=Pr-L

m Ecole
polytechnique
fédérale
de Lausanne

Thése n°9745

Exploring nonlinearities in multimode optical fibers for
lasers and computing

Présentée le 17 aolt 2021

Faculté des sciences et techniques de I'ingénieur
Laboratoire de dispositifs photoniques appliqués
Programme doctoral en photonique

pour I'obtention du grade de Docteur &s Sciences

par

Ugur TEGIN

Acceptée sur proposition du jury

Prof. O. Martin, président du jury

Prof. C. Moser, Prof. D. Psaltis, directeurs de thése
Prof. G. Barbastathis, rapporteur

Prof. D. Brunner, rapporteur

Prof. L. Thévenaz, rapporteur

2021



Acknowledgements

I would like to thank my supervisors Prof. Christophe Moser and Prof. Demetri Psaltis for their
support and guidance during my studies. Thanks to their encouragement and trust, with the pro-
vided liberty, | could find a chance to conduct my research in a broad field from laser to machine
learning with utmost freedom.

| would like to thank my parents Abdullah and Keziban for their continuous support and care. Since
my childhood, their encouragements lead me to research and explore. | would like to thank my
brothers Umut and Abitter for their support. | would also like to thank my lovely wife, Aysen Nur
for her love, support and patience during this adventure. Without her support, all of this would
not have been possible.

| would like to thank my former office mates, Damien Loterie and Paul Deltort for the great time
we shared and their priceless advice. | would like to thank Dr. Navid Borhani, Niyazi Ulas Ding,
Mustafa Yildirim, ilker Oguz and Leo Jih-Liang Hsieh for their friendship, enthusiasm and the fruit-
ful discussions we had. | would like to thank to the recent and former members of the Laboratory
of Applied Photonics Devices and Laboratory of Optics, whom | had the chance to work with, for
their patience, assistance, and company. Lastly, | want to thank to Sabrina Martone and Silke Jan
for their administrative support and guidance.

Lausanne, April 3™ 2021

Ugur



Abstract

Multimode optical fibers are the backbone of telecommunication and medical imaging. When light with
high intensity travels through a multimode fiber, photons and matter start to interact and propagation be-
comes nonlinear. The nonlinear propagation of light results in variations in the spatial and temporal distri-
bution of the light. Therefore, at the end of the fiber spatial distribution of the light and/or its wavelength
changes.

In this thesis, nonlinear interactions in multimode fiber are explored and controlled for laser, computing
and machine learning applications. Novel approaches for scalable energy-efficient optical computing, learn-
ing, and controlling nonlinear dynamics with machine learning tools, ultrashort pulse generation with supe-
rior beam qualities, high peak power and stability are demonstrated.

Firstly, high-power ultrashort pulse generation in multimode laser cavities is explored. By studying pulse
dynamics, significant improvements are achieved and near-single mode output beam profiles are demon-
strated. Later, a novel all-fiber laser design is presented to achieve stable ultrashort pulses with a compact
and low-cost laser cavity. In the second half of this thesis, machine learning tools are utilized to acquire the
relation between the nonlinear frequency generation and the initial excitation of the multimode fibers to
create tunable frequency sources. Advanced artificial neural network designs are implemented to learn
nonlinear light propagation in multimode fibers to replace time consuming conventional simulations. Final-
ly, the nonlinear interactions shaping the propagating beam distribution are employed to process infor-
mation to perform optical computing with multimode fibers.

Multimode fibers are an ideal testbed to investigate complex nonlinear dynamics in nature. We believe the
demonstrated applications and the achieved results are just a subset of the capabilities of the optical fiber.
These approaches can be used as a steppingstone to demonstrate advanced applications with light.

Keywords

Nonlinear fiber optics, mode-locked lasers, optical computing, multimode fibers, machine learning
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Zusammenfassung

Multimodale optische Fasern sind das Riickgrat der Telekommunikation und der medizinischen Bildgebung.
Wenn Licht mit hoher Intensitat durch eine Multimodale Faser propagiert, Photonen und Materie beginnen
zu interagieren, was zu einer nichtlinearen Ausbreitung fiihrt. Die nichtlineare Lichtausbreitung fiihrt denn
zu Variationen in der raumlichen und zeitlichen Verteilung des Lichtes. Daher dndert sich am Ende der Fa-
serform das Licht und / oder seine Wellenlidnge.

In dieser Arbeit, nichtlineare Wechselwirkungen in Multimodale Fasern fiir Laser-, Computer- und maschi-
nelle Lernanwendungen werden untersucht und gesteuert. Neue Anwendungen fiir skalierbare energieeffi-
ziente optische Datenverarbeitung, Lernen und Steuern nichtlinearer Dynamik mittels maschinellen Ler-
nens, ultrakurze Impulserzeugung mit tberlegenen Strahlqualitaten, hoher Spitzenleistung und Stabilitat
werden demonstriert.

Zunachst wird die Hochleistungs-Ultrakurzpulserzeugung in Multimode-Laserkavitaten untersucht. Durch
das Studium der Pulsdynamik werden signifikante Verbesserungen erzielt und Ausgangsstrahlprofile in der
Nadhe von Einzelmoden demonstriert. Spater wird ein neuartiges All-Faser-Laserdesign vorgestellt, um stabi-
le ultrakurze Pulse mit einer kompakten und kostenglinstigen Laserkavitat zu erzielen. In der zweiten Halfte
dieser Arbeit werden Werkzeuge des maschinellen Lernens verwendet, um die Beziehung zwischen der
nichtlinearen Frequenzerzeugung und der anfanglichen Anregung der Multimode-Fasern zu erfassen, um
abstimmbare Frequenzquellen zu erzeugen. Fortschrittliche Designs kiinstlicher neuronaler Netze werden
implementiert, um die nichtlineare Lichtausbreitung in Multimode-Fasern zu erlernen, um rechenintensive
konventionelle Simulationen zu ersetzen. SchlieRlich werden die nichtlinearen Wechselwirkungen, die die
Ausbreitungsstrahlverteilung formen, verwendet, um Informationen zu verarbeiten, um optische Berech-
nungen mit Multimode-Fasern durchzufihren.

Multimodale Fasern sind ein idealer Prifstand, um komplexe nichtlineare Dynamiken in der Natur zu unter-
suchen. Wir glauben, dass die demonstrierten Anwendungen und die erzielten Ergebnisse nur eine Teil-
menge der Fahigkeiten der optischen Faser sind. Diese Ansatze kdnnen als Sprungbrett verwendet werden,
um fortgeschrittene Anwendungen mit Licht zu demonstrieren.

Schliisselworter

Nichtlineare Faseroptik, modengekoppelte Laser, optisches Rechnen, Multimodale Fasern, maschinelles
Lernen
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Chapter 1  Introduction

Low-loss silica glass optical fibers are first presented by Charles K. Kao and George A. Hockham in
1966 [1]. This discovery led to the development of highly pure silica waveguides and implementa-
tion of them in telecommunication applications for high bandwidth data transferring [2], [3]. Later,
by doping the optical fibers with rare-earth elements (Ytterbium, Erbium, Thulium, Holmium, etc.),
optical fiber-based signal amplifiers and lasers are introduced. With high thermal dissipation, rela-
tively high nonlinearity with tight confinement of light, high single-pass amplification ratios and
alignment-free design support, optical fibers attracted attention from nonlinear optics to lasers
communities [3], [4].

Figure 1.1: Normalized intensity distributions of the first 10 LP modes of GRIN MMF with 50 um core diam-
eter and 0.20 NA for 1030 nm central wavelength. Fiber core is illustrated with circles.

As a waveguide, optical fiber supports particular and finite spatial distribution of light (spatial fiber
modes) to guide the coupled light (see Figure 1.1 for examples). The optical wavelength of the
guided light, the refractive index of the optical fiber and its physical dimensions such as core (or
cladding) diameter define the finite quantity and the spatial distribution of the guided core (or
cladding) modes [4]. As a result, to estimate the number of guided core modes, a dimensionless
parameter (V number) is often used which is,

2T
V= TrNA (1.1)

where A is the wavelength of the light, r is the core radius of the optical fiber and NA is the nu-

merical aperture of the fiber which can be calculated as \/ncorez - ncladdingz. Depending on the



shape of the refractive index profile of the fiber (see Figure 1.2), the number of the supported spa-
tial modes can be approximated as M =~ V?2/2 for the step-index fibers and as M ~ V?2/4 for the
graded-index fibers with a parabolic refractive index distibution.

125 pm

Single-mode fiber

n.______— —Se - 125-400 I 50-100
Step-index multimode fiber
n Wﬁ -
125 ym I 50-100
_ e —— pm

Graded-index multimode fiber
Index of

refraction
Figure 1.2: Single core fiber types.

Single core fibers can be categorized according to their supported number of modes and their re-
fractive index profiles as illustrated in Figure 1.2. The relatively small core size supports only one
spatial mode and such optical fibers are referred to as single-mode fibers. When the core size of
the single-mode fiber increased, the optical fiber starts to support more than one spatial mode
(see Figure 1.1). Such large core fibers are classified as multimode fibers (MMFs). With the multi-
ple spatial channel support, the MMF technologies are heavily used in telecommunication sys-
tems. The step-index MMFs cause relatively high propagation differences (such as dispersion) be-
tween the supported modes and these propagation differences result in the spread in time for the
propagated light traveling in different modes and called modal dispersion. For long-distance (>km)
transmission, the high modal dispersion of an MMF limits the information transmission process. As
an alternative to step-index MMFs, graded-index multimode fibers (GRIN MMFs) offer relatively
low modal dispersion as a result of the near-parabolic-shaped refractive index profile of the fiber
core. Over the last decades, GRIN MMFs are tuned to support large bandwidths with low modal
dispersion and low loss for telecommunication purposes [5], [6].

Due to the tight confinement of the guided light, single-mode optical fibers offer high beam quali-
ty (M? = 1 where M? is the beam quality factor) and commonly preferred for various applications.
This confinement causes relatively high optical nonlinearity due to increasing light-matter interac-
tion with more power per area. Such interactions result in a nonlinear response from the wave-
guide to propagating guided light since the total polarization (P (7, t)) induced by electric dipoles is
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changing nonlinearly with respect to the electric field (E(r,t)) as expressed with the following
expression.

P(r,t) = (W E + yP:EE+ y® :EEE+-) (1.2)

where )((i) is the ith order of the susceptibility and ¢, is the permittivity of the vacuum [4]. The
aforementioned nonlinear relation causes the Kerr effect which results in a nonlinear change in
refractive index An = n,I and stimulated inelastic scattering known as Raman and Brillouin scat-
terings [4].

Starting from Maxwell’s equations, the wave equation for the field propagating inside the optical
fiber (E(r,t)) can be expressed as Equation 1.3.

106 0°h, P,
2otz Mgz T HoThz (13)

When simplified in scalar notation, Equation 1.3 yields the propagation equation for the slowly
varying envelop of a light field (A(z, T)). This simplified equation is called as the generalized time-
dependent nonlinear Schrédinger equation (NLSE) and described as the following expression.

0A(z, T jn-1 gn
—((322 ) %A(Z,T)-F(Z ﬂnlWW>A(Z,T)

+
nz2

19
— iy (1 + w_oﬁ) (1 - DA DA D)
+ frA(z,t) f hg(D|A(z, T — 1)|? d1) (1.4)

where a is gain (loss) term, y is the nonlinear coefficient, [3,, are dispersion coefficients calculated
by a Taylor series expansion of propagation constant f(w) around the center frequency of the
field, hy is the delayed Raman response function and f3 is the fractional contribution of the Ra-
man effect [7], [8]. From self-phase modulation to stimulated Raman and Brillouin scattering, vari-
ous optical nonlinear phenomena are detailly investigated with single-mode fibers for numerious
applications including fiber optical parametric oscillators to Raman lasers [4], [9]. Later these ef-
forts concentrated on single-mode photonic crystal fibers which allow tailoring of nonlinearity and
dispersion parameters for specific applications. With tailoring high-order dispersion parameters
and increasing nonlinear interactions by decreasing propagation area, octave-scanning coherent
supercontinuum generation became feasible [10], [11] which makes optical frequency combs es-
sential for metrology applications feasible [12], [13] by enabling carrier-envelope-offset frequency
measurements.

The first mode-locked fiber laser is presented in 1986 by using neodymium-doped fiber as the la-
ser gain [14]. Later, erbium-doped fiber lasers and amplifiers became a mature technology for tel-
ecommunication purposes. Following this development, ytterbium-doped fibers with broad spec-
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tral bandwidth and high doping are introduced. Starting with soliton (sech?) pulses, different pulse
shapes and propagation regimes introduced to increase pulse energy and decrease the pulse dura-
tion in optical fiber oscillators [15]-[20] (see Figure 1.3). The single-mode nature of these fibers
provide superior beam quality to ultrashort pulses but due to tight confinement, these fibers also
introduce relatively high nonlinearity which prevents high power pulse generation without need-
ing an external amplifier for fiber lasers. To overcome this issue photonic crystal fibers with active
element doped cores are introduced [21]-[24]. With large core size and single-mode beam sup-
port, these large-pitch fibers make >40 W average powers feasible to achieve directly from a fiber
oscillator [24]. However, many advantages of optical fibers such as bending and splicing become
challenging with the large-pitch fibers.

a Soliton laser b Dissipative soliton laser
SA oC SA oC
AA =6-14 nm
Passive fiber Passive fiber Passive fiber Passive fiber
SPM, (-) Disp. SPM, (-) Disp. SPM, (+) Disp. SPM, (+) Disp.
Gain fiber Gain fiber
SPM, (-) Disp. SPM, (+) Disp.
* All anomalous dispersion * All normal dispersion
» Pulse shape is sech? * Pulse shape is Gaussian
» Limited low pulse energy » High pulse energy
c Amplifier similariton laser d Dispersion-managed laser
SA oc SA oc
AX <5 nm
Passive fiber Passive fiber Passive fiber Passive fiber
SPM, (+) Disp. SPM, (+) Disp. SPM, (-) Disp. SPM, (+) Disp.
Gain fiber Gain fiber

SPM, (+) Disp. SPM, (+) Disp.

* All normal dispersion » Altering dispersion inside the cavity
* Pulse shape is parabolic * Pulse shape is defined by total cavity dispersion
* Requires narrow filtering * Sub-100 fs pulse duration is feasible

Figure 1.3: Main types of mode-locked fiber lasers and generated pulses.

In recent years, spatiotemporal nonlinearities in GRIN MMFs have become subject to strong atten-
tion for nonlinear fiber optics studies. Similar to single-mode fibers, for the slowly varying envelop
of a multimode light field (A(x, y, z, T)) propagating in GRIN MMF, NLSE with 4D, 3 spatial coordi-
nates + 1 time coordinates,

0A(x,y,2,T) i (0?°A(x,y,2T) N 0%2A(x,v,2z,T)\ B,0%A(x,v,2,T)
9z 2k, dx2 dy? 2T T
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. kOA 2 2 . 2
—lﬁ(x +y2)A(x,y,2,T) +iy|A(x,y,2,T)|*A(x,y,2,T) (1.5)

where k, = wyny/c, w, is center frequency, nyis refractive index, R is the fiber core radius and A
is the relative index difference between the center of the core and the cladding of the fiber. As a
simplified model to reach manageable computation times, few coupled time-dependant NLSE for
each mode can be studied to understand nonlinear light propagation in GRIN MMFs [25], [26].

0A,(z,T)
0z

»04,(2,T) _ i&azAp(z, T)
aT 2 aT?

= i8fo"Ap(2,T) — 8p,

F7 D pimnh DA AT (L6)

Lmmn

Here 66,° (65,F) is the difference between first (second) Taylor expansion coefficient of the
propagation constant for the corresponding and the fundamental mode, £3, is the second order
dispersion, y is the nonlinear coefficient and 1, ;  » is the nonlinear coupling coefficient defined
by the overlap integral between the modes (F;) as shown in the following expression.

[ dx dy F,F,F,F,

Npimn = 5 (1_7)
[ff dx dy F, [[ dx dy F, [[ dx dy F,, [[ dx dy Fn]

Numerically and experimentally, different nonlinear phenomena and applications reported in re-
cent years with GRIN MMFs. As a frequency conversion technique cascaded Raman scattering
generation over 15 Stokes peaks is reported with GRIN MMFs [27]. Later, spatiotemporal instabil-
ity with nanosecond to femtosecond pulses is demonstrated to achieve frequency conversion with
larger frequency shifts (90-120 THz) [28]—[30]. By investigating the anomalous dispersion regime,
dispersive wave generation in GRIN MMFs reported with similarly large frequency differences to
generate ultrashort pulses at visible and mid-IR wavelengths [31], [32]. Based on Kerr nonlinearity
and the propagation with self-periodic imaging, nonlinear self-beam cleaning is reported with pas-
sive and Yb-doped GRIN MMFs [33]-[35]. By simultaneously generating spatiotemporal instability,
stimulated Raman scattering and harmonic generation with high peak power pulses with low repe-
tition rate, supercontinuum generation in GRIN MMFs reported [36], [37]. Later, cascaded Raman
scattering-based supercontinuum generation with around 4W average power is reported with
passive GRIN MMFs with different core sizes [38]. The wavelength and power-dependent propa-
gation changes in GRIN MMFs are also utilized as a wavelength filter and saturable absorber ele-
ments for mode-locked single-mode fiber lasers [39]-[41].

As an alternative to mode-locked fiber lasers with photonic crystal large-pitch fibers mode-locked
lasers, the GRIN MMF-based spatiotemporal mode-locking method is demonstrated to achieve
high power mode-locked pulses without needing external amplifiers [42]. The implementation of
GRIN MMF segments with large mode support to multimode fiber cavity with few modes provides
a self-stable coherent superposition of transverse and longitudinal modes to achieve mode-locked
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pulses in 4D. With increasing fiber core size in the oscillator, spatiotemporally mode-locked lasers
provide relatively low nonlinearity and high-power pulse generation becomes feasible. The first
demonstration of the spatiotemporally mode-locked fiber laser is reported with an all-normal dis-
persion cavity which supports dissipative soliton (Gaussian-shaped) pulse type [42]. Later with a
similar cavity design, demonstrations of the bound state solitons (soliton molecules) and harmonic
mode-locking were reported in spatiotemporal mode-locked fiber lasers [43], [44]. Despite using
gain fibers with three modes, the aforementioned studies reported low output beam quality. Such
a drawback prevents the use of spatiotemporally mode-locked lasers for high power laser-related
applications.

With the advances in graphics processing unit (GPU) technologies and compatible parallelized al-
gorithms, machine learning tools have attracted great interest from various communities including
physical sciences. Particularly, artificial neural networks with their capacity to grasp complex rela-
tions and patterns in a high number of data utilized to understand, analyze and predict nonlinear
dynamics. Depending on the complexity of the targetted system and type of the available data,
the most commonly used supervised learning (learning with labeled examples) implementations
are feed-forward, convolutional and recurrent neural network architectures [45]. Feed-forward
neural networks are relatively simple and consist of fully connected nodes without feedback. On
the other hand, convolutional neural networks (CNNs) contain convolutional layers with designat-
ed image processing tools such as convolution kernel sizes to study visual data types and are
commonly used in computer vision [46]. Last but not least recurrent neural networks (RNNs) are
well suited for sequential data types such as temporally changing dynamics with the advanced
long-short term memory unit blocks in neural network architectures [47]. In photonics, by using
the aforementioned deep neural network (DNN) architectures, pulse characterization and shaping
[48]-[51], mode-locking of lasers [52], imaging through MMFs [53], [54] and prediction of nonline-
ar phenomena in single-mode fibers [55], [56] were demonstrated in recent years.

Information processing is an intrinsic part of optics such as free-space propagation of light can be
described as a convolution with a fixed kernel and one can easily obtain the 2D Fourier transform
of light distribution in space while focusing it with a simple lens in a particular configuration [57],
[58]. Based on the aforementioned Fourier transformation property, the first optical correlator is
demonstrated in 1964 [59]. Starting with the Hopfield model in 1985, various optical solutions are
proposed to address challenges in machine learning, particularly neural networks [60], [61]. With
the large operation count, relatively high inference speed and low energy consumption, optical
computing solutions focused on machine learning applications promise an alternative direction in
the computing paradigm. The main challenges of optical computing are optimizing the optical sys-
tem to increase the performance similar to the training process of the digital neural networks and
implementing optical nonlinear activation functions. Recently the neuromorphic computing
schemes such as reservoir computing [62], [63] and extreme learning machines [64], machine
learning tools that operate with fixed weights, attracted huge attention from the physical compu-
ting community [65]. Largely based on the random transformation of information through diffus-

16



ing media, different optical computing schemes are adapted to the reservoir computing concept
with scattering media and MMFs [66]—[71].

The main theme of this thesis is to learn and control spatiotemporal nonlinear interactions in mul-
timode fibers for applications including lasers, machine learning and optical computing. This study
enables us to generate tunable nonlinear frequency generation, optical computing with low ener-
gy consumption and high power and compact laser sources. The first part of this thesis (chapter 2,
3 and 4), focuses on mode-locked multimode laser studies and in the second part of this thesis
(chapter 5, 6 and 7) single-pass optical nonlinear interactions are studied and utilized with ma-
chine learning tools and applications.

Spatiotemporally mode-locked fiber lasers offer high power pulse generation but suffer from low
beam quality. This drawback limits this recent laser type with fundamental studies and creates a
significant disadvantage for applications. In chapter 2, we aim to solve this problem by generating
different pulse types in a multimode mode-locked laser cavity where the spatial distribution of the
pulses alters as well. We select amplifier similariton (parabolic shaped) pulse generation [17] as
our goal since this particular pulse-type offers relatively short intracavity pulse durations (high
intracavity peak power) to encourage nonlinear Kerr beam cleaning [33] with mode-locking. With
this pulse type, we experimentally achieved 2.4 nJ pulses with 192 fs compressed pulse duration
and near- Gaussian beam quality (M?<1.4).

Encouraged by the beam quality improvements with a new pulse type as we report in chapter 2, in
chapter 3, we aim to achieve a perfect Gaussian (single-mode) beam profile with high pulse energy
by designing a dispersion-managed laser cavity to tailor spatiotemporal intracavity pulse propaga-
tion. The dispersion-managed cavity design [18] allows us to control temporal pulse duration in-
side the cavity and tune the shortest pulse duration with maximum peak power before the GRIN
MMF section to achieve nonlinear Kerr beam cleaning [33]. Our numerical and experimental stud-
ies verify the nonlinear beam cleaning in the mode-locked multimode laser. With this method, we
report 24 nJ pulses with sub-100 fs compressed pulse duration and single-mode (M?<1.13) beam
profile.

In chapter 4, we report an all-fiber spatiotemporally mode-locked laser design. All-fiber lasers of-
fer a compact and stable solution to applications needing ultrashort pulses. All-fiber multimode
lasers with Yb-gain are a challenge due to the mode-locked regime requiring bandpass filters with
relatively large bandwidths. In this study, we implement a multimode interference-based filtering
approach in a multimode laser cavity and obtained mode-locked pulses with 12 mW average pow-
er, 6.24 ps duration at 1036 nm central wavelength. With its inherent alignment-free construction,
the presented method offers a compact, stable and low-cost laser solution.

In chapter 5, we study to learn and control nonlinear frequency generation in GRIN MMF with a
deep neural network. We first numerically study the effect of the multimode fiber excitation con-
dition on nonlinear pulse propagation. Encouraged by the significant changes in the simulation
results, we performed experimental studies to generate datasets to link nonlinearly broadened
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spectra with shaped beam patterns to excite the GRIN MMF. The recorded nonlinear relation be-
tween these parameters is grasped by digital neural network architectures. The trained neural
networks are later employed to generate tailored nonlinearly broadened spectra within the non-
linear phenomena supported by the interested pulse peak power ranges.

In chapter 6, we utilize an RNN type machine learning architecture [55] to learn and predict non-
linear dynamics in GRIN MMFs. The aforementioned numerical pulse propagation algorithms for
MMFs (Equation 1.2 and 1.3) require computationally heavy and time-consuming calculations.
Numerically generated nonlinear propagation of ultrashort pulses is utilized to train the RNN ar-
chitecture for temporal and spatial pulse evolution predictions. We demonstrated that a simple
RNN structure can grasp the nonlinear spatiotemporal propagation of femtosecond pulses. With
this method, we achieved 40 times less time-consuming pulse propagation simulations with
trained RNN when compared with the equivalent beam propagation simulations based on Equa-
tion 1.5.

In chapter 7, we utilize nonlinear coupling between the modes of a GRIN MMF for optical compu-
ting applications. Similar to reservoir computing [62], [63] and extreme learning machine [64] ap-
proaches, we investigate the possibility of nonlinear information processing via transmitting in-
formation-carrying high peak power pulses through GRIN MMF. With this optical method, we re-
port machine learning applications with accuracies comparable to digital implementations. The
demonstrated optical computing framework based on spatiotemporal nonlinear effects is versatile
and implemented for a range of learning tasks from classifying images and speech recognition to
predicting age from face images.
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In this study, we demonstrate, to the best of our knowledge, the first spatiotemporally mode-
locked fiber laser with self-similar pulse evolution. The multimode fiber oscillator generates para-
bolic amplifier similaritons at 1030 nm with 90 mW average power, 2.3 ps duration, and 37.9 MHz
repetition rate. Remarkably, we observe experimentally a near-Gaussian beam quality (M?<1.4) at
the output of the highly multimode fiber. The output pulses are compressed to 192 fs via an ex-
ternal grating compressor. Numerical simulations are performed to investigate the cavity dynam-
ics which confirm experimental observations of self-similar pulse propagation. The reported re-
sults open a new direction to investigate new types of pulse besides beam shaping and nonlinear
dynamics in spatiotemporal mode-locked fiber lasers.

2.1 Intoduction

For single-mode fiber lasers, ytterbium-based laser systems are generally preferred to achieve
high power pulses with relatively broadband spectra. Over the years, dispersion engineering tech-
niques have been demonstrated to obtain various ultrashort pulse types in ytterbium-based fiber
cavities such as soliton [72], dispersion-managed soliton [18] and dispersion-managed self-similar
pulses [73]. These pulse types require dispersion mapping inside the cavity. For ytterbium-based
fiber lasers this can be achieved with the bulk grating compressor or dispersion shifted photonic
crystal fibers. In 2006, Chong et al. demonstrated the first dissipative soliton pulse formation with
an all- normal-dispersion cavity [19]. For ytterbium-based laser systems, all-normal dispersion cav-
ities provide a simple platform to build all-fiber dissipative soliton lasers [41], [74]. The generation
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of mode-locked dissipative soliton pulses is attributed to spectral intracavity filtering by using 8-12
nm bandpass filters. Interestingly, when the intra-cavity bandpass filter becomes narrow (<4 nm),
the temporal pulse shape changes from Gaussian to parabolic [17]. Renninger et al. reported this
phenomenon in all-normal-dispersion cavity design, with strong spectral filtering, a self-similar
pulse can be generated in the gain segment of the laser cavity. These self-similar pulses are re-
ferred to as amplifier similariton pulses. Initially, such self-similar pulses based on strong filtering
and amplifier scheme were studied and proposed in fiber amplifiers [16], [75] as an alternative to
chirped pulse amplification [76]. Moreover, these pulses are a class of solution to the nonlinear
Schrédinger equation including a gain term and transform nonlinear phase to a form of linear fre-
guency chirp [16]. The amplifier similaritons pulses and their generation mechanism and intracavi-
ty propagation behavior are different than dispersion-managed similaritons which do not require
strong spectral filtering and feature parabolic spectral shape. Compared to dissipative soliton and
dispersion-managed similariton pulses amplifier similaritons experience large spectral breathing
(the ratio of spectral bandwidth before and after the spectral filter is >5). This distinctive behavior
generates mode-locked pulses with a broader spectrum and hence potentially shorter pulse dura-
tion. Because the chirp of the output pulse depends solely on the gain segment, the amplifier simi-
lariton pulses also feature less chirp than given by the total cavity dispersion [17]. Recently, Ma et
al. demonstrated an ytterbium-based all-normal self-similar mode-locked fiber laser tunable from
1030 nm to 1100 nm by suppressing amplified spontaneous emission by heating the gain fiber
[77]. So, far these studies were done in single-mode laser cavities.
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Figure 2.1: Schematic of the spatiotemporal self-similar fiber laser: QWP, quarter-wave plate; HWP, half-
wave plate; PBS, polarizing beam splitter; NBF, narrow bandpass filter; BPF, bandpass filter; LPF, long-pass
filter; OC, output coupler; GIMF, graded- index multimode fiber.

In recent years, graded index multimode fibers (GIMFs) have become subject to extensive study
due to their unique nonlinear properties and potential higher power handling capacities. With low
modal dispersion and periodic self-imaging, spatiotemporal pulse propagation of high power puls-
es in GIMF generates interesting nonlinear effects such as spatiotemporal instability [28], [30],
dispersive wave generation [31], graded-index solitons [78], [79], self-beam cleaning [33], nonline-
ar pulse compression [80] and supercontinuum generation [36], [38]. In addition to the aforemen-
tioned studies, spatiotemporal mode-locking was demonstrated with graded-index multimode
fibers in multi- mode fiber laser cavities by Wright et al. [42]. Later, observations of the bound
state solitons (soliton molecules) and harmonic mode-locking reported in spatiotemporal mode-
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locked fiber lasers [43], [44]. All of these studies presented laser cavities featuring dissipative soli-
ton pulses with Gaussian temporal profile and low output beam quality. However, to the best of
our knowledge, there are no reports on the generation of different temporal pulse types than dis-
sipative solitons in spatiotemporal mode-locked lasers.

2.2 Results

Here, we present the first spatiotemporal self-similar fiber laser capable of generating amplifier
similariton pulses with a parabolic temporal shape. Interestingly, the train of the mode- locked
pulse coming out of the 250 mode GIMF has a stable good beam quality of M2-value <1.4. The pre-
sented laser is an all-normal-dispersion cavity containing a GIMF with 50 um core diameter, a
step-index multimode gain and passive fiber segment both with a 10 um core diameter. Mode-
locking is achieved by nonlinear polarization evolution (NPE) [81]. A narrow band- pass spectral
filter with 3.8 nm bandwidth is constructed with a cascade of a bandpass filter with 10 nm band-
width and a tilted longpass filter. First, numerical simulations are performed to investigate the
possibility of amplifier similariton formation in the multimode laser cavity. Encouraged by the nu-
merical simulations, experimental studies were performed with numerically obtained cavity pa-
rameters such as fiber length of each cavity segment. We experimentally achieved self-starting
mode- locking for which the laser generates amplifier similaritons at 1030 nm with 90 mW average
power, 2.4 nJ pulse energy and 38 MHz repetition rate. The experimental results indicate that the
pulse experiences 6-fold increase in its spectral width inside the laser cavity. The chirped output
pulse duration is measured as 2.3 ps which is remarkably short when compared with the group-
velocity dispersion of the laser cavity. Both features point to an amplifier similariton behavior. The
chirped output pulses are externally compressed to 240 fs by a grating pair as measured by a sec-
ond-order autocorrelation. By reconstructing the pulse profile using the phase and intensity from
cross-correlation and spectrum only (PICASO) method [82], we obtained a 172 fs pulse duration
with a parabolic temporal shape. The schematic of the fiber laser is illustrated in Figure 2.1. The
numerical simulations are performed based on this cavity design to investigate the possibility of
self-similar pulse formation. We have performed a simulation of spatiotemporal mode-locking
with the model proposed by Wright et al. [42]. A multimode nonlinear Schrédinger equation is
solved for the GIMF segment by considering the first 6 LP modes with cylindrical symmetry (more
details of simulations can be found in https://doi.org/10.6084/m9.figshare.9973421.v1) [6]. A
Gaussian intracavity bandpass filter is assumed with 4 nm spectral bandwidth. A stable mode-lock
regime is achieved after 30 round-trips as illustrated in Figure 2.2. In the gain fiber, a substantial
spectral broadening is observed and after the GIMF segment, the spectral bandwidth of the pulse
reaches 25 nm. This broad spectrum is reduced to 4 nm with a bandpass filter. Thus, the pulse
experiences more than 6 times spectral broadening in one round-trip (Figure 2.2 b). The temporal
profile of the pulse is presented in Figure 2.2 c and at the output 1 (before filter) and output 2 (af-
ter the filter), a pulse duration of 3.3 ps and 1.2 ps are achieved respectively. As it is presented in
Figure 2.2 d, at the end of the gain segment of the cavity parabolic pulse shape, is obtained which
validates the amplifier-similariton pulse formation. Numerically obtained beam profile at output 1
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is demonstrated in Figure 2.2 e. Output 1 and output 2 are the NPE output and the 50:50 output
couplers, respectively. For numerical simulations, 2.51 nJ pulse energy is observed at the output 1.

The experiments were then performed with the numerically designed cavity. A pump combiner
with 10 um core diameter is integrated to the cavity to couple the 976 nm high power fiber-
coupled diode laser for pumping the 1.5 m highly doped ytterbium fiber (nLight Yb-1200-10/125)
gain segment. The fiber sections with 10 um core diameter support 3 modes at 1 um. This passive
fiber section with 10 um core diameter is 1.8 m long. In order to excite the higher order modes of
the 250 mode GIMF (Thorlabs GIF50C), the gain fiber is spliced to the 2 m GIMF with a small off-
set (5 um). Mode-locking was achieved by adjusting the intracavity wave plates. At approximately
1.5 W pump power, self-starting mode-locking with a repetition rate of 38 MHz is observed. Exper-
imentally obtained optical spectra and beam profiles from the output couplers before and after
the bandpass filter are presented in Figure 2.3. A drastic improvement is observed in output beam
profile when the laser operation changed from continuous-wave to mode-locked (see Figure 2.3 b
and Figure 2.3 d). The spectral width of the amplifier similariton pulses reach to 24 nm after the
GIMF
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Figure 2.2: (a) Simulated pulse duration and spectral bandwidth variation over the cavity: SA, saturable
absorber; BF, band- pass filter. (b) Simulated laser spectra and (c) temporal profile obtained at output 1
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(solid) and output 2 (dashed). (d) Pulse shape at the end of gain fiber (solid) and theoretical fit with chirp-
free parabolic pulse shape (dashed). (e) Numerically obtained beam profile at output 1.

and the spectral profile is reshaped to 3.8 nm with the narrow bandpass filter. This result is con-
sistent with the pulse breathing ratio of >5 found after one round-trip in a single-mode amplifier
similariton laser [17]. The measured output power of the laser is 90 mW and 10 mW at the output
1 and output 2, respectively. After the narrow bandpass intracavity spectral filter, the pulses expe-
rience spatial filtering due to the aperture of the isolator (see Figure 2.3 a-inset). We observe that
spatial filtering is necessary to achieve spatiotemporal mode-locking similarly to dissipative soliton
pulses in multimode fiber lasers [42], [43]. Beam profiles are measured by a 4f-system with 1.5
magnification. As shown in Figure 2.3 b, the beam at the output port 1, which is immediately after
the 250 mode GIMF, has a near symmetric shape. M?-measurements are performed to determine
the quality of this beam and presented in Figure 2.4 a. We experimentally observed a nice beam
quality with M2<1.4 for the main output (output 1) port of the cavity. For a single pass propagation
configuration Krupa et al. presented a drastic improvement in beam profile for a pulse with ap-
proximately 1 kW peak power at the end of a 12 m GIMF with 50 um core diameter [33]. Com-
pared to their observation, after the gain segment of the cavity, peak power of mode-locked puls-
es is around 6 kW and they undergo 2 m spatiotemporal propagation inside a GIMF with the same
core size. We believe by
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Figure 2.3: (a) Measured spectrum from output 1 and output 2 (inset). Measured beam profiles case from
output 1 (b) and output 2 (c) for mode-locked operation. (d) Measured spatial beam profile from output 1
for continuous-wave operation case. Scale bars indicated in beam profiles are 520 um.

accumulating every roundtrip in a mode-locked cavity, a similar beam cleaning effect is most likely
responsible for the clean beam profile we observed. We perform numerical studies to investigate
the evolution of the beam profile inside the GIMF. Single-pass propagation simulations considering
10 LP modes with various initial conditions are simulated and energy transfer to lower order
modes from higher order modes observed. On the other hand, numerical simulations to study the
effect of pulse shape to mode-locked beam quality of the multimode fiber laser are performed as
well. We observe a significant difference in
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Figure 2.4: (a) M*-measurement of the beam from output 1. (b) Autocorrelation trace of the chirped pulse
measured from output 1 (solid) and theoretical fit with chirp-free parabolic pulse shape (dashed).

beam profiles in the simulated dissipative soliton pulses and amplifier similariton pulses. In our
studies for various excitation conditions, the amplifier similariton pulses feature more confined
spatial energy distribution than the Gaussian pulses. For both studies, more details of the simula-
tions can be found in https.//doi.org/10.6084/m9.figshare.9973421.v1. When coupled-mode anal-
ysis is considered for a multimode fiber, the effect of the shape of evolving envelope in the fiber
modes on the complex electric field is distinct. When compared with the Gaussian pulse shape,
parabolic pulse shape causes more confined energy distribution in space. Thus we believe the bet-
ter beam quality observed in our experiments is due to the generation of amplifier similaritons in
the mode-locked MMF laser.

For the pulses from output 1, no secondary pulse formation or periodic oscillation of the pulse
train was observed. The duration of the chirped output pulses is 2.3 ps with a 1.43 deconvolution
factor as shown in Figure 2.4 b. The chirped pulse duration is remarkably small for an all-normal-
dispersion cavity with total cavity dispersion 0.13ps? and it validates the self-similar behavior of
the pulses inside the laser cavity. These pulses are dechirped (compressed) using an external grat-
ing compressor with a 300 line/mm diffraction grating pair to 192 fs (Figure 2.5 a). We utilize the
PICASO algorithm to retrieve the temporal profile from the spectrum and autocorrelation data. As
presented in Figure 2.5 b, the resulting pulse features 172 fs pulses duration with a parabolic tem-
poral profile.
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Figure 2.5: (a) Autocorrelation trace of the compressed pulse measured from output 1 and theoretical fit
with chirp-free parabolic pulse shape (dashed). (b) PICASO retrieved dechirped pulse shape and parabolic
pulse shape fit (dashed).

We test the power handling capacity of the spatiotemporal self-similar fiber laser, by gradually
increasing the pump power. Up to 195 mW average power from output port 1, a mode- locked
operation with a single pulse on a cavity round-trip, was maintained. This average power was
achieved with 2.1 W pump power level. Pulses were yielding 5.1 nJ pulse energy. A broader spec-
trum (>35 nm) is obtained but the temporal pulse shape is degraded and the compressed pulse
duration is increased (>300 fs).

2.3 Conclusion

In conclusion, we numerically and experimentally demonstrate an all-normal-dispersion ytterbi-
um-based spatiotemporal mode-locked fiber laser supporting self-similar pulse evolution, for the
first time in the literature. The laser dynamics are numerically and experimentally validated. We
obtained intracavity large spectral breathing (>6) and low chirp of the output pulses. Our observa-
tions verified the spatiotemporal self-similar pulse formation and the parabolic pulse generation.
The oscillator generates amplifier similariton pulses at 1030 nm with 90 mW average power, 2.4 nJ
energy, 2.3 ps duration and 38 MHz repetition rate. Pulses are dechirped to 192 fs via an external
grating compressor. Contrary to the beam profile obtained in dissipative multimode mode-locked
cavities, we measured a near-Gaussian beam profile of the amplifier similariton pulses with M2-
value <1.4. The combination of good beam quality, sub-200 fs self- similar pulse from a multimode
cavity is a promising platform to generate high power ultrashort pulses. We believe the reported
observations are of great interest for nonlinear pulse propagation, pulse and beam shaping in spa-
tiotemporal mode-locked fiber lasers. The presented technique can find applications in wave-
length and pulse shape tunable laser sources.
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The performance of fiber mode-locked lasers is limited due to the high nonlinearity in-
duced by the spatial confinement of the single-mode fiber core. To massively increase the pulse
energy of the femtosecond pulses, amplification is performed outside the oscillator. Recently, spa-
tiotemporal mode-locking has been proposed as a new path to fiber lasers. However, the beam
quality was highly multimode and the calculated threshold pulse energy (>100 nJ) for nonlinear
beam self-cleaning was challenging to realize. Here we present an approach to reach high energy
per pulse directly in the mode-locked multimode fiber oscillator with a near single-mode output
beam. Our approach relies on spatial beam self-cleaning via the nonlinear Kerr effect and we
demonstrate a multimode fiber oscillator with M2<1.13 beam profile, up to 24 nJ energy and sub-
100 fs compressed duration. Nonlinear beam self-cleaning is verified both numerically and exper-
imentally for the first time in a mode-locked multimode laser cavity. The reported approach is fur-
ther power scalable with larger core sized fibers up to a certain level of modal dispersion and
could benefit applications that require high power ultrashort lasers with commercially available
optical fibers.
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3.1 Introduction

Fiber laser dynamics have been studied extensively in the past decades to generate femtosecond
pulses with high energies and peak powers [20]. Numerous laser designs are developed to under-
stand nonlinear wave propagation under partial feedback conditions. By tuning complex cavity
dynamics in single-mode fiber cavities, self-organization of longitudinal cavity modes with various
temporal profiles and central wavelengths have been realized such as soliton [15], similariton [17],
[73] and dissipative soliton [19], [83]. Due to the high spatial confinement in the small single mode
fiber core, nonlinear effects appear at moderate peak power in solid cores and the accumulation
of excessive nonlinear phase leads to pulse breakup, which then limits the achievable pulse ener-
gies.

To overcome this limitation, custom-made sophisticated fibers, having large single mode areasin a
photonic crystal fiber (PCF), were proposed to reach the W pulse energy level [23], [24]. The fiber
used in these demonstrations with its mode field diameter of 70 um needed to be kept straight to
avoid bending losses and ensure stability. They share the same limitations as solid-state lasers in
the sense that they are rigid and cannot be spliced with conventional techniques. As a result, such
lasers do not share the features of fiber lasers that render them advantageous in practice.
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Figure 3.1: Conceptual outline of the multimode fiber cavity and schematic of spatiotemporal mode-locking
with beam self-cleaning. a Conceptual outline of dispersion-managed cavity design with indicated temporal
dynamics. Laser pumping scheme is not presented. b Schematic of mode-locking mechanism and experi-
mentally measured output beam profile evolution. CW, continuous wave; ML, mode-locked

Recently, spatiotemporal mode-locking has been demonstrated in commercially available MMF
cavities with GRIN MMFs by harnessing their low modal dispersion and inherent periodic self-
focusing to produce a coherent superposition of transverse and longitudinal modes in an all-
normal dispersion regime [42]—-[44], [84]. These studies presented cavities with dissipative soliton
pulse operation with low output beam quality despite utilizing gain fibers with 3 modes. In a re-
cent study, improvement in the output beam profile of a spatiotemporal mode-locked fiber laser
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was reported by changing the generated pulse type from dissipative soliton to amplifier similari-
ton. The reported pulses leading to pulse energies of 2.4 nJ with output beam M? value <1.4 [84].
Although better beam profile was reported compared to previous results, single-mode beam pro-
file (M2~1) could not achieved due to the limitations of amplifier similariton pulse type such as the
degradation of pulse quality and peak power with increasing pulse energy.

In this paper we demonstrate an approach to generate >20 nJ, sub-100 fs pulses with near Gaussi-
an output beam shape by controlling the spatiotemporal cavity dynamics of multimode fiber la-
sers. This pulse energy represents a tenfold improvement over previously reported MMF oscilla-
tors with Gaussian beam shape. Moreover, our method is limited only by the damage threshold of
the fiber and splices can be increased to the p energy level. The key element in the novel design
that enables the increased pulse energy is the Kerr-induced beam self-cleaning in a GRIN MMF
[33] that occurs when a high-intensity pulse propagates in the fiber.

The optical wave propagation inside the cavity is designed to synergistically achieve nonlinear
beam cleaning and spatiotemporal mode-locking. With our approach, spatiotemporally mode-
locked fiber lasers overcome the power limitations of mode-locked single-mode fiber lasers with-
out sacrificing the output beam quality. Moreover, the presented approach is not limited to the
demonstrated power levels and theoretically scalable with standard large core multimode fibers
up to a certain level of modal dispersion.

We experimentally demonstrate that the highly multimode beam profile observed at the output of
a continuous wave multimode fiber cavity is transformed to a stable Gaussian beam profile when
the oscillator is spatiotemporally mode-locked. Our numerical studies verified that there is an en-
ergy exchange from higher-order modes to lower order modes in the propagating GRIN MMF sec-
tion of the laser cavity for the experimentally achieved power level. Inside the spatiotemporal
mode-locked cavity, Kerr-induced beam self-cleaning creates a minimum loss condition to the
emerging mode-locked pulses. The reported multimode fiber laser generates sub-100 fs pulses
with high pulse energy (>20 nJ) and good beam quality of M? value is less than 1.13.

3.2 Method

3.2.1 Multimode oscillator simulations

Numerical simulations for mode-locked pulse formation are conducted for the model used by
Tegin et al. [84]. For GRIN MMF sections of the cavity, a multimode non-linear Schrédinger equa-
tion [6] is solved by considering the five linearly polarized (LP) modes (more details of simulations
can be found in https://doi.org/10.1117/1.AP.2.5.056005.501). Simplifications such as simulating
few-mode fiber sections as single-mode to decrease the computation time and defining coupling
ratios before and after the GRIN MMF sections to mimic the effect of splice points are performed.
Simulations are initiated with quantum noise fields. The integration step for GRIN MMF sections is
defined as the ratio of the self-imaging period of the fiber with 4. For the simulation result shown
in Figure 3.1, the gain fiber is modeled with Lorentzian gain shape with 50 nm bandwidth, 30 dB
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small-signal gain and 3.2 nJ saturation energy. The coupling condition between the few-mode gain
fiber and GRIN MMF is simulated as [20%, 30%, 20%, 20%, 10%]. The intracavity spatial filtering is
applied to considered modes by allowing their transmission with [50%, 50%, 50%, 50%,0%]. The
coupling for the field propagating from the GRIN MMF to a few-mode fiber is calculated as a
summation of modes with the transmission coefficients [100%, 100%, 100%, 0%, 0%].
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Figure 3.2: Pulse evolution in the laser simulations. Pulse duration and spectral bandwidth variation over
the cavity: SA, saturable absorber; PC, pulse compressor.

3.2.2 Single-pass beam cleaning simulations

The simulations regarding beam cleaning are performed by numerically solving a multimode non-
linear Schrodinger equation with high numerical accuracy and small integration step. To achieve
this goal, the integration step is defined as the ratio of the self-imaging period of GRIN MMF with
20 and the fourth-order Runge-Kutta in the Interaction Picture method is used for accuracy [85].

3.2.3 Experiments

A 20 W, 976 nm pump diode (lI-VI Photonics BMU20-976S-01-R) is spliced to the oscillator cavity
with a pump combiner (Lightel MPC (2+1) x1) compatible with a 1.3 m MMF gain section (nLight
Yb-1200 10/125). To excite the higher-order modes of the GRIN MMF (Thorlabs GIF50E), the gain
fiber is spliced to the 1.4 m GRIN MMF with a small offset (5 um) and coiled with 30 cm diameter
to encourage multimode pulse propagation. After the first GRIN MMF section, light is collimated
and travels through wave plates, polarizing beam splitter, isolator, grating pair (600line/mm) and
spatial filter (randomly placed pinhole). Spatial filtering in spatiotemporal mode-locking is one of
the key elements. Its purpose is to restrict the modal content of the intracavity beam. In our ex-
periments with multimode laser cavities, we observed that, in the absence of modal filtering, the
mode-locking experiences oscillations in long term operations. In the presented cavity, the effect
of the randomly placed pinhole produces experimental mode-locking stability and for different
positioning of the pinhole, the spatial beam profiles remained the same. With wave plates and a
polarizing beam splitter, NPE is implemented as an artificial saturable absorber. The additional
half-wave plate is placed between the polarization-dependent isolator and the grating pair to con-
trol the first-order reflection efficiency of the gratings. The free-space ends of the GRIN MMFs are
angle-cleaved to eliminate parasitic back reflections. Another GRIN MMF section with 1 m length
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establishes the ring cavity loop. Self-starting mode-locking was achieved by adjusting the intracavi-
ty wave plates (see Supplementary Video 3 https://www.spiedigitallibrary.org/journals/s upple-
mentalcontent/10.1117//1.AP.2.5.056005/AP_2 5 056005 ds003.mov). Spectrum measurements
are performed with an optical spectrum analyzer (Ando AQ6317B) and spectrometer (Ocean Op-
tics HR4000-CG-UV-NIR). Beam profile measurements are performed with CMOS cameras (Ed-
mund Optics EO-32121M and Thorlabs DCC1545M). Temporal pulse measurements are performed
with an autocorrelator (Femtochrome FR-103). Radio frequency spectrum is measured with HP
3585A spectrum analyzer and >60 dB sideband suppression is reported (see Figure S10 in
https://doi.org/10.1117/1.AP.2.5.056005.s01).

3.3 Numerical Studies

Our approach is inspired by dispersion-managed mode-locking in single mode lasers which is a
method that was initially proposed to overcome the power limitation of soliton mode-locked la-
sers [86], [87]. Inside a dispersion-managed cavity, the pulse stretches and compresses significant-
ly every round trip while having a near zero net-cavity group-velocity dispersion (GVD). This ap-
proach leads to the generation of ultrashort pulses (sub-100 fs) with broad-spectrum and high
energy per pulse [18], [88].
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Figure 3.3: Numerical investigation of Kerr-induced beam self-cleaning inside GRIN MMF. Propagation of
450 fs pulse with a 40 nJ pulse energy and [20%, 30%, 20%, 20%, 10%] initial coupling condition, b 30 nJ
pulse energy and [30%, 20%, 20%, 20%, 10%] initial coupling condition, c 20 nJ pulse energy and [30%, 20%,
5%, 25%, 20%] initial coupling condition and d 20 nJ pulse energy and [35%, 30%, 20%, 10%, 5%] initial cou-
pling condition.
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In our study, the dispersion-managing approach is adapted to a multimode fiber cavity with a simi-
lar motivation, to generate intracavity short pulses with high peak powers sufficient to trigger
strong spatiotemporal interactions to effect spatial beam clean-up. The proposed cavity is illus-
trated in Figure 3.1 a. Silica fibers feature positive GVD for the emission wavelengths of the Yb-
fiber and stretch the propagating pulse with positive chirp. In our design, a grating pair is placed as
a dispersion-balancing section to provide negative GVD values and change the sign of the chirp on
the pulse. Such a temporal change causes compression of the propagating pulses in the following
fiber sections (GRIN MMF and gain MMF).

GRIN MMF

. Combiner
(Temporal compression)
Yb MMF
.QWP \
GRIN MMF
P4 SF (Spatial cleaning)
Temp. Cont. HWP ISO PBS HWP QWP y
\ : = : c ==
é Output
b Continuous wave operation Mode-locked operation

>

Decreasing cavity loss

Figure 3.4: Schematic of the laser cavity and beam profile measurements. a QWP, quarter-wave plate;
HWP, half-wave plate; PBS, polarizing beam splitter; ISO, isolator; SF, spatial filter. b Evolution of near-field
output beam profile for decreasing cavity loss from continuous wave to mode-locked operation for 8 nJ
output pulse energy.

We used the multimode nonlinear Schrodinger equation to numerically simulate the multimode
laser to analyze pulse propagation dynamics and determine cavity parameters. A stable mode-lock
regime after a few round-trips around net cavity GVD Bpjnet = 0.013 ps? is achieved and disper-
sion-managed soliton pulse formation is numerically obtained with various powers and cavity exci-
tation conditions. An example of the evolution of the intracavity pulse in one round trip is illus-
trated in Figure 3.2 as a function of position inside the multimode cavity. By engineering the cavity
dynamics, the shortest pulse duration is achieved at the end of the gain fiber section where the
amplification is maximum such that the highest intracavity peak power is obtained in the GRIN
MMF section. This unique design can allow pulses to reach the Kerr-induced beam cleaning
threshold inside the cavity. In our simulations, the pulse experiences more than 6 times spectral
broadening in one round-trip. The temporal profile and spectrum of the output pulse measured at
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the nonlinear polarization evolution (NPE) port, are presented in Figure Sla and Figure Slb
https://doi.org/10.1117/1.AP.2.5.056005.501. For the simulated cavity, mode-locked pulses with
5.1 nJ energy and 2.12 ps duration Gaussian-like temporal shape are generated from quantum
noise. The numerically obtained output beam profile with the considered modes is presented in
Supplementary Figure Slc https://doi.org/10.1117/1.AP.2.5.056005.501. For further details and
simulations with different multimode fiber excitation conditions, see Methods and
https://doi.org/10.1117/1.AP.2.5.056005.s01.

To investigate the possibility of the Kerr-induced beam self-cleaning in the cavity, single-pass nu-
merical simulations were performed with high numerical accuracy. The energy exchange behavior
between the modes is presented in Figure 3.3. The mode-locking simulations demonstrated in
Figure 3.2 suggest ~450 fs pulse duration after the gain section and we numerically investigate the
effect of intracavity pulse energy to energy exchange between the modes of GRIN MMF with dif-
ferent initial excitation scenarios. For the excitation case applied in mode-locking simulations be-
tween the simulated modes, when the pulse energy reaches to 20 nJ, energy fluctuations between
the simulated modes starts to decrease. For a 30 nJ pulse the fundamental mode starts to increase
its energy content and for 40 nJ pulse it becomes dominant at the end of the GRIN MMF section of
the cavity (see Figure 3.3 a). For different excitation cases, the required pulse energy to achieve
similar modal interaction is observed to be lower as it is shown in Figure 3.3 b and Figure 3.3 c. For
some cases, we observed that instead of the fundamental mode, an alternative low order mode
such as LP11p is observed as a leading mode at the end of GRIN MMF for 20 nJ pulse energy (see
Figure 3.3 d). Contrary to single-pass propagation, inside a laser cavity, a small improvement in
beam shape can accumulate and a steady-state beam cleaning can be achieved after multiple
roundtrips. The aforementioned numerical studies indicate that the pulse energy required for in-
tracavity Kerr-induced beam cleaning is within reach of the designed dispersion-managed multi-
mode cavity.

3.4 Experimental Studies

Guided by the simulation results, the experimental cavity, presented in Figure 3.4 a, is constructed
and studied. Here, the utilized fibers are intentionally selected to be identical with the fibers used
in the spatiotemporally mode-locked laser literature (GRIN MMF with 50 um core diameter and Yb
MMF with 10 um core diameter) [42]—[44], [84]. The GRIN MMF supports 240 modes and Yb MMF
supports 3 modes around 1 um central wavelength. Since the previously reported results in the
literature feature highly multimode output beam profiles, instead of the Yo MMF, the GRIN MMF
is the dominant waveguide inside the cavity. The additional, offset splice and the bending of the
GRIN MMF cause multimode propagation to the beam every roundtrip. The offset splice is set to 5
um difference to core to core between the fibers. The offset splice is set to 5 um between the two
cores of the fibers. In the literature, Sidelnikov et al. studied the optimized initial conditions for
single-pass beam cleaning phenomenon. Their results suggest that precisely a 5 um offset favors
nonlinear beam cleaning [89]. The intracavity grating compressor is tuned to provide -0.0987 ps2
GVD to compensate 0.1116 ps2 GVD of the fiber sections of the cavity each round trip. Single-
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pulse mode-locking is easily achieved by adjusting cavity polarization by the wave plates with a
repetition rate of 36 MHz. A major improvement from a highly multimode beam profile to a
Gaussian-like symmetric beam profile is observed at the laser output when the operation regime
changed from continuous-wave to mode-locked [see Supplementary Video 1
https://www.spiedigitallibrary.org/journals/supplementalcontent/10.1117//1.AP.2.5.056005/AP_
2 5 056005 _ds001.mov]. The Figure 3.4 b presents the multimode nature of the laser cavity for
the adjusted cavity loss and the detailed evolution is presented in Supplementary Video 2
https://www.spiedigitallibrary.org/journals/supplementalcontent/10.1117//1.AP.2.5.056005/AP
_2_5_056005_ds002.mov. The measured Gaussian-like beam profile remains similar when pulse
energy is increased up to 24 nJ by gradually increasing the pump power level. Above 24 nJ output
pulse energy, secondary pulse formation is observed inside the cavity as a power limiting factor for
the single-pulse operation regime.

We performed a detailed characterization of the laser when the pump power is set to 3.5 W
where the laser generates 20 nJ pulses. As expected for a dispersion-managed cavity, pulse spec-
tra with large bandwidth (~40 nm) are measured for this power level [see Figure 3.5 a]. The pulse
duration of the chirped pulses is measured with second-order intensity autocorrelation as 3.88 ps
with the Gaussian deconvolution factor of 1.414 as shown in Figure 3.5 b. These chirped pulses are
later dechirped (compressed) by an external grating compressor with a diffraction grating pair to
97 fs (see Figure 3.5 c). To determine the temporal profile of the pulses from the measured spec-
trum and autocorrelation data, the PICASO algorithm is employed [82]. The resulting pulse shape
features 95.8 fs pulse duration with a Gaussian profile and presented in Figure 3.5 ¢ — Inset. No
secondary pulse formation or periodic oscillation of the pulse train is observed (see Supplemen-
tary Information 1l). As presented in Figure 3.5 d, the beam has a symmetric shape and to deter-
mine its quality, M? measurements are performed. For 20 nJ output pulse energy, average M? is
measured as 1.13 (M% = 1.08 and M?, = 1.17).

3.5 Discussion

To investigate the effect of intracavity pulse energy to output beam profile in detail, we performed
M? measurements to pulses with different energy by adjusting pump power. For the spatiotempo-
rally mode-locked beam profile, the changes in the output beam quality are challenging to differ-
entiate from the near-field beam profiles but M2 measurements provide more significant infor-
mation. In our measurements, we observed that M? value is decreasing with increasing pulse en-
ergy. For 4 n) pulses, we measured M? = 1.85 and it decreased to 1.48 for 7.2 nJ. When the M?
value (<1.13) for the presented high pulse energy is also considered, this measurement is the ex-
perimental proof of the intracavity Kerr-induced beam cleaning in our design. Here we would like
to emphasize that the observed M? value change from 1.85 to 1.13 is a significant improvement
compared to the single-pass beam self-cleaning of ultrashort pulses in the literature where M?
value improvement is reported only from 2.3 to 1.8 in the initial studies [35]. Recently, by selecting
picosecond pulses at 1.5 um as pump pulses more efficient beam cleaning results are demonstrat-
ed in systems with less modal support [90].
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Figure 3.5: Experimental measurements. a Measured mode-locked spectrum. b Intensity autocorrelation
trace of the chirped pulse. c Intensity autocorrelation trace of the dechirped pulse, PICASO- reconstructed
autocorrelation intensity (dashed) and PICASO-retrieved dechirped pulse shape (inset). d Measured beam
profile for mode-locked operation and M? measurement of the beam profile.

To understand the beam cleaning mechanism, the effect of the cavity alignment condition on the
mode-locked beam profile is investigated. Differences in the free-space orientation of the laser are
achieved by changing the cavity alignment and the position of the intracavity spatial filter. We ob-
served that the presented beam-profile remains similar for different alignment configuration alt-
hough the mode-locked spectrum and pulse energy changes. A comparison of the predicted beam
profile by the simulation reveals that experimentally we obtain a much better beam shape (Figure
3.5 d). One of the reasons for this is the limited number of modes in the simulation and the low
pulse energy that was simulated. In the single-pass simulations reported in Figure 3.3, we found
that with the higher pulse energy beam cleaning improves which is consistent with the experi-
mental result. Also, given the fact that the laser pulse oscillates inside the cavity, a slight im-
provement in the beam profile due to the Kerr effect during each round trip, enhanced beam self-
cleaning is expected.

The differences between the supported number of modes by the multimode fibers used in the
spatiotemporally mode-locked laser causes mode dependent loss to the propagating field. For
spatiotemporal mode-locking with the presented engineered cavity approach, Kerr-induced beam
cleaning can cause a minimum loss condition inside the multimode fiber cavity, similar to the Kerr-
lens realization of solid-state lasers. Based on our results, one can explain the measured output
beam profile evolution in the laser output with the minimum loss principle [91]. An alternative
explanation based on the NPE saturable absorber might also be partly responsible for the beam
cleaning experimentally obtained. The NPE mode-locking requires nonlinearly induced polarization
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changes to generate saturable absorber behavior. The low order modes of the laser cavity exhibit
the highest nonlinear rotation angle, thus modelocking would favor low order modes which might
be another reason for the near single-mode output beam profile achieved in the experiment.
However, the majority of the previously reported multimode fiber lasers have also employed non-
linear polarization evolution mode-locking technique and they did not observe a high-quality
beam profile [42]-[44], [91]. Furthermore, we would like to highlight that, modification/shaping of
the beam in free-space propagation has a very small impact to the output field since the light trav-
els through around 4 m coiled multimode fiber with different mode number and splice position.
Another important parameter in the demonstrated cavity is the accumulated modal dispersion.
Due to the production complexity of gain doped GRIN MMF, we restricted our study of spatiotem-
poral mode-locking studies to commercially available step-index gain MMFs originally designed for
amplifier systems. When compared with the step-index MMFs, the modal dispersion of GRIN MMF
segment in the cavity is negligible. For further power scaling by increasing the gain fiber diameter,
modal dispersion will be a limiting factor and will be investigated in future work. The aforemen-
tioned mechanisms and dynamics need to be further investigated in future work. As an interesting
future direction, the real-time dynamics of the spatial, temporal and spectral formation of pulse
generation can be investigated numerically and experimentally with DFT based approaches to un-
derstand mechanism of spatiotemporal mode-locking in the presence of Kerr-induced beam self-
cleaning.

In conclusion, we reported a multimode fiber laser design with intracavity Kerr-induced self-beam
cleaning to realize high energy, ultrashort pulses with good beam quality. By engineering nonlinear
intracavity propagation of the mode-locked pulses, we numerically and experimentally demon-
strated a multimode cavity design with Kerr-induced beam self-cleaning. The presented cavity dy-
namics show that engineered intracavity temporal pulse properties enable a route to generate
high beam quality when mode-locking is achieved. For various alignment orientations and pulse
energy, drastic improvement of the output beam profile is experimentally reported when mode-
locking is achieved. The presented oscillator generates sub-100 fs pulses with >20 nJ pulse energy
while exhibiting good beam quality of M? value is less than 1.13. The combination of good beam
quality, high pulse energy and sub-100 fs pulse duration from a fiber laser consists of commercially
available, standardized components is a promising platform for various laser-related fields. The
presented technique can be easily adapted to fibers with a larger core size to increase pulse ener-
gy while preserving single-pulse operation with sub-100 fs durations.
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We demonstrate the first all-fiber multimode spatiotemporally mode-locked laser. The oscillator
generates dissipative soliton pulses at 1036 nm with 12 mW average power, 6.24 ps duration and
24.3 MHz repetition rate. The reported pulse energy (0.5 nl) represents ~4 times improvement
over the previously reported single-mode all-normal dispersion mode-locked lasers with multi-
mode interference-based filtering. Numerical simulations are performed to investigate the cavity
and spatiotemporal mode-locking dynamics. The all-fiber oscillator we present shows promise for
practical use since it can be fabricated simply.

4.1 Introduction

Ytterbium-based fiber laser systems are used in optical metrology, material processing and medi-
cal applications due to their high and broadband gain [20]. Unlike the other conventionally used
gain elements (Er, Tm and Ho), the emission wavelength of an Ytterbium-doped silica fiber falls in
a spectral range that exhibits positive group velocity dispersion (B2>0), thus mode-locking is rela-
tively challenging at 1 um wavelength. By using dispersion-management with gratings or photonic
crystal fibers, soliton [72], dispersion-managed soliton [18] and similariton [73] pulse types were
reported with Ytterbium-based single-mode fiber lasers. Later, all-normal dispersion mode-locking
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with spectral filtering of chirped pulses was discovered and depending on the filtering effect, ei-
ther dissipative soliton [19] or amplifier similariton [17] pulses can be produced. Over the last dec-
ade, all-normal-dispersion fiber lasers have been studied mainly by employing dissipative soliton
pulse dynamics [83]. These pulses are energy scalable and dissipative solitons with up to pJ pulse
energies were demonstrated with custom made very-large mode area single-mode fibers [24].

All-fiber laser designs are a subject of high interest due to their compact and alignment-free oper-
ation. To achieve dissipative soliton pulses in an all-fiber configuration various inline fiber-based
filtering solutions with >6 nm bandwidth have been reported in the literature [40], [74], [92], [93].
Among them, multimode interference (MMI) based bandpass filtering is a convenient solution.
Such a filter consists of a section of GRIN MMF between single or few-mode fibers. Interference
effects between the modes introduces frequency-dependent sinusoidal transmission which can be
used as a spectral filter [39]. Recently, dissipative soliton pulse formation with 0.13 nJ energy was
presented in an all-fiber configuration with the multimode interference-based bandpass filtering in
a single-mode Ytterbium-based all-normal dispersion laser [41].

In the last few years, spatiotemporal mode-locking is demonstrated by harnessing the unique
properties of GRIN MMFs such as low modal dispersion and periodic self-imaging by Wright et al.
and dissipative soliton pulses [42]. With the mode-locking approach in a multimode laser cavity,
coherent superposition of transverse and longitudinal modes is demonstrated. By introducing spa-
tial interactions to mode-locking mechanism complex multimode nonlinear wave propagation
studies became feasible under partial feedback conditions. Later, observation of bound-state soli-
tons and harmonic mode-locking were reported with similar cavity orientations [43], [44] and all-
fiber cavity with SESAM mode-locking [94]. Recently, self-similar pulse propagation is reported in
spatiotemporally mode-locked multi-mode fiber laser and observed output beam quality im-
provements with the temporal change [84]. By tailoring spatiotemporal nonlinear pulse propaga-
tion, intracavity Kerr-induced self-beam cleaning is achieved in a multimode laser cavity with sub-
100 fs pulse duration, >20 nJ pulse energy and M? value less than 1.13 [95].
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Figure 4.1: (a) Schematic of the all-fiber spatiotemporally mode-locked laser with multimode fiber-based
filtering: 1SO, isolator; FPC, fiber polarization controller; OC, output coupler; MMI BF, multimode interfer-
ence-based bandpass filter; MPC, multipump combiner. (b) Simulated mode-resolved temporal profile.
Inset: Simulated mode-resolved spectral profile.
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The novelty in the current paper is the use of multimode fiber interference-based filtering to con-
struct an all-fiber spatiotemporally mode-locked laser. With this alignment-free, compact cavity
design, spatiotemporally mode-locked dissipative soliton pulse generation is demonstrated. Nu-
merical simulations are performed to reveal cavity and spatiotemporal mode-locking dynamics
and led to experimental studies. The experimentally demonstrated multimode laser is self-starting
and generates pulses with 0.5 nJ energy, 12 mW average power, 6.24 ps duration and 24.3 MHz
repetition rate at 1036 nm. With spatiotemporal mode-locking, the achieved pulse energy repre-
sents ~4 times improvement over the previously reported single-mode mode-locked all-normal
dispersion lasers with multimode interference-based filtering.

4.2 Numerical results

The schematic of the all-fiber spatiotemporally mode-locked oscillator is presented in Figure 4.1 a.
The cavity consists of a step-index Ytterbium-based MMF segment with 10 um core diameter,
GRIN MMF segments with 50 um core diameter and step-index passive MMF segments with 10
um core diameter. The fiber sections with 10 um core diameter support 3 modes and the GRIN
MMF sections with 50 um core diameter support ~240 modes at and around 1030 nm wavelength.
Numerical simulations are performed to define lengths of the fiber segments, the bandwidth for
multimode interference-based bandpass filtering and the possibility of spatiotemporal mode-
locking in the presented cavity design.
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Figure 4.2: Simulated pulse duration and spectral bandwidth variation over the cavity.

Simulations are conducted with the numerical model used by Tegin et al. [84], [95]. The GRIN
MMF segments are modeled with linearly polarized modes and the nonlinear multimode Schroé-
dinger equation is simulated for these segments [6]. To decrease the computation time, GRIN
MMF segments are considered with five modes (LPo1, LP11a, LP11b, LP21a and LP21p), step-index MMF
segments with few-modes are considered as single-mode. Only a small portion of the modes (5
out of 250) are included in the simulation due to computational limitations however we will show
that this simplified model captures essential features of the behavior of the pulse propagation
inside the laser. The step size of simulation was chosen as ~140 um (quarter of the self-imaging
period, 560 um) for the GRIN MMF and 0.5 cm for few-mode fiber segments with a time resolu-
tion of 80 fs with 24 ps time window width. The splice points were modeled by coupling coeffi-
cients of the modes before and after the GRIN MMF segments. The initial field in simulations is
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defined as a quantum noise and stable mode-locking regimes are found to be not critically de-
pendent on the details of the coupling coefficients. The gain is modeled as Lorentzian shape with
30 dB small-signal gain and 40 nm gain bandwidth. The saturable absorber is modeled by a sinus-
oidal transfer function with 1 kW saturation power and 60% modulation depth.

The numerically achieved spatiotemporally mode-locked pulse shape and spectrum at the 30%
output coupler are presented in Figure 4.1 b. We set the excitation coefficients of the single mode
section to the 5 mode GRIN MMF segments equal to [0.35, 0.25, 0.15, 0.15, 0.1] and the gain satu-
ration energy as 1.10 nJ. It is known that in order to achieve dissipative soliton pulses in all-normal
dispersion cavities bandpass filtering of chirped pulses with >6 nm bandwidth is required [19]. To
ensure dissipative soliton mode-locking, we select the length of the GRIN MMF segment used for
MMI filtering to be 25 cm which yields an 8 nm bandwidth bandpass filter [39]. In our simulations,
dissipative soliton pulses with 0.46 nJ pulse energies and 5 nm spectral bandwidths were achieved.
The output pulse duration was 3.6 ps at the output port. To understand the pulse propagation in
detail, propagation of the pulse in one roundtrip is calculated and presented in Figure 4.2. Due to
the relatively high nonlinearity, the spectral broadening is observed in gain MMF segment which
later reaches a steady-state value inside the GRIN MMF. As expected from dissipative soliton puls-
es in an all-normal dispersion cavity, the spectral broadening ratio in one roundtrip is small [96].
The output beam profile with the numerically calculated mode-locked field is presented in Figure
4.3. Although most of the energy remains in the lower order modes, the numerically obtained
output beam exhibits multimode features.
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Figure 4.3: Numerically obtained output beam profile.

4.3 Experimental results and discussion

Encouraged by the simulations, experiments were performed with the numerically designed cavity
parameters. The gain section of the oscillator is 1.5 m Yo MMF (nLight Yb-1200-10/125) pumped
with a 976 nm pump diode coupled to the cavity with a pump combiner with matching passive
fiber ports. The gain section is followed by a GRIN MMF based coupler with a 30% output coupling
ratio. The modelocking mechanism is achieved by nonlinear polarization evolution (NPE) with a
polarization-sensitive inline isolator with 10 um core diameter fiber and fiber polarization control-
lers. After the isolator and before the MPC, a 25 cm GRIN MMF with 50 um core diameter is
placed to achieve MMI bandpass filtering with 8 nm bandwidth. The experimental oscillator is
shown in Figure 4.4 a.
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Figure 4.4: (a) Experimental setup of the all-fiber spatiotemporally mode-locked laser with multimode fi-
ber-based filtering. (b) Measured mode-locked spectrum in logarithmic scale. Inset: Measured mode-locked
spectrum in linear scale.

Spatiotemporal mode-locking is achieved easily by adjusting the intracavity polarization with the
fiber polarization controllers for 2.75 W pump power. The recorded spectra from the output cou-
pler are presented in Figure 4.4 b with spectral 10 nm spectral width at 1036 nm central wave-
length. The presented spectrum is measured with a 0.5 nm resolution and features a jagged pro-
file. Similar behavior is reported for spatiotemporally mode-locked lasers and lasers with MMI
segments. The reason for the jagged spectrum can be related to the aforementioned operation
type and filtering. The self-starting mode-locking operation of a single-pulse train with 24.29 MHz
is presented in Figure 4.5 a. The output power of the laser is measured as 12 mW which corre-
sponds to ~0.5 nJ pulse energy. The temporal characterizations are performed with second-order
nonlinear autocorrelation. The laser produces chirped pulses with 6.24 ps pulse duration (see Fig-
ure 4.5 b).
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Figure 4.5: (a) Measured single-pulse train of the spatiotemporally mode-locked laser. (b) Autocorrelation
trace of the chirped pulse obtained from 50 cm GRIN MMF of output coupler.

It is important to consider the effect of the fiber length and diameter of the output coupler to la-
ser output properties. The pulses propagate through 50 cm GRIN MMF with 50 um core diameter
after leaving the oscillator. This output fiber causes highly multimode propagation with 0.5 nJ
pulses and as presented in Figure 4.6 a, the near field measurement of the output beam profile is
speckled. In addition to its spatial effect, such a multimode propagation can cause temporal
changes as well. Numerical simulations suggest an output pulse duration ~4 ps but experimental
measurements indicated around 6 ps pulse duration which is larger. This 2 ps difference can be
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the result of the highly multimode propagation caused by the output coupler in addition to the
differences caused by the simplified numerical model. The oscillator is also characterized in the
frequency domain with a radio frequency for stability purposes. The fundamental repetition rate
of the laser is verified with a radio frequency (RF) analyzer (HP 3585A) as 24.29 MHz. With 1 kHz
span and 10 Hz resolution bandwidth, a sideband suppression ratio around 70 dB is measured
(Figure 4.6 b). The fiber laser has outstanding stability both in the short and long term. The laser
continues the mode-locking operation uninterrupted for months, without a sign of degradation.
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Figure 4.6: (a) Measured near-field beam profile from 50 cm GRIN MMF of output coupler. (b) Measured
radio frequency spectrum with 1 kHz span and 10 Hz resolution bandwidth.

4.4 Conclusion

In conclusion, we numerically and experimentally demonstrate an all-fiber spatiotemporally mode-
locked laser with multimode fiber interference-based filtering. The Ytterbium-based all-normal
dispersion multimode oscillator generates 6.24 ps pulses with 0.5 nJ pulse energy, 12 mW average
power and 24.3 MHz repetition rate. Compared to Ytterbium-based single-mode mode-locked
lasers with multimode interference-based filtering, the reported spatiotemporally mode-locked
laser produces ~4 times more powerful pulses. The all-fiber cavity design provides high stability
due to the inherent alignment-free construction. We believe the proposed cavity presents an al-
ternative approach to achieve spatiotemporal mode-locking with a simple, all-fiber design that can
be used when a clean Gaussian beam is not required such as speckle interferometry and struc-
tured illumination applications.
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Chapter 5 Controlling spatiotemporal
nonlinearities in multimode fibers with
deep neural networks

This chapter is the postprint version of the following article published in APL Photonics.
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Spatiotemporal nonlinear interactions in multimode fibers are of interest for beam shaping and
frequency conversion by exploiting the nonlinear interaction of different pump modes from quasi-
continuous wave to ultrashort pulses centered around visible to infrared pump wavelengths. The
nonlinear effects in multi-mode fibers depend strongly on the excitation condition, however rela-
tively little work has been reported on this subject. Here, we present a machine learning approach
to learn and control nonlinear frequency conversion inside multimode fibers. We experimentally
show that the spectrum of the light at the output of the fiber can be tailored by a trained deep
neural network. The network was trained with experimental data to learn the relation between
the input spatial beam profile of the pump pulse and the spectrum of the light at the output of the
multimode fiber. For a user-defined target spectrum, the network computes the spatial beam pro-
file to be applied at the input of the fiber. The physical processes involved in the creation of new
optical frequencies are cascaded stimulated Raman scattering as well as supercontinuum genera-
tion. We show experimentally that these processes are very sensitive to the spatial shape of the
excitation and that a deep neural network is able to learn the relation between the spatial excita-
tion at the input and the spectrum at its output. The method is limited to spectral shapes within
the achievable nonlinear effects supported by the test setup but the demonstrated method can be
implemented to learn and control other spatiotemporal nonlinear effects.
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5.1 Intoduction

MMFs have found applications in several fields in the last decades mainly in telecommunication
and imaging [97], [98]. In recent years, spatiotemporal nonlinearities in MMFs, have also become
the subject of strong interest in various fundamental and applied areas, from single-pass
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Figure 5.1: Simulation results. (a-c) Numerically obtained spectra with different excitation conditions. (d-f)
Spectral evolutions through 1 m GRIN MMF.

propagation to spatiotemporally mode-locked laser cavities [42], [43], [84]. In single-pass nonline-
ar propagation studies, numerous interesting phenomenon [27]-[30], [32], [33], [35], [36], [38],
[78] including spatiotemporal instability, self-beam cleaning and supercontinuum generation were
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reported with GRIN MMFs. Although the importance of the excitation condition is mentioned,
these studies were reported with only a Gaussian beam profile.

In the linear regime, the spatial control of light propagation in MMFs via wavefront shaping with a
spatial light modulator is now well understood. Over the last few years, several methods including,
iterative, phase conjugation and transmission matrix were successfully applied to demonstrate
fluorescence confocal, two photon, Raman, CARS imaging and material processing through a MMF
[99]-[101]. Recently, machine learning tools have been proposed to simplify the calibration and
improve the robustness of the system in the absence of optical nonlinearities [102]. DNNs proved
useful for classification/ reconstruction of the information sent to km-long MMFs solely from the
intensity measurement at the output of the fibers [53], [54]. For the nonlinear propagation re-
gime, adaptive algorithms have been brought forth and been shown to be successful in harnessing
the entangled spatiotemporal nonlinearities such as Kerr beam self-cleaning of low-order modes
[103] and optimization of the intensity of targeted spectral peaks generated by Raman scattering
or four-wave mixing [104].

In this article, we report the results of our studies on the effect of the initial spatial excitation con-
dition of a GRIN MMF on the output spectrum by employing machine learning. Specifically, we
achieved control over multimodal nonlinear frequency conversion dynamics and demonstrated
that spatiotemporal nonlinear pulse propagation can be learned by DNNs. Once trained, the DNNs
can predict the spatial beam shape for the input pump pulses to produce a desired spectral shape
within the limitations of the triggered nonlinear effects at the end of the GRIN MMF. In particular,
we showed that cascaded stimulated Raman scattering (SRS) based broadening of the spectrum as
well as supercontinuum generation, two highly nonlinear phenomena, can be experimentally con-
trolled for the first time in the literature with machine learning tools.

5.2 Numerical Studies

Numerical calculations are performed to determine the suitable approach to define the prelimi-
nary excitation patterns applied on the GRIN MMF in the experimental studies. We numerically
investigate the effect of excitation to nonlinear pulse propagation by changing the initial energy
splitting ratio between the simulated modes (LPO1, LP11a, LP11b, LP21a, LP21b, LP02, LP31a,
LP31b, LP12a and LP12b). To investigate the nonlinear effects in 1 m GRIN MMF, pump pulses with
2 ps duration and 500 kW peak power were used in the numerical studies. The multimode nonlin-
ear Schrodinger equation with a Raman scattering term (Equation 5.1) is numerically solved [6].
For numerical integration with high accuracy, we used a fourth-order Runge-Kutta in the Interac-
tion Picture method [85]. We used an integration step of 5 um and time resolution of 2.4 fs with
20 ps time window width. Although the GRIN MMF with 62.5 um core diameter supports more
than 250 modes, to reduce the computational time, we considered the 10 linearly polarized
modes in our numerical studies which required 14 days of computation.

44



Pump pulses centered at 1030 nm with 2 ps duration and 500 kW peak power are numerically
propagated for 1 m distance. In the experiment, the GRIN fiber length was 20 meters. We per-
formed a rescaling of the propagation length from 20 m to 1 m in order to reduce the computa
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Figure 5.2: Experimental setup. SLM spatial light modulator, QWP quarter-wave plate, BS beam splitter,
OSA optical spectrum analyzer.

tional time. In our simulations, we included Raman process and third-order dispersion.
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Here 1,imn is the nonlinear coupling coefficient, fx is the fractional contribution of the Raman

effect, hy is the delayed Raman response function and 5,80(”) (6,81(”)) is the difference between
first (second) Taylor expansion coefficient of the propagation constant for corresponding and the
fundamental mode. Relative index difference between to fiber core and clad is assumed to be
0.01. Figure 5.1 demonstrates the variations in the nonlinear pulse propagation with the different
initial excitation condition. As it is shown in Figure 5.1 (a), spectral broadening can be achieved by
favoring the lower order modes (LPO1, LP11a and LP11b). For the same pump pulse parameters,
equal excitation of all the modes interestingly resulted in broader spectra (see Figure 5.1 (b)).
Since more energy couples to higher order modes spectral formations around 1.5 um occurs in a
shorter propagation distance. When most of the energy was coupled to higher-order modes, the
optical spectrum evolved to a smoother supercontinuum formation as presented in Figure 5.1 (c).

Our simulations revealed significant spectral differences entirely due to the initial power distribu-
tion between the fiber modes. Similar behavior was numerically reported in the literature for mul-
timode holey fibers [105]. The propagation differences observed in Figure 5.1 can be understood
by studying the nonlinear coupling term used in the numerical calculations. According to the non-
linear coupling between the modes determined by the overlap integrals, some of the intermodal
processes are favored by different modal symmetry classes and particular modes act as a pump
for these nonlinear effects. In our calculations, we found that by initially favoring high order
modes in spatiotemporal nonlinear propagation, a medium to generate broad output spectrum
can be achieved since excitation of the higher-order modes creates an environment which en-
courages the nonlinear intermodal interactions. In the literature, the importance of the beam size
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on the fiber facet to initiate multimode propagation is emphasized in experimental studies related
with self-beam cleaning and spatiotemporal instability [30], [33].
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Figure 5.3: Difference in output spectra measured in the datasets. Maximum and minimum frequency con-
version measured for 3000 different excitation conditions for 85 kW peak power (a) and for 150 kW peak
power (b). Beam shapes applied to generate minimum and maximum frequency conversion for 85 kW (c-d)
and 150 kW (e-f) peak powers. Dashed circles indicate the fiber core size on SLM.

5.3 Results

5.3.1 Experimental setup and dataset collection

Input
Intensity layer

Output Target
layer beam profile

Wavelength

' CCe_ D)D) ]

Figure 5.4: Schematic of the learning spatiotemporal nonlinear pulse propagation. Each input spectrum is
linked via the proposed neural network to its corresponding coefficients at the output of the network which
in turn is used to generate the required beam profile corresponding to the input spectrum.

The experimental setup is shown in Figure 5.2. We launched 10 ps pulses centered around 1030
nm with adjustable peak power into a 20 m GRIN MMF with 62.5 um core diameter and 0.275 NA
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(Thorlabs — GIF625). The fiber is coiled with 25 cm diameter and rests on the optical table without
additional cooling. A phase-only spatial light modulator (SLM), 8f imaging system and a quarter-
wave plate is placed before the GRIN MMF. Here, we study two particular phenomena by adjust-
ing the peak power of the pump pulses to either 85 kW or 150 kW. In the first case, spectral
broadening induced by cascaded SRS is observed while in the second case supercontinuum gener-
ation was recorded at the output of the GRIN. Cascaded SRS based spectral broadening in GRIN
MMFs has been extensively studied in the past and spatiotemporal pulse propagation is the lead-
ing mechanism for the cascaded Raman Stokes generation. In GRIN MMFs, Raman Stokes peaks
are reported with different beam shapes which lead to different propagation paths for each Ra-
man peak. By compensating the chromatic dispersion difference, the multimode propagation en-
hances the cross-phase modulation between the Raman peaks, hence triggering the generation of
a supercontinuum formation for higher peak powers after reaching to the zero-dispersion wave-
length (ZDW) [27], [38].

To experimentally study the effect of the spatial profile of the excitation condition on the nonline-
ar pulse propagation, a set of beam profiles containing 3000 samples are calculated by superpos-
ing pre-defined base patterns with random non-repeating amplitudes from 0 to 1 and fixed sum
for each candidate beam shape. Guided by simulations, a mixture of the 5 lowest order LG4X
modes are selected as the base patterns to create beam profiles of the pump pulses. To minimize
the power level changes due to beam shaping, the number of coefficients is intentionally limited
as 5 and the LG40 mode is added to each calculated beam shape as a background. Here we would
like to emphasize that the selected LG modes are calculated for the free-space propagation and
the energy distribution of these patterns cannot be directly related to the energy distribution of
the modes supported by the fibers. The complex amplitude modulation method described in [106]
is applied to calculate the required phase patterns to generate the designed beam profiles with
the phase-only SLM. The achieved beam profiles are ~ 80X demagnified with the imaging system
to excite GRIN MMF.
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Figure 5.5: Schematic of the control experiments. To experimentally generate the computationally de-
signed spectra, trained DNNs are used to estimate the required beam shape of the pump pulses.

Pulses with 85 kW and 150 kW peak powers and different beam shapes impinge on the GRIN MMF
facet while the output spectra are being recorded for each applied pattern. For both cases of in-
terest, strong variations at the output spectra are observed. For 150 kW pump peak power, as the
spectrum approaches ZDW, the driving nonlinear effect changes and instead of cascaded SRS,
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modulation instability based spectral broadening occurs. Therefore, we focused on wavelength
range above the ZDW (1350 nm to 1700 nm) [27], [38]. The extreme cases recorded in the da-
tasets are presented in Figure 5.3.

5.3.2 Machine learning and controlling nonlinearities

For both peak power levels, the machine learning approach is employed to analyze the experimen-
tally collected data. In both cases, the same network architecture employed is comprised of four
hidden layers as demonstrated in Figure 5.4. Measured spectra are fed to the network as inputs
and for each spectrum, the coefficients to generate the corresponding beam profiles are the out-
put variables of the network. DNNs can learn the spatiotemporal nonlinear pulse propagation in-
side the tested GRIN MMF by adjusting their weights to learn the relation between the generated
spectra and the excitation condition as described by the coefficients used to determine the input
beam shape.
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Figure 5.6: Controlling cascaded SRS generation with DNN. a-c Designed (dashed) and measured output
spectra for 85 kW peak powers. The insets show DNN suggested beam shapes for pump pulses to generate
designed spectra. Scale bars indicated for DNN suggested beam shapes are 3 mm.

To experimentally investigate the performance of the trained DNN, the control on the output
spectra is tested with the schematic presented in Figure 5.5. For this, a collection of synthetic
spectral shapes is generated via summations of Gaussian distributions with different amplitudes
and widths. It should be noted that the synthetic spectra must still lie within the limits of the rec-
orded spectral dataset. These target spectra are then fed to the DNN to predict the required beam
shapes of the target pump pulses. For each designed target spectra, the DNN predicts the coeffi-
cients of the LG4x patterns and from these coefficients, the required input beam shapes are syn-
thesized. Here, we rely on the ability of the neural network to generalize since the user-defined
spectra is not from the test nor the training data set. For 85 kW pump peak power level, summa-
tions of different Gaussian functions centered around the Raman Stokes peaks of the silica medi-
um are used to design the targeted distributions with different amplitudes and widths. These tar-
get spectra are then fed to the DNN to predict the required beam shapes of the target pump puls-
es. For each designed target spectra, the DNN predicts the coefficients of the LG4x patterns and
from these coefficients, the required input beam shapes are synthesized. Here, we rely on the abil-
ity of the neural network to generalize since the user-defined spectra is not from the test nor the
training data set. For 85 kW pump peak power level, summations of different Gaussian functions

48



centered around the Raman Stokes peaks of the silica medium are used to design the targeted
spectra. Results of the tests for controlling cascaded SRS generation are presented in Figure 5.6.
The measured spectra corresponding to the DNN-predicted beam shapes are well matched with
the target spectra (Figure 5.6 a-c). For 150 kW pump peak power level, spectral shapes are de-
signed based on the trailing edge of a Gaussian function centered around 1350 nm since the tar-
geted wavelength range corresponds to the trailing edge of the supercontinuum spectra. The
same procedure explained for 85 kW pump peak power level is applied to control the supercon-
tinuum generation. Targeted and experimentally measured spectra are presented in Figure 5.7a-c
and the experimentally measured spectra which are in good agreement with the targeted spectra.
DNN predicted beam profiles of the pump pulses are shown in insets of Figure 5.7d-f.
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Figure 5.7: Controlling supercontinuum generation with DNN. a-c Designed (dashed) and measured output
spectra for 150 kW peak powers. The insets show DNN suggested beam shapes for pump pulses to gener-
ate designed spectra. Scale bars indicated for DNN suggested beam shapes are 3 mm.

5.4 Discussion

The main result of this article is that machine learning tools can master the underlying basis of the
spatiotemporal nonlinear propagation in MMFs which have been considered chaotic and complex
over the years. Here DNNs are employed to learn the relation between the initial modal energy
distribution of the fiber and nonlinear frequency conversion. Trained with experimental data, our
DNNs are shown to be a powerful tool to harness the nonlinear dynamics of the MMF within the
nonlinear dynamics defined by the system.

Due to non-one-to-one relation between the initial modal energy distribution of the fiber and non-
linear frequency conversion dynamics, the experimental controlling efficiency of the DNNs is a
significant topic. For both peak power levels (85 kW and 150 kW), more than 50% efficiency is
achieved in the control experiments. By introducing artificial noise to the designed spectra, the
experimental estimation efficiencies of DNNs are improved and reached to 80%. We believe this
improvement is due to the noisy nature of the experimentally collected dataset but it needs to be
further investigated in future work. We observed that DNNs learned the behavior of initially favor-
ing high order modes to achieve broader output spectrum, which is also presented in our numeri-
cal simulations. For both of the peak power levels, to generate targeted spectra which requires
more nonlinear conversions, DNNs are increased the coefficients of the high order base patterns
(Figure 5.6-inset and Figure 5.7-inset).
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In conclusion, we showed that spatiotemporal nonlinear pulse propagation can be learned and
controlled by machine learning tools. We demonstrated that spectral broadening based on the
cascaded SRS and supercontinuum generation can be both altered by tuning the initial modal en-
ergy distribution of the fiber through shaping the beam profile of the pump pulse by implementing
experimentally trained DNNs. The machine learning approach reported here can be employed to
understand and tune other nonlinear effects and relations. Our results present a novel path to-
ward automated tunable fiber-based broadband sources.
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Chapter 6 Predicting spatiotemporal
nonlinear dynamics in multimode fibre
optics with a recurrent neural network

This chapter is the postprint version of the following invited reusability report published in Nature
Machine Intelligence.
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With their internal memory, recurrent neural networks can be utilized to learn and predict time-
dependent behaviours. In their recent work, Salmela et al. [55] present a recurrent neural network
architecture to learn and predict complex nonlinear propagation in an optical fibre based on the
input pulse intensity profile in the time domain. Here, we use their model by extending it to the
case of spatiotemporal nonlinear propagation for an arbitrary number of modes in graded-index
multimode fibres. In addition to the original work’s focus on predicting the temporal evolution of
pulses, we show that the method is applicable for modelling and predicting spatial beam propaga-
tion incorporating nonlinear mode coupling.

The demonstrated method of Salmela et al. [55] can be an alternative solution to time consuming
and computationally heavy nonlinear pulse propagation simulations. In essence, the method can
accurately reproduce the complex nonlinear evolution governed by NLSE via employing long short-
term memory (LSTM) nodes in an artificial neural network. Such a network architecture is capable
of modelling sequential dependencies. Salmela et al. [55] tested their model for pulse compres-
sion and ultra-broadband supercontinuum generation. They were able to accurately predict tem-
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poral and spectral evolutions of ultrashort pulses in a highly nonlinear fibre. Using the same neural
network architecture, we trained the network to predict the spatiotemporal evolution of ultra-
short pulses. In this study, we hypothesized that their recurrent neural network might be suitable
to predict the spatiotemporal field evolution given that it successfully predicted the temporal
physical dynamics that is governed by the same NLSE equation that describes the spatial domain
as well. Since the NLSE is also applicable to other physical systems, it may be possible that a gener-
ic, normalized form could be utilized for example in Bose-Einstein condensation, hydrodynamics
and plasma physics [107].

6.1 Spatiotemporal nonlinearities and simulations

The study in [55] focuses on single mode fibre with spectral or temporal nonlinear evolution of
pulses in propagation axis by computing (1 spatial coordinate +1 time coordinate)D simulations.
Further, the authors show promising results by applying their method to a step-index multimode
fibre by computing the propagation of 5 modes of the investigated fibre by following a similar
(1+1)D simulation and incorporating mode coupling by a matrix product calculated as the overlap
integrals of the modes of interest. In this study, we change the media from step-index to graded-
index multimode fibre and compute (3 spatial coordinates +1 time coordinate)D simulations
where the interaction of all the available modes of the fibre fuses naturally since all the contrib-
uting spatiotemporal degrees of freedom in the NLSE are included.

With relatively low modal dispersion and periodic self-imaging, graded-index multimode fibres
have become the subject of significant interest for nonlinear optics, imaging and telecommunica-
tions studies. In recent years, various interesting nonlinear dynamics such as spatiotemporal in-
stability [28], [30], dispersive wave generation [31], graded-index solitons [78], [79], self-beam
cleaning [33], nonlinear pulse compression [80], and supercontinuum generation [36], [38] are
reported. In addition to aforementioned single-pass dynamics, spatiotemporal mode-locked lasers
[42], [84], [95] have been realized thanks to the low modal dispersion pulse propagation in grad-
ed-index multimode fibres. With an SLM, learning and controlling nonlinear optical dynamics in
graded-index multimode fibres was demonstrated by modifying the spatial properties of the in-
tense pump pulse [104], [108]. Recently, spatiotemporal nonlinear interactions in a graded-index
multimode fibre were introduced as an optical computing engine which performed well on a range
of machine learning tasks from classifying COVID-19 X-ray lung images and speech recognition to
predicting age from face images [109].

Numerical analysis is required to understand the underlying complex spatiotemporal dynamics of
pulse propagation in a multimode fibre. The most significant challenge in multimode fibre simula-
tions is the addition of spatial degrees of freedom. In a single-mode fibre simulation, there is only
the time domain grid to establish and then propagation can be implemented, for instance, using
split-step Fourier simulations, which has a low computational cost since 1D Fourier transforms are
computed in every step. In multimode fibre, there are multiple propagating modes that have dif-
ferent spatial distributions. Hence, transverse dimensions must be included to describe a pulse
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which requires a sampling grid in two dimensions X and Y in addition to time. Hence, 3D Fourier
transforms (two spatial dimensions in transverse plane and one dimension in time) must be com-
puted at every step taken along the propagation direction Z to provide a (3+1)D simulation. This is
computationally costly and time-consuming. To overcome the computational load of (3+1)D beam
propagation simulations, mode-resolved simulation methods based on pre-calculated nonlinear
mode coupling were proposed in the literature [6], [105]. However, mode-resolved simulations
are time efficient for <10 modes and a low number of modes may not give an accurate picture of
the spatiotemporal nonlinear propagation in a >200 mode fibre. In this regard, the work by
Salmela et al. [55] enables a faster computation scheme when the neural network is trained [56].
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Figure 6.1: An example of the spectral intensity evolution of a high-power femtosecond pulse in a graded-
index multimode fibre. a Schematic of data generation and training pipeline. b Time-dependent beam
propagation (ground truth). c Recurrent neural network predicted pulse propagation. d Difference between
the ground truth and the prediction. e-g Time-dependent beam propagation simulation results and the
recurrent neural network predicted results at different propagation lengths. The recurrent neural network
predictions use only the injected pulse intensity profile as input. The colour bars show intensity in decibels
[dB] and z0 is the self-imaging period of the fibre.

In our study, we first tested the neural network presented in [55] by generating a data set using a
numerically computed fibre output using the (3+1)D split-step Fourier method that considers the
interaction of all available fibre modes. We call this method Time Dependent-Beam Propagation
Method (TD-BPM). We implemented a GPU parallelized TD-BPM in Python to generate the da-
taset. To remain loyal to the original approach, we integrated the intensity of the TD-BPM outputs
in the spatial domain to obtain the time-domain evolution only. The performance of the network
in the time domain (but with spatial integrated modes) is illustrated in the “Temporal results” sec-
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tion. The “Spatial results” section shows the performance of the network to predict the intensity
profile along the propagation from the time integrated data. Due to the network architecture, the
data is fed after a dimension reduction by time-averaging or space-averaging. Never-the-less, the
spatiotemporal effects are still inherited in the reduced data where each RNN model is capable to
capture it.

6.2 Results

6.2.1 Temporal results
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Figure 6.2: An example of temporal intensity evolution of a high-power fs pulse in a graded-index multi-
mode fibre. a Time-dependent beam propagation (ground truth). b Recurrent neural network predicted
pulse propagation. c Difference between the ground truth and the prediction. d-f Time-dependent beam
propagation simulation results and the recurrent neural network predicted results at different propagation
lengths. The recurrent neural network predictions use only the injected pulse intensity profile as input. The
colour bars show intensity in linear scale, which is normalized over the whole dataset. z0 is the self-imaging
period of the fibre.

The datasets generated by the aforementioned TD-BPM contain 1000 examples of spatiotemporal
nonlinear propagation of femtosecond pulses (see Supplementary Discussion 1 for details
https://dx.doi.org/10.1038/s42256-021-00347-6). Following the original work and using the sam-
ple code, with a small modification to increase the number of nodes in each layer from 250 to 500,
we trained and tested spectral and temporal nonlinear propagation in a graded-index multimode
fibre. Each dataset is split into 950 propagation samples for training and 50 propagation samples
for testing. During the training, at each epoch, training data is split randomly with 9 to 1 ratio to
generate the validation set, which is repeated for every training process in this study. The TD-BPM
generated data is first converted to logarithmic scale and normalized. The evolutions of the mean
absolute error metric for training the networks are presented in Supplementary Discussion 4
https://dx.doi.org/10.1038/s42256-021-00347-6.
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Similar to the work by Salmela, et.al [55], we tested the recurrent neural network for stepwise
(only predicting selected next steps) and complete propagation (feeding the predicted steps to
calculate the next step) predictions in the frequency and time domain but in a multimode fibre.
The best performance of the neural network is observed for stepwise predictions. The stepwise
performances of the network for spectral and temporal data are presented in Supplementary Fig-
ure 1 and Figure 2 https://dx.doi.org/10.1038/542256-021-00347-6. For the complete propagation
predictions by only using the injected pulse profile leads to accumulated errors but as it is pre-
sented in Figure 6.1 and Figure 6.2, the difference between the TD-BPM (ground truth) and the
predictions are small and in an acceptable range.

6.2.2 Spatial results
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Figure 6.3: An example spatial intensity evolution of a 1GW fs pulse in a graded-index multimode fibre. a
Time-dependent beam propagation (ground truth) in XZ mid-plane. b Recurrent neural network prediction
of pulse propagation in XZ mid-plane. c Difference between the ground truth and the prediction of the
propagation profiles. d-f The time-dependent beam propagation simulation result and the recurrent neural
network prediction result after the first z-step in the transverse plane (XY) and the relative difference re-
spectively. g-i Similar plots given in d-f at the half fibre length. j-I Similar plots given in d-f at the output
plane (last propagation step). The recurrent neural network predictions use only the injected pulse intensi-
ty profile from the test data as input. The colour bars show intensity in linear scale, which is normalized
over the whole dataset. All the fields are up sampled for better visualization and z0 is the self-imaging peri-
od of the fibre.

The dataset is generated by integrating the outputs of TD-BPM in the time-domain to generate
spatial-domain only intensity distributions. A graded-index fibre with 50 um core diameter, which
supports 240 modes at 1030 nm wavelength is digitally created. 1000 different propagation cases
are generated by having different spatial excitations at the fibre input. LPO1, LP0O2, LP0O3, LP11,
LP12, and LP21 modes are superposed with random coefficients while keeping the peak power
fixed at 1 GW to encourage nonlinear inter-modal coupling within a short fibre length that is cho-
sen as 10 times the self-imaging period of the graded-index multimode fibre. Note that the field
launched is limited to 6 modes however the modes can couple into the higher order modes of the
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GRIN fibre (240 available modes) upon propagation due to mode coupling. The dataset is divided
into training data (950 samples) and testing data (50 samples). The data is down sampled to 32 by
32 pixels in transverse x and y axis and 120 steps in the z axis. The 2D spatial information is con-
verted to a 1D array of 1024 elements to employ the original network architecture that accepts 1D
intensity profiles. The LSTM and dense layer node number is set to 1000 and window size, which is
the number of previous steps introduced in LSTM, is set to 15. In Figure 6.3, the prediction of the
trained network on a test data is shown with the XZ propagation profile and XY transverse profiles
of the first, the middle and the last steps along with corresponding TD-BPM results that serve as
the ground-truth.

6.3 Discussion

During our study, we compared the simulation runtimes between the TD-BPM and that of the re-
current neural network architecture for training and inference. The required training time for the
recurrent neural network is comparable to the data generation time of the TD-BPM which is
around 50 minutes for 1000 samples. On the other hand, as anticipated, the inference time of the
recurrent neural network is more than 40 times faster than TD-BPM for single-pass pulse propaga-
tion with a graphics card based parallel processing on Nvidia Tesla V100 GPU.

Temporal results show that the network successfully infers the time evolution of a pulse. Since a
different simulation method (TD-BPM instead of mode-resolved as used in the original work) and
media (graded-index multimode fibre instead of single mode and step-index multimode fibre, used
in the original work) are chosen in this study, we can state that the proposed architecture is capa-
ble of grasping the NLSE governed dynamics without relying on a certain method to generate
training data. Due to the selected pulse parameters (duration and central wavelength), the dataset
contains supercontinuum generation from self-phase modulation and spatiotemporal instability
[28], [30]. As it is presented in the results section, the neural network can remarkably predict the
separate and combined spatiotemporal instability peaks around 632 nm 768 nm.

The proposed architecture is able to predict spatial propagation decently as demonstrated in Fig-
ure 6.3. However, a significant amount of error is also present, which is higher than the obtained
error in temporal-only predictions. In Supplementary Discussion 3
(https://dx.doi.org/10.1038/s42256-021-00347-6), we investigated a simpler spatial scenario
where the input distribution is fixed as a donut shape and pulse power is varied in the order of
MW to have relatively mild nonlinear interactions. This scenario yielded less mean absolute error
compared to the results provided in Figure 6.3 where the spatial distribution of the input field is
varied and pulse power is set to GW to have more nonlinear interactions. This comparison hints
that a degradation in the performance of predictions occurs as the variations within the dataset
and strength of nonlinear interaction increases. The main cause of this performance issue may
arise from the intensity-only nature of the implemented neural network architecture. Physically,
the field evolution is a product of the intensity and phase changes in time and space. However, in
this architecture, the network is forced to learn the nonlinear propagation of a complex field with-
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out the phase information. Even so, the network mimics the overall propagation trend, which is
quite an achievement given the fact that half of the information required is not provided. The rea-
son of this promising achievement lies in the dataset where the complex field evolution is gener-
ated by including the effects of all the dimensional degrees of freedom. The dimension reduction
by time-averaging and applying absolute square to convert the complex field into intensity does
not completely erase the trace of the complex higher dimensional field evolution as these traces
manifest their self in the intensity evolution. The verification of this point can be found in the Sup-
plementary Discussion 5 (https://dx.doi.org/10.1038/s42256-021-00347-6) where the RNN is
trained by phase-only varying input fields.

Another important factor is the resilience to under sampling. Considering the low resolution dis-
cretization in the inference, it is straight-forward to say that the recurrent neural network is more
flexible in terms of sampling constraints. However, this advantage is a result of the training phase
where the data is generated with appropriately sampled simulation frames. Then the accurate
data is down sampled and provided to the network. In the case of under sampled training data
that contains sudden pixel to pixel jumps, then the trained network fails to model NLSE and yields
unrelated predictions for the propagation.

6.4 Future directions

There are two main directions to expand the scope of the proposed recurrent neural network ar-
chitecture: introducing spatiotemporal characteristics together in the network instead of decou-
pling space and time information of the pulse as well as a network capable of handling complex
fields. Neural network architectures that deal with complex fields are already presented such as
for example the NN that decomposes the output field into LP modes [110], [111]. With a similar
scheme, the network could accept transverse complex fields and the time domain information in
(2+1)D fashion to perform the nonlinear evolution step by step in the propagation direction. With
the augmented dimensionality, 2D and/or 3D convolutional layers could replace the fully connect-
ed layers before and after the LSTM as light propagation is governed by convolution with a diffrac-
tion kernel.
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Chapter 7  Scalable Optical Learning Op-
erator

This chapter is the edited version of the following article available in arXiv (accepted by Nature
Computational Science).
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0ptics Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
2Laboratory of Applied Photonics Devices, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
arXiv preprint (2020)

arXiv:2012.12404

Today's heavy machine learning tasks are fueled by large datasets. Computing is performed with
power hungry processors whose performance is ultimately limited by the data transfer to and
from memory. Optics is one of the powerful means of communicating and processing information
and there is intense current interest in optical information processing for realizing high-speed
computations. Here we present and experimentally demonstrate an optical computing framework
(Scalable Optical Learning Operator) based on spatiotemporal effects in multimode fibers for a
range of learning tasks from classifying COVID-19 X-ray lung images and speech recognition to
predicting age from face images. The presented framework overcomes the energy scaling problem
of existing systems without compromising speed. We leveraged simultaneous, linear, and nonline-
ar interaction of spatial modes as a computation engine. We numerically and experimentally
showed the ability of the method to execute several different tasks with accuracy comparable to a
digital implementation. Our results indicate that a powerful supercomputer would be required to
duplicate the performance of the multimode fiber-based computer.

7.1 Introduction

Early optical computers were used to calculate linear operations such as the Fourier transform and
correlations. They found applications in pattern recognition and synthetic aperture radar [112],
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[113]. However, with the advent of modern VLSI technology and efficient algorithms (e.g Fast Fou-
rier Transform), digital signal processing based on silicon circuits became so fast and parallel that
the analog optical computation that included the input and output electronic overhead became
obsolete. Digital optical computing, that combined nonlinear optical switches [114] with linear
optical interconnections [115] replacing wires, was then intensely pursued in the 1980’s. Optical
interconnections can be advantageous in terms of power consumption [116], however in an all-
optical implementation this advantage is counter-balanced by the power inefficiency and large
size of optical switches compared to the electronic ones. Therefore, all-optical digital computers
are not yet competitive. Optics has also been used for the implementation of nonlinear computa-
tions that are not based on Boolean logic, such as the optical implementation of neural networks
[60], [117]. In principle, the dense connectivity of neural networks and their relative robustness
against noise and device imperfections, renders neural networks a promising area for optical com-
puting.
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Figure 7.1: lllustration of the fixed-parameter neural network architectures and the experimental setup for
nonlinear projection with spatiotemporal multimode fiber nonlinearities. The inset depicts neural network
architectures with similar attributes as the MMF processor with black and blue connections indicating fixed
and adaptable weights, respectively.

Interest in optically implemented neural networks has intensified in recent years partially because
the large size of databases that need to be managed stresses the capabilities of existing digital,
electronic computers. Several promising approaches are being investigated and they are summa-
rized in a recent review article [71]. The key challenge in designing a viable optical computer (in-
cluding a neural one) is to combine the linear part of the system from where the competitive edge
of optics derives, with nonlinear elements and input-output interfaces while maintaining the
speed and power efficiency of the optical interconnections. The prospect of an optical engine for
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computation is as a computational accelerator working alongside CPUs and GPUs, which may be
placed physically close to the edge of the communication network in order to minimize data trans-
fer and perform the computation which would otherwise be carried out in a server farm.

The solution we propose and demonstrate in this paper is the combination of the linear and non-
linear parts of the optical system in a shared volume confined in a MMF. The principal advantage
of this approach is the combination of the 3D connectivity of optics with the long interaction
length and lateral confinement afforded by the fiber which makes it possible to realize optical non-
linearities at relatively low power. At the same time, the large number of spatial modes that can
be densely supported in a MMF maintains the traditional high parallelism feature of optics, while
maintaining a compact form factor. Finally, with the availability of megapixel SLMs and cameras,
the 2D input and output interfaces to the MMF can sustain a large information processing
throughput. We refer to the proposed method as SOLO (Scalable Optical Learning Operator) in the
remainder of this paper.

A schematic diagram of the MMF processing element is shown in Figure 7.1. The data to be pro-
cessed is entered through the 2D spatial light modulator on the left. At sufficiently high illumina-
tion peak power, the light from a pulsed light source is nonlinearly transformed as it propagates
through the fiber and the result of the computation is projected on the 2D camera. Given the
properties of the fiber and the laser source, the input-output operation performed by the MMF is
fixed and highly nonlinear. We implement a reconfigurable processor by combining the fixed non-
linear MMF mapping in the optical domain with a single layer digital neural network (decision lay-
er) trained to recognize the output recorded on the camera using a large data set of input-output
pairs. For instance, we used this system to diagnose with high accuracy (83.2%) COVID-19 from X-
ray images of lungs compared to other studies. We used a large database of X-ray images of lungs
with COVID-19 to train the single layer network that classifies the representation of the lungs that
is produced at the output camera. The notion of combining a complex, fixed mapping with a sim-
pler programmable processor to realize a powerful overall system, including the optical implemen-
tation of such machines, has been used in support vector machines [118], [119] reservoir compu-
ting [62], [63], [120], [121], random mappings [66], [68], [69], [122], and extreme learning ma-
chines [64], [123]. The nonlinear mapping performed by the MMF is not the same as in any of the
earlier approaches. As we will show, it proves to be very effective in transforming the input data
space on the SLM to a nearly linearly separable output data space (camera at end of the MM fiber)
at very high speed and power efficiency.

In the remainder of the paper, we present numerical and experimental results from our optical
computing framework for single variable linear regression, multivariable linear regression, age
prediction from face images, audio speech classification and COVID-19 diagnosis from X-ray imag-
es tasks. We then discuss how the system scales to large data size and estimate the power con-
sumption per operation. These studies show that the analog optical computer based on the MMF
is power efficient, versatile and obtains accuracy performance comparable to that obtained with
digital computers when solving the tasks we investigated.
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7.2 Results

7.2.1 Experimental results

MMFs exhibit waveguide properties while allowing a large number of spatial degrees of freedom.
GRIN MMFs in particular, have become the subject of significant interest for telecommunications,
imaging and nonlinear optics studies due to their unique properties such as relatively low modal
dispersion and periodic self-imaging. In recent years, with spatiotemporal pulse propagation in
GRIN MMFs, various nonlinear frequency generation dynamics [28], [30], [31], [36], [38], nonlinear
beam cleaning [33] and spatiotemporal mode-locking [42], [84], [95] have been realized. Moreo-
ver, learning and controlling nonlinear optical dynamics in GRIN MMFs was demonstrated by mod-
ifying the spatial properties of the intense pump pulse with a SLM or deformable mirror device
[104], [108].
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Figure 7.2: Learning a nonlinear function (sinc): dependence on the pulse propagation regimes in a graded-
index multimode fiber caused by increasing the input optical peak power. (a) Experimental measurements:
increasing the input peak power increases the nonlinear coupling between modes which translates in bet-
ter learning. Beyond an optimal peak power, the learning performance degrades due to the Raman beam
cleaning effect (see text). (b) Illustration of the propagation difference for linear (low peak power) and non-
linear (high peak power) cases in a GRIN MMF with 10 self-imaging period length.

In machine learning studies, a variety of nonlinear transformations of the input data have been
investigated in order to enable learning of complex relations hidden in the data [124]. In our case,
we make use of the nonlinear mapping that takes place at high light intensities when an input pat-
tern propagates in a multimode fiber as a physical realization of machine learning. The experi-
mental setup in Figure 7.1 is explained in detail in the Methods section. In this setup, information
spatially modulated an intense laser pulse with the input data and the Fourier transform of the
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spatially modulated beam was focused on the input facet of the optical fiber through a lens. The
amount of light coupled to each of the modes of the fiber is given by the inner product between
the incident light amplitude and the mode profile. Upon propagation, the initial complex modal
coefficients evolve according to spatiotemporal linear and nonlinear effects. The nonlinear trans-
formation of information is achieved by nonlinear energy exchange between the fiber modes. The
transformed information at the end of the fiber is imaged onto a camera, and the image was
downscaled such that the spatial sampling period is approximately equal to the resolution limit,
which can be approximated by A/2(NA), the Abbe diffraction limit. Each pixel of the downscaled
image served as an input feature to a linear regression or equivalently, to a single layer neural

classification algorithm to estimate the identity of the input on the SLM.
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Figure 7.3: Experimental (a-d) learning results for regression and classification tasks. (a) Learning of abalone
(multivariable) dataset. (b) Age prediction from face image dataset. (c) Confusion matrix for audio dataset
digit classification. (d) Confusion matrix for audio dataset speaker classification.

Learning a nonlinear function

To test this, we selected a simple regression problem on a dataset generated with a nonlinear
(Sinc function) relation. The input information (x) were randomly generated numbers between -t
to m and the corresponding output labels (y) were generated according to the y = Sin(nx)/(nx) rela-
tion. This simple dataset is often used as a benchmark in machine learning studies since linear re-
gression of a nonlinear function is impossible without a nonlinear transformation [64], [123]. Each
input value (x) was uniquely coded as a 2D pattern which was recorded on the SLM (see Appendix
A.3 for details). By recording the nonlinearly propagated beam profile of many such input values, a
linear regression method was performed on the output data (see Figure 7.2 a). To measure the
effectiveness of the spatiotemporal nonlinear propagation and assess the importance of the non-
linearity, we experimented with different pulse peak powers to control the level of nonlinearity.
For low peak power (~1.14 kW), the nonlinearity is relatively weak, and the transmission through
the fiber is very nearly a linear transformation (except for the square-law at the detector) and as a
result, the performance is poor since the mapping is not linearly separable. Increasing the laser
peak power results in nonlinear propagation, and we reached the best performance at around
3.43 kW laser peak power. For this optimum power level, correct outputs were estimated from
unseen test inputs with a root-mean-squared error (RMSE) of 0.0671. Further power escalation
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gradually deteriorated the performance because it drives nonlinear pulse propagation to the Ra-
man beam clean-up regime [125]. In this regime the projected beam profiles become virtually un-
affected by the input data. In the other experiments reported below, the optical peak power used
was 3.43 kW corresponding to the optimal peak power of the Sinc and COVID-19 diagnosis exper-
iments.

Abalone dataset

The Sinc dataset demonstrates the interpolation capability of our optical computing framework;
however, interpolation is not an adequate property for complex inference problems. Therefore,
we moved to multivariable inference problems and we tested our computing method on the aba-
lone dataset [126]. The abalone dataset consists of various physical features of sea snails in the
dataset that are related to age (e.g., number of rings) that can be used for the prediction of the
age of sea snails from eight different parameters. We recorded these 8 parameters on the SLM as
a 4x2 matrix with proper pixel scaling. Similar to the Sinc function experiments, the recorded spa-
tial distribution at the distal fiber facet was recorded, flattened (written as a long 1D vector) and
fed to the decision layer to perform linear regression. (see Methods). Figure 7.3 presents the true
ages (Label) and the corresponding predictions; the figure indicates that the framework learns the
ages of the abalone from spatially distributed independent variables with remarkable accuracy
(RMSE of 0.126) compared with the output that takes normalized values between 0 and 1.
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Figure 7.4: Training of the experimental (a-c) results. (a) Evolution of loss function (mean squared error) for
age prediction dataset. (b) Evolution of accuracy and loss function (categorical cross entropy) for digit clas-
sification with audio dataset. (c) Evolution of accuracy and loss function (categorical cross entropy) for
speaker classification with audio dataset.

Face image dataset

Next, we tackled the problem of estimating the age of a person from an image of the person’s
face. A dataset containing 9780 images of faces of people from different gender and ethnicity with
a long age span (0-116) is used [127]. The age is first normalized from 0 to 1. The number 1 repre-
sents the oldest person (116 years old). Here again, a single neuron is employed as the decision
layer using the recorded fiber output intensity profiles. The achieved RMSE for age prediction is
0.167 normalized years. For the first 1000 samples the true ages (Labels) and predictions are
shown in Figure 7.3 b. Some predictions have negative values, which is impossible; however, this
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error is due to the final regression layer. This task is promising since image problems are massive
and power-hungry in digital machine learning tools and gave birth to the convolutional neural
network (CNN) architectures.

Audio digit dataset

Classification of isolated audio records is one of the popular implementations of machine learning,
which has a wide range of applications. We employed spoken digit classification to challenge the
SOLO system. The audio digit classification dataset incorporates recordings of English digits by six
distinct people [128]. Audio recordings are inherently time-varying signals. Following the standard
approach, one-dimensional audio signals were converted to two-dimensional representation by
generating so-called Mel spectrograms. These spectrograms of audio recordings were provided as
inputs to the SLM. Similar to the previous dataset, the spectrograms are encoded on the pulses
with high peak power. Instead of 4f imaging, we employed a dispersive element (diffraction grat-
ing) after collimating the fiber output (see Figure 7.1). The dispersive element introduces frequen-
cy domain changes to spatial distribution of the nonlinearly processed information. In our experi-
ments we noticed that this frequency resolved measurement increases the accuracy of the output
decision layer for classification tasks (audio digit and Covid-19) but decreases the performance for
the regression datasets (sinc, abalone and face image). The output decision layer classifies the
recorded respective fiber output intensity images and 94.5% accuracy over test data is obtained
(see Figure 7.3 c) for digit categorization task with frequency resolved beam profile measurement
technique (see Methods).
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ured effect of nonlinear pulse propagation on categorization accuracy.

64



To demonstrate the versatility of SOLO, we changed the task for the same dataset and aimed to
differentiate the speaker from the audio record. Since the nonlinear transformation is independ-
ent of the task, we only updated the decision layer in SOLO and achieved 95.2% accuracy on test
data as presented in Figure 7.3 d with frequency resolved beam profile measurement technique
(see Methods). The evolution of loss and accuracy (if applicable) functions for our digital decision
layer with fiber simulation results are presented in Figure 7.4 a-c.

COVID-19 dataset

Encouraged by the performance we obtained with the relatively simple tasks described so far, we
tested SOLO with a difficult challenge of current interest by studying COVID-19 diagnosis with a
dataset consisting of 3000 X-ray samples [129]. Similar to the audio dataset, X-ray samples are
applied to pulses as phase modulation and the corresponding fiber output intensity patterns were
recorded after a dispersive element. By performing classification in the decision layer, 83.2% accu-
racy over the unseen test set is achieved (see Figure 7.5).

7.2.2 Physical model

The nonlinear mapping performed by the MMF can be investigated by the beam propagation
method involving the fiber mode amplitudes (Equation 7.1) [6]. In an ideal fiber without imperfec-
tions and bending, with low power pulse or continuous-wave light, only the phases of the mode
coefficients change at different rates, due to modal and chromatic dispersion, without any inter-
modal power exchange. This behavior is captured by the first term in Equation 7.1. This results in a
linear transformation of the field as it propagates through the fiber.

Mode-coupling caused by perturbations due to fiber bending or by impurities, shown by matrix C,
also acts as linear mixing (the second term in the following equation) [6], [130].
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If the peak power of the pulse is high enough to induce nonlinear behavior in the material, nonlin-
ear mode coupling takes place, and it results in a nonlinear operation on the information spatially
encoded in the intense pulse throughout the fiber (the third term in Equation 7.1). For each prop-
agation step, the fiber modes couple to each other according to the linear coupling coefficients
and the nonlinear coupling tensor, indicated by 7. This nonlinear operator can be modeled at each
propagation step by multiplying each three-element combination of mode coefficients with the
related entry of the nonlinear mode coupling tensor (for details see Appendix A.1). In Equation

7.1, B, is the group velocity dispersion for the central frequency of the pulse and 6[30(7") (631(”)) is
the difference between first (second) Taylor expansion coefficient of the propagation constant for
corresponding and the fundamental mode.
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Figure 7.6: lllustration of the spatiotemporal nonlinear pulse propagation as deep neural network architec-
ture in the experimental setup. Each elementary step Az in the MMF is modeled as a cascade of linear and
nonlinear network-like operators capturing the phase delay (in blue), the linear mode coupling due to ben-
ding and imperfections (in red), and the nonlinear mode coupling (in magenta and yellow).

7.2.3 Numerical studies

Our experiments demonstrated that the proposed optical computing framework can process in-
formation and has potential to learn with adequate performance. To understand the nonlinearity
in the MMF, and analyze its effect on learning, we performed time-dependent beam propagation
method (TBPM) simulations (see Method section and Appendix A.2). Numerically studying pulse
propagation in the 5m GRIN MMF for a dataset with 3000 samples requires approximately 2 years
with our GPU parallelized simulation as explained in the Methods section. To reduce the computa-
tion time but maintain the required optical nonlinearity, we performed a rescaling of the propaga-
tion length and pulse peak power, also explained in the Methods section. We numerically studied
the learning sinc function (see Appendix A.3), abalone dataset, face image dataset and audio da-
taset (see Appendix A.4). Note that the numerical simulation is only partial due to computational
limitation and scalar. Due to the scalar nature of the simulation, the simulated fiber supports 120
spatial modes as oppose to the experiments where the test fiber supports 240 spatial modes. This
difference causes information loss for the nonlinear mapping takes place in the numerical studies.
As a result, the data is not fully linearly separable after the numerically simulated operation
whereas experimentally the data becomes linearly separable as evidenced by the flattening of the
learning curves in Figure 7.4.

Last but not least, we simulated nonlinear beam propagation in GRIN MMF by encoding the
COVID-19 dataset onto the optical pulses. 3000 X-ray samples are propagated numerically and by
performing classification to the resulting spatial distribution of the pulses, 70.8% accuracy is
achieved (see Figure 7.7 a-c), which is significantly lower than the experimentally obtained classifi-
cation accuracy (83.2%). For categorization tasks, our numerical results offered lower performanc-
es than our experimental studies. These tasks require optically processing 2D information and the
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simulations were performed with a shorter fiber lengths and higher peak power due to the previ-
ously mentioned computational complexities. This simplification may not have captured the com-
plex nonlinear mapping occurring in a longer fiber and lower peak power.
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Figure 7.7: Numerically tested COVID-19 X-ray dataset. (a) Confusion matrix for condition classification.
Evolution of accuracy (b) and loss (c) functions for COVID-19 X-ray dataset. Simulated effect of pulse peak
power (d) and fiber length (e) on categorization accuracy.

To understand the impact of peak power and fiber length, we simulated the COVID-19 dataset
with lower peak power levels and shorter fiber lengths. The numerically obtained 70.8% COVID-19
diagnosis accuracy decreased to 68.8 % and 67.2 % when the peak power respectively decreased
to half and quarter of the initial power. Similar results were also obtained for shorter propagation
lengths such as by decreasing the fiber length from 10 to 5 self-imaging period, we could achieve
67.5% diagnosis accuracy. A further decrease of fiber length by 2 self-imaging periods resulted in
64.5% diagnosis accuracy in our simulations. The numerically achieved confusion matrices for
these studies are shown in Figure 7.7. This simulation confirms the role of high intensity light in
learning ability.

7.3 Discussion

The present study reveals that the nonlinear interactions in spatiotemporal pulse propagation in
MMFs is a key element for learning. It is also important to understand how the performance of
SOLO scales with the input data size. We first analyze how the power scales with the input size for

67



SOLO. The number of modes N in a MMF scales proportionally to the fiber core area, hence the
optical power necessary to maintain the same intensity per mode scales linearly with the number
of modes. Since a fiber having N modes can accommodate N-dimensional input (law of etendue),
the optical power scales with the size of the dimensional input N. The GRIN MMF used in the pre-
sent study supports 240 modes (counting the polarization degeneracy) and experimentally, learn-
ing reached an optimum for a pulse peak power of 3.4 kW for nonlinear optical effects which cor-
responds to 4.4 mW average optical power for 125 kHz repetition rate and 10 ps pulse duration.
Thus, to perform the computation in our experiments, the required average optical power is 18
UW per fiber mode (4.4 mW/240).

In terms of optical computing operations, we can assume that the number of operations is at least
of the order of N2, since the input of size N is first multiplied with the number of modes (mode
decomposition) and then each of the N modes is operated upon. This can be seen from the propa-
gation Equation 7.1 or its implementation as a network in Figure 7.6. The nonlinear coupling ten-
sor 11 has the largest terms for self-phase and cross phase modulation [6]. Even keeping only these
terms, the number of multiplications reduces to N2. As Figure 7.6 suggest, this latter computation
is performed many times in the fiber.

With current SLM technology, the number of inputs N can reach up to 107 pixels with a 60 Hz re-
fresh rate [131]. Increasing the number of fiber modes to 107 can be done by employing large core
MMFs and/or multicore MMFs. The number of Operations per seconds would then be N2 x SLM
refresh rate, or more than 6 PetaOps/s. The digital single layer network N x 1 following the optical
computation would require only 60107 FLOPs.

At this hypothetical optical computation rate of 6 PetaOps/s, an optimal pulsed laser having 10 ps
long pulses with a 60 Hz repetition rate synchronized to the 60 Hz SLM, would require less than 1
W of average optical power. By comparison, the world’s fastest supercomputer, Fugaku at the
Riken Center in Japan consumes 30 MW, which is 15 gigaFLOPS/W [132]. The SOLO system has 6
orders of magnitude less power consumption per computation.

The digital counterparts of the SOLO can be categorized into three categories. The first approach
can be the simulations with exact experimental parameters such as 5 m GRIN MMF. As we already
saw such an approach will require more than 2 years of GPU computation for a dataset with 3000
samples when the simulation grid sizes are set to the parameters explained in the Methods sec-
tion of this paper. The second approach can be to compare SOLO to a deep neural network that is
trained to learn the spatiotemporal pulse propagation in MMFs. This approach has been achieved
for linear propagation in MMFs with particular datasets [53], [54] with networks having at least
>14 layers and >50 million parameters (weights). Nonlinear propagation studies are yet to be in-
vestigated but it is reasonable to expect that more complex networks would be required to learn
nonlinear propagation in MMF. The last approach can be the standard deep neural networks
whose structure is unrelated to SOLO for each specific task. This approach requires designing spe-
cific network architectures for each dataset type.
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SOLO is a computing framework on which different problems were embedded and were experi-
mentally implemented. Our study demonstrated calculations that yield performance comparable
to convolutional neural networks and higher than fully connected ELM architectures (see Appen-
dix A.11). With digital or optical feedback, the present optical paradigm could act as a reservoir
network structure [133]. Our tests targeted supervised learning examples, yet unsupervised learn-
ing is possible with the proposed technique due to the label-free nonlinear projection behavior of
the spatiotemporal pulse propagation. To increase the performance of SOLO or to adapt it for
more challenging tasks, the decision layer used in the present studies can be modified with addi-
tional layers. Thus, SOLO can compute information as a fast and efficient front-end module.

To evaluate the robustness of the present optical computing method, we repeated the experi-
ments for the COVID-19 dataset a weeks after the prior measurements presented in Figure 7.5.
Without requiring a calibration, we obtained the same learning performance level for diagnosing
COVID-19 from X-ray images (see Appendix A.8). Furthermore, we performed detailed analysis to
determine the stability of the setup. As an analog system, equipment (laser source, SLM) used in
the SOLO experiments inherit noise-like behaviors such as laser pointing stability, SLM stability. In
our tests (see Appendix A.9), we obtained high stability with 12.63 signal to noise ratio. These
demonstrations shows that the proposed SOLO method is remarkably robust, and reproducible.

7.4 Outlook and Conclusion

The presented optical computing framework can be further improved with an active MMF scheme
where the fiber is mechanically perturbed [134] or the pump light is also shaped to control spatio-
temporal nonlinear propagation. Different cases of adaptive pumping in fiber amplifiers are al-
ready demonstrated in the literature [135], [136]. Such an implementation may lead to optically
controllable computing with nonlinear fiber optics.

We envision that another implementation of SOLO can be realized with silicon-on-Insulator tech-
nology. This technology enables optical functions on integrated circuits, which already resulted in
many useful applications [137]. Nonlinear silicon photonics already demonstrated supercontinuum
generation through self-phase modulation, light amplification using the Raman effect and matrix
convolution operations [138], [139]. By leveraging the existing integrated silicon photonic manu-
facturing platform, it is possible to implement the machine learning that we demonstrated in opti-
cal fibers.

In conclusion, we have shown how spatiotemporal nonlinear pulse propagation in MMFs can opti-
cally process information to compute complex machine learning tasks that only sophisticated deep
neural networks can tackle. In our benchmarks, the proposed optical computing platform per-
forms as powerful as its digital counterparts for different tasks. With better energy efficiency that
previous proposals and a path to PetaOPs scalability, SOLO provides a novel path toward super-
computer-level optical computation.
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7.5 Method

7.5.1 Experimental setup

As the light source, an Yb fiber laser (Amplitude Laser-Satsuma) that produces 10ps pulses with a
125 kHz repetition rate is selected. The pulse is centered around 1033 nm with a width of 10 nm.
The linearly polarized Gaussian laser output beam is shaped via a phase-only SLM (Holoeye Pluto-
NIRII), an 8um pixel pitch and 60 Hz speed. The SLM prints the desired input pattern on top of a
grating phase pattern that expels unmodulated light. We used 5m of a commercial GRIN 50/125
multimode fiber with NA of 0.2; this fiber allows 120 modes per polarization for the given excita-
tion. The phase-modulated light from SLM is imaged onto the MMF with a 15mm lens focal length.
The information beam covers the whole MMF core area. The beam-core overlap is checked by
imaging the back reflection of the proximal fiber side (not shown in Fig 1). The distal fiber side is
magnified 12.5 times through a 4f imaging system and recorded by a camera with a 5.2um pixel
pitch. As an alternative method, instead of 4f imaging, frequency-resolved spatial measurement
with a dispersive optical element (grating with a 600line/mm period) is used as presented in Fig 1.
Images are 2D arrays, therefore the image datasets are directly mapped to SLM pixels. We illumi-
nated the 600-by-600 pixels central region of the SLM and all images are scaled to that size to cov-
er the entire beam. A blazed grating is added to the pattern to prevent unmodulated DC light to
enter the fiber. Encoding 2D arrays are relatively easy than a scalar or 1D input. To handle a scalar
input (such as for Sinc experiment), we mapped the scalar value to a 2D array by multiplying the
value through a fixed random 2D matrix. This provides unique 2D matrixes for every distinct input
value. For a 1D input, we simply converted them to 2D and upscaled to the illumination pixel
range. For categorization tasks (audio digit and Covid-19 datasets) significant performance in-
creases are observed and reported here. We monitored fiber output power after and before the
MMF continuously. Various neutral density filters are embedded to avoid camera saturation. The
pulse power and width are optimized so that the pulse conserves its temporal unity (no temporal
splitting) and maximizes spatial interactions.

7.5.2 Numerical Simulations

We implemented a GPU parallelized time-dependent beam propagation method (TBPM) in Python
to simulate sufficiently fast nonlinear pulse propagation in the fiber. TBPM simulations often re-
guire long computational times due to heavy multidimensional fast Fourier transform calculations.
The launched pulses centered at 1030 nm with one ps duration were numerically propagated for
10 self-imaging periods distance. In the experiment, the fiber length is 5 m. To reach a manageable
computing time for the datasets with 3000 samples, we performed a rescaling of the propagation
length from 5 m to ~5.5 mm. To generate significantly nonlinear spatiotemporal evolution in such
a short propagation, we increased the pulse peak power to 10 MW. The time window of simula-
tion is 20ps with 9.8 fs resolution and the spatial window is set as a 64x64 spatial grid. To properly
simulate the graded-index MMF's spatial self-imaging, the numerical integration step is set to
sample each self-imaging period 16 times. To create an absorptive boundary condition around the
core we truncated the parabolic fiber index profile with the super-Gaussian filter. We matched the
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launched Gaussian beam diameter (1/e2) to fiber core size (50 um). For our studies, we encoded
data into the beam as a multiplied phase information. After propagation, the obtained pulse is
time-averaged and converted into normalized intensity images. There are several ways of convert-
ing images into one-dimensional representations. For simplicity, we used a flattened version of
downsampled images as an output vector. Finally, flattened output vectors are linearly fitted using
the standard Linear Regression method.
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Chapter 8  Conclusion

This thesis presents novel approaches and methods to explore spatiotemporal nonlinear dynamics
in multimode optical fibers for machine learning, computing and fiber laser applications.

8.1 Summary of the results

Mode-locked fiber lasers with multimode fibers are recently demonstrated alternative paths to
achieve ultrashort pulses with high pulse energies and peak powers. The main disadvantage of the
method was low output beam quality. We tackled this problem by studying complex spatiotem-
poral dynamics in an oscillator architecture to improve the beam quality to make these lasers
compatible with other high power laser structures such as solid-state lasers. By altering the laser
cavity dynamics and achieving self-similar pulse propagation in a multimode fiber laser for the first
time, we demonstrated a method to improve output beam quality. While preserving relatively
high pulse energy and sub-200 fs pulse durations we reported near-Gaussian beam quality with
M?<1.4.

In a follow-up study, encouraged by the achieved improvements in the output beam quality, we
demonstrated a method to generate a perfect Gaussian (single-mode) beam profile with high
pulse energy (>20 nJ) and sub-100 fs pulse duration. We utilized the dispersion-managed cavity
design for tailoring intracavity spatiotemporal dynamics to reach Kerr-induced nonlinear beam
cleaning threshold with the mode-locked pulses. The nonlinear beam cleaning dynamics are veri-
fied with numerical and experimental studies. With this novel approach, we reported sub-100 fs
compressed pulses with single-mode (M2<1.13) output beam profile and >20 nJ pulse energy.

Later, an all-fiber spatiotemporally mode-locked laser architecture is demonstrated. All-fiber laser
structures are required to realize compact and stable fiber laser solutions. With Yb-gain, multi-
mode interference-based bandpass filtering is implemented in a multimode oscillator to generate
mode-locking in a cost-efficient and alignment-free design. With the demonstrated method, we
reported spatiotemporal mode-locking with 12 mW average power, 6 ps pulse duration with 24.3
MHz repetition frequency.

To learn and control nonlinear frequency generation in GRIN MMFs, a DNN architecture is utilized
for the first time. The relation between shaped beam patterns to excite the GRIN MMF and the
generated nonlinearly broadened spectra is learned with the machine learning tool for different
nonlinear regimes. Later, the trained neural networks are tested in an experimental setting to
generated tailored spectral broadening and achieve tunable frequency generation.
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The nonlinear spatiotemporal propagating of ultrashort pulses in GRIN MMFs are learned and uti-
lized the replace time-consuming, heavy simulations with a machine learning architecture capable
of acquiring sequential changes in the data, an RNN. We showed that temporal and spatial nonlin-
ear evolution can be grasped by a simple RNN design. With the high accuracy and short inference
times, the trained RNN operates 40 times faster than conventional numerical simulations. With
sufficient generalization and modifications, this method can be used to replace computationally
challenging numerical studies in various research fields.

Finally, a novel optical computing framework based on optical spatiotemporal nonlinear interac-
tions in a GRIN MMF is demonstrated to perform machine learning tasks. Similar to neuromorphic
computing methods, nonlinear information processing is achieved with the optical setup and
complemented with a simple regression or classification digital layer. We observed that the
strength of nonlinear in-formation processing is linked with the strength of optical nonlinear dy-
namics in the test fiber. The presented energy-efficient optical computing is easily scalable and
capable to perform PetaOps with the existing beam shaping and imaging tools.

8.2 Outlook and conclusion

Optical fibers offer a tabletop platform to study complex and nonlinear dynamics rapidly and cost-
efficiently. In numerous orientations, nonlinear field propagation in single or multimode optical
fiber can mimic various phenomena occurring in physical world settings such as ocean waves with
soliton and rogue wave dynamics.

Spatiotemporal mode-locked lasers can be controlled actively by implementing active spatial
(SLM) and temporal (acousto/electro-optic modulators) control elements to the cavity. Although
these active controlling units introduce bulkiness, they allow more precise tuning in the light prop-
agation thus can open a smart path for the ultrashort pulse generation with high peak power and
pulse energy. Furthermore, machine learning algorithms can be implemented to optimize cavity
dynamics with active controlling units to multimode lasers similar to our studies for single-pass
nonlinear dynamics presented in Chapter 5 and Chapter 6.

Optical computing with MMF nonlinearity is a brand-new concept and offers different approaches
to tackle various tasks. The presented information encoding and decoding algorithms in Chapter 7
can be optimized with advanced image processing techniques. Advanced real-time measurement
methods can be introduced to replace the conventional 4f imaging technique and may bring more
inside. Multiple sources with different parameters (wavelength, pulse duration, etc) can be used
instead of a single source with fixed pulse parameters. Different approaches to control the nonlin-
ear information processing in the GRIN MMF to increase the performance of the system in particu-
lar datasets can be introduced.

In conclusion, in this thesis, we focused on lasers, machine learning applications and optical com-
puting by exploring nonlinear dynamics in multimode fibers. Yet, these applications are just a sub-

73



set of the broad capabilities which optical fibers can offer for fundamental science and engineer-
ing studies.
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Appendix A

A.1 Physical Model of the Computation Framework

The optical beam at any position of the optical fiber can be decomposed into spatial modes of the
fiber. In Equation A.1, E (p, ¢, w) is the electric field of the light, A4, is the envelope of the corre-
sponding mode along the propagation direction z and F; is the mode shape. Equation A.2 shows
the solution of the mode shape F; for graded index fibers having relative index difference of A
and radius of R, L, is the generalized Laguerre polynomial. The modes propagation constant 8, ,,
are calculated using Equation A.3.
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Propagation of an intense pulse inside an optical fiber can be analyzed following this representa-
tion. Equation A.4 represents the nonlinear spatiotemporal evolution of each mode. Each mode is
coupled to the others through the nonlinearity tensor coefficient 1, ; ., ,which models nonlinear
intermodal and intramodal effects, and through a linear coupling coefficient (C, ) which express-
es mode coupling due to perturbations to the ideal fiber shape and refractive index distribution,
such as bending and impurities. The linear coupling coefficient (C, ,) relates perturbation in per-
mittivity (or refractive index) to intermodal model coupling by calculating the overlap integral with
the corresponding mode shapes. Similarly, the nonlinearity tensor coefficient (1, ;) is comput-
ed with the normalized overlap integral of modes. We computed the nonlinear coupling tensor
between the modes for our GRIN-50/125 fiber. The tensor has a 1204 size and computing all non-
linear terms took two and a half months on a server computer with 2x Intel Xeon CPU E5-2670 and
384 GB of RAM. The cross-phase modulation coefficients (1, 4 4, inter modal nonlinearities) are
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shown in Figure A.1, where the diagonal terms correspond to self-phase modulation (1,55, in-
tramodal nonlinearities). This demonstrates the richness of the nonlinear interaction that SOLO
relies upon. Note that four-wave mixing could not be shown on the graph due to its dimensionali-

ty.
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Figure A.1: Intra- and Intermodal nonlinear coupling coefficients (1, 5 4.4, p.p.p.p)

A.2 Time Dependent Beam Propagation

Instead of considering individual mode field propagation, we use. Equation A.7 to describe the
total field propagation in a GRIN fiber without perturbations. We numerically implemented Equa-
tion A.7 using symmetrized split-step Fourier Method. The codes are implemented in Python +
Cupy library which made it possible to utilize powerful GPUs. The time steps are selected at the
Nyquist rate defined by the wavelengths range given in Equation A.8-A.9. We used the self-
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imaging period as one of our control knobs in simulations using the equations in Equation A.10. A
in the Equation A.8 is the slowly varying envelope at the center frequency.

The datasets are divided with a ratio of 0.2 for training (2400 samples) and validation (600 sam-
ples). The regression is implemented using Scikit-learn or Tensorflow on Google Colab cloud ser-
vice which provides an Intel Xeon CPU and Nvidia Tesla V100 GPU. We also used single dense layer
without nonlinear activations for linear regression.
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A.3  Single value regression of Sinc function

First, we tested the nonlinear information transformation ability of spatiotemporal propagation of
high peak power pulses numerically by performing time-dependent beam propagation method
(TBPM) simulations. Our first numerical simulation was learning the Sinc function input-output
relation numerically duplicating the experiment we described above. The Sinc is a simple nonlinear
function that cannot be learned with a single-layer network and it has been used as a standard
benchmark to validate learning methods. We used 3000 randomly generated samples, which lie in
[-r,t] to cover the Sinc function's characteristic behavior. We fed the generated samples to TBPM
by expanding scalar values to two-dimensional form using a random mask and calculated the non-
linear pulse propagation in the GRIN MMF. The projected intensity distribution at the distal end of
the fiber is considered as the nonlinearly transformed information. The linear regression parame-
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ters are retrieved from the training data, and the overall performance is assessed by the test data.
A remarkable learning performance with 0.0039 root-mean-squared error (RMSE) for the test data
is obtained. The achieved performance shows that spatiotemporal fiber nonlinearity provides a
significant contribution to learning ability. The result proves that our computational device trans-
formed the input space to a higher dimensional space efficiently such that the proposed frame-
work interpolates a function for the unseen data.

1F Label
r + Prediction

Label
+ Prediction

Figure A.3: Learning the Sinc function from experimental data
A.4  Results of numerical studies

We simulated the nonlinear pulse propagation with the abalone dataset information to perform
multivariable regression. We encoded the abalone features as the spatial phase distribution of a
pulse in our numerical implementation onto the input beam. Similar to the Sinc function, a deci-
sion layer to perform linear regression is employed and we obtained an age prediction with re-
markable accuracy (RMSE of 0.0831). Figure A.4a presents normalized correct ages and predic-
tions. We continued our numerical studies with the face image dataset. By encoding different hu-
man face images into the simulated pulse, each person's age on the images was estimated, and an
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RMSE of 0. 2175 on normalized output values indicated again close correspondence with the ex-
perimental studies (see Figure A.4b).
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Figure A.4: Experimental (a-d) learning results for regression and classification tasks. (a) Learning of abalo-
ne (multivariable) dataset. (b) Age prediction from face image dataset. (c) Confusion matrix for audio da-
taset digit classification. (d) Confusion matrix for audio dataset speaker classification.

As indicated in our experimental studies, the audio data can also be converted to a two-
dimensional format and regarded as an image analysis task by calculating the related spectrogram.
This way, we simulated the nonlinear propagation of pulses for audio digit for categorization pur-
poses. By taking the fiber output beam shapes as inputs to a single layer classifyer gave approxi-
mately 68% accuracy as shown in Figure A.4c. Similar to our experimental investigations, we up-
dated the decision layer and tried to differentiate the speaker from the audio record. In our nu-
merical studies, we obtained 61% accuracy over the unseen test set (see Figure A.4d). The evolu-
tion of loss and accuracy (if applicable) functions for our digital decision layer with experimental
results are presented in Figure A.5a-c.
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Figure A.5: Training of the numerical (a-c) results. (a) Evolution of loss function for age prediction dataset.
(b) Evolution of accuracy and loss function for digit classification with audio dataset. (c) Evolution of accura-
cy and loss function for speaker classification with audio dataset.

A.5 Power Oscillations during experiment
Learning is related to the amount of nonlinearity (or power). Therefore, stable power is required

during experiments. Figure A.6 shows power fluctuations recorded at the fiber end. There is a
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small variation due to the modulated diffraction efficiency of grating that depends on the encoded
patterns. During this measurement, the mean output average power is 1.58 mW and standard
deviation is 0.0292 which results in 1.84% power oscillation for the dataset.
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Figure A.6: Output power fluctuations of Face dataset
A.6 Peak power vs Beam and Spectrum Analysis

The effect of the nonlinearity on the output beam shape and spectrum are shown in Figure A.7. In
these experiments, a symmetric Gaussian beam with flat phase is injected without any encoding.
The power of the beam at the output of the fiber is concentrated in the center. In Figure A.7, we
observe that an increase of peak power spreads the spectrum and the spatial distribution of the
output beam initially spread from center (Figure A.7a-b). Raman beam cleaning then becomes

dominant when the power further increase, which creates again a beam with powe concentrated
in the center.
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Figure A.7: Spectrum and output beam evolution at the end of the test fiber with increasing pulse peak
power.
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A.7 Robustness of experiments

The robustness test results of the experimentally demonstrated optical computing method are
presented in this section. The exact same experiments with the COVID 19 X-ray images were per-
formed again at a week interval. Around 82% accuracy over test data is achieved like the results
obtained in Figure 7.5 in the main text. These results (Figure A.8) validate the robustness of the
present optical computing framework.
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Figure A.8: Experimentally tested COVID-19 X-raydataset. (a) Confusion matrix for condition classification.
Evolution of accuracy (b) and loss (c) functions for COVID-19 X-ray dataset.

A.8 Covid-19 X-ray dataset outputs

An example of input and output relation in SOLO is presented in Figure A.9. Here the input images
are loaded on the SLM. After propagation through the fiber, the beam profile is recorded corre-
sponding to each respective input. These beam profiles contain the nonlinearly processed input
information for the decision layer, as explained in detail in the Methods section in Chapter 7.
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Figure A.9: Experimentally used input images and SOLO output beam profiles for COVID-19 X-ray dataset.
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A.9 Stability and noise of experiments

To measure the stability and the noise of the experiments, we send the same data (1st image in
Covid-19 X-ray dataset) for an hour in the SOLO experiment. In every step, the image is encoded to
SLM from scratch and the fiber output measurements are performed. The Figure A.10 and Figure
A.11 shows the changes in the obtained fiber output images. The measurement time for the da-
taset of a 3000 sample in our experiments is 30 minutes. For this time interval, the average RMSE
in the presented measurement in Figure A.11 is 0.079 which corresponds to a 12.63 signal to noise
ratio (SNR). With the log2(SNR) relation, the bit accuracy of the experiment is around 3.65.

The obtained SNR and RMSE values include all the possible noise and drift sources that can take
place in our experimental configuration. These possible noise and drift sources include laser point-
ing stability, SLM’s electronic and temperature noise and optical alignment changes.
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Figure A.10: Pearson correlation coefficient between the first fiber output beam profile and the following
measurements over an hour.
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Figure A.11: Normalized root mean squared error between the first fiber output beam profile and the fol-
lowing measurements over an hour.
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A.10 Effect of peak power for other datasets

Similar to the sinc function dataset presented in Figure 7.2, peak power is the only controlling fac-
tor for adjusting the accumulated nonlinear interactions inside the fiber for the reported configu-
ration. As an example, impact of the peak power on the accuracy is demonstrated in Appendix
Table A.1 for the audio digit and Covid-19 X-ray datasets.

Peak power (kW) Covid-19 dataset acc. Audio digit dataset acc.
1.76 77% 91%
3.11 78% 92%
3.47 83% 95%
3.77 78% 93%
7.09 77% 91%

Appendix Table A.1

A.11 Comparison of SOLO with digital neural networks

To make a comparison of the performance of SOLO with its digital counterparts, we performed the
classification tasks with Covid-19 and Audio dataset by using an ELM and convolutional neural
network (CNN), similar to LeNet. The ELM is consisting of 1 layer with fixed weights and nonlinear
(sigmoid) activation function and a following trainable layer. The CNN is consisting of 3 convolu-
tional layers (with maxpool and dropout features) and 2 dense layers. The accuracy comparison
between the computation architectures is presented in Appendix Table A.2.

Architecture

Acc. for Covid-19

Acc. for Audio Digit

Acc. for Audio Speaker

SOLO 83% 95% 95%
ELM 75% 82% 88%
CNN (3C+2D) 91% 98% 99%

Appendix Table A.2
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