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Abstract

We use spherical cap harmonic (SCH) basis functions to analyse and reconstruct
the morphology of scanned genus-0 rough surface patches with open edges. We first
develop a novel one-to-one conformal mapping algorithm with minimal area distortion
for parameterising a surface onto a polar spherical cap with a prescribed half angle. We
then show that as a generalisation of the hemispherical harmonic analysis, the SCH
analysis provides the most added value for small half angles, i.e., for nominally flat
surfaces where the distortion introduced by the parameterisation algorithm is smaller
when the surface is projected onto a spherical cap with a small half angle than onto
a hemisphere. From the power spectral analysis of the expanded SCH coefficients, we
estimate a direction-independent Hurst exponent. We also estimate the wavelengths
associated with the orders of the SCH basis functions from the dimensions of the first
degree ellipsoidal cap. By windowing the spectral domain, we limit the bandwidth of
wavelengths included in a reconstructed surface geometry. This bandlimiting can be
used for modifying surfaces, such as for generating finite or discrete element meshes
for contact problems. The codes and data developed in this paper are made available
under the GNU LGPLv2.1 license.

Keywords: Spherical cap harmonics, surface parameterisation, finite element, mi-
crostructures, fractal surfaces, self-affine

1 Introduction

The mechanics of granular materials, such as soil mechanics, investigates the interaction
of particles at various loading conditions where the shape, size and material properties of
the particles can vary widely. Numerical models are therefore often used to study how the
mechanical behaviour of a material is influenced by the various particle morphology and
microstructures created by these particles. Similar problems exist in structural engineering
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when modelling, for example, the microstructure of concrete aggregates or the various stones
in stone masonry elements, as the shape and roughness of the particles affect the matrices
of these materials.

Addressing these problems numerically requires the modelling of randomly shaped closed
objects and their interactions. In such models, the shape of the particle is typically repre-
sented by a finite or discrete element mesh, while the roughness of the surface is modelled
through laws that describe the interaction of two surfaces, such as friction models. Effi-
ciently separating “shape” and “roughness” of a randomly shaped particle is a challenging
problem, though work in this area helps us better understand the associated constitutive
laws in numerical modelling. In recent decades, the concept of spherical harmonics (SH)
analysis has been frequently used to describe the shape and roughness of stones or aggre-
gates. However, while this approach is transformative for closed objects, it is difficult to
apply to the morphology of nominally flat and open surfaces (topological disks with free
edges). In this paper, we therefore propose the use of spherical cap harmonic analysis
(SCHA) for describing the geometry of open shapes. The difference here is that while a
traditional spherical harmonics analysis (SHA) describes a function mapped onto an entire
unit sphere, the SCHA describes a function mapped onto a spherical cap via a half-angle
θc (see Figure 1). SCHs are widely used in geophysics to describe field data on planetary
caps, but to our knowledge have never been used to describe the geometry of a patch with
free edges. Here we give example problems where SCHA can be useful for describing the
topological characterisation of a patch (i.e. an open shape with a free edge):

• For studying the topology of a rough surface patch, such as a rock surface, and quan-
tifying its fractal dimension (FD).

• For characterising different roughness regions on rocks or faults, such as sedimentary
rocks made of several strata. The traditional SH approach, which assumes a closed
object, only exploits basis functions to fit all the surface variations and does not
distinguish regions of different roughness (multifractal surfaces).

• For matching objects based on surface characteristics. This can be useful for medical
and forensic anthropology applications, such as matching fractured bones or objects
(see [1] and [2] as examples), or for mechanical applications, such as characterising the
surfaces of fragmented rocks or soil particles [3, 4] by directly comparing and matching
the scanned fractured regions.

In this paper, we propose a new method for characterising the morphology of open
surface patches using SCH, focusing specifically on nominally flat patches, such as when
the global radius of the curvature of the targeted patches approaches infinity. The herein
proposed SCHA method allows us to study the structure of any arbitrary surface patch with
faster convergence than the traditional SHA as it scales to any level of detail with reasonable
computational complexity. It can also be used for reconstructing surfaces and modifying
the morphology of digital twins of real surfaces, which is useful when numerically studying
contact problems such as friction. Additionally, the chosen orthogonal basis functions allow
us to conduct power spectral analyses of the coefficients obtained from SCHA to estimate
the fractal dimensions of the surfaces.

To adapt the SCHA for these applications, a new conformal parameterisation algorithm
with minimal area distortion is herein proposed for parameterising the surface patches over
a unit spherical cap. The parameterisation assures a unique assignment for each vertex and
a uniform distribution of the morphological features over the spherical cap. Initially, the
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Polar spherical cap

Unit sphere

Spherical cone

Figure 1: Representation of a polar spherical cap S2
θ≤θc with half-angle θc, where the

spherical cap harmonics analysis (SCHA) is defined over.

algorithm parameterises the surface patch to a planar disk using the conformal mapping
algorithm proposed by Choi and Lui (2015) [5] followed by a suitable rescaling. Then, using
the south-pole inverse stereographic projection, we conformally map the disk to a polar
spherical cap. Finally, we find an optimal Möbius transformation to minimise the area
distortion on the conformal spherical cap.

This paper is structured as follows: We first provide a brief literature review in Sec-
tion 2. We then introduce the SCHA basis functions and their solutions in Section 3. In
Section 4, we describe the proposed conformal mapping algorithm and then demonstrate
the overall SCHA process in Section 5. Next, we explain the shape descriptors and the
derived fractal dimensions (FD) in Section 6. We solve the problem of finding the optimal
θc for the analysis in Section 7. In Section 8, we explain how to modify the morphology by a
proposed roughness projection methodology for the microstructures. The complete results
are depicted in Section 9. Finally, we summarise the main results of the paper and discuss
possible future works in Sections 10 and 11, respectively.

2 Literature review

We herein briefly present key publications on SHA and its application in mechanics, gener-
ation and reconstruction methods for both closed objects and those with free edges as well
as SCHA and its current applications.

2.1 Spherical harmonics analysis (SHA) and its applications in me-
chanics

The modern spherical harmonics analysis (SHA or SPHARM) for closed and nonconvex
particles was developed by Brechbühler and Küble (1995) [6], who applied it to the field of
medical imaging for brain morphometry. SHA describes surfaces with few shape descrip-
tors that are invariant when rotating, translating and scaling the shapes. To apply SHA
to any closed, nonconvex surface, Brechbühler et al. (1995) proposed a parameterisation
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method that provides a unique mapping of each vertex on a surface onto a unit sphere
S2 through the use of equivalent coordinates x(θ, φ), y(θ, φ) and z(θ, φ). In other words,
their method can describe 3D, closed and randomly-shaped objects with a relatively small
number of shape descriptors derived from 2D signals mapped onto a unit sphere. The SHA
method can therefore be considered a 3D generalisation of the traditional Elliptic Fourier
Descriptors (EFDs) method (see [7, 8, 9]), which was developed to model 2D shapes (1D
signals). The SHA method can also be used to accurately reconstruct 3D shapes from their
shape descriptors. Recently, Su et al. [10] found a correlation between the SHA and EFD
descriptors and used that for predicting the size of the irregular particles from 2D images.

Since the original SHA work was published, many contributions generalised it for a
broader range of applications. While the original SHA dealt with voxel-based and simply
connected meshes, the Control of Area and Length Distortions (CALD) algorithm [11] ex-
tended the parameterisation method to triangulated meshes, such as Standard Tessellation
Language (STL) meshes. The original SPHARM determines the coefficients of the matrix
by a least-squares algorithm that requires the calculation of the inverse. Modelling complex
shapes with small details requires such a vast number of vertices that calculating the in-
verse is burdensome with the traditional SHA approach. Shen and Chung (2006) [12] used
an iterative approach to expand the coefficients for the complex and large-scale modelling
of shapes. Other notable works include the weighted SPHARM method by Chung et al.
(2007) [13], the SPHARM-PDM statistical toolbox for shape descriptors by Styner et al.
(2006) [14], and the 3D analytic framework with improved spherical parameterisation and
SPHARM registration algorithms developed by Shen et al. (2009) [15].

In biomedical imaging, shape descriptors based on SHA were used to reconstruct surfaces
and compare the morphology of organs. In engineering mechanics, two further questions
were investigated: (i) How can SHA shape descriptors be linked to the well-known, tradi-
tional shape descriptors? (ii) How can the SHA shape descriptors be linked to mechanical
parameters, such as friction coefficients, and traditional morphology measures, such as frac-
tal dimensions (FD)? Here, we review studies in mechanics that used SHA for generating
particles as well as for simulating particle mechanics.

Zhou et al. (2015) [16] scanned real particles, computed the distribution of the SHA
shape descriptors and then used these descriptors as inputs for a particle generator. The
particle generator used the shape descriptors to reconstruct particle shapes, which became
inputs for Discrete Element Method (DEM) simulations. Wei et al. (2018a) [17] established
links between the coefficients expanded from the SHA and traditional shape descriptors,
namely, the form, roundness and compactness, and used these as inputs for a particle gen-
erator. They applied their method to Leighton Buzzard sand particles, which were scanned
by Zhao et al. (2017) [18] to reveal an exponential decay of the rotation-invariant de-
scriptors against the degree of expansion on a log-log scale. In Wei et al. (2018b) [19],
the authors estimated the Hurst exponent (H) from the exponential decay of the power
spectrum computed from SHA coefficients; thus the SHA is able to capture a self-similar
phenomenon akin to the traditional Power Spectral Density (PSD) analysis associated with
Fourier expansion for 1D signals. Apart from methods based on power spectral analysis,
the authors in [20, 21] correlated the FD in SHA by investigating the surface area evolution
at an increasing reconstruction degree in a log-log scale.

More recently, Wei et al. (2020) [22] studied the contact between rough spheres and
a smooth base using finite element analysis. For this, they constructed roughened spheres
using spherical harmonics and considering more than 2000 degrees. The locally roughened
patch on the sphere was generated by assuming a certain FD and relative roughness measure.
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In contrast with the traditional concept of computing Fourier coefficients along certain
lines (see Russ [1994] [23] for details), the advantage of SHA-based fractal dimensions is
that they are not direction-dependent because they are intrinsically defined everywhere
along the sphere and do not expand sampled sections (1D signals). Furthermore, the SH
basis functions constitute a complete orthogonal set integrated over the entire surface of
the sphere in Hilbert space S2, which allows the power spectral analysis. Lately, Feng
(2021) [24] proposed a new energy-conserving contact model for triangulated star-shaped
particles reconstructed with the SH. The model reduces the computational complexity of
the discrete element simulations with controllable mesh size obtained via the golden spiral
lattice algorithm.

The SHA is therefore a very powerful tool for contact analysis. However, it is currently
only valid for closed objects. In this paper, we address this by offering an alternative
method for analysing the surface morphology—instead of analysing the surface of an entire
closed object using SHA, we study the morphology of a patch on this object using SCHA.
Depending on the size of the patch on a sphere, this usually requires significantly less degrees.
In addition, this method makes it possible to analyse regions of different roughness on the
same closed object. Here, we provide a general procedure suitable for nominally flat and
open surface patches and further show how the fractal dimension concept is an intrinsic
property in such basis functions defined over spheres, hemispheres and spherical caps.

2.2 Modelling arbitrarily shaped objects with free edges

For modelling arbitrarily shaped objects using SHA, most of the literature relates exclusively
to genus-0 closed objects. SHA requires an appropriate parameterisation algorithm (bijective
function) over a unit sphere S2, but does not cover open objects, which have a free boundary
along their edge. This problem was previously addressed using a hemispherical harmonic
(HSH) basis instead of SH basis. The HSH basis uses shifted associate Legendre polynomials
to describe a 2D function projected onto a hemisphere S2

θc≤π/2 with a free edge.

Huang et al. (2006) [25] was the first to apply HSH functions to extract shape descriptors
for anatomical structures with free edges via a modified parameterisation algorithm of the
original one proposed by [6]. By applying the proposed method to images of ventricles, they
concluded that it is more robust and natural than the SH basis for representing free edges,
which requires more effort to satisfactorily converge along the discontinuities. In addition
to having the naturally defined free edge in HSH, the convergence is also faster than with
the ordinary SH because of the distortion introduced by the parameterisation algorithm and
the maximum wavelength defined on the regionally-selected patch on the targeted object,
which will be discussed and demonstrated in later sections. As a similar strategy, Giri et al.
(2020) [26] recently developed a hemispherical area-preserving parameterisation algorithm
and analysed 60 hemispherical-like anatomical surfaces. They compared the results with
ordinary SH and also found significant improvements from 50 to 80% on the reconstruction
quality. They also proposed variants of HSH for other anatomical shapes [27, 28].

2.3 Regional modelling of spatial frequencies on a sphere

This paper uses SCH basis functions to study the local roughness and morphological features
of rough surface patches that are regionally distributed over, for example, natural rocks,
stones, bones, faults, etc. The idea of applying an SCHA to a regional subset of data
distributed over a sphere was previously exploited in geophysics to study physical quantities
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such as geomagnetic and gravitational fields (refer to [29] for a comprehensive review of
other applications). Many other methods can also be found in the literature for dealing
with regional data.

Multitaper spectral analysis is one common method for localising data using global basis
functions (integrated over the whole domain) such as the spherical harmonics. In this
method, the data outside the region of interest is tapered to zero. When the region of
interest is a patch with a free edge, it can be parameterised over an appropriate cap with an
assumption of a grid-of-zeros over the rest of the sphere. This technique can be implemented
efficiently using sparse matrices; however, the data tapering will affect the analysis results
[30], and special relationships will be needed to link the localised analysis to the global one
[31].

Another common approach is wavelet analysis, where the signals are multiplied (inner
product) with a wavelet function and then integrated over the entire domain. However,
this analysis becomes a function of the wavelet size (scale) and not the degrees of the SH
expansion [30]. Although it is tempting to use these approaches, and their computation is
fast and stable, they alter the actual signals and properties of the basis functions. Instead,
we herein consider a direct and analytical approach that defines global functions over the
entire regional domain without altering the actual data or basis functions.

2.4 Spherical cap harmonic (SCH) basis functions

The SCH basis functions were first proposed by Haines (1985) [32], and his codes with the
implementation details were published shortly thereafter [33]. In his paper, he solved the
SturmLiouville (self-adjoint) boundary value problem to derive two mutually orthogonal sets
over a constrained spherical cap that satisfy the Laplacian. By applying one of the Neumann
or Dirichlet boundary conditions on the free edge of the cap, we can get a general form of the
associated Legendre function of real fractional (non-integer) degrees and integer orders. To
satisfy the applied boundary conditions, we first solve for eigenvalues of the SturmLiouville
boundary value problem, and these real and non-integer degrees of the associated Legendre
functions can be used to define the basis functions. The resulting basis set depends on the
applied boundary conditions; two types of bases are widely used and are named the “even”
and the “odd” basis functions (for more details, see Section 3).

Haines’s basis functions have been studied and revised several times. In general, they
were derived to analyse signals on a solid spherical cap with a finite thickness, which is
described by an internal (r = a) and external (r = b) radii. These basis functions were
used to expand physical quantities through the Lithosphere. However, in this work, we use
the basis for a spherical cap with zero thickness, i.e. a → b. This simplifies the problem
because the normalisation of the spherical cone is ignored and the associated extra boundary
conditions do not need to be applied through the thickness b − a. Haines’s derivation of
the normalisation factor was indeed an approximation (Schmidt-normalised), and he claims
that the normalisation itself is not crucial as soon as the same normalisation factor is used
for the reconstruction. An analytical derivation for the normalisation factor was proposed
by Hwang et al. (1997) [34], and they named it the fully normalised SCH.

To capture smaller minimum wavelengths at the surface of the earth than with the
original SCH, De Santis (1991) [35] proposed a modified version developed by shifting the
origin of the spherical cap from the origin of the earth towards the surface. In 1992, De
Santis [36] proposed using the ordinary SH defined over a hemisphere (using integer degrees)
by scaling the spherical cap data to fit over a hemisphere. Although it is tempting to use
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such approximations to relax the complexity of the proposed functions in the original SCH,
they are only valid for small half-angles (shallow spherical caps). More recently, Thébault
and his co-authors [37, 38] proposed a new revised version of the SCH to deal with problems
mainly associated with the solid spherical cone. These papers are considered out-of-scope
here because we only deal with the surfaces of spherical caps. More details about the history
and the evolution of the method and its applications in geophysics can be found in [29, 39].

2.5 Parameterisation algorithms

Before expanding spatial data using the SCH basis, the surface patch needs to be mapped
onto the spherical cap. This mapping algorithm assigns each vertex coordinate of the surface
of the original object a unique coordinate on the spherical cap. A proper parameterisation
algorithm should distribute the morphological features uniformly over the surface without
clustering [6]. The mapping algorithms used here can be categorised into angle-preserving
(conformal) [40, 41] or area-preserving [42, 43]. The former preserves the angles between
the mesh elements such that that the local morphological properties are preserved, but this
could introduce undesirable distortion in the element areas. The latter algorithm preserves
the area of the elements but can introduce sufficient angular distortion to jeopardise the
representation of the local morphological features. In general, angle and area preservation
cannot be achieved at the same time [44], hence the choice of parameterisation method
depends on the application. In mesh fitting, it is often desirable to balance angle and area
distortions [45].

3 Spherical cap harmonic (SCH) basis functions

In this section, we describe the set of orthogonal functions on the surface of the spherical cap
that we use for studying the geometry of a nominally flat and open-edged patch projected
onto the cap. To do this, we propose using the basis functions of the SCHs that satisfy
the Laplace equation in 3D; the derivations for these functions can be found in [32, 34].
Here, we introduce the derivation only to the extent that the definition and meaning of
the various components of the functions are clear. It serves also as documentation for
the accompanying code, which is shared openly and in which these equations have been
implemented numerically.

Here, we are considering only polar spherical caps, meaning the local polar axis of the
cap coincides with the global polar axis of the unit sphere. The coordinates of any point on
the unit spherical cap are defined in terms of the angles θ and φ. The angle θ represents
the latitude (elevation angle), measured from the positive z-axis ∈ [0, θc], and the angle φ
represents the azimuth angle (longitude), measured counter-clockwise from the positive x-
axis ∈ [0, 2π]. The size of the spherical cap S2

θ≤θc is therefore characterised by the half-angle
of the spherical cap θc, which is the latitude of the rim of the spherical cap as illustrated in
Figure 1.

A 2D signal f(θ, φ), for which each value is paired with (θ, φ), can be written using the
SCH basis as (see [32]):

f(θ, φ) =

∞∑
k=0

k∑
m=−k

θcqmk
θcCmk (θ, φ), (1)
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where θcCmk (θ, φ) are the SCHs and θcqmk are specific constants (SCH coefficients). The
complex-valued SCHs of degree l and order m for a cap of size θc can be expressed as:

θcCmk (θ, φ) = P̄ml(m)k
(cosθ)︸ ︷︷ ︸

ALF

Fourier︷ ︸︸ ︷
eimφ . (2)

One way of solving the Laplace equation is by separating the independent variables, θ
and φ in our problem, into separate ordinary differential equations and then assuming the
overall solution to be the product of the separated solutions. The SCHs can therefore be
written as a product of the term that describes the variation with regard to the latitude
θ and a term that describes the variation with regard to the longitude φ. In polar caps,
the longitudinal direction (φ) of the spherical cap covers, by definition, complete circles
(Parallels of Latitude), so we apply the traditional Fourier method to capture the circular
variations.

The variations along the latitudes, represented by (θ), are captured using, for example,
associated Legendre functions (ALF) as a mutually orthogonal set of basis functions. In
the following subsections, we describe the ALFs, how to stably compute them and how the
degrees ls of these ALFs are found. Then we explain one possible normalisation factor that
we used in this paper.

3.1 Associated Legendre function (ALF)

In classical SH, the degree l and the order m are integers, and the associated Legendre
polynomials (ALPs) are defined for the interval x ∈ [−1, 1]. In this interval, they form an
orthogonal set of equations on a unit sphere (for x = cos θ, θ ∈ [0, π]). In the HSH basis
functions, a linear transformation shifts the orthogonality interval to either [0, 1] or [−1, 0]
depending on whether the lower S2

θ≥π/2 or upper S2
θ≤π/2 hemisphere is considered (see the

works in [25, 26]). The hemisphere introduces a new boundary (free edge) at the equator
that must be defined with an additional appropriate boundary condition. However, note
that the tangent at the edge of the equator (the gradient with respect to θ) is zero. As
will be seen next, this is one of the Neumann boundary conditions for the boundary value
problem of ALFs, which makes it a special case of the SCH basis with integer degrees and
orders. The main challenges with SCHs are shifting the ALFs to be defined over the interval
[cos θc, 1] and assuring their orthogonality.

Using SH or HSH functions to describe a spherical cap (sub-region over the whole valid
domain) will produce a set of ill-conditioned equations [34]. Although these sets could be
used to some extent to reconstruct the input surfaces, the power spectral analysis will be
chaotic and without the clear attenuating trends normally produced when the equations are
well-conditioned. To find a suitable set of basis functions, Haines [32] proposed treating the
problem as an inverse problem and determining the degrees l for the ALPs that produce
an orthogonal basis over the spherical cap while satisfying the boundary conditions. These
degrees are not constrained to integers, and in our case, the degrees will be real-valued
numbers. The orders m are still integers because, for polar caps, φ always varies over
complete circles.

The basis functions proposed by Haines (1985) [32] satisfy three boundary conditions: (i)
continuity along the longitudes, (ii) regularity at the pole of the cap, and (iii) an arbitrary
signal value at the free-edge (see [46, 29]). The first boundary condition is assured by the use
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of polar spherical caps (notice the complete circles in Figure 1), as they force the periodicity
and the continuity along the longitudes to make the order m a positive or negative integer:

f(θ, φ) = f(θ, φ+ 2π), (3)

∂f(θ, φ)

∂φ
=
∂f(θ, φ+ 2π)

∂φ
. (4)

The second boundary condition, the regularity at the cap’s pole θ = 0, is satisfied
through the use of the first kind of ALFs, such that:

f(θ = 0, φ) = 0 if m 6= 0, (5)

∂f(θ = 0, φ)

∂φ
= 0 if m = 0. (6)

Note that even with the two above boundary conditions, the solution functions are still
not unique. To obtain unique solution functions, we need to impose a proper boundary
condition at the edge of the spherical cap. The third boundary condition is applied to the
free edge at θc (xc = cos θc):

AcP
m
l(m)k

(xc) +Bc
dPml(m)k

(xc)

dx
= 0. (7)

Here, we use the degree notation l(m)k instead of l because the degrees are now back
calculated for a specific order m and index k, which will be explained in detail below.

In Eq. (7), the case of Ac = 0 and Bc 6= 0 corresponds to the application of the Neumann
boundary condition where the gradient with respect to θ at the cap’s rim at x = cos θ is
zero. It implies that f(θc, φ) 6= 0 ∀φ ∈ [0, 2π] and can take any arbitrary value at the edge
of the spherical cap. Applying this boundary condition results in basis functions referred to
by Haines (1985) [32] as the “even” (k −m = even) basis or by Hwang et al. (1997) [34]
as set 2. The case of Ac 6= 0 and Bc = 0 corresponds to the Dirichlet boundary conditions
f(θc, φ) = 0 ∀φ ∈ [0, 2π], and the resulting basis functions are known as the “odd” (k−m =
odd) set or set 1 by Haines [32] or Hwang et al. [34], respectively. The boundary conditions
for the two cases can therefore be rewritten as:

dPml(m)k
(xc)

dx
= 0 for k −m = even, (8)

Pml(m)k
(xc) = 0 for k −m = odd. (9)

The latter boundary condition, Eq. (8) or (9), is met by back calculating the roots l(m)k
at different orders m and indices k and then using them for constructing the basis functions
for different θc. Although it is tempting to use a combination of both sets to expand a
signal (e.g. see Haines [32]), for the uniform convergence of the series, it is noteworthy that
these basis functions are mutually orthogonal and cannot be used together for the power
spectral analysis [47]. In this paper, we will only consider the even set, as it allows arbitrary
values for the signal at the cap’s rim (f(θc, φ) 6= 0 ∀φ ∈ [0, 2π]), which contrasts with the
odd set that equates the signal at the rim to zero. This consideration therefore allows us to
correctly reconstruct any surface geometry.

Unlike the traditional ALPs, here the degrees l(m)k are determined such that the third
boundary condition is satisfied; thus, l(m)k are real numbers, though not necessarily inte-
gers; hence, we use the index k to rank the orders. k is an integer index that arranges m
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from 0 to k, and the degree l(m)k is the degree at the kth index and order m. The k index is
useful for finding the degrees on the applied boundary conditions. For instance, when k = 0,
we find the first degree l(m)k ≥ 0 where the boundary condition equation first crosses zero
(first eigenvalue).

For constructing the ALFs with integer orders and real degrees, Hobson (1965) [48]
proposed the use of hypergeometric functions. Note that in the following, we refer to
associated Legendre functions rather than polynomials because these basis functions are
truncated numerically at a predefined numerical threshold. These functions can also be
referred to as fractional ALFs, because the associated degrees are not integers. The ALFs
can then be written as follows (see [32, 34, 48]):

Pml (x) =
1

2mm!

Γ(l +m+ 1)

Γ(l −m+ 1)
(1− x2)

m
2

2 F1

(
m− l,m+ l + 1;m+ 1;

1− x
2

)
, (10)

where Γ(·) is the gamma function, 2F1(a, b; c; z) is the hypergeometric function defined over
a unit disk |Z| < 1 and x = cos θ.

To find the zeros (eigenvalues) that satisfy the third boundary condition, we rewrite
Legendre’s differential equation in a Sturm-Liouville (S-L) form [32, 34]:

d

dx

[
(1− x2)

dPml (x)

dx

]
+

[
l(l + 1)− m2

1− x2

]
Pml (x) = 0 (11)

and subject it to the boundary conditions explained in Eq. (7). The two equations that result
from the application of the Neumann and Dirichlet boundary conditions can then be written
in a simpler factorised form, as proposed by Hwang et al. (1997) [34] for hypergeometric
functions:

l(m)kxcF
(
l(m)k,m, xc

)
−
(
l(m)k −m

)
F
(
l(m)k − 1,m, xc

)
= 0, (12)

F
(
l(m)k,m, xc

)
= 0, (13)

where

F (l,m, x) =2 F1

(
m− l,m+ l + 1;m+ 1;

1− x
2

)
. (14)

Equation (12) is the equivalent of applying the Neumann boundary conditions (even set),
and Eq. (13) corresponds to the Dirichlet boundary conditions (odd set).

Both Eqs. (12) and (13) have an infinite number of roots (eigenvalues) for the above-
mentioned S-L problem. Here, we are interested in finding the first k + 1 eigenvalues l(m)k
where k ∈ {0, . . . , |m|}, which is done using a simple stepping solver based on Mueller’s
method for finding zeros (roots) [49]. Additional results about the roots for θc = 5π/18 are
shown in Appendix 13.4.

After finding the needed roots for the different m and k, we can substitute these roots
directly into Eq. (10) to obtain the needed ALF basis. Figure 2 shows the ALFs associated
with the roots for different k, where m = 0 and θc = 10◦ = π/18 (i.e. cos(π/18) = 0.985).
Graphically, the value k − m indicates how many times the basis function changes signs
along the interval [cos θc, 1]; the (k + 1)th eigenvalue changes signs once more than the kth

root, as it divides the interval into regions with different signs. Together, k and m define
the frequency classification (harmonics) of the basis functions as zonal (m = 0), sectoral
(|m| = k) or tesseral (0 < |m| < k) regions on the SCH, as will be illustrated next. Figure
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Figure 2: The associated Legendre functions (ALFs) for θc = π/18, m = 0 and k ∈
{0, 1, . . . , 8}; (A) the even basis and the corresponding eigenvalues from Eq. (12); (B) the
odd basis and the corresponding eigenvalues from Eq. (13).

2 also shows the difference between even and odd sets depending on the applied boundaries
at x = cos θc.

Equations (10), (12) and (13) are dependent on the ordinary Gaussian hypergeometric
function evaluation 2F1(a, b; c; z). Unfortunately, the implementations given in [32, 34] using
the recursive series are not numerically stable for large degrees when k > 12 about the radius
of convergence |Z| < 1. Indeed this is a well-known problem for such functions, and different
formulations can be found in the literature with different implementations for different
ranges of a, b, c and z (see Pearson et al. [2015] [50], who reviewed different hypergeometric
functions and their different implementations and stability conditions). Therefore, we herein
use a Taylor series expansion for the first degrees (up to k = 12) when a, b and c are relatively
small. Otherwise, we use a 5th order Runge-Kutta algorithm along with the Dormand-Prince
method for solving the hypergeometric differential equation (see [50] for more details).

3.2 Normalising the SCH basis functions

Normalising the basis functions is important for ensuring their orthonormality and for keep-
ing the calculation of the coefficients computationally manageable [34, 46]. Many normali-
sation methods have been proposed in the literature, such as the “Heiskanen and Moritz”
method [34] and the “Schmidt” or “Neumann” methods [48], and any of these can be used
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as long as the same normalisation method is used for both the expansion and the recon-
struction [32]. In the following, we use the “Schmidt semi-normalised” method by Haines
[32].

This normalisation method requires solving the integral for the ALFs over the spherical
cap (mean square product), which can be retrieved from [51] with a corrected sign from [52]:∫ θc

0

[
Pml (cos θ)

]2
sin θ dx =

∣∣∣∣∣ sin θ
(
∂Pml
∂l

∂Pml
∂θ︸ ︷︷ ︸

odd

−Pml
∂

∂l

dPml
dθ︸ ︷︷ ︸

even

)∣∣∣∣∣
θc

0

1

2n+ 1
. (15)

However, this complex expression is difficult to solve (see [34] for one approach using recur-
sive expressions). In this paper, we use the Schmidt semi-normalised harmonics introduced
by Haines (1985) [32]:

Km
l(m)k

=

 1, m = 0

k2−m
√
mπ

(
l(m)k+m
l(m)k−m

) l(m)k
2 + 1

4

, m > 0
(16)

where
k = p

m
2 ee1+e2+..., (17)

with

p =

(
l(m)k
m

)2

, (18)

e1 = − 1

12m

(
1 +

1

p

)
, (19)

e2 =
1

360m3

(
1 +

3

p2
+

4

p3

)
. (20)

The final form of the normalised ALFs can be written as follows (see [32]):

P̄ml(m)k
(x) = Km

l(m)k
(1− x2)

m
2

2 F1

(
m− l,m+ l + 1;m+ 1;

1− x
2

)
. (21)

We use Eq. (21) as a part of the final SCH basis functions.

3.3 The SCH series

The complete form of the SCH can then be expressed by combining Legendre’s functions
with Fourier expansions:

θcCmk (θ, φ) = P̄ml(m)k
(cos θ)︸ ︷︷ ︸

ALF

Fourier︷ ︸︸ ︷
eimφ . (22)

We can split this expression into a real part and an imaginary part:
R
(
θcCmk (θ, φ)

)
= P̄ml(m)k

(cos θ) cos(mφ),

I
(
θcCmk (θ, φ)

)
= P̄ml(m)k

(cos θ) sin(mφ).

(23)
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Figure 3: The normalised spherical cap harmonic (SCH) basis functions up to k = 4 at

θc = 5π/18. The figures show R
(5π/18

Cmk (θ, φ)
)

. Note that at the breathing mode when

k = m = 0, the surface inflation is unity and is therefore not included in the colorbar. The
complex part of the basis are similar but rotated π/(2|m|) about the z-axis.

The complex-valued equation (22) is only valid for non-negative orders |m|. To address
this, the redundant negative-orders equation can be written in terms of the positive ones,
as they reassemble π/2 rotations about the positive z-axis. By making use of the Condon-
Shortly phase factor, we can write the SCH functions for m < 0 as:

θcC−mk (θ, φ) = (−1)m θcCm∗k (θ, φ), (24)

where Cm∗k (θ, φ) is the complex conjugate of the SCH functions with positive orders. Figure
3 shows the real SCH functions (with positive and negative orders) for the half-angle θc =
5π/18 and up to k = 4.

We can write a bi-directional signal f(θ, φ) that is explicitly parameterised to unique
θ ∈ [0, θc] and φ ∈ [0, 2π] over a unit spherical cap S2

θ≤θc as a linear sum of the independent
harmonics defined over the spherical cap:

f(θ, φ) =

∞∑
k=0

k∑
m=−k

θcqmk
θcCmk (θ, φ), (25)

where θcqmk are the complex-valued SCH coefficients at order m and index k. In our case,
following Brechbühler’s work in [6], the signal f(θ, φ) is the 3D vector that comprises three
orthogonal components in the Cartesian space extracted from the coordinates of the vertices:

f(θ, φ) =

x(θ, φ)
y(θ, φ)
z(θ, φ)

 . (26)

In practice, we truncate the series in Eq. (25) at k = Kmax, which reassembles the minimum-
accumulated wavelength (equivalent to the cut-off frequency) ωmin in the harmonic sum from
the original surface patch. Then, f(θ, φ) can be approximated by:

f(θ, φ) ≈
Kmax∑
k=0

k∑
m=−k

θcqmk
θcCmk (θ, φ). (27)
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The coefficients θcqmk can be expanded as:

θcqmk = < f(θ, φ) θcCmk (θ, φ) >, (28)

θcqmk =

∫ θc

0

∫ 2π

0

f(θ, φ) θcCmk (θ, φ) sin θ dφ dθ. (29)

However, this integral is valid only when the signal f(θ, φ) is defined everywhere over the
spherical cap (continuous signal). For discrete signals, we can estimate the coefficients using
least-square fitting algorithms, as will be discussed later in Section 5.

4 Spherical cap conformal parameterisation

Here we develop a conformal parameterisation method for mapping any surface S with disk
topology to the spherical cap S2

θ≤θc , where θc is the prescribed half angle. The overall

spherical cap parameterisation f : S → S2
θ≤θc is desired to be not only conformal but also

with low area distortion.
First, note that the south-pole stereographic projection τ given by

τ(x, y, z) =

(
x

1 + z
,

y

1 + z

)
(30)

maps the spherical cap S2
θ≤θc to a planar disk Dr centred at the origin with radius

r =

√
1− cos θc
1 + cos θc

, (31)

and the inverse south-pole stereographic projection τ−1 given by

τ−1(X,Y ) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,

1−X2 − Y 2

1 +X2 + Y 2

)
(32)

maps Dr to S2
θ≤θc . As both τ and τ−1 are conformal, we were motivated to find an optimal

conformal mapping from the given surface S to the planar disk Dr so that we could apply
the inverse projection τ−1 to obtain the desired parameterisation.

PSS X Y darea
mean 0.031115190925885 2.283277253594884 1.621661326243250
median 0.032048117800906 2.418244833527807 1.621524158857667
std 0.005932670562184 0.753260686325562 3.56905230744E-04

Table 1: The results summary of 51 consecutive runs of the PSS algorithm for the bench-
marking test shown in Figure 4.

To achieve this, we first apply the disk conformal mapping method [5] to map S onto
the unit disk D in an angle-preserving manner (see [5] for the algorithmic details). Denote
the conformal mapping by g : S → D. Now, we search for a conformal mapping h : D→ Dr
that can further reduce the distortion in area of the parameterisation. Mathematically,
a Möbius transformation is a function that maps a complex number z = X + Y i (where
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Figure 4: Parameterisation of the monkey head model. A) The monkey head (Suzanne)
benchmark mesh [53], with the heat map (texture) illustrating the radial distance from the
model’s centroid; B) The back view of the model reveals the open boundary location; C)
The conformal mapping onto the unit disk obtained using [5]; D) The convergence curve
for finding the optimal Möbius transformation that minimises the area distortion on the
spherical cap using the PSS algorithm f : S → S2

θ≤θc for θc = 40◦ (i.e. r = 0.3640).

X, Y are real numbers and i is the imaginary number with i2 = −1) to another complex
number (az + b)/(cz + d), where a, b, c, d are complex coefficients with ad− bc 6= 0. Möbius
transformations are conformal and hence are a good candidate for the mapping h in our
problem. More specifically, here we consider a Möbius transformation h : D → Dr in the
form

h(X,Y ) = r
(X + Y i)− (A+Bi)

1− (A−Bi)(X + Y i)
, (33)

where A,B are two real numbers to be determined. To find the optimal h, we minimise the
following area distortion measure

darea = meanT∈F

∣∣∣∣∣∣log

Area(τ−1◦h◦g(T ))∑
T ′∈F Area(τ−1◦h◦g(T ′))

Area(T )∑
T ′∈F Area(T ′)

∣∣∣∣∣∣ , (34)

where F is the set of all triangular faces of S. The desired spherical cap parameterisation
is then given by

f = τ−1 ◦ h ◦ g. (35)

In particular, since every step described above is conformal, the overall mapping f is also
conformal.

To explain the formulation of the area distortion measure darea in Eq. (34) more clearly,
we first consider the mathematical definition of area distortion. For any two surfaces M,
N in the Euclidean space R3 with the same total surface area, a mapping f : M → N is
said to be area-preserving if for every open set U on M, the surface area of U is equal to
the surface area of f(U). More generally, the area distortion of a mapping f can therefore

be evaluated using the dimensionless quantity
∣∣∣log Area(f(U))

Area(U)

∣∣∣, which equals 0 if and only if

Area(f(U)) = Area(U). In our problem, M corresponds to the input triangulated surface S
and hence it is natural to evaluate the area distortion by considering every triangular face
T . In other words, by minimising Eq. (34) we look for a Möbius transformation h such that
the area change of every triangular face under the spherical cap conformal parameterisation
is as small as possible. Moreover, note that the total surface area of the input surface S
is not necessarily equal to that of the target spherical cap domain S2

θ≤θc . Therefore, we
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Figure 5: Spherical cap parameterisation of the Stanford bunny. A) The Stanford Bunny
benchmark model [55] with an open base, where the heat map (texture) illustrates the
radial distance from the model’s centroid; B) The conformal mapping onto the unit disk
obtained using [5]; C) The spherical cap parameterisation f : S → S2

θ≤θc for θc = 120◦

(i.e. r = 1.7321); D) The spherical cap parameterisation f : S → S2
θ≤θc for θc = 90◦ (a

hemisphere, i.e. r = 1.0); E) The spherical cap parameterisation f : S → S2
θ≤θc for θc = 40◦

(i.e. r = 0.3640).

use the two summation terms in Eq. (34) for normalising the total surface area of the input
surface and that of the spherical cap in the area distortion measure.

In practice, the solution of this objective function can be found using a global search
heuristic such as the Pareto-like Sequential Sampling (PSS) approach (see [54] for details).
Using a population size of 30 and an acceptance rate of α = 0.97, only 20 iterations are
needed for most of the problems to reach a good approximation. This approach is gradient-
free and does not require an initial value that could converge locally. Table 1 shows the
stability of the PSS approach, while Figure 4 shows the convergence and the final result of
the parameterisation step. Alternatively, the minimisation problem can also be solved using
MATLAB’s fmincon, using the modulus and argument of the complex number A + Bi as
variable. The solution obtained from this function was darea = 1.621523941729933 with X =
0.032055812166766 and Y = 2.416521766598053, which is consistent with the PSS result.
Figure 5 shows several spherical cap parameterisation results with different prescribed θc for
the Stanford bunny model [55]. To further assess the conformality of the parameterisation
results, we define the angle distortion dangle as the average of the absolute difference between
every angle [vi, vj , vk] in a triangular face in the input surface and that in the spherical cap
parameterisation f :

dangle = mean
[vi,vj ,vk]

|∠([f(vi), f(vj), f(vk)])− ∠([vi, vj , vk])|
180◦

. (36)

The values of dangle for the parameterisations in Figure 5(C), (D), and (E) are 0.00828069,
0.00869725, and 0.00919996 respectively. The results show that the proposed parameterisa-
tion method is highly conformal.
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5 Numerical implementation of the spherical cap har-
monic analysis (SCHA)

In this section, we describe the numerical implementation of the SCHA method and use it
to reconstruct triangulated surface meshes.

5.1 Spherical cap harmonic analysis (SCHA)

SCHA comprises the computation of the weights θcqmk by the integral in Eq. (29). However,
this integral cannot be calculated directly as the data is not defined everywhere over the
spherical cap. Instead, it can be estimated for discrete points that are distributed randomly
over the cap. For this reason, we estimate these coefficients using the least squares method
(statistical regularisation). Following the indexing system proposed in [6], the coefficients
can be estimated as follows:

θcqmk ≈ (BTB)−1BTV, (37)

where B contains the basis functions evaluated at the coordinates V that define the geometry
of the surface patch. If nv vertices describe the geometry of this surface patch in spatial
coordinates, the matrix V can be written as:

V =


x0 y0 z0

x1 y1 z1

...
. . .

...
xnv−1 ynv−1 znv−1

 . (38)

It should be noticed that the vertices defined in Eq. (38) are normalised against the
mean, so the actual expanded signals will be identified about a mean of zero. The matrix
B holds the SCH basis functions that can be obtained by evaluating Eqs. (22) and (24) for
the positive and negative orders, respectively, and can be written as:

B =


c(0,0) c(0,1) . . . c(0,j)
c(1,0) c(1,1) . . . c(1,j)

...
...

. . .
...

c(nv−1,0) c(nv−1,1) c(nv−1,j)

 , (39)

where ci,j is the basis function evaluated at the ith vertex for index j. The index j is
calculated as j(m, k) := k2 + k + m and −k ≤ m ≤ k for the zero-based numbering
programming convention. This means we need to fit 3(Kmax+1)2 coefficients simultaneously
for all the x(θ, φ), y(θ, φ) and z(θ, φ) signals in f(θ, φ). The final complex-valued θcqmk
coefficient matrix can be written as:

θcqmk =


q0
x q0

y q0
z

q1
x q1

y q1
z

...
. . .

...
qjx qjy qjz

 . (40)

The least squares fitting is a statistical regularisation method that provides a good ap-
proximations for the coefficients θcqmk , as long as the number of equations on the spherical
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Figure 6: Transformation of a square grid to a geodesic dome grid (before triangulating
the surfaces) using the algorithm proposed by Roşca (2010) [57]. A) A square grid with 60
horizontal and vertical lines resulting in 900 points of intersection (vertices); B) An area-
preserving map of the square grid onto a quad-grid disk; C) The final geodesic dome with
θc = π/2 (a hemisphere); D) The final geodesic dome with θc = π/3; E) The final geodesic
dome with θc = π/18.

cap is significantly larger than the expanded coefficients. Here, this condition is always sat-
isfied because our surfaces are defined by dense point clouds. Other regularisation methods
that enhance the accuracy of the least squares fitting and obtain a better orthogonality
among the columns in Eq. (39) can be found in the literature (e.g. see [56]) but are not
applied here.

5.2 Spherical cap harmonic reconstruction

We can reconstruct the surface patch from Eq. (27) when the coefficients are known. To
obtain a homogeneous representation of all the morphological features over the cap domain,
this step requires uniformly sampled points (vertices). In ordinary SHA, convex icosahedrons
(geodesic polyhedrons) with different mesh refinements are often used for the reconstruction
because the vertices of these icosahedrons are equally spaced. Analogously, for SCHA, we
use geodesic domes with uniformly distributed vertices over a spherical cap (see Figure 7).
To construct these domes, we first construct a uniformly meshed unit disk and then use the
inverse Lambert azimuthal equal-area projection to project it to the desired spherical cap.
Like the approach presented in Section 4, we need to rescale the unit disk by an appropriate
scaling factor rl to yield a spherical cap with the correct area under the projection:

rl =
√

2(1− cos θc). (41)

For reconstructing the surface patch, we need to choose a suitable mesh refinement for
practical and theoretical aspects. Practically, the complexity of the numerical models, e.g.
finite and discrete element methods, depends on the number of elements used to discretise
the continuum. Theoretically, we need a mesh size that represents the smallest required
detail depending on the application. If we imagine that a simple 1D wave propagates along a
discrete line, we need at least five knots (points) to capture the sign changes along a full wave.
This means that the distance between two adjacent vertices at a certain mesh refinement
must be at least one-fourth of the target minimum wavelength. The trade-off between

18



A) B) C)

F)E)D)

Figure 7: Geodesic domes for θc = π/3 with different refinement cycles (N). The domes
in A–C were obtained using the unit disk mesh generation method in [57] followed by the
rescaling in Equation (41) and inverse Lambert’s projection in Equation (42). The domes
in D–E were obtained using the DistMesh method [58] followed by rescaling and the inverse
Lambert’s projection. A) A mesh grid resolution of 12 results in 36 vertices; B) A mesh
grid resolution of 20 results in 100 vertices; C) A mesh grid resolution of 60 results in 900
vertices; D) An edge element size of 0.325 results in 35 vertices; E) An edge element size of
0.185 results 103 vertices; F) An edge element size of 0.635 results in 896 vertices.

capturing morphological features and the numerical complexity should be calibrated through
several reconstruction trials. More details about the minimum and maximum wavelength
associated with the SCHA will be discussed in Section 7.1.

We consider two approaches for constructing a disk with a uniform grid. The first
approach, proposed by Roşca (2010) [57], builds the disk-grid by transforming a rectangular
grid of squares to a quad-grid disk using an area-preserving map, which can be subsequently
triangulated using standard Delaunay triangulation. This approach gives us direct control
of the number of vertices on the spherical cap. Another approach is the DistMesh method
proposed by Persson and Strang (2004) [58], in which one can construct a uniform mesh on
a unit disk by a force-based smoothing approach. For this approach, the desired length of
the edge elements on the unit disk is a required input that indirectly controls the number
of vertices on the surface mesh. For both approaches, we need to rescale the resulting unit
disk meshes using Eq. (41) (the rescaled disk is denoted by Dl) before applying the inverse
Lambert’s projection τ−1

l so that every (x, y) point on the rescaled disk is projected to the
(X,Y, Z) on a spherical cap to S2

θ≤θc as:

τ−1
l (x, y) = (X,Y, Z) =

(√
1− x2 + y2

4
x,

√
1− x2 + y2

4
y,−1 +

x2 + y2

2

)
. (42)

Figure 6 visualises the process in [57], and Figure 7 shows the final geodesic domes obtained
using the two approaches.

6 Shape descriptors and fractal dimension (FD)

Like the traditional Elliptical Fourier Descriptors (EFD) [48] and their 3D extension to SH
[6], SCHA also yields coefficients that can describe and reconstruct surfaces. Because the
SCH is a “local extension” of the ordinary SH, it matches most of its properties [47], such as
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the spectral power analysis for determining the surface fractality. In this section, we describe
the interpretation of the shape descriptors derived from SCHA and their relationship to
those derived from other traditional methods like HSH. We also show how to estimate the
wavelengths associated with each degree and extract the fractal dimension (FD) from the
attenuation of the shape descriptors.

6.1 Shape descriptors derived from SCHA

Shape descriptors tell us how similar or dissimilar surfaces are to each other and are partic-
ularly useful for matching or classifying complex topologies. These shape descriptors must
be invariant to the location, rotation and size of the targeted surface. In this section, we
compare the shape descriptors derived from SCHA to those derived from SHA or EFD and
explain some additional properties of the SCH regional analysis.

By expanding the signal f(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T , we simultaneously obtain
the coefficients for the three orthogonal signals. We first consider the “breathing” mode
(corresponding to k = 0), where we have a constant shift for all the points in the signal.
The corresponding real-valued (k = m = 0) coefficients along the x, y and z axes are
represented by θcq0

0,x, θcq0
0,y and θcq0

0,z. These coefficients correspond to the geometric
centroid of the surface, which is similar to the EFD and SHA methods. Practically, we ignore
these coefficients and set them to zero to make the shape descriptors and the reconstruction
invariant to the location.

For k = 1, EFD basis functions define an ellipse in 2D, and SH functions define an
ellipsoid in 3D. However, in our case, the basis functions describe an ellipsoidal cap that is
sized by the 3×3 matrix θcqm1 , m ∈ {−1, 0, 1}, herein referred to as the first-degree ellipsoidal
cap (FDEC). The FDEC determines the size and the orientation of the reconstructed surface,
and it also shapes the main domain (spatial space) of the other harmonics (for all |m| > 1).
Following Brechbühler et al. [6], the size of the FDEC can be determined by rearranging the
coefficients from k = 1 to correspond to the ellipsoidal equation in the Cartesian coordinates:

A =
(
θcq−1

1 − θcq1
1 , i(

θcq−1
1 + θcq1

1),
√

2θcq0
1

)
. (43)

Solving the eigenvalue problem of AAT will provide three eigenvalues |λ1| ≥ |λ2| ≥ |λ3|.
Their roots a =

√
|λ1| ≥ b =

√
|λ2| ≥ c =

√
|λ3| correspond to the amount of “stretch”

along the three principal axes of the ellipsoidal cap. The directions of the “stretches” will
follow three eigenvectors; two of them are in-plane orthogonal vectors and the third is an
out-of-plane perpendicular vector. These three unit vectors describe the principal directions
of the ellipsoidal cap. Figure 8 shows the FDEC in an arbitrarily rotated Cartesian space.

When the size of the ellipsoidal cap is determined, the higher frequency basis functions
will be overlaid onto the domain of the FDEC. Numerically, the basis functions of the SCH
are similar for different θc’s, but they are either “stretched” or “compressed” over S2

θ≤θc .
This constrains all the domains to the size of the FDEC, which makes the proposed method
invariant to θc. From the point of view of the basis functions, this theoretically implies
that there is no difference between the SCHA and the HSHA, providing that we are using
the same normalisation factor (e.g. Schmidt semi-normalised). However, the results of the
analysis will depend on the introduced distortion between the real Cartesian space and the
parameterisation space. This problem will be discussed in Section 7.

The FDEC size is also important for estimating the wavelengths associated with the
harmonics expanded over the surfaces. In geophysics, the SCHA is used for a regional
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Figure 8: The first-degree ellipsoidal cap (FDEC) defined by k = 1; a is the half-major axis,
b is the half-minor axis and c is the ellipsoidal cap depth, where |c| ≤ |b| ≤ |a|.

analysis over planets and moons to directly estimate the average circumference. As we
do not have a closed surface that is approximately spherical, however, we use the FDEC to
estimate the average circumference of a full “virtual” ellipse that lies at θc ≡ π/2 (Greenwich
line) to estimate the circumference (more details will be discussed in Section 7).

6.2 Shape descriptors for estimating the fractal dimension

Shape descriptors have been extensively studied in the SH literature. The most commonly
used descriptors are rotation-invariant ones that do not require the registration of the sur-
face. Based on the amplitudes calculated in the expansion stage θcqmk , we can express the
shape descriptors (for instance see [18, 59, 60]) as follows:

D̂k,x =

√√√√ k∑
m=−k

||θcqmk,x||2,

D̂k,y =

√√√√ k∑
m=−k

||θcqmk,y||2,

D̂k,z =

√√√√ k∑
m=−k

||θcqmk,z||2.

Then, the resultant (radial) rotation-invariant descriptors can be expressed as:

D̂2
k = D̂2

k,x + D̂2
k,y + D̂2

k,z.

These descriptors need to be normalised with the size of the FDEC to obtain size-invariant
descriptors and to estimate the Hurst exponent, important for removing the dimensionality
of the data [23]. Thus, the final shape descriptors can be written as:

D2
k =

D̂2
k

D̂2
1

, ∀k > 1. (44)
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For nominally flat and circular surface patches, where the roughness (noise) only shifts the
z−coordinates, D̂2

k,x ≈ D̂2
k,y → 0 for k > 1.

The power spectral analysis determines the power accumulated at a certain wavelength
of the analysed surface, while the spectral attenuation computes the FD of the surface.
Similar to the PSD analysis, here we found that the accumulated power at each degree
correlates with the Hurst exponent H (see [23, 61] for details) as follows:

D2
k ∝ k−2H . (45)

The FD can then be computed as (see [23]):

FD = 3−H. (46)

For fractal surfaces, the Hurst coefficient is between 0 and 1 (0 < H < 1), and the FD is
between 2 and 3 (2 < FD < 3). The higher the H exponent, the smoother the surface.

The Hurst exponent can be estimated from the rate of power attenuation with an in-
creasing k, as the slope of the fitted line on a log-log graph is −1/(2H). One common
way to estimate the exponent is through the least squares fit of the equation D2

k = ak−2H ,
where a is the proportionality constant in Eq. (45). This approach estimates a radially
symmetric Hurst exponent for self-affine surfaces. Unlike the Hurst exponents computed by
traditional methods that investigate profiles along different directions, the Hurst exponent
herein computed on the basis of SCH coefficients is invariant to directions or rotations. We
benchmarked this approach against artificial fractal surfaces, and the results are presented
in Section 9.3.

7 Choosing the optimal half-angle θc and the appropri-
ate surface patch

7.1 Choosing the optimal half-angle θc

In Section 6, we explained that the SCH basis is invariant to θc, raising the question: What
is the optimal half-angle θc for the analysis? To answer this, we need to consider two aspects:
i) the numerical stability of the hypergeometric functions and ii) the distortion between the
object’s space and the parameterisation space. The stability of the hypergeometric functions
was briefly discussed in Section 3. In general, the smaller the θc, the faster the convergence
(less terms needed), but θc should not be too close to the singularity points θc ∈ {0, π}.

If this restraint is considered, we can choose the half-angle θc such that the distortion
introduced by the parameterisation is minimised. As compared to HSH, SCH offers this
additional parameter θc to minimise the distortion. We here adopt the area distortion
(darea) used in Eq. (34) to determine the optimal θc, though other measures can also be
used.

To find the optimal θc that minimises the area distortion, we used the PSS algorithm
[54], which we used already for finding the optimal Möbius transformation for h(X,Y ) (see
Section 4). Note that we used the area distortion measure darea as the objective function
as the proposed parameterisation method is highly conformal and always yields a minimal
angular distortion regardless of θc. We searched for the optimal θc in a domain limited by a
lower bound θLB and an upper bound θUB . The optimisation problem can then be written
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as:

min
θc

(
min
X,Y

darea

)
,

s.t. θLB ≤ θc ≤ θUB .
(47)

By investigating several benchmarks, we observed that the algorithm chooses the θc that
best represents the global concavity of the open surface. For instance, for the nominally
flat surfaces examined in Section 9, we find that θc is always as low as θLB , which we set to
π/18 = 10◦. For the portion extracted from the scanned stone (see Section 13.2), we obtain
an optimal half angle of 99.9158◦, which corresponds to an area distortion of 0.240406.
For practical reasons, we can assume θc ≈ 90◦ (a hemisphere) with an area distortion of
0.253300. In addition to the natural free edge, this helps explain why using HSH led to
better results than SH when studying skulls and ventricles in medical-imaging problems
[25, 26].

7.2 Wavelength analysis with θc

The literature review in Section 2.1 highlighted that separating the shape of an object from
its roughness is a challenging problem, with most prior works proposing the use of empirical
rules based on the reconstruction quality. We here offer an alternative approach adopted
from the geophysics literature on SCH that determines the required number of degrees based
on the targeted wavelength range.

Bullard (1967) [62] defined the wavelength in SH by ω = 2πr/n, where n is the SH
degree and r is the average radius of the sphere. Haines (1988) [33] derived the relationship
between the degree and the spherical cap half-angle θc using an asymptotic approximation
(for large k and small m):

l(m)k ≈
π

2θc

(
k +

1

2

)
− 1

2
, (48)

where θc is in radians. Analogous to [62], Haines concluded that the minimum spherical
cap wavelength associated with the kmax is ωmin = 2πr/l(m)k,max

. Solving Eq. (48) for kmax

gives:

kmax ≈
2θc
π

(
2πr

ωmin
+

1

2

)
− 1

2
, (49)

where kmax is the maximum index required to cover or represent a minimum wavelength on
the expanded cap.

In geophysics, the term 2πr is the average circumference of the earth (or any other planet
under consideration). As we mentioned earlier and unlike in geophysics, here we expand
three orthogonal signals instead of the radial one. The size of the domain is described by
the three parameters a, b and c, which are determined by the FDEC for k = 1.

Bullard (1967) [62] derived this expression from the number of divisions along the cir-
cumference for a certain degree n; the maximum circle defined over the sphere (equator)
occurs when m = n (sectoral harmonics). Furthermore, he proved that this is true at any
point on the sphere for any arbitrary pole. Here, we apply the same concept by replacing
n with k (the index of the degrees). At m = k, the largest ellipse defined over the spherical
cap changes its sign k times. Thus, ω = ζ/k, where ζ is the circumference of the largest
ellipse defined over the first degree ellipsoidal cap (FDEC) (Figure 8). Additionally, ζ can
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be estimated from the FDEC, which is described by the orthogonal vectors θc ~q −1
1 , θc ~q 0

1

and θc ~q 1
1 (Section 6). The wavelength at an index k can then be written as:

ωk ≈
2π

k

√
a2 + b2

2
,∀k ≥ 1. (50)

Equation (50) can also be reached by assuming that the largest ellipse on an ellipsoidal
cap corresponds to the equator (runs through the Greenwich line), and thus θc → π/2.
Then, by letting r ≈

√
(a2 + b2)/2, the asymptotic formula in Eq. (49) will be the same

as in Eq. (50). Note that the (≈) sign in the above expressions denote that these formu-
lae have been derived asymptotically [29], the circumference of the largest ellipse is also
approximated, and the circumference of the FDEC is not the final circumference of the ex-
panded surface patch. This equation is more accurate for circular patches where the FDEC
perimeter is more circular than elliptical.

7.3 Choosing the appropriate surface patch

Choosing the appropriate sampled surface patch eases the parameterisation process. It
also avoids over-/under-representation of certain morphological features over the targeted
surface, accordingly preventing potential problems in the subsequent analysis step. The
following points are recommendations for sampling a surface patch:

• Manifold edges and surfaces without opening (genus-0) meshes are required for the
parameterisation algorithm proposed in this paper.

• The input mesh must not contain duplicated faces, edges, vertices or skewed faces
with close-to-zero areas.

• A round surface patch avoids point clusters at sharp corners as a result of the param-
eterisation algorithm, which would lead to a poorly represented morphology.

• Circular patches with no sharp edges will cause the first ellipse to be mostly circular.
As a result, the wavelength definition will be more accurate because the circumference
estimate is more precise.

• The scanned surface patch should be sampled as uniformly as possible, which will make
the parameterisation algorithm more accurate due to the use of the least-squares fitting
method for computing the coefficients of the SCHA.

• When the surface patch does not have enough vertices to compute all degrees (results in
badly conditioned matrix B in Eq. [37]), the surface should be subdivided as needed to
increase the number of expanded equations and increase the quality of the coefficients.

• When the results are wavy when reconstructed with high degrees, we recommend
subdividing the overall surface or the local wavy areas to increase the number of
expanded equations, thus reducing the fitting error.
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8 Windowing the spectral domain and roughness pro-
jection

In this section, we introduce a method for projecting the roughness on surfaces using the
analysis results expanded from the SCH, HSH and ordinary SH methods. This is useful
for studies of contact problems, as it allows for systematically modifying the bandwidth of
wavelengths included in the reconstruction and for altering a surface geometry. The isolated
or generated surface roughness can then be projected onto a donor mesh of the user’s choice.

Let us assume that we have obtained the SCH coefficients up to the order Kmax either
through expansion or through artificial generation (not included in this paper). The rough
surface is to be projected onto a mesh that donates the general shape of the object, hence-
forth called the “donor mesh”. The targeted vertices on the donor mesh can be determined

and parameterised to obtain fd(θ, φ) =
(
xd(θ, φ), yd(θ, φ), zd(θ, φ)

)T
.

For the SH, we combined the parameterisation approaches by Choi et al. in 2015 [63] and
2020 [64] to obtain a conformal spherical parameterisation of the donor mesh with minimal
area distortion. For the HSH and the SCH, we used the approach proposed in Section
4. However, instead of parameterising only the spherical cap, we parameterised the whole
donor mesh over a unit sphere and then constrained the targeted domain of the vertices to
a spherical cap with θc.

After parameterising the targeted vertices over the donor mesh, we projected the rough-
ness onto the surface using a simple bandwidth-limiting (windowing) function in the spectral
domain. Let us assume that k̄min ≥ 1 and k̄max ≤ Kmax are the minimum and maximum
indices, which correspond to ωmax and ωmin wavelengths computed from Eq. (50). The
roughness projection can then be implemented by modifying Eq. (27) to:

fd(θ, φ) ≈
k̄max∑
k=k̄min

k∑
m=−k

θcqmk
θcCmk,d(θ, φ), (51)

where Cmk,d(θ, φ) are the basis functions evaluated for the targeted domain on the donor
mesh. This expression is equivalent to multiplying the reconstruction expression in Eq. (27)
by the traditional rectangular eigenfunction window H(k) in the spectral domain (a sharp
cut-off in the spectral domain) where:

fd(θ, φ) ≈
Kmax∑
k=0

k∑
m=−k

H(k) θcqmk
θcCmk,d(θ, φ),

and

H(k) =

{
1, k̄min ≤ k ≤ k̄max,
0, otherwise.

The coefficients can be manipulated in the spectral domain by rotating and scaling as
needed. In this paper, we will not demonstrate the coefficients manipulation methods or
the random generation of fractal surfaces with a certain Hurst exponent.

9 Numerical examples and discussions for SCHA

In this section, we present and discuss the results of the proposed SCHA method. We
begin with a visual benchmark that helps build the intuitive arguments we raise about
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the scalability and wavelengths. Second, we benchmark the SCHA against various random
fractal surfaces to estimate the Hurst exponent. Then, we analyse and study a rough surface
patch of a rock whose geometry was obtained by laser scanning. Finally, we demonstrate
an example of a roughness projection from the scanned stone to alter the microstructure of
a donor mesh.

9.1 Visual benchmark

We use a sculpture of a face (retrieved from [65]) for visualising the reconstruction evolution
with k. The 3D-scanned geometry of the face was first cleaned and remeshed to a manifold
surface with a reasonable number of vertices that sufficiently describe the details. Figure
9(A) shows the input geometry that was used. This benchmark was chosen for the following
reasons:

• It is a nominally flat surface that contains large and small wavelengths (facial features).
To capture all the small details, a high number of orders is required.

• It has a significant number of vertices (more than 20, 000), which increases the problem
complexity.

In this example, we used θc = π/18 to parameterise, expand and reconstruct the surface,
as this half angle is low enough to minimise the area distortion but also high enough for the
hypergeometric functions to be stable. The results in Figure 9(B)–(H) show the evolution
of the reconstruction stages with k.

The method starts with fitting the large wavelengths (low k’s). The large facial features,
such as the nose bone, begin to take shape at k = 3. The eyebrow ridges begin to take shape
at k = 10. Fine details like the mouth and the hair curls become visible only with higher
k’s. One way to measure the convergence of the spatial details is by simply measuring the
distance between the sampled points (Monte Carlo) on the input surface and the closest
equivalent ones on the reconstructed surface at a certain k. The root mean square error
(RMSE) of these points is then calculated using MeshLab [66] as the Euclidean distance
normalised by the diagonal of the bounding box of the surface. The results are shown in
Figure 10; for k = 40, the RMSE averaged over all points is 0.158282. Another measurement
that can compare the reconstruction of the original shape is the Hausdorff distance; see the
inset included in the same figure. It should be mentioned that when k = 40, the largest
captured feature varied at a wavelength of 184.589 mm, and the smallest varied at 4.858
mm.

Additionally, to investigate the influence of θc on the quality of the reconstruction, we also
expanded the input mesh up to k = 40 assuming θc = 5π/18. The RMSE for an expansion
and reconstruction with θc = 5π/18 was only 0.1215% larger than the one with θc = π/18.
Practically, this means that the analysis is invariant to θc, with the small difference due to the
numerical accuracy of the hypergeometric functions and the area distortion introduced by
the parameterisation. The area distortion after finding the optimal Möbius transformation
was 0.377619 for θc = 5π/18 and 0.341917 for θc = π/18.

9.2 Wavelength and patch size

As the face sculpture example contains large and small wavelengths, high orders of SCH
were needed to reconstruct the small details; compare Figure 9(G) and (H), where 20 addi-
tional orders were added to capture the hair curls, the mouth and the nasal openings. To
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H)G)F)E)

Figure 9: The reconstruction of the face sculpture with SCH. A) The input surface after
remeshing with 21, 280 vertices. It was expanded up to k = 40 and reconstructed with
an edge length of 0.032 on a unit disk; B) The reconstruction with k = 1 results in an
FDEC with 2a = 123.381, 2b = 111.336 and c = 19.844; C) Reconstruction at k = 3; D)
Reconstruction at k = 5; E) Reconstruction at k = 10; F) Reconstruction at k = 15; G)
Reconstruction at k = 20; H) Reconstruction at k = 40.

5 10 15 20 25 30 35

1

2

3

4

RM
SE

k

2.8

0.0

1.4

0

Figure 10: The root mean square error (RMSE) for the face sculpture. The inset shows the
Hausdorff distance at k = 40, where 1, 221, 276 points were sampled on the original mesh and
were compared with the reconstructed mesh. For θc = π/18, the RMSE for the Hausdorff
distance was 0.229886, the mean error was 0.141412 and the highest error value scored was
2.799484. The reported data was extracted with the open source package MeshLab [66].

27



1.6

0.0

0.8

2 4 6 8 10 12 14

0.2

0.4

0.6
0.8

1

RM
SE

k
0

Figure 11: The root mean square error (RMSE) for the local patch on the visual benchmark.
The inset shows the Hausdorff distance at k = 15 where we used 602, 087 points sampled
on the original mesh and compared these with the reconstructed mesh. At θc = π/18,
the RMSE for the Hausdorff distance was 0.149861, the mean error was 0.087238 and the
highest error value scored was 1.594269. The reported data was extracted with the open
source package MeshLab [66].

demonstrate that the number of orders needed for reconstructing a certain detail depends
on the size of the patch, we considered a regional patch from the hair details to filter out
the larger wavelength (facial features, e.g. the nose). The considered local patch is the
red-dotted region circled on Figure 10(A).

We expanded the local patch by assuming θc = π/18 and using only k = 15. As we
see from Figure 11, 15 degrees were enough to reach almost the same RMSE accuracy as
the whole face with k = 40. This resembles about 15.23% of the overall computed SCH
basis functions, though this ratio does not scale linearly with the computational time. The
minimum RMSE for the simple distance between the surfaces at k = 15 was 0.104812. By
changing the range of targeted wavelengths, we can clearly see the faster convergence of
this method with relatively close scales of detail (wavelengths). At only k = 15, the largest
captured feature varied at a wavelength of 59.761 mm and the smallest varied at 4.269 mm,
in comparison with k = 40, with 4.858 mm for the full sculpture. Furthermore, we compared
this with the HSHA, and we show that the error at least doubles for the different measures;
see Section 13.3 for full details.

9.3 Analysis of rough fractal surfaces

Here, we analysed rough artificially generated fractal surfaces, computed the Hurst coeffi-
cient from the SCHA for these surfaces and compared the obtained coefficients to the input
values used for the generation. Many libraries have been developed for generating such
surfaces using the traditional power spectral density (PSD) method (reviewed in [67, 68]),
such as Tamaas Library [69]. These benchmarks are important in contact mechanics, which
usually depends on exact asperity shapes, distributions and their effects on the real contact
area, as per Hyun et al. (2004) [70].

We generated four fractal surfaces with a root-mean-squared roughness of 0.7E−2 mm
and Hurst exponents of H ∈ {0.4, 0.5, 0.6, 0.9}; see Figure 12. To avoid biasing the first
few k’s on fitting the shape of the boundary lines and to expand the surfaces with fewer
ks, notice that the generated samples are all disks (circular boundary lines). To ensure
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reproducibility, all the surfaces were generated with a fixed seed number of 10 and with no
roll-off wave vector. In the same figure, we show the analysis results (up to k = 40) in terms
of the shape descriptors (solid lines) in Eq. (44) and the fit of Eq. (45) (dashed lines).

The surface in Figure 12(A) was generated with a Hurst exponent of 0.4, and we esti-
mated a Hurst exponent of H = 0.4175, which corresponds to a fractal dimension of 2.5825
and an error of +4.4%. For the generated surface with H = 0.5 (Figure 12(B)), we esti-
mated H = 0.5197 (+3.9%) and FD = 2.4802. For the third example with H = 0.6 (Figure
12(C)), we estimated the H = 0.5922 (−1.3%) and FD = 2.4078. However, for the fourth
sample generated with H = 0.9 (Figure 12(D)), we obtained H = 0.8370 (−7.0%) and
FD = 2.1630. This error is typical for higher values of H, as the surface seems finer and
most of the spatial details are part of smaller wavelengths, meaning that additional ks are
needed to capture these finer details. Making use of the scalability of the SCHA together
with the nature of the fractal surfaces (repeats itself at all scales), we cut out a smaller
area at the centre of the patch in Figure 12(D). We analysed the latter with k = 8, and the
estimated Hurst exponent was 0.8850 and FD = 2.1150. This agrees with the conclusions
drawn by Florindo and Bruno (2011) [71], who found using the PSD that the attenuation
slope of FD changes with the value of k and that most of the fractal information is contained
in the microscopic wavelengths when the change in the slope is negligible.

9.4 Laser-scanned rough surface patch

Here, we scanned a real stone that had been previously used in an experimental campaign
[72]. This type of stone is common in historical stone masonry walls, so studying the
stones’ interfacial properties helps define the mechanical behaviour of the walls. The stone
surface was acquired by laser scanning (Figure 13) with an accuracy of 0.01 mm (Figure 17).
Additionally, we sampled (extracted) a small patch over the scanned surface of the stone,
see Figure 17, to study the roughness of the surface.

The surface patch was expanded up to k = 40. The estimated dimensions of the FDEC
(computed from Eq. (43)) were: a = 24.7879 mm, b = 23.3502 mm and c = 5.7899 mm.
From FDEC, we can estimate the wavelengths of any index k from Eq. (50). For instance,
with an estimated average FDEC circumference of 151.2980 mm, the maximum and mini-
mum computed wavelengths ω2 ≈ 75.6490 mm and ω40 ≈ 1.9908 mm, respectively. Figure
14 summarises the results of the analysis of the descriptors. From the analysis, the decay
of the shape descriptors gives us a Hurst exponent of H = 0.9464, which suggests that the
surface is not very rough. Later, this roughness information will be used for modifying the
microstructure of a selected object.

9.5 Example of roughness projection

As explained in Section 7, we start the roughness projection by parameterising the patch on
the donor mesh over a sphere with a prescribed θc. Figure 15 shows the parameterisation of
a selected patch on a donor mesh with various half-angles θc. For the projection, we used
the coefficients extracted from the patch in Figure 14. To alter the microstructure of the
selected face on the donor mesh, we only include wavelengths between wmax = 15.12 mm
(kmin = 10) and wmin = 1.99 mm (kmax = 40). The resulting microstructure (see Eq. (51))
is shown in Figure 16(A). To obtain the final finite element mesh, we remeshed the STL
surface using the OpenCASCADE library [73] with various refinements (see Figure 16(B)
and (C)). The final volumetric finite element mesh was obtained using GMESH [74].
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Figure 12: The analysis results for artificially generated fractal surfaces with different Hurst
exponents. The solid lines represent the descriptors in Eq. (45) and the dashed lines repre-
sent the fit of Eq. (45). (A) a surface generated with H = 0.4; (B) a surface generated with
H = 0.5; (C) surface generated with H = 0.6; (D) surface generated with H = 0.9.
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Figure 13: The laser scanner setup using the Quantum FARO Arm®; the left side of the
picture shows the laser scanner used to scan the stone, and the right side shows the stone
pinned on a steel frame for the scan to minimise the loss of surface data.
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Figure 14: The SCHA for a patch sampled over the stone in Figure 17. The analysis of the
results for k = 40 and the best fit for the first k = 12 are shown, with H = 0.9464 and
FD = 2.0537. The colour bar shows the height map of the patch in mm. The upper x-axis
shows the corresponding wavelengths ωk.

A) B)

C) D)

Figure 15: The parameterisation of a selected patch on a donor mesh over a unit sphere with
a prescribed θc. (A) The donor mesh with the selected (red-shaded) patch for projecting
the roughness; B) S2 ∪ S2

θ≤π/2; C) S2 ∪ S2
θ≤5π/18; D) S2 ∪ S2

θ≤π/9.

32



A) B)

C)

Figure 16: Roughness projected on the selected face shown in Figure 15. (A) The roughness
projection on the triangulated face (STL file); (B), (C) The remeshed STL surface with dif-
ferent refinements performed using the OpenCASCADE [73] library followed by volumetric
finite element meshes generated by GMESH [74].
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10 Conclusions

In this paper, we conducted morphological analyses of open and nominally flat rough surfaces
using the spherical cap harmonics (SCH), whose basis functions are a generalisation of the
hemispherical harmonics (HSH) basis. SCHs form an orthogonal basis and is suitable for
analysing an open surface that is projected onto a spherical cap with any half-angle θc
(Figure 1), while HSHs form a basis for a hemisphere (θc = π/2). SCHs have been widely
used in geophysics for describing fields (e.g. the magnetic field over a continent), but to
our knowledge, they have not yet been applied for characterising and reconstructing the
morphology of surfaces. We exploited the solution for the even set of Legendre functions of
the first kind together with the Fourier functions to constitute the final SCHs that satisfy the
Laplace equation on a spherical cap. We chose the even set to perform surface reconstruction
with free edges using the Neumann boundary conditions while simultaneously conducting
a power spectral analysis using the orthogonality of the even basis functions. We also used
SCH to analyse simply connected surfaces with vertices, edges and triangulated faces (the
Standard Triangle Language STL files). The first step of such analyses is to couple each
vertex on the surface with a unique pair of θ and φ (surface parameterisation). Thus, we
proposed a parameterisation algorithm that provides conformal one-to-one mapping with
minimal area distortion over a unit spherical cap with a prescribed half-angle θc (S2

θ≤θc).
We showed that the proposed analysis approach is invariant to θc yet is sensitive to

the distortion introduced in the parameterised surface at different half angles (θc’s). The
unavoidable distortion caused by the parameterisation algorithm can limit the analysis to
certain half angles. Therefore, we used a global optimisation approach to identify the
optimal half-angle θc that minimises the area distortion between the input and parameterised
surfaces. As expected, we found that the conventional HSH analysis is suitable for surfaces
that can be parameterised over a unit hemisphere without introducing significant area and
angular distortions. For nominally flat surfaces, however, the traditional HSH fails to analyse
and reconstruct the surfaces correctly because of the distortion.

To show the robustness of the morphological analysis and reconstruction convergence, we
applied the proposed method to a scanned face sculpture as a visual benchmark. This bench-
mark was chosen to contain relatively large and small wavelengths to test the convergence
to the smallest details. The face was analysed for two selected half angles to demonstrate
that the method is invariant to θc and that the quality of the analysis depends only on the
distortion introduced on the parameterised surface. We then demonstrated the convergence
and the scalability of the method to expand and reconstruct complex surfaces of a selected
local patch on the face. Because the patch was smaller than the entire face, fewer degrees
were needed to capture the same details (faster convergence). We finally compared this
method with the HSH and found that the reconstruction from HSH was wavy and showed
larger error margins, as was expected due to the distortion in the parameterisation.

We derived an approximate formula that links the size of the first degree ellipsoidal
cap (FDEC) with the wavelengths as a function of the index k. We then used the power
spectral analysis of the rotation-invariant shape descriptors that are invariant to translation,
rotation, scale and half-angle θc to find the fractal dimension (FD) of the analysed open
surfaces. To benchmark this approach, we generated fractal surfaces with the traditional
PSD method and computed the Hurst exponent for these surfaces from the SCHA results.
The method yielded good estimates of the Hurst exponent (errors between −7.0 and +4.4%).

As this method was proposed to study rough surfaces in contact, we also outline a method
for projecting real or artificially generated roughness onto a selected donor mesh. This
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method can be used for the traditional SH, HSH and the SCH. We limited the bandwidth in
the spectral domain to reconstruct and alter the roughness of surfaces between user-defined
upper and lower limits.

The computational cost of this method was found especially expensive when evaluating
the sequential hypergeometric function, the critical loop, for k > 12. This is mostly due to
using a high-level programming language such as MATLAB and can be bested with using
C or C++.

11 Future works

In this section, we outline future developments for SCHA:

• This work hinges on the numerical stability and accuracy of the computed basis func-
tions of SCH, which depends on the Gaussian hypergeometric function evaluation

2F1(a, b; c; z). We provide a proof-of-concept implementation in MATLAB, which
may not be optimal in terms of computational efficiency. We now need a faster imple-
mentation of the hypergeometric functions in a more efficient environment (e.g. C++)
that is also stable for high orders.

• The herein proposed method can be seen as a corner stone for regional wavelet anal-
yses for shape morphology. Wavelet analyses conducted via traditional methods like
SH could take advantage of the stable and well-studied evaluation techniques of the
traditional basis function as well as any traditional recursive formulae (e.g. SH basis).
The SCH serves as an exact solution to compare with other potential regional analysis
methods using traditional basis functions.

• Implementing a recursive approach for computing the SCH basis can improve the
speed and efficiency.

• A physical regularisation method based on optimising the estimated SCH coefficients
of the basis will improve the accuracy and noise levels of the analysis (see [12] as an
example for SHA).

12 Reproducibility

The codes and generated data and the surfaces are all made available in this paper and can
be found on Zenodo (GitHub) [75]:

• Zenodo: 10.5281/zenodo.4890809

• GitHub: git@github.com:eesd-epfl/spherical-cap-harmonics
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13 Appendix A: Supplemental results

13.1 The scanned stone and the ordinary spherical harmonics anal-
ysis

Figure 17 shows the scans of the stone produced using the FARO arm laser scanner after
down-sampling the point cloud and remeshing the surface. Using the first degree of the
ellipsoid (FDE), which results from the degree l = 1 in the SHA, we can estimate the
maximum ellipse size at θ = π/2. The size of the ellipse can be written as [6]:

A =

√
3

2
√

2π

(
θcq−1

1 − θcq1
1 , i(

θcq−1
1 + θcq1

1),
√

2θcq0
1

)
. (52)

For the SHA, we used 45 degrees and set the size of the maximum ellipse on the FDE to a =
66.913 mm, b = 65.088 mm and c = 47.998 mm. This corresponds to ωmax = 207.3668 mm
(at l = 1) and ωmin = 4.8225 mm (at l = 45), which was calculated using the approximate
formula (50). The result of the reconstruction of the SH is shown in Figure 18.

The size of the resulted basis function matrix, from SHA, is (lmax +1)2×nv with exactly
2, 116×444, 653, and if we use double precision with ×64 bit-based systems, the size required
to store only the basis matrix will be 7.5270 gigabytes. With the SCH, we captured details
up to a wavelength of ωmin = 1.99 mm with only k = 40 (equivalent to l = 40), making
the size of the basis matrix stored only 220.1438 megabytes. The former calculations were
estimated based on the IEEE Standard for Floating-Point Arithmetic (IEEE 754) [76].

13.2 Optimal half-angle θc for a part of the scanned stone

Figure 19 shows the convergence to the optimal half-angle θc that minimises the area distor-
tion for extracted part of the scanned stone. The results were obtained by solving Eq. (47)
using the PSS algorithm. The HSH reconstruction result is shown in Figure 18.

13.3 Hemispherical harmonics for nominally flat surfaces

Using HSH (refer to the basis functions in [26]) to analyse and reconstruct nominally flat
surfaces introduces waviness and does not necessarily require many more degrees to converge
as the reconstruction will not improve. To demonstrate this, we analysed the surface patch
sampled over the 3D face shown in Figures 9 and 11 with HSH. By assuming that l = 15
(the same maximum order used in Figure 11), we found that the RMSE was 0.283845
instead of 0.104812 as found by the SCHA. The RMSE of Hausdorff was 0.310431 instead
of 0.149861, with a mean value of 0.174521 compared with 0.087238 in SCHA. The area
distortion introduced by the parameterisation algorithm for a hemisphere was 0.4691203496
compared to 0.2187252197 for θc = π/18. Using orders beyond l = 15 in the HSH analysis,
the overfitting waviness starts appearing in the reconstruction because of the increasing error
from the least-squares regularisation method. Figure 20 summarises the analysis results. A
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Figure 17: The laser scanning data after down-sampling the point cloud to 444, 653 points
instead of nearly 23, 000, 000 points; the colour map shows the radial distance measured
from the centroid of the stone.

Spherical Harmonics

Hemispherical Harmonics

Spherical Cap Harmonics

Figure 18: The reconstruction of the stone made using SH to analyse the whole stone
(Lmax = 45), HSH for a regional analysis (Lmax = 45) and SCH for the regional analysis of
nominally-flat patches (Kmax = 40).
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Figure 19: The optimal half-angle θc for the spherical cap parameterisation obtained for the
area extracted from the scanned stone in Figure 17; the map shows the radial distance from
the centroid of the extracted part.
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Figure 20: The root mean square error (RMSE) for the local patch on the visual bench-
mark, as computer using HSH. The inset shows the Hausdorff distance at k = 15 where
we used 1, 202, 087 points sampled on the original mesh and compared this value with the
reconstructed mesh. At θc = π/18, the RMSE for the Hausdorff distance was 0.310431,
and the mean error was 0.087238, while the highest error value scored was 1.594269. The
reported data was extracted using the open source package MeshLab [66].

closer look at the Hausdorff distance (the inset from the same figure) shows a little waviness
in the domain.

13.4 Additional results for the Sturm-Liouville eigenvalues

In this section, we show the Neumann boundary conditions and eigenvalues of the S-L
problem for visualising the sequence of eigenvalues and their effects on the wavelengths.
Figure 21 shows the boundary condition of the even set. The locations of the eigenvalues
on this figure occur where we see the asymptotic points all over the surface that approach

−∞ when the
dPm

l(m)k
(xc)

dx → 0 (eigenvalues), localising the points (asymptotics). These
asymptotic lines are more obvious when the equations are plotted with greater accuracy
(smaller step-size). Figure 22 shows the boundary conditions for three selected orders and
explains how the size of the plateaus increase withm and thus how they affect the wavelength
contributions at different levels when they come into effect in the expansion series. Figure
23 shows an example of the identified roots (eigenvalues) for the even boundary conditions
at θc = π/18.
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[21] J. R. de Miras, G. Mart́ınez-Lledó, W. Orwig, J. Sepulcre, A MATLAB tool for comput-
ing the spherical harmonic fractal dimension of the cerebral cortex, Computer Physics
Communications 254 (2020) 107381.

[22] D. WEI, C. ZHAI, H. Dorian, Y. GAN, Contact behaviour of simulated rough spheres
generated with spherical harmonics, International Journal of Solids and Structures 193
(2020) 54–68.

[23] J. C. Russ, Fractal surfaces, Springer US, 1994.

[24] Y. T. Feng, An effective energy-conserving contact modelling strategy for spherical har-
monic particles represented by surface triangular meshes with automatic simplification,
Computer Methods in Applied Mechanics and Engineering 379 (2021) 113750.

[25] H. Huang, L. Zhang, D. Samaras, L. Shen, R. Zhang, F. Makedon, J. Pearlman, Hemi-
spherical harmonic surface description and applications to medical image analysis, in:
Third International Symposium on 3D Data Processing, Visualization, and Transmis-
sion (3DPVT’06), IEEE, 2006, pp. 381–388.

[26] A. Giri, G. P. T. Choi, L. Kumar, Open and closed anatomical surface description via
hemispherical area-preserving map, Signal Processing 180 (2021) 107867.

[27] A. Giri, L. Kumar, T. K. Gandhi, Brain source localization in head harmonics domain,
IEEE Transactions on Instrumentation and Measurement 70 (2020) 1–10.

42



[28] G. P. T. Choi, A. Giri, L. Kumar, Adaptive area-preserving parameterization of open
and closed anatomical surfaces., Preprint.

[29] J. M. Torta, Modelling by spherical cap harmonic analysis: a literature review, Surveys
in Geophysics 41 (2) (2019) 201–247.

[30] M. A. Wieczorek, Gravity and topography of the terrestrial planets, in: G. Schubert
(Ed.), Treatise on Geophysics (Second Edition), Elsevier, Oxford, 2015, pp. 153–193.

[31] M. A. Wieczorek, F. J. Simons, Localized spectral analysis on the sphere, Geophysical
Journal International 162 (3) (2005) 655–675.

[32] G. V. Haines, Spherical cap harmonic analysis, Journal of Geophysical Research: Solid
Earth 90 (B3) (1985) 2583–2591.

[33] G. Haines, Computer programs for spherical cap harmonic analysis of potential and
general fields, Computers & Geosciences 14 (4) (1988) 413–447.

[34] C. Hwang, S.-K. Chen, Fully normalized spherical cap harmonics: application to the
analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophysical Journal
International 129 (2) (1997) 450–460.

[35] A. De Santis, Translated origin spherical cap harmonic analysis, Geophysical Journal
International 106 (1) (1991) 253–263.

[36] A. De Santis, Conventional spherical harmonic analysis for regional modelling of the
geomagnetic field, Geophysical Research Letters 19 (10) (1992) 1065–1067.
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