
Optics Communications 499 (2021) 127290

O
m
T
a

b

c

A

K
C
J
R
F

1

c
l
m
r
m
t
s
p
d
t
a
t

o
t
g
i
r
o
t

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

ptical diffraction tomography from single-molecule localization
icroscopy

hanh-an Pham a,∗, Emmanuel Soubies b, Ferréol Soulez c, Michael Unser a

Biomedical Imaging Group, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
IRIT, Université de Toulouse, CNRS, Toulouse, France
Univ. Lyon, Univ. Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon, Saint-Genis-Laval, France

R T I C L E I N F O

eywords:
omputational imaging
oint optimization
efractive index reconstruction
luorescence microscopy

A B S T R A C T

Single-molecule localization microscopy (SMLM) is a powerful method for the imaging of cellular structures.
This modality delivers nanoscale resolution by sequentially activating a subset of fluorescent molecules and
by extracting their super-resolved positions from the microscope images. The emission patterns of individual
molecules can be distorted by the refractive-index (RI) map of the sample, which reduces the accuracy of the
molecule localization if not accounted for. In this work, we show that one can exploit those sample-induced
aberrations to reveal the structural information of the specimen. Our work is related to the optical diffraction
tomography in that we aim to recover the RI map. To that end, we propose an optimization framework in
which we reconstruct the RI map and optimize the positions of the molecules in a joint fashion. The benefits of
our method are twofold. On one side, we effectively recover the RI map of the sample. On the other side, we
further improve the molecule localization—the primary purpose of SMLM. We validate our joint-optimization
framework on simulated data. Our results lay the foundation of an exciting and novel extension of SMLM.
. Introduction

Single-molecule localization microscopy (SMLM) is a method of
hoice for the observation of biological phenomena at nanoscale reso-
ution [1–3]. It breaks the diffraction limit of conventional fluorescence
icroscopy by sequentially activating and localizing a subset of fluo-

escent molecules. As such, SMLM is a prime example of computational
icroscopy where suitable acquisitions and algorithmic reconstruc-

ion are combined so as to enhance the capabilities of traditional
ystems. Although SMLM acquisitions are two-dimensional, innovative
oint-spread functions (PSF) whose shapes vary with depth have been
esigned to encode the axial position of molecules. These include
he popular astigmatism [4] or double-helix [5] PSFs. Therefore, in
ddition to efficient localization algorithms, well-calibrated models of
hese PSFs are essential to reach the promised nanoscale resolution [6].

The standard practice is to estimate these PSFs from acquisitions
f sub-resolved objects (e.g., fluorescent microspheres) [7,8]. However,
his strategy ignores sample-induced distortions. Indeed, the hetero-
eneity of biological specimens—through variations in their refractive
ndex (RI)—induces a scattering of the emitted light. This distorts the
ecorded emission patterns and compromises the accurate localization
f molecules. To mitigate this effect, Xu et al. [9] proposed an algorithm
o jointly localize fluorescent molecules and estimate an in situ PSF

∗ Corresponding author.
E-mail address: thanh-an.pham@epfl.ch (T.-a. Pham).

model that has the ability to capture sample-induced aberrations and,
hence, to improve localization accuracy.

If we could estimate both the RI and the position of molecules from
the SMLM acquisition stack alone, then we would have a unique com-
bination of structural (RI) and functional (fluorescence) information
about the sample [10]. To our knowledge, such a reconstruction of
both RI and fluorescence density from the same fluorescent dataset
(i.e., without phase measurements) has been investigated only recently
by Xue and Waller [11]. They consider two-layers samples where the
bottom layer contains fluorescence-labeled objects and the top layer
contains non-labeled objects. In this context, they demonstrated that
the 3D RI map of the non-labeled objects can be reconstructed from
defocused fluorescence images that are collected by sequentially stim-
ulating small regions of the fluorescence-labeled layer of the sample.
Moreover, they showed that the obtained RI map can be exploited to
obtain the scattered PSF and improve the fluorescence signal through
deconvolution. This setting differs from the exploitation of the individ-
ual emission of fluorophores in SMLM that we propose here in two
respects. First, RI and fluorescence objects are mixed (i.e., no two-
layers samples). Second, fluorescence measurements are recorded at
two distinct focal planes (i.e., biplane SMLM modality).

In SMLM, the recovery of the RI has been addressed in [12,13].
These two works exploit the fact that SMLM data can be seen as
https://doi.org/10.1016/j.optcom.2021.127290
Received 30 March 2021; Received in revised form 7 July 2021; Accepted 11 July
Available online 14 July 2021
0030-4018/© 2021 Published by Elsevier B.V.
2021

https://doi.org/10.1016/j.optcom.2021.127290
http://www.elsevier.com/locate/optcom
http://www.elsevier.com/locate/optcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optcom.2021.127290&domain=pdf
mailto:thanh-an.pham@epfl.ch
https://doi.org/10.1016/j.optcom.2021.127290


T.-a. Pham, E. Soubies, F. Soulez et al. Optics Communications 499 (2021) 127290

(
d
p

2

2

t
i
𝛺
s
b
a
c

s

𝑢

d

R

i
𝑢

measurements of an optical-diffraction tomography (ODT) system with
point-source illuminations inside the sample. In [12], the authors as-
sumed that the phase of the measurements was accessible, an assump-
tion which is not met in practice. Moreover, their proposed approach
relies on a linear model whose validity is limited to weakly scattering
samples [14]. In our preliminary work [13], we introduced a refined
RI-reconstruction approach that can handle phaseless measurements
under the assumption that the positions of the fluorescent molecules
are perfectly known. This method is based on the exact (nonlinear)
Lippmann–Schwinger equation.

1.1. Contributions and roadmap

In this work, we extend [13] in two ways. First, we consider a
more realistic image-formation model (described in Section 2) that
integrates background fluorescence as well as the shot noise inherent
to fluorescence microscopy. Second, and more importantly, we consider
that the positions of the molecules are known only approximately, as
opposed to [13], and then take advantage of our model-based scheme
to refine them.

To cope with this more challenging scenario, we propose a joint-
optimization framework in Section 3. Our method simultaneously re-
constructs the RI and refines the positions and amplitudes of the
molecules. The benefits of our framework are twofold. On one side, we
are accurately estimating the structural information (RI) from SMLM
acquisitions. On the other side, we significantly improve the localiza-
tion of the molecules—the primary objective of SMLM. We validate our
framework on simulated data in Section 4.

1.2. Notations

Scalar and continuously defined functions are denoted by italic
letter (e.g., 𝑘𝑏 ∈ R, 𝑢 ∈ 𝐿2(R)). The complex conjugate of 𝑣 ∈ C is
denoted by 𝑣∗. Vectors and matrices are denoted by bold lowercase
and bold uppercase letters, respectively (e.g., 𝐱 ∈ R𝑁 , 𝐆 ∈ C𝑁×𝑁 ).
The 𝑚th element of a vector 𝐯 ∈ R𝑀 is denoted as 𝑣𝑚 or [𝐯]𝑚. Similarly,
the 𝑛th column of a matrix 𝐗 ∈ R𝑀×𝑁 is denoted as 𝐱𝑛 or [𝐗]𝑛. The
notation 𝐆𝐻 refers to the conjugate transpose of the matrix 𝐆 ∈ C𝑁×𝑁 .
The matrix 𝐈𝑁 ∈ R𝑁×𝑁 is the identity and 𝐝𝐢𝐚𝐠(𝐟 ) ∈ R𝑁×𝑁 is a diagonal
matrix formed out of the entries of 𝐟 ∈ R𝑁 . The notation 𝟏𝑀 =
1, 1,… , 1) ∈ R𝑀 stands for an 𝑀-length vector of ones. Similarly, 𝟎𝑀
enotes a vector of 𝑀 zeros. Finally, ⊙ and ⊘ stand for the Hadamard
roduct and the pointwise division, respectively.

. Image-formation model

.1. SMLM meets ODT

The space-varying refractive index of the sample under considera-
ion is represented by the function 𝜂 ∶ 𝛺 → R with 𝛺 ⊆ R3. The sample
s populated with 𝐿 fluorophores located at spatial position {𝐱𝑙 ∈
}𝐿𝑙=1. Without loss of generality, we consider an SMLM acquisition

tack where a single fluorophore is activated on each frame. Indeed,
ecause fluorophores are incoherent sources, the image produced upon
ctivation of multiple emitters is simply the sum of the individual
ontribution of each emitter [15].

When activated, the 𝑙th fluorophore at position 𝐱𝑙 ∈ 𝛺 emits a
pherical wave with intensity 𝑎𝑙 > 0, which leads to

in(𝐱; 𝐱𝑙 , 𝑎𝑙) = 𝑎𝑙
exp

(

j𝑘b‖𝐱 − 𝐱𝑙‖2
)

4𝜋‖𝐱 − 𝐱𝑙‖2
, (1)

where j is the imaginary unit and 𝑘b = 2𝜋𝜂b
𝜆 is the wavenumber

etermined by the emission wavelength 𝜆 and the RI 𝜂b > 1 of the
surrounding medium. The spherical wave acts as an ‘‘incident’’ field
that illuminates from within the sample. As such, it scatters through
2

Fig. 1. Biplane single-molecule localization microscopy. A fluorophore emits fluo-
rescent light which scatters through the sample. Then, an optical system records the
intensity of the total field at two different focal planes.

Algorithm 1 Joint-Optimization Framework
Require: 𝐟0 ∈ R𝑁

≥0, [𝐱
0
1 ⋯ 𝐱0𝐿] ∈ 𝛺𝐿, 𝐚0 ∈ R𝐿

>0
1: 𝑡 = 0
2: while (Not converged) do
3: Select a subset  ⊂ {1,… , 𝐿}

⊳ Update amplitudes and positions
4: for 𝑙 ∈  do
5: (𝑎𝑡+1𝑙 , 𝐱𝑡+1𝑙 ) = Ref ine

(

𝑙(𝐟 𝑡, · , · ); 𝑎𝑡𝑙 , 𝐱
𝑡
𝑙
)

6: end for
⊳ Update the scattering potential:

7: 𝐟 𝑡+1 = aFBS
(
∑

𝑙∈ 𝑙( · , 𝐱𝑡+1𝑙 , 𝑎𝑡+1𝑙 ); 𝐟 𝑡
)

8: 𝑡 ← 𝑡 + 1
9: end while
eturn: 𝐟 𝑡,𝐗𝑡, 𝐚𝑡

the sample and produces a field 𝑢𝑙 ∶ R3 → C that satisfies the
Lippmann–Schwinger equation

𝑢𝑙(𝐱) = 𝑢in(𝐱; 𝐱𝑙 , 𝑎𝑙) + ∫𝛺
𝑔(𝐱 − 𝐳)𝑓 (𝐳)𝑢𝑙(𝐳) d𝐳, (2)

where 𝑓 (𝐱) = 𝑘2b

(

𝜂(𝐱)2

𝜂2b
− 1

)

is the scattering potential and 𝑔 ∶ R3 → C

s the Green function that corresponds to the centered spherical wave
in(𝐱; 𝟎, 1) [16]. The intensity of the field 𝑢𝑙 at the camera plane 𝛤

is then recorded by an optical system to form the 𝑙th SMLM frame
𝐲𝑙 ∈ R𝑀 . Formally, we have, ∀𝑙 ∈ {1,… , 𝐿}, that

𝐲𝑙 = Pois
(

|𝑃𝑢𝑙
|

|

|𝛤
|

2
+ 𝐛𝑙

)

, (3)

where Pois denotes Poisson’s distribution (shot noise), 𝑢𝑙
|

|

|𝛤
denotes the

restriction of 𝑢𝑙 to 𝛤 , and 𝐛𝑙 ∈ R𝑀 is a background signal that can
originate from autofluorescence or spurious out-of-focus fluorophore
emissions. Finally, 𝑃 ∶ C2 → R𝑀 is a linear operator that models
both the effect of the optical system (i.e., pointwise multiplication with
the pupil function in the Fourier domain) and the sampling on the 𝑀
camera pixels (see Fig. 1).

2.2. Discrete forward model

Let us rasterize 𝛺 into 𝑁 voxels of length ℎ. Following [17–19], we
define the discrete forward model by

𝐇 ∶ R𝑁
≥0 ×𝛺 × R>0 → R𝑀

(𝐟 , 𝐱𝑙 , 𝑎𝑙) ↦ 𝐁||
|

𝐏
[

𝐀(𝐟 ), 𝐈𝑀
]

𝐬in(𝐱𝑙 , 𝑎𝑙)
|

|

|

2
(4)
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with

𝐀(𝐟 ) = 𝐆̃ 𝐝𝐢𝐚𝐠(𝐟 )
(

𝐈𝑁 −𝐆𝐝𝐢𝐚𝐠(𝐟 )
)−1 , (5)

𝐬in(𝐱𝑙 , 𝑎𝑙) = [(𝐮𝛺in,𝑙)
𝑇 , (𝐮𝛤in,𝑙)

𝑇 ]𝑇 . (6)

Here, 𝐟 ∈ R𝑁 is a sampled version of 𝑓 within 𝛺. The vectors 𝐮𝛺in,𝑙 ∈ C𝑁

and 𝐮𝛤in,𝑙 ∈ C𝑀 are the sampled versions of 𝑢in( · ; 𝐱𝑙 , 𝑎𝑙) within 𝛺 and 𝛤 ,
respectively. We denote by {𝐱𝛺𝑛 }

𝑁
𝑛=1 and {𝐱𝛤𝑚}

𝑀
𝑚=1 the sampling points

within 𝛺 and 𝛤 . The matrix 𝐆 ∈ C𝑁×𝑁 encodes the convolution with
the Green function in (2). Similarly, 𝐆̃ ∈ C𝑀×𝑁 is a matrix that, given
the total field within 𝛺, gives the scattered field at the measurement
plane 𝛤 . Next, 𝐏 ∈ C𝑀×𝑀 is the discrete version of 𝑃 and | · |2 denotes
he pointwise-squared magnitude. A full description of 𝐆, 𝐆̃, and 𝐏 is

provided in [19]. Finally, the matrix 𝐁 ∈ R𝑀×𝑀 encodes a convolution
ith a Gaussian filter of length 𝜎𝑏 = 0.7ℎ. It accounts for the mismatch
etween our physical model derived from the scalar diffraction theory
nd the vectorial nature of light [20,21].

In this work, we adopt a biplane configuration [22] that involves
wo pupil functions with separate focal planes. To keep the notation
imple, we shall use a single matrix 𝐏 to represent the effect of the
wo pupil functions (i.e., two focal planes). Given the discrete forward
odel (4), the image formation model (3) writes as, ∀𝑙 ∈ {1,… , 𝐿},

𝑙 = Pois(𝐇(𝐟 , 𝐱𝑙 , 𝑎𝑙) + 𝐛𝑙). (7)

emark 1. Although we consider a biplane modality in our experi-
ents, the proposed joint optimization framework (Section 3) can be
eployed with any number of focal planes. In this proof-of-concept
ork, we considered two focal planes because (i) it corresponds to a

tandard SMLM modality (ii) it helps to compensate for the lack of
hase measurements.

. Joint recovery of the molecule localization and refractive index

.1. Joint-optimization framework

Our goal is to jointly recover the distribution of the refractive index
nd the localization of fluorescent molecules. To that end, we propose
o solve the minimization problem

(

𝐟∗,𝐗∗, 𝐚∗
)

∈ arg min
𝐟∈R𝑁≥0 ,

𝐗∈𝛺𝐿,𝐚∈R𝐿>0

𝐿
∑

𝑙=1
𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) + 𝜏(𝐟 ), (8)

here, for all 𝐟 ∈ R𝑁
≥0, 𝐱 ∈ 𝛺, and 𝑎 > 0,

𝑙(𝐟 , 𝐱, 𝑎) = KL
(

𝐇(𝐟 , 𝐱, 𝑎) + 𝐛𝑙; 𝐲𝑙
)

. (9)

he matrix 𝐗 = [𝐱1 ⋯ 𝐱𝐿] ∈ 𝛺𝐿 and the vector 𝐚 = (𝑎1,… , 𝑎𝐿) ∈ R𝐿
>0

re the concatenation of positions and amplitudes of the fluorophores,
espectively. The functional  ∶ R𝑁 → R≥0 is a regularization term
hat introduces prior knowledge on the RI distribution, and 𝜏 > 0
s a tradeoff parameter. In this work, we use the total-variation (TV)
egularization [23], although alternatives such as the Hessian–Schatten
orm [24] or learnt regularizers [25–28] can be easily plugged into
ur framework. The data-fidelity term KL is the Kullback–Leibler
ivergence [29] defined as, ∀(𝐳, 𝐲) ∈ R𝑀

≥0 × R𝑀
≥0,

KL (𝐳; 𝐲) = 𝐳𝑇 𝟏𝑀 − 𝐲 ⊙ log(𝐳 + 𝛽), (10)

here 𝛽 > 0 is a stabilizing parameter. Note that the Kullback–Leibler
ivergence corresponds to the Poisson negative log-likelihood up to
ome constant term.

To optimize (8), we alternate between an update of the refractive
ndex and an update of the amplitudes and positions of the fluo-
ophores (Algorithm 1), inspired by the self-calibrating reconstruction
echniques developed for other modalities [30,31]. Updates are per-
ormed on a subset of molecules (Line 3) in a stochastic fashion. In

(
∑ 𝑡+1 𝑡+1 𝑡)
lgorithm 1, aFBS 𝑙∈ 𝑙( · , 𝐱𝑙 , 𝑎𝑙 ); 𝐟 refers to the minimization

3

Algorithm 2 Refinement procedure for the 𝑙th molecule
Require: 𝐱0𝑙 ∈ 𝛺, 𝑎0𝑙 > 0, 𝑇mol ∈ N
1: 𝑡 = 0
2: while (Not converged or 𝑡 < 𝑇mol) do
3: 𝑎𝑡+1𝑙 = NewtonUpdate

(

𝑙(𝐟 , 𝐱𝑡𝑙 , · ); 𝑎
𝑡
𝑙
)

4: 𝐱𝑡+1𝑙 = GradientUpdate
(

𝑙(𝐟 , · , 𝑎𝑡+1𝑙 ); 𝐱𝑡𝑙
)

5: 𝑡 ← 𝑡 + 1
6: end while
eturn: 𝐱𝑡𝑙 , 𝑎

𝑡
𝑙

of ∑𝑙∈ 𝑙( · , 𝐱𝑡+1𝑙 , 𝑎𝑡+1𝑙 ) with the algorithm aFBS initialized with 𝐟 𝑡. We
se the same notation for the refinement step at Line 5. Details on
he algorithms deployed for each sub-problem are provided in Sec-
ions 3.2 and 3.3. We implemented the method within the GlobalBioIm
ramework [32].

.2. Update of molecule amplitudes and positions

For the refinement procedure in Line 5 of Algorithm 1, we again
dopt an alternating scheme between an update of the amplitude and
he position, as summarized in Algorithm 2. In the Sections 3.2.1 and
.2.2, we describe the Newton and gradient update steps used to refine
he amplitude and position, respectively.

.2.1. Amplitudes
Let 𝐟 ∈ R𝑁

≥0 and 𝐗 ∈ 𝛺𝐿 be fixed. First of all, one can see from (4)
hat, for 𝑎𝑙 > 0,

(𝐟 , 𝐱𝑙 , 𝑎𝑙) = 𝑎2𝑙𝐇(𝐟 , 𝐱𝑙 , 1), (11)

hich is very helpful to reduce the computational cost of our joint-
ptimization procedure. Indeed, denoting 𝐯𝑙 = 𝐇(𝐟 , 𝐱𝑙 , 1), we have
hat

𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) = KL(𝑎2𝑙 𝐯𝑙 + 𝐛𝑙; 𝐲𝑙) (12)
= (𝑎2𝑙 𝐯𝑙 + 𝐛𝑙)𝑇 𝟏𝑀

− 𝐲𝑙 ⊙ log(𝑎2𝑙 𝐯𝑙 + 𝐛𝑙 + 𝛽). (13)

he function 𝑙 is twice differentiable with respect to 𝑎. Its first
erivative is given by

𝑎𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) = 2𝑎𝑙
𝑀
∑

𝑚=1
𝑣𝑙𝑚

(

1 −
𝑦𝑙𝑚

𝑎2𝑙 𝑣𝑙𝑚 + 𝑏𝑙𝑚 + 𝛽

)

. (14)

Its second derivative reads as

𝜕2𝑎𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) = 2
𝑀
∑

𝑚=1
𝑣𝑙𝑚

(

1 −
𝑦𝑙𝑚

𝑎2𝑙 𝑣𝑙𝑚 + 𝑏𝑙𝑚 + 𝛽

)

+
𝑀
∑

𝑚=1

(2𝑎𝑙𝑣𝑙𝑚)2𝑦𝑙𝑚
(𝑎2𝑙 𝑣𝑙𝑚 + 𝑏𝑙𝑚 + 𝛽)2

. (15)

s such, we can perform a Newton update on 𝑎𝑙 as

𝑡+1
𝑙 = 𝑎𝑡𝑙 − 𝑠

𝜕𝑎𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑡𝑙)
𝜕2𝑎𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑡𝑙)

, (16)

where 𝑠 is the length of a step computed via line-search so as to satisfy
Wolfe’s conditions [33].

3.2.2. Positions
Let 𝐟 ∈ R𝑁

≥0 and 𝐚 ∈ R𝐿
>0 be fixed. We want to perform a gradient

update on the position 𝐱𝑙 of the 𝑙th molecule. However, one can see
that the spherical wave in (1) is not differentiable whenever 𝐱 =
𝐱𝑙. Consequently, we prefer to consider the smoothed version of the
spherical wave

𝑢smth
in (𝐱; 𝐱𝑙 , 𝑎𝑙) = 𝑎𝑙

exp
(

j𝑘b‖𝐱 − 𝐱𝑙‖2,𝜖
)

, (17)

4𝜋‖𝐱 − 𝐱𝑙‖2,𝜖
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Algorithm 3 aFBS
Require: 𝐟0 ∈ R𝑁

≥0, 𝑇RI ∈ N, 𝛾 > 0, 𝛼 ∈ [0, 1]

1: 𝑡 = 0, 𝐰0 = 𝐟0, 𝑣0 = 1
2: while (Not converged or 𝑡 < 𝑇RI) do
3: 𝐠 =

∑

𝑙∈ 𝛁𝑙( · , 𝐱𝑙 , 𝑎𝑙)(𝐰𝑡)
4: 𝐟 𝑡+1 = prox𝛾𝜏

(

𝐰𝑡 − 𝛾𝐠
)

5: 𝑣𝑡+1 = 1+
√

1+4(𝑣𝑡)2
2

6: 𝐰𝑡+1 = 𝐟 𝑡 + 𝛼 𝑣𝑡−1
𝑣𝑡+1

(𝐟 𝑡 − 𝐟 𝑡+1)
7: 𝑡 ← 𝑡 + 1
8: end while
eturn: 𝐟 𝑡

where ‖ · ‖2,𝜖 =
√

‖ · ‖22 + 𝜖 with 0 < 𝜖 ≪ 1. Then, the gradient of 𝑙
ith respect to 𝐱, evaluated at 𝐱𝑙, is given by

𝐱𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) = 2𝐉𝐻𝐬in,l
[

𝐀(𝐟 ), 𝐈𝑀
]𝐻𝐏𝐻𝐏

[

𝐀(𝐟 ), 𝐈𝑀
]

𝐬in,𝑙

⊙𝐁𝑇𝛁𝐳KL
(

𝐇(𝐟 , 𝐱𝑙 , 𝑎𝑙) + 𝐛𝑙
)

, (18)

where 𝐬in,𝑙 = 𝐬in(𝐱𝑙 , 𝑎𝑙) ∈ C𝑁+𝑀 . The gradient of KL in (10) with
respect to the first variable 𝐳 is given by

𝛁𝐳KL(𝐳; 𝐲) = 𝟏𝑀 − 𝐲𝑙 ⊘ (𝐳 + 𝛽) . (19)

Finally, it remains to provide the expression of the Hermitian transpose
of the Jacobian matrix of 𝐬in( · , 𝑎𝑙), evaluated at 𝐱𝑙, which we denote
𝐉𝐻𝐬in ,𝑙 ∈ C3×(𝑁+𝑀). Its 𝑞th column is given by

[𝐉𝐻𝐬in ,𝑙]𝑞 = [𝐬in,𝑙]∗𝑞

(

j𝑘b +
1

‖𝐫𝑞 − 𝐱𝑙‖2,𝜖

) (𝐫𝑞 − 𝐱𝑙)
‖𝐫𝑞 − 𝐱𝑙‖2,𝜖

. (20)

Let us emphasize that 𝐫𝑞 = 𝐱𝛺𝑞 (𝛺 sampling points) for 𝑞 ≤ 𝑁 and
𝐫𝑞 = 𝐱𝛤𝑞−𝑁 (𝛤 sampling points) for 𝑁 < 𝑞 ≤ 𝑁 +𝑀 . Equipped with this
closed-form gradient, we can deploy a projected-gradient update on 𝐱𝑙
as

𝐱𝑡+1𝑙 = 𝛺
(

𝐱𝑡𝑙 − 𝑠𝛁𝐱𝑙(𝐟 , 𝐱𝑡𝑙 , 𝑎𝑙)
)

, (21)

where 𝑠 is a step-size computed via a backtracking line-search [34]. The
projector 𝛺 ∶ R3 → 𝛺 constrains the fluorophore positions to remain
in 𝛺.

3.3. Update of the refractive index

When the positions 𝐗 ∈ 𝛺𝐿 and amplitudes 𝐚 ∈ R𝐿
>0 are fixed, the

RI update consists in solving

𝐟∗ ∈ arg min 𝐟 ∈ R𝑁
≥0

𝐿
∑

𝑙=1
𝑙(𝐟 , 𝐱𝑙 , 𝑎𝑙) + 𝜏(𝐟 ). (22)

It corresponds to an inverse-scattering problem from intensity mea-
surements [35,36]. To solve (22), we deploy a relaxed variant [37]
of the accelerated forward–backward splitting (aFBS) algorithm [38,
39] (Algorithm 3). It requires the computation of two quantities.

1. The gradient of 𝑙( · , 𝐱𝑙 , 𝑎𝑙) which involves the Jacobian of 𝐀(𝐟 )
in (4) whose expression is provided in [18].

2. The proximal operator of  which, for TV, can be efficiently
evaluated by using the fast gradient-projection algorithm [40].

3.4. Initialization strategies

3.4.1. Initialization of the refractive index
In phaseless diffraction tomography, the light-field refocusing

method is a standard tool to obtain an initial guess of the RI dis-

tribution [35,41]. However, this initialization requires coherent light

4

sources with known geometry, which prevents its use on SMLM data.
We therefore adopt an alternative approach that comprises two steps.
We first replicate the widefield image (sum of the SMLM stack) along
the axial direction and then blur the obtained volume with a Gaussian
filter. The rationale behind this choice is that we can only expect to
recover the RI where fluorophore emissions have propagated, that is,
at the vicinity of fluorescent molecules. We then define 𝐟0 as a scaled
version of this filtered volume so that its values belong to an admissible
range of RI (see Fig. 3).

3.4.2. Single-molecule localization
Any SMLM localization software can be used to compute the initial

positions {𝐱0𝑙 }
𝐿
𝑙=1. However, we found that existing software packages

for a biplane modality were not performing well on our simulated
dataset. We believe that this is due to the high thickness of the sample
together with the small number of acquisitions.

Therefore, we adopted a simple yet efficient method. We localize
the position of the 𝑙th fluorophore based on cross-correlations between
the measurements 𝐲𝑙 and a set {𝐤𝑝}𝑃𝑝=1 of PSF models in ∈ R𝑀 . We
efine them as the output of the forward model with no scatterer, like
n

𝑝 = 𝐇(𝟎𝑁 , 𝐱psf𝑝 , 1), (23)

here the positions 𝐱psf𝑝 = (0, 0, 𝑝𝛥𝑧) for 𝑝 = {−𝑃 ,… , 𝑃 } vary along the
xial direction. We then initialize
0
𝑙 = (𝑚̂ℎ, 𝑛̂ℎ, 𝑝̂𝛥𝑧) (24)

here

𝑚̂, 𝑛̂, 𝑝̂) = argmax𝑚, 𝑛, 𝑝 [𝐲𝑙 ⋆ 𝑘∨𝑝 ]𝑚,𝑛, (25)

ith ⋆ the 2D discrete convolution and ( · )∨ the reflection operator.
nce localized, we initialize the amplitude as

0
𝑙 =

(

‖𝐌𝐱0𝑙
(𝐲𝑙 − 𝐛̂𝑙)‖1∕‖𝐤𝑝̂‖1

)
1
2 , (26)

where 𝐌𝐱0𝑙
∈ R𝑅×𝑀 crops a region-of-interest centered at 𝐱0𝑙 and 𝐛̂𝑙

denotes the estimated background (see Section 3.4.3).

3.4.3. Background estimation
To estimate {𝐛𝑙}𝐿𝑙=1, we apply a simple algorithm suitable for a

background that slowly varies in space and time. In SMLM, this is a
common assumption [42]. Our procedure proceeds in two steps.

1. For each measurement 𝐲𝑙, we mask an area around the estimated
position 𝐱𝑙 and inpaint it using the function regionfill of
Matlab1 to obtain 𝐲̄𝑙.

2. We apply a spatio-temporal (3D) median filter along the stack
of masked and inpainted measurements 𝐘̄ = [𝐲̄1 ⋯ 𝐲̄𝐿] to take
advantage of the spatio-temporal smoothness of the background.

4. Numerical experiments

4.1. Simulation setting

We created an RI volume immersed in water (𝜂𝑏 = 1.339), fully
included in the region 𝛺 of size (7.2×7.2×3.2)μm3 (Fig. 2). This sample
presents small features with RI values that are lower or higher than
their surroundings. Then, we populated this sample with fluorophores
randomly placed on a structure that is composed of an outer membrane
as well as inner compartments. The smallest distance between two
fluorophores is 20 nm. We simulated 𝐿 = 1000 SMLM acquisitions
with a biplane modality, each corresponding to the activation of a
single fluorophore. The two focal planes were set at ±300 nm. The

1 Matlab’s command regionfill performs a smooth interpolation inward
from the pixel values that are on the outer boundary of the mask.
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t
f
r

Fig. 2. Simulation setup. The RI map, immersed in water (𝑛𝑏 = 1.339), is depicted on the left orthoviews. The sample is populated with fluorescent molecules that belong to
he labeled region. They sequentially emit a spherical wave which is then propagated through the sample using the Lippmann–Schwinger model. Two focal planes (with pupil
unctions) are acquired. The widefield images are generated by summing all SMLM frames. The fluorescence images were saturated for visualization purpose. We display the labeled
egion with partial transparency so as to make the inner compartments visible. Scale bars: 500 nm.
Fig. 3. Reconstructions of the RI volume. From left to right: Ground truth, initial guess, reconstruction with positions and amplitudes fixed to their initial values (see Section 3.4.2),
reconstruction with the proposed joint-optimization framework, and reconstruction with positions and amplitudes fixed to their true values (gold-standard). The SSIM and relative
errors are displayed in the first row at the left and right corners, respectively, of each corresponding reconstruction. Scale bar: 500 nm.
amplitude 𝑎𝑙 of each fluorophore emission was drawn from a Poisson
distribution with mean 𝐴 = 1000 and the wavelength of the emitted
light is set at 𝜆 = 647 nm. In addition, we simulated a pupil function
for each focal plane with NA = 1.45 and 25 Zernike coefficients.
Their values were drawn from the uniform distribution 𝑈 (−0.5, 0.5),
except that the three first coefficients were set to 0 and that the
fourth coefficient was drawn from 𝑈 (−0.1, 0.1) to better match the PSFs
observed in real SMLM acquisitions. The background signals 𝐛 for
𝑙

5

𝑙 ∈ {1, 100, 200,… , 1000} were simulated by convolving a Gaussian
kernel with a random image generated from a uniform distribution.
We then scaled the obtained images so that their pixel values belong
to the range [350, 450]. Backgrounds for intermediate frames were then
obtained through interpolation. We set a large width for the Gaussian
kernel so as to obtain a slowly varying background in both space and
time. Finally, to control the noise, we scaled the noiseless measure-
ments with a factor 𝑟 ∈ (0, 1] before applying the Poisson noise so that
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Fig. 4. Observable region of the sample. Illustration of the region of the sample that
is ‘‘illuminated’’ by a fluorophore far from (left) and close to (middle) the detection
system. The right scheme illustrates the fact that SMLM data carry more information
about RI regions that are close to the detection system (positive 𝑧).

(4) writes as, ∀𝑙 ∈ {1,… , 𝐿},

𝐲𝑙 = Pois(𝑟(𝐇(𝐟 , 𝐱𝑙 , 𝑎𝑙) + 𝐛𝑙)). (27)

y doing so, 𝑟 can be interpreted as the product between the excitation
hoton flux and the integration time. A small 𝑟 yields a higher level
f noise, which increases the difficulty of the localization of molecules
nd the RI reconstruction.

We compare our joint-optimization framework with two baselines.
hey consist on the sole RI reconstruction with i) perfectly character-

zed molecules (i.e., true amplitudes and positions) or ii) the initial
stimation of the amplitudes and positions obtained as described in
ection 3.4.2. By doing so, we somehow obtain the worst-case and best-
ase scenarios. For each case, we obtained the best reconstruction by
erforming a grid search on the regularization parameter 𝜏.

For our joint-optimization framework, we set the parameters 𝑇mol =
, 𝑇RI = 1, and 𝛼 = 0.85. In our implementation, 𝐰0 and 𝑣0 in Line
of Algorithm 3 are initialized from the previous call. We ran our

ptimization on a PowerEdge c4140 equipped with Intel Xeon Gold
240 CPUs (2.60 GHz) and a GPU NVIDIA Tesla V100 SXM3 (32 GB).
n iteration of Algorithm 1 took 20 s on average. We used up to 2000

terations, which corresponds to about 10 h of computation.

.2. Metrics and visualization

To assess the quality of the reconstructed RI volume, we com-
ute the relative error as well as the structural similarity index mea-
ure (SSIM) [43] with respect to the ground-truth. To assess the accu-
acy of the localization of the molecules, we compute the root-mean-
quare error (RMSE) with respect to the true positions. Note that we
o not report detection metrics such as true/false detections as they
re not really relevant in our setting where we consider only frames
ontaining one molecule. Finally, given a list of molecule positions, we
enerate a 3D image through the Gaussian rendering technique [6]. To
hat end, we represent the fluorophore positions as a sum of shifted
irac

(𝐱) =
𝐿
∑

𝑙=1
𝛿(𝐱 − 𝐱𝑙). (28)

aussian rendering then consists in convolving 𝑠 with an isotropic
aussian kernel and sample the result on a grid. Here, we set the

tandard deviation of the Gaussian kernel to 10 nm and the grid step
o ℎ∕10 = 10 nm.

.3. Results
We first fix the noise level to 𝑟 = 1 in (27).

6

Fig. 5. Rendering of localized molecules (Y-projection). Region-of-interest of the
projection along Y of the rendered fluorescent volume. From top to bottom: Initial
positions, positions refined with the joint-optimization framework, ground-truth. Field-
of-view (XZ): (3600 × 600) nm2. The images were saturated for visualization purpose.
Scale bar: 200 nm.

4.3.1. Reconstructed refractive index
We display the RI volumes in Fig. 3 and report there the relative

errors and SSIM. When the positions and amplitudes of the molecules
are perfectly known, we recover most of the details of the ground-
truth. This is in line with our previous work [13]. On the contrary,
the reconstruction obtained with the initial positions and amplitudes
is unsuccessful. This highlights the importance of refining molecule
positions and amplitudes jointly with RI reconstruction. We effectively
see that our joint-optimization framework is able to recover an RI
volume that is visually similar to the best-case scenario. The metrics
confirm the visual assessment. Yet, one can observe some high fre-
quency artifacts (ringing) on the reconstruction obtained with the joint
optimization framework (plane 𝑧 = −0.2μm). They are due to few badly
refined molecule positions (outliers in Fig. 8) that lead to a mismatch
in the model. Finally, it should be noted that we could expect that
the quality of the reconstruction varies with the axial position 𝑧. The
reason is that an SMLM frame (from the activation of one molecule)
carries information about the part of sample that lies between the
activated molecule and the optical system (see Fig. 4). As such, there
are more SMLM frames that carry information about 𝑧-planes with
positive 𝑧 than frames that carry information about 𝑧-planes with
negative 𝑧. Moreover, waves produced by fluorophores with negative
𝑧-positions propagate through a larger layer of the sample, inducing
more scattering. These facts make that i) fluorophores with negative
𝑧-positions are harder to localize, and (ii) 𝑧-planes of RI with negative
𝑧 are harder to reconstruct.

4.3.2. Molecule localization
It is noteworthy to recall that the primary objective of SMLM

is to localize the fluorescent molecules with nanometric precision.
It follows that another benefit of our joint-optimization framework
is an improvement of this localization. Indeed, our model accounts
for sample-induced distortions that usually compromises the accurate
localization of molecules [9].

We report in Table 1 the RMSE of the initial and refined positions,
as well as the RMSE of the initial and refined amplitudes. In addition,
we provide the RMSE of the refined positions and amplitudes when the
RI map is fixed to the initial guess 𝐟0 or the ground-truth (best-case
scenario). There is a gain of 89 nm in the 3D RMSE for our joint-
optimization framework. One sees that the lateral and axial RMSE are
improved by 54 nm and 76 nm, respectively. Not only does our joint-
optimization framework successfully recover the RI volume, but it also
improves significantly the localization of the molecules. The proposed
joint-optimization framework performs better than the refinement of
the positions and amplitudes with the RI map fixed to 𝐟0. Moreover,
it performs similarly to the refinement with the RI map fixed to the
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Fig. 6. Reconstructions of the RI volume with different fluorophore distributions.
A: The four considered fluorophore distributions. B; Reconstructed RI maps. The SSIM
and relative errors are displayed in the XZ view at the left and right corners of each
reconstruction, respectively. The signal-to-noise ratio is displayed at the bottom-left
corner for each noise level. Scale bar: 500 nm.

round-truth. Those observations confirm that the joint-optimization
ramework is necessary to improve the localization and can even reach
imilar performance to the best-case scenario.

In Fig. 5, we display a Y-projection of the fluorescent volume
endered from the molecule positions, where one can visually ap-
reciate the gain in accuracy. The estimation of the amplitudes is
mproved as well. This can help to better estimate the uncertainty of
ocalization [44,45].
7

Table 1
RMSE for the estimated positions and amplitudes. First row: Initial positions and
amplitudes from our standard single-molecule localization. Second row: Positions and
amplitudes from our joint-optimization framework. Third and fourth rows: Positions
and amplitudes refined with the RI map fixed to the initial guess 𝐟0 and the
ground-truth (GT), respectively. Amp.: Amplitude. Lat.: Lateral. Ax.: Axial.

3D [nm] Lat. [nm] Ax. [nm] Amp.

Initial 163 69 148 109
Joint 74 15 72 76
with 𝐟0 142 38 136 194
with 𝐟GT 72 18 70 76

Table 2
RMSE of the estimated positions and amplitudes for the four distributions of fluo-
rophores depicted in Fig. 6 (Panel A). Amp.: Amplitude. Lat.: Lateral. Ax.: Axial. Dist.:
Distribution.

#Fluo 3D [nm] Lat. [nm] Ax. [nm] Amp.

Dist. 1 1000 74 15 72 76
100 80 13 79 76

Dist. 2 1000 85 3 85 77
100 82 3 82 55

4.3.3. Influence of the distribution of fluorophores
From the phenomenon illustrated in Fig. 4, one can expect that the

quality of the reconstructed RI map is closely related to the spatial
distribution of the fluorescent probes. In this section, we investigate
this question by comparing the reconstructions obtained with the four
fluorophore distributions illustrated in Fig. 6 (Panel A). These include
the rather homogeneous distribution depicted in Fig. 2 and a more con-
centrated distribution, both with two different numbers of molecules
(i.e., numbers of frames).

As expected, the reconstructed RI map is significantly degraded
when the distribution of fluorophores is more concentrated (Fig. 6B,
right column). Indeed, the emitted light has mainly propagated through
a restricted area of the sample, limiting the information on the RI map
carried by the measurements. On the contrary, the quality of the re-
constructed RI map seems less sensitive to the number of fluorophores.
Although some details are lost, the RI maps reconstructed with 100
frames remain qualitatively similar to their counterparts reconstructed
from 1000 frames (Fig. 6B).

Finally, we display in Table 2 the RMSE obtained after the joint opti-
mization. Interestingly, the refinement of the positions and amplitudes
of the molecules remains stable when reducing the number of frames.
For the concentrated distribution, the axial RMSE is slightly degraded
and, on the contrary, the lateral RMSE is drastically reduced, which
might be due to the concentration of the distribution.

4.3.4. Robustness to noise
Next, we are interested in the robustness of our framework to the

measurement noise. To that end we vary the parameter 𝑟 in (27)
from 0.1 to 1. Some examples of obtained measurements are shown in
ig. 7 (last row), where one can observe that the noise is stronger when
is smaller. The RI reconstructions for each noise level are displayed in
ig. 7. Although the quality of reconstruction degrades when the noise
ncreases, the shape and the most prominent features are recognizable
ven for 𝑟 = 0.1. This suggests that our method is quite robust to noise.

The box plots of the localization errors are displayed in Fig. 8.
or each noise level, we show the box plot for the initial and refined
ositions to illustrate the improvement. We again observe a certain
obustness to noise, even for the case 𝑟 = 0.1 where the amplitudes
ere badly initialized. It is noteworthy to mention the presence of
utliers in the displayed box plots even for 𝑟 = 1. For some molecules,
e observed that the joint-optimization could not refine the positions
nd amplitudes well. In few cases, the estimates did even worsen.
ortunately, the number of such failures is limited (e.g., 60 over 1000

molecules for 𝑟 = 0.1).
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Fig. 7. Reconstructions of the RI volume with different noise levels. From left to right: Ground truth, reconstruction with the proposed joint optimization framework for
𝑟 = 0.1, 0.5, and 1. The SSIM and relative errors are displayed in the first row at the left and right corners of each reconstruction, respectively. The last row contains two examples
of SMLM acquisition (ROI) for two different molecules at axial positions 𝑧 = 440 nm (top) and 𝑧 = 0 nm (bottom). The signal-to-noise ratio is displayed at the bottom-left corner
for each noise level. Scale bar: 500 nm.

Fig. 8. Box plots of the localization (left) and amplitude (right) error for different noise levels. Three noise levels are displayed with 𝑟 = 0.1, 0.5, and 1. For each case,
the left box plot (hatched) corresponds to the initial positions/amplitudes and the right box plot (solid) corresponds to the refined positions/amplitudes. Note that the estimated
amplitudes were scaled by 𝑟−1 to compare with the same ground-truth. For the box plots of the localization error after refinement (solid), we set the upper whiskers to 50 nm so
as to consider any larger error as outliers. This is in line with the expected 3D localization error in SMLM [6]. This bound is not relevant for the initial errors (hatched) as they
are too large. For the hatched box plots, we thus set the default upper whiskers to 𝑄3 + 1.5IQR, where IQR = (𝑄3 − 𝑄1) is the interquartile range and 𝑄1, 𝑄3 are the 25th and
75th percentile, respectively. Finally, the lower whiskers are always set to the smallest error among all molecules. Outliers are indicated by ×.

8
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5. Discussion

We have presented a joint-optimization framework to estimate both
the RI map and the position of fluorescent molecules from an SMLM
acquisition stack. Our method takes advantage of the sample-induced
aberrations to unveil the map of the refractive index of the sample.
Such structural information complements fluorescence imaging [10].
In addition to this unique feature, our framework is able to improve
the accuracy of molecule localization. Our work shows that additional
information about the sample can be recovered from SMLM data. This
is a first step towards an exciting and new extension of SMLM. As
future refinement, we need to look into ways to identify and correct
the molecules that our framework can sometimes fail to refine. We shall
then be in a good position to apply our framework to real data.
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