2.1 Coherent States

Coherent states are the eigenstates of the annihilation operator â. They are defined as

|α〉 = exp

(
−1

2
|α |2

) ∞∑
n=0

αn

p
n!

|n〉 (2.11)

They are the also the states where the product of their quadratures have minimal uncertainty,

which makes a qualitative link with the definition used in classical optics.

When computing the second order cross correlation function using Eq. 2.8, their position as

eigenstates of â means that we can factor the numerator into
〈

â(t )†â(t )
〉〈

â†(t +τ)â(t +τ)
〉

,

8



2.2 Examples of Photon States and their Statistics

Figure 2.2: Probability distribution of the number of photons for a coherent, thermal, and for
the n=1 Fock state. The three states have an average photon occupancy of 〈n〉 = 1, but have
very different probabilities of observing the vacuum or multi-photon states.

9



Chapter 2. Photon correlations in quantum optics

and will therefore always have

g (2)
α = 1 (2.12)

2.2.2 Thermal States

A thermal state maximizes the entropy of a system at a constant average energy. The probability

of finding a certain number of photons is determined by a Bose-Einstein distribution

Pn = 1

Z
exp

(−βEn
)

(2.13)

where β= 1
kB T (with kB the Boltzmann constant and T the temperature), and

Z = 1

1−exp
(−βEn

) (2.14)

is the partition function.

The density matrix representing the state is then

ρ̂ =
∞∑

n=0
Pn |n〉〈n| (2.15)

and has an average photon number

〈n̂〉 = Tr(n̂ρ̂) = 1

exp
(
β~ω

)−1
(2.16)

We can therefore rewrite the state in terms of the average photon number as

ρ̂ = 1

1+〈n〉
∞∑

m=0

( 〈n〉
1+〈n〉

)m

|m〉〈m| (2.17)

With this definition we can calculate the second order correlation function, and obtain g (2)(0) =
2, which is independent of the temperature of the mode.

2.2.3 Fock States

For a Fock state |n〉, a direct calculation yields

g (2)(0) =
〈

N̂ (N̂ )−1
〉〈

N̂
〉2 = n(n −1)

n2 = 1− 1

n
(2.18)

A measurement of g (2)(0) can therefore be used to discriminate between the presence of one

10



2.3 Two-Mode Squeezed States

and two photons, making it extremely useful when studying a field in an unknown quantum

state, as will be used in Ch. 6. This property is also regularly used in the field of quantum

emitters, where it can be used to guarantee the presence on an individual photon source.

2.3 Two-Mode Squeezed States

The two-mode squeezed state plays a key role in the quantum state preparation of all the

experiments described in this thesis. For that reason, this section goes in detail into the

mathematical description of the generation and properties of this type of state.

Squeezed states are obtained experimentally through the interaction of an optical field with

a non-linear optical medium, such as a beta barium borate (BBO) crystal. This interaction

can be used to reduce the uncertainty of one of the quadratures, which are analogous to the

position and momentum operators we used for a harmonic oscillator, at the cost of increasing

it in the other. This make it a very useful tool in metrology, where a measurement can be done

that only uses the quadrature with reduced uncertainty. Squeezed states can also be used to

generate single photon states, which play a key role in quantum cryptography. Here, we will

focus only on the relation between squeezed states and their photon number.

Squeezed states are most typically generated by Spontaneous Parametric Down Conversion

(SPDC), a three wave interaction where a pump photon is ’split’ into two photons of lower

energy, called ’signal’ and ’idler’, through the interaction with a non-linear crystal. The process

can only create perfectly correlated pairs of photons, as required by energy conservation, and

the properties of the ’signal’ and ’idler’ photons are determined by the conservation of energy

and momentum in the process.

In order to simplify the calculations we consider a strong pump beam, which lets us approx-

imate it’s description by a classical (complex) amplitude α0 instead of treating it quantum

mechanically. The ’signal’ and ’idler’ modes are described by the annihilation operators â1, â2,

and they start in the vacuum state |ψ〉 = |0〉1⊗|0〉2 ≡ |00〉. The interaction takes place according

to the Hamiltonian

HI = i~g0α0

(
â†

1â†
2 − â1â2

)
(2.19)

where g0 is the coupling strength governing the squeezing interaction. In Sec. 3.2, once we

have gone through the basics of Spontaneous Raman Scattering, we will show the link between

the Stokes interaction and the squeezing interaction Hamiltonian.

The evolution of the quantum state is described by the Schrödinger equation, and its unitary

time evolution is

|ψ(t )〉 = exp
(
g0α0t

(
â†

1â†
2 − â1â2

))
|00〉 (2.20)

In order to solve this equation we use the disentangling theorem for the SU(1,1) group in Lie

11



Chapter 2. Photon correlations in quantum optics

algebra in order to obtain (28)

exp
(
g0α0t

(
â†

1â†
2 − â1â2

))
=

exp
(
tanh(θ)â†

1â†
2

)
exp

(
ln(cosh(θ))(â†

1â1 + â†
2â2 −1)

)
exp(tanh(θ)â1â2)

(2.21)

where θ = g0α0t . Before applying Eq. 2.21 we simplify the problem by observing that for

the third exponential only the zeroth order term of the expansion will give a non-zero result.

Further, for the second to last exponential term the number operators will yield zero. We can

now evaluate the expression by expanding the first exponential, leading to

|ψ(t )〉 = 1

cosh(θ)
exp

(
tanh(θ)â†

1â†
2

)
|00〉

= 1

cosh(θ)

∞∑
n=0

tanhn(θ)|n,n〉
(2.22)

We finally make the change p ≡ tanhθ to arrive at the common expression

|ψ(t )〉 =√
1−p

∞∑
n=0

pn |n,n〉 (2.23)

From Eq. 2.23 we can see that the probability of finding a particular state |n,n〉 will be given

by P (n,n) = pn(1−p), and p will be the probability of finding one or more photons.

There are three different cases where the photon statistics will be relevant for this work, and

which we explore in the following subsections. The first case involves the measurement of the

cross-correlation between the two optical fields. The second involves the auto-correlation of

one of the optical fields, conditional on having detected at least one photon in the other. The

third involves the auto-correlation of one of the given fields, measured in isolation.

2.3.1 Cross-Correlation Function of a Two-Mode Squeezed State

We start by considering the second order cross correlation between the two fields of the

two-mode squeezed state. A direct calculation gives

〈
N̂1

〉= 〈
N̂2

〉= (1−p)
∞∑

n=0
npn = p

1−p〈
N̂1N̂2

〉= (1−p)
∞∑

n=0
n2pn = p(p +1)

(1−p)2

g (2)
1,2(0) =

〈
N̂1N̂2

〉〈
N̂1

〉〈
N̂2

〉 = 1+ 1

p

(2.24)

where |p| < 1 is a requirement for the convergence of the series. From Eq. 2.24 we can see

that as p tends to zero g (2)
1,2 tends towards infinity, while a larger p decreases the value of g (2)

1,2.

This result shows that the value of g (2)
1,2 can increase dramatically when measuring a two-mode

12



2.3 Two-Mode Squeezed States

squeezed state prepared with low probability p, which will play a key role in the experiment

shown in Ch. 4. The strength of the correlations also plays a role as a quantum resource, as

will be explained in Ch. 7.

2.3.2 Conditional Auto-Correlation Function in a Two-Mode Squeezed State

We now consider another experimentally relevant scenario by examining the second order auto

correlation function of one of the optical modes, conditional on the detection of one or more

photons in the other mode. In order to do this we first calculate the density matrix ρ̂ = |ψ〉〈ψ|
which corresponds to the state in Eq. 2.23. We then define an operator D̂2(m) = |0〉2〈m|
for m ≥ 1, which operates on the second subsystem, and corresponds to the detection of

m photons before returning it to the vacuum state. We now calculate the density matrix

conditional on this measurement, i.e.

ρ̂cond
1 = D̂2ρ̂D̂†

2

Tr
(
D̂2ρ̂D̂†

2

) = 1−p

p

∞∑
m≥1

pm |m〉〈m| (2.25)

We can then calculate the second order auto correlation function, and find that

g (2)
cond (0) =

〈
N̂ (N̂ −1)

〉〈
N̂

〉2 = 2p (2.26)

From Eq. 2.25 we can see that after a photon is detected in one of the modes, the other mode of

the two-mode squeezed state closely resembles the n=1 Fock state, and that his approximation

improves when preparing the state with a lower probability p. This is also reflected in the

autocorrelation function of the mode, which tend towards zero for p << 1, approaching those

of the n=1 Fock state discussed in Sec. 2.2.3. This result will play a key role in Ch. 6.

2.3.3 Independent Auto-Correlation Functions of Two-Mode Squeezed State

Finally, we look at what happens when the statistics of each photon field are observed in

isolation. We start by taking the density matrix of the two-mode squeezed state and calculate

the trace with respect to the second subsystem,

ρ̂1 = Tr2(ρ̂) =
∞∑

m=0
〈m|2ρ̂|m〉2

= (1−p)
∞∑

n=0
pn |n〉〈n|

(2.27)

We can now calculate the second order correlation function, and find that g (2) = 2, which does

not depend on p. In contrast with Sec. 2.3.2, we see that the correlations in each mode – when

taken independently – exhibit thermal statistics. This shows that there are key properties that

13



Chapter 2. Photon correlations in quantum optics

can only be measured through the correlation between the two fields, and will play a key role

in the experiment shown in Sec. 6.

2.4 Correlations due to entanglement

In this section we consider a different type of photon correlation. So far we have only covered

correlations between the number of photons, either between two light fields or within a single

one. Here we will consider the correlations between two fields, each one containing a single

excitation, and each having a degree of freedom with two states. For this, we include the

polarization of light, where the vertical and horizontal polarization basis is defined as

|H〉 =
[

1

0

]
|V 〉 =

[
0

1

]
(2.28)

where the number of photons is not explicitly included, as it is fixed at one.

In quantum mechanics, a multipartite state is said to be entangled if it cannot be expressed

as a product of its sub-states. To illustrate this, lets consider a quantum state |ψ′〉 that is the

product of two arbitrary photon states, i.e. |ψ′〉 = (a|H〉+b|V 〉)⊗ (c|H〉+d |V 〉) = ac|H H〉+
ad |HV 〉+bc|V H〉+bd |V V 〉, were a,b,c,d ∈ C, and a∗a +b∗b = 1, c∗c +d∗d = 1. From the

previous computation it is clear that no choice of coefficients can produce a state of the form

|φ+〉 = 1p
2

(|H H〉+ |V V 〉). Interestingly, such a state has the property that the measurement

of one of the subsystems will yield the outcomes |H〉 or |V 〉 with 50-50 probability, but the

measurement of both two sub-systems will always be perfectly correlated.

The perfect correlation between measurements performed on the two sub-systems of |φ+〉 still

holds after transforming the state into a different measurement basis. In a circular polarization

basis, defined by

|R〉 = 1p
2

[
1

i

]
|L〉 = 1p

2

[
1

−i

]
(2.29)

the state becomes |φ+〉 = 1p
2

(|RR〉+ |LL〉), which has the exact same properties. Indeed, the

two photons will always be perfectly correlated when measured in the same basis, a property

which is known as rotational invariance.

This leads to an apparent paradox, where the measurement of one of the subsystems ’forces’

the other to collapse into a particular state, but this action does not appear to be bound by the

speed of light. This paradox was described by Einstein, Podolsky, and Rosen in 1935, and used

as an argument against the completeness of the theory of quantum mechanics (29). Bell’s

theorem offered a way to test this paradox experimentally, with the subsequent demonstrations

showing that the predictions made by quantum mechanics are correct (30; 31; 32; 33).

Any state that cannot be decomposed into its sub-systems without loss of information is

14



2.4 Correlations due to entanglement

consider entangled. There are, however, different degrees of antanglement, and states capable

of violating a Bell-type inequality belong to the highest position in that hierarchy(34). It is this

type of state which will be the subject of chapter 7.
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3 Interaction between light and vibra-
tion

In this chapter we give a short summary of the way in which light interacts with an atomic

vibration through the Raman effect. The goal of the chapter is not to provide an exhaustive

description, but only to highlight the aspects required to make the link between an atomic

vibration and the quantum optics formalism used when discussing our experiments. We

are particularly interested in the way that the Raman interaction affects the photon and

phonon numbers, and how this is reflected in a measurement of their second order correlation

function.

3.1 The Raman Effect

When a light field is scattered by matter, the process may be elastic – where the outgoing

radiation has the same energy as the incoming one – or inelastic, where there is a change in

energy in the scattered radiation. Raman scattering, in which a light field exchanges energy

with the vibrational degrees of freedom of a molecule or crystal, is the dominant inelastic

effect at optical frequencies.

Light does not couple directly to the nuclear motion of atoms. Instead, it couples to the electric

dipole of the electrons, which in turn may interact with the lattice vibrations. This provides a

mechanism for light to interact with the vibrational degree of freedom of the material, which

in the quantum picture means that it can create or annihilate discrete units of vibrational

energy, called phonons. The frequency of the pohonons depends on the molecule or crystal

lattice involved, and this technique therefore provides a "fingerprint" of the sample under

study.

Energy conservation requires that during the Stokes interaction – when a quantum of vibration

is created – the photon driving the interaction will lose the energy imparted to the phonon

mode, becoming red-shifted as a result. Conversely, during the anti-Stokes process – when a

quantum of vibration is annihilated – the photon driving the interaction absorbs the energy

from the phonon mode, and becomes blue shifted as a result. Due to the virtual nature of the
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Chapter 3. Interaction between light and vibration

Figure 3.1: Schematic illustration of the Raman effect. (a) An incoming laser (black arrows)
interacts with matter, it has a chance of creating (left) or annihilating (right) a quantum of
vibration. (b) The change in energy during the Raman interaction leads to the emergence of
two sidebands, separated from the incoming laser by the characteristic phonon frequency of
the material. The asymmetry between the two sidebands reflects the low probability of finding
a quantum of vibration at room temperature for the systems studied in this thesis.

interaction, the creation of a scattered photon and creation/annihilation of a phonon are also

correlated in time.

3.2 Stokes and anti-Stokes interaction

To illustrate the relation between the Raman interaction and the squeezing interaction dis-

cussed in Ch. 2, we follow a similar analysis to that outlined in (35). We consider a simple

example where a plane wave, propagating along x and polarized among z, interacts with a

linear chain of atoms arranged along x, and whose displacement is described by u(x, t ).

The polarizability of the chain is defined in terms of its electric susceptibility χ(u(x, t )) as

P (x, t ) = ε0χ(u(x, t ))E(x, t ) = ε0E(x, t )
[
χ0 +χR u(x, t )+O (u(x, t )2)

]
(3.1)

where the first order expansion of the electric susceptibility gives the Raman tensor, and we

neglect the higher order terms. The electric displacement in the crystal is then

D(x, t ) = ε0E(x, t )+P (x, t ) = (1+χ0)ε0E(x, t )+ε0E(x, t )χR u(x, t ) (3.2)
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3.2 Stokes and anti-Stokes interaction

The energy density of the system is

HTot = 1

2
D(x, t )E(x, t )+ 1

2
B(x, t )B(x, t )

= 1

2
(1+χ0)ε0E(x, t )E(x, t )+ 1

2
B(x, t )B(x, t )+ 1

2
χRε0E(x, t )E(x, t )u(x, t )

(3.3)

where we can separate the total Hamiltonian into a free and an interacting component such

that HTot = H f r ee +HI , where

H f r ee =
1

2
(1+χ0)ε0E(x, t )E(x, t )+ 1

2
B(x, t )B(x, t )

HI = 1

2
(χR )ε0E(x, t )E(x, t )u(x, t )

(3.4)

We now separate the electric field into E (x, t ) = EL(x, t )+E ′(x, t ), where EL(x, t ) is the monochro-

matic wave being sent into the system, and E ′(x, t ) represents everything else. The interaction

Hamiltonian now becomes

HI = 1

2
ε0χR E 2

L(x, t )u(x, t )+ε0χR EL(x, t )E ′(x, t )u(x, t )+ 1

2
ε0χR E ′2(x, t )u(x, t ) (3.5)

In Eq. 3.5 the first term on the right hand side corresponds to a shift in the zero point energy

of the vibration, but has no further physical consequences for the interaction. For the com-

ponents of the electric field EL(x, t ) À E ′(x, t ), which means that the second term will play a

much larger role than the third one, so we can further simplify the interaction Hamiltonian to

HI = ε0χR EL(x, t )E ′(x, t )u(x, t ) (3.6)

We now expand the fields in terms of complex exponentials,

EL(x, t ) = EL

2
e i (kL x−ωL t ) + EL

2
e−i (kL x−ωL t ) = E (+)

L +E (−)
L

E ′(x, t ) = ∑
p

√
~ωp

2ε0NE ′

(
âp e i (kp x−ωp t ) + â†

p e−i (kp x−ωp t )
)
= E ′(+) +E ′(−)

u(x, t ) = ∑
q

√
~

2ω0Nu

(
b̂q e i (kq x−ω0t ) + b̂†

q e−i (kq x−ω0t )
)
= u(+) +u(−)

(3.7)

where we have taken EL(x, t ) to be a large classical field, while we describe E ′(x, t ) and u(x, t )

in terms of the bosonic operators â and b̂, respectively, and the terms X (+) contain the terms

rotating with e−iωt , while the terms X (−) rotate with e iωt . The constants NE ′ and Nu are

normalization factors related to the geometry being considered.

When we apply the expansion to the interaction Hamiltonian, we will have terms with E (+)
L E ′(+)

and E (−)
L E ′(−), which will rotate much faster than the rest. These fast oscillating terms will
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Chapter 3. Interaction between light and vibration

average out to zero, so we can neglect them to obtain

HI = ε0χR

(
E (+)

L E ′(−)u(−) +E (−)
L E ′(+)u(+) +E (+)

L E ′(−)u(+) +E (−)
L E ′(+)u(−)

)
(3.8)

The first and second terms on the right hand side oscillate with frequency ωS = ωL −ω0,

corresponding to the Stokes signal, while the third and fourth terms oscillate with frequency

ωA =ωL +ω0, corresponding to the anti-Stokes frequency. We group the terms associated with

each frequency to obtain

HS = ε0χR

(
E (+)

L E ′(−)u(−) +E (−)
L E ′(+)u(+)

)
(3.9)

HA = ε0χR

(
E (+)

L E ′(−)u(+) +E (−)
L E ′(+)u(−)

)
(3.10)

The derived interaction Hamiltonian HS has the same form as Eq. 2.19, which lets us apply

the properties we derived in Sec. 2.3 to the Stokes interaction. The main difference will be

that, when considering SPDC, the two modes in the squeezed state consisted of propagating

optical fields. In contrast, in Stokes scattering one of the bosonic modes refers to a vibrational

excitation in the sample, and is not directly available in measurements.

3.3 Readout through anti-Stokes Scattering

In the previous section we showed that the Stokes scattering behaves as a squeezing interaction

affecting the phonon and Stokes fields. In this section we consider the anti-Stokes interaction

in more detail, and show how the photon statistics of the anti-Stokes field faithfully reproduce

those of the vibrational state.

In order to find the link between the correlations in the anti-Stokes field and those present in

the phonon field, we start by considering the time evolution of the â and b̂ operators in the

Heisenberg representation. In order to simplify the notation, we group the constants present

in Eq. 3.10 into g , and use HA = g âb̂† +h.c. , and find the Heisenberg equations of motion

∂â

∂t
= g∗

i~
b̂

∂b̂

∂t
= g

i~
â (3.11)

∂2â

∂t 2 = −g∗g

~2 â
∂2b̂

∂t 2 = −g∗g

~2 b̂ (3.12)

Eq. 3.12 describes a system of second-order linear differential equations, which can be solved

to obtain

â(t ) = â0 cos(g t )+ b̂0 sin(g t )

b̂(t ) = b̂0 cos(g t )+ â0 sin(g t )
(3.13)

where â0(0) and b̂0(0). We can now use the temporal evolution given by Eq. 3.13 to calculate
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3.3 Readout through anti-Stokes Scattering

the expectation values that are necessary for the second order correlation function of the anti-

Stokes field. We assume that the anti-Stokes field starts in the vacuum state, which will make

all the terms of the form x̂ â0|ψ〉 = 0. Additionally, we recall that in the Fock basis 〈i || j 〉 = δi , j ,

so all the terms that contain an unbalanced number of creation and annihilation operators

will also become zero. Using this we find〈
â†(t )â(t )

〉
= sin2(g t )

〈
b̂†

0b̂0

〉
〈

â†(t )â†(t )â(t )â(t )
〉
= sin4(g t )

〈
b̂†

0b̂†
0b̂0b̂0

〉 (3.14)

We combine these equations to obtain the second order correlation function

g (2)
a(t ) =

〈
â†(t )â†(t )â(t )â(t )

〉〈
â†(t )â(t )

〉2 =
〈

b̂†
0b̂†

0b̂0b̂0

〉
〈

b̂†
0b̂0

〉2 = g (2)
b0

(3.15)

This shows that, by measuring the second order correlation function of the anti-Stokes field,

we are able to probe the correlations that exist in the phonon field.

Having shown that the measurement of the anti-Stokes field is also a measurement of the

phonon field, we have all the tools we need in order to address the experiments shown in the

following chapters.
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4 Two-Color Pump-Probe Measurement
of Photonic Quantum Correlations
Mediated by a Single Phonon
Raman scattering can be used to modify and read the state of a mechanical vibration. The

detection of a Stokes photon, scattered by a first laser pulse, heralds the successful preparation

of the state, while the detection of an anti-Stokes photon, scattered from a second pulse,

provides information about the vibration’s temporal evolution. The first experiments in

diamond relied on polarization in order to distinguish between the signals generated by the

two laser pulses, but this greatly limits the types of samples that can be studied (14; 15).

In this chapter, we demonstrate a new experimental methodology to measure the temporal

dynamics of a phonon mode without relying on the material’s polarization selection rules.

We use two laser pulses of different wavelength, and use the frequency information in order

distinguish the signals. We measure non-classical correlations between the Stokes and anti-

Stokes fields scattered by diamond, and use them to measure a phonon lifetime of 3.9±0.7 ps.

The purpose of this experiment is to prove the validity of the methodology, which will be the

starting point for the rest of the experiments in this thesis.

I built the experiment and performed the experiments together with Dr. Mitchell Anderson,

and analyzed the data. The manuscript was prepared in collaboration with all the authors.

The content of this chapter is reproduced from:

Anderson, Mitchell D.∗, Santiago Tarrago Velez∗, Kilian Seibold, Hugo Flayac,

Vincenzo Savona, Nicolas Sangouard, and Christophe Galland. "Two-color pump-

probe measurement of photonic quantum correlations mediated by a single

phonon." Physical review letters 120, no. 23 (2018): 233601.

∗Equal contribution authorship

Further information about the code used to perform the data analysis can be found in Ap-

pendix 9
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Chapter 4. Two-Color Pump-Probe Measurement of Photonic Quantum Correlations
Mediated by a Single Phonon
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Figure 4.1: (a) Concept of the experiment: The first (write) laser pulse probabilistically
prepares the phonon in state |n = 1〉 upon detection of a Stokes photon. The second (read)
pulse, after a time delay ∆t , converts this phonon into an anti-Stokes photon. (b) Schematics
of the photon counting in the frequency domain (SPAD: single-photon avalanche photodiode).
The choice of ω1 and ω2 is completely free, as long as the Stokes and anti-Stokes photons can
be efficiently isolated by spectral filtering.

4.1 Main Text

Phonons, the quantized excitations of internal vibrational modes in crystals and molecules,

span a broad frequency range up to ∼ 100 THz. At these high frequencies, thermal occupancy

at room temperature is much less than one, so that quantum effects are readily observable. For

example, creation and annihilation of a single phonon within one short laser pulse produces

non-classically correlated Stokes–anti-Stokes (SaS) photon pairs (11; 36; 37), as observed in

pulsed Raman scattering from a diamond crystal (12), liquid water (13) and other molec-

ular species (38). With the advent of quantum optomechanics, the quantisation of lower

frequency (MHz to GHz) mechanical oscillations was also evidenced in several experiments

using phase sentive detection (39; 40) and photon counting (41; 42). Finally, in a series of

recent experiments, Raman-active phonon modes in pure diamond (14; 15; 16; 43; 19; 17) and

gaseous hydrogen (44; 18; 45) have been used to store and process classical and quantum

information on picoseconds time scales at room-temperature. Developing versatile schemes

and techniques to address non-classical phonon states in bulk and nanoscale systems is thus

a promising research direction to improve our understanding of quantum effects occurring at

ambient conditions and leverage them for quantum technologies.

In this Letter, we present a new scheme to measure the creation and annihilation of a single

phonon Fock state with sub-picosecond time resolution (Fig. 4.1), which can be applied on

any Raman-active high frequency mode, such as ubiquitously found in organic materials. Our

scheme is conceptually similar to the one recently applied to an optomechanical cavity with

a GHz mechanical oscillator (41), although we don’t use any optical cavity and measure the

dynamics on time scales that are 5 to 6 orders of magnitude shorter. We use diamond in a

proof-of-principle experiment (phonon frequencyΩm/2π= 39.9 THz), but in contrast to Refs.

(14; 15; 16; 43; 19; 17; 44; 18; 45), our scheme does not rely on the polarization selection rule of
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Raman scattering to temporally distinguish between photons. It is therefore not restricted to

diamond and can be applied to low-dimensional structures and molecules as well, in the solid,

liquid or gaseous phase. Indeed, we use two-color excitation and spectral multiplexing to

distinguish the photons from the write and read steps. In the write step, a laser pulse centered

at frequencyω1 leads to Stokes scattering with low probability pS ¿ 1 (two-phonon generation

occurs with probability ∝ p2
S ¿ pS). Detection of a Stokes (S) photon at frequency ω1 −Ωm

projects the phonon onto the Fock state |n = 1〉. In the read step, after a controllable time delay

∆t , a second synchronised pulse centered at a different frequency ω2 is used to probe the

population of the conditional phonon Fock state by detection of an anti-Stokes (aS) photon at

frequency ω2 +Ωm . The value of the second-order cross-correlation g (2)
S,aS(∆t ) between the S

and aS photons witnesses the non-classical nature of the two-photon state produced by the

exchange of a single phonon (46). The dynamics of this non-classical SaS correlation can be

tracked by scanning ∆t , revealing the single-phonon lifetime.

Experimental Setup —Our experimental setup is depicted in Fig. 5.2. The two synchronized

femtosecond pulse trains are generated by a Ti:Sapph oscillator (Tsunami, Spectra Physics,

80 MHz repetition rate) and a frequency-doubled optical parametric oscillator (OPO-X fs, APE

Berlin). We can independently tune the Ti:Sapph wavelength between 740 and 860 nm and

the OPO wavelength between 505 and 740 nm. The OPO generates the write pulse, while the

Ti:Sapph is sent through a delay line to provide the read pulse. The read and write pulses are

combined at a dichroic mirror before being focused on a synthetic diamond crystal (∼ 300 µm

thick) cut along the 1-0-0 crystal axis. We use tunable interference filters (highlighted in green

in Fig. 5.2) to block the spectral components of the excitation pulses that overlap with the

detection window. The sample is studied in transmission with a pair of objective lenses in order

to fulfill momentum conversation in the exchange of the same phonon in the read and write

scattering processes. After the sample, we block most of the laser light with a combination

of tunable short and long pass filters, and send the signal either to a spectrometer equipped

with a cooled CCD array or to a single mode fiber, which selects a single spatial mode of the

photons. Since momentum is conserved during Raman scattering, this allows us to probe

a well-defined phonon spatial mode in the bulk crystal. After the fiber, light is collimated

and sent to a tunable dichroic mirror (TuneCube, AHF analysentechnik AG), which allows

us to separate the S and aS photons, depending on their wavelengths, by rotating a tunable

filter (here a long-pass). The separated signals are further spectrally filtered before impinging

on fiber-coupled single photon avalanche photodiodes (SPADs) connected to a coincidence

counter.

Results —In each experiment, we begin by tuning the Ti:Sapph and OPO to center frequencies

ω̃2 and ω̃1 so that ω̃1 − ω̃2 =Ωm . When the two pulses overlap, both spatially and temporally,

strong coherent anti-Stokes Raman scattering (CARS) at frequency ω̃1 +Ωm is generated. We

use this signal to find the zero time delay and optimize the spatial overlap of the two excitation

beams.
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Figure 4.2: Schematic drawing of the experimental setup. HW: half-wave plate; PBS: polarizing
beam-splitter; SF: spatial filter; SP/LP/BP: short/long/band-pass filters (tunable filters are
highlighted in green); DL: delay line; DM: Dichroic mirror; OL: objective lens (numerical
aperture = 0.8); SMF: single-mode fiber (HP780, Thorlabs); MMF: graded index multimode
fiber (100 µm core, NA 0.29, OZ Optics); FM: flip mirror. A video camera is used to overlap the
beams.

The center frequency of the write pulse is then tuned so that the S and aS peaks are spectrally

separated from the read and write pulses. As a first demonstration, the central wavelengths of

the write and read pulses are set to 696 nm and 810 nm, respectively. This results in S photons

at 767 nm (1.619 eV) and aS photons at 732 nm (1.695 eV), as seen on the Raman spectrum of

Fig. 4.3a, inset. Figure 4.3a presents the coincidence histogram obtained at zero write-read

delay in this configuration. The t = 0 ns peak corresponds to events where one photon is

detected in each channel within the same write-read pulse sequence. Since the delay between

two repetitions (12.5 ns) is three to four orders of magnitude longer than the phonon lifetime,

the side peaks are due to uncorrelated photons (“accidental" coincidences). The number

of coincidences in the central peak, divided by the average number of coincidences in the

side peaks, is a measure of g (2)
S,aS(0), the normalized second-order cross-correlation function

between the S photons produced in the write pulse and the aS photons produced in the read

pulse (41; 47).

The Cauchy-Schwartz inequality sets an upper bound on the possible value of the cross-

correlation for classical fields g (2)
S,aS(0)6

(
g (2)

S,S(0)g (2)
aS,aS(0)

)1/2
, where the terms on the RHS are
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the second-order auto-correlation functions of the S and aS fields (25; 48). We expect that

g (2)
S,S(0) = 2 since the spontaneously emitted S photons follow the same (thermal) statistics as

in parametric down-conversion below threshold. However, this is true only in the single-mode

situation, as the the Stokes auto-correlation function falls as 1+1/N with N the number of

phonon and photon modes. We therefore used a 50/50 beam splitting fiber to measure the

auto-correlation of the S channel and found g (2)
S,S(0) = 2±0.1 (see Fig. S1), confirming that

our experiment measures the state of a single phonon mode. Although the count rate on the

aS detector was not sufficient to measure precisely g (2)
aS,aS(0), we cannot think of any reason

why it should be larger than 2 since the aS photons should carry the thermal statistics of the

phonon mode. In summary, the classical bound to our measurement is g (2)
S,aS(0) 6 2. The

measured value g (2)
S,aS(0) = 63.4±9.7 in Fig. 4.3a,b thus violates the Cauchy-Schwartz inequality

by 6 standard deviations and is a proof of quantum correlations between the S and aS photons,

mediated by the exchange of a single phonon.

We then repeat the coincidence measurement for many different positions of the delay line

and obtain the time dependent correlation function g (2)
S,aS(∆t) (Fig. 4.3b). The correlations

decay with a 1/e time constant of 3.9±0.7 ps (bounds for 95% confidence), in agreement with

the literature values of the optical phonon lifetime in diamond (14; 49). This demonstrates

that we are able to measure the lifetime of a phonon Fock state by following the decay of

non-classical S–aS correlations.

In order to understand what determines the precise value of g (2)
S,aS and what limits the achiev-

able degree of non-classical correlations, we study the dependence of the zero-delay correla-

tion g (2)
S,aS(0) on the powers in the write (Pw ) and read (Pr ) beams (Fig. 4.3c) and compare the

results to an analytically soluble quantum model of parametrically coupled photon-phonon

modes at zero temperature. In direct analogy with the physics of photon pairs produced by

parametric down-conversion (24), we find that g (2)
S,aS(0) decreases as 1/nS ∝ 1/Pw where nS

is the average S photon number produced by the write pulse. This can be understood as the

consequence of the growing probability of exciting the |n = 2〉 phonon Fock state at higher

power compounded with the fact that our detectors cannot resolve the photon number.

Interestingly, at low Pw the correlation saturates at a value that depends on the power in

the read pulse Pr . We can explain this behavior by the noise generated in the read pulse,

which has three components. (i) The thermal phonons (thermal occupancy nth < 2 ·10−3)

are responsible for uncorrelated aS emission. If this were the only source of noise, then

g (2)
S,aS(0) → 1/nth at low write powers Pw , irrespective of the read power Pr . (ii) Yet, another

intrinsic noise source related to the Raman process is SaS pair emission in the read pulse (36),

which scales quadratically with Pr . (iii) Finally, we identified spontaneous four-wave mixing

as another source of uncorrelated counts on the aS detector in the read pulse.

The simplified model used to fit the data in Fig. 4.3c can also be used to compute the expected

second-order auto-correlation of the aS photons g (2,cond)
aS,aS (0) conditional on the detection of a

S photon in the write pulse, as would be measured to characterize heralded single-photons
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(47). We find values of g (2,cond)
aS,aS (0) well below 0.1 for the parameters corresponding to most

data points of Fig. 4.3c, demonstrating that our experiment indeed probes the dynamics of

the |n = 1〉 phonon Fock state, with negligible contribution of n > 2 eigenstates.

A route to increase the measured quantum correlation toward the 1/nth thermal limit is the

use of a cavity in the resolved sideband regime to select only S and aS processes in the write

and read pulses, respectively (47). This is where the broad tunability of our setup would

become particularly relevant.

Indeed, we show in Fig. 4.4 that we can perform this measurement using different configura-

tions of the excitation/detection wavelengths accessible with our instruments. For example,

the write and read pulses were also set at 650 nm and 821 nm, respectively, yielding S and aS

photons at 712 nm (1.74 eV) and 740 nm (1.67 eV) (see Fig. 4.4, inset). Although the absolute

value of g (2)
S,aS(0) depends on the laser powers, on the quality of alignment and beams’ overlap,

on the amount of cross-talk between the S and aS channel and on the amount of background

emission, after normalization both data sets accurately track the phonon dynamics. This

demonstrates the broad tunability of our setup (limited here by the available filters) and the

robustness of our technique.

Conclusion —Our scheme constitutes a broadly applicable technique for the time-resolved

measurement of quantum correlations mediated by high frequency vibrational modes, which

can be observed even at room-temperature due to their vanishing thermal occupancy. As

we verified by rotating the linear polarization of the write beam, our scheme is polarization

insensitive, so that it can be applied to any Raman-active mode. It is well suited to study

quantum dynamics in individual nanosystems – in principle down to a single molecule (50). As

shown in Ref. (14; 15; 16; 43; 19; 17; 44; 18; 45), Raman-active phonons are potential candidates

for room-temperature quantum information processing. Our scheme extends the feasibility

of this approach to a much broader range of material systems, which can be optimized for

coupling efficiency and longer phonon lifetime.

The wide tunability of our setup will allow to leverage the resonant enhancement provided by

electronic transitions or nanocavities, while spectral multiplexing and photon counting make

it possible to measure cross-correlations between different normal modes (by triggering the

start and stop detectors with two different Raman lines), thereby probing inter-mode coupling

dynamics. Moreover, by triggering the coincidence counter upon multi-photon detection in

the write step (using spatial (51; 52) or temporal (53) multiplexing or a direct photon number

resolving detector (54; 55)), our technique would probe the dynamics of higher vibrational

Fock states (n > 1) (56). The probabilistic nature of the scheme, however, means that the rate

of successful events will drop exponentially with n. Finally, this work constitutes the basis

for more advanced measurement schemes where phonon coherences are measured using

vibrational two-mode entangled states (57) and photon-phonon entangled states (58). This

could lead to new ways of studying quantum phenomena in organic systems, which play

essential roles in photochemistry and possibly in some biological reactions (59; 60).
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Figure 4.3: (a) S–aS coincidence histogram (20 min integration). The S (resp. aS) count rates
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in blue. (b) Write-read delay dependence of the measured S–aS correlation (open circles) and
fit (dashed line) using an exponential decay (time constant = 3.9±0.7 ps) convolved with
the instrument response (Gaussian with standard deviation σ= 223 fs. The gray area marks
the classical bounds. Inset: coincidence histograms at different delays. (c) Measured SaS
correlations at zero delay vs. average power in the write beam (symbols) for different powers
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5 Collective Vibrational Quantum Co-
herence in Spontaneous Raman
Scattering
In this chapter, we use spontaneous Raman scattering to generate a collective vibrational

excitation that is shared between two isotopic sub-ensembles. We illustrate the inherent

coherence present in the Raman interaction, and use it to obtain a measurement of the

lifetime of the two oscillations, as well as observe beating between them. Additionally, we use

the model of the experiment to show that there is entanglement present in the quantum state

we obtain.

I built the experiment, performed the measurements together with Dr. Anna Pograbna,

analyzed the data, and developed the theoretical model used to explain the results. The

manuscript was prepared in collaboration with all the authors.

The content of this chapter is reproduced from:

Tarrago Velez, Santiago, Anna Pogrebna, and Christophe Galland. "Collective

Vibrational Quantum Coherence in a Molecular Liquid under Spontaneous Raman

Scattering." arXiv preprint arXiv:2105.00213 (2021).

which is currently undergoing peer-review.

Further information about the code used to perform the simulations can be found in Appendix

13.

5.1 Main text

Introduction.— Raman scattering was first reported in 1928 (10) and with the advent of laser

sources it has become an essential tool for probing and understanding the vibrational structure

of organic and inorganic matter. In a majority of experiments, a semi-classical model of light-

matter interaction is sufficient to interpret the results of Raman spectroscopy. For example,

the intensity asymmetry between Stokes and anti-Stokes scattering is obtained by quantizing

the vibrational modes of each individual molecule. A full quantum theory of Raman scattering
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was developped in the 70’s and 80’s (61; 62; 63; 64; 65; 66), and its predictions were tested, e.g.,

by measuring intensity fluctuations in stimulated Raman scattering (67; 68).

Following a pioneering work by Walmsley and coworkers in 2011 (69), more recent experi-

ments have used time-correlated single photon counting to evidence non-classical intensity

correlations between light fields interacting with the same phonon mode via Raman scattering,

with potential applications in ultrafast quantum information processing (70; 15; 16; 43; 71; 17),

novel forms of spectroscopy (72; 73), and the generation of non-classical states of light (74).

These experimental results have in turn spurred further theoretical developments to under-

stand how the Raman process leads to photonic correlations mediated by a phononic excita-

tion (75; 76), how the experimental geometry impacts the photon statistics of the Stokes field

(77), and how the coupling of a Raman-active mode to a nanocavity modifies the dynamics of

the system (78; 79; 80).

Despite this recent experimental progress, to our knowledge there has been no direct measure-

ment of the nature of the vibrational quantum state generated in an ensemble of molecules in

the liquid phase. Since molecule-molecule interactions in a liquid are in general incoherent

and only contribute to vibrational relaxation (81), they cannot generate spatial coherence over

mesoscopic length scales. Accordingly, most reference texts assume that coherence among

different molecules can only be imposed by external driving, e.g. with the beat note between

two strong laser fields as in coherent anti-Stokes Raman scattering (CARS) (82). Quantum

coherence among different molecules following spontaneous Raman scattering in a dense

molecular liquid has often been neglected (83; 84), implicitly assuming that the resulting

collective vibrational state is a statistical mixture of individually excited molecules. We note

that when studying an ensemble of identical molecules, the temporal coherence of the Stokes

field (73; 85) or the presence of Stokes–anti-Stokes coincidences (18; 13) do not provide direct

information about the collective coherence possibly existing among the molecules – which is

why the authors from Ref. (13) could describe their experiment in terms of single-molecule

scattering events.

In this Letter, we demonstrate that spontaneous Raman scattering naturally generates a collec-

tive vibrational excitation whose state is a quantum superposition of a macroscopic number

of individually excited molecules in the liquid phase. To this end, we use a liquid of CS2 that

contains two dominant isotopic species (CS32
2 and CS32S34) with distinct vibrational frequen-

cies for the symmetric stretch mode separated by 8.6 cm−1 (258 GHz); see Fig. 5.1. We measure

time-resolved two-photon Stokes–anti-Stokes correlations mediated by the symmetric stretch

mode, and observe long-lived quantum beats that are the signature of exciting a coherent su-

perposition where a single vibrational quantum is shared by the two molecular sub-ensembles.

As proposed in the context of cavity optomechanics (57), we also verify that our data is consis-

tent with the emergence of mode entanglement between the two sub-ensembles, persisting

for more that 4 ps. Our method constitutes a direct probe of the collective quantum coherence

among individual molecules following spontaneous Raman scattering in a highly dissipative

environment. When using a projective measurement on the Stokes field, the spatial extent
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of vibrational coherence is determined not by the material properties (86; 87; 88) but by the

spatial coherence of the incoming and detected optical fields.

Experimental Results.—We use the technique introduced in (89), where a first laser pulse

generates a two-mode photon-phonon squeezed state via spontaneous Stokes Raman scatter-

ing. The power is adjusted to keep the probability of exciting a single phonon below ∼ 10−2,

so that two-phonon processes have negligible impact on the measurement. A second laser

pulse centered at a different wavelength is used to probe the phonon mode occupancy after

a variable time delay ∆t . This information is encoded in the Stokes–anti-Stokes correlation

function g (2)
S,A(∆t ) (47; 41). The strength of phonon-mediated correlation is upper-bounded by

g (2)
S,A < 1+1/nth ' 26, where the thermal occupancy of the vibrational mode is nth ' 0.04 in

our system at room-temperature. A brief description of the experimental setup is provided in

Fig. 5.2.

In Fig. 5.3 we show the normalised second order cross correlation function g (2)
S,A measured on

liquid CS2, plotted as a function of time delay between Stokes and anti-Stokes processes. When

write and read pulses are temporally overlapping, any four-wave mixing (FWM) process can

generate photon pairs at any frequencies satisfying energy conservation, causing a rise in g (2)
S,A .

We used crossed-polarised laser pulses while filtering Raman photons that are co-polarised

with the respective laser fields in order to minimize the relative contribution of FWM to the

overall signal.

Information about the coherence and dynamics of the vibrational state is found at longer

delays (∆t > 200 fs). Assuming that spontaneous Raman scattering generates a statistical

mixture of individually excited molecules, the expected decay is bi-exponential (because of

the different linewidth of the two Raman peak, Fig. 5.1b), as shown by the dashed red line in

Fig. 5.3. Instead, we observe oscillations with a period of around 3.7 ps (i.e. around 9 cm−1).

We note that oscillations resulting from the excitation of vibrational modes in different iso-

topes of CCl4 (90) were observed using ultrafast stimulated Raman scattering in Ref. (91; 92).

However such experiments are well accounted for by a semi-classical model, in which the stim-

ulated Stokes and anti-Stokes fields are classical. In the case of stimulated Raman scattering,

the beating between the two pump laser fields is tuned resonant with the molecular vibra-

tion of interest, thereby driving a coherent collective vibration and resulting in a coherently

oscillating Raman polarisation in the sample, all of which behave as classical variables.

In contrast, spontaneous Raman scattering and single photon counting demand a quantum

description (detailed in the following section), in which the post-measurement vibrational

state naturally appears as a quantum coherent superposition involving all molecules coupled

to the light field. This quantum model makes predictions in good agreement with the data,

after adjusting the relative contribution of FWM to fit the instantaneous response and taking

into account detection noise. Moreover, the relative phase θ that appears in the spontaneously

generated quantum superposition of the two isotopic sub-ensembles translates into an hor-

izontal shift of the oscillations. We find that taking θ = π/6 reproduces the position of the
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Figure 5.1: Experimental concept. (a) Energy levels involved in Raman scattering, where the
solid grey arrows represent the incoming radiation, while the dashed black arrows represent
the inelastically scattered photons. (b) Raman spectrum of CS2 measured with a 785 nm cw
laser. The Raman peaks around 646 cm−1 (shaded in orange) and 655 cm−1 (shaded in blue)
are fitted with Voigt functions with relative area 1.00 and 0.50, respectively. (c) Frequency-
domain schematic illustration of the signals detected in our experiment. (d) Stokes and
anti-Stokes Raman spectra of carbon disulfide measured with 200 fs laser pulses with photon
energy 1.85 eV and 1.53 eV, respectively. The Stokes signal is observed around 1.77 eV, while
anti-Stokes at 1.62 eV. The Raman photons scattered by the two different isotopes are no
longer distinguishable (graded shade). The spectral regions selected by filters before the single
photon detectors are approximately marked by the dashed boxes.
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Figure 5.2: Sketch of experimental setup. The liquid CS2 (anhydrous, ≥99 %, Sigma Aldrich)
is held between two objective lenses (numerical aperture: 0.8) in a quartz cuvette sealed
with parafilm with 0.2 mm wall thickness and 1 mm optical path. The sample is studied in
transmission to fulfill momentum conservation in the Stokes – anti-Stokes process mediated
by a collective vibration with vanishing momentum. The Raman signal is collected into a
single mode optical fiber (SMF), whose back-propagated image overlaps with the focused
laser beams to define a single spatial mode inside the sample. After spatial filtering through
the fiber, the Stokes and anti-Stokes photons from the first and second pulses, respectively, are
separated based on their non-overlapping spectra (see Fig. 5.1d). Fiber-coupled single photon
avalanche photodiodes are connected to a custom coincidence counter to measure g (2)

S,A . SP:
shortpass; LP: longpass; BP:bandpass; Di: dichroic.

second oscillation peak. Our technique is therefore not only sensitive to the amplitudes in the

quantum superposition but also to the relative phase.

Theoretical description.—The Raman interaction probabilistically generates a Stokes (resp.

anti-Stokes) photon together with the creation (resp. annihilation) of a quantum of vibration.

The two phonon modes of interest in our experiment (for the two isotopic sub-ensembles)

are described by the annihilation operators b̂1 , b̂2. The Raman signals from the two phonon

modes can be spectrally distinguished under cw excitation, but become indistinguishable

under pulsed excitation, as shown in Fig. 5.1. Therefore, in the pulsed experiment with single

spatial mode filtering, both vibrational modes effectively couple to the same Stokes and anti-

Stokes photon fields, described by the annihilation operators âx
S , âx

A , where x = w,r for the

write and read pulses, respectively. The Raman interaction is modeled by the Hamiltonian
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Figure 5.3: Write-read delay dependence of the measured normalised Stokes–anti-Stokes
correlations (full circles) and model prediction (solid lines), for θ =π/6. The red line represents
the prediction including noise, while the black line shows the ideal case without any detection
noise but with thermal noise (see text). The dotted red line represents the bi-exponential
decay that would be expected if the vibrational state were a statistical mixture of individually
excited molecules. The inset shows the model predictions for different values of the phase θ.
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(63)

Ĥ x
I = ~αx

[
λx

S (âx
S )†(β1b̂†

1 +e−iθx
Sβ2b̂†

2)

+ λx
A(âx

A)†(β1b̂1 +e−iθx
Aβ2b̂2)

]
+h.c.

(5.1)

where the laser is modeled by a coherent field of amplitude αx (t) (x = w,r ) with Gaussian

envelope centered at time t0x of width σx ,

αx (t ) = Ax exp

(
(t − t0x )2

2σ2
x

)
exp(−iωx t ) . (5.2)

In eq. (5.1) λx
S,A determine the coupling strengths to the Stokes and anti-Stokes modes, and

β1, β2 control the relative weights of the two vibrational modes participating in the Raman

interaction (experimentally related to the relative abundance and Raman cross-sections of the

two main isotopic species), with β2
1 +β2

2 = 1. Since we use spectral filtering and post-selection

to ignore events where an anti-Stokes (resp. Stokes) photon is emitted during the write (resp.

read) pulse we can simplify the interaction model to

Ĥ w
I = ~λw

S α
w (âw

S )†(β1b̂†
1 +e−iθw

S β2b̂†
2)+h.c. (5.3)

Ĥ r
I = ~λr

Aα
r (âr

A)†(β1b̂1 +e−iθr
Aβ2b̂2)+h.c (5.4)

(Note that the ignored terms contribute to uncorrelated noise photons generated via higher

order Raman interactions during a single pulse (36).) We have explicitly written the two phase

differences θw
S , resp. θr

A , appearing between the two vibrational modes during Stokes, resp.

anti-Stokes, scattering. Our experiment is however only sensitive to their sum θ = θw
S +θr

A . In

the following we shorten the notation for the annihilation operators to âw
S ≡ âS and âr

A ≡ âA .

We include an additional χ(3) nonlinear interaction term that allows for the direct interaction

between the write and read pulses, leading to the creation of photon pairs at the frequencies

of the Stokes and anti-Stokes emission (FWM process):

Ĥ (3)
I = ~λ(3)αwαr âS âA +h.c. (5.5)

In the frame rotating with the central frequency ω0 = ωW +ωR
2 we obtain the effective Hamilto-

nian

Ĥ = ~ω1b̂†
1b̂1 +~ω2b̂†

2b̂2 +~∆S â†
S âS

+~∆A â†
A âA + Ĥ w

I + Ĥ r
I + Ĥ (3)

I

(5.6)

where ∆S,A = ωS,A −ω0. To account for dissipation we use the master equation approach,

which includes coupling of the phonon modes to a thermal reservoir at room temperature, as
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described by the collapse operators

Ĉb1− =
√
κ1(1+nth)b̂1

Ĉb1+ =p
κ1nth b̂†

1

Ĉb2− =
√
κ2(1+nth)b̂2

Ĉb2+ =p
κ2nth b̂†

2

(5.7)

where κx is related to the decay rate of the phonon modes by τphx = 1/κx . The temporal

evolution of the density matrix is computed numerically using QuTiP, an open-source library

used for simulating quantum systems in Python (93; 94).

Coincidence counts under non-ideal conditions.— To account for noise and losses in the

experiment we use the operator introduced in (24) to model the photon detection probability

D̂X = 1− (1−pdc
X )(1−ηX )â†

X âX (5.8)

where X = S, A for the Stokes and anti-Stokes detection channels, respectively. The dark

count probability (per detection time window) is pdc
X while ηX is the detection efficiency.

The experimental value of the normalised Stokes – anti-Stokes coincidence rate g (2)
S,A is then

calculated (for several values of ∆t = t0r − t0w ) as

g (2)
S,A = 〈D̂SD̂ A〉

〈D̂S〉〈D̂ A〉
(5.9)

Choice of model parameters.— Most of the model parameters are extracted from the cw Raman

spectra and the average single detector count rates during the experiment, leaving only the

total phase θ and the coupling strength of the FWM process λ(3) as fitting parameters. We

find the relation between the count rate in the cw experiment and the parameters β1, β2, by

considering the state |ψ〉 =β1|1〉b1 ⊗|0〉b2 +β2|0〉b1 ⊗|1〉b2 : Under cw excitation the photons

scattered by the two vibrational modes are distinguishable, and their photon number is

proportional to β2
1 and β2

2. From the integrated area under the two main peaks in the cw

spectrum shown in Fig. 5.1 we find approximately β1 =
p

1/3, β2 =
p

2/3.

The detection efficiency of our setup is estimated to be ηS ≈ ηA ≈ 10%. We fix the values of the

parameters Ax andλx
S,A by considering the Stokes and anti-Stokes detection rates. As the pulse

amplitudes Ax always appear in factor with the coupling rates λx , we introduceΛx
S,A = Axλ

x
S,A

whose values are chosen to reproduce the measured single-detector count rate when only the

write or read pulse is propagating through the sample. We find Λw
S = 0.104 and Λr

A = 0.136,

which recover the measured detection probabilities pS ≈ 2.7×10−4, p A ≈ 1.8×10−5. The dark

count probabilities are estimated to be pdc
S ≈ 2×10−4 and pdc

A ≈ 1×10−5.

The coupling rates of the phonon modes to the thermal bath, which govern their decay times,

is calculated from the FWHM ∆ν of each peak as measured by cw Raman spectroscopy. We

fit the peaks with a Voigt function, which assumes a Lorentzian line shape for the peaks and
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a Gaussian response for the spectrometer, and use the FWHM of the Lorentzian curve to

determine the lifetime of each phonon mode. The FWHM is related to the dephasing rate Γ of

a phonon mode by Γ= π∆ν. In the absence of pure dephasing, the phonon lifetime will be

τph = 1/2Γ. We use this assumption to find τph1 = 8.4±1.3 ps and τph2 = 1.7±0.2 ps. With

these parameters, the model outputs the full red line in Fig. 5.3, while the black line is the

inferred signal in the absence of FWM and detection noise.

Fock State Populations and Entanglement.— As our model generates the full density matrix we

can gain further insights into the dynamics and entanglement of the vibrational modes. We

first compute the probabilities of observing different phonon numbers (Fock states) knowing

that the Stokes detector registered a photon (95; 96), as a function of time after the Stokes

scattering event; Fig. 5.4. Our evaluation includes the experimental noise, as we use the

operator D̂S to model the detection of one or more Stokes photons; it can therefore be consid-

ered as a faithful estimate of the post-selected vibrational state in the experiment. Moreover,

we can compute the amount of entanglement existing between the two vibrational modes,

which we quantify via the Logarithmic Negativity EN , an entanglement monotone defined by

EN = log2 ‖ρTb2‖, where ρTb2 indicates the partial transpose of ρ with respect to the phonon

mode b2, and ‖X ‖ ≡ tr(
p

X †X ) (97; 98). Fig. 5.4 shows that the two vibrational modes do

become entangled (EN > 0), and that the entanglement survives for about 4.5 ps, decaying at

a rate similar to that of τph2 , the faster decaying phonon mode.

Conclusions.— To summarize, we presented a measurement of time domain spectrally resolved

two-photon Stokes–anti-Stokes correlations on liquid CS2 at room temperature. We showed

that spontaneous Raman scattering can generate a quantum superposition of two collective

vibrational excitations of different isotopic sub-ensembles, which leads to quantum beats in

the two-photon coincidence counts vs. time delay. Our experimental results are incompatible

with the picture according to which spontaneous Raman scattering from a large ensemble

is always the incoherent sum (statistical mixture) of single-molecule scattering events. Our

experiment nourishes the debate about the relation between optical coherence and quantum

coherence (99; 100) and entanglement (101). It questions whether optical coherent states are

necessary to explain various forms of coherent Raman spectroscopy, for we do not stimulate

the Raman process and yet observe coherent oscillations, as if we did. In the future, our photon

counting approach can be adapted to probe inter- or intramolecular vibrational entanglement

in more complex systems, as well as excitonic and vibrational polariton dynamics (102). We

also envision extensions of our work to probe how Raman scattering is affected by collective

excitonic (103; 104; 105; 106) or vibrational (107; 108; 109; 110; 111; 112) strong coupling to a

cavity, with implications for polariton chemistry (113).
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Figure 5.4: (a) Populations in the Fock state basis of the two vibrational modes (blue and
orange lines) for the conditional state after heralding of a Stokes event, including all types
of noises in the detection process (cf. red line in 5.3). (b) Entanglement between the two
vibrational modes in this heralded state is quantified by the Logarithmic Negativity EN , shown
as black solid line.
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6 Preparation and decay of a single
quantum of vibration at ambient con-
ditions
In this chapter, we take a closer look at the vibrational state that is created during the Raman

interaction. We demonstrate the preparation of the 40 THz vibrational mode of diamond in

the n=1 Fock state. We show that, by detecting a Stokes photon that has been scattered from

an ultrafast laser pulse, the vibration is prepared in the first Fock state with 98.5% probability.

We perform a Hanbury-Brown-Twiss intensity correlation measurement, and show that the

statistics of the vibration change from thermal to sub-Poissonian through the interaction with

the ’write’ laser, and track the change in statistics as the phonon decays.

I performed the experiments and analyzed the data. The manuscript was prepared in collabo-

ration with all the authors.

The content of this chapter is reproduced from:

Tarrago Velez, Santiago, Kilian Seibold, Nils Kipfer, Mitchell D. Anderson, Vivishek

Sudhir, and Christophe Galland. "Preparation and decay of a single quantum of

vibration at ambient conditions." Physical Review X 9, no. 4 (2019): 041007.

Further information about the code used for instrument control and data analysis can be

found in Appendix 10

6.1 Main Text

The observation of inelastic scattering of photons from ensembles of atomic-scale particles

was an early triumph of quantum theory. Within a few years, experiments by Compton (114)

and Raman (10) showed that photons can exchange energy and momentum with material

particles in the manner described by quantum mechanics. At optical frequencies, Raman

scattering, the dominant effect, is an expression of the universal idea that a mechanical

vibration phase-modulates the outgoing light, resulting in two scattered sidebands (Fig. 6.1a,b).

In a quantum description, the upper (“anti-Stokes”) sideband arises from the annihilation of a
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quantum of vibration, while the lower (“Stokes”) arises from its creation (Fig. 6.1c).

Leveraging the Raman interaction, a variety of pump-probe measurements have been imple-

mented to study vibrational dynamics in crystals and molecules. For example, incoherent

phonons generated by the decay of electron-hole pairs can be probed by time-resolved anti-

Stokes scattering (115; 116; 117; 118). Several techniques have also been developed to study

coherent states of the vibrational modes. The most popular is time-resolved coherent anti-

Stokes Raman scattering, where a large coherent phonon population is excited by a pair of

laser pulses, and its classical decay is probed by a delayed pulse (119). Another technique –

transient coherent ultrafast phonon spectroscopy – uses the interference of the Stokes photons

from the spontaneous Raman scattering of two coherent pumps to determine the decoherence

of the vibrational mode (72; 120). While these techniques reveal the time scales over which the

vibration decays or loses its phase coherence, observing single quanta of the vibration itself

has proved far more elusive.

To illustrate the difficulty, consider that on the one hand, internal vibrational modes of crystals

and molecules with oscillation frequencies in the 10-100 THz range ubiquitously and naturally

exist in their quantum ground state at room temperature. But unless they are individually

addressed and resolved within their coherence time, the ensemble average over unresolved

vibrational modes precludes the observation of individual quanta. Despite this challenge, a

Raman-active vibration featuring a specific form of internal nonlinearity was prepared in a

squeezed state by optical excitation (121), while polarization-selective Raman interactions

were used to observe two-photon interferences mediated by a vibrational mode (122). On the

other hand, nano-fabricated mechanical oscillators can be susceptible to a universal radiation

pressure interaction with light, especially with the intense fields stored in an optical cavity

(123). However, their relatively low frequency (MHz-GHz) means that thermal energy at room

temperature is larger than the energy of a single vibrational quantum, making quantum state

manipulation difficult or impossible under ambient conditions. Precise measurements of

mechanical motion at room temperature have recently revealed quantum characteristics of the

underlying radiation pressure interaction (39; 40; 124). But it is only through deep cryogenic

operation that quantum states of motion of nano-scale oscillators have been prepared in the

last years (125; 42; 126; 127; 128). Thus, the quest to prepare quantum states of commonly

available mechanical oscillators at ambient conditions remains largely open.

Here we prepare a non-classical state of an internal vibration of a diamond crystal at room

temperature. In a scheme inspired by the DLCZ protocol (129; 47), a femtosecond laser pulse

(the “write” pulse hereafter) first creates an excitation from the ambient motional ground

state with a probability p ¿ 1 (see Fig. 6.1c). Detection of the emitted Stokes photon heralds

the success of this step, while choice of the spectral window for detection fixes the specific

vibrational mode of the system under study. To verify that only a single quantum of vibration

was excited, a second laser pulse (the “read” pulse) retrieves it as an anti-Stokes photon. The

probability of having two or more anti-Stokes photons, and therefore two or more quanta of

vibrations, is obtained by performing a Hanbury-Brown-Twiss (HBT) intensity correlation
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Figure 6.1: Concept of the experiment. (a) When monochromatic light reflects from an
oscillating mirror, it acquires two Raman sidebands due to phase modulation (to first order in
interaction strength). (b) When light interacts with a polarizable oscillator, whose induced
polarization ~pind depends on its internal coordinate xν, it undergoes a phase modulation at
the oscillator frequency, leading to the appearance of Stokes and anti-Stokes Raman sidebands
in the scattered light. The anti-Stokes/Stokes intensity ratio is proportional to n̄

n̄+1 where n̄ is
the mean excitation number (or occupancy) of the vibrational mode. (c) Time evolution of a
single repetition of the experiment showing the interaction of the write pulse, the subsequent
detection of Stokes photons for heralding, and the final read pulse followed by measurement
of two-photon correlation in the emitted anti-Stokes light. (d) Evolution of the probability P (n)
of finding the vibrational mode in the nth energy eigenstate during the different steps. The
system is initially in a thermal state with n̄ = 1.5·10−3 (for a mode frequency of 40 THz at 295 K).
After the write pulse, the marginal state of the vibration is also thermal with n̄ = p

1−p = 10−2 in
this example (here p is the interaction probability). Finally, after heralding, the distribution
becomes peaked at n = 1. The residual vacuum component is due to detection noise. For each
distribution, we give the corresponding value of the vibrational mode’s intensity correlation
function g (2).

measurement on the anti-Stokes photons conditioned on the heralding signal (130; 131). We

observe sub-Poissonian statistics of the heralded vibrational state, a result consistent with

having prepared the Fock state |1〉 of the vibrational mode (the first excited energy eigenstate).

Finally by changing the delay between the write and read pulses we probe the decay of the

single vibrational quantum, with ≈ 200 fs resolution.

In contrast to previous quantum optics experiments on Raman-active vibrational modes

that were restricted to molecular or crystal structures exhibiting particular polarization rules

(122; 14; 15; 16; 43; 19; 17) or vibrational nonlinearities (121), our technique is agnostic to these

details, and can be employed on any Raman-active subject. It opens a plethora of opportuni-

ties to study vibrational quantum states and dynamics in other crystals and in molecules, and

can readily be extended to create vibrational two-mode entangled states (57) and test the viola-

tion of Bell inequalities (58; 132) at room-temperature in a number of widely available systems.
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6.2 Theoretical description

The Raman interaction between a single vibrational mode and an optical field leads to the

creation of an anti-Stokes (Stokes) photon commensurate with the destruction (creation) of a

vibrational quantum. In our experiment the Raman interaction is driven by an optical field

that may either be a “write” (superscript w) or “read” (superscript r) pulse defined by the

spatial and temporal mode of a mode-locked laser whose beam is focused onto the sample.

These two incident fields are described by the annihilation operators âw,r. The interaction

leads to the generation of Stokes and anti-Stokes photons whose spatial mode is post-selected

by projecting the focal spot onto the core of a single-mode optical fiber. The Stokes (anti-

Stokes) fields are modeled by annihilation operators âw,r
S (âw,r

AS ). Due to conservation of energy

and momentum in the Raman scattering process, the detection of these scattered fields as

described above defines a single spatio-temporal mode of the vibration that is the subject of

the experiment, and which we describe by its annihilation operator b̂. The Raman interaction

is modeled by the Hamiltonian (133),

Ĥ w
int = i~

[
Gw

S âwb̂†(âw
S )† +Gw

AS âwb̂(âw
AS)†

]
+h.c. (6.1a)

Ĥ r
int = i~

[
Gr

S ârb̂†(âr
S)† +Gr

AS ârb̂(âr
AS)†

]
+h.c., (6.1b)

where the coupling rates Gw,r
S and Gw,r

AS relate to the Raman activity of the vibrational mode.

None of the four processes described by eq. (6.1) is resonant since we work at photon energies

well below the band gap of diamond (5.47 eV). However, because we spectrally filter and detect

only the two modes aw
S and ar

AS all essential results of our measurements can be described by

the Hamiltonian

Ĥ w
int = i~g w

S b̂†â†
S +h.c. (6.2a)

Ĥ r
int = i~g r

AS b̂ â†
AS +h.c., (6.2b)

where we defined the effective coupling rate, g w,r
S,AS ≡Gw,r

S,AS

√
nw,r

p , corresponding to a classical

excitation for the write/read pulses with nw,r
p photons per pulses, and used the shorter notation

âS ≡ âw
S , âAS ≡ âr

AS. In fact, this scenario is equivalent to the linearized radiation-pressure

interaction (123), or Raman processes in atomic ensembles (129), where an optical cavity (in

the former instance) or electronic resonance (in the latter) suppresses non-resonant terms.

Note that the Hamiltonian in eq. (6.2) neglects higher order interactions, in particular the

creation of correlated Stokes/anti-Stokes pairs during a single pulse (write or read) via phonon-

assisted four-wave mixing (134; 12; 36; 37; 12; 13; 38). In our experiment, the photon flux due
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to this higher-order interaction constitutes an effective background noise (135). Other ex-

traneous sources of photons, such as from residual χ(3) nonlinearities, or fluorescence, also

lead to an excess background noise. The spontaneous Stokes signal scales linearly with laser

power since it is proportional to nw
p (n̄ +1) ≈ nw

p , where n̄ ¿ 1 is the average occupation of

the vibrational mode. In our experiment, the spontaneous Raman signal is much stronger

than any of the parasitic processes described above, so that the fidelity of the heralded state

is only marginally affected by noise. However, the anti-Stokes signal, being proportional to

nr
p n̄, is significantly weaker, so that noise cannot be neglected in this case. The measured

normalized probability of detecting two anti-Stokes photon should therefore be considered as

an upper-bound for the corresponding probability of having two vibrational quanta. In the

calculations presented below, the noise terms are accounted for in order to faithfully describe

the experiment.

6.2.1 Write operation

The first step in an iteration of the experiment is the excitation of the vibrational mode by

a write pulse. The resulting dynamics of the vibrational and Stokes modes is governed by

H w
int = i~g w

S b̂†â†
S +h.c., which has the form of a two-mode squeezing interaction, and leads to

the creation of maximally correlated pairs of vibrational and Stokes excitations. When both

modes are initially in the vacuum state |vac〉, the final state after the write pulse is (131),

|Ψ〉S,b =√
1−p

∞∑
n=0

√
pn |n,n〉S,b (6.3)

where |n,n〉S,b ≡
(
b̂† â†

S

)n

n! |vac〉. For the simple situation of a constant interaction switched

on for a duration Tw, the probability of exciting the state |1,1〉 is given by, p = tanh2(g w
S Tw).

For realistic laser pulse shapes, in the linear regime, Tw is the effective interaction time

defined by the equivalent square pulse that carries the same pulse energy. Ideally, when at

least one Stokes photon is detected, the (conditional) state of the vibrational mode becomes

(see Supplementary information), ρb|S ≈ |1〉〈1|+p|2〉〈2|, in the limit where p ¿ 1; crucially,

the vacuum component in |Ψ〉S,b has been eliminated based on the presence of a Stokes

photon. Dark noise in real photodetectors (modeled as a probability π0 per pulse) prevents

unambiguous discrimination of the vacuum contribution. However, when the total Stokes

signal is larger than the dark noise, it can be shown (see Supplementary information) that the

resulting conditional state,

ρ̂b|S ≈
π0

2ηp
|0〉〈0|+ |1〉〈1|+p|2〉〈2|, (6.4)

is dominated by the contribution from the pure Fock state |1〉. Here η is the detection efficiency

of the Stokes field, and ηp is the Stokes detection probability. The signal-to-noise ratio in the

Stokes photodetector ηp/π0 is larger than 104 in our experiment.
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6.2.2 Read operation

Once the Stokes photon is detected, a second pulse – the read pulse – is used to retrieve the

(conditional) state of the vibrational mode. The dynamics of the anti-Stokes field induced

by the read pulse is described by the Hamiltonian H r
int = i~g r

AS b̂ â†
AS +h.c., which represents

a beam splitter interaction between the anti-Stokes and vibrational modes. For an effective

interaction time Tr, the state of the emitted anti-Stokes field is governed by the input-output

relation,

âAS,out(Tr) = cos(θ)âAS,in + sin(θ)b̂, (6.5)

where, θ ≡ g r
ASTr. The mode âAS,in describes the input anti-Stokes mode (before the read

pulse), which is in the vacuum state.

The crucial aspect of the read operation is that the emitted anti-Stokes field faithfully reflects

the number statistics of the vibrational mode. In fact, from eq. (6.5), we find that 〈: (â†
ASâAS)n :

〉 = sin2n(θ)〈: (b̂†b̂)n :〉, for any integer n ≥ 1 (here :: denotes normal ordering). This relation

expresses the fact that photon counting is insensitive to vacuum noise (in stark contrast to

linear detection of the field (136)), so that normalized moments of the photon number of the

anti-Stokes field faithfully represent the statistics of the vibrational mode excitation number.

Note that although the interaction between the optical pulses and the vibrational mode is

linear (eq. (6.2)), the nonlinearity provided by the single-photon detection following the write

and read pulses renders the full measurement process effectively nonlinear (137). It is this

single-photon nonlinearity that lies at the conceptual heart of our protocol.

6.2.3 Statistics of the heralded intensity correlation

Performing the two operations presented above enables the preparation and unambiguous

characterization of a vibrational Fock state. Consider the joint state |Ψ〉S,b,AS for the Stokes field,

the vibration, and the anti-Stokes field. A heralded coincidence event occurs when a Stokes

photon is detected at time t = 0 , followed, after a time t , by coincident detection of a pair of

anti-Stokes photons. This heralded coincidence event is represented by the measurement

map,

|Ψ〉S,b,AS 7→ d̂2(t )d̂1(t )âS(0)|Ψ〉S,b,AS,

where d̂1,2 are the operators denoting the anti-Stokes field at the two output of a 50/50 beam-

splitter (see fig. 6.1c). The probability of this triple coincidence defines the conditional in-

tensity correlation, and is thus proportional to
〈

â†
S(0)d̂ †

1(t )d̂ †
2(t )d̂2(t )d̂1(t )âS(0)

〉
; here we

have used the linearity of quantum mechanics to extend the definition to mixed states as

well. Suitably normalizing the expression (46) allows us to define the conditional intensity

50



6.2 Theoretical description

correlation,

g (2)
AS|S(t ) ≡

〈
â†

S(0)d̂ †
1(t )d̂ †

2(t )d̂2(t )d̂1(t )âS(0)
〉

∏
i

[〈
â†

S(0)d̂ †
i (t )d̂i (t )aS(0)

〉〈
â†

S(0)âS(0)
〉−1/2

] .

The fields d̂1,2 whose intensity cross-correlation is measured can be expressed in terms of the

anti-Stokes field âAS, which in turn can be expressed in terms of the vibration (via eq. (6.5));

since intensity correlations do not respond to the vacuum, the open port of the beam-splitter

used in the intensity correlation measurement plays no role, and the conditional correlation

above can be written as,

g (2)
AS|S(t ) =

〈
â†

S(0)b̂†(t )b̂†(t )b̂(t )b̂(t )âS(0)
〉

〈
â†

S(0)âS(0)
〉−1 〈

â†
S(0)b̂†(t )b̂(t )âS(0)

〉2 . (6.6)

After the detection of a Stokes photon (i.e. for t > 0), the state of the vibrational mode (eq. (6.4))

has disentangled from that of the Stokes mode, so that expectation values of products of

operators in their joint state factorize into products of expectation values; thus,

g (2)
AS|S(t > 0) =

〈
b̂†(t )b̂†(t )b̂(t )b̂(t )

〉
|S〈

b̂†(t )b̂(t )
〉2
|S

= g (2)
b|S . (6.7)

That is, the conditional intensity correlation of the anti-Stokes field gives the intensity correla-

tion of the vibrational mode. Immediately after the write pulse, i.e. at t = 0, and in the limit of

a small probability p of exciting a vibrational Fock state, explicit evaluation of eq. (6.6) on the

state |Ψ〉S,b of eq. (6.3) yields

g (2)
AS|S(0) ≈ 4P (2,2)

P (1,1)
= 4p (6.8)

where P (n,n) = 〈n,n|(|Ψ〉S,b〈Ψ|) |n,n〉 = pn is the probability of finding n pairs of excitations

in the vibrational mode and Stokes field upon a projective measurement on state (6.3) in the

Fock state basis.

In our experiment we measure the number of events Nd1,d2,aS where photons were detected

simultanously in modes d1,d2, and aS (i.e. triple coincidence), and normalize it to the product

of the number of events Ndi ,aS (i = 1,2) where photons are detected simultaneously in the

Stokes mode and one of the anti-Stokes detectors (i.e. a two-fold coincidence); we thus

measure (130),

α≡ Nd1,d2,aS NaS

Nd1,aS Nd2,aS

. (6.9)

It is important to note that, in general, α is not equivalent to g (2)
AS|S in eq. (6.8). More precisely, if

the detection efficiency of the herald mode aS is 0 < η≤ 1 (which we model as a beam splitter

with transmittance η placed before the detector) we find (see Supplementary information)

α≈ (4−2η)
P (2,2)

P (1,1)
= (4−2η)p. (6.10)
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Thus, in the limit of low detection efficiency of Stokes photons (i.e. η¿ 1) we have that

α= g (2)
AS|S. In the experiment, η≈ 10%, so that α≈ g (2)

AS|S (to within 5 %).

6.3 Experimental Realization

6.3.1 Setup and measurement procedure

Our experimental setup is an upgraded version of that presented in ref. (135). Two synchro-

nized laser pulse trains at 810 nm and 695 nm of duration ∆t ≈ 100 fs are produced by a Ti:Sa

oscillator (Tsunami, Spectra Physics, 80 MHz repetition rate) and a synchronously pumped

frequency-doubled optical parametric oscillator (OPO-X fs, APE Berlin), respectively. The

write pulses are provided by the OPO, while the Ti:Sa provides the read pulses, which are

passed through a delay line before being overlapped with the OPO output on a dichroic mirror.

The sample is a synthetic diamond crystal (∼ 300 µm thick, from LakeDiamond) cut along

the (100) crystal axis and is probed in transmission using two microscope objectives (numeri-

cal aperture 0.8 and 0.9). The laser light is blocked using long-pass and short-pass tunable

interference filters (Semrock), leaving only a spectral window of transmission for the Stokes

signal from the write pulse (mode aS) and the anti-Stokes signal from the read pulse (mode

aAS). The transmission is collected in a single mode fiber (for spatial mode filtering) and then

the two signals are separated with a tunable long-pass filter used as a dichroic mirror. After an

additional band-pass filter (see Supplementary Information, Section VI) each signal is coupled

into a multi-mode fiber; subsequently, the Stokes field is sent to a single photon counting

module (SPCM, Excelitas), while the anti-Stokes field is split at a 50:50 fiber beam-splitter and

directed onto two SPCM’s. The three SPCM’s are then connected to a coincidence counter

(PicoQuant TimeHarp 260).

We only record the coincidence events where a click in one of the anti-Stokes channels was

preceded by a click in the Stokes channel. This allows us to find heralded coincidence events

(within the same laser repetition), as well as to build a delay histogram using the Stokes channel

as the start and either of the anti-Stokes channels as the stop. These start-stop histograms

are used to compute the Stokes – anti-Stokes intensity cross-correlation as explained in (135).

Therefore all relevant coincidences required to estimate α are available.

6.3.2 Ambient thermal state

We start by verifying that following the write pulse the Stokes field is well described by the

state of eq. (6.3): when marginalized over the state of the vibrational mode, the Stokes field

is thermal. Indeed, we find in Fig. 6.2 (red bars) that the intensity correlation function of

the Stokes field at zero time delay is g (2)
S (0) = 2, as expected for a single mode thermal state.
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Figure 6.2: Unconditional Stokes and anti-Stokes correlations. Two-photon coincidence
histograms of the Stokes field âS (write pulse energy 60 pJ, acquisition time 10 min) and anti-
Stokes field âAS (read pulse energy 372 pJ, acquisition time 60 min). For the anti-Stokes field the
coincidences are recorded between the detectors measuring d̂1 and d̂2 as in Fig. 6.1b, while the
write pulse is blocked. For the measurement of the Stokes field, a beam splitter is added in the
path of mode âS. The start-stop delay (horizontal axis) is scaled in multiples of the repetition
period ≈ 12.5 ns. After normalizing by the average number of accidental coincidences (the
peaks non-zero start-stop) the value at zero time delay represents the intensity correlation
of the Stokes and anti-Stokes fields, namely g (2)

S (0) = 2.0±0.1 and g (2)
AS (0) = 1.73±0.11. The

hatched region in gray, omitted in the analysis, are affected by spurious coincidences due to
cross-talk between the two detectors, which arise when hot-carrier-induced light emission
from one detector (138) is received by the other detector.

Similarly, in the absence of the write operation, the anti-Stokes signal should reflect the

thermal statistics of the vibrational mode. To check this, we measure the (unconditional)

intensity correlation of the anti-Stokes mode, shown in Fig. 6.2 (blue bars). The value of

g (2)
AS (0) = 1.73±0.11, is slightly lower than the expected value of 2 for a single mode thermal

state, but higher than the value 1+ 1
N for a thermal state of N > 1 modes (24). We attribute this

discrepancy to noise in the anti-Stokes channel coming from degenerate four-wave mixing

in the sample (which includes the second-order Stokes–anti-Stokes process (36) discussed

earlier). We thus confirm a single vibrational mode in an ambient thermal state, and that the

result of the write operation is well described by the two-mode squeezed state of eq. (6.3).
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Figure 6.3: Sub-Poissonian anti-Stokes statistics. Dependence of the heralded vibrational
statistics on the write pulse energy and on the corresponding estimated probability of creating
at least one Stokes photon per pulse, nS = p

1−p . The normalized Stokes–anti-Stokes correlations
are shown as an inset. The write–read pulse delay is fixed at zero and the read pulse energy
at 322 pJ. Statistical error bars are obtained from the square root of the total number of
events. Blue lines are models (see Supplementary Information), using the estimated detection
efficiency (10 %) and a relative efficiency of the read process (relative to the Stokes emission
cross-section) of 30 % as the only two adjustable parameters (common to both panels).

6.3.3 Fock state prepartion

In order to prepare the vibrational mode in a Fock state, we send a write pulse and herald

the success of this operation by detecting a Stokes photon. When a subsequent read pulse

retrieves the vibrational state, and is subjected to intensity correlation measurements, we find

that α(0) ≈ g (2)
AS|S(0) < 1, as shown in fig. 6.3 (main panel). Thus, the conditional anti-Stokes

field exhibits sub-Poissonian statistics. But since we know that the anti-Stokes field is faithful

to the vibrational state, and specifically that g (2)
AS|S = g (2)

b|S, we are able to conclude that the

vibrational mode exhibits sub-Poissonian number statistics. From the value of α(0) ≈ 0.06 at

the lowest powers of the write pulse and the known detection efficiency of the Stokes field

η≈ 10%, our theoretical model allows us to estimate the probability of having excited the Fock

state |1〉 to be (eq. (6.10)), 1−p ≈ 98.5%.

With increasing power of the write pulse, mixtures of states higher up in the Fock ladder are

excited. As shown in Fig. 6.3, the sub-Poissonian character of α decreases with increasing

pump power, as expected from the simple modelα(t = 0) ∝ p = tanh2(g w
S Tw) ≈ (g w

S Tw)2 ∝ nw
p ,
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where nw
p is the number of photons per write pulse. in tandem, the Stokes–anti-Stokes correla-

tion reduces as 1/nw
p (Fig. 6.3 inset). These trends are consistent with increasing probability of

exciting two or more vibrational quanta (139; 24) (see Supplementary Information).

6.3.4 Fock state dynamics

The decay of the excited vibrational Fock state can be probed by allowing it to evolve freely

after the write pulse. In the experiment, we do this by employing a variable optical path

length to impose a time delay t between the write and read pulses. Figure 6.4 summarizes the

observed time-dependence of the excited Fock state. When the write and read pulses overlap

(t = 0), we observe strong Stokes–anti-Stokes number correlation g (2)
S,AS(0) ≈ 30, consistent with

the generation of a Stokes-vibration two-mode squeezed state (eq. (6.3)).

Simultaneously, α, which reflects the intensity correlation of the conditioned vibrational state

(eq. (6.4)), indicates sub-Poissonian statistics of the vibrational mode, with α(t = 0) ≈ 0.11 < 1.

Conditional on the detection of a Stokes photon, the vibrational mode is thus faithfully

prepared in the Fock state |1〉.

Subsequent iterations of the experiment probe the vibrational state after a controlled time de-

lay. Figure 6.4a shows the decay of the Stokes–anti-Stokes correlation. The initial value g (2)
S,AS(0)

quantifies the degree to which the Stokes field and vibrational mode are correlated by the

write operation; at later times t > 0, after the Stokes field is detected, g (2)
S,AS(t ) ∝〈b̂†(t )b̂(t )〉|S,

so that the data in Fig. 6.4a, in conjunction with a model (shown in blue, consisting of the

ideal prediction convolved with the known instrument response), allows us to infer the decay

rate τm = 3.9±0.3ps (bounds for 95% confidence). This value is consistent with the previously

reported vibrational lifetime of 3.6 ps (14).

In parallel, as shown in fig. 6.4b, α(t) mirrors this evolution, starting at α(t < 0) = 1.9 ±
0.6 (thermal state), dropping to α(0) = 0.11± 0.01 at zero delay (Fock state |1〉), and then

returning toward its equilibrium value as the prepared vibrational Fock state thermalizes with

its environment. (The larger uncertainty in the data at long and at negative delays is due

to the reduced rate of coincidences, because of the small thermal occupancy, n̄ ≈ 1.5 ·10−3,

of the vibrational mode.) This behaviour is captured by a simple model (shown as a blue

line in Fig. 6.4b), based on the fact that α(t) is the intensity correlation of the vibrational

mode (eq. (6.7)) – which can be calculated using an open quantum system model for the

vibrational mode – together with a contribution from background noise in the anti-Stokes

field (see Supplementary Information),

α(t ) ≈ 2

P1(0)

[
1− 1

(1+ n̄(e t/τm −1))2

]
+α0, (6.11)

where P1(0) ≈ 0.985 is the probability of having created the vibrational Fock state |1〉 condi-

tioned upon the detection of a Stokes photon, and α0 = 2×0.04 corresponds to twice the

anti-Stokes noise-to-signal ratio conditioned on Stokes detection (i.e., α0/2 ≈ 1/g (2)
S,AS(0), see
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Supplementary Information). The decay of sub-Poissonian statistics of the vibrational mode

is consistent with the decay of the Fock state |1〉 to the ground state |0〉.

The measured decay of the conditional intensity correlation, in conjunction with a decoher-

ence model, can be used to extract the number distribution Pn(t ) of the conditional vibrational

state (see Supplementary Information) – the probability to find the vibrational mode in the

Fock state |n〉 at time t after a click on the Stokes detector. This projection is plotted in Fig. 6.4c.

Noteworthy is the high purity of the conditional vibrational state with respect to the Fock state

|n = 1〉, since its normalized second order correlation is 2P2

P 2
1
≈ 0.02. This is much lower than

the measured parameter α≈ 0.1 (because the background noise impinging on the anti-Stokes

detectors affects α) and highlights the potential of the technique to produce high-purity single

phonons.

6.4 Conclusion

We have demonstrated for the first time that a high-frequency Raman-active vibrational mode

can be prepared in its n = 1 Fock state at room temperature. Heralded intensity correlation

measurements confirm the sub-Poissonian statistics of the conditional vibrational state. We

further probed the decay of the vibrational Fock state, akin to similar measurements on

microwave photons (56; 140).

This research opens a door to the study of quantum effects in the vibrational dynamics of

Raman-active modes in immobilized molecules (50), liquids, gases (44; 18; 45) and solid-state

systems. Vibrational states in Raman-active solid-state systems at room temperature may even

be viable candidates for quantum technology if the coherence time and readout efficiency can

be improved. Coherence of the longitudinal optical phonon modes of diamond is known to

be limited by decay through the so-called Klemens channel (141; 142; 49). Proposals to close

this pathway include the creation of a phononic band gap at the atomic scale obtained by

growing 12C −13C super lattices (14). Readout efficiency and heralding rate could be improved

by coupling the Raman-active system to small-mode volume optical or plasmonic cavities

(78; 143; 144), or by employing resonant Raman scattering (145; 118). Molecular systems are

particularly promising for extending the vibrational lifetime (146). With these improvements,

vibrational modes may be used as a source of high-purity on-demand (anti-Stokes) photons,

or as a buffer memory to produce heralded single photons with an arbitrary choice of the

herald and signal wavelengths and/or bandwidths, or even heralded frequency conversion at

the single photon level.
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Figure 6.4: Decay of vibrational Fock state. Measured Stokes–anti-Stokes correlations (a),
and heralded vibrational mode intensity correlation (b) as a function of write–read delay. The
measurements (full circles) are taken with a pulse energy of 62 pJ in the write pulse and 409 pJ
in the read pulse, with an acquisition time of 60 min for all points except the one at −6.3 ps,
which was acquired over 8 hours. Statistical error bars are obtained from the square root of the
total number of events detected in each case. Full circles are measured data and blue lines are
from the model, see main text and eq. (6.11). The prediction from the model without the added
noise on the anti-Stokes detectors is shown with a dashed line in (b). Green bands in panels
(a,b) show the region where a non-classical model is required to explain the observations; red
bands indicate where a classical model suffices. (c) Fock state distribution of the conditional
vibrational mode inferred from the data via our model.
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7 Bell correlations between light and
vibration

In this chapter we demonstrate Bell correlations between light and a collective vibration in

diamond. We experimentaly demonstrate a violation of the CHSH inequality that persists for

∼ 5 ps, and which has a maximum value of S = 2.360±0.025. We provide a detailed description

of the experimental implementation, and provide a thorough model predicting our results

and accounting for experimental imperfections.

I designed the experiment in collaboration Prof. Christophe Galland and Prof. Nicolas San-

gouard. I made the necessary modifications to the experimental setup, performed the ex-

periment, and analyzed the data. The manuscript was prepared in collaboration with all the

authors.

The content of this chapter is reproduced from:

Tarrago Velez, Santiago, Vivishek Sudhir, Nicolas Sangouard, and Christophe

Galland. "Bell correlations between light and vibration at ambient conditions."

Science Advances 6, no. 51 (2020): eabb0260.

Further information about the code used for instrument control and data analysis can be

found in Appendix 12.

Additionally, we show and alternative way of modeling the experiment in Appendix 11, where

we use the Jones matrix formalism to explore the potential sources of error present in the

experiment. The approach is not as rigorous as the one presented in this chapter, but the

intuition it provides was invaluable when building and troubleshooting the experiment.

7.1 Main Text

In the hierarchy of non-classical states, the Bell correlated states represent an extreme. When

two parties share such a state, information can be encoded exclusively in the quantum corre-

lations of the random outcomes of measurements between them (30; 147). The strength of
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such correlations is quantified by Bell inequalities, whose violation demarcates Bell correlated

states from less entangled ones (34).

Experimental realizations of Bell correlated states — whether between polarization states

of light (148; 31), individual atomic systems(149; 150; 151), in atomic ensembles (152; 153;

154), superconducting ciruits (155; 156), or solid-state spins (157; 158) — call for isolated

systems that strongly interact with a well-characterized probe. Even mesoscopic acoustic

resonators have been engineered to exhibit Bell correlations (132) thanks to long coherence

times (achieved at milli-Kelvin temperatures) and strong interaction with light (by integration

with an optical micro-cavity).

Intriguingly, recent experiments have shown that high-frequency vibrations of bulk crystals

(69; 159; 12; 160; 43; 135) or molecular ensembles (18; 13; 38) can mediate non-classical

intensity correlations between inelastically scattered photons under ambient conditions (i.e.

at room temperature and atmospheric pressure). In the pioneering work of Lee et al. (69), two

phonon modes in spatially separated bulk diamonds had been entangled with each other by

performing coincidence measurements and post-selection on the Raman-scattered photons.

Recently, leveraging a new two-tone pump-probe method (135), it became possible to follow

the birth and death of an individual quantum of vibrational energy (i.e. Fock state) excited in

a single spatio-temporal mode of vibration in a bulk crystal (161).

Remarkably, these experiments did not necessitate specially engineered subjects; they reveal

fundamental quantum properties of naturally occurring materials. Taken together, these

developments raise new questions: Are the correlations spontaneously created between light

and vibration during Raman scattering strong enough to violate Bell inequalities? How is the

vibrational coherence time reflected in the dynamics of the hybrid light-vibration quantum

correlations?

In this Letter, we demonstrate for the first time Bell correlations arising from the Raman

interaction between light and mechanical vibration at ambient conditions, and use them to

resolve the decoherence of the vibrational mode mediating these correlations. While this

proof-of-principle experiment is realized on a vibrational mode in a bulk diamond crystal,

the effect that is revealed should be universally observable in Raman-active molecules and

solids. Indeed, our scheme for producing hybrid photon-phonon entanglement is agnostic to

sample details and is passively phase-stabilized, while our two-color pump-probe technique

can address Raman-active vibrations irrespective of any polarization selection rules – all of

which differ from earlier work (69). Our results demonstrate the strongest form of quantum

correlations and is thus a powerful generalization of techniques deployed in atomic physics to

study the decoherence of entanglement (162).
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Figure 7.1: Conceptual scheme and simplified experimental layout. a, Space-time diagram
representation of the time-bin entanglement procedure. b, Corresponding experimental
implementation unfolded in space along the horizontal axis (see Suppl. Material, Section 1
for details). Contents of the dashed boxes illustrate the time sequence and polarization of the
excitation pulses (Gaussian wavepackets) and Raman-scattered photons (wavy arrows), during
a single repetition of the experiment. The polarization states are denoted by D (diagonal), H
(horizontal) and V (vertical). Note that in our geometry the polarization of Raman scattered
photons is orthogonal to that of the incoming pulses. The vertical dashed lines in panel a
correspond to different points in space along the setup. c, Energy diagram of the relevant
Raman interactions, showing the center wavelengths used in the experiment.

Materials and Methods

The inelastic scattering of light off an internal vibrational mode — vibrational Raman scatter-

ing — is analogous to the radiation-pressure interaction between light and a mechanically

compliant mirror (78). Specifically, the Raman interaction consists of two processes. In the

Stokes process, a quantum of vibrational energy ~Ωv (a phonon) is created together with

a quantum of electromagnetic energy ~ωs (a Stokes photon); in the anti-Stokes process a

phonon is annihilated while an anti-Stokes photon is created at angular frequency ωa . Energy

conservation demands that ωs,a ±Ωv = ωin respectively, where ωin is the frequency of the
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incoming photon.

In our experiment, a diamond sample — grown along the [100] direction by high-pressure

high-temperature method, about 300 µm thick and polished on both faces along the (100)

crystallographic plane — is excited with femtosecond pulses from a mode-locked laser through

a pair of high numerical aperture objectives (NA=0.8). (The effective length over which the

Raman interaction takes place is of the order of 2 µm.) Since the pulses are shorter than the

coherence time of the Raman-active vibration, but longer than its oscillation period, there

exists perfect time correlation between the generation (resp. annihilation) of a vibrational

excitation and the production of a Stokes (resp. anti-Stokes) photon. In the following, we show

how to leverage this time correlation to generate time-bin entanglement (163) between two

effective photonic qubits that reveal properties of the mediating phonon mode, and quantify

the strength of the quantum correlations using the CHSH form of the Bell inequality (148).

The scheme (Fig. 7.1) starts when a pair of laser pulses, labeled “write” and “read” impinging

on the sample. Each is a classical wavepacket with ∼ 108 photons per pulse. Their central

frequencies are independently tunable, which allows spectral filtering of the Stokes field

generated by the write pulse and the anti-Stokes field generated by the read pulse, which are

sent to separate detection apparatuses. The delay between them, ∆t , is adjustable to probe

the decoherence of the vibrational mode. Each pulse passes through an unbalanced Mach-

Zehnder interferometer and is split in two temporal modes separated by ∆Tbin À∆t , which

we label the “early” and “late” time bins. ∆Tbin ' 3 ns is chosen to be much longer than the

expected vibrational coherence time, which ensures that there can be no quantum-coherent

interaction between the two time bins mediated by the vibrational mode.

At room temperature, the thermal state of the vibrational mode (161) (at 39.9 THz) as a mean

occupancy 1.5×10−3. The initial state of the vibration in the two time bins is therefore very

well approximated by the ground state |0v 〉 ≡ |0v,E 〉⊗|0v,L〉, where the subscripts E and L stand

for the early and late time bins, respectively. The Stokes (s) and anti-Stokes (a) fields are

also in the vacuum state at the start of the experiment, denoted by |0s〉 ≡ |0s,E 〉⊗ |0s,L〉 and

|0a〉 ≡ |0a,E 〉⊗ |0a,L〉.

The interaction of the write pulse (split into the two time bins) with the vibrational mode

generates a two-mode squeezed state of the Stokes and vibrational fields (161) in each time

bin. A read pulse delayed by ∆t (also split into the two time bins) maps the vibrational state in

the respective time bins onto its anti-Stokes sideband.

Since we perform the experiment in the regime of very low Stokes scattering probability and

post-select the outcomes where exactly one Stokes photon and one anti-Stokes photon were

detected (see SM for the treatment of triple coincidence), our scheme can be described in a sub-

space of the full Hilbert space that contains one vibrational excitation only, shared by the early

and late time bin. We therefore introduce the shortened notation |Ev 〉 ≡ v̂†
E |0v 〉; |Lv 〉 ≡ v̂†

L |0v 〉
for the single phonon states (here v̂† is the phonon creation operator), and |Es〉 ≡ ŝ†

E |0s〉;
|Ls〉 ≡ ŝ†

L |0s〉 for the Stokes single photon states (here ŝ† is the Stokes photon creation operator).
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Conditioned on the detection of a single Stokes photon, the hybrid light–vibrational state can

be written in the basis {|Es〉, |Ls〉}⊗ {|Ev 〉, |Lv 〉} = {|Es〉⊗ |Ev 〉, |Es〉⊗ |Lv 〉, |Ls〉⊗ |Ev 〉, |Ls〉⊗ |Lv 〉}.

In this sense, we can speak of vibrational and photonic qubits encoded in the time bin basis.

Within each time bin, the read pulse implements (with a small probability ∼0.1%) the map

|Es ,Ev 〉 → |Es ,Ea〉 and |Ls ,Lv 〉 → |Ls ,La〉, where we have defined |Ea〉 ≡ â†
E |0a〉 and |La〉 ≡

â†
L |0a〉 (here â†

E ,L are the creation operators for the anti-Stokes photon in each time bin).

Detection of an anti-Stokes photon in coincidence with a Stokes photon from the write pulse

heralds that the time bin qubit was successfully mapped onto an anti-Stokes photonic qubit.

By passing the Stokes and anti-Stokes photons through an unbalanced interferometer identical

to the one used on the excitation path (Fig. 7.1b, and SM), “which-time” information is

erased. Moreover, the use of polarizing beam splitters in the interferometer maps the time-bin-

encoded Stokes and anti-Stokes photonic qubits onto polarization-encoded qubits after they

are temporally overlapped, |Es ,Ea〉→ |Vs ,Va〉 and |Ls ,La〉→ |Hs , Ha〉 where H and V refer to

two orthogonal polarizations of the same temporal mode. We thus prepare the heralded Bell

correlated state

|ψs,a〉 = 1p
2

(
|Vs ,Va〉−e iφ|Hs , Ha〉

)
(7.1)

where the phase φ is the sum of the phases acquired by the Stokes and anti-Stokes photons

coming from the late time bin, with respect to the early time bin (the apparatus is set to realize

φ= 0). As detailed in Fig. S1, the experiment is passively phase-stable by design.

In order to prove Bell correlations mediated by the room-temperature macroscopic vibration,

we send the Stokes and anti-Stokes signals to two independent measurement apparatus

labelled Alice and Bob, respectively, who perform local rotations of the Stokes and anti-Stokes

states before making a projective measurement in the two-dimensional basis {|Vs〉, |Hs〉} and

{|Va〉, |Ha〉}, respectively. Each party will obtain one of two outcomes, which we label “+” or

“−”. The number of coincident events where Alice obtains the outcome x ∈ {+,−} and Bob

obtains the outcome y ∈ {+,−} is denoted nx y . We then define the normalized correlation

parameter

Eθ,ϕ = n+++n−−−n+−−n−+
n+++n−−+n+−+n−+

(7.2)

where the angles θ and ϕ label the rotations that Alice and Bob respectively perform on their

qubits before the measurement. It is defined in such a way that fully correlated events for a

given pair of rotation angles {θ,ϕ} yield Eθ,ϕ = 1 while perfectly anti-correlated events yield

Eθ,ϕ =−1. In fact the CHSH parameter (147),

S = Eθ1,ϕ1 +Eθ2,ϕ2 +Eθ1,ϕ2 −Eθ2,ϕ1 (7.3)

certifies Bell correlations when |S| > 2. In particular, for our scenario, where we target the

Bell correlated state eq. (7.1), a maximal violation is expected for {θ1,θ2} = {0, π2 } and {ϕ1,ϕ2} =
{−π

4 , π4 }.
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Figure 7.2: Time-resolved photon-phonon Bell correlations. The CHSH parameter S
(eq. (7.3)) as a function of write – read delay∆t , with a zoom near∆t = 0 as an inset. Full circles
are experimental data, while error bars are computed from a Monte Carlo simulation (see SM,
Section 2 for details). The solid gray line is obtained from the model with zero pure dephasing
and no other free parameters, while dashed lines illustrate the impact of two different non-zero
values. The blue region, demarcated by 2 < |S| ≤ 2

p
2, certifies Bell correlations, while the gray

region above it is forbidden for non-superluminal theories.

Results

Observation of Bell correlations

Figure 7.2 shows the CHSH parameter (eq. (7.3)) measured for a varying write–read delay. Our

data demonstrates a clear violation of the Bell inequality (whose classical bound is marked as

the white region) which persists for more than 5 ps, about 50 times longer that the write and

read pulse duration. While this timescale is consistent with the phonon lifetime in diamond,

the dynamics of Bell correlations in fact strongly depends on experimental noise and non-

idealities, as explained in SM, Sections 4-6.

At a time delay of 0.66 ps, for which there is vanishing temporal overlap of the write and read

pulses within the sample and correlations are only mediated by the vibration, we measure

S = 2.360±0.025. This confirms Bell correlations mediated by the vibration that acts as a

room-temperature quantum memory (15; 16; 19; 20; 17).

A detailed analysis of the event statistics (see SM, Section 6) enables us to make a more precise

claim concerning the violation of the Bell inequality (164), without assuming that our data is

independent and identically distributed. From this analysis, we can claim with a confidence

level of 1 − 6×10−7 that the post-selected Stokes – anti-Stokes state features Bell correlations
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Figure 7.3: Phonon-mediated two-photon interference. a, Normalized single-photon count
rates on the two anti-Stokes detectors as a function of Bob’s rotation angle ϕ. The ideal
marginal state is the statistical mixture p|Ea〉〈Ea |−(1−p)|La〉〈La |, with p = 1

2 ; data is consistent
with |p − 1

2 | = 0.027. Error bars are several times smaller than symbol size. b, Two-photon
interferences in the Stokes – anti-Stokes coincidence rate as a function of Bob’s rotation angle
ϕ. The normalized correlation parameter E(θ,ϕ) (eq. 7.2) is plotted for two fixed angles θ = 0
(blue squares) and θ =π/2 (red circles) for Alice’s rotation on the Stokes state, at a fixed write
– read delay of ∆t = 0.66 ps. Experimental data are represented by full symbols (error bars
are smaller than symbol size); solid lines are fitting curves to extract the visibility (see SM for
details).

with a minimum value of the CHSH parameter Smin = 2.23.

Note that we rely on the fair sampling assumption (165) since the overall detection efficiency

in our experiment is not high enough to test a Bell inequality without post-selection of events

where at least one detector clicks on each side (Alice and Bob). However, it can be shown

(166) that when all detectors are equally efficient – a condition well approximated in our

experiment – the post-selected data is faithful to that from an ideal experiment where lossless

devices measure a state obtained by quantum filtering the actual Stokes — anti-Stokes state.

By reporting a CHSH value higher than 2, we show that this filtered state is Bell-correlated.

To gain further insight into the nature of the Bell correlated state prepared in the experiment,

and the reasons why the quantum bound (|S| = 2
p

2) is not saturated, we perform further

measurements. Figure 7.3a shows the one-photon counts as Bob’s analysis angle is rotated.

For an ideal Bell state, the marginal is maximally mixed, and should lead to no dependence of
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the one-photon counts on the analysis angle. The observed data is consistent with a deviation

from a maximal mixture by 2.7%.

Figure 7.3b shows two-photon interference for various settings of Bob’s measurement angle

for two fixed values of Alice’s measurement angle, θ = 0 , π/2, and a fixed write-read delay

of 0.66 ps. The interference is consistent with a model (see SM, Section 3) where the Stokes

interaction creates a two-mode light-vibration squeezed state, and that anti-Stokes scattering

implements a beam-splitter interaction (161).

The curve for the setting θ = 0 (Fig. 7.3b blue trace) reveals how accurately we can prepare

and distinguish the two states |Es ,Ea〉 and |Ls ,La〉. At a given delay, the visibility has an upper

limit related to the strength of Stokes – anti-Stokes photon number correlations, Vmax = g (2)
s,a−1

g (2)
s,a+1

(162), where g (2)
s,a is the normalized second-order cross-correlation (135) (see SM). The value

extracted from the fit is Vθ=0 = 93±1%, in agreement with the independently measured value

of g (2)
s,a(0) = 25, showing that the signal-to-noise ratio in the cross-correlation is indeed the

limiting factor for the visibility in this setting. This visibility could be improved by reducing

the power of the write beam (to decrease the probability of creating multiple Stokes-phonon

pairs in one pulse) and that of the read beam (to reduce the noise from degenerate four-wave

mixing). Note that due to the small interaction length (∼ 2 µm), phase matching is not a

relevant concern.

The coincidence curve for θ = π
2 (Fig. 7.3b red trace) corresponds to a rotated measurement

basis for Alice and is sensitive to the fluctuations of the phaseφ in the superposition of eq. (7.1).

To accomodate this possibility, we model the relative phase φ in eq. (7.1) to be distributed

as a zero-mean Gaussian random variable with variance σ (see SM). We extract a visibility

Vθ=π/2 = 76% from the fit to the experimental data, which is reproduced by the model for a

standard deviation σ= 0.31 rad (equivalent to a ±0.18 fs timing uncertainty maintained over

∼ 4 minutes).

Ultimately, we are able to predict all measured quantities from independently characterised

parameters, namely the Raman scattering probability, the overall Raman signal detection

efficiency, and the dark count rate of the detectors (see SM, Section 4).

Decoherence dynamics of the phonon mode

From the temporal behavior of the CHSH parameter we can extract the rate of pure dephasing

of the vibrational mode mediating the Bell correlations. In the absence of pure dephasing, the

CHSH parameter decays with the collective vibrational mode. Pure dephasing, in contrast,

scrambles the phase φ of the superposition in state (7.1). We model it as a random-walk of

the phase at the characteristic time scale γ−1, so that the standard deviation of the phase φ

increases with the write–read delay (in addition to technical fluctuations) as σ=√
γ∆t (see

SM, Section 3.6). The model is plotted against the data of Fig. 7.2 (solid line), and the best

agreement with the data is obtained with a pure dephasing rate identically null (other pure
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dephasing rates are plotted for comparison), consistent with previous measurements of the

coherence time of a single vibrational mode in diamond using transient coherent ultrafast

phonon spectroscopy (72).

Discussion

For the first time, we have produced Bell correlations between two photons through their

interaction with a common Raman-active phonon at room temperature, and probed their

decay with sub-picosecond resolution. Remarkably, our data show that Bell correlations are

preserved for more than 200 oscillation periods at room temperature, evidencing a mechan-

ical coherence time in par with the state-of-the-art for microfabricated resonators under

high vaccum (167). Optical phonons in diamond indeed exhibit a room temperature “Q-

frequency product” of ∼ 4×1016 Hz, making them attractive resonators for ultrafast quantum

technologies.

Such highly coherent vibrational modes, together with the toolset of time-resolved single

photon Raman spectroscopy that we have demonstrated here, should allow to entangle two

vibrational qubits via entanglement swapping (168), or to perform optomechanical conversion

between photonic qubits at different frequencies (169), among other possible applications.

Much longer vibrational coherence times could be achieved with ensembles of molecules that

are decoupled from the phonon bath by surface engineering (170) or optical trapping and

cooling (171). Besides, molecules in the gas phase exhibit more complex mechanical degrees

of freedom, including rotational and rovibrational modes (172), with increased coherence

time and rich opportunities for quantum information processing (173). In the future, our

scheme could be applied to individual molecules free of heterogeneous broadening using the

enhancement of light-vibration coupling offered by electronic resonances (174), plasmonic

nanocavities (50) or optical microcavities (175).”

In addition to being a benchmark for the robust generation of optomechanical Bell correlations

at room temperature, our work suggests a new class of techniques able to probe the role of

phonon-mediated entanglement in quantum technologies (123), chemistry (176), or even

biology (177).

7.2 Supplementary Information

7.2.1 Experimental Methods

Description of setup and experimental parameters

The full schematic of the experimental setup is shown in Fig. 7.4. We summarize the key

experimental parameters in Table 7.1.
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Figure 7.4: Experimental Setup

Parameter Value
Repetition Rate 80.7 MHz

Write pulse wavelength 695 nm
Stokes wavelength 766 nm

Read pulse wavelength 800 nm
Anti-Stokes wavelength 723 nm

Write pulse energy 25 pJ
Read pulse energy 248 pJ

Total acquisition time per setting 4 min
Average Stokes countrate∗ 35700 s−1

Average anti-Stokes countrate∗ 1750 s−1

Stokes - anti-Stokes coincidence rate∗• 17 s−1

Table 7.1: Summary of relevant experimental parameters.
∗ Calculated using the total countrate of + and − detectors in each detection arm.
• For a delay ∆t = 0.66 ps.

Excitation pulsesA mode-locked Ti:Sapph laser and a synchronously pumped optical paramet-

ric oscillator are used to generate the read and write pulses, respectively. The pulse durations

are about 100 fs and 200 fs for the Ti:Sapph and OPO, respectively. The experiment is repeated

every 12.5 ns, set by the 80 MHz repetition rate of the laser system. The linear polarisation

of the write and read pulses are first rotated by 45 degrees so that half of their intensity is

directed toward the two arms of the unbalanced interferometer, which is constructed with

polarising beam splitters. Light that is vertically polarized travels through the short path,
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while horizontally polarized light travels through the long path. A half-wave plate rotates the

polarisation of all pulses by 90 degrees after the interferometer, yielding the pulse distribution

shown in Fig. 1b of the main text, where the layout was unfolded and modified for clarity. The

delay between the two arms of the unbalanced interferometer is about 3 ns (approximately 1 m

in free space), orders-of-magnitude longer than the phonon lifetime in the sample (≈ 4 ps).

Which-time information erasingThe time-bin entangled state is prepared by erasing temporal

information about the Raman scattering processes. To do so, after the sample the Raman

scattered photons are collected in transmission and passed through the same polarisation-

selective unbalanced interferometer as the one used to create the two time bins in excitation,

but they enter from another input port.

By suitably rotating the polarisation of the incoming pulses and of the Raman scattered pho-

tons, which are related by the symmetry of the vibrational mode under study, we can optimise

the likelihood for the Raman photons to temporally overlap after the second interferometer.

This is achieved when Raman scattered photons from the early time-bin are routed in the

long arm, and vice-versa. Due to the linear polarisation of the Raman scattered fields in our

geometry, this likelihood is close to unity (note that for diamond excited along the [100] crystal

axis the Raman scattered photons are orthogonally polarised with respect to the pump).

In the worst-case scenario where Raman photons are unpolarised, half of them would take the

wrong path and remain distinguishable in time. Accordingly, the likehood to erase which-time

information would drop to one fourth (25%); but the fidelity of the post-selected entangled

state would not be affected. Indeed, as long as the time-bin separation is larger than the

detector jitter, temporal filtering can be performed to exclude the distinguishable events from

analysis. It is worth mentioning here that crystals and molecules with different symmetries

may allow for the storage of polarisation-encoded vibrational qubits, therefore opening new

experimental possibilities to probe photon-phonon entanglement [52].

Additionally, using the same physical interferometer twice - first to define the time bins in

excitation and then to erase the temporal information carried by the Raman scattered photons

- renders our entire setup passively phase-stable, as any fluctuation of the optical path between

two arms occurring on a time scale longer than the travel time for light through the setup

(which is a few tens of nanoseconds) is cancelled by construction (see detailed layout in SI). In

this way, we are insensitive to all types of noise causing path fluctuations in a bandwidth of at

least 10 MHz, which encompasses almost all mechanical and thermal instability.

Impact of birefringenceSpecial care must be taken to avoid birefringence in the setup, as

it would result in a temporal shift between the horizontal (H) and vertical (V) polarisations.

Imperfect temporal overlap translates into a mixed state component as opposed to a pure

entangled state (see Sec. 7.2.3). The short duration of the laser pulses means that the overlap

must be preserved to well below 100 fs, and this must be the case for a relatively broad
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wavelength range of several tens of nm.

Dichcroic mirrors and tunable interference filters in particular have a strong birefringence

when the incident angle is non zero. We mitigate the birefringence induced delay caused by

the dichroic mirror that serves to overlap the write and read pulses on the same spatial mode

by preparing both beams in the vertical polarisation, and then using an achromatic half wave

plate to rotate the polarisation by 45 degrees before the imbalanced polarised interferometer.

Also, we must mitigate the deleterious effect of birefringence in the interference filters used to

reject the write and read laser beams. For this, we use two identical sets (consisting each of a

long pass filter to block the write pulse and a short filter to block the read pulse) and place an

achromatic half wave plate between them. In this way, the Raman scattered light goes through

the second sets of filters after its polarisation was rotated by 90 degrees, so that we ensure

that both polarisations are equally delayed even in the presence of birefringence, and thus the

temporal and spatial overlap is perfectly maintained.

Time-bin to polarisation qubit mappingSince we use polarising beam splitters to route the

photons in the short and long path of the unbalanced interferometer, the polarisation is

the only degree of freedom that distinguishes between the early and late time bin after the

Stokes and anti-Stokes photons are temporally overlapped. More specifically, Raman photons

originating from the early time are vertically polarised, and those from the late time bin are

horizontally polarised.

DetectionAfter the laser rejection filters, the Raman signal is spatially filtered by coupling it

into a S630-HP single mode fiber (Thorlabs, FC/PC). Polarisation control paddles are used to

maintain the same linear polarisation before and after the fiber. The signal is collimated after

the fiber and sent onto a tunable long pass filter, where the Stokes field is transmitted and the

anti-Stokes field is reflected, after which the two fields enter the two detection apparatuses

labelled ‘Alice’ and ‘Bob’, respectively. The birefringence introduced by this filter - especially

for the reflected beam, which has a very strong wavelength and angle dependence - cannot be

easily compensated, and we attribute the main loss of visibility to this element.

At each locations we first use a variable retarder (VR), whose fast axis is rotated by 45 degrees

with respect to the vertical, in order to perform the state rotation (see Sec. 7.2.3 for the mathe-

matical formalism). Subsequently, a polarising beam splitter (PBS) directs the horizontal (H)

and vertical (V) components of the incoming light onto two distinct single photon detectors,

implementing thereby a projective measurement in the H/V basis, equivalent to the early/late

basis for the time bin qubits. After these last PBS, birefringence no longer affects the experi-

ment, and we send the output of each PBS through a tunable bandpass filter centered on the

Stokes or anti-Stokes wavelengths, respectively. Finally, we couple each of the four output

beams into a multi-mode fiber connected to an avalanche photo diode (APD) operated in

Geiger mode, featuring about 50% detection efficiency and 500 ps timing jitter.
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OptimisationBefore running the experiment we check the two-photon correlations in the

{θ = 0,ϕ= 0} and {θ = π
2 ,ϕ= π

2 } configurations, where θ (resp. ϕ) is the state rotation angle

(given by the retardation of the variable retarder) chosen by Alice (resp. Bob). Under ideal

conditions we would expect E(0,0) = E(π2 , π2 ), but we always measure E(0,0) > E(π2 , π2 ) due

to either imperfect alignment or birefringence that was not properly compensated for (see

mathematical explanation in Sec. 7.2.3). As a final step we slightly change the angle of the first

long pass filter after the interferometer to maximize the value of E(π2 , π2 ).

Calibration of the Variable Retarders

The liquid crystal variable retarders (VR) (from ARCoptix) allow us to apply a voltage-dependent

delay along one polarisation axis. This axis is set to 45deg, allowing us to rotate the polarisation

state of each photon in a plane containing the vertical and horizontal states (see Sec. 7.2.3).

To avoid any artefact due to the wavelength dependence of the retardation, the calibration of

the VRs at Alice and Bob’s locations is done with the Stokes or anti-Stokes signals, respectively,

by sending vertically polarised light through the VR and measuring the amount of vertically

and horizontally polarised light afterwards using a PBS and two detectors. The phase shift

is then δ= arccos(2T −1), where T is the normalized count rate in the vertical polarisation

detector. Results of this procedure are shown in Fig. 7.5.

0 2 4 6 8

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

H o r i z o n t a l  
V e r t i c a l  

No
rm

aliz
ed

 St
ok

es
 Co

un
ts

V o l t a g e  ( V )
0 2 4 6 8

- π/ 2

0

π/ 2

π

3 π/ 2

2 π b

 S t o k e s
 a n t i - S t o k e s

Ph
as

e S
hif

t (r
ad

)

V o l t a g e  ( V )

a

Figure 7.5: Calibration of variable retarders a, Normalized count rates on the detectors
measuring the vertical and horizontal components of the light after the VR, when vertically
polarised light is sent into the VR. Data for the Stokes channel only are shown. b, Extracted
voltage-dependent phase shifts for the Stokes and anti-Stokes wavelengths.
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7.2.2 Data Acquisition Methods

Data Acquisition

We record the detection events using a custom time-tagging card developed by the Digital

Electronics Laboratory at Politecnico di Milano (Prof. Angelo Geraci) with four input channels

plus a sync channel. Using the sync signal from the mode-locked laser oscillator as a time

reference, we define a detection time window that only records photons originating from the

early time bin and taking the long path in the second interferometer, or vice versa (from late

time bin taking the short path). We discard all other events. Over the acquisition time, we

record the number of single detection events from each detector occurring in the detection

window, as well as the number of times multiple detectors clicked during the same window.

The number of coincidences between the detectors of Alice and Bob correspond to the n±,±
terms used to calculate E . We obtain the two-photon interference curves of Fig. 2 (main text)

at a fixed write-read delay by setting θ = 0 or (θ = π
2 ) and sweeping ϕ.

We ran the Bell tests with the phase setting {θ,ϕ} in the following order: {0, π4 }, {0,−π
4 }, {π2 , π4 },

{π2 ,−π
4 }. We measure for 1 minute at each phase setting before changing the delay between

write and read pulses, which is moved from negative to positive delay. In order to mitigate sys-

tematic errors (drifts in alignment, for example), we repeat the whole measurement sequence

four times, for a total of four minutes per measurement setting at each delay setting. For the

analysis all the counts of the four measurements with the same setting are added together,

and used to compute E and S as explained in the main text.

The value of g (2)
s,a(∆t ) is calculated as

g (2)
s,a = P (s ∩a)

P (s)P (a)
= ns∩a ·R

ns ·na
(7.4)

where R is the number of times the experiment was run (the repetition rate of the laser

system times the acquisition time), ns is the total number of Stokes photons detected (in the

appropriate time window), na is the total number of anti-Stokes photons detected, and ns∩a

is the total number of coincidences between Stokes and anti-Stokes photons, i.e. n(s∩a) =
n+++n+−+n−++n−−.

Error Bars

The error bars displayed on all experimental plots for the normalised correlation parameter

E and CHSH parameter S are calculated using a Monte Carlo approach. For each measure-

ment we model the probability of each coincidence count nxx as a Poissonian distribution

centered on nxx . We then pick a random number from each distribution using the Python

library NumPy, and use it to calculate S (resp. E) for the Bell measurement (resp. visibility

measurement). We repeat this process many times in order to obtain a collection of values for

S (resp. E ), and we take the standard deviation of this distribution to be a faithful estimate for
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the statistical uncertainty of the measurement.

To ensure convergence of the procedure, after each iteration described above, we compare the

average and standard deviation of the accumulated values to the results from the previous

step. We keep repeating this process until the relative difference between two successive steps

is below 10−5 for both the average and standard deviation.

7.2.3 Theoretical Methods

In this section we explain how we model the experiment in order to obtain the fitting function

for the CHSH parameter plotted in Fig. 2 of the main text. We start from the assumptions

that i) the photon-phonon state is described by a two-mode squeezed state with phase noise

and ii) measurements are done with noisy, non-unit efficiency, non-photon number resolving

detectors. We use independent measurements of the squeezing parameter, dark count rates

and efficiencies to show that both the result of the cross-correlation measurement and the

non-local interference pattern for θ = 0 are consistent with these assumptions. We then use the

phase sensitive non-local interference pattern obtained for θ =π/2 to evaluate the amount of

phase noise. The assumption on the state and the measurements together with the knowledge

of the phase noise allows us to predict the time dependence of the CHSH parameter and the

effect of pure dephasing on its decay.

7.2.4 Modelling of the source and detection devices

Source

We consider a source generating Stokes–anti-Stokes photon pairs according to

|ψt 〉 = (1−Th2
g )

1
2 (1−Th2

ḡ )
1
2 eThg s†a†−Thḡ s†

⊥a†
⊥ |0〉 (7.5)

where |0〉 denotes the vacuum for all modes; s and s⊥ are bosonic operators corresponding to

the two orthogonal modes received by Alice and similarly for Bob. In our experiment, these

orthogonal modes correspond to the two time bins, which are subsequently converted into

orthogonal photon polarisations. We have used the short notation Thg = tanh(g ) where g is

the squeezing parameter, is related to the mean photon number in mode s by 〈ψt |s†s|ψt 〉 =
(sinh g )2 = (Shg )2. In the rest of the text, we also use Chg = cosh g . We specifically consider

the symmetric case where g = ḡ .

Detector

We consider photon detectors which do not resolve the photon number. They have an effi-

ciency η (overall detection efficiency including all losses from the source to the detector) and

a dark count probability pdc . A “click" event (electric pulse generated by the detector) is then
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modelled by the POVM [53]

D̂s(ηs) = 1− (1−pdc )(1−ηs)s†s (7.6)

The subscript (here s) specifies the mode which is detected. The dark count probability pdc is

the same for all modes and detectors. To illustrate the validity of the model, consider the Fock

state |n〉. The probability to get a click is 〈n|D̂s(ηs)|n〉 = 1− (1−pdc )(1−ηs)n which equals

one minus the probability to lose all the n photons and to get no dark count.

Choice of measurement settings

Rotations are possibly performed during detection so that the photons can be measured in

several basis. The detected modes are called A and A⊥ for Alice (B and B⊥ for Bob) and are

related to the emission modes by

s =CαA+Sαe iφs A⊥ (7.7)

s⊥ = Sαe−iφs A+CαA⊥ (7.8)

with Cα = cos(α) and Sα = sin(α) and similarly for Bob.

Note that the angles α, β are related to the optical phases introduced by the variable retarders

in the experiment by θ = 2α and ϕ = 2β. To see why, consider for example the rotation of

polarisation by 90◦ from vertical to horizontal. In this formalism, this corresponds to a rotation

angle α=π/2. Experimentally, however, this requires introducing a θ =π phase shift in the

variable retarder (whose axis, we recall, is oriented at 45◦ w.r.t horizontal and vertical).

Phase noise

Consider a mechanism adding a phase which is different for each SPDC process, that is, at a

given run the state can be written as

|ψφ
t 〉 = (1−Th2

g )eThg (e−iφ/2s†a†−e iφ/2s†
⊥a†

⊥ |0〉 (7.9)

where φ changes from run to run according to a Gaussian probability distribution p(φ) =
1

σ
p

2π
e−

φ2

2σ2 . This state can be written as a unitary operation on |ψt 〉 ; i.e. |ψφ
t 〉 = e iφ/2(s†s−s†

⊥s⊥)|ψt 〉.
The unitary e iφ/2(s†s−s†

⊥s⊥) shifts the azimutal angle of a qubit state of the form (Cαs†+eφs Sαs†
⊥)|0〉

by φ. When combining the unitary defining the setting choice and e iφ/2(s†s−s†
⊥s⊥), we get the

following expression for the emission modes as a function of the detected modes

s =CαA+Sαe iφs+φA⊥ (7.10)
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s⊥ = Sαe−iφs+φA+CαA⊥ (7.11)

and similarly for Bob.

Summary

The state which is effectively measured can be written as

|ψα,φs ,β,φa ,φ〉 = (1− tan(g )2)e
(A†,A†

⊥)M

 B †

B †
⊥


|0〉 (7.12)

with

M = tan(g )

(
CαSβe−i (φa−φ) −Sαe−i (φs+φ)Cβ −CαCβ−Sαe i (φs+φ)Sβe i (φa−φ)

Sαe i (φs+φ)Sβe−i (φa−φ) +CαCβ −Sαe i (φs+φ)Cβ+CαSβe i (φa−φ)

)
(7.13)

It is measured according to a model where the POVM element associated to a click in detector

A is given by

D̂ A(ηA) = 1− (1−pdc )(1−ηA)A† A (7.14)

and similarly for A⊥, B , and B⊥. Given that φ is random and changes from run to run, we

derive the probabilities of various measurement outcomes that we then average according to

p(φ).

7.2.5 Cross-Correlation Measurement

We consider the cross-correlation measurement where Alice and Bob choose the settings

α=φs = 0 and β=φa = 0 and measure

g (2)
s,a = 〈ψ0|D̂ A(ηA)D̂B (ηB )|ψ0〉

〈ψ0|D̂ A(ηA)|ψ0〉〈ψ0|D̂B (ηB )|ψ0〉
(7.15)

where |ψ0〉 = |ψ0,0,0,0,φ〉. A straightforward calculation (along the same lines as [53] gives the

following explicit expression

g (2)
s,a =

1− (1−pdc )
1−Th2

g

1−Th2
g (1−ηA)

− (1−pdc )
1−Th2

g

1−Th2
g (1−ηB )

+ (1−pdc )2 1−Th2
g

1−Th2
g (1−ηA )(1−ηB )(

1− (1−pdc )
1−Th2

g

1−Th2
g (1−ηA )

)(
1− (1−pdc )

1−Th2
g

1−Th2
g (1−ηB )

) (7.16)

From our experimental data, we can extract the following approximate values, as explained in

Sec. 7.2.10, Th2
g = 0.0022 i.e. g = 0.047, ηA = 0.1, ηB = 2.54×10−4 (this includes the readout

efficiency, i.e. anti-Stokes scattering probability knowing that a phonon was created) and

75



Chapter 7. Bell correlations between light and vibration

pdc = 9×10−6 (probability of dark counts per detection window), with which we get g (2)
s,a = 26.5,

in good agreement with the measured normalised coincidence. In this model, the decoherence

of the collective molecular vibration within one mode at rate γ1 manifests as an exponential

decay of the vibration→anti-Stokes conversion efficiency contained in ηB .

7.2.6 The Interference Pattern for α= 0

Twofold coincidence probability

We consider the interference experiment in which the twofold coincidences on A and B are

recorded when Alice fixes her measurement setting in the s/s⊥ basis (α=φs = 0) while Bob

rotates it in the x-z plane (φa = 0). This situation corresponds to the blue curve of Fig. 3b in

the main text. We can find an explicit expression for these twofold coincidence probabilities

〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉 =
1

N

(
1− (1−pdc )

1−T 2
g

1−T 2
g (1−ηA)

− (1−pdc )
1−T 2

g

1−T 2
g (1−ηB )

+(1−pdc )2 2

C h4
g

1

2− (2−ηA)(2−ηB )Th2
g −ηAηBC2βTh2

g +2(1−ηA)(1−ηB )Th4
g

) (7.17)

The normalization coefficient N accounts for the post-selection of events giving at least one

click at each side, i.e.

N = 1−p(ncA&ncA⊥ |α=π/4,φs = 0,φ)−p(ncB &ncB⊥ |β,φa = 0,φ)

+p(ncA&ncA⊥&ncB &ncB⊥ |α=π/4,φs = 0,φa = 0,φ)
(7.18)

where

p(ncA&ncA⊥ |α,φs ,φ) = (1−pdc )2

(
1−T 2

g

1−T 2
g (1−ηA)

)2

(7.19)

p(ncB &ncB⊥ |β,φa ,φ) = (1−pdc )2

(
1−T 2

g

1−T 2
g (1−ηB )

)2

(7.20)

p(ncA&ncA⊥&ncB &ncB⊥ |α,φs ,β,φa ,φ) = (1−pdc )4

(
1−T 2

g

1−T 2
g (1−ηA)(1−ηB )

)2

(7.21)

and the notation ncA means “no click in mode A", etc.
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Visibility of the Interference Pattern forα= 0

The visibility of the interference pattern is given by

V0 =
maxβ〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉−minβ〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉
maxβ〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉+minβ〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉

(7.22)

Given the structure of (7.12), it is clear that 〈ψ0,β|D̂ A(ηA)D̂B (ηB )|ψ0,β〉 is maximized for β= 0

and minimized for β = π/2. Using the same experimental parameters as above, i.e. Th2
g =

0.0022 i.e. g = 0.047, ηA = 0.1, ηB = 2.54×10−4 and pdc = 9×10−6, we get V0 ≈ 0.92, in good

agreement with the data of Fig. 3b (blue curve) in the main text.

Visibility of the Interference Pattern forα= 0 and Cross-Correlation Measurement

Note that

|ψ0,π/2〉 = (1−Th2
g )eTh2

g (A†B †e−iφ/2−A†
⊥B †

⊥e iφ/2)|0〉 =
(1−Th2

g )1/2eTh2
g (A†B †e−iφ/2 |0〉︸ ︷︷ ︸

|ψ−φ
AB 〉

⊗ (1−Th2
g )1/2e−Th2

g (A†
⊥B †

⊥e iφ/2 |0〉︸ ︷︷ ︸
|ψ̄+φ

A⊥B⊥ 〉

(7.23)

implying

〈ψ0,π/2|D̂ A(ηA)D̂B⊥(ηB⊥)|ψ0,π/2〉 = 〈ψ−φ
AB |D̂ A(ηA)|ψ−φ

AB 〉〈ψ̄
+φ
A⊥B⊥

|D̂B⊥(ηB )|ψ̄+φ
A⊥B⊥

〉 (7.24)

Similarly, we have

|ψ0〉 = |ψ̄−φ
AB⊥

〉⊗ |ψ+φ
A⊥B 〉 (7.25)

We thus have

〈ψ−φ
AB |D̂ A(ηA)|ψ−φ

AB 〉 = TrAB (D A(ηA)|ψ−φ
AB 〉〈ψ

−φ
AB |)

= TrA(D A(ηA)TrB (|ψ−φ
AB 〉〈ψ

−φ
AB |))

= TrA(D A(ηA)TrB (|ψ̄−φ
AB⊥〉〈ψ̄

−φ
AB⊥|))

= 〈ψ̄−φ
AB⊥

|D̂ A(ηA)|ψ̄−φ
AB⊥

〉
= 〈ψ0|D̂ A(ηA)|ψ0〉

(7.26)

and similarly

〈ψ̄+φ
AB |D̂B⊥(ηB )|ψ−φ

AB 〉 = 〈ψ0|D̂B⊥(ηB )|ψ0〉 (7.27)

From the previous equalities, we deduce

〈ψ0,π/2|D̂ A(ηA)D̂B⊥(ηB⊥)|ψ0,π/2〉 = 〈ψ0|D̂ A(ηA)|ψ0〉〈ψ0|D̂B⊥(ηB )|ψ0〉 (7.28)
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and consequently

V0 =
g (2)

s,a −1

g (2)
s,a +1

(7.29)

The previous formula holds for any efficiency. In particular, the temporal evolution of the

visibility can be predicted from the evolution of g (2)
s,a and is thus ultimately limited by the decay

of each single collective vibrational mode.

7.2.7 Interference Pattern for α=π/4

We now consider the interference experiment in which the twofold coincidences on A and

B⊥ are recorded when Alice fixes her setting to (α=π/4,φs = 0) while Bob rotates it in the x-z

plane (φa = 0), which corresponds to the red curve in Fig. 3b of the main text. This interference

is sensitive to fluctuations in the phase of the superposition φ and thus allows to estimate its

uncertainty. For fixed φ, we have

〈ψπ/4,0,β|D̂ A(ηA)D̂B (ηB )|ψπ/4,0,β〉 =
1

N

(
1− (1−pdc )

1−T 2
g

1−T 2
g (1−ηA)

− (1−pdc )
1−T 2

g

1−T 2
g (1−ηB )

+(1−pdc )2 2

Ch4
g

1

2− (2−ηA)(2−ηB )Th2
g −ηAηBC2φS2βTh2

g +2(1−ηA)(1−ηB )Th4
g

)
(7.30)

where the normalisation coefficient is given before. To take into account the uncertainty in φ,

we can first use a Taylor expansion of the term in Eq. 7.30∫
dφp(φ)(1−pdc )2 2

Ch4
g

× 1

ζ−ξ(C2φ−1)
≈ (1−pdc )2 2

Ch4
g

×
(

1

ζ
− 2ξ

ζ2 σ
2 +O(σ3)

)
(7.31)

where we introduced ζ = 2− (2−ηa)(2−ηB )Th)2
g −ηAηBS2βTh2

g + 2(1−ηA)(1−ηB )Th4
g and

ξ= ηaηB S2βTh2
g . The visibility of the interference pattern is given by

Vπ/4 =
maxβ〈ψπ/4,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψπ/4,0,β〉−minβ〈ψπ/4,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψπ/4,0,β〉
maxβ〈ψπ/4,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψπ/4,0,β〉+minβ〈ψπ/4,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψπ/4,0,β〉

(7.32)

Given the structure of the state 7.12, it is clear that 〈ψπ/4,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψπ/4,0,β〉 is

maximized for β = π/4 and minimized for β = 3π/4. Using again the same experimental

parameter, i.e. Th2
g = 0.0022 i.e. g = 0.047, ηA = 0.1, ηB = 2.54×10−4 and pdc = 9×10−6, we

can reproduce the visibility Vπ/4 ≈ 0.76 obtained in Fig. 3b of the main text (red curve) for a

width of the phase distribution σ= 0.31.
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7.2.8 CHSH Value from the Interference Patterns

Note that the correlation functions used to compute the CHSH value are given by

E(α,β) = p(+1+1|αβ)+p(−1−1|αβ)−p(+1−1|αβ)−p(−1+1|αβ) (7.33)

The normalization implies p(+1−1|αβ)+p(−1+1|αβ) = 1−p(+1+1|αβ)−p(−1−1|αβ) and

since p(−1−1|αβ) = 1−p(+1|α)−p(+1|β)+p(+1+1|αβ), we find

E(α,β) = 1−2p(+1|α)−2p(+1|β)+4p(+1+1|αβ) (7.34)

When we record more than 2 clicks in one repetition of the experiment, we choose to bin

the results according to the following rule: When detector A clicks, Alice says that she gets

+1 independently of the event on detector A⊥. Similarly, when Bob gets a click on detec-

tor B⊥, he says that he gets +1 independently of the event on detector B. This means that

p(+1+1|αβ) = 〈ψα,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψα,0,β〉 while p(+1|α) = 〈ψα,0,β|D̂ A(ηA)|ψα,0,β〉 and

p(+1|β) = 〈ψα,0,β|D̂B⊥(ηB⊥)|ψα,0,β〉. Given that we post-select the cases where at least one

click is obtained at each side, we have

E(α,β) = 1− 2

NA
〈ψα,0,β|D̂ A(ηA)|ψα,0,β〉−

2

NB
〈ψα,0,β|D̂B⊥(ηB⊥)|ψα,0,β〉

+ 4

N
〈ψα,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψα,0,β〉

(7.35)

with NA = 1− p(ncA&ncA⊥|α,φs ,φ) and NB = 1− p(ncB &ncB⊥|β,φa ,φ). Considering the

angles maximizing the CHSH value for the singlet, we have

CHSH = E(0,π/8)+E(0,−π/8)+E(π/4,π/8)−E(π/4,−π/8) (7.36)

With the experimental parameters Th2
g = 0.0022 i.e. g = 0.047, ηA = 0.1, ηB = 2.54×10−4 and

pdc = 9×10−6 and the phase uncertainty extracted above σ= 0.31, we find CHSH ≈ 2.36, in

good agreement with the value measured close to zero delay (cf. Fig. 2 in the main text).

7.2.9 Inferring Phonon Coherence Time from the CHSH Value

For the parameters of interest and in agreement with the measurement results, we checked

that single photons are unpolarised on each side, meaning that the marginal probabilities

of single photon detection are uniformly and randomly distributed onto the two detectors,

whatever the measurement angle. This is shown in Fig. 3a of the main text. This means that

the correlation functions only depends on the twofold coincidence probability

E(α,β) = 4

N
〈ψα,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψα,0,β〉−1 (7.37)

79



Chapter 7. Bell correlations between light and vibration

Pure dephasing of the phononic qubit introduces a phase term φ̄ in the state similar to φ in

Eq. 7.9. This phase is different at each run and is distributed according to

p(φ̄) = 1p
2π

σ̄e−φ̄
2/2σ̄2

(7.38)

where the standard deviation σ̄=√
γ∆t depends on both the dephasing rate γ and the time

duration ∆t . From the previous analysis, we know that 〈ψ0,0,β|D̂ A(ηA)D̂B⊥(ηB⊥)|ψ0,0,β〉 is

independent of φ̄ and hence E(0,β) is independent of dephasing effects. From the previous

perturbative approach, we also find that 〈ψπ/4,0,±π/8|D̂ A(ηA)D̂B⊥(ηB⊥)|ψpi /4,0,±π/8〉 decays

like e−2σ̄2
. Given that E (0,π/8)+E (0,−π/8) and E (π/4,π/8)+E (π/4,−π/8) equally contribute

to the CHSH value in the absence of phase noise, we have

C HSH(∆t ) = C HSH

2
(1+e−2γ∆t ) (7.39)

The previous formula allows us to infer the coherence time γ−1 for the behavior of the CHSH

parameter. Note that the prefactor CHSH is not constant in time since the detection efficiency

of mode B includes the phononic lifetime.

7.2.10 Estimating experimental parameters

• Stokes detection efficiency ηA The detection efficiency is the product of the avalanche

photodiode efficiency, for which we use the value of 50% from the manufacturer’s test

sheet, and the signal collection efficiency. Since our measurement is sensitive only to

the spatial mode coupled into the single mode fiber used as a spatial filter, it is not

necessary to consider the full spontaneous emission pattern in free space. Only the

image of the single mode fiber into the sample is relevant to estimate the collection

efficiency. This collection efficiency is therefore simply measured with the laser beam,

which is well mode matched to the collection fiber, by measuring the power first just

after the sample and second just before the detector. The additional loss due to internal

reflection inside the diamond is estimated separately. This procedure yields ηA ≈ 0.1 for

the Stokes signal.

• Squeezing parameter g This detection efficiency, together with the measured count

rate in detector A of 18000 counts/s, and the repetition rate of 80 MHz, lets us estimate

the average photon number 〈nA〉 = 2.25×10−3 in the Stokes mode. We then use the

expression of 〈nA〉 to find the squeezing parameter g = 0.047.

• Dark count probability pdc In the model, the dark count probability accounts not only

for the intrinsic noise in the detectors (which has negligible impact on our measure-

ments) but also, and foremost, for the anti-Stokes emission due to thermal phonons.

Based on the anti-Stokes count rate at negative delays (∼ 720c/s) and the detection time

window we estimate the dark count rate: pdc = 9×10−6.
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• Vibration detection efficiency ηB The detection efficiency of the vibrational mode ηB

accounts for both the probability of converting an existing vibration into anti-Stokes

photon as well as the collection and detection losses for the anti-Stokes photon. We can

extract it directly from our measurement by comparing the probability of detecting a

Stokes photon, P (A) = 〈nA〉ηA , to the probability of a coincidence P (A∩B) = 〈nA〉ηAηB .

With our coincidence rate of 4.58 counts/s we obtain ηB = P (A∩B)
P (A) = 2.54×10−4.

7.2.11 Extracting the rate of pure dephasing

We fit the measured g (2)
s,a(∆t ) using a single exponential decay with time constant τ= 3.78 ps,

convoluted with the instrument response function (Gaussian of width 200 fs).

We then use eq. (7.39) to produce the expected curve for S(∆t ), using the fit of g (2)
s,a(∆t ) for the

temporal behaviour of ηB .

The rate of pure dephasing is an adjustable, a priori unknown parameter. In Fig. 7.6, we com-

pare the measured CHSH parameter with the formula eq. 7.39 for various different dephasing

rates (γ). The best agreement with the experimental data is found for γ¿ τ−1, consistent with

a lifetime-limited coherence time.

7.2.12 Evolution of the CHSH parameter under ideal conditions

We would like to address the following questions: if all technical noise could be eliminated

from the photo-detection, including all background emission from the sample not related to

vibrational Raman scattering, what would be the intrinsic dynamics how Bell parameter? For

how long would Bell correlations persist?

To answer these questions, we compute the temporal evolution of the Bell parameter using

the theoretical model with idealized measurement, and with the experimentally determined

vibrational energy decay rate, assuming the pure dephasing rate is much smaller and can be

neglected. More explicitly, we use the following parameters:

• Stokes detection efficiency ηA We set the Stokes detection efficiency to unity.

• Vibration detection efficiency ηB We set the initial value of the detection efficiency to

unity, which then decays with the measured time constant corresponding to the phonon

lifetime τ= 3.78 ps.

• Dark count probability pdc We only include the anti-Stokes emission due to thermal

phonons, which in the case of unit detection efficiency will be pdc = nth = 1.7×10−3.

• Squeezing parameter g We find that the value that maximizes the time for which the

CHSH inequality is violated is g = 0.172, corresponding to a mean photon number of

〈nA〉 = 0.030
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Figure 7.6: Comparison of the model with experimental data. a, Experimentally measured
normalised Stokes–anti-Stokes cross-correlation g (2)

s,a(∆t) vs. the write–read time delay ∆t ,
together with an exponential fit with a decay time constant τ = 3.78 ps, corresponding to
the phonon lifetime. b, Experimental CHSH parameter (as in main text, Fig. 2) overlaid with
the curves computed from eq. (7.39) with the expression for g (2)

s,a(∆t ) from panel a. Different
values of the pure dephasing rate are shown, illustrating that our data are consistent with the
decoherence of the vibrational qubit being dictated by population decay. The blue region,
demarcated by 2 < |S| ≤ 2

p
2, certifies Bell correlations.

In Fig. 7.7 we show the time evolution of the CHSH parameter under ideal measurement. It is

82



7.2 Supplementary Information

0 5 1 0 1 5 2 0 2 5 3 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

CH
SH

 pa
ram

ete
r S

T i m e  ( p s )
Figure 7.7: Evolution of the CHSH parameter under ideal experimental conditions. The
ideal conditions assume unit detection efficiency, noise exclusively due to the thermal phonon
occupancy, and optimal squeezing parameter.

worth noting that the CHSH inequality is violated for 18.4 ps, almost 5 times longer than the

phonon lifetime, and more than twice the coherence time.

This can be understood by noting that the Bell parameter at a given delay ∆t is ultimately

limited by the value of g (2)
s,a(∆t), which is a measure of the signal-to-noise ratio for the con-

version and detection of a heralded single phonon. As long as
g (2)

s,a−1

g (2)
s,a+1

> 1p
2

, or approximately

g (2)
s,a(∆t) ≥ 5.85, the Bell parameter can exceed 2 (if all experimental imperfections reducing

the two-photon interference visibility are mitigated). Therefore, even as g (2)
s,a(∆t ) falls off expo-

nentially with time, if its initial value is large enough (in the ideal case up to 1/nth) then Bell

correlation can be observed up to delays several times longer than the exponential coherence

time.

Note that this observation raises an interesting prospect. If the technical and background

noises are significantly reduced, and the sample temperature lowered, the initial value of

g (2)
s,a can be made arbitrarily large. This would allow to put a more stringent bound on the

pure dephasing rate γ, and maybe measure its magnitude even if it is much smaller than the

exponential decay rate of the phonon. This a general comment that can be applied to other

optomechanical systems in the quantum ground state as well.
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7.2.13 Evaluation of the CHSH value from finite statistics

CHSH as a game –In a CHSH test, Alice receives at each run a random bit x = {0,1} and

similarly for Bob y = {0,1}. When Alice gets x, she chooses the measurement setting Ax while

Bob chooses By . For each setting choice, they receive a result a = {0,1} for Alice and b = {0,1}

for Bob. They repeat the experiment many times so that they can evaluate

〈Ax By 〉 = p(a = b|Ax By )−p(a 6= b|Ax By ). (7.40)

The CHSH value is given by

S = 〈A0B0〉+〈A0B1〉+〈A1B0〉−〈A1B1〉. (7.41)

Such a test can be phrased as a game in which Alice and Bob receive x and y, respectively, as

inputs and the winning condition is that their outputs satisfy a ⊕b = x.y where ⊕ is the sum

modulo 2. The winning probability q relates to the CHSH value S by

q = 4+S

8
. (7.42)

Confidence interval on the mean value of winning probability–Let us see each experimental

run as if a random variable Ti was given. As an estimator of such a random variable Ti , we

choose

Ti =χ(ai ⊕bi = xi .yi ) (7.43)

with χ the indicator function, i.e. χ(condition) = 1 if the condition is satisfied and 0 otherwise.

Here ai is the result of Alice at run i and similarly, bi , xi and yi . Note that this estimator is

unbiased. Indeed

E(Ti ) = ∑
ai ,bi ,xi ,yi

Ti p(ai ,bi , xi , yi )

= ∑
ai ,bi ,xi ,yi

Ti p(ai ,bi , xi , yi )

= ∑
ai ,bi ,xi ,yi

Ti p(ai ,bi |xi , yi )p(xi , yi )

and since p(xi , yi ) = 1/4,

E(Ti ) = 1

4

∑
ai ,bi ,xi ,yi

Ti p(ai ,bi |xi , yi )

= 1

4

(
p(ai = bi = 0|xi 6= 1and yi 6= 1)+p(ai = bi = 1|xi 6= 1and yi 6= 1)

+p(ai = 0,bi = 1|xi = yi = 1)+p(ai = 1,bi = 0|xi = yi = 1)
)
.
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Note that

p(ai ⊕bi = 0|xi , yi ) = p(ai = bi = 0|xi , yi )+p(ai = bi = 1|xi , yi ) = 1

2
(1+〈Axi Byi 〉)

p(ai ⊕bi = 1|xi , yi ) = p(ai = 0,bi = 1|xi , yi )+p(ai = 1,bi = 0|xi , yi ) = 1

2
(1−〈Axi Byi 〉)

Therefore

E(Ti ) = 1

4

(
4+Si

2

)
= qi (7.44)

that is, the expectation of Ti corresponds to the probability to win the game at run i . We want

to bound the average winning probability q̄ = 1
n

∑
i qi . It was shown in Ref. [35] that [qmin,1] is

a confidence interval for q̄ with

qmin = I−1
α (nT̄ ,n(1− T̄ )+1)with T̄ = 1

n

∑
i

Ti (7.45)

where 0 ≤α≤ 1/2 is the confidence level (e.g. α= 0.01 corresponds to a confidence level of

99%). Here we defined the inverse regularized incomplete Beta function I−1, i.e. Iy (a,b) = x

for y = I−1
x (a,b).

Given a target confidence level α, the previous formula can be used to give a lower bound Smin

on the actual value of S̄ using the following steps :

1 - Compute Ti at each run using Ti =χ(ai +bi = xi .yi )

2 - Deduce T̄ = 1/n
∑

i Ti

3 - Compute qmin from the formula eq. (7.45) (for example with α= 0.01 for a confidence level

of 99%)

4 - Deduce the lower bound Smin on the mean CHSH value S̄ = 1
n

∑
i Si using Smin = 8∗qmin−4.

Example calculations

We show in detail the calculation for ∆t = 0.66 ps

We have Ax = {α = 0, α = π/2} and By = {ϕ = −π/4, π/4} as the settings for the experiment,

and a,b = 0 corresponds to a click in the + detector, while a,b = 1 corresponds to either a

click in the − detector or the simultaneous clicking of both + and − detectors on one side

(two-photon event).

The coincidence counts observed during the experiment for different settings are summarized

in Table 7.2.

Where n±x denotes the events involving two simultaneous coincidences in the Stokes mea-

surement arm. There were no recorded events with simultaneous detections in the anti-Stokes

arm.
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Setting n++ n+− n−+ n−− n±+ n±−
θ = 0,ϕ=−π/4 1301 270 458 2034 0 0
θ = 0,ϕ=π/4 1338 229 460 2006 1 0

θ =π/2,ϕ=−π/4 388 1408 1549 694 0 1
θ =π/2,ϕ=π/4 1468 494 328 1781 1 0

Table 7.2: Coincidence counts

We use this data to calculate T̄ = 0.785. We then compute qmin for α= 0.01 (99% confidence)

and α= 5.733×10−7 (5σ confidence) using (7.45), and obtain qmin = 0.788 and qmin = 0.779,

respectively.

From this we conclude that the lower bound on S̄ with 99% confidence is Smin = 2.30, and

the lower bound with 5σ confidence is Smin = 2.23, which comfortably violates the CHSH

inequality.
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One of the big unanswered question in physics is that of when does the transition from the

quantum world to the classical world occur. In order to maintain the quantum properties of a

system, they typically have to be either at extremely low temperatures, at nanoscopic scales,

well isolated from the environment, or all three. In contrast, all our experiments take place

at room temperature, atmospheric pressure, and with macroscopic samples. The series of

experiments we performed combine spectroscopy with techniques from quantum optics, and

reveal progressively more ’quantumness’ in their interactions and on the states produced.

The results presented in this thesis started by developing a very general experimental method-

ology to study Raman-active vibrations using ultrafast optics and time correlated single

photon counting. The technique was successfully demonstrated in diamond, and used the

Cauchy–Schwarz inequality to prove that the correlations between the Stokes and anti-Stokes

fields defy a classical description.

We then used this technique to measure CS2. This allowed us to observe the phonon dynamics

of the two dominant isotopic species, as well as prepare them in a quantum superposition.

In this case we developed a quantum model for the experiment, and used it to calculate the

logarithmic negativity of the states produced, finding that quantum entanglement must be

present in the system.

We then focused on the nature of the Raman interaction itself. We demonstrated that the

phonon mode initially exists in a thermal state, but the combination of Raman scattering with

a measurement of the Stokes scattered photons can yield the n=1 Fock state, which possesses

sub-Poissonian statistics, and is perhaps the most characteristic state in quantum optics.

We finished by using this technique to create an entangled photon-phonon state that is capable

of violating a Bell-type inequality. Bell-type inequalities are especially significant because of

their generality – they provide a limit that cannot be violated by any classical theory, without

having to know any specifics about the theory itself – and provide the most stringent test for

the non-local nature of an experiment.
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These developments are not the end of the story, and in this chapter we explore some of the

future research avenues. These include open basic science questions in sections 8.1 and 8.2,

as well as advances that could make this field technologically relevant for applications in

quantum information and quantum communication in Sec. 8.3.

8.1 Position-momentum entanglement in Raman scattering

The original thought experiment proposed by Einstein, Podolsky, and Rosen talked about

entanglement between the position and momentum of two particles (29). Later developments

simplified the experiment by considering discrete variables, where Bell type inequalities such

as the CHSH inequality can be applied, and it was this type of experiment that was first realised

(32; 33). It is also this type of experiment which we implemented in Chapter 7.

In more recent years, interest returned to continious variable entanglement (178), and more

practical inequalities were developed in terms of the quadrature operators (179; 180), which

were violated experimentally in the early 2000s (181; 182). For SPDC sources, which closely

resemble the Raman interaction as explained in Chapters 2 and 3, the first demonstration

of EPR entanglement was performed in (183). Beyond the fundamental demonstration, this

result has given rise to a growing interest in high-dimensional entanglement, which has

potential applications for quantum communication (184).

The conservation of momentum in the SPDC process leads to correlation between the ’signal’

and ’idler’ photons. Similarly, the conservation laws in Raman scattering will lead to corre-

lations between the Stokes-scattered photon and the generated phonon (77), which will in

turn create a correlation with the anti-Stokes photon generated during phonon annihilation.

Measuring EPR entanglement involves two sub-measurements, one looking at the far field and

one looking at the far field image. In a scenario where the photons scattered from the sample

are collimated by a microscope objective, the shape of the far field will provide momentum

information, while adding a lens imaging the back-focal plane of the objective will provide

position information.

An initial approach to measuring EPR entanglement could be to follow a similar methodology

to that of (183), where a slit or pinhole is used before the detectors in order select a narrow piece

of the signals. By moving one of the slits this allows for the measurement of the correlations

between different points of the real or k space image. An advantage of this method is that

it requires only one photon counter in each detection arm. A more interesting approach,

however, would be to use newly developed photon counting cameras in order to obtain a

full measurement without the need to scan (185). This has the added benefit of paving the

way for a demonstration of high-dimensional entanglement, for which the only additional

requirement would be the structuring of the wavefront of the ’write’ and ’read’ beams.
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8.2 Photon correlations away from phonon frequencies

When a laser interacts with a material, a correlated signal is not only obtained when looking

at the frequency shifts corresponding to the phonon modes, but also at other frequencies

that are symmetrically spaced from the laser (38; 186; 187). In analogy to Cooper pairs in

superconductivity, an explanation for the observed correlations has been proposed in terms

of virtual phonons (38). The virtual nature of these quasi-particles allows them to take non-

resonant energies, and their creation and annihilation within a single laser pulse would lead

to the emission of a correlated pair of photons.

An alternative hypothesis, however, is that the creation of correlated photon pairs is simply

the result of electronic four wave mixing (FWM), without requiring a phonon-mediated con-

tribution. This process depends on the third order polarizability tensor of a material, and

in the case of interest involves the annihilation of two pump photons, accompanied by the

creation of two new photons. Energy conservation requires that the sum of the energy of

the output photons be equal to twice the pump energy, which allows them to take any pair

of energies, provided that they are symmetrically spaced from the pump. In the case of the

two-color pump probe measurements, the process can take place by absorbing one photon

from the ’write’ and one photon from the ’read’ pulse, again leading to correlated photons,

this time symmetrically spaced around the average laser frequency. FWM is a virtual process,

which only takes place when both lasers are temporally overlapped on the sample, which

means that when we are measuring the phonon modes we should also see a contribution

from this component in the g (2)
S,A(t) measurements. We already see hints of this in the CS2

measurements, where there is an extra component at g (2)
S,A(0), as explained in Chapter 5.

Both of these theories offer a qualitative explanation for the correlations observed at frequen-

cies other than the phonon modes. However, the polarization selection rules of the χ(3) tensor

are also different from the Raman tensor. In CS2, for example, the measured components

of the χ(3) tensor relevant for FWM differ by less than a factor of two for the different po-

larization configurations(188). The Raman measurement, in contrast, is almost completely

polarized, having a depolarization ratio of ∼ 1/6 (189), and the selection rules of the proposed

virtual phonon process are the same as those for standard Raman scattering (190). The two

competing explanations will therefore lead to a different prediction for the relative strength

of the correlations measured under different polarization conditions, providing a way to

experimentally asses their validity.

8.3 Advances for practical applications

One of the key limitation when trying to use the techniques we developed for technological

applications is the short phonon lifetime of the materials we have studied.

As we mentioned before, the phonon lifetime in diamond is limited by the decay through

the Klemens channel (141; 49), for which there is no expected temperature dependence, but
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which could potentially be closed by the creation of a phononic band gap in an atomic scale
12C-13C super lattice. In other materials, however, a change in temperature can lead to longer

phonon lifetimes. In ZnSe, InN and AlN, for example, it has been shown that, by cooling the

sample from room temperature to ∼ 10◦K, the phonon lifetime increases by a factor of ∼ 5

(191; 192; 193) A promising alternative platform consists of molecules trapped in an optical

lattice, where lifetimes in the range of 10s of ms have been demonstrated (171) in Sr2.

The other key limitation is the efficiency of the memory process. In the experiments shown

in this thesis, which have not attempted to optimize the process, the readout efficiency is in

the order of 10−4, but similar schemes done with the goal of developing a quantum memory

have been able to demonstrate readout efficiencies in the order of 10−1 by using much higher

pulse energies (17). Improvements are still required in order to reach the near unity efficiency

that is desired for practical applications, and one possible approach is to add an optical cavity

(194), which can enhance the Raman interaction while suppressing the noise generated by

other non-linear effects. In a similar vein, these experiments can be combined with metallic

surfaces and nano-particles (195), which increases the probability of Raman scattering by

several orders of magnitude (196). This could be used as a way to increase the efficiency of

the process, and it also offers the possibility to study the interaction between the plasmonic

cavities and molecular vibrations (78; 79).

The correlations in a Raman scattered light field carry a wealth of information, and they can be

used to reveal rich physics regarding both the interaction and the phonon field itself. Whether

it is for practical applications or fundamental studies, there are plenty of interesting avenues to

explore, and studying single-photon correlations offers a promising avenue to expand Raman

spectroscopy and molecular sciences into the realm of quantum science and technology.
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9 Code for "Two-Color Pump-Probe
Measurement of Photonic Quantum
Correlations Mediated by a Single
Phonon"
This appendix shows the code used to process the data shown in Ch. 4.

9.1 Code for data analysis
1000 """ Example of how to analyze a dataset :

# i f there i s a background :
1002 bkgData=Data [ : , bkgColumn]

bkgPeak=findBkgPeakHeight ( bkgData , corrPeakNum , peakIndex ) # i f there i s a background
1004 #otherwise set bkgPeak =0; not sending bkgPeak also works

data=Data [ : , dataColumn ]
1006 g2 , errorBar , avgNonCorrPeak=analyzeCorr ( data , corrPeakNum , peakIndex , bkgPeak )

"""
1008

import numpy as np
1010 import matplotlib . pyplot as p l t

from scipy import s ignal
1012 import os

1014 def main ( ) :
dataFileName="SaS−Data−26−01−2018. t x t "

1016 analysisDirName=" AnalysisResults "
expectedPeakNum=26 ###

1018 corrPeakNum=1 # s t a r t i n g to count from zero

1020 dataFi le=np . genfromtxt ( dataFileName , skip_header =1)
postProcessedData=np . zeros (np . shape ( dataFi le ) )

1022 postProcessedData [ : , 0 ] = dataFi le [ : , 0 ] #Time
r e s u l t s =np . zeros ( ( len ( dataFi le [ 0 , : ] ) −1 ,4) )

1024

bkg=np . zeros ( dataFi le [ : , 0 ] . shape )
1026

Names=[ ’Time ’ , ’PosN0. 2 ’ , ’PosN0. 1 ’ , ’PosN0.05 ’ , ’ PosP0 ’ , ’ PosP0 .05 ’ ,
1028 ’ PosP0 . 1 ’ , ’ PosP0 . 2 ’ , ’ PosP0 . 3 ’ , ’ PosP0 . 4 ’ , ’ PosP0 . 6 ’ , ’ PosP0 . 8 ’ ,

’ PosP1 . 0 ’ , ’ PosP1 . 2 ’ , ’ PosP1 . 4 ’ , ’ PosP1 . 7 ’ , ’ PosP2 . 0 ’ , ’ PosP2 . 5 ’ ]
1030 DelayPos=np . array ( [ − 0 . 2 , − 0 . 1 , − 0 . 0 5 , 0 , 0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 6 , 0 . 8 , 1 ,

1 . 2 , 1 . 4 , 1 . 7 , 2 . 0 , 2 . 5 ] )
1032 #Using the same peak index for a l l measurements :
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peakIndex=findPeakIndex ( dataFi le [ : , 3 ] , expectedPeakNum )
1034

DelayTimes=( DelayPos *2) / ( ( 3 * 1 0 * * 8 ) * ( 1 0 * * 3 ) ) *(10**12)
1036 r e s u l t s [ : , 0 ] = DelayTimes . T

for i in range ( len (Names) −1) :
1038 ind= i +1

print ( "For "+Names[ ind ] )
1040 cdata=dataFi le [ : , ind ]

bkgPeak=0
1042 g2 , avgNonCorrPeak=analyzeCorr ( cdata −bkg , corrPeakNum , peakIndex , bkgPeak )

errorBar=findError ( cdata−bkg , corrPeakNum , peakIndex , g2 )
1044 print ( " \ tg2 = { : . 2 f } , err = { : . 2 f } , avgNonCorrPeak = { : . 2 f } " . format ( g2 , errorBar , avgNonCorrPeak ) )

r e s u l t s [ i , 1 : ] = [ g2 , errorBar , avgNonCorrPeak ]
1046 postProcessedData [ : , ind ]= findPostProcessedData ( cdata −bkg , corrPeakNum , peakIndex , bkgPeak )

plotPeakIndPositions ( dataFi le [ : , 0 ] , postProcessedData [ : , ind ] , peakIndex , corrPeakNum , t i t l e =
Names[ ind ] )

1048 np . savetxt ( " g2Results . t x t " , r e su l ts , newline= ’ \ r \n ’ , header= ’ Delay\ tg2 \ t e r r \tavgUncorrPeak ’ ,
del imiter= ’ \ t ’ )

np . savetxt ( " PostProcessedData . t x t " , postProcessedData , newline= ’ \ r \n ’ , header= ’ \ t ’ . join (Names) ,
del imiter= ’ \ t ’ )

1050 plotRelaxation ( r es u l ts , ’ Relaxation Time ’ )

1052 def findBkgPeakHeight ( bkgData , corrPeakNum , peakIndex ) :
bkgData=bkgData− f indOffset ( bkgData , peakIndex )

1054 bkgPeak=findAvgPeak ( bkgData , corrPeakNum , peakIndex , A l l =True )
return bkgPeak

1056

def analyzeCorr ( data , corrPeakNum , peakIndex , bkgPeak=0) :
1058 data=data−f indOffset ( data , peakIndex )

avgNonCorrPeak=findAvgPeak ( data , corrPeakNum , peakIndex , nonCorr=True )
1060 g2 , errorBar=findg2 ( data , corrPeakNum , peakIndex , bkgPeak ) #errorBar i s obsolete

return g2 , avgNonCorrPeak
1062

def findPostProcessedData ( data , corrPeakNum , peakIndex , bkgPeakArea=0) :
1064 post=data− f indOffset ( data , peakIndex )

Areas=np . array ( [ post [ peak−1]+ post [ peak]+ post [ peak+1] for peak in peakIndex ] )
1066 Areas=Areas−bkgPeakArea

for i in range ( len ( peakIndex ) ) :
1068 post [ peakIndex [ i ] −1]= Areas [ i ]

post [ peakIndex [ i ] ] = Areas [ i ]
1070 post [ peakIndex [ i ]+1]= Areas [ i ]

return post
1072

def f indOffset ( data , peakIndex ) :
1074 #data i s already only the column of i n t e r e s t , i . e . Data [ : , i ]

t o t a l =np .sum( data )
1076 peaks=np .sum( [ data [ peak−1]+ data [ peak]+ data [ peak+1] for peak in peakIndex ] )

return ( t o t a l −peaks ) /( len ( data ) −3* len ( peakIndex ) )
1078

def findAvgPeak ( data , corrPeakNum , peakIndex , nonCorr=True , A l l =False ) :
1080 peakAreas =[ data [ peak−1]+ data [ peak]+ data [ peak+1] for peak in peakIndex ]

i f A l l :
1082 return np . average ( peakAreas )

i f nonCorr :
1084 nonCorrPeakAreas =[ peakAreas [ i ] for i in range ( len ( peakIndex ) ) i f i !=corrPeakNum ]

return np . average ( nonCorrPeakAreas )
1086

def findg2 ( data , corrPeakNum , peakIndex , bkgPeakArea=0) :
1088 Areas=np . array ( [ data [ peak−1]+ data [ peak]+ data [ peak+1] for peak in peakIndex ] )

Areas=Areas−bkgPeakArea
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1090 nonCorrAreas =[ Areas [ i ] for i in range ( len ( Areas ) ) i f i ! =corrPeakNum ]
g2=Areas [ corrPeakNum ] /np . average ( nonCorrAreas )

1092 errorBar=np . std ( nonCorrAreas ) /np . average ( nonCorrAreas )
return g2 , errorBar

1094

def findError ( data , corrPeakNum , peakIndex , g2 ) :
1096 data=data−f indOffset ( data , peakIndex )

peakAreas =[ data [ peak−1]+ data [ peak]+ data [ peak+1] for peak in peakIndex ]
1098 SPAreas =[ peakAreas [ i ] for i in range ( len ( peakIndex ) ) i f i !=corrPeakNum ]

CPArea=peakAreas [ corrPeakNum ]
1100 avgSPArea=np . average ( SPAreas )

stdSPArea=np . std ( SPAreas )
1102 Error=g2 *np . sqrt ( ( stdSPArea /avgSPArea ) **2+(1/CPArea ) )

return Error
1104

def plotPeakIndPositions ( time , counts , peakIndex , corrPeakNum , t i t l e = ’no t i t l e ’ ) :
1106 Fig , ax= p l t . subplots ( 1 , 1 )

ax . plot ( time , counts )
1108 for i in range ( len ( peakIndex ) ) :

i f i ! =corrPeakNum :
1110 ax . axvline ( time [ peakIndex [ i ] ] , 0 , 1 0 , color= ’ r ’ , l i n e s t y l e = ’−− ’ )

ax . axvline ( time [ peakIndex [ corrPeakNum ] ] , 0 , 1 0 , color= ’ g ’ , l i n e s t y l e = ’−− ’ )
1112 ax . s e t _ x l a b e l ( ’Time ( ns ) ’ )

ax . s e t _ y l a b e l ( ’ Counts ’ )
1114 Fig . s u p t i t l e ( t i t l e )

Fig . s a v e f i g ( s t r ( t i t l e ) + ’ . png ’ )
1116 return

1118 def findPeakIndex ( data , t i t l e = ’no name ’ ,expectedPeakNum=26 ,minLength=6) :
peakIndex= signal . find_peaks_cwt ( data , np . arange ( 0 . 1 , 1 2 ) , min_length=minLength )

1120 i f len ( peakIndex ) ! = expectedPeakNum :
print ( "WARNING: unexpected peak number in "+ s t r ( t i t l e ) )

1122 print ( " { : } peaks found when { : } were expected " . format ( len ( peakIndex ) ,expectedPeakNum ) )
return peakIndex

1124

def plotPower ( re su l ts , t i t l e = ’ T i t l e ’ ) :
1126 Fig , ax= p l t . subplots ( 1 , 1 )

ax . errorbar ( r e s u l t s [ : , 0 ] , r e s u l t s [ : , 1 ] , yerr= r e s u l t s [ : , 2 ] , fmt="o" , capsize =3 , elinewidth =1)
1128 ax . axhline (1 ,0 ,10 , color= ’ g ’ , l i n e s t y l e = ’−− ’ )

ax . grid ( True )
1130 ax . s e t _ x l a b e l ( ’Power (mW) ’ )

ax . s e t _ y l a b e l ( r ’ $g ^ { ( 2 ) } _ { ( S , aS ) } ( \ tau ) $ ’ )
1132 Fig . s u p t i t l e ( t i t l e )

Fig . s a v e f i g ( s t r ( t i t l e ) + ’ . png ’ )
1134 return

1136 def plotRelaxation ( r e su l ts , t i t l e = ’ Relaxation Time ’ ) :
Fig , ax= p l t . subplots ( 1 , 1 )

1138 ax . errorbar ( r e s u l t s [ : , 0 ] , r e s u l t s [ : , 1 ] , yerr= r e s u l t s [ : , 2 ] , fmt="o" , capsize =3 , elinewidth =1)
ax . axhline (1 ,0 ,10 , color= ’ g ’ , l i n e s t y l e = ’−− ’ )

1140 ax . grid ( True )
ax . s e t _ x l a b e l ( r ’ $\ tau ( ps ) $ ’ )

1142 ax . s e t _ y l a b e l ( r ’ $g ^ { ( 2 ) } _ { ( S , aS ) } ( \ tau ) $ ’ )
Fig . s u p t i t l e ( t i t l e )

1144 Fig . s a v e f i g ( s t r ( t i t l e ) + ’ . png ’ )
return

1146

1148
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1150 i f __name__ == "__main__" :
main ( )
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10 Code for "Preparation and decay of a
single quantum of vibration at ambi-
ent conditions"

This appendix shows the code used to acquire and process the data shown in Ch. 6, following

the procedure outlined in Sec. 6.3.1.

The large amount of data during this experiments required us to measure in increments of 1

minute, typically for a total of 1 hour, and all the relevant data files are joined in post processing.

After ∼ 1 minute of measuring under typical conditions, the size of the compressed binary file

obtained is ∼ 1MB, which translates into a text file of ∼ 20MB. In order to prevent memory

problems, in post processing the files are temporarily decompressed, and the coincidence

information is extracted and added to the analysis one by one.

10.1 Code for data analysis
1000 # By Santiago Tarrago

#
1002 # Analysis set of measurements from delay scan in T3 mode

#
1004 # Provides the histogram for each acquisition , and the summed histogram for each

# position
1006 #

# Provides de counts and g2 value for each aquisit ion to help i d e n t i f y problems ;
1008 # i f they e x i s t they have to be dealt with by hand

#
1010 # Calculates the heralded anti −bunching for each delay position

1012 import numpy as np
import matplotlib . pyplot as p l t

1014 import os
import re

1016 import subprocess
from scipy import s ignal

1018

def main ( ) :
1020 np . warnings . f i l t e r w a r n i n g s ( ’ ignore ’ ) ###

baseName = ’ Test ’ #Name before PosX . XX−XXX . out
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1022 # Variables for histograms and binning : #
binSize =0.5 #in nano seconds

1024 maxTime=310# l i m i t of histogram in ns
convFactor =0.25 #converts saved timedif f info into ns

1026 ch1_offset =8.7 #in ns
double_count_timewindow=4 #ns

1028 # Variables for g2 calculat ion : #
peakIndex_ch0=np . array ([27 ,52 ,77 ,102 ,127 ,151 ,176 ,201 ,226 ,251 ,275 ,300 ,325\

1030 ,350 ,375 ,400 ,424 ,449 ,474 ,499 ,524 ,549 ,574 ,598]) # currently ignores the
l e f t −most peak

corrPeakNum_ch0=0 # s t a r t i n g to count from zero
1032 peakIndex_ch1=np . array ([10 ,35 ,59 ,84 ,109 ,134 ,159 ,184 ,209 ,233 ,258 ,283 ,308 ,\

333 ,358 ,382 ,407 ,432 ,457 ,482 ,506 ,531 ,556 ,581 ,606])
1034 corrPeakNum_ch1=0 # s t a r t i n g to count from zero

numBinsArea = 3 #how many bins each way from the peak to take into account
1036 # Finding fo l d e r s to analyse : #

cwd = os . getcwd ( )
1038 folderNames , delayPositions = findFolders (baseName)

R e s u l t s _ t o t a l =np . zeros ( ( len ( delayPositions ) ,10) ) #heralded antibunching r e s u l t s
1040 R e s u l t s _ t o t a l [ : , 0 ] = ( delayPositions *2) / ( ( 3 * 1 0 * * 8 ) * ( 1 0 * * 3 ) ) *(10**12) #delayTime

1042 for folder in folderNames :
os . chdir (cwd)

1044 os . chdir (cwd+ ’ \\ ’+folder )
fileNames= f i n d F i l e s ( folder )

1046 measInfo=np . zeros ( ( len ( fileNames ) , 7 ) ) # Stores sync and signal counts , g2 and err for each
measurement

binNum= i n t (maxTime/ binSize )
1048 totalHistogram=np . zeros ( (binNum, 4 ) )

totalHistogram [ : , 0 ] = np . arange (binNum) * binSize
1050 for i in range ( len ( fileNames ) ) :

info , histogram=anlyzeBinnary ( fileNames [ i ] , binSize , maxTime, convFactor , ch1_offset ,
double_count_timewindow , \

1052 peakIndex_ch0 , corrPeakNum_ch0 , peakIndex_ch1 ,
corrPeakNum_ch1 , numBinsArea )

measInfo [ i ]= info
1054 totalHistogram [ : , 1 : ] = totalHistogram [ : , 1 : ] + histogram [ : , 1 : ]

#Save measurement information (and p l t ) , both in current and analysis folder
1056 indices=np . array ( [ i n t ( f i l e [ −7: −4]) for f i l e in fileNames ] )

p l o t S t a b i l i t y ( indices , measInfo , folder+ ’ _ s t a b i l i t y P l o t ’ )
1058 s a v e S t a b i l i t y I n f o ( indices , measInfo , folder+ ’ _ s t a b i l i t y I n f o . t x t ’ )

measTime=60* len ( fileNames )
1060 t o t a l _ i n f o =analyzeTotalHist ( measInfo , totalHistogram , peakIndex_ch0 , corrPeakNum_ch0 , \

peakIndex_ch1 , corrPeakNum_ch1 , numBinsArea , measTime)
1062 saveTotalHist ( folder+ ’ _total_histogram . t x t ’ , totalHistogram , t o t a l _ i n f o )

R e s u l t s _ t o t a l [ folderNames . index ( folder ) , 1 : ] = t o t a l _ i n f o
1064 os . chdir (cwd)

saveFinalResult ( ’ Analysis_Result . t x t ’ , R e s u l t s _ t o t a l )
1066 plotFinalResult ( ’ DecayCurves ’ , R e s u l t s _ t o t a l )

return
1068

1070 def findFolders (baseName) :
folderRegex=re . compile ( ’ ( ’+baseName+r ’ Pos ) ( [ − ] ? \ d + [ . ] ? \ d * ) ’ )

1072 directoryContent=os . l i s t d i r ( )
folderNames = [ ]

1074 delays = [ ]
for name in directoryContent :

1076 match=folderRegex . search (name)
i f match!=None :
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1078 folderNames . append(name)
delays . append( f l o a t (match . group ( 2 ) ) )

1080 return folderNames , np . array ( delays )

1082 def f i n d F i l e s ( folder ) :
f i leRegex=re . compile ( ’ ( ’+folder+r ’ −) ( \d\d\d) . out ’ )

1084 directoryContent=os . l i s t d i r ( )
fileNames = [ ]

1086 for name in directoryContent :
match=fi leRegex . search (name)

1088 i f match!=None :
i f fo lder+ ’− ’+match . group ( 2 ) + ’ _info . t x t ’ in directoryContent : #makes sure the info f i l e

e x i s t s
1090 fileNames . append(name)

return np . array ( fileNames )
1092

def anlyzeBinnary ( fileName , binSize , maxTime, convFactor , ch1_offset , double_count_timewindow , \
1094 peakIndex_ch0 , corrPeakNum_ch0 , peakIndex_ch1 , corrPeakNum_ch1 , numBinsArea ) :

print ( fileName )
1096 #Create temporary t x t f i l e : #

cwd=os . getcwd ( )
1098 c_executable_name=r ’ "C: \ Users\ tarrago \Documents\ DataAnalysis\2018−06−11 T3 analysis \

Ful lAnalysis \ReadT3 . exe" ’
i n _ f i l e =fileName

1100 o u t _ f i l e =fileName [: −4]+ ’ _tmp_file . t x t ’
command=c_executable_name+ ’ ’+ i n _ f i l e + ’ ’+ o u t _ f i l e

1102 subprocess . run (command)
#Make Histograms : #

1104 Data=np . genfromtxt ( o u t _ f i l e , i n v a l i d _ r a i s e =False )
ch0_rawData , ch1_rawData=separateData ( Data )

1106 ch0_binedData=binData ( ch0_rawData , binSize , maxTime, convFactor )
ch1_binedData=binData ( ch1_rawData , binSize , maxTime, convFactor )

1108 SaSaS=combinedBinedData ( ch0_rawData , ch1_rawData , ch1_offset , binSize , double_count_timewindow ,
maxTime, convFactor )

# print ( ’ Total three −fold counts : ’+ s t r (np .sum( SaSaS [ : , 1 ] ) ) )
1110 combinedHist=np . zeros ( ( len ( ch0_binedData ) , 4 ) )

combinedHist [ : , : 2 ] = ch0_binedData
1112 combinedHist [ : , 2 ] = ch1_binedData [ : , 1 ]

combinedHist [ : , 3 ] = SaSaS [ : , 1 ]
1114 # Analyze Data : #

i f ( peakIndex_ch0==−1) . a l l ( ) :
1116 peakIndex_ch0=findPeakIndex ( ch0_binedData [ : , 1 ] , fileName [ : − 4 ] , 2 4 )

i f ( peakIndex_ch1==−1) . a l l ( ) :
1118 peakIndex_ch1=findPeakIndex ( ch1_binedData [ : , 1 ] , fileName [ : − 4 ] , 2 5 )

ch0_g2 , ch0_g2_error=findg2 ( ch0_binedData , peakIndex_ch0 , corrPeakNum_ch0 , numBinsArea )
1120 ch1_g2 , ch1_g2_error=findg2 ( ch1_binedData , peakIndex_ch1 , corrPeakNum_ch1 , numBinsArea )

counts_sync , counts_ch0 , counts_ch1=findChCounts ( fileName [: −4]+ ’ _info . t x t ’ )
1122 infoVars=np . array ( [ counts_sync , counts_ch0 , counts_ch1 , ch0_g2 , ch0_g2_error , \

ch1_g2 , ch1_g2_error ] )
1124 os . remove ( o u t _ f i l e )

return infoVars , combinedHist
1126

def analyzeTotalHist ( measInfo , totalHistogram , peakIndex_ch0 , corrPeakNum_ch0 , \
1128 peakIndex_ch1 , corrPeakNum_ch1 , numBinsArea , measTime) :

counts_sync , counts_ch0 , counts_ch1=np . average ( measInfo [ : , : 3 ] , axi s =0)
1130 ch0_g2 , ch0_g2_error=findg2 ( totalHistogram [ : , : 2 ] , peakIndex_ch0 , corrPeakNum_ch0 , numBinsArea )

ch1_Data=np . append(np . array ( [ totalHistogram [ : , 0 ] ] ) . T , np . array ( [ totalHistogram [ : , 2 ] ] ) . T , axi s =1)
1132 ch1_g2 , ch1_g2_error=findg2 ( ch1_Data , peakIndex_ch1 , corrPeakNum_ch1 , numBinsArea )

1134 heralded_g2 , heralded_g2_error=find_heralded_g2 (

97



Chapter 10. Code for "Preparation and decay of a single quantum of vibration at ambient
conditions"

counts_sync , totalHistogram , measTime , peakIndex_ch0 , peakIndex_ch1 , \
1136 corrPeakNum_ch0 , corrPeakNum_ch1 , numBinsArea )

1138 infoVars=np . array ( [ counts_sync , counts_ch0 , counts_ch1 , ch0_g2 , ch0_g2_error , \
ch1_g2 , ch1_g2_error , heralded_g2 , heralded_g2_error ] )

1140 return infoVars
############ Functions to turn measurements into histograms : ###############

1142 def separateData ( Data ) :
ch0_Data=np . array ( [ l i n e for l i n e in Data i f l i n e [ 2 ] = = 0 ] )

1144 ch1_Data=np . array ( [ l i n e for l i n e in Data i f l i n e [ 2 ] = = 1 ] )
return ch0_Data , ch1_Data

1146

def binData ( rawData , binSize , maxTime=120 , convFactor =0.25) :
1148 binNum= i n t (maxTime/ binSize )

#Convert to nanoseconds : #
1150 timeDiffs=rawData [ : , 5 ] * convFactor

# I n i t i a l i z e s histogram : #
1152 histogram=np . zeros ( (binNum, 2 ) )

histogram [ : , 0 ] = np . arange (binNum) * binSize
1154 # F i l l s histogram : #

histogramPlace =( timeDiffs / binSize ) . astype ( i n t )
1156 for point in histogramPlace :

i f point <binNum:
1158 histogram [ point , 1 ] = histogram [ point ,1]+1

return histogram
1160

def combinedBinedData ( ch0_rawData , ch1_rawData , ch1_offset , binSize , double_count_timewindow=1 ,maxTime
=120 , convFactor =0.25) :

1162 binNum= i n t (maxTime/ binSize )
# I n i t i a l i z e s histogram : #

1164 histogram=np . zeros ( (binNum, 2 ) )
histogram [ : , 0 ] = np . arange (binNum) * binSize

1166 # Offset for channel 1 and convert to ns : #
ch0_offsetData=np . copy ( ch0_rawData )

1168 ch0_offsetData [ : , 5 ] = ch0_offsetData [ : , 5 ] * convFactor
ch1_offsetData=np . copy ( ch1_rawData )

1170 ch1_offsetData [ : , 5 ] = ch1_offsetData [ : , 5 ] * convFactor
ch1_offsetData [ : , 5 ] = ch1_offsetData [ : , 5 ] + ch1_offset

1172 #Finds double coincidence events : #
for ch0_point in ch0_offsetData :

1174 index=np . searchsorted ( ch1_offsetData [ : , 3 ] , ch0_point [ 3 ] ) # finds the c l o s e s t sync count
t r y : #the ch0 and ch1 arrays can have s l i g h t l y d i f f e r e n t lengths

1176 i f ch0_point [3]== ch1_offsetData [ index , 3 ] : #happened during the same sync event
# print ( ’ Event happened in same sync period ’ )

1178 i f abs ( ch0_point [5] − ch1_offsetData [ index , 5 ] ) < double_count_timewindow : #happened
in allowed time window

# print ( ’ Event happened in window ’ )
1180 i f ( ch0_point [ 5 ] / binSize ) . astype ( i n t ) <binNum: #the coincidence f a l l s in the

h i s t
binPlace =( ch0_point [ 5 ] / binSize ) . astype ( i n t )

1182 # print ( "Added to Histogram in bin : "+ s t r ( binPlace ) )
histogram [ binPlace , 1 ] = histogram [ binPlace ,1]+1

1184 except :
pass

1186 return histogram

1188 ############ Functions to turn analyze histograms : ###############
def findg2 ( data , peakIndex , corrPeakNum , numBinsArea ) :

1190 counts=data [ : , 1 ]
counts=counts− f indOffset ( counts , peakIndex , numBinsArea )
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1192 peakAreas=np . array ( [ np .sum( counts [ ( peak−numBinsArea ) : ( peak+numBinsArea+1) ] ) \
for peak in peakIndex ] )

1194 SPAreas=np . array ( [ peakAreas [ i ] for i in range ( len ( peakIndex ) ) \
i f i ! =corrPeakNum ] )

1196 CPArea=peakAreas [ corrPeakNum ]
avgSPArea=np . average ( SPAreas )

1198 stdSPArea=np . std ( SPAreas )
g2=CPArea/avgSPArea

1200 error=g2 *np . sqrt ( ( stdSPArea /avgSPArea ) **2+(1/CPArea ) )
return g2 , error

1202

def findPeakIndex ( data , t i t l e = ’no name ’ ,expectedPeakNum=25 ,minLength=9) :
1204 peakIndex= signal . find_peaks_cwt ( data , np . arange ( 0 . 1 , 1 2 ) , min_length=minLength )

i f len ( peakIndex ) ! = expectedPeakNum :
1206 print ( "WARNING: unexpected peak number in "+ s t r ( t i t l e ) )

print ( " { : } peaks found when { : } were expected " . format ( len ( peakIndex ) ,expectedPeakNum ) )
1208 return peakIndex

1210 def f indOffset ( data , peakIndex , numBinsArea ) :
t o t a l =np .sum( data )

1212 peakAreas=np . array ( [ np .sum( data [ ( peak−numBinsArea ) : ( peak+numBinsArea+1) ] ) \
for peak in peakIndex ] )

1214 peaks=np .sum( peakAreas )
return ( t o t a l −peaks ) /( len ( data ) −(1+2*numBinsArea ) * len ( peakIndex ) )

1216

def findChCounts ( fileName ) :
1218 countRx=re . compile ( r ’ ( Syncrate | Countrate \ [ 0 \ ] | Countrate \ [ 1 \ ] ) =(\d+) / s ’ )

f = open( fileName , ’ r t ’ )
1220 for l i n e in f :

match = countRx . search ( l i n e )
1222 i f match != None :

i f match . group ( 1 ) == ’ Syncrate ’ :
1224 counts_sync=match . group ( 2 )

i f match . group ( 1 ) == ’ Countrate [ 0 ] ’ :
1226 counts_ch0=match . group ( 2 )

i f match . group ( 1 ) == ’ Countrate [ 1 ] ’ :
1228 counts_ch1=match . group ( 2 )

f . close ( )
1230 return counts_sync , counts_ch0 , counts_ch1

1232 def find_heralded_g2 ( S_counts_rate , tot_histogram , measTime , peakIndex_ch0 , peakIndex_ch1 , \
corrPeakNum_ch0 , corrPeakNum_ch1 , numBinsArea ) :

1234 S_counts=S_counts_rate *measTime

1236 SaS_ch0_Data=tot_histogram [ : , 1 ]
SaS_ch0_counts=np .sum(

1238 SaS_ch0_Data [ ( peakIndex_ch0 [ corrPeakNum_ch0] −numBinsArea ) : \
( peakIndex_ch0 [ corrPeakNum_ch0]+numBinsArea+1) ] )

1240 SaS_ch1_Data=tot_histogram [ : , 2 ]
SaS_ch1_counts=np .sum(

1242 SaS_ch1_Data [ ( peakIndex_ch1 [ corrPeakNum_ch1] −numBinsArea ) : \
( peakIndex_ch1 [ corrPeakNum_ch1]+numBinsArea+1) ] )

1244 SaSaS_Data=tot_histogram [ : , 3 ]
SaSaS_counts=np .sum(

1246 SaSaS_Data [ ( peakIndex_ch0 [ corrPeakNum_ch0] −numBinsArea ) : \
( peakIndex_ch0 [ corrPeakNum_ch0]+numBinsArea+1) ] )

1248 print ( ’ SaSaS_counts : ’ + s t r ( SaSaS_counts ) )
g2_cond=( SaSaS_counts * S_counts ) / ( SaS_ch0_counts * SaS_ch1_counts )

1250

i f SaSaS_counts ! = 0 :
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1252 g2_cond_error=g2_cond*np . sqrt (
(1/ S_counts ) +(1/ SaS_ch0_counts ) +(1/ SaS_ch1_counts ) +(1/ SaSaS_counts ) )

1254 else :
g2_cond_error=2

1256

print ( ’ Heralded g2 : { } +− { } ’ . format ( g2_cond , g2_cond_error ) )
1258 return g2_cond , g2_cond_error

1260 ### Saving graphs and information : ###
def saveHist (name, histogram , infoVars ) :

1262 info= ’ Sync counts : { } / s \nCh0 counts : { } / s \nCh1 counts : { } / s \ng2_ch0 : { } +− { } \ ng2_ch1 : { } +−
{ } \ n ’ . format ( * infoVars )

cols= ’Time( ns ) \tCounts_ch0\tCounts_ch1\ tDouble_coincidences ’
1264 headerStr=info+cols

np . savetxt (name, histogram , delimiter= ’ \ t ’ , header=headerStr )
1266 return

def saveTotalHist (name, histogram , infoVars ) :
1268 info= ’ Sync counts : { } / s \nCh0 counts : { } / s \nCh1 counts : { } / s \ng2_ch0 : { } +− { } \ ng2_ch1 : { } +−

{ } \ nheralded_g2 { } +− { } \ n ’ . format ( * infoVars )
cols= ’Time( ns ) \tCounts_ch0\tCounts_ch1\ tDouble_coincidences ’

1270 headerStr=info+cols
np . savetxt (name, histogram , delimiter= ’ \ t ’ , header=headerStr )

1272 return
def saveFinalResult (name, Results ) :

1274 headerStr= ’ DelayTime ( ps ) \ tSync_counts / s \tCh0_counts/ s \tCh1_counts : / s \
\ tg2_ch0 \ tg2_ch0_err \ tg2_ch1 \ tg2_ch1_err \tg2_cond\ tg2_cond_err \n ’

1276 np . savetxt (name, Results , del imiter= ’ \ t ’ , header=headerStr )
return

1278

1280 def p l o t S t a b i l i t y ( indices , infoVars , t i t l e ) :
f i g , axarr= p l t . subplots ( 2 , 2 )

1282 axarr [ 0 , 0 ] . s e t _ t i t l e ( ’ Stokes counts / s ’ )
axarr [ 0 , 0 ] . s c a t t e r ( indices , infoVars [ : , 0 ] )

1284 axarr [ 0 , 1 ] . s e t _ t i t l e ( ’ Anti −Stokes counts / s ’ )
axarr [ 0 , 1 ] . s c a t t e r ( indices , infoVars [ : , 1 ] )

1286 axarr [ 0 , 1 ] . s c a t t e r ( indices , infoVars [ : , 2 ] , c= ’ g ’ )
axarr [ 1 , 0 ] . s e t _ t i t l e ( ’ g2 S−aS_ch0 ’ )

1288 axarr [ 1 , 0 ] . errorbar ( indices , infoVars [ : , 3 ] , yerr=infoVars [ : , 4 ] , fmt="o" )
axarr [ 1 , 1 ] . s e t _ t i t l e ( ’ g2 S−aS_ch1 ’ )

1290 axarr [ 1 , 1 ] . errorbar ( indices , infoVars [ : , 5 ] , yerr=infoVars [ : , 6 ] , fmt="o" , c= ’ g ’ )
f i g . s u p t i t l e ( t i t l e )

1292 for ax in axarr . f l a t :
ax . set_ylim ( 0 )

1294 ax . grid ( True )
f i g . subplots_adjust ( hspace =0.3)

1296 f i g . s a v e f i g ( s t r ( t i t l e ) + ’ . png ’ )
return

1298

def s a v e S t a b i l i t y I n f o ( indices , measInfo , t i t l e ) :
1300 headerStr= ’ fileNumber\ tSync_counts / s \tCh0_counts/ s \tCh1_counts : / s \ tg2_ch0 \ tg2_ch0_err \ tg2_ch1 \

tg2_ch1_err \ t ’
data=np . append(np . array ( [ indices ] ) . T , measInfo , axis =1)

1302 np . savetxt ( t i t l e , data , del imiter= ’ \ t ’ , header=headerStr )
return

1304

def plotFinalResult ( t i t l e , Results ) :
1306 f i g , axarr= p l t . subplots ( 2 , 1 )

axarr [ 0 ] . s e t _ t i t l e ( ’S−aS Decay ’ )
1308 axarr [ 0 ] . errorbar ( Results [ : , 0 ] , Results [ : , 4 ] , yerr=Results [ : , 5 ] , fmt="o" , l ab el = ’CH0 ’ )
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axarr [ 0 ] . errorbar ( Results [ : , 0 ] , Results [ : , 6 ] , yerr=Results [ : , 7 ] , fmt="o" , c= ’ g ’ , l a be l = ’CH1 ’ )
1310

axarr [ 1 ] . s e t _ t i t l e ( ’ Conditional aS−aS ’ )
1312 axarr [ 1 ] . errorbar ( Results [ : , 0 ] , Results [ : , 8 ] , yerr=Results [ : , 9 ] , fmt="o" , l ab e l = ’ aS−aS ’ )

for ax in axarr . f l a t :
1314 ax . set_ylim ( 0 )

ax . grid ( True )
1316 f i g . subplots_adjust ( hspace =0.3)

f i g . s a v e f i g ( s t r ( t i t l e ) + ’ . png ’ )
1318 return

1320

main ( )

10.2 Code for data acquisition

This code is written in Python, combining standard functionality with the dedicated libraries

provided by PicoQuant.

1000 import time
import ctypes as ct

1002 from ctypes import byref
import sys

1004 import s t r u c t
import os

1006 import visa

1008 # From th260defin . h
LIB_VERSION = " 3.1 "

1010 MAXDEVNUM = 4
MODE_T2 = 2

1012 MODE_T3 = 3
MAXLENCODE = 5

1014 MAXINPCHAN = 2
TTREADMAX = 131072

1016 FLAG_OVERFLOW = 0x0001
FLAG_FIFOFULL = 0x0002

1018

# Measurement parameters , these are hardcoded since t h i s i s j u s t a demo
1020 mode = MODE_T3 # set T2 or T3 here , observe suitable Syncdivider and Range !

binning = 0 # you can change this , meaningful only in T3 mode
1022 o f f s e t = 0 # you can change this , meaningful only in T3 mode

tacq = 60000 # Measurement time in mil l isec , you can change t h i s
1024 syncDivider = 1 # you can change this , observe mode! READ MANUAL!

### For TimeHarp 260 N
1026 syncTriggerEdge = 0 # you can change t h i s

syncTriggerLevel = 300 # you can change t h i s
1028 inputTriggerEdge = 0 # you can change t h i s

inputTriggerLevel = 300 # you can change t h i s
1030

# Variables to store information read from DLLs
1032 buffer = ( ct . c_uint * TTREADMAX) ( )

dev = [ ]
1034 l ibVersion = ct . cre ate _str i ng_bu ffe r (b" " , 8)###

hwSerial = ct . create_ str ing_bu ffer (b" " , 8)

101



Chapter 10. Code for "Preparation and decay of a single quantum of vibration at ambient
conditions"

1036 hwPartno = ct . create_ str ing_bu ffe r (b" " , 8)
hwVersion = ct . cre ate _str ing_bu ffe r (b" " , 16)

1038 hwModel = ct . create_ str ing_bu ffe r (b" " , 16)
e rr o r S tr i ng = ct . cre ate_str i ng_ buffer (b" " , 40)

1040 numChannels = ct . c_int ( )
resolution = ct . c_double ( )

1042 syncRate = ct . c_int ( )
countRate = ct . c_int ( )

1044 f l a g s = ct . c_int ( )
nRecords = ct . c_int ( )

1046 c t c s t a t u s = ct . c_int ( )
warnings = ct . c_int ( )

1048 warningstext = ct . cre ate _str i ng_bu ffe r (b" " , 16384)

1050 # th260lib = ct .CDLL( " th260lib . d l l " )
th260lib = ct . windll . th260lib

1052

def closeDevices ( ) :
1054 for i in range ( 0 , MAXDEVNUM) :

th260lib . TH260_CloseDevice ( ct . c_int ( i ) )
1056 e x i t ( 0 )

1058 def s t o p t t t r ( ) :
tryfunc ( th260lib . TH260_StopMeas ( ct . c_int ( dev [ 0 ] ) ) , "StopMeas" )

1060 #closeDevices ( )

1062 def tryfunc ( retcode , funcName , measRunning=False ) :
i f retcode < 0 :

1064 th260lib . TH260_GetErrorString ( errorString , ct . c_int ( retcode ) )
print ( "TH260_%s error %d (%s ) . Aborted . " % (funcName , retcode , \

1066 e rr o r S tr i ng . value . decode ( " utf −8" ) ) )
i f measRunning :

1068 s t o p t t t r ( )
e lse :

1070 closeDevices ( )

1072 ######################## Measurement : ####################################
def Measure ( fileName , delayStage ) :

1074 ###Save acquisit ion s e t t i n g s and counts###
s e t t i n g s F i l e =open( fileName+ ’ _info . t x t ’ , "w" )

1076 s e t t i n g s F i l e . write ( time . s t r f t i m e ( "%Y−%m−%d %H:%M:%S" , time . gmtime ( ) ) )
s e t t i n g s F i l e . write ( " \nUsing the following s e t t i n g s : \ n" )

1078 s e t t i n g s F i l e . write ( "Mode : %d\n" % mode)
s e t t i n g s F i l e . write ( "Binning : %d\n" % binning )

1080 s e t t i n g s F i l e . write ( " Offset : %d\n" % o f f s e t )
s e t t i n g s F i l e . write ( " AcquisitionTime : %d\n" % tacq )

1082 s e t t i n g s F i l e . write ( " SyncDivider : %d\n" % syncDivider )
s e t t i n g s F i l e . write ( " SyncTriggerEdge : %d\n" % syncTriggerEdge )

1084 s e t t i n g s F i l e . write ( " SyncTriggerLevel : %d\n" % syncTriggerLevel )
s e t t i n g s F i l e . write ( " InputTriggerEdge : %d\n" % inputTriggerEdge )

1086 s e t t i n g s F i l e . write ( " InputTriggerLevel : %d\n" % inputTriggerLevel )
s e t t i n g s F i l e . write ( " \ nDelayStagePosition : "+findDelayStagePos ( delayStage ) )

1088 s e t t i n g s F i l e . write ( " \nMeasuring input rates . . . " )
# Note : a f t e r I n i t or SetSyncDiv allow 150 ms for val i d count rate readings

1090 time . sleep ( 0 . 1 5 )

1092 tryfunc ( th260lib . TH260_GetSyncRate ( ct . c_int ( dev [ 0 ] ) , byref ( syncRate ) ) ,
"GetSyncRate" )

1094 s e t t i n g s F i l e . write ( " \ nSyncrate=%1d/ s \n" % syncRate . value )
print ( " Syncrate=%1d/ s \n" % syncRate . value )
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1096 for i in range ( 0 , numChannels . value ) :
tryfunc (

1098 th260lib . TH260_GetCountRate ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( i ) , byref ( countRate ) ) ,\
"GetCountRate" )

1100 s e t t i n g s F i l e . write ( " Countrate[%1d]=%1d/ s \n" % ( i , countRate . value ) )
# a f t e r gett ing the count rates you can check for warnings

1102 tryfunc ( th260lib . TH260_GetWarnings ( ct . c_int ( dev [ 0 ] ) , byref ( warnings ) ) , "GetWarnings" )
i f warnings . value != 0 :

1104 th260lib . TH260_GetWarningsText ( ct . c_int ( dev [ 0 ] ) , warningstext , warnings )
print ( " \n\n%s \n" % warningstext . value . decode ( " utf −8" ) )

1106 s e t t i n g s F i l e . close ( )

1108 ###Actual measurement###
print ( " S t a r t i n g data c o l l e c t i o n for "+fileName )

1110 o u t p u t f i l e = open( fileName+ ’ . out ’ , "wb+" )
tryfunc ( th260lib . TH260_StartMeas ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( tacq ) ) , " StartMeas " )

1112 while True :
tryfunc ( th260lib . TH260_GetFlags ( ct . c_int ( dev [ 0 ] ) , byref ( f l a g s ) ) , " GetFlags " )

1114

i f f l a g s . value & FLAG_FIFOFULL > 0 :
1116 print ( " \nFiFo Overrun ! " )

s t o p t t t r ( )
1118

tryfunc (
1120 th260lib . TH260_ReadFiFo ( ct . c_int ( dev [ 0 ] ) , byref ( buffer ) , TTREADMAX,

byref ( nRecords ) ) ,\
1122 "ReadFiFo" , measRunning=True

)
1124

i f nRecords . value > 0 :
1126 # We could j u s t i t e r a t e through our buffer with a for loop , however ,

# t h i s i s slow and might cause a FIFO overrun . So instead , we shrinken
1128 # the buffer to i t s appropriate length with array s l i c i n g , which gives

# us a python l i s t . This l i s t then needs to be converted back into
1130 # a ctype array which can be written at once to the output f i l e

o u t p u t f i l e . write ( ( ct . c_uint * nRecords . value ) ( * buffer [ 0 : nRecords . value ] ) )
1132 else :

tryfunc ( th260lib . TH260_CTCStatus ( ct . c_int ( dev [ 0 ] ) , byref ( c t c s t a t u s ) ) ,\
1134 "CTCStatus" )

i f c t c s t a t u s . value > 0 :
1136 print ( " \nDone" )

s t o p t t t r ( )
1138 break

# within t h i s loop you can also read the count rates i f needed .
1140 o u t p u t f i l e . close ( )

1142 #### Functions filenames : ####
def nDontOverwrite ( FileName ) :

1144 n=1
while FileName+ ’ −{:03d } . out ’ . format (n) in os . l i s t d i r ( ) :

1146 n=n+1
return n

1148 def moveToFolder ( folderName ) :
t r y :

1150 os . mkdir ( folderName )
except : pass

1152 os . chdir ( folderName )
### Control Delay Stage ###

1154 def i n i t i a l i z e S t a g e ( ) :
rm = visa . ResourceManager ( )
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1156 rm. l i s t _ r e s o u r c e s ( )
delayStage= rm. open_resource ( ’GPIB0 : : 1 : : INSTR ’ )

1158 return delayStage
def findDelayStagePos ( delayStage ) :

1160 return s t r ( delayStage . query ( ’ 1TP ’ ) )
def moveDelayStage ( delayStage , pos ) :

1162 delayStage . write ( ’ 1PA ’+ s t r ( pos ) )
time . sleep ( 2 )

1164 return

1166 ######################## TimeHarp DLL ###################################

1168 th260lib . TH260_GetLibraryVersion ( l ibVersion )
print ( " Library version i s %s " % libVersion . value . decode ( " utf −8" ) )

1170 i f l ibVersion . value . decode ( " utf −8" ) != LIB_VERSION :
print ( "Warning : The application was b u i l t for version %s " % LIB_VERSION)

1172

1174 ######################### Finding and Opening Device : #########################
print ( " \ nSearching for TimeHarp devices . . . " )

1176 print ( "Devidx Status " )

1178 for i in range ( 0 , MAXDEVNUM) :
retcode = th260lib . TH260_OpenDevice ( ct . c_int ( i ) , hwSerial )

1180 i f retcode == 0 :
print ( " %1d S/N %s " % ( i , hwSerial . value . decode ( " utf −8" ) ) )

1182 dev . append( i )
e lse :

1184 i f retcode == −1: # TH260_ERROR_DEVICE_OPEN_FAIL
print ( " %1d no device " % i )

1186 else :
th260lib . TH260_GetErrorString ( errorString , ct . c_int ( retcode ) )

1188 print ( " %1d %s " % ( i , e rr o r Str i ng . value . decode ( " utf8 " ) ) )
# In t h i s demo we w i l l use the f i r s t TimeHarp device we find , i . e . dev [ 0 ] .

1190 i f len ( dev ) < 1 :
print ( "No device a v a i l a b l e . " )

1192 closeDevices ( )
print ( "Using device #%1d" % dev [ 0 ] )

1194 print ( " \ n I n i t i a l i z i n g the device . . . " )

1196 # with i n te rna l clock
tryfunc ( th260lib . TH260_Initial ize ( ct . c_int ( dev [ 0 ] ) , ct . c_int (mode) ) , " I n i t i a l i z e " )

1198

tryfunc ( th260lib . TH260_GetHardwareInfo ( dev [ 0 ] , hwModel, hwPartno , hwVersion ) ,\
1200 "GetHardwareInfo" )

print ( "Found Model %s Part no %s Version %s " % (hwModel . value . decode ( " utf −8" ) ,\
1202 hwPartno . value . decode ( " utf −8" ) , hwVersion . value . decode ( " utf −8" ) ) )

1204 tryfunc ( th260lib . TH260_GetNumOfInputChannels ( ct . c_int ( dev [ 0 ] ) , byref (numChannels) ) ,\
"GetNumOfInputChannels" )

1206 print ( "Device has %i input channels . " % numChannels . value )

1208 ######################### Configuring Sett ing : ##############################
print ( " \nUsing the following s e t t i n g s : " )

1210 print ( "Mode : %d" % mode)
print ( "Binning : %d" % binning )

1212 print ( " Offset : %d" % o f f s e t )
print ( " AcquisitionTime : %d" % tacq )

1214 print ( " SyncDivider : %d" % syncDivider )
i f hwModel . value . decode ( " utf −8" ) == "TimeHarp 260 N" :
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1216 print ( " SyncTriggerEdge : %d" % syncTriggerEdge )
print ( " SyncTriggerLevel : %d" % syncTriggerLevel )

1218 print ( " InputTriggerEdge : %d" % inputTriggerEdge )
print ( " InputTriggerLevel : %d" % inputTriggerLevel )

1220 else :
print ( "Unknown hardware model %s . Aborted . " % hwModel . value . decode ( " utf −8" ) )

1222 closeDevices ( )

1224 tryfunc ( th260lib . TH260_SetSyncDiv ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( syncDivider ) ) ,
" SetSyncDiv " )

1226 i f hwModel . value . decode ( " utf −8" ) == "TimeHarp 260 N" :
tryfunc (

1228 th260lib . TH260_SetSyncEdgeTrg ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( syncTriggerLevel ) ,\
ct . c_int ( syncTriggerEdge ) ) ,\

1230 "SetSyncEdgeTrg"
)

1232 # we use the same input s e t t i n g s for a l l channels , you can change t h i s
for i in range ( 0 , numChannels . value ) :

1234 retcode = th260lib . TH260_SetInputEdgeTrg ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( i ) ,\
ct . c_int ( inputTriggerLevel ) ,\

1236 ct . c_int ( inputTriggerEdge ) )
i f retcode < 0 :

1238 print ( "TH260_SetInputCFD error %d . Aborted . " % retcode )
closeDevices ( )

1240

tryfunc ( th260lib . TH260_SetSyncChannelOffset ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( 0 ) ) ,\
1242 " SetSyncChannelOffset " )

1244 for i in range ( 0 , numChannels . value ) :
tryfunc (

1246 th260lib . TH260_SetInputChannelOffset ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( i ) ,\
ct . c_int ( 0 ) ) ,\

1248 " SetInputChannelOffset "
)

1250

tryfunc ( th260lib . TH260_SetBinning ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( binning ) ) , " SetBinning " ) #####
1252 tryfunc ( th260lib . TH260_SetOffset ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( o f f s e t ) ) , " SetOffset " ) #####

tryfunc ( th260lib . TH260_GetResolution ( ct . c_int ( dev [ 0 ] ) , byref ( resolution ) ) ,\
1254 " GetResolution " )

print ( " Resolution i s %1.1 l f p s " % resolution . value )
1256

######################## Countrate and Warnings : ###################################
1258 print ( " \nMeasuring input rates . . . " )

1260 # Note : a f t e r I n i t or SetSyncDiv allow 150 ms for val i d count rate readings
time . sleep ( 0 . 1 5 )

1262

tryfunc ( th260lib . TH260_GetSyncRate ( ct . c_int ( dev [ 0 ] ) , byref ( syncRate ) ) ,
1264 "GetSyncRate" )

print ( " \ nSyncrate=%1d/ s " % syncRate . value )
1266

for i in range ( 0 , numChannels . value ) :
1268 tryfunc (

th260lib . TH260_GetCountRate ( ct . c_int ( dev [ 0 ] ) , ct . c_int ( i ) , byref ( countRate ) ) ,\
1270 "GetCountRate"

)
1272 print ( " Countrate[%1d]=%1d/ s " % ( i , countRate . value ) )

1274 # a f t e r gett ing the count rates you can check for warnings
tryfunc ( th260lib . TH260_GetWarnings ( ct . c_int ( dev [ 0 ] ) , byref ( warnings ) ) , "GetWarnings" )
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1276 i f warnings . value != 0 :
th260lib . TH260_GetWarningsText ( ct . c_int ( dev [ 0 ] ) , warningstext , warnings )

1278 print ( " \n\n%s " % warningstext . value . decode ( " utf −8" ) )

1280

expName= ’ Test ’
1282 posList = [ 0 . 4 , 0 . 5 , 0 . 7 , 0 . 9 , 1 . 1 , 1 . 3 , 1 . 5 , 1 . 7 , 2 . 0 ]

measurementNum=60
1284 cwd=os . getcwd ( )

delayStage= i n i t i a l i z e S t a g e ( )
1286 for pos in posList :

baseName=expName+ ’ Pos { : 0 3 . 2 f } ’ . format ( pos )
1288 os . chdir (cwd)

moveToFolder (cwd+" \\ "+expName+ ’ Pos { : 0 3 . 2 f } ’ . format ( pos ) )
1290 moveDelayStage ( delayStage , pos )

fileNum=nDontOverwrite (baseName)
1292 for i in range (measurementNum) :

fileName=baseName+ ’ −{:03d} ’ . format ( fileNum )
1294 Measure ( fileName , delayStage )

fileNum=fileNum+1
1296

1298 closeDevices ( )
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11 Jones calculus for "Bell Correlations
between light and vibration"

In this appendix we provide an alternative model to the one presented in Ch. 7. In contrast

with the published model, this one relies heavily on our physical intuition of how the exper-

iment behaves, which detracts from its general validity. The advantage is that, by directly

incorporating our expectation of what is occurring in the experiment, it allowed us to test

potential sources of error, which was extremely valuable when building and troubleshooting

the experiment.

In this section we explain how we model the experiment in order to obtain the fitting function

for the CHSH parameter plotted in Fig. 2 of the main text. We first use Jones calculus to find

the effect of the optical elements on the quantum state of the Stokes–anti-Stokes photon pair.

We then consider how an ideal Bell state is modified by the inclusion of the most relevant

experimental imperfections.

To make the link between optical elements and the corresponding mathematical operations

more explicit, we describe the two time-bin modes in term of the associated polarisation of the

Raman photons through the mapping implemented by the polarisation selective unbalanced

interferometer: |Es〉→ |Vs〉; |Ea〉→ |Va〉 and |Ls〉→ |Hs〉; |La〉→ |Ha〉.

11.0.1 Jones calculus to model the experiment

We use Jones calculus to find the operators representing the optical elements (VR and PBS)

in the reduced Hilbert space with exactly one photon existing in two possible polarisations.

Specifically, a variable retarder with the retardation axis along the vertical axis is represented

by (up to a global phase)

MV R (θ) =
(

e−iθ/2 0

0 e iθ/2

)
(11.1)

where θ is the phase retardation introduced between vertical and horizontal components.

We also define the matrix for a polarizer MP+ with the transmission axis along the vertical
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direction, and a polarizer MP− with the transmission axis along the horizontal direction as

MP+ =
(

0 0

0 1

)
MP− =

(
1 0

0 0

)
(11.2)

The matrix for a variable retarder oriented at an arbitrary angle α with respect to vertical are

then given by Mα
V R (θ) = R(−α)MV R (θ)R(α), where R(α) is the rotation matrix

R(α) =
(

cos(α) sin(α)

−sin(α) cos(α)

)
(11.3)

We then find the total operator (in the Hilbert space with exactly one Stokes and one anti-

Stokes photon) for the two variable retarders at 45◦ (π4 rad) acting on the Stokes and anti-Stokes

fields by taking the tensor product

MV R (θ,ϕ) = M
π
4

V R (θ)⊗M
π
4

V R (ϕ) (11.4)

The state after going through the variable retarders is transformed according to

ρ̂out = MV R (θ,ϕ) ρ̂i n MV R (θ,ϕ)† (11.5)

We define MPx y as the operator for a polarizer with the transmission along the x axis for

the Stokes field and y axis for the anti-Stokes field. For example, MP−+ is defined as MP−+ ≡
MP− ⊗MP+ .

We can then compute the expectation values of relevant observables for assessing the CHSH

parameter, i.e. nx y = Tr (ρ̂out MPx y ). With the nx y coefficients we can then calculate the

correlation parameters as explained in the main text.

11.0.2 Corner density matrix

We present here the analytical solution for a special case that will appear multiple times in

this section. We consider the case of a density matrix that only has non-zero elements in the

corners, i.e.

ρ̂ =


x11 0 0 x14

0 0 0 0

0 0 0 0

x41 0 0 x44

 (11.6)

corresponding to ρ̂ = x11|Hs Ha〉〈Hs Ha |+x44|VsVa〉〈VsVa |+x14|Hs Ha〉〈VsVa |+x41|VsVa〉〈Hs Ha |.

By using the methodology described above, we find that the values of the correlation parame-
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(11.7)

And the visibility curves at θ = 0 and θ =π/2 are given by

E(0,ϕ) = cos(ϕ)

E(π/2,ϕ) =−sin(ϕ)

(
x14 +x41

x11 +x44

) (11.8)

These expressions simplify further considering that x11 +x44 = Tr (ρ̂) = 1 for a density matrix.

We can clearly see that a density matrix of this form will always have ideal visibility of unity

for the θ = 0 curve, while the visibility of the θ = π/2 curve will depend on the off diagonal

elements.

11.0.3 Unbalanced initial state

We first analyze the effect of having different weights between the two elements of a Bell state,

i.e. |ψ〉 = 1p
2

(
p

1+ε|Hs Ha〉−
p

1−ε|VsVa〉), where ε gives the imbalance between them. This

state has the form described in section 11.0.2, and therefore

E
(π

2
,
π

4

)
=− 1p

2

√
1−ε2

E
(π

2
,−π

4

)
= 1p

2

√
1−ε2

(11.9)

An unequal splitting of power in our experiment, which leads to this type of asymmetry,

will therefore reduce the visibility of the correlations when ϕ = π/2. It will also affect the

measurement of the marginal state, and we use this in order to find our experimental ε.

The marginal of this state is represented by ρ̂a = 1+ε
2 |Ha〉〈Ha |+ 1−ε

2 |Va〉〈Va |. We calculate the

difference between the expectation values at the two outputs of the measurement system,

〈MP+〉−〈MP−〉 = εcos(ϕ) (11.10)

and fit this function to the difference between normalized count rates shown in Figure 2b of

the main text. We find that for our experiment ε= 0.027, which leads to a loss of visibility of

0.04%. In the following analysis we neglect this contribution.
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11.0.4 Pure initial state

We consider the pure entangled (and Bell correlated) state |ψ〉 = 1p
2

(|Hs Ha〉+e iφ|VsVa〉), which

is represented by the density matrix

ρ̂ = 1

2

(
|Hs Ha〉〈Hs Ha |+ |VsVa〉〈VsVa |+e−iφ|Hs Ha〉〈VsVa |+e iφ|VsVa〉〈Hs Ha |

)
(11.11)

This density matrix is of the type described in section 11.0.2, and therefore

E
(π

2
,
π

4

)
=− 1p

2
cos(φ)

E
(π

2
,−π

4

)
= 1p

2
cos(φ)

(11.12)

In our experimentφ, the accumulated phase difference between the early and late states, could

arise from differences in path lengths within the folded interferometer, or from birefringence

in the optical elements (as discussed above). For the chosen measurement basis and settings,

the maximum Bell inequality violation will be found with φ= 0 or φ=π. When experimentally

optimising the visibility of the two-photon interference, we choose to set the phase to φ=π.

The visibility of the correlation parameter for θ = π/2 is determined by cos(φ). This means

that any deviation from φ= 0 or φ=π translates into a reduced visibility of the two photon

interference curve with θ =π/2, compared to that with θ = 0, as shown in Fig. 11.2. We can

also discriminate between the states with φ= 0 or φ= π by considering in which direction

the curve obtained with θ =π/2 shifts compared to the one at θ = 0, as illustrated in Fig. 11.1.

By comparing with Fig. 2 of the main text we can claim that we are preparing a state close to

|Ψ〉 = 1p
2

(|Hs Ha〉− |VsVa〉) ≡ |φ−〉.

Upper bound on unwanted phase

In the experiment we observe a ratio between the two-photon interference visibility at θ =π/2

and that at θ = 0 of 0.814. If we attribute all the loss of visibility to a phase deviating away from

φ= π (assuming perfect temporal overlap and therefore pure state) we find that the phase

must be within φ=π±0.620 rad to be able to reproduce our results.

11.0.5 Initial state with a mixed component

Another effect that can lead to a loss of visibility is an imperfect overlap after the second pass

through the interferometer. If it does not perfectly undo the delay introduced by the first pass,

the photons will not be perfectly indistinguishable in their temporal modes. This imperfect

temporal overlap is too short for our detectors to resolve, but it makes partial information

about the time bin of origin of the photons in principle available. This results in a mixed

state as opposed to a pure entangled state. By mapping the time bin degree of freedom to

110



- π/ 2 0 π/ 2 π 3 π/ 2
- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

E(θ
,ϕ)

ϕ  ( r a d )

 θ  =  0
 θ  =  π / 2  ,  φ =  0
 θ  =  π / 2  ,  φ =  π

Figure 11.1: Calculated curves for the correlation parameter E inferred from a quantum state
of the form |ψ〉 = 1p

2
(|Hs Ha〉+e iφ|VsVa〉), with different values of φ. The curve obtained for

θ = 0 does not depend on the phaseφ, while the curves computed for θ =π/2 let us distinguish
|Hs Ha〉+ |VsVa〉 from |Hs Ha〉− |VsVa〉.

polarisation, our scheme produces pairs of photons that are either vertically or horizontally

polarized before being overlapped. Therefore, we can write the general density matrix

ρ̂ =λ|ψ〉〈ψ|+ (1−λ)ρ̂m

as a sum of the pure entangled state

|ψ〉 = 1p
2

(|Hs Ha〉+e iφ|VsVa〉)

and a mixed state

ρ̂m = |Hs Ha〉〈Hs Ha |+ |VsVa〉〈VsVa |
which results from the non-overlapping temporal modes.

This again leads to the case described in Sec. 11.0.2, with the correlation parameter for a

fixed θ = π/2 being expressed by E(π/2,ϕ) =−λcos(φ)sin(ϕ). Any mixed component from

imperfect temporal overlap will therefore decrease the visibility, and the maximum CHSH

parameter will only be obtained for the pure entangled state.

Experimentally, we cannot discriminate between the effect of an incorrect phase φ 6=π that

was discussed in Sec. 11.0.4, and imperfect temporal overlap. The two could in principle be

distinguished by changing the measurement basis to one in which φ=π/2 gives a maximum

CHSH violation, which would allow us to quantify the contribution of each effect. This would

however entails a change in setup configuration and therefore in temporal overlap, so it is

unlikely to yield a definite answer.
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Figure 11.2: Computed two-photon coincidence curves. Panels a-c show the value of the
correlation parameter E for the density matrix ρ̂ =λ|φ−〉〈φ−|+ (1−λ)ρ̂m (see text). In a, λ= 1
(pure state), while in b, λ= 1/2 (partially mixed state), and in c, λ= 0 (fully mixed state). The
panels d-f show cuts at θ = 0 and θ =π/2 for the surface plots above them. Panels g-i show the
value of the correlation parameter E for the pure state |ψ〉 = 1p

2
(|Hs , Ha〉+ e iφ|Vs ,Va〉). In g,

φ= 0, while in h, φ=π/2, and in i, φ=π. Panels j-l again show cuts at θ = 0 and θ =π/2 for
the surface plots above them.

With this complete model, we obtain the correlation parameters for the settings used to
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compute the CHSH parameter
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(11.13)

From which we derive the CHSH parameter

S =
p

2(1+V0) (11.14)

where V0 =λcos(φ) is the loss of visibility due to the imperfect phase and temporal overlap,

which is measured experimentally as the ratio of the amplitudes of the visibility curves at

θ =π/2 and θ = 0.

Upper bound on mixed component

By considering the case in which all the loss of visibility between the θ = 0 and the θ = π/2

curve is due to a mixed component in the state, we can obtain a lower bound on the purity of

the state. This lower bound is λ= 0.814.
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12 Code for "Bell Correlations between
light and vibration"

This appendix shows the code used to acquire and process the data shown in Ch. 7. The

acquisition takes place as explained in Sec. 7.2.2, and is analyzed as explained in Sec. 7.2.13.

12.1 Code for data acquisition
1000 #Controls for the variable retarders , i t a l i a n correlat ion card , and delay stage

#VR c a l i b r a t i o n for OPO at 695nm and TiSa at 800nm
1002

import time
1004 import sys

import os
1006 import visa

import subprocess
1008 import numpy as np

import re
1010 import Exp_VisCurves_v2

1012 # Variable retarder : #
sys . path . append( r ’C: \ Program F i l e s \ARCoptix\ARCoptix LC Driver 1.2\\ ’ )

1014 import c l r
c l r . AddReference ( "LCDriver" )

1016 from ARCoptix . LCdriver import *
import ctypes

1018 VR_CH0 = b ’ \x00 ’
VR_CH1 = b ’ \x01 ’

1020

def main ( ) :
1022 expName= ’ DelaySweep3 ’

r e p e t i t i o n s =10
1024 thA1=np . pi /2

thA2=0
1026 thB1=−np . pi /4

thB2=np . pi /4
1028 expConditions =[ ’ 0 ’ , ’ 1 ’ , ’ 1 ’ ] # [ seconds , minutes , number of meas for card ]

expPhases = [ [ thA1 , thB1 ] ,
1030 [ thA1 , thB2 ] ,
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[ thA2 , thB1 ] ,
1032 [ thA2 , thB2 ] ,

[ 0 , 0 ] ,
1034 [np . pi /2 ,np . pi / 2 ] ]

print ( " Target phase configuration : " )
1036 print ( expPhases )

posList = [ − 0 . 2 0 , − 0 . 1 0 , 0 . 0 0 , 0 . 1 0 , 0 . 2 0 , 0 . 3 0 , 0 . 5 0 , 0 . 7 0 , 1 . 0 0 , 1 . 3 0 , 1 . 6 0 , 2 . 0 0 ,
1038 2 . 3 0 , 2 . 6 0 , 2 . 9 0 , 3 . 3 0 , 3 . 7 0 , 4 . 2 ]

measurementNum=1
1040 LCD = i n i t i a l i z e V R ( )

delayStage= i n i t i a l i z e S t a g e ( )
1042 cwd=os . getcwd ( )

for i in range ( r e p e t i t i o n s ) :
1044 os . chdir (cwd)

Exp_VisCurves_v2 . main ( )
1046 for pos in posList :

baseName=expName+ ’ Pos { : 0 3 . 2 f } ’ . format ( pos )
1048 os . chdir (cwd)

moveToFolder (cwd+" \\ "+expName+ ’ Pos { : 0 3 . 2 f } ’ . format ( pos ) )
1050 moveDelayStage ( delayStage , pos )

for phases in expPhases :
1052 fileName=" { } _thA_ { : 0 5 . 4 f } _thB_ { : 0 5 . 4 f } " . format (baseName , * phases )

setPhase_S (LCD,VR_CH0, phases [ 0 ] )
1054 setPhase_aS (LCD,VR_CH1, phases [ 1 ] )

MeasureCoincidenceNum ( fileName , expConditions )
1056 os . chdir (cwd)

return
1058

1060

### Functions to control correlat ion card : ###
1062 def MeasureCoincidenceNum ( fileName , expConditions ) :

i f fileName [ −4:]== ’ . t x t ’ : fileName=fileName [ : − 4 ]
1064 fileName=" { } _ { } s_ { } min_ { } acq . t x t " . format ( fileName , * expConditions )

fileName=dontOverride ( fileName )
1066 cwd=os . getcwd ( )

c_executable=r ’ "C: \ Users\Hamamatsu\Desktop\ Release10 \ SaveCorrelationClient \ TestClient . exe" ’
1068 f i l e =cwd+ ’ \\ ’+fileName

command=c_executable+ ’ ’+ f i l e + ’ ’+ ’ ’ . join ( expConditions )
1070 subprocess . run (command)

# print (command) #
1072 print ( ’ Waiting for measurement ’+fileName )

wait ( ( i n t ( expConditions [ 0 ] ) +60* i n t ( expConditions [ 1 ] ) ) * i n t ( expConditions [ 2 ] ) )
1074 outputFileName=fileName [: −4]+ ’ − { : } . t x t ’ . format ( expConditions [ 2 ] )

checkFi leExists ( outputFileName )
1076 return

1078 def dontOverride ( fileName ) :
’ Returns a fileName that wont override e x i s t i n g f i l e s ’

1080 i f fileName [ −4:]== ’ . t x t ’ : fileName=fileName [ : − 4 ]
i f re . compile ( r ’ −\d\d\d ’ ) . search ( fileName [ − 4 : ] ) ==None :

1082 fileName=fileName+ ’ −001. t x t ’
n=1

1084 while fileName [: −4]+ ’ −1. t x t ’ in os . l i s t d i r ( ) :
fileName=fileName [: −7]+ ’ { : 0 3 d } . t x t ’ . format (n)

1086 n=n+1
return fileName

1088

def wait ( sleepTime ) :
1090 for i in range ( i n t ( sleepTime ) ) :
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time . sleep ( 1 )
1092 return

1094 def checkFi leExists ( fileName ) :
f i l e L i s t =os . l i s t d i r ( )

1096 while fileName not in f i l e L i s t :
print ( ’Measurement i s taking longer than expected . . . ’ )

1098 wait ( 1 )
f i l e L i s t =os . l i s t d i r ( )

1100 print ( ’Measurement done ’ )
return

1102

### Functions to control the Delay Stage : ###
1104 def i n i t i a l i z e S t a g e ( ) :

rm = visa . ResourceManager ( )
1106 rm. l i s t _ r e s o u r c e s ( )

delayStage= rm. open_resource ( ’GPIB0 : : 1 : : INSTR ’ )
1108 return delayStage

def findDelayStagePos ( delayStage ) :
1110 return s t r ( delayStage . query ( ’ 1TP ’ ) )

def moveDelayStage ( delayStage , pos ) :
1112 delayStage . write ( ’ 1PA ’+ s t r ( pos ) )

time . sleep ( 2 )
1114 return

1116 ### Functions to control the Variable Retarder : ###
def i n i t i a l i z e V R ( ) :

1118 LCD = LCdriver ( True )
print ( "Number of conected devices : { } " . format (LCD. GetNumberOfDevicesConnected ( ) ) )

1120 print ( " S e r i a l Number: { } " . format (LCD. GetSerialNumber ( 0 ) ) )
print ( "Max Voltage : { } V" . format (LCD. GetMaxVoltage ( ) ) )

1122 return LCD

1124 def setVRvol (LCD,CH, voltage , maxVoltage =8.3) :
i f ( voltage >= 0) and ( voltage < maxVoltage ) :

1126 print ( ’Changed Voltge : { } ’ . format (
LCD. SetDACVoltage ( f l o a t ( voltage ) ,CH, 0 ) ) )

1128 else : print ( " Voltage not allowed " )
return

1130

def setPhase (LCD,CH, phase ) :
1132 voltage=VRcalibration ( phase )

setVRvol (LCD,CH, voltage )
1134 return

def setPhase_S (LCD,CH, phase ) :
1136 voltage=VRcalibration_S ( phase )

setVRvol (LCD,CH, voltage )
1138 return

def setPhase_aS (LCD,CH, phase ) :
1140 voltage=VRcalibration_aS ( phase )

setVRvol (LCD,CH, voltage )
1142 return

1144 def VRcalibration ( phase ) :
’ Returns the voltage required to set a given phase ’

1146 minShift =−2.483311269
maxShift =3.1415926540000001

1148 i f ( phase < minShift ) or ( phase > maxShift ) :
print ( "WARNING: t a r g e t phase s h i f t outside range ! " )

1150 v _ a l l =np . array ( [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 1 . 0 5 , 1 . 1 , 1 . 1 5 ,
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1 . 2 , 1 . 2 5 , 1 . 3 , 1 . 3 5 , 1 . 4 , 1 . 4 5 , 1 . 5 , 1 . 5 5 , 1 . 6 , 1 . 6 5 , 1 . 7 , 1 . 7 5 ,
1152 1 . 8 , 1 . 8 5 , 1 . 9 , 1 . 9 5 , 2 , 2 . 0 5 , 2 . 1 , 2 . 1 5 , 2 . 2 , 2 . 2 5 , 2 . 3 , 2 . 3 5 , 2 . 4 ,

2 . 4 5 , 2 . 5 , 2 . 6 , 2 . 7 , 2 . 8 , 2 . 9 , 3 , 3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 , 3 . 5 , 3 . 6 , 3 . 7 ,
1154 3 . 8 , 4 , 4 . 2 , 4 . 4 , 4 . 6 , 4 . 8 , 5 , 5 . 4 , 5 . 8 , 6 . 2 , 6 . 6 , 7 , 7 . 4 , 7 . 8 , 8 . 2 ] )

ph_all=np . array ([ −2.483311269 , −2.483311269 , −2.483311269 , −2.483311269 ,
1156 −2.483311269 , −2.483311269 , −2.483311269 , −2.483311269 ,

−2.459284667 , −2.459284667 , −2.3910858 , −2.3275533 , −2.229307863 ,
1158 −2.120445443 , −1.937145169 , −1.747839158 , −1.537954602 ,

−1.30808325 , −1.069460949 , −0.809925709 , −0.553392756 ,
1160 −0.319941777 ,0.232322341 ,0.404236443 ,0.633483795 ,0.87396484 ,

1.103195151 ,1.326585086 ,1.534967766 ,1.735722093 ,1.937145169 ,
1162 2.113458937 ,2.267627813 ,2.464032367 ,2.623280734 ,2.752815115 ,

2.896641838 ,2.968603351 ,3.141592654 ,3.141592654 ,2.968603351 ,
1164 2.715161634 ,2.588199898 ,2.413235043 ,2.299189813 ,2.155843614 ,

2.072131704 ,1.975808393 ,1.882671175 ,1.812387841 ,1.743303519 ,
1166 1.679574588 ,1.629824536 ,1.584727142 ,1.471906664 ,1.392259533 ,

1.323085635 ,1.255048566 ,1.192745115 ,1.143761682 ,1.050034438 ,
1168 0.972926175 ,0.900183781 ,0.847281298 ,0.794940488 ,0.753032308 ,

0.70915886 ,0.670204182])
1170 v= v _ a l l [ : 3 9 ]

ph=ph_all [ : 3 9 ]
1172 voltage=np . interp ( phase , ph , v )

return voltage
1174 def VRcalibration_S ( phase ) :

’ Returns the voltage required to set a given phase for Stokes ’
1176 minShift =−1.569926457

maxShift =5.614910831
1178 i f ( phase < minShift ) or ( phase > maxShift ) :

print ( "WARNING: t a r g e t phase s h i f t outside range ! " )
1180 v _ a l l =np . array (

[ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 , 1 . 3 ,
1182 1 . 3 5 , 1 . 4 , 1 . 4 5 , 1 . 5 , 1 . 5 2 , 1 . 5 4 , 1 . 5 6 , 1 . 5 8 , 1 . 6 , 1 . 6 2 , 1 . 6 4 , 1 . 6 6 , 1 . 6 8 , 1 . 7 ,

1 . 7 5 , 1 . 8 , 1 . 8 5 , 1 . 9 , 1 . 9 5 , 2 , 2 . 0 5 , 2 . 1 , 2 . 1 5 , 2 . 2 , 2 . 2 5 , 2 . 3 , 2 . 3 5 , 2 . 4 , 2 . 4 5 , 2 . 5 ,
1184 2 . 5 5 , 2 . 6 , 2 . 6 5 , 2 . 7 , 2 . 7 5 , 2 . 8 , 2 . 8 5 , 2 . 9 , 2 . 9 5 , 3 , 3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 , 3 . 5 , 3 . 6 ,

3 . 7 , 3 . 8 , 3 . 9 , 4 , 4 . 1 , 4 . 2 , 4 . 3 , 4 . 4 , 4 . 5 , 4 . 7 , 4 . 9 , 5 . 1 , 5 . 3 , 5 . 5 , 5 . 7 , 5 . 9 , 6 . 1 , 6 . 3 ,
1186 6 . 5 , 6 . 7 , 6 . 9 , 7 . 1 , 7 . 3 , 7 . 5 , 7 . 7 , 7 . 9 , 8 . 1 , 8 . 3 ] )

ph_all=np . array (
1188 [ −1.569926457 , −1.57880922 , −1.575520108 , −1.556040283 , −1.555407578 ,

−1.554190573 , −1.547682201 , −1.541705652 , −1.526059772 , −1.499987226 ,
1190 −1.427647686 , −1.354768912 , −1.255904124 , −1.115275865 , −0.943638581 ,

−0.753732344 , −0.546573435 , −0.339762316 , −0.158326014 ,0.198848036 ,
1192 0.409705667 ,0.501398952 ,0.596682684 ,0.687619608 ,0.778237172 ,

0.871617989 ,0.963276224 ,1.054412127 ,1.145800867 ,1.239231172 ,
1194 1.322109726 ,1.540753059 ,1.757799229 ,1.956270301 ,2.156749094 ,

2.34808006 ,2.520707301 ,2.647610611 ,2.776389665 ,2.906447291 ,
1196 3.141592654 ,3.259580566 ,3.263199597 ,3.413937887 ,3.51484494 ,

3.595729535 ,3.692546995 ,3.780857241 ,3.846693884 ,3.93423095 ,
1198 3.998357168 ,4.059390236 ,4.122390242 ,4.181794329 ,4.239636168 ,

4.286589138 ,4.332429929 ,4.419538859 ,4.503784161 ,4.572559323 ,
1200 4.643327118 ,4.703149509 ,4.753216418 ,4.808148311 ,4.852143668 ,

4.901935078 ,4.939851431 ,4.979097352 ,5.013678059 ,5.046549668 ,
1202 5.077581515 ,5.103962872 ,5.155914572 ,5.207535179 ,5.252519517 ,

5.295060208 ,5.324709157 ,5.359650041 ,5.387628798 ,5.415521192 ,
1204 5.444514664 ,5.468066246 ,5.491431134 ,5.514261272 ,5.535144039 ,

5.549028467 ,5.567984243 ,5.58271833 ,5.597220129 ,5.61603158 ,5.614910831])
1206 v , ph= v _al l , ph_all

voltage=np . interp ( phase , ph , v )
1208 return voltage

def VRcalibration_aS ( phase ) :
1210 ’ Returns the voltage required to set a given phase for anti −Stokes ’

118



12.2 Code for data analysis

minShift =−2.006954224
1212 maxShift =5.687018301

i f ( phase < minShift ) or ( phase > maxShift ) :
1214 print ( "WARNING: t a r g e t phase s h i f t outside range ! " )

v _ a l l =np . array (
1216 [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 , 1 . 0 5 , 1 . 1 , 1 . 1 5 , 1 . 2 , 1 . 2 5 , 1 . 3 ,

1 . 3 5 , 1 . 4 , 1 . 4 5 , 1 . 5 , 1 . 5 2 , 1 . 5 4 , 1 . 5 6 , 1 . 5 8 , 1 . 6 , 1 . 6 2 , 1 . 6 4 , 1 . 6 6 , 1 . 6 8 , 1 . 7 ,
1218 1 . 7 5 , 1 . 8 , 1 . 8 5 , 1 . 9 , 1 . 9 5 , 2 , 2 . 0 5 , 2 . 1 , 2 . 1 5 , 2 . 2 , 2 . 2 5 , 2 . 3 , 2 . 3 5 , 2 . 4 , 2 . 4 5 , 2 . 5 ,

2 . 5 5 , 2 . 6 , 2 . 6 5 , 2 . 7 , 2 . 7 5 , 2 . 8 , 2 . 8 5 , 2 . 9 , 2 . 9 5 , 3 , 3 . 1 , 3 . 2 , 3 . 3 , 3 . 4 , 3 . 5 , 3 . 6 ,
1220 3 . 7 , 3 . 8 , 3 . 9 , 4 , 4 . 1 , 4 . 2 , 4 . 3 , 4 . 4 , 4 . 5 , 4 . 7 , 4 . 9 , 5 . 1 , 5 . 3 , 5 . 5 , 5 . 7 , 5 . 9 , 6 . 1 , 6 . 3 ,

6 . 5 , 6 . 7 , 6 . 9 , 7 . 1 , 7 . 3 , 7 . 5 , 7 . 7 , 7 . 9 , 8 . 1 , 8 . 3 ] )
1222 ph_all=np . array (

[ −2.006954224 , −1.985707153 , −1.990174204 , −1.991619303 , −1.993616454 ,
1224 −1.984128613 , −1.990242997 , −1.993892064 , −1.982962568 , −1.948314203 ,

−1.90614004 , −1.838029653 , −1.758618063 , −1.64272319 , −1.479425599 ,
1226 −1.31400835 , −1.127943469 , −0.899213436 , −0.688693271 , −0.45303961 ,

−0.293058257 , −0.221995076 ,0.230399669 ,0.270460551 ,0.323697141 ,
1228 0.409129703 ,0.487163012 ,0.57974153 ,0.676240803 ,0.766917177 ,

0.855334592 ,1.084365281 ,1.304186458 ,1.513764504 ,1.714277338 ,
1230 1.915737566 ,2.114896829 ,2.260128186 ,2.462002935 ,2.596685133 ,

2.738598412 ,2.877452907 ,3.141592654 ,3.204016758 ,3.377008966 ,
1232 3.453717592 ,3.482137765 ,3.62612226 ,3.709695465 ,3.805534327 ,

3.861382346 ,3.904283753 ,4.005422407 ,4.049239641 ,4.121340384 ,
1234 4.168068158 ,4.239233196 ,4.303785786 ,4.419461281 ,4.521368493 ,

4.574175081 ,4.650474653 ,4.714852844 ,4.751996141 ,4.828776168 ,
1236 4.867524671 ,4.907021867 ,4.958343714 ,5.011914038 ,5.049092272 ,

5.086356034 ,5.112546932 ,5.162207292 ,5.222784249 ,5.268609065 ,
1238 5.319370281 ,5.357598834 ,5.395016216 ,5.429683513 ,5.454295839 ,

5.500193978 ,5.513104252 ,5.53964263 ,5.578434329 ,5.592615764 ,
1240 5.612687321 ,5.647535832 ,5.662072286 ,5.667273655 ,5.694218355 ,

5.687018301])
1242 v , ph= v _al l , ph_all

voltage=np . interp ( phase , ph , v )
1244 return voltage

1246 ### Misc . Functions : ###
def moveToFolder ( folderName ) :

1248 t r y :
os . mkdir ( folderName )

1250 except : pass
os . chdir ( folderName )

1252 return

1254

1256 i f __name__=="__main__" : #execute only i f run as s c r i p t
for i in range ( 1 ) :

1258 main ( )

12.2 Code for data analysis
1000 # Analysis of Correlation Coeficients for a B e l l t e s t

1002 # Structure of r e s u l t arrays : ( results_X [ i ] )

1004 # r e s u l t s _ B e l l :
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# [ [ time , Ea1b1 , Ea1b2 , Ea2b1 , Ea2b2 , S , S_error ] , . . . ]
1006

# results_Agregated ( A l l r e s u l t s for the same pos and phases added )
1008 # [ [ time , thA , thB , n11 , n12 , n21 , n22 , E , E_error ] , . . . ]

1010 # results_Disociated
# [ [ time ,repNum, thA , thB , n11 , n12 , n21 , n22 , E , E_error ] , . . . ]

1012

# results_g2
1014 # [ [ time , thA , thB , g2_12 , g2_12_err , g2_13 , g2_13_err , g2_14 , g2_14_err , g2_23 ,

# g2_23_err , g2_24 , g2_24_err , g2_12_34 , g2_12_34_err ] , . . . ]
1016

import numpy as np
1018 import matplotlib . pyplot as p l t

import re
1020 import os

1022 def main ( ) :
baseName = ’ DelaySweep3 ’

1024 auxSettings = True
# B e l l Test Sett ings : #

1026 thA1=0
thA2=np . pi /2

1028 thB1=np . pi /4
thB2=−np . pi /4

1030 bellPhases = [ [ thA1 , thB1 ] ,
[ thA1 , thB2 ] ,

1032 [ thA2 , thB1 ] ,
[ thA2 , thB2 ] ]

1034 i f auxSettings : auxPhases = [ [ 0 , 0 ] , [ np . pi / 2 ] ]

1036 cwd = os . getcwd ( )
# Finding fo l d e r s to analyse : #

1038 cwd = os . getcwd ( )
folderNames , delayPositions = findFolders (baseName)

1040 delayTime =( delayPositions *2) / ( ( 3 * 1 0 * * 8 ) * ( 1 0 * * 3 ) ) *(10**12)
r e s u l t s _ B e l l = [ ]

1042 results_Agregated = [ ]
results_Disociated = [ ]

1044 result_g2 = [ ]

1046 for i in range ( len ( folderNames ) ) :
print ( folderNames [ i ] )

1048 os . chdir (cwd)
os . chdir (cwd+ ’ \\ ’+folderNames [ i ] )

1050 #allDataPosX=readPosFiles ( folderNames [ i ] , delayTime [ i ] )
#AgregatedPosX=agregateData ( allDataPosX )

1052 #SPosX= Bel lAnalysis ( AgregatedPosX , bellPhases )

1054 #g2 calculat ion :
allDataPosX_allCHN = readPosFiles_allCHN ( folderNames [ i ] , delayTime [ i ] )

1056 AgregatedPosX_allCHN = agregateData_allCHN ( allDataPosX_allCHN )
g2PosX=g2Analysis ( AgregatedPosX_allCHN , bellPhases )

1058

##
1060 print ( " Folder Name: { : } " . format ( folderNames [ i ] ) )

print ( AgregatedPosX_allCHN )
1062 ##

1064 #Merging r e s u l t s :
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# results_Disociated . append( allDataPosX )
1066 # results_Agregated . append( AgregatedPosX )

# r e s u l t s _ B e l l . append( SPosX )
1068 result_g2 . append( g2PosX )

# results_Disociated = np . array ( results_Disociated )
1070 # results_Agregated = np . array ( results_Agregated )

# r e s u l t s _ B e l l = np . array ( r e s u l t s _ B e l l )
1072 result_g2 = np . array ( result_g2 )

1074 os . chdir (cwd)
# E _ S t a b i l i t y ( results_Disociated )

1076 # S _ S t a b i l i t y ( results_Disociated , bellPhases )
# g 2 _ S t a b i l i t y

1078 # VisCurves_Stabi l i ty
# saveFinalResult ( ’ r e s u l t s B e l l . t x t ’ , r e s u l t s _ B e l l )

1080 #saveAgregatedResults ( ’ resultsAgregated . t x t ’ , results_Agregated )
#saveDisociatedResults ( ’ resultsDisociated . t x t ’ , results_Disociated )

1082 save_g2_results ( ’ results_g2 . t x t ’ , result_g2 )

1084 # p l t . show ( )
return

1086

def findE (Na1b1 , Na1b2 , Na2b1 , Na2b2) :
1088 return (Na1b1+Na2b2−Na1b2−Na2b1) /(Na1b1+Na1b2+Na2b1+Na2b2)

1090

def readPosFiles ( folder , time ) :
1092 fileNames , phases ,num= f i n d F i l e s ( folder )

allData=np . zeros ( ( len ( fileNames ) ,10) )
1094 allData [ : , 0 ] = time *np . ones ( allData [ : , 0 ] . shape )

for i in range ( len ( fileNames ) ) :
1096 data=np . genfromtxt ( fileNames [ i ] , skip_header =1)

E=findE ( data [ 5 ] , data [ 6 ] , data [ 7 ] , data [ 8 ] )
1098 E_error=findE_error ( data [ 5 : 9 ] )

allData [ i , 1 ] = num[ i ]
1100 allData [ i , 2 : 4 ] = phases [ i ]

al lData [ i , 4 : 8 ] = data [ 5 : 9 ]
1102 allData [ i , 8 ] = E

allData [ i , 9 ] = E_error
1104 return allData

# [ [ time ,repNum, thA , thB , n11 , n12 , n21 , n22 , E , E_error ] , . . . ]
1106

def agregateData ( allData ) :
1108 phaseCombinations = [ ]

for data in allData :
1110 # print ( data [ 2 : 4 ] )

i f a l l ( ( data [ 2 : 4 ] != phase ) . any ( ) for phase in phaseCombinations ) :
1112 phaseCombinations . append(np . array ( data [ 2 : 4 ] ) )

phaseCombinations = np . array ( phaseCombinations )
1114

agregatedData=np . zeros ( ( len ( phaseCombinations ) , 9 ) )
1116 agregatedData [ : , 0 ] = allData [ 0 , 0 ] *np . ones ( agregatedData [ : , 0 ] . shape )

1118 for i in range ( len ( phaseCombinations ) ) :
agregatedData [ i , 1 : 3 ] = phaseCombinations [ i ]

1120 for data in allData :
i f ( data [2 :4]== phaseCombinations [ i ] ) . a l l ( ) : ###

1122 agregatedData [ i , 3 : 7 ] = agregatedData [ i , 3 : 7 ] + data [ 4 : 8 ]
E=findE ( agregatedData [ i , 3 ] , agregatedData [ i , 4 ] , agregatedData [ i , 5 ] ,

1124 agregatedData [ i , 6 ] )
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E_error=findE_error ( agregatedData [ i , 3 : 7 ] )
1126 agregatedData [ i , 7 ] =E

agregatedData [ i , 8 ] = E_error
1128 return agregatedData

# [ [ time , thA , thB , n11 , n12 , n21 , n22 , E , E_error ] , . . . ]
1130

def Bel lAnalys is ( agregatedData , bellPhases ) :
1132 r e s u l t s = np . zeros ( 7 )

r e s u l t s [ 0 ] = agregatedData [ 0 , 0 ]
1134 Setting_counts=np . zeros ( ( 4 , 4 ) )

phaseExists=True
1136 for i in range ( len ( bellPhases ) ) :

phase=bellPhases [ i ]
1138 i f phaseExists==False : print ( "Warning : Phase s e t t i n g not found ! \ n" )

for data in agregatedData :
1140 phaseExists=False

# i f data [1]== phase [ 0 ] and data [2]== phase [ 1 ] :
1142 i f np . i s c l o s e ( data [ 1 ] , phase [ 0 ] , a t o l =1e−4) and \

np . i s c l o s e ( data [ 2 ] , phase [ 1 ] , a t o l =1e−4) :
1144 Setting_counts [ i , : ] = data [ 3 : 7 ]

r e s u l t s [ i +1]= data [ 7 ]
1146 phaseExists=True

break
1148 i f phaseExists==False : print ( "Warning : Phase s e t t i n g not found ! \ n" )

S , S_err=Scalculation ( Setting_counts )
1150 r e s u l t s [ 5 : 7 ] = S , S_err

return r e s u l t s
1152 # [ [ time , Ea1b1 , Ea1b2 , Ea2b1 , Ea2b2 , S , S_error ] , . . . ]

1154 def findFolders (baseName) :
folderRegex=re . compile ( ’ ( ’+baseName+r ’ Pos ) ( [ − ] ? \ d + [ . ] ? \ d * ) ’ )

1156 directoryContent=os . l i s t d i r ( )
folderNames = [ ]

1158 delays = [ ]
for name in directoryContent :

1160 match=folderRegex . search (name)
i f match!=None :

1162 folderNames . append(name)
delays . append( f l o a t (match . group ( 2 ) ) )

1164 return folderNames , np . array ( delays )

1166 def f i n d F i l e s ( folder ) :
f i leRegex=re . compile ( ’ ( ’+folder+r ’ _thA_ ) ( [ − ] ? \ d . \ d { 4 } ) ( _thB_ ) ( [ − ] ? \ d . \ d { 4 } ) _\d* s_ \d*min_\d*acq

−(\d { 3 } ) −\d * . t x t ’ )
1168 directoryContent=os . l i s t d i r ( )

fileNames = [ ]
1170 phases = [ ]

num= [ ]
1172 for name in directoryContent :

match=fi leRegex . search (name)
1174 i f match!=None :

fileNames . append(name)
1176 phases . append ( [ f l o a t (match . group ( 2 ) ) , f l o a t (match . group ( 4 ) ) ] )

num. append(match . group ( 5 ) )
1178 return np . array ( fileNames ) ,np . array ( phases ) ,np . array (num)

1180

#################### Error Barr calculat ion : ###########################
1182 def Scalculation ( expCounts , n_iter_max =3000 ,conv=1e−5) :

S , std , r e s u l t s =monteCarloError_S ( expCounts , n_iter_max , conv )
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1184 #plot_error_histogram ( r e s u l t s )
return S , std

1186

def findS ( Counts ) :
1188 E_array=np . array (

[ findE ( Counts [ i , 0 ] , Counts [ i , 1 ] , Counts [ i , 2 ] , Counts [ i , 3 ] )
1190 for i in range ( 4 ) ] )

# print ( E_array )
1192 S=E_array [0]+ E_array [1] − E_array [2]+ E_array [ 3 ]

return S
1194

def monteCarloError_S ( expCounts , n_iter_max =1000 , conv_crit=1e−5) :
1196 expS=findS ( expCounts )

n_i te r =0
1198 conv_S=1

conv_std=1
1200 S_avg_prev=999

std_prev=999
1202 S_array = [ ]

while ( ( abs ( conv_S ) >abs ( conv_crit ) or abs ( conv_std ) >abs ( conv_crit ) )
1204 and ( n_ ite r < n_iter_max ) ) :

perturbCounts=PoissonianPerturbation ( expCounts )
1206 S_current=findS ( perturbCounts )

S_array . append( S_current )
1208

conv_S=1−np . average ( S_array ) / S_avg_prev
1210 conv_std=1−np . std ( S_array ) / std_prev

1212 S_avg_prev=np . average ( S_array )
i f n_i ter != 0 :

1214 std_prev=np . std ( S_array )
n_i te r = n_ i te r +1

1216

i f n_i ter == n_iter_max :
1218 print ( "WARNING: Maximum number of i t e r a t i o n s reached ! " )

std=np . std ( S_array )
1220 print ( " Finished with conv_S = { : } , conv_std = { : } a f t e r { : } \

i t e r a t i o n s \n" . format ( conv_S , conv_std , n_i te r ) )
1222 return expS , std , np . array ( S_array )

1224 def PoissonianPerturbation ( expCounts ) :
perturbCounts=np . array (

1226 [ [ np . random . poisson ( expCounts [ i , j ] , 1 ) [ 0 ]
for j in range ( len ( expCounts [ 0 , : ] ) ) ]

1228 for i in range ( len ( expCounts [ : , 0 ] ) ) ] )
return perturbCounts

1230

def findS ( Counts ) :
1232 E_array=np . array (

[ findE ( Counts [ i , 0 ] , Counts [ i , 1 ] , Counts [ i , 2 ] , Counts [ i , 3 ] )
1234 for i in range ( 4 ) ] )

# print ( E_array )
1236 S=E_array [0]+ E_array [1]+ E_array [2] − E_array [ 3 ]

return S
1238

def plot_error_histogram ( r e s u l t s ) :
1240 Fig , ax= p l t . subplots ( 1 , 1 )

ax . h i s t ( re su l ts , bins =20)
1242 ax . s e t _ x l a b e l ( ’ S ’ )

ax . s e t _ y l a b e l ( ’ # of t r i a l s ’ )
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1244 ax . s e t _ t i t l e ( ’Monte Carlo t r i a l s ’ )
return

1246

1248 def findE_error ( expCounts , n_iter_max =1000 , conv_crit=1e−5) :
t r y : #Making sure the shape i s [ [ x , x , x , x ] ]

1250 tmp=expCounts [ 0 , 0 ]
except : expCounts=np . array ( [ expCounts ] )

1252 expE=findE ( expCounts [ 0 , 0 ] , expCounts [ 0 , 1 ] , expCounts [ 0 , 2 ] , expCounts [ 0 , 3 ] )
n_i te r =0

1254 conv_E=1
conv_std=1

1256 E_avg_prev=999
std_prev=999

1258 E_array = [ ]
while ( ( abs ( conv_E ) >abs ( conv_crit ) or abs ( conv_std ) >abs ( conv_crit ) )

1260 and ( n_ ite r < n_iter_max ) ) :
perturbCounts=PoissonianPerturbation ( expCounts )

1262 E_current=findE ( perturbCounts [ 0 , 0 ] , perturbCounts [ 0 , 1 ] ,
perturbCounts [ 0 , 2 ] , perturbCounts [ 0 , 3 ] )

1264 E_array . append( E_current )

1266 conv_E=1−np . average ( E_array ) /E_avg_prev
conv_std=1−np . std ( E_array ) / std_prev

1268

E_avg_prev=np . average ( E_array )
1270 i f n_i ter != 0 :

std_prev=np . std ( E_array )
1272 n_i te r = n_ ite r +1

1274 # i f n_ i te r == n_iter_max :
# print ( "WARNING: Maximum number of i t e r a t i o n s reached ! " )

1276 std=np . std ( E_array )
# print ( " Finished with conv_E = { : } , conv_std = { : } a f t e r { : } \

1278 # i t e r a t i o n s \n " . format ( conv_E , conv_std , n_ i ter ) )
return std#expE , std , np . array ( E_array )

1280

1282 #################### g2 calculat ion ###########################
def g2Analysis ( agregatedData , bellPhases ) :

1284 r e s u l t s = np . zeros ( 3 )
r e s u l t s [ 0 ] = agregatedData [ 0 , 0 ]

1286 SingleCHN_counts=np . zeros ( 4 )
coincidence_counts=np . zeros ( 4 )

1288 phaseExists=True
for i in range ( len ( bellPhases ) ) :

1290 phase=bellPhases [ i ]
i f phaseExists==False : print ( "Warning : Phase s e t t i n g not found ! \ n" )

1292 for data in agregatedData :
phaseExists=False

1294 i f np . i s c l o s e ( data [ 1 ] , phase [ 0 ] , a t o l =1e−4) and \
np . i s c l o s e ( data [ 2 ] , phase [ 1 ] , a t o l =1e−4) :

1296 SingleCHN_counts = data [ 3 : 7 ]
coincidence_counts = data [ 8 : 1 2 ]

1298 phaseExists=True
break

1300 i f phaseExists==False : print ( "Warning : Phase s e t t i n g not found ! \ n" )
g2 , g2_err = find_g2 ( SingleCHN_counts , coincidence_counts )

1302 r e s u l t s [ 1 : ] = g2 , g2_err
return r e s u l t s
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1304 # [ [ time , g2 , g2_Err ] , . . . ]

1306

def readPosFiles_allCHN ( folder , time ) :
1308 fileNames , phases ,num= f i n d F i l e s ( folder )

allData=np . zeros ( ( len ( fileNames ) ,19) )
1310 allData [ : , 0 ] = time *np . ones ( allData [ : , 0 ] . shape )

for i in range ( len ( fileNames ) ) :
1312 data=np . genfromtxt ( fileNames [ i ] , skip_header =1)

allData [ i , 1 ] = num[ i ]
1314 allData [ i , 2 : 4 ] = phases [ i ]

al lData [ i , 4 : ] = data [ : ]
1316 return allData

# [ [ time ,repNum, thA , thB , n1 , n2 , n3 , n4 , n12 , n13 , n14 , n23 , n24 , n34 , n123 , n124 , n134 , n234 , n1234 ] , . . . ]
1318

def agregateData_allCHN ( allData ) :
1320 phaseCombinations = [ ]

for data in allData :
1322 # print ( data [ 2 : 4 ] )

i f a l l ( ( data [ 2 : 4 ] != phase ) . any ( ) for phase in phaseCombinations ) :
1324 phaseCombinations . append(np . array ( data [ 2 : 4 ] ) )

phaseCombinations = np . array ( phaseCombinations )
1326 agregatedData=np . zeros ( ( len ( phaseCombinations ) ,18) )

agregatedData [ : , 0 ] = allData [ 0 , 0 ] *np . ones ( agregatedData [ : , 0 ] . shape )
1328 for i in range ( len ( phaseCombinations ) ) :

agregatedData [ i , 1 : 3 ] = phaseCombinations [ i ]
1330 for data in allData :

i f ( data [2 :4]== phaseCombinations [ i ] ) . a l l ( ) : ###
1332 agregatedData [ i , 3 : 1 8 ] = agregatedData [ i , 3 : 1 8 ] + data [ 4 : 1 9 ]

return agregatedData
1334 # [ [ time , thA , thB , n1 , n2 , n3 , n4 , n12 , n13 , n14 , n23 , n24 , n34 , n123 , n124 , n134 , n234 , n1234 ] , . . . ]

1336 def find_g2 ( SingleCounts , Coincidences , aq_time=240) :
rep_rate =80.7e6

1338 S_tot=SingleCounts [0]+ SingleCounts [ 1 ]
aS_tot=SingleCounts [2]+ SingleCounts [ 3 ]

1340 coinc_tot=np .sum( Coincidences )
g2 = ( ( coinc_tot ) /( S_tot * aS_tot ) ) * rep_rate * aq_time

1342 g2_err=g2 *np . sqrt ( ( 1 / coinc_tot ) +(1/ S_tot ) +(1/ aS_tot ) )
return g2 , g2_err

1344

#################### S t a b i l i t y information ####################
1346 def E _ S t a b i l i t y ( r e s u l t s ) :

#Finding l i s t of r e p e t i t i o n s :
1348 r e p _ l i s t = [ ]

for pos in r e s u l t s :
1350 for meas in pos :

i f meas [ 1 ] not in r e p _ l i s t :
1352 r e p _ l i s t . append(meas [ 1 ] )

r e p _ l i s t =np . array ( r e p _ l i s t )
1354

color_idx=np . linspace ( 0 , 1 , len ( r e p _ l i s t ) )
1356

#Finding phase s e t t i n g s :
1358 p h _ p a i r s _ l i s t = [ ]

for pos in r e s u l t s :
1360 for meas in pos :

i f a l l ( ( meas [ 2 : 4 ] != phase ) . any ( ) for phase in p h _ p a i r s _ l i s t ) :
1362 p h _ p a i r s _ l i s t . append(np . array (meas [ 2 : 4 ] ) )

p h _ p a i r s _ l i s t = np . array ( p h _ p a i r s _ l i s t )
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1364

#Creating f i g and axes ( in two cols ) corelated to a phase s e t t i n g :
1366 f i g , axarr= p l t . subplots ( i n t (np . c e i l ( len ( p h _ p a i r s _ l i s t ) /2) ) , 2 )

ph_pair_ax_array=np . array (
1368 [ [ p h _ p a i r s _ l i s t [ i , 0 ] , p h _ p a i r s _ l i s t [ i , 1 ] , axarr [ i n t ( i /2) , i %2]]

for i in range ( len ( p h _ p a i r s _ l i s t ) ) ] )
1370

for pos in r e s u l t s :
1372 for meas in pos :

for ph in ph_pair_ax_array :
1374 i f meas [ 2 ] == ph[ 0 ] and meas [ 3 ] == ph [ 1 ] :

ph [ 2 ] . errorbar (
1376 meas [ 0 ] , meas [ 8 ] , meas [ 9 ] , fmt= ’o ’ , capsize =3 ,

c = p l t .cm. winter (
1378 color_idx [ r e p _ l i s t . t o l i s t ( ) . index (meas [ 1 ] ) ] ) )

for i in range ( len ( ph_pair_ax_array ) ) :
1380 ph_pair_ax_array [ i , 2 ] . s e t _ t i t l e (

"phA = { : } , phB = { : } " . format ( * ph_pair_ax_array [ i , : 2 ] ) )
1382 f i g . s u p t i t l e ( " S t a b i l i t y information " )

# s a v e f i g
1384 return

1386 def S _ S t a b i l i t y ( r e su l ts , bellPhases ) :
#Finding l i s t of r e p e t i t i o n s :

1388 r e p _ l i s t = [ ]
S_stab_res = [ ]

1390 for pos in r e s u l t s :
for meas in pos :

1392 i f meas [ 1 ] not in r e p _ l i s t :
r e p _ l i s t . append(meas [ 1 ] )

1394 r e p _ l i s t =np . array ( r e p _ l i s t )
color_idx=np . linspace ( 0 , 1 , len ( r e p _ l i s t ) )

1396 f i g , ax= p l t . subplots ( 1 , 1 )
for pos in r e s u l t s :

1398 for rep in r e p _ l i s t :
repData=np . array ( [ [ meas [ 0 ] , * meas [ 2 : ] ]

1400 for meas in pos i f meas[1]== rep ] )
# print ( repData )

1402 t r y : #acounts for d i f f e r e n t number of r e p e t i t i o n s in d i f f positions
r e s B e l l =Bel lAnalys is ( repData , bellPhases )

1404 ax . errorbar ( r e s B e l l [ 0 ] , r e s B e l l [ 5 ] , r e s B e l l [ 6 ] , fmt= ’o ’ , capsize =3 ,
c = p l t .cm. winter ( color_idx [

1406 r e p _ l i s t . t o l i s t ( ) . index ( rep ) ] ) )
S_stab_res . append ( [ r e s B e l l [ 0 ] , rep , * r e s B e l l [ 1 : ] ] )

1408 except : pass
f i g . s u p t i t l e ( "S s t a b i l i t y information " )

1410 s a v e S S t a b i l i t y R e s u l t s ( " S _ s t a b i l i t y . t x t " , S_stab_res )
# s a v e f i g

1412 return
# results_Disociated

1414 # [ [ time ,repNum, thA , thB , n11 , n12 , n21 , n22 , E , E_error ] , . . . ]

1416 # B e l l Results :
# [ [ time , Ea1b1 , Ea1b2 , Ea2b1 , Ea2b2 , S , S_error ] , . . . ]

1418

#################### Saving Text F i l e s ########################
1420 def saveFinalResult (name, Results , thA1=0 ,thA2=np . pi /2 , thB1=np . pi /4 ,

thB2=−np . pi /4) :
1422 info= ’ Results for a1 = { : 0 5 . 4 f } , a2 = { : 0 5 . 4 f } , b1 = { : 0 5 . 4 f } , \

b2 = { : 0 5 . 4 f } \n ’ . format ( thA1 , thA2 , thB1 , thB2 )
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1424 cols= ’ DelayTime ( ps ) \tEa1b1\tEa1b2\tEa2b1\tEa2b2\ tS \ tS_error \n ’
headerStr=info+cols

1426 np . savetxt (name, Results , del imiter= ’ \ t ’ , header=headerStr , newline= ’ \ r \n ’ )
return

1428

def saveAgregatedResults (name, Results ) :
1430 reshaped = [ ] # r e s u l t must be saved as a 2d array

for pos in Results :
1432 for meas in pos :

reshaped . append(meas)
1434 headerStr= ’ time\ tthA \ tthB \tn11\tn12\tn21\tn22\ tE \ tE_error \n ’

np . savetxt (name, reshaped , del imiter= ’ \ t ’ , header=headerStr , newline= ’ \ r \n ’ )
1436 return

1438 def saveDisociatedResults (name, Results ) :
Results=np . array ( Results )

1440 reshaped = [ ]
for pos in Results :

1442 for meas in pos :
reshaped . append(meas)

1444 headerStr= ’ time\trepNum\ tthA \ tthB \tn11\tn12\tn21 \tn22\ tE \ tE_error \n ’
np . savetxt (name, reshaped , del imiter= ’ \ t ’ , header=headerStr , newline= ’ \ r \n ’ )

1446 return

1448 def s a v e S S t a b i l i t y R e s u l t s (name, Results , thA1=0 ,thA2=np . pi /2 , thB1=np . pi /4 ,
thB2=−np . pi /4) :

1450 info= ’ S t a b i l i t y r e s u l t s for a1 = { : 0 5 . 4 f } , a2 = { : 0 5 . 4 f } , b1 = { : 0 5 . 4 f } , \
b2 = { : 0 5 . 4 f } \ r \n ’ . format ( thA1 , thA2 , thB1 , thB2 )

1452 cols= ’ DelayTime ( ps ) \tRepNum\tEa1b1\tEa1b2\tEa2b1\tEa2b2\ tS \ tS_error \n ’
headerStr=info+cols

1454 np . savetxt (name, Results , del imiter= ’ \ t ’ , header=headerStr , newline= ’ \ r \n ’ )
return

1456

def save_g2_results (name, Results ) :
1458 headerStr= ’ time\ tg2 \ tg2_err \ r \n ’

np . savetxt (name, Results , del imiter= ’ \ t ’ , header=headerStr , newline= ’ \ r \n ’ )
1460 return

1462

i f __name__=="__main__" :
1464 main ( )
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13 Numerical model for "Collective Vi-
brational Quantum Coherence in
Spontaneous Raman Scattering"
This appendix shows the code used to model the results shown in Ch. 5.

1000 import numpy as np
import matplotlib . pyplot as p l t

1002 import qutip as qt

1004 def main ( ) :
t0_R_values= np . linspace (0 ,20 ,60)

1006 g2_ideal_values = [ ]
g2_real_values = [ ]

1008 for t0_R in t0_R_values :
g2_ideal , g2_real = g2 ( t0_R )

1010 g2_ideal_values . append( g2_ideal )
g2_real_values . append( g2_real )

1012 Fig , ax= p l t . subplots ( 1 , 1 )
ax . plot ( t0_R_values , g2_real_values )

1014 Fig . s u p t i t l e ( " R e a l i s t i c Detection " )

1016 t_exp = −4.5+np . array ([6 .3 3 33 3 , 6.46667 , 4 . 0 , 5.33333 , 6 . 0 , 6.66667 , 7.33333 , 8 . 0 , 8.66667 ,
9.33333 , 10.0 , 10.66667 , 11.33333 , 12.0 , 12.66667 , 13.33333 , 14.0 , 14.66667 , 15.33333 , 16.0 ,
16.66667 , 17.33333 , 18.0 , 18.66667 , 19.33333 , 20.0 , 20.66667 , 21.33333 , 22.0 , 22.66667 ,
23.33333 , 24.0 , 24.66667 , 25.33333 , 26.0 , 26.66667 , 6 . 8 , 7 . 0 , 7.66667 , 8.33333 , 9 . 0 ] )

g2_exp = ( 1 / 1 . 1 3 ) *np . array ([2 .6 83 6 4 , 3.17592 , 1.13028 , 1.24126 , 1.53424 , 3.28627 , 2.26673 ,
1.66663 , 1.56197 , 1.68411 , 1.81954 , 1.84657 , 1.65895 , 1.52434 , 1.45698 , 1.51444 , 1.55709 ,
1.46913 , 1.49168 , 1.43269 , 1.48734 , 1.39537 , 1.40791 , 1.40163 , 1.33711 , 1.36824 , 1.3717 ,
1.36602 , 1.35518 , 1.29194 , 1.30265 , 1.21828 , 1.27087 , 1.27272 , 1.3025 , 1.29854 , 2.96373 , 2.582 ,
1.90601 , 1.55667 , 1.57542])

1018 g2_exp_error = [0.09043 , 0.10422 , 0.04542 , 0.04867 , 0.05731 , 0.10804 , 0.08002 , 0.06429 ,
0.05968 , 0.06509 , 0.06765 , 0.06727 , 0.06236 , 0.05934 , 0.05729 , 0.05811 , 0.05923 , 0.05743 ,
0.05836 , 0.0564 , 0.05794 , 0.05597 , 0.05706 , 0.0565 , 0.0535 , 0.05367 , 0.05359 , 0.05416 , 0.0549 ,
0.0522 , 0.05143 , 0.04929 , 0.05165 , 0.05267 , 0.05344 , 0.05352 , 0.09859 , 0.08822 , 0.07085 ,
0.05988 , 0.06125]

ax . s c a t t e r ( t_exp , g2_exp )
1020 ax . set_xlim (0 ,20)

1022 Fig , ax= p l t . subplots ( 1 , 1 )
ax . plot ( t0_R_values , g2_ideal_values )

1024 Fig . s u p t i t l e ( " Ideal Detection " )

1026

print ( t0_R_values )
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1028 print ( g2_real_values )
print ( g2_ideal_values )

1030 p l t . show ( )

1032

def g2 ( t0_R ) :
1034 ############### Model Inputs : ##############################

1036 N=3 #Dimensionality for each Fock space ( a l l currently share the same)
t =np . linspace (0 ,30 ,12000) #Time steps for calculat ion

1038

### Laser parameters : ###
1040 A_W=1 #Amplitude Write pulse ( for now a l l controlled through coupling )

sig_W=0.2 #Bandwidth of Write Pulse
1042 t0_W=2 # A r r i v a l time of Write Pulse

1044 A_R=1 #Amplitude Read pulse ( for now a l l controlled through coupling )
sig_R =0.2 #Bandwidth of Read Pulse

1046

### Phonon parameters : ###
1048 w_b1=19.666*2*np . pi #Frequency of b1

w_b2=19.397*2*np . pi #Frequency of b2
1050 nth = 0.04 #Phonon occupancy at room temperature

1052 ### Interaction parameters : ###
lamda_W=1.04E−1 #Coupling parameter for Write pulse

1054 lamda_R=1.36E−1 #Coupling parameter for Read pulse
lamda_FWM = 1.0E−2 #Coupling parameter for the coherent process

1056 b1_coeff = np . sqrt (1/3) #Parameter giving r a t i o of b1 vs b2 creation
b2_coeff = np . sqrt (2/3) #Parameter giving r a t i o of b1 vs b2 creation

1058 theta=np . pi /6 #Phase s h i f t during interact ion

1060 ### Detection parameters : ###
eta_S =0.1 #Detection e f f i c i e n c y for Stokes

1062 pdc_S=2.6E−4#0 # Probabi l i ty of dark count for Stokes
eta_aS =0.1 #Detection e f f i c i e n c y for anti −Stokes

1064 pdc_aS=1.04E−4#0 # Probabi l i ty of dark count for anti −Stokes
expOrder = 10 #Expansion order for the r e a l i s t i c detection operator

1066

############### Intermediate calculat ions : ###################
1068

del_S = −1 * (w_b1+w_b2) /2 #Stokes frequancy dif ference
1070 del_aS = (w_b1+w_b2) /2 #Anti −Stokes frequancy dif ference

del_W = 0
1072 del_R = 0

W=gaussianPulse (A_W, t , t0_W , sig_W , del_W ) #Write Pulse
1074 R=gaussianPulse (A_R , t , t0_R , sig_R , del_R ) #Read Pulse

1076

################## Model : ###################
1078

### I n i t i a l Quantum State : ###
1080 psi0_ph1 = qt . thermal_dm (N, nth ) # I n i t i a l s t a t e phonon 1

psi0_ph2 = qt . thermal_dm (N, nth ) # I n i t i a l s t a t e phonon 2
1082 psi0_S = qt . fock_dm (N, 0 ) # I n i t i a l s t a t e Stokes

psi0_aS = qt . fock_dm (N, 0 ) # I n i t i a l s t a t e anti −Stokes
1084 psi0=qt . tensor ( psi0_ph1 , psi0_ph2 , psi0_S , psi0_aS ) # I n i t i a l State of the system

1086 ### Creation / Anihi lat ion Operators : ###
b1 = qt . tensor ( qt . destroy (N) , qt . qeye (N) , qt . qeye (N) , qt . qeye (N) ) #phonon1 annihilation
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1088 n_b1 = [ b1 . dag ( ) *b1 ]

1090 b2 = qt . tensor ( qt . qeye (N) , qt . destroy (N) , qt . qeye (N) , qt . qeye (N) ) #phonon2 annihilation
n_b2 = [ b2 . dag ( ) *b2 ]

1092

c_S = qt . tensor ( qt . qeye (N) , qt . qeye (N) , qt . destroy (N) , qt . qeye (N) ) #stokes annihilation
1094

1096 c_aS = qt . tensor ( qt . qeye (N) , qt . qeye (N) , qt . qeye (N) , qt . destroy (N) ) #anti −stokes annihilation

1098 ### Photon Number operators : ###
n_S = [ c_S . dag ( ) * c_S ]

1100 n_aS = [ c_aS . dag ( ) * c_aS ]
n_S_aS = [ c_S . dag ( ) * c_aS . dag ( ) * c_aS * c_S ]

1102

#Hamiltonian
1104 H_I_W = [ [ lamda_W * b1_coeff * c_S . dag ( ) * b1 . dag ( ) ,W] ,

[lamda_W * b1_coeff * c_S * b1 ,W. conj ( ) ] ] \
1106 + [ [lamda_W * b2_coeff * c_S . dag ( ) * b2 . dag ( ) ,W*np . exp(−1 j * theta ) ] ,

[lamda_W * b2_coeff * c_S * b2 ,W. conj ( ) *np . exp(−1 j * theta ) . conj ( ) ]
1108

H_I_R = [ [ lamda_R * b1_coeff * c_aS . dag ( ) * b1 , R] ,
1110 [ lamda_R * b1_coeff * c_aS * b1 . dag ( ) ,R . conj ( ) ] ] \

+ [ [ lamda_R * b2_coeff * c_aS . dag ( ) * b2 , R] ,
1112 [ lamda_R * b2_coeff * c_aS * b2 . dag ( ) ,R . conj ( ) ] ]

1114 H_FWM = [ [lamda_FWM * c_S . dag ( ) * c_aS . dag ( ) , W * R] ,
[lamda_FWM * c_S * c_aS , W. conj ( ) * R . conj ( ) ] ]

1116

1118 H = [w_b1*n_b1 [ 0 ] ] + [w_b2*n_b2 [ 0 ] ] + [ del_S *n_S [ 0 ] ] + [ del_aS *n_aS [ 0 ] ] \
+ H_I_W \

1120 + H_I_R \
+ H_FWM

1122

1124

# collapse operator that describes dissipat ion
1126 # Build collapse operators for the thermal bath

kappa1 = 1/8.4
1128 kappa2 = 1/1.7

c_ops = [ ]
1130 c_ops . append(np . sqrt ( kappa1 * (1 + nth ) ) * b1 )

c_ops . append(np . sqrt ( kappa1 * nth ) * b1 . dag ( ) )
1132 c_ops . append(np . sqrt ( kappa2 * (1 + nth ) ) * b2 )

c_ops . append(np . sqrt ( kappa2 * nth ) * b2 . dag ( ) )
1134 # c_ops = [ ] # no decay

1136 r e s u l t =qt . mesolve (H, psi0 , t , c_ops , [ ] , options=qt . Options ( nsteps =1000) )

1138

print ( " \nFor t0_R = "+ s t r ( t0_R ) )
1140 print ( r e s u l t )

g2 =qt . expect ( n_S_aS , r e s u l t . s t a t e s [ −1]) /( qt . expect ( n_S , r e s u l t . s t a t e s [ −1]) * qt . expect ( n_aS ,
r e s u l t . s t a t e s [ −1]) )

1142 t r y :
g2_ideal = g2_CrossCor_ideal ( c_S , c_aS , r e s u l t . s t a t e s [ −1])

1144 except :
g2_ideal = −1

1146 g2_real = g2_CrossCor_real ist ic ( eta_S , pdc_S , c_S , eta_aS , pdc_aS , c_aS , r e s u l t . s t a t e s [ −1] , expOrder )
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1148 print ( "g2 = "+ s t r ( g2 ) )
print ( "g2 Ideal = "+ s t r ( g2_ideal ) )

1150 print ( "g2 Real = "+ s t r ( g2_real ) )
print ( "n_S = "+ s t r ( qt . expect ( n_S , r e s u l t . s t a t e s [ −1]) ) )

1152 print ( "p_S = "+ s t r ( eta_S * qt . expect ( n_S , r e s u l t . s t a t e s [ −1]) ) )
print ( "n_aS = "+ s t r ( qt . expect ( n_aS , r e s u l t . s t a t e s [ −1]) ) )

1154 print ( "p_aS = "+ s t r ( eta_aS * qt . expect ( n_aS , r e s u l t . s t a t e s [ −1]) ) )
print ( "n_S_aS = "+ s t r ( qt . expect ( n_S_aS , r e s u l t . s t a t e s [ −1]) ) )

1156

return g2_ideal , g2_real
1158

1160 ############## Laser pulse d e f i n i t i o n : ################
def gaussianPulse (A , t , t0 , sig , delta ) :

1162 x=A*np . exp ( −( ( t −t0 ) * * 2 ) /(2* s i g * * 2 ) ) *np . exp(−1 j * delta * t )
return x

1164

1166 ############## R e a l i s t i c detection d e f i n i t i o n s : ################
def Dx( eta , pdc , a , expOrder=5) :

1168 "Takes the e f f i c i e n c y , dark count rate , annihilation operator , and order of the Taylor
expansion . Returns r e a l i s t i c number operator "

D = 1 − (1−pdc ) * binomTerm( eta , a , expOrder )
1170 return D

1172 def binomTerm( eta , a , expOrder ) :
operator = 0

1174 for k in range ( expOrder+1) :
operator = operator + ( ( np . log (1− eta ) ** k ) / (np . math . f a c t o r i a l ( k ) ) ) * ( a . dag ( ) *a ) ** k

1176 return operator

1178 def DxDx( eta , pdc , a , expOrder=5) :
" I ’m not sure I ’m handling the operator ordering c o r r e c t l y "

1180 D = 2*Dx( eta /2 ,pdc , a , expOrder ) −1 + ((1 −pdc ) * * 2 ) *binomTerm( eta , a , expOrder )
return D

1182

def g2_AutoCor_ideal ( a , psi ) :
1184 " Returns second order autocorrelation function under ideal detection for mode described by a"

g2 = ( qt . expect ( a . dag ( ) *a . dag ( ) *a*a , psi ) ) / ( qt . expect ( a . dag ( ) *a , psi ) * * 2 )
1186 return g2

1188 def g2_AutoCor_realistic ( eta , pdc , a , psi , expOrder = 5) :
" Returns second order autocorrelation function under r e a l i s t i c detection conditions for mode

described by a"
1190 g2 = qt . expect (DxDx( eta , pdc , a , expOrder ) , psi ) / ( qt . expect (Dx( eta /2 ,pdc , a , expOrder ) , psi ) * * 2 )

return g2
1192

def g2_CrossCor_ideal ( a_x , a_y , psi ) :
1194 n_x = a_x . dag ( ) * a_x

n_y = a_y . dag ( ) * a_y
1196 n_xy = a_x . dag ( ) * a_y . dag ( ) * a_y * a_x

g2 =qt . expect ( n_xy , psi ) / ( qt . expect ( n_x , psi ) * qt . expect ( n_y , psi ) )
1198 return g2

1200 def g2_CrossCor_real ist ic ( eta_x , pdc_x , a_x , eta_y , pdc_y , a_y , psi , expOrder=5) :
D_x = Dx( eta_x , pdc_x , a_x , expOrder )

1202 D_y = Dx( eta_y , pdc_y , a_y , expOrder )
D_xy = D_x * D_y

1204 g2 = qt . expect ( D_xy , psi ) / ( qt . expect (D_x , psi ) * qt . expect (D_y , psi ) )
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return g2
1206

1208 i f __name__=="__main__" :
main ( )
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