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Abstract— This work presents ReBeatICG, a real-time, low-
complexity beat-to-beat impedance cardiography (ICG) delin-
eation algorithm that allows hemodynamic parameters moni-
toring. The proposed procedure relies only on the ICG signal
compared to most algorithms found in the literature that rely
on synchronous electrocardiogram signal (ECG) recordings.
ReBeatICG was designed with implementation on an ultra-low-
power microcontroller (MCU) in mind. The detection accuracy
of the developed algorithm is tested against points manually
labeled by cardiologists. It achieves a detection Gmean accu-
racy of 94.9%, 98.6%, 90.3%, and 84.3% for the B, C, X,
and O characteristic points, respectively. Furthermore, several
hemodynamic parameters were calculated based on annotated
characteristic points and compared with values generated from
the cardiologists’ annotations. ReBeatICG achieved mean error
rates of 0.11 ms, 9.72 ms, 8.32 ms, and 3.97% for HR, LVET,
IVRT, and relative C-point amplitude, respectively.

I. INTRODUCTION

According to the World Health Organisation (WHO),
cardiovascular diseases (CVDs) are globally the highest cause
of death. 17.9 million people died from CVDs in 2016, or
31% of all global deaths [1]. Hemodynamic parameters, such
as stroke volume or cardiac output, are vital to estimate
cardio-respiratory activity and evaluate the subject’s condition.
Hence, an ambulatory and unobtrusive monitoring of such
parameters enables remote CVD monitoring and diagnosis, re-
duces related hospitalization costs, expands patients’ mobility,
and improves their quality of life [2].

Widely used noninvasive techniques to obtain the hemody-
namic parameters are doppler echocardiography, CO2 breath
analysis, seismocardiography, impedance cardiography (ICG)
and phonocardiography [3]. Among them, ICG is a suitable
measurement for continuous and real-time monitoring of the
hemodynamic function of the cardiovascular system since
it is a noninvasive, simple, and low-cost technique. Many
useful hemodynamic parameters can be determined from the
ICG signal, such as cardiac output (CO), stroke volume (SV),
overall vascular resistance, systolic time intervals [4] (e.g., left
ventricular ejection time (LVET), pre-ejection period (PEP),
systolic time ratio [5]), or thoracic fluid content.

ICG has been used in various applications, including
monitoring the cardiac rehabilitation process, monitoring of
hemodynamics during hemodialysis, and pharmacological,
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physiological, and sleep studies [6], [7]. Moreover, with
current advances in wearable technologies and ultra-low-
power microcontrollers (MCU), ICG is a promising technique
for monitoring hemodynamic parameters and, thus several
CVDs [8]. Still, it requires an accurate and real-time detection
of the ICG’s characteristic points.

However, to the best of our knowledge, no real-time,
low-complexity, and beat-to-beat algorithm that can be
implemented on an ultra-low-power MCU has been developed
yet. Most of the state-of-the-art algorithms are based on the
averaging of multiple cardiac cycles technique [4], [9]–[13],
which needs the beat-to-beat synchronous reference from
the electrocardiogram (ECG) signal. The assemble averaging
method allows the removal of movement artifacts, respiratory
influences, and stochastic distributed noise, which are the
main sources of noise affecting the ICG signal. Although
other ICG filtering and delineation approaches have been
proposed, they are not suitable to be used in real-time and on
a constrained system employing an ultra-low-power MCU.

Therefore, we propose a real-time and low-complexity
procedure for the automatic detection of beat-to-beat ICG
characteristic points that can be later used on ultra-low-
power MCUs. Most of the automatic algorithms found in the
literature rely on the synchronously measured ECG signal
to detect the prominent peaks of the ICG signal. In contrast,
our algorithm relies only on the ICG signal, which has the
advantage of reducing the complexity of acquisition and signal
processing since no alignment between the two signals is
needed. Moreover, our algorithm includes an adaptive filtering
stage based on the state-of-the-art Savitzky-Golay filter (SG).

The contributions of this work are therefore as follows:
• ReBeatICG: a new real-time and low-complexity beat-

to-beat delineation methodology, relying only on the
ICG signal for hemodynamic parameters monitoring on
wearable devices.

• An adaptive algorithm for choosing the length of the
Savitzky-Golay filter, making our detection more robust
to artifacts and baseline shifts.

• Adaptation of an ECG R-peak detection algorithm based
on the relative energy method to detect the C points of
the ICG, achieving a detection Gmean of 98.6%.

• A novel method to detect the pairs of X and O points,
obtaining a detection Gmean of 90.3% and 84.3%,
respectively.

• Hemodynamic parameters monitoring, with precision on
the level of state-of-the-art algorithms, namely, mean
error rates of 0.11 ms, 9.72 ms, 8.32 ms and 3.97%
for HR, LVET, IVRT, and relative C-point amplitude,



A-Wave - Contraction of atrium
B - Opening of aortic valve  
C - Max. systolic flow
X -  Closing of aortic valve  
Y -  Closing of pulmonary valve             
B - Opening of mitral valve     

   PEP - Pre-Ejection Period
 LVET - Left Ventricular Ejection Time 

Fig. 1. Left: Electrocardiography (ECG), impedance variation (IMP),
and impedance cardiography signal (ICG). Right: Common definition
for the ICG characteristic points and hemodynamic parameters [6]

respectively.
• A new open-access database of ICG signals that include

1920 beats fully annotated by a cardiologist used to test
our ReBeatICG algorithm.

II. BACKGROUND AND RELATED WORK

A. Impedance Cardiography

Impedance cardiography is a noninvasive technique for
measuring changes in the thorax impedance (Z0) driven
by the intrathoracic fluid changes with each heartbeat [14],
[15]. Transthoracic impedance is modulated by the cardio-
respiratory activity, so that a decrease in impedance is related
to an increase in blood flow. ICG is measured by applying
a low-amplitude, high-frequency current through two outer
electrodes and then acquiring the electrical voltage difference
via two inner electrodes. ICG measures dZ/dt, or the first
derivative of the impedance signal Z0.

1) Characteristic Points Definition: The derivative of
impedance dZ/dt contains characteristic points related to
cardio-dynamic events i.e., A, B, C, X, Y, O [6], [16]. The
characteristic points of an ICG signal and its relation with
cardio-dynamic events are presented in Fig. 1.

C peak – Defined as the peak with the greatest amplitude
in one cardiac cycle that represents the maximum systolic
flow.

B point – Indicates the onset of the final rapid upstroke
toward the C point [15] that is expressed as the point of
significant change in the slope of ICG signal preceding the C
point. It is related to the aortic valve opening and is used to
calculate the SV and the CO. However, its identification can
be difficult due to variations in the ICG signal’s morphology.
Thus, different definitions have been proposed [4], [17]–[19].

X point – Often defined as the minimum dZ/dt value in
one cardiac cycle. However, this does not always hold true [4]
due to variations in the dZ/dt waveform morphology. Thus,
the X point is defined as the onset of the steep rise in ICG
towards the O point. It represents the aortic valve closing
which occurs after the T wave end of the ECG signal.

O point – The highest local maxima in the first half of the
C-C interval. It represents the mitral valve opening.

It is important to note that there are many variations in the
morphology of the ICG signals [4], [17]. In Fig. 2, locations
of B, C and X points on different variations of ICG signal
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Fig. 2. Three examples of dZ/dt (bottom) with the corresponding
ECG signal (top) representing the morphological variations in the
dZ/dt signal with its characteristic points presented in [4]. Left
case: B and X points occur at a local minimum and global minimum,
respectively; Middle case: the B point is a notch; Right case: the X
point is only a local minimum, not a global minimum.

morphology can be observed. Thus, defining algorithms and
detecting points on ICG signals is quite challenging.

2) Hemodynamic Parameters: Various hemodynamic pa-
rameters can be estimated from the ICG’s characteristic points.
The heart rate (HR) can be measured as the time between
two consequent C peaks. The Left Ventricular Ejection Time
(LVET) is the time interval measured from the B point to
the X point, and can be used to estimate the stroke volume
(SV) and the cardiac output (CO). The stroke volume echoes
the volume of blood pumped by the left ventricle at each
contraction, while the cardiac output is the total volume of
blood pumped by the ventricle, usually per minute [20]. The
isovolumetric relaxation time (IVRT) is the time interval
measured from the X point to the O point. The amplitude of
the C peak (denoted dZ/dtmax) is commonly defined with
respect to the amplitude of the corresponding B point, and
is as well necessary to calculate stroke volume and cardiac
output.

B. State-of-the-art ICG Preprocessing and Filtering Methods

The most important artifacts affecting the ICG signal are
sinusoidal, respiratory, muscle, and electrode artifacts [21].
Different preprocessing and filtering methods have been
proposed in literature [13], [16], which vary from simple
methods such as ensemble averaging of multiple cardiac
cycles [15], [22] to more advanced ones such as adaptive
noise cancellation [21], [23] and wavelet analysis [24], [25].
Among them, ensemble averaging is the most commonly used
method since it eliminates stochastically distributed noise as
well as respiratory influences and movement artifacts [4],
[9], [10]. However, averaging several cardiac cycles tends
to blur less distinctive events, such as the B point, making
its detection more difficult. Besides, it precludes beat-to-beat
analysis of cardiac hemodynamics parameters.

More complex techniques but also less suitable for real-
time implementation on wearable devices have been proposed.
For instance, adaptive filtering techniques that update the
filter weights according to the statistical nature of the error
signal, such as Least Mean Square and Recursive Least
Square algorithms [26], or hybrid algorithms that have been
developed to overcome the weight drift and instability of
adaptive filtering algorithms [21] were tested.
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Fig. 3. Workflow of our proposed ReBeatICG algorithm

In [13], common filtering techniques are compared, i.e., the
Savitzky-Golay (SG) filter, median filter, wavelet, band-pass
filter, and moving average filter. When comparing with a high-
pass filter, ensemble average, and spline interpolation, the SG
filter is the best option to remove respiration artifacts while
preserving the beat-to-beat information [10]. Similarly, [27]
shows that the SG filter is the most relevant for denoising
ICG signals with better signal shape preservation, particularly
the C peak amplitudes. Since the SG filter usage is very
simple and efficient [28], we selected it for our methodology.

C. State-of-the-art ICG Delineation Methods

After a filtering preprocessing step, the signal is segmented,
usually into beat-to-beat intervals to extract the characteristic
points. Most of the available methods, especially those using
an assembling averaging step, utilize the R-peak from the
ECG signal to define the beat-to-beat time interval in which to
search for C peak, defined as the highest point of ICG signal.
Many of them apply known R-peak detection algorithms (e.g.,
the Pan-Tompkins algorithm [28], [29]) to detect the C point
due to the similarity between ECG and ICG signals.

For detection of B, X, and O points, and to address its
morphological variations (see Fig. 2), several conditions based
on zero crossings, minima, and maxima of the dZ/dt signal
and its derivatives have been proposed [4], [7], [11], [15],
[29], [30]. Other algorithms employ time-frequency [31],
wavelet [22], or machine learning-based and data-driven poly-
nomial approaches [12]. However, they are computationally
expensive with respect to the condition-based approaches. In
addition, particularly time-frequency and wavelet approaches
are sensitive to any artifacts that have their frequency content
overlapping with the dZ/dt frequency content around the
characteristic points.

As the precise identification of the B point is paramount to
ensuring accurate computation of SV and CO [8], numerous
acquisition methods have been proposed in the literature [29].
The least computationally complex methods rely on deriva-
tives analysis, but they are sensitive to noise and artifacts
and may fail when there are several reversals, inflections, and
rapid slope changes on the signal [15], [30]. To overcome
this, in [12] and [29], a method is presented based on the
derivatives, but, applying several conditions and corrections
according to the morphology of the signal. For instance,
in [29], the B point is detected as the sign change within
20% and 65% of the R–C interval window of the ICG first
derivative. On the other hand, in [12], the B point is found

on the most prominent monotonically increasing segments
between the A and C points.

X and O points detection methods are less prominent
in the literature. They range from complex ones [22], [31]
(e.g., time-frequency analysis and wavelet-based) to simple
condition checking. The simplest approach to detect the X
point is as the first minimum after C wave [13], [28], [32]
or the lowest minimum within a given interval (i.e., in the
first one-third of the C-C interval) [7]. However, since the
X point is defined as the onset of steep rise towards the O
point, some algorithms apply different conditions to detect
the X-O pair [11], [29].

Although several ICG delineation algorithms have been
proposed, there is no complete proposal for low-complex
and accurate delineation of B, C, X and O points that
can be later implemented in a real-time wearable system.
Furthermore, there are no standard evaluation metrics nor
databases that allow the assessment and comparison with
previously proposed methods.

III. PROPOSED REBEATICG ALGORITHM

Our ReBeatICG ICG delineation algorithm was developed
for real-time, beat-to-beat hemodynamics parameters monitor-
ing, which detects B, C, X and O points only relying on the
ICG signal. We took advantage of many of the ideas from
existing ICG delineation algorithms to improve our algorithm
performance while selecting the least complex methods for a
later implementation on a lightweight wearable device. The
general workflow of ReBeatICG is presented in Fig. 3.

First, during the acquisition, the signal is segmented into
windows of 3 seconds. The segments are filtered by applying
the SG filter with a length adaptively selected based on the
Signal to Noise Ratio (SNRs). Next, C points are detected
using a novel procedure based on the R-peak REWARD
algorithm [33] and designed to be implemented on ultra-low-
power MCUs. Then, within the C-C intervals the B point
is detected, followed by the delineation of the X-O pair,
employing in both steps a derivative analysis together with
condition checking following the signal morphology.

The selected methods provide reliable detection while
ensuring the low complexity of our method. Finally, in order
to have a real-time, continuous beat-to-beat analysis, the last
O point found in the 3s-segmented window processed is used
as the beginning of the next segmentation window.



A. ICG Preprocessing using the SG filter

To filter the ICG signal, we use the SG filter, as it is
a simple and low complexity filter that uses a polynomial
approach by applying a fitting with the least-squares method.
However, to properly denoise the signal, the polynomial
degree should be selected. Authors in [13], [28] found that
the SG filter with a polynomial of order 3 has the lowest
error rate for different ICG Signal to Noise Ratios (SNRs).
Further, the filter length ("the smoothing window") strongly
influences filter effectiveness. Hence, selecting the appropriate
filter length is essential for a correct trade-off between
reducing noise and retaining important signal details needed
to successfully annotate B, C, X and O points.

Adaptive SG filtering has proved its robustness and signal
preservation in other applications [34], [35], and could be
very useful for ICG’s high SNR variability due to inter-subject
variability, electrode placement, and various artifact sources.
Therefore, we propose to adaptively select the filter length by
analyzing its impact on the SNR of each 3s-signal window.

Starting from a filter length of 3, we increase the length
in steps of two until signal SNR reaches a target SNRthr,
or if the SNR does not improve by more than threshold
SNRimprThr. By observing how the SNR saturates above a
certain filter length, SNRthr and SNRimprThr values of 30
and 1% were chosen. Moreover, these values present a good
compromise between reducing noise and maintaining a low
filter length, thus reducing complexity, as well as avoiding
over-smoothing of the signal (and hence potentially losing
valuable details). The SNR is calculated as a ratio between
the 2-norm of the high and low signal frequencies considering
a 20Hz as cut-off frequency.

B. Detection of the C peaks

The detection of the C peaks is the most important step
in the detection procedure, since the other points will be
located in time windows before and after the C peaks. We
have developed a new C-point detection procedure based on
the "relative energy" (Rel-En) preprocessing method [36] and
an adaptation of the REWARD algorithm [33] designed to
find the R peaks in the ECG.

First, the Rel-En preprocessing method is applied to the
filtered dZ/dt signal to enhance the C peaks. The Rel-En
method considers the energies of a long sliding window
(0.95s) and a short sliding window (0.14s); both centered at
sample n. The ratio between the energies of these windows,
the coefficient c(n), is multiplied by signal(n) resulting in
a signal Xre(n), in which the peaks are amplified.

The C peaks are then searched in the Xre signal using two
adaptive thresholds defined as a percentage of Maxval in
the window. Maxval is defined as the peak amplitude value
of the second biggest peak if it is significantly bigger than
the mean value of the signal, otherwise the peak value of the
biggest peak; hence, providing robustness to the noise and
outliers.

Next, segments in which the Xre signal goes above
the upper threshold, Thrmax=0.2Maxval, and subsequently

Algorithm 1 B Point Detection
Input: Signal Window defined by C points
Output: B point

1: def find_B_point(sig, Cpos, CAmpl, Afrac, Bslope1, Bslope2):
2: BlimL = Cpos - 80ms ∗ Fs
3: BlimR = find ( sig[i] <= AfracCAmpl)
4: Bmin = min(sig)
5: for i = BlimR; i 6= BlimL; i−− do
6: if sig[i] == localMin() or |sig′[i]| > Bslope1 then
7: return i
8: for i = BlimR; i 6= BlimL; i−− do
9: if sig′[i] > Bslope2 then

10: return i
11: return Bmin

below the lower threshold, Thrmin=0.02Maxval, are con-
sidered active peak regions, similar to those in the REWARD
approach [33]. The maximum of the signal between these
two points is considered a C peak candidate. Once the peak
candidates have been determined, if the peak to peak interval
between two peaks is less than 0.25 seconds, only the highest
of the two is kept. Further, the peaks are valid if the C-C time
interval is not smaller than CCmin=1.7 times the average of
the five previous C-C intervals. This condition is necessary to
prevent the algorithm from detecting an O point as a C peak
when, occasionally, the O point has an amplitude comparable
to the one of the C peak.

C. Detection of the B points

B point identification can be difficult due to variations
in the morphology of the ICG signals (see Fig. 2). Algo-
rithm 1 describes our method of acquiring the B point.
First, we define the time window where a B point can
possibly be [BlimL,BlimR] (lines 2-3). BlimL is defined as
Cpos−80ms [4]. BlimR is defined as the closest point before
a C point where the signal amplitude is less than a fraction
of C amplitude (Afrac=0.5). Next, we search for either the
local minimum closest to Cpos or the first point at which the
slope of the signal exceeds threshold Bslope1=0.11 (lines 4-7).
If BlimL is reached before finding a B point, the search is
repeated with a less strict slope threshold Bslope2=0.08 (lines
8-10). If a suitable B point is still not found, a minimum
Bmin is used for the B-point.

Parameters values of Afrac, Bslope1 and Bslope1 were
obtained by performing grid search for optimal parameters.
For this, we randomly selected 8 blocks of 10 beats from each
subject of the database and annotated by ourselves following
the definitions from II-A.

D. Detection of the X and O points

The X point is defined as the onset of the steep rise in the
ICG towards the O point, which is the highest local maxima in
the first half of the C-C interval. Based on this definition, we
follow a new procedure on which we look for possible pairs
of X-O points and select the best candidate. Candidates for
O points are local maxima in a time window [Cpos+COmin,
Cpos+COmax]. Similarly, candidates for X points are local
minima in a window [Cpos + CXmin,Cpos + CXmax].



Next, we look for the combinations of X-O pair candidates
that meet the following criteria:

– O amplitude is higher than X amplitude,
– the X-O time is within [2-15] ms range,
– there are less than 3 local minimums between O and X.
Finally, the O and X pair with the highest amplitude

difference is selected as O and X points. Parameters values
were also obtained by a grid search as in B point detection.
We used COmin=20 ms, COmin=40 ms, CXmin=15 ms,
CXmax=30 ms values.

IV. EXPERIMENTAL SETUP

To assess our algorithm, we use a database manually
annotated by cardiologists for the purpose of evaluating the
ICG annotation algorithms. The database is published as an
open-access database [37]. It is described below, together
with the used performance metrics.

A. Experimental Database

The database includes 48 recordings of ICG and ECG
signals from 24 healthy subjects during an experimental
session of a virtual search and rescue mission with drones,
described in [38]. Two segments of 5-minute signals are
selected from the first day of the reported experiment protocol
from each subject. The segments correspond to a baseline
state (task BL) and a higher level of cognitive workload (task
CW). In total, the recorded database consists of 240 minutes
of ICG signals.

In order to assess the performance, a subset of the database
was annotated by cardiologists from the Lausanne University
Hospital, which served as a test set for our algorithms. The
annotation was done using an open access physiological
signal labeler software [39]. The subset consists of 4 blocks
of randomly chosen signal segments containing 10 beats from
BL and CW tasks of each subject. In total, 1920 (80x24)
beats were annotated, each containing annotated B, C, X and
O positions.

B. Performance Assessment

To assess the performance of our proposed algorithm, the
true positives (TPs), false positives (FPs), and false negatives
(FNs) detected points by our algorithm were compared against
the aforementioned annotations from the cardiologists. We
used a tolerance of ±30 ms from the annotated point [29].
Accordingly, we use the performance metrics of sensitivity
(SE), positive prediction value (PPV), detection error rate
(DER), geometric mean (Gmean), mean error (me), and its
standard deviation (σ).

Moreover, we calculated several hemodynamic parameters,
both from annotation points by the cardiologists as well as
from our proposed algorithm. Four hemodynamic parameters
were calculated:

1) CCtime interval: Related to the heart rate (HR),
calculated as the interval between subsequent C points;

2) LV ET : Left ventricular ejection time, calculated as
the time between the B and X point of the same beat;

Fig. 4. Example of one block of data including ReBeatICG automatic
(X) and manual cardiologists’ (O) annotation

3) IV RT : Isovolumetric relaxation time, calculated as the
time between the X and O point of the same beat;

4) BCampl: Relative amplitude of C peak, which is
essential for calculating stroke volume and cardiac
output.

The precision of hemodynamic parameters was measured
by first matching the C peaks between automatic C peak
detection and the cardiologists’ annotation. Then we cal-
culate the parameters for each of them (e.g. LV ETcard
and LV ETalg). Next, the absolute error values for all
matched beats were calculated and averaged over beats and
subjects and parameters. For BCampl, the relative error was
calculated (abs(BCamplcard-BCamplalg) /BCamplcard).

V. EXPERIMENTAL RESULTS

The detection performance results of our automatic ReBeat-
ICG delineation for each B, C, X and O point individually, are
shown in Table II. These results represent the performance
of ReBeatICG using as reference the beats annotated by
cardiologist with ± 30 ms resolution for the matching window.
Furthermore, a visual example of ReBeatICG delineation and
the reference annotation on one segment of signal is shown
in Fig. 4. ReBeatICG C point delineation is highly accurate,
while other points delineation are quite precise as well. B point
delineation is challenging due to the fact that often the correct
location is defined by a slope change and not a minimum, and
slope change is very sensitive to noise and filtering. Similarly,
X and O points delineation is challenging due to many local
minima and maxima sometimes present in the signal. From
this reason, several conditions were necessary for identifying
the correct X-O pair. Nevertheless, the ReBeatICG algorithm
performs very well for the B, C, X, and O points, yielding
Gmean performance of 94.9%, 98.6%, 90.3% and 84.3% for
each respective point.

A comparison with the existing algorithms for delineating
B, C, X or O points is difficult due to different approaches
used for validation. For instance, some papers compare hemo-
dynamic parameters calculated from delineated ICG and those
from echocardiogram [29], others in reference to ECG R peak
detection [30], while others compare annotation positions with
manual annotations [4], [19]. Unfortunately, almost no paper
clearly mentions the resolution used for matching annotated
points window, making the results hardly comparable. Further,



TABLE I
COMPARISON OF REBEATICG WITH STATE-OF-THE-ART METHODS

Ref. B Performance measures C Performance measures X Performance measures
SE [%] PPV [%] DER [%] me± σ [ms] SE [%] PPV [%] DER [%] me± σ [ms] SE [%] PPV [%] DER [%] me± σ [ms]

[29] – – 1.7 2 ± 10.5 – – – 5 ± 10 – – – 4 ± 44*
[22] – – – 3.98 ± 2.85 – – – – – – – 23.7 ± 14.9
[19] 94.4 93.9, 11.7 – 99.4 98.7 1.8 – 97.0 96.5 6.5 –
[13] – 93.1 6.9 – – 100.0 0.0 – – 99.5 0.5 –

This work 99.04 98.13 2.92 2.03 ± 2.23 99.25 98.28 2.56 0.17 ± 0.73 98.99 98.43 2.66 3.29 ± 4.45
SE-Sensitivity. PPV- Positive Prediction Value, DER- Detection error rate. ME-mean error and SD- standard deviation of error relative to the reference
considering ±150 ms of tolerance, as in [13] and [19], from the annotated point. * Respect to Doppler echocardiogram refences because of significant
differences across the X point definitions in the literature.

TABLE II
PERFORMANCE OF REBEATICG PER ANNOTATED POINTS

Annot. Performance measures
Points SE [%] PPV [%] Gmean [%] me± σ [ms]

B 95.30 ± 5.65 94.48 ± 6.96 94.88 ± 6.28 1.75 ± 0.90
C 99.09 ± 1.86 98.13 ± 3.44 98.60 ± 2.50 0.12 ± 0.08
X 90.55 ± 9.51 90.06 ± 9.82 90.30 ± 9.58 1.09 ± 0.35
O 84.58 ± 15.45 84.08 ± 15.45 84.32 ± 15.39 1.31 ± 0.22

The tolerance in respect to the reference values is ± 30ms

Fig. 5. Performance gain for our adaptive SG filter length versus
fixed filter lengths for all annotated points

the performance metrics are also different between papers.
Nevertheless, we summarize the results from previous works
in Table I. Most of the papers used a resolution of ± 150ms
based on [40] so we also evaluated our results with this
resolution and include the results in Table I. It is visible that
our ReBeatICG algorithm delineates all characteristic points
better or on a comparable level with previous works. Among
all performance measures in the table, we consider mean error
me [ms] to be the most reliable performance measure for
comparison with different papers since it is least influenced
by resolution and the one influencing the hemodynamics
parameters the most.

Furthermore, in order to assess our adaptive filter length
proposal for the SG filter providing a performance gain over a
fixed length, we compare the B, C, X and O points detection
performance for several fixed filter lengths versus an adaptive
one as shown in Fig. 5. The adaptive filter length leads to
values from 5 to 25, with the mean length of 12.5 ± 5.1
over all subject data, providing better overall performance
compared to equivalently sized fixed length filters.

Finally, we assessed the precision of hemodynamic pa-
rameters calculated by ReBeatICG and data annotated by
cardiologists. The mean error and standard deviations of
absolute and relative values are expressed in Table III. Heart

TABLE III
QUALITY OF AUTOMATIC CALCULATION OF HEMODYNAMIC PARAMETERS

Parameter HR LVET IVRT BCampl
Mean absolute error [ms] 0.11±0.54 9.7±4.7 8.3±9.4
Mean relative error [%] 0.01±0.04 3.6±1.7 10.2±11.0 3.9±6.5

rate (HR) is the most precise, with a mean error of 0.11 ms.
This result is due to the fact that it depends only on C-points,
whose automatic annotation was highly precise. Furthermore,
LVET and IVRT are less precise, namely, having a mean error
of 9.72 ms and 8.32 ms, respectively, but still well within
the 30 ms resolution. Lastly, the relative C peak amplitude
was detected with only a 3.97% error with respect to C peak
amplitude from annotated data by cardiologists.

We have selected and implemented the least complex
methods for a real-time, beat-to-beat hemodynamics param-
eters monitoring in view of a later implementation on a
lightweight wearable device. The above presented results
are very promising and motivate future implementation on
the low-power microcontroller, but before potential wearable
application aspects of latency, energy consumption and
memory will have to be analysed when porting to MCU.

VI. CONCLUSION

In this paper, we have presented ReBeatICG, a new
real-time and low-complexity algorithm for beat-to-beat
delineation based only on the ICG signal. In particular, the
algorithm delineates 4 characteristic points, B, C, X and O
whose locations are later used for calculation of hemodynamic
parameters. To the best of our knowledge, this is first paper
including the delineation of all the principal characteristic
points of the ICG for hemodynamic parameters monitoring,
that allows a later implementation on ultra-low-power MCU.

Our algorithm employed three main state-of-the-art tech-
niques that have both high reliability and low complexity.
First, to filter the signal, we employed the Savitzky-Golay
filter that is easily implemented as a convolution of the signal
with the filter’s coefficients, which are integers calculated
offline. Second, we used the relative energy method for a
highly precise C-peak detection allowing further beat-to-beat
delineatio that has been previously implemented on low-power
MCU. Finally, for the delineation of B, X and O points
we used the derivative analysis with conditioning checking
based on time-intervals and signal-amplitude, being a low-
complexity method that has also shown high performance.



The automatic detection procedure was compared against
the annotated points provided by cardiologists and yielded
Gmean performance of 94.9%, 98.6%, 90.3%, and 84.3% for
B, C, X, and O points, respectively. Finally, we have assessed
the precision of several hemodynamic parameters, obtaining
mean errors of 0.11 ms, 9.72 ms, 8.32 ms, and 3.97% for HR,
LVET, IVRT, and relative C-point amplitude, respectively.
These overall results indicate that our proposed algorithm is
highly precise, and could be implemented on a low-power
wearable device for hemodynamic parameter monitoring.
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