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Abstract

Generalized algebraic data types (GADTs) are a powerful tool allowing to express invariants leveraging the
type system.

Scala 3 considerably improves the support of GADTs with respect to its predecessor Scala 2. A unique
feature of Scala 3, compared to languages integrating GADTs, is the ability to define variant GADTs.

While Scala 3 GADTs support is satisfactory, some use-cases could benefit from extending it further.
In this work, we lay out the necessary tools to help us understand and reason about the GADT inference

problem. We propose an algorithm that incrementally refines the accumulated knowledge about the type
variables and prove its soundness. We also show some examples where the proposed algorithm is able to
infer interesting properties that the current Scala 3 compiler misses.
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Chapter 1

Introduction

1.1 Motivations

Generalized algebraic data types (GADTs) are simple but extremely powerful constructs allowing to encode
invariants within the type system of the host language [1, 14, 17].

Consider the following snippet representing a simply typed λ-calculus 1, adapted from [7]:

1 enum Expr[T] {
2 case Var[T](v: T) extends Expr[T]
3 case IntLit(v: Int) extends Expr[Int]
4 case BoolLit(v: Boolean)
5 extends Expr[Boolean]
6 case Pair[A, B](fst: Expr[A],
7 snd: Expr[B]) extends Expr[(A, B)]
8 case If(cond: Expr[Boolean],
9 tru: Expr[T],

10 fls: Expr[T]) extends Expr[T]
11 case Abs[A, B](fn: Expr[A] => Expr[B])
12 extends Expr[A => B]
13 case App[A, B](
14 fn: Expr[A => B],
15 arg: Expr[A]) extends Expr[B]
16 }

17 import Expr._
18

19 def eval[T](e: Expr[T]): T = e match {
20 case Var(v) => v
21 case IntLit(v) => v
22 case BoolLit(v) => v
23 case Pair(fst, snd) =>
24 (eval(fst), eval(snd))
25 case If(cond, tru, fls) =>
26 if (eval(cond)) eval(tru)
27 else eval(fls)
28 case f: Abs[a, b] =>
29 (arg: a) => eval(f.fn(Var(arg)))
30 case app: App[a, b] =>
31 eval(app.fn)(eval(app.arg))
32 }

Listing 1 – GADT definition in Scala 3

The Expr data type is a GADT: all cases but Var extend Expr with type arguments different from T .
This definition allows to rule out ill-typed terms at compile-time, leveraging the meta-language type system.
For example, the following term is well-typed:

1 val term1 = If(BoolLit(false), IntLit(42),
2 App(Abs(e => IntLit(24)), Var(())))

While the one below results in a compile-time error:

1 // Does not compile:
2 // Found: IntLit; Required: Expr[Boolean]
3 val term2 = If(BoolLit(false), BoolLit(true),
4 App(Abs(e => IntLit(24)), Var(())))

1Except when mentioned otherwise, all code snippets are compiled and ran under Scala 3.0.0.

1



The expressiveness of GADTs is truly unleashed when they are scrutinized through pattern matching. Let
us have a look at the eval function defined above. For the IntLit case, we get to know that e is a subtype
of IntLit – allowing us to derive that T is in fact equal to Int. Perhaps more interestingly is the Pair case
where fst and snd are equal to Expr[A] and Expr[B] respectively, for some A and B. We therefore see that
scrutinizing GADTs may not only refine the parameterized type, but also unveil existentially quantified
types.

Scala supports variant GADTs as well, thus allowing an even broader range of (correct) programs. We
can turn the previously defined Expr covariant, and appropriately annotate the cases as follows:

1 enum Expr[+T] {
2 case Var[+T](v: T) extends Expr[T]
3 case IntLit(v: Int) extends Expr[Int]
4 case BoolLit(v: Boolean) extends Expr[Boolean]
5 case Pair[+A, +B](fst: Expr[A],
6 snd: Expr[B]) extends Expr[(A, B)]
7 case If(cond: Expr[Boolean],
8 tru: Expr[T],
9 fls: Expr[T]) extends Expr[T]

10 case Abs[-A, +B](fn: Expr[A] => Expr[B]) extends Expr[A => B]
11 case App[A, +B](fn: Expr[A => B], arg: Expr[A]) extends Expr[B]
12 }

Listing 2 – Covariant GADT in Scala 3

The eval function remains identical.
In the snippet below, if Expr had not been made covariant, the compiler would have rejected the program.

1 trait Bird {
2 def makeSound: String
3 }
4 class Duck extends Bird {
5 def makeSound: String = "quack"
6 }
7 class Sparrow extends Bird {
8 def makeSound: String = "chirp"
9 }

10

11 val got = eval(If(
12 BoolLit(false),
13 Var(new Duck),
14 Var(new Sparrow)
15 )).makeSound // "chirp"

Listing 3 – Leveraging the covariance of Expr

Though GADTs support in Scala 3 is well established, there is still some room for improvements. For
instance, the following snippet does not compile even though it should:

2



1 trait Inv[X]
2 trait Inv2[X, Y]
3

4 // "S" for "Scrutinee"
5 trait S[F[_]]
6 // "P" for "Pattern"
7 trait P[Y, F[Z] >: Inv2[Z, Y]] extends S[F] {
8 def y: Y
9 }

10

11 def patmat[Y, F[Z] <: Inv2[Z, Y]](s: S[F]): Y = s match {
12 // Error: found pY; Required Y
13 // Should compile
14 case p: P[pY, pF] => p.y
15 }

Listing 4 – False negative example

Intuitively, pF and F are equal; therefore Inv2[Z, pY ] must be a subtype of Inv2[Z, Y ] for all Z – leading
to the conclusion that pY and Y are equal.

In this work, we establish the settings allowing to reason about the GADT inference problem. We then
propose an algorithm with a departure from the current GADT inference algorithm of the Scala compiler.
The core idea of the proposed algorithm is to maintain a knowledge structure representing the incremental
accumulation of information with respect to type variables. When new information arrives, that information
is assimilated into the structure which may result in unveiling further facts about the type variables.

1.2 Running examples

We deem it fruitful to have three examples that we refer to throughout this report. These examples serve as
a motivation for the presented concepts as well as illustrating the outputs of the proposed algorithm.

The first snippet is simple: its purpose is to swiftly connect the discussions with the examples.

1 trait S[X, +Y]
2 trait P extends S[Int, String]
3

4 def patmat[X, Y](s: S[X, Y]): X = s match {
5 case p: P => 42
6 }
7

8 val got = patmat(new P{}) // 42

Listing 5 – Introductory example

The second example shows a false positive snippet. The 3.0.0 compiler version performs an incor-
rect inference on the type variables and accepts the snippet even though it should not – leading to a
ClassCastException 2. In chapter 4, we show the reason why it is not correct to infer that X = String,
and present in chapter 5 the inferred results of the proposed algorithm.

2The issue is tracked in https://github.com/lampepfl/dotty/issues/11545 and its corresponding fix in https://github.
com/lampepfl/dotty/pull/12087.

3

https://github.com/lampepfl/dotty/issues/11545
https://github.com/lampepfl/dotty/pull/12087
https://github.com/lampepfl/dotty/pull/12087


1 trait Inv[X]
2 trait S[X]
3 trait P[X] extends S[Inv[X] & Inv[String]]
4

5 def patmat[X, Y](s: S[Inv[X] & Y]): X = s match {
6 // Should not compile
7 // Inferred: X = String
8 case p: P[pX] => "Hello"
9 }

10 // ClassCastException: String cannot be cast to Integer
11 val got: Int = patmat[Int, Inv[String]](new P{})

Listing 6 – Incorrect inference leading to a crash

The third example (based on listing 4) is an intricate snippet that is rejected by the compiler. As we will
see in chapter 4, it is possible to prove that pX and pY are indeed equal to Y . We then showcase in chapter
5 a run of the proposed algorithm that infers the equality between pX, pY and Y .

1 trait Inv[X]
2 trait Inv2[X, Y]
3

4 trait S[X, F[_]]
5 trait P[X, Y, F[Z] >: Inv2[Z, Y] & Inv[Y]] extends S[Inv[X], F] {
6 def x: X
7 def y: Y
8 }
9

10 def patmat[X, Y, F[Z] <: Inv2[Z, Y] & X](s: S[X, F]): (Y, Y) = s match {
11 // Error: found (pX, pY); Required (Y, Y)
12 // Should compile
13 case p: P[pX, pY, pF] => (p.x, p.y)
14 }

Listing 7 – Intricate false negative example

1.3 Chapters overview

This thesis is structured as follows. In chapter 2, we lay out our assumptions on some of Scala’s subtyping
rules. These assumptions allow us to present a constraint language in chapter 3. This constraint language
plays a central part in enabling formal reasoning about the GADT inference problem.

We then employ the tools introduced in chapters 2 and 3 to present the GADT inference problem in
chapter 4. This chapter also presents the necessary conditions to soundly solve the problem.

We present an algorithm in chapter 5 tackling the stated problem by chapter 4.
In chapter 6, we discuss related works which inspired the content of this thesis.
Finally, we conclude with chapter 7 and present further improvements on our proposition.
The appendix is divided into two parts. The first contains the proofs for the core parts of the algorithm.

The second includes the auxiliary definitions needed for the algorithm. We do not provide proofs for the
auxiliary functions but nonetheless state the (expected) properties.

4



Chapter 2

Framework

In this chapter, we present an extension of the pDOT calculus [12] with nominal subtyping and higher-kinded
types. We do not give proofs for the claims as it goes well beyond the scope of this work. The extension
enables reasoning about some of Scala’s subtyping rules we expect, such as variant GADTs and higher-kinded
abstractions.

Before diving into the heart of the matter, we introduce some notations we use throughout this work.

2.1 Preamble

Definition 2.1.1 (Disjoint set). Given two sets A and B, we write A # B to denote that A and B are
disjoint.

Definition 2.1.2 (Disjoint union). Given two disjoint sets A and B, we write A]B for their disjoint union.
We mainly use this notation to assert that A and B are disjoint.

Definition 2.1.3 (Boolean set). We denote the set of boolean B, comprised of the two values true, false

Definition 2.1.4 (Function copy). Given a function f : A→ B and two elements a in A and b in B, we
write f [a 7→ b] for the function that maps a to b and otherwise agrees with f .

Definition 2.1.5 (Partial mapping). We write f : A ⇀ B to denote a partial mapping from A to B. We
write f(a)↓ to denote that f is defined at a (that is, a ∈ dom(f)). Conversely, we write f(a)↑ to denote
that f is not defined at a. To create a copy of f “undefining” an entry a, we write f [a 7→ ↑].

Definition 2.1.6 (Restriction of a function). Given a function f : A→ B, we write f � A′ to denote the
restriction of the function f to A′ ∩A.

Definition 2.1.7 (Unordered pairs set). For any set A, we write
(
A
2

)
for the set of unordered pairs created

from A. That is, we define
(
A
2

)
as
{
{a, b} : a, b ∈ A, a 6= b

}
.

We borrow Kleene’s strong logic of indeterminacy [5] which adds a third indeterminate truth value.

Definition 2.1.8 (Ternary set). We write K3 to denote the ternary set of the three elements true, false
and undet. The latter stands for undetermined and conveys the notion of uncertainty.

The truth functions for negation, conjunction and disjunction are given by the following tables:

¬p
true false
false true
undet undet

p ∧ q false true undet
false false false false
true false true undet
undet false undet undet

p ∨ q false true undet
false false true undet
true true true true
undet undet true undet

Figure 2.1 – Truth tables for K3 logic.
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2.2 Syntax of types

We first introduce the syntax of types we consider in this report and give a brief overview alongside.

T ::= Type
> top
⊥ bottom
X type variable
T & T intersection
T | T union
Cls[~T ] concrete type con. app.
F [~T ] abstract type con. app.
[~v ~X / B] =>>T HK abstraction
{z => ~M} refinement
p.type singleton type
p.Q path-dependent type
p.Q[~T ] path-dependent type app.
T {z => ~M} refined type (syn. sugar)
(~x : ~T ) =>T dep. fn. (syn. sugar)
[ ~X / B] => (~x : ~T ) =>T pol. fn. (syn. sugar)

x, y, z Term variable
X, Y , Z, F Type variable
a, f Field
A, Q Type member
Cls Class and trait
B Bounds
p, q ::= Path
x variable
p.a field selection

v ::= Variance
+ covariance
− contravariance
± invariance

M ::= Refinement member
type Q / B type member
val f : T field
def m[ ~X / B](~x : ~T ) : T method

Figure 2.2 – Syntax for types

We only consider all well-formed types generated by the above grammar. The well-formedness of a type
naturally depends on its shape. For instance, the arguments of a type application must respect the arity,
variance and kind of the type constructor. We assume this property is independent of a typing environment
Γ 1.

We now go over some of the rules and present some explanations and introduce additional requirements
that are not captured by the grammar. We also give the desugaring assumptions of refined types, dependent
and polymorphic function types.

Match types, type lambdas.
Match types and type lambdas are new constructs introduced in Scala 3. For our specific needs, we

assume these can be treated as if they were higher-kinded constructs. In particular, we suppose that match
types can be seen as abstract type constructors, as we do not have a dedicated treatment for the former.

Type variable.
We use the meta-variables F and G to denote a higher-kinded type variable, and X for a type variable

of any kind.

Intersection and union types.
Unsurprisingly, the types involved in intersection and union types must be of simple kind.

Type constructor application.
A class or trait may have an arity of zero. Abstract and path-dependent type constructors must have an

arity of at least 1.
A type constructor application is well-formed if and only if the arguments match the type constructor

signature.

1Technically speaking, this assumption cannot be satisfied for a path-dependent type application such as p.F [ ~A]. We need
to perform a lookup in Γ to check the kind of p.F . However, we deem this assumption reasonable as it eases the well-formedness
analysis.
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Note that we do not expect a well-formed type application to be well-typed: to determine whether the
arguments satisfy the type constructor bounds, we necessarily need an environment Γ. We capture this
requirement in the concept of conformance, which we introduce afterwards.

Refined type.
A refined type such as T {z => ~M} is simply desugared into T & {z => ~M}.

Bounds.
Bounds are constructs allowing to constraint a type variable (such as in a higher-kinded abstraction or a

method) or a type member by giving it lower and upper bounds.
Bounds allow constraining multiple type variables: the bounds of a type variable may refer to another

constrained type variable 2.
We can view bounds as a partial mapping from type variables to pairs of types, where the first member

corresponds to the lower bound, and the second member to the upper bound. We assume that the type
variables of bounds have an implicit ordering.

We write ~X /B to denote that the type variables ~X are subject to the constraints in B. We require ~X to
coincide with the domain of B. If the kinds between the latter and the former correspond, we can perform
an appropriate α-renaming to satisfy this condition; for type variables not appearing in B, we can create a
copy of B that maps these to (⊥,>).

Dependent function type.
Given a dependent function type (~x : ~S) =>T , we assume its corresponding desugaring is:

FunctionN[~S′, T ′] & {_ =>

def apply(~x : ~S) : T

}

where N = |~S|. T ′ is the least upper approximation of T with no reference to the term ~x. Analogously,
~S′ are the (point-wise) greatest lower approximation of ~S with no reference to ~x.

The desugaring applies to plain functions as well.

Polymorphic function type.
Similar to the assumptions about dependent function types, we assume that the corresponding desugaring

of a polymorphic function [ ~X / B] => (~x : ~S) =>T is:

FunctionN[~S′, T ′] & {_ =>

def apply[ ~X / B](~x : ~S) : T

}

Higher-kinded abstraction.
Given a higher-kinded abstraction [~v ~X / B] =>>T , we require ~v – the variance sign vector – to have the

same length as ~X. Furthermore, we require ~X to coincide with the domain of B. Finally, we assume that T
has a simple kind. We can always remediate with a suitable η-expansion and uncurrying.

Refinements.
We first introduce a shorthand notation for refinements and then discuss the well-formedness conditions.

2There are some restrictions that we do not consider for simplicity.
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Suppose we have the following refinement:

{z =>
type T1 / B1

. . .

type Tm / Bm

val f1 : F1

. . .

val fn : Fn

def m1[~Y1 / BY,1](~x : ~U1) : V1

. . .

def mo[~Yo / BY,o](~xo : ~Uo) : Vo

}

where m, n and o can be zero. In particular, a refinement can be empty.
We can describe the refinement more compactly as follows:

{z =>

type ~T / B

val ~f : ~F

def
−−−−−−−−−−−−→
m[~Y / BY ](~x : ~U) : ~V

}

For a refinement to be well-formed, we naturally require all of its members to be well-formed. Furthermore,
field names must be distinct; the same goes for type members. Methods follow the same restriction: in
particular, we do not allow refinements to have method overloads. This rule coincides with Scala.

We now introduce some definitions.

Definition 2.2.1 (Type variables set). For each kind κ, we let VXκ be a denumerable set of type variables.
We assume that these sets are disjoint and note VX the set formed by the union of VXκ .

We employ the notation X̄ to denote a finite, possibly empty set of type variables. We write ~X for an
ordering of X̄.

We write ftv(T ) and ftv(B) for the set of free type variables of a type T and a bound B respectively.
ftv(B) is defined as

⋃{
ftv(Li, Ui) : (Li, Ui) ∈ Im(B)} \ dom(B).

Definition 2.2.2 (Term variables set). We let Vx be a denumerable set of term variables, disjoint from
VXκ .

We employ a similar notation for a set of term variables x̄ and ~x for an ordering of x̄.
We write ftmv(T ) and ftmv(B) for the set of free term variables of a type T and a bound B, respectively.

ftmv(B) is defined as
⋃{

ftmv(Li, Ui) : (Li, Ui) ∈ Im(B)}.

Definition 2.2.3 (Classes, traits and program identifiers sets). We let the set SC denote the set of classes
and traits symbols. We employ the meta-variable Cls to denote elements of that set. We assume that this
set is disjoint from VX and from Vx. That is, given a symbol X, we assume it is possible to tell whether it is
a type variable or a class symbol.

We similarly let the set Sa denote the set of program identifiers: that is, the set of symbols used to bind
values as well as defining fields of refinements. We employ the meta-variables a, b, f to denote elements of
that set. Analogous to SC , we assume it is possible to differentiate an element of Sa from a term variable
(which binds values too).
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Definition 2.2.4 (Ground types sets, types sets). We refer to closed, well-formed types formed from the
grammar 2.2 as ground types. We employ the meta-variable T cl to denote subsets of the set of all ground
types. We similarly employ the meta-variable T to denote subsets of the set of well-formed types that are
not necessarily closed.

Definition 2.2.5 (Ground paths sets, paths sets). A ground path (or closed path) is a path formed from
the program identifiers (the set Sa); that is, it is an element of the set {(a1, ..., an) : n ≥ 1, ai ∈ Sa}. We use
the meta-variable Pcl to denote subsets of the set of all ground paths.

A (not necessarily closed) path is either a closed path or a path whose prefix is a term variable. That
is, it is an element of the set {(x, a1, ..., an) : n ≥ 0, x ∈ Vx, ai ∈ Sa} ∪ {(a1, ..., an) : n ≥ 1, ai ∈ Sa}. We
similarly use the meta-variable P to denote subsets of the set of all paths.

We employ the meta-variables p and q to denote paths, whether closed or not.

Definition 2.2.6 (Ground bounds sets, bounds sets). A ground bound is a closed, well-formed bound formed
from a given set of ground types. We use the meta-variable Bcl to denote subsets of the set of all ground
paths. Similarly, we use the meta-variable B to denote subsets of the set of all bounds, whether closed or not.

Finally, we employ a standard definition of type substitution [9, 10].

Definition 2.2.7 (Type substitution). A type substitution σ is a possibly partial, kind-preserving mapping
of type variables to types. Given a type T , σ(T ) is the type obtained by recursively substituting the free
type variables within T to their mapped types in σ, augmented with the identity for type variables not
contained in the domain of σ.

We write σ[X 7→ T ] to denote the assignment mapping the type variable X to T and otherwise agrees
with σ.

We define the bound substitution σ(B) accordingly where the type variables in dom(B) appear bound
within B.

Example 2.2.1. Let σ = [X 7→ Int, F [X] 7→ List[X], Y 7→ String].
Then σ([X <: Option[X]] =>F [X & Y ]) = [X <: Option[X]] => List[X & String].

Definition 2.2.8 (Term substitution). A term substitution ρ is a (possibly partial) mapping of term
variables to paths. Given a path p with a term prefix x, ρ(p) is the path obtained by substituting x in p to
the mapped path in ρ, augmented with the identity for term variables not contained in the domain of ρ.
Closed paths are idempotent under ρ.

We define ρ[x 7→ p] analogously.
Term substitution within types and bounds are defined accordingly and solely operates on free term

variables.

Example 2.2.2. Let ρ = [x 7→ a.b, y 7→ c.d].
Then ρ({x => type T <: F [x.T & y.u.v.S]}) = {x => type T <: F [x.T & c.d.u.v.S]}

Before concluding this section, we introduce two definitions that are essentially syntactic shorthands.

Definition 2.2.9 (Bounds satisfaction). Let B : B be a bound constraint whose ordered domain is ~X. For
any ~A in T | ~X| (with the same kind as ~X and whose free type variables are distinct from X̄), we say that A
satisfies B under Γ and write Γ ` ~A / B if and only if the following holds:

∀Xi ∈ ~X. Γ ` [ ~X 7→ ~A]Li <: Ai ∧

Γ ` Ai <: [ ~X 7→ ~A]Ui

where Li and Ui are the associated lower and upper bound of Xi.

Definition 2.2.10 (Vectors of types subtyping). Given two vector of types ~S and ~T of same length and
kind, we define Γ ` ~S <: ~T as

∧|~S|
i Γ ` Si <: Ti. If the length of the vectors is zero, we define Γ ` ~S <: ~T as

true.
Given a variance sign v, we define Γ ` S <:v T as Γ ` S <: T if v = +, as Γ ` T <: S if v = −, and as

Γ ` S <: T ∧ Γ ` S <: T if v = ±,
Finally, we define Γ ` ~S <:~v ~T by simply combining the two notations.
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2.3 Subtyping assumptions

We assume the existence of an extension to the pDOT calculus [12] encompassing nominal subtyping,
type variable subtyping assumptions and higher-kinded abstraction. Because pDOT does not possess some
constructs such as higher-kinded types, we choose Scala’s syntax over pDOT’s for presenting the rules.

We expect the (extended) typing environment Γ to have the capability of recording subtyping relationships
between traits and classes. For instance, if we have the following traits:

Tr1[+A]

Tr2[+A] extends Tr1[Option[A]]

Tr3[+A,+B] extends Tr2[List[A]] with Tr1[B]

then Γ would record that Tr2[+A] extends Tr1[+A] through the mapping σ(A) = Option[A] (and
similarly for the relationship between Tr3 and Tr2). We assume that Γ records that Tr3[+A,+B] extends
Tr1[+A] twice through the mappings σ1(A,B) = Option[List[A]] and σ2(A,B) = B.

Furthermore, we assume that Γ is extent to allow type variable subtyping assumptions such as X >:
L <: H, specifying that X is bounded between L and H.

For simplicity, we do not distinguish classes from traits.

The figure 2.3 establishes the subtyping rules we expect from the extension. We do not present the
typing rule and leave them unspecified. For simplicity, we assume prior α-renaming of bound type and term
variables of the considered types to avoid any collision with the variables of Γ.

We now discuss some of the rules. The changes or additions with respect to pDOT subtyping rules are
highlighted in gray.

Rules (Top) and (Bot).
We assume the existence of >κ and ⊥κ for all kinds κ. We omit the κ subscript when the kind can be

inferred from the context.

Rule (Met-<:-Met).
The rule for method subtyping is the adaptation of pDOT’s (All-<:-All) to allow a direct representation

of type parameters. We have adopted an uncurried version of method subtyping. While the rule presentation
is more cumbersome than its curried variant, the former is more appropriate for our use case.

We require ~S to not forward-reference the term variables ~x (the second premise does not enforce such
forbidden construction). A more formal enforcement of this requirement would be to replace the second
premise of the rule by Γ, ~Y / B1, x1 : S1,1, ..., xi−1 : S1,i−1 ` S2,i <: S1,i, thus turning any forward-reference
ill-formed. This alternative has not been retained due to its unwieldiness.

We point out that type parameters can be encoded in pDOT using type tags [12]. We have however
favored the assumption of a direct representation for convenience.

Rule (Cls-<:-Cls).
The Γ ` ~S / B antecedent ensures that ~S satisfies the bounds B of the class (or trait) Cls. The vector ~v

refers to the variance signs of Cls.
Because ~S is a subtype of ~T with respect to the signs of ~v, ~T must satisfy the bounds of Cls as well.

Rules (Cls1-<:Cls2) and (Cls2-<:Cls2).
B1 and B2 refer to the bounds of Cls1 and Cls2 respectively.
The rule (Cls1-<:Cls2) allows to “upcast” Cls1 to Cls2 while (Cls2-<:Cls2) is in essence the opposite

of (Cls1-<:Cls2).
As an illustration, we consider the three traits introduced in the previous example. If Γ ` Tr3[S, T ] <:

Tr1[U ], the rule (Cls1-<:Cls2) states we necessarily have Γ ` Tr1[Option[List[S]]] & Tr1[T ] <: Tr1[U ]. In
other word, we must have Tr1[Option[List[S]]] <: Tr1[U ] or Tr1[T ] <: Tr1[U ] therefore reducing the range
of types that U can possibly take.
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Rule (Path-&).
The intuition behind this rule is to enforce equality between arguments appearing in invariant positions

within an intersection of traits or classes. For example, if we have p : Inv[T ] & Inv[S] where Inv is an
invariant trait, then T and S must be equal; otherwise, we could not have instantiated it.

This rule introduces unsoundness in presence of (implicit) null as well as explicit casts. We discuss in
more detail these two issues in 5.4.

Rule (Refn-<:-Refn).
R1 and R2 refer to the following refinements:

R1 = {z =>
type ~T / B1

type ~T ′ / B′

val ~f : ~F1

val ~f ′ : ~F ′

def
−−−−−−−−−−−−−−→
m[~Y / BY,1](~x : ~U1) : ~V1

def
−−−−−−−−−−−−−−→
m′[~Y ′ / B′Y ](~x′ : ~U ′) : ~V ′

}

R2 = {z =>
type ~T / B2

val ~f : ~F2

def
−−−−−−−−−−−−−−→
m[~Y / BY,2](~x : ~U2) : ~V2

}

We point out that this rule subsumes pDOT’s (Fld-<:-Fld) and (Typ-<:-Typ) (explaining their
absence).

Finally, we assume the four following axioms. The first two state the strengthening and weakening of the
judgement for term variables.

Axiom 2.3.1 (Strengthening for term variables in subtyping derivations). If Γ, x : T ` S1 <: S2

and x 6∈ ftmv(S1, S2), then Γ ` S1 <: S2

Axiom 2.3.2 (Weakening for term variables in subtyping derivations). If Γ ` S1 <: S2 and
x 6∈ ftmv(S1, S2), then Γ, x : T ` S1 <: S2

The last two allow explicit substitutions to be turned into a typing environment extension and vice-versa.
δ is employed to denote subtyping and path typing.

Axiom 2.3.3 (Extensibility of Γ for type variables). Γ, X >: L <: H ` δ if and only if Γ ` [X 7→
A]L <: A and Γ ` A <: [X 7→ A]H imply Γ ` [X 7→ A]δ for all A ∈ T cl with the same kind as X.

Axiom 2.3.4 (Extensibility of Γ for term variables). Γ, x : T ` δ if and only if Γ ` p : T implies
Γ ` [x 7→ p]δ for all p ∈ Pcl.

Lemma 2.3.1. Let ~x and ~T be term variables and types of same length such that ~T does not forward-reference
~x. Then Γ, ~x : ~T ` δ if and only if Γ ` ~p : [~x 7→ ~p]~T implies Γ ` [~x 7→ ~p]δ for all ~p ∈ (Pcl)|~x|.

Proof. Straightforward induction on the size of ~x with δ held abstract, and application of axiom 2.3.4.
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Γ ` T <: > (Top)

Γ ` ⊥ <: T (Bot)

Γ ` T <: T (Refl)

Γ ` S <: T Γ ` T <: U

Γ ` S <: U
(Trans)

Γ ` T & U <: T (And1-<:)

Γ ` T & U <: U (And2-<:)

Γ ` S <: T Γ ` S <: U

Γ ` S <: T & U
(<:-And)

Γ ` p : {type A >: S <: T}
Γ ` S <: p.A

(<:-Sel)

Γ ` p : {type A >: S <: T}
Γ ` p.A <: T

(Sel-<:)

Γ ` p : q.type Γ ` q
Γ ` T <: [p 7→ q]T

(Snglpq-<:)

Γ ` p : q.type Γ ` q
Γ ` T <: [q 7→ p]T

(Snglqp-<:)

X >: L <: H ∈ Γ

Γ ` L <: X
(<:-TyVar)

X >: L <: H ∈ Γ

Γ ` X <: H
(TyVar-<:)

Γ ` T <: T | U (<:-Or1)

Γ ` U <: T | U (<:-Or2)

Γ ` S <: U Γ ` S <: T

Γ ` S | T <: U

(Or-<:)

Γ, ~X / B1 ` ~X / B2

Γ ` B1 <: B2

(Bnd-<:-Bnd)

Γ, ~X / B1 ` ~X / B2

Γ, ~X / B1 ` S1 <: S2

Γ ` [~v ~X / B1] =>>S1 <:

[~v ~X / B2] =>>S2

(Hk-<:-Hk)

Γ, ~Y / B1 ` ~Y / B2

Γ, ~Y / B1, ~x : ~S1 ` ~S2 <: ~S1

Γ, ~Y / B1, ~x : ~S1 ` T1 <: T2

Γ ` def m[~Y / B1](~x : ~S1) : T1 <:

def m[~Y / B2](~x : ~S2) : T2

(Met-<:-Met)

Γ ` ~S <:~v ~T Γ ` ~S / B
Γ ` Cls[~S] <: Cls[~T ]

(Cls-<:-Cls)

Cls1 extends Cls2 through ~σ
Γ ` ~T / B1

Γ ` Cls1[~T ] <: &N
i Cls2[σi(~T )]

(Cls1-<:Cls2)

Cls1 extends Cls2 through ~σ
Γ ` ~S / B1 Γ ` ~T / B2

Γ ` Cls1[~S] <: Cls2[~T ]

Γ `&N
i Cls2[σi(~T )] <: Cls2[~S]

(Cls2-<:Cls2)

Γ ` ~S / B Γ ` ~T / B
Γ ` p : Cls[~S] & Cls[~T ]

vi = ±
Γ ` Si <: Ti Γ ` Ti <: Si

(Path-&)

Γ, z : R1 ` B1 <: B2

Γ, z : R1 ` ~F1 <: ~F2

Γ, z : R1 `
def

−−−−−−−−−−−−−−→
m[~Y / BY,1](~x : ~U1) : ~V1 <:

def
−−−−−−−−−−−−−−→
m[~Y / BY,2](~x : ~U2) : ~V2

Γ ` R1 <: R2

(Refn-<:-Refn)

Figure 2.3 – Presumed subtyping rules based on pDOT.
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2.4 Conformance

In the last section, we have seen that some of the rules (such as (Cls-<:-Cls)) require the arguments of an
applied trait or class to satisfy the bounds of that trait or class.

As an example, suppose that the class MyClass[X <: Int] is defined in some environment Γ. In particular,
we point out its requirement towards its type parameter which must be a subtype of Int. Then, assuming
that Int and String are defined and unrelated in the considered Γ, we say that the type MyClass[String]
is non-conforming under Γ because String does not satisfy the bounds requirement of MyClass. On the
other hand, MyClass[Int] is naturally conforming under Γ.

This example motivates the concept of conformance.

Definition 2.4.1 (Conformance of a type under a Γ). Given a typing environment Γ and a type T , we say
that T is conforming under Γ if and only if confT (Γ, T ) holds. Otherwise, we say that T is non-conforming
under Γ.

The predicate confT (Γ, T ) is defined in figure 2.4. For simplicity, we assume proper α-renaming of bound
variables to avoid any collision when extending Γ.

confT (Γ, T ) =



Γ ` ~S / B ∧ confT (Γ, ~S) if T = TyCon[~S] where B are the bounds
of TyCon

confT (Γ, S) ∧ confT (Γ, U) if T = S & U or T = S | U

confT (Γ, B) ∧ confT ((Γ, ~X / B), S) if T = [~v ~X / B] =>>S

Γ ` ~S / BL ∧ Γ ` ~S / BU ∧
confT (Γ, ~S)

if T = p.F [~S] where BL, BU are the
lower and upper bounds of p.F∧

i
confT ((Γ, X / B), Li) ∧∧
i
confT ((Γ, X / B), Ui)

if T = B =
⋃
{Xi 7→ (Li, Ui)}

confT ((Γ, z : T ), B) ∧
confT ((Γ, z : T ), ~F ) ∧
confT ((Γ, z : T ), def

−−−−−−−−−−−−→
m[~Y / BY ](~x : ~U) : ~V )

if T = {z =>
type ~T / B

val ~f : ~F

def
−−−−−−−−−−−−→
m[~Y / BY ](~x : ~U) : ~V

}

confT (Γ, BY ) ∧
confT ((Γ, ~Y / BY , ~x : ~U), ~U) ∧
confT ((Γ, ~Y / BY , ~x : ~U), V )

if T = m[~Y / BY ](~x : ~U) : V

true otherwise

Figure 2.4 – Conformance of a type T under an environment Γ

We naturally extend the definition of conformance to a set of types.
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Chapter 3

A constraint language

We devote this chapter to the definition of a constraint language C(T cl,Pcl,VX ,Vx,Γ) parameterized by
sets of ground types T cl, of ground paths Pcl, of type variables VX , of term variables Vx, and a typing
environment Γ.

For the remainder of the work, we consider T cl, Pcl, VX , Vx and Γ fixed. We require T cl to be conforming
under Γ and all paths in Pcl to be well-typed under Γ. The sets T , B and Bcl are accordingly generated
from VX and T cl. P is generated from Vx and Pcl.

We first define the syntax. We then give the logical interpretation of the language. Finally, we establish
some important results to help us in our journey.

This chapter is largely inspired by the constraint language introduced by François Pottier and Didier
Rémy employed to view the inference problem in Damas and Milner’s type system (DM) as a constraint
solving problem [11].

3.1 Syntax

We now present the syntax of constraints. We then give some requirements that are not captured by the
grammar.

C ::= Constraint
C# core constraint
B � B bounds subtyping
C f C conjunction
∃X. C existential type quantification
∃x. C existential term quantification
T � T equality (syn. sugar)
T �v T variance subtyping (syn. sugar)
B bounds constraint (syn. sugar)
~A / B bounds satisfaction (syn. sugar)

C# ::= Core constraint
true truth
false contradiction
T � T subtyping
p : T path typing

Figure 3.1 – Syntax for constraints

We require types tied in a subtyping constraint, such as S � T , to be of same kind. Additionally the type
T in a path typing p : T must have a simple kind. Furthermore, two bounds B1 and B2 tied in a subtyping
constraint must have the same domain with the same ordering and kind. If the length and the kind of the
domain match, it is possible to create a copy of B1 and B2 with an α-renamed and reordered domain to
satisfy this requirement. Finally, a bounds satisfaction constraint such as ~A / B must have its constrained
types ~A correspond in length and kind to the domain of B.

The desugaring for the four last constructs is rather straightforward:
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• An equality constraint S � T desugars into S � T f T � S.

• A variance subtyping S �v T desugars into S � T if v = +, T � S if v = −, and S � T f T � S if
v = ±.

• A bounds constraint B desugars into:
k
{Li � Xi fXi � Ui : (Xi, (Li, Ui)) ∈ B}

• A bounds satisfaction constraint ~A / B desugars into:
k
{[ ~X 7→ ~A]Li � Ai fAi � [ ~X 7→ ~A]Ui : (Xi, (Li, Ui)) ∈ B}

We denote C the set of all well-formed constraints.
The constraints being rather self-explanatory, we move on to the next section and introduce their

interpretation.

3.2 Meaning of constraints

The meaning of a constraint is dependent on the closed types and closed paths assigned to the free type
and term variables of the considered constraint. The notion of associating each type and term variable is
captured in the concepts of ground type assignment and ground path assignment, which we define next.

Definition 3.2.1 (Ground type assignment). A ground type assignment (or just type assignment) φ is a
total, kind-preserving mapping from VX into T cl. We write φ[X 7→ T ] to denote the assignment mapping
the type variable X to T and otherwise agrees with φ. Ground type assignments are naturally extended into
type substitutions, respecting bound variables scope. For convenience, we abuse notation and write φ(T ) to
denote the substitution of T under the mapping given by φ.

Remark. A type substitution resulting from a ground type assignment may yield a non-conforming type.
See example 3.2.3.

Example 3.2.1 (Type assignment, simple kind). Consider the ground type assignment φ′ = φ[X 7→
Int, Y 7→ String], for some unspecified φ. Then, φ′(MyClass[X, [+X] =>>X & Y, Z]) is equal to
MyClass[Int, [+X] =>>X & String, φ(Z)].

Example 3.2.2 (Type assignment, higher-kinded). Consider the assignment φ′ = φ[F [X,Y ] 7→
SomeClass[X & Y ]]. Then, φ′(F [X, Int] &X) is equal to SomeClass[φ(X) & Int] & φ(X).

Example 3.2.3 (Type assignment, non-conforming). Let the assignment φ′ = φ[X 7→ Int] and the class
MyClass[Y <: String]. Then φ′(MyClass[X]) = MyClass[Int] is non-conforming.

This example shows that the well-formedness preservation property of an assignment φ is insufficient to
guarantee meaningful types.

We define ground path assignments similarly.

Definition 3.2.2 (Ground path assignment). A ground path assignment (or just path assignment) γ is a
total mapping from Vx into Pcl. Furthermore, ground path assignments are extended into path substitution
– taking into account scoped term variables.

Remark. Akin to ground type assignment, a term substitution resulting from a ground path assignment
may yield an ill-formed path, as illustrated by the next example.

Example 3.2.4 (Path assignment). Let the path assignment γ′ = γ[x 7→ p.a, y 7→ p.b] and suppose that
Γ ` p : {val a : {val b : Int}}. Then, γ′(x) = p.a and γ′(x.b) = p.a.b are both well-typed paths. On the
other hand, γ′(y) = p.b is ill-typed.

As for type assignments φ, we need to require a bit more from γ to guarantee meaningful path and types.
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Now that we have separately defined type and path assignment, we are interested in combining them
together.

Definition 3.2.3 (Type and term variable substitution). We write (φ, γ)T for the simultaneous substitution
of T by the substitution created by combining φ and γ.

We analogously write (φ, γ)Γ to denote the substitution of all type and term variables. The type variable
assumptions X >: L <: U are removed.

Fortunately, we do not have to worry about simultaneous substitution since it is possible to swap φ and
γ, as stated by the following lemma.

Lemma 3.2.1 (Commutativity of φ and γ). For any assignments φ,γ and type T ∈ T , (φ, γ)(T ), φ(γ(T ))
and γ(φ(T )) are equal.

Similarly, (φ, γ)Γ, φ(γ(Γ)) and γ(φ(Γ)) are equal.

Proof. It is sufficient to prove that φ(γ(T )) and γ(φ(T )) are equal. The same reasoning applies to φ(γ(Γ))
and γ(φ(Γ)).

To do so, we can examine the domain and codomain of φ and γ and deduce that these are disjoint. The
domain of φ is VX while the codomain of γ is Pcl. These are obviously disjoint. On the other hand, the
codomain of φ is T cl and the domain of γ is Vx. Path-dependent types are elements of T cl, but since the
paths are closed, no term variable can appear in a prefix position. As such, the codomain of φ and the
domain of γ are disjoint.

We introduce the notion for self-conformance of the typing environment Γ under some given assignments
φ, γ. The idea boils down to ensuring that Γ does not introduce typing assumptions through path-dependent
types or type variables once these are substituted through φ, γ. Self-conformance is, in essence, a weaker
variant of inertness of Γ in pDOT which requires all types in Γ to be the precise types of values [12].

Definition 3.2.4 (Self-conformance of Γ under assignments φ, γ). Given the assignments φ, γ, we say that
Γ is self-conform under φ, γ if and only if confΓ(Γ, φ, γ) holds.

The predicate confΓ(Γ, φ, γ) is defined below.

confΓ(Γ, φ, γ) =



true if Γ = ∅

(φ, γ)Γ′ ` (φ, γ)L <: (φ, γ)U ∧ confΓ(Γ′, φ, γ) if Γ = Γ′, X >: L <: U

(φ, γ)
(
Γ′, x : {z => type ~T ; val ~f : ~F}

)
`

(φ, γ)
(
[z 7→ x]Li

)
<: (φ, γ)

(
[z 7→ x]Ui

)
∧

confT ((φ, γ)
(
Γ′, x : {z => type ~T ; val ~f : ~F}

)
,

(φ, γ)
(
[z 7→ x]~F

)
) ∧

confΓ(Γ′, φ, γ)

if Γ = Γ′, x : {z =>
type ~T / B

val ~f : ~F , ...
}

confΓ(Γ′, φ, γ) if Γ = Γ′, δ

Figure 3.2 – Self-conformance of Γ under φ, γ

In the third case, we extend Γ′ with a weaker type for x where the bounds of its type members have
been stripped away. The types Li and Ui refer to the lower and upper bounds specified by B.

In the last case, δ refers to any typing information not related to term typing or type variable bounds
(e.g. declaration of inheritance between traits).

Now that we have all the necessary tools, we can introduce the constraints interpretation in the form of
a judgement. The rules below define the constraint satisfaction predicate |=.
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confΓ(Γ, φ, γ)

φ, γ |= true
(CM-True)

confΓ(Γ, φ, γ)
confT (Γ, T1) confT (Γ, T2)
(φ, γ)Γ ` (φ, γ)T1 <: (φ, γ)T2

φ, γ |= T1 � T2

(CM-TSubtype)

confΓ(Γ, φ, γ)
confT (Γ, B1) confT (Γ, B2)
(φ, γ)Γ ` (φ, γ)B1 <: (φ, γ)B2

φ, γ |= B1 � B2

(CM-BSubtype)

confΓ(Γ, φ, γ) confT (Γ, T )
(φ, γ)Γ ` γ(p) : (φ, γ)T

φ, γ |= p : T
(CM-PathTyped)

φ, γ |= C1 φ, γ |= C2

φ, γ |= C1 f C2

(CM-And)

φ[X 7→ T ], γ |= C

φ, γ |= ∃X. C
(CM-ExistsType)

φ, γ[x 7→ p] |= C

φ, γ |= ∃x. C
(CM-ExistsTerm)

Figure 3.3 – Constraints interpretation

We explain some of the rules, starting with (CM-True). This rule states that all assignments φ, γ are
solutions to the constraint true as long as Γ is self-conform under them. This requirement is present for all
rules involving a (direct) manipulation of Γ. As such, in the remainder of this work, we will only consider
φ, γ for which Γ is self-conform.

(CM-TSubtype), (CM-BSubtype) and (CM-PathTyped) are the “bridges” allowing to go back and
forth from the constraint world to the subtyping world. One may wonder why T1 and T2 (and similarly for
B1 and B2) are checked for conformance un-substituted. Intuitively, the conformance requirement may be
satisfied for substituted types and environment without being satisfiable if un-substituted. By requiring an
un-substituted conformance, we weaken the judgement. However, it is more convenient to reason about the
conformance of un-substituted types and environment Γ as we do not have to consider the assignments φ, γ.
Similarly to the assumption of self-conformance, we will only treat types and bounds that are conform under
Γ.

The rules (CM-ExistsType) and (CM-ExistsTerm) allow X and x to denote any ground types T
and ground paths p satisfying C regardless of the present mapping in φ and γ respectively.

Proofs involving the explicit use of φ, γ can quickly become cumbersome. When possible, it is preferable
to state logical properties of constraints in terms of entailment that we define next.

Definition 3.2.5 (Entailment). Given two constraints C1 and C2, we say that C1 entails C2 – and write
C1  C2 – if and only if, for all assignments φ, γ satisfying C1, φ, γ satisfy C2 as well.

We deduce two intuitive lemmas.

Lemma 3.2.2 (Reflexivity and transitivity of ). The relation  is reflexive and transitive.

Proof. Immediate.

Lemma 3.2.3 (Entailment of false). If C  false, then C is unsatisfiable.

Proof. Straightforward.

It is natural to introduce equivalency of two constraints, which we define next.
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Definition 3.2.6 (Equivalency). Given two constraints C1 and C2, we say that C1 and C2 are equivalent –
and write C1 ≡ C2 – if and only if C1  C2 and C2  C1 hold.

Lemma 3.2.4 (Equivalency of ≡). The relation ≡ between constraints is an equivalence relation.

Proof. Trivial.

3.3 Some constraints laws

We now present and prove some properties we deem useful for latter on, starting with an inversion lemma.

Lemma 3.3.1 (Inversion of the constraint satisfaction relation).

1. If φ, γ |= true, then Γ is self-conform under φ, γ

2. If φ, γ |= T1 � T2, then (φ, γ)Γ ` (φ, γ)T1 <: (φ, γ)T2, Γ is self-conform under φ, γ and T1, T2 are both
conforming under Γ.

3. If φ, γ |= B1 � B2, then (φ, γ)Γ ` (φ, γ)B1 <: (φ, γ)T2, Γ is self-conform under φ, γ and B1, B2 are
both conforming under Γ.

4. If φ, γ |= p : T , then (φ, γ)Γ ` γ(p) : (φ, γ)T , Γ is self-conform under φ, γ and T is conforming under Γ.

5. If φ, γ |= C1 f C2, then φ, γ |= C1 and φ, γ |= C2.

6. If φ, γ |= ∃x. C, then φ, γ[x 7→ p] |= C for some p ∈ Pcl.

7. If φ, γ |= ∃X. C, then φ[X 7→ T ], γ |= C for some T ∈ T cl with the same kind as X.

Proof. Immediate from the definition of the constraint interpretation relation.

The following lemma states that we are allowed “move” a ground type substitution from φ to the constraint
in question and vice-versa.

Lemma 3.3.2. φ[X 7→ A], γ |= C holds if and only if φ, γ |= [X 7→ A]C holds

Proof. By structural induction on C. The assignments φ, γ are held abstract.
Cases true, false:
Trivial.

Case S � T :
We have:

φ[X 7→ A], γ |= S � T

⇐⇒ (φ, γ)Γ ` (φ[X 7→ A], γ)(S) <: (φ[X 7→ A], γ)(T ) By (CM-TSubtype) and inversion lemma

⇐⇒ (φ, γ)Γ ` γ(φ[X 7→ A](S)) <: γ(φ[X 7→ A](T )) By lemma 3.2.1

⇐⇒ (φ, γ)Γ ` γ(φ([X 7→ A]S)) <: γ(φ([X 7→ A]T )) By definition of φ

⇐⇒ (φ, γ)Γ ` (φ, γ)([X 7→ A]S) <: (φ, γ)([X 7→ A]T ) By lemma 3.2.1

⇐⇒ φ, γ |= [X 7→ A]S � [X 7→ A]T By (CM-TSubtype) and inversion lemma

For the third derivation – where φ and [X 7→ A] get swapped –, the ( =⇒ ) direction is possible because
X does not appear free in [X 7→ A]S, so it is possible to “push” [X 7→ A] into φ. The (⇐= ) direction is
straightforward, as we are simply creating a copy of φ which takes care of substituting X into A.

Case p : T :
Similar to the previous case. We instead make use of the (CM-PathTyped). Furthermore, any path p′

(not necessarily closed) is idempotent under all assignment φ.
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Case B1 � B2:
Similar to the S � T case.

Case C1 f C2:
Straightforward application of the IH.
Case ∃Y. C ′, Y 6= X:
We have:

φ[X 7→ A], γ |= ∃Y. C ′

⇐⇒ φ[X 7→ A][Y 7→ A′], γ |= C ′ For some A′, by (CM-ExistsType) and inversion lemma

⇐⇒ φ[Y 7→ A′][X 7→ A], γ |= C ′ By definition of φ

⇐⇒ φ[Y 7→ A′], γ |= [X 7→ A]C ′ By IH

⇐⇒ φ, γ |= ∃Y. [X 7→ A]C ′ By (CM-ExistsType) and inversion lemma

⇐⇒ φ, γ |= [X 7→ A](∃Y. C ′) By property of substitution and assumption X 6= Y

Case ∃X. C ′:
We first remark that, by the property of substitution, φ[X 7→ A](∃X.C ′) is equal to φ(∃X.C ′). Similarly,

∃X. C ′ is idempotent under [X 7→ A].
Leveraging these two observations, we get:

φ[X 7→ A], γ |= ∃X. C ′

⇐⇒ φ, γ |= ∃X. C ′

⇐⇒ φ, γ |= [X 7→ A](∃X. C ′)

Case ∃p. C ′:
Straightforward use of (CM-PathTyped), the inversion lemma, and the IH.

The lemma below is similar to the previous one and applies to γ instead.

Lemma 3.3.3. φ, γ[x 7→ p] |= C holds if and only if φ, γ |= [x 7→ p]C holds

Proof. The proof is similar to the previous one. We thus omit it.

The lemma to follow states we can remap a type variable to any ground type, as long as that type
variable does not appear free in the constraint in question.

Lemma 3.3.4. If X 6∈ ftv(C), then for all A ∈ T cl with the same kind as X, we have:

φ, γ |= C ⇐⇒ φ[X 7→ A], γ |= C

Proof. By structural induction on C. The assignments φ, γ are held abstract.
Cases true, false:
Trivial.
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Case S � T :
We have:

φ, γ |= S � T

⇐⇒ (φ, γ)Γ ` (φ, γ)(S) <: (φ, γ)(T ) By (CM-TSubtype) and inversion lemma

⇐⇒ (φ, γ)Γ ` γ(φ(S)) <: γ(φ(T )) By lemma 3.2.1

⇐⇒ (φ, γ)Γ ` γ(φ[X 7→ A](S)) <: γ(φ[X 7→ A](T )) By assumptions that X 6∈ ftv(S, T )

⇐⇒ (φ, γ)Γ ` (φ, γ[X 7→ A])(S) <: (φ, γ[X 7→ A])(T ) By lemma 3.2.1

⇐⇒ φ, γ[X 7→ A] |= S � T By (CM-TSubtype) and inversion lemma

Case p : T :
Similar to the previous case.

Case B1 � B2:
Similar to the S � T case.

Case C1 f C2:
Straightforward application of the IH.

Case ∃Y. C ′, Y 6= X:
We have:

φ, γ |= ∃Y. C ′

⇐⇒ φ[Y 7→ A′], γ |= C ′ For some A′, by (CM-ExistsType) and inversion lemma

⇐⇒ φ[Y 7→ A′][X 7→ A], γ |= C ′ By IH (X does not appear in C ′ by assumptions)

⇐⇒ φ[X 7→ A][Y 7→ A′], γ |= C ′ By definition of φ

⇐⇒ φ[X 7→ A], γ |= ∃Y. C ′ By (CM-ExistsType) and inversion lemma

Case ∃X. C ′:
We have φ(∃X. C ′) = φ[X 7→ A](∃X. C ′) by the property of substitution. The conclusion for this case is

then immediate.

Case ∃p. C ′:
Straightforward use of (CM-PathTyped), the inversion lemma, and the IH.

It is in general more convenient to work with entailment and avoid using the lower-level concepts of
assignments φ, γ. Therefore, we give an entailment version for most lemmas (where it is applicable).

The corollary below is immediately deduced by the previous lemma and the lemma 3.3.2

Corollary. If X 6∈ ftv(C1), then for all A ∈ T cl with the same kind as X, we have:

C1  C2 =⇒ C1  [X 7→ A]C2

in particular, C2 may contain X.

The lemma below is analogous to lemma 3.3.4 and applies to γ.

Lemma 3.3.5. If x 6∈ ftv(C), then for all p ∈ Pcl, we have:

φ, γ |= C ⇐⇒ φ, γ[x 7→ p] |= C
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Proof. The proof is similar to the proof for lemma 3.3.

Corollary. If x 6∈ ftv(C1), then for all p ∈ Pcl, we have:

C1  C2 =⇒ C1  [x 7→ p]C2

in particular, C2 may contain x.

The three following lemmas are intuitive and may be implicitly used in the proofs to come.

Lemma 3.3.6 (Weakening, conclusion conjunction).
1. If C1  C2 holds, then for any C, C f C1  C2 holds as well.

2. C1  C2 and C1  C3 hold if and only if C1  C2 f C3 holds.

3. If C1  C2 holds, then for any C, C f C1  C f C2 holds as well.

Proof. Straightforward.

Lemma 3.3.7. Let C1 be a constraint and φ, γ any constraint satisfying C1. If C2 is unsatisfiable under all
φ, γ satisfying C1, the entailment C1 f C2  false holds.

Proof. Straightforward.

Lemma 3.3.8.
1. T � T ≡ true

2. S � T  T � S

3. S � T f T � U  S � U

4. S � T f T � U  S � U

Proof. Immediate.

3.4 Derived results from subtyping rules

We dedicate this section in adapting the subtyping assumptions presented in chapter 2 to the constraint
world.

We start with an inversion lemma for the subtyping rules. Perhaps surprisingly, it is stated in terms of
assignments φ, γ and only applies if Γ is self-conforming under φ, γ. A “naive” inversion lemma would be
incorrect if we do not require self-conformance: indeed, a subtyping assumption such as X >: L <: H could
potentially introduce dud subtyping relationships between L and H that do not hold. Self-conformance
enforces L to be a subtype of H (once substituted).

Lemma 3.4.1 (Inversion of the subtyping relation). For any assignments φ, γ such that Γ is self-
conform under φ, γ, the following assertions hold. Primed symbols denote symbols applied to (φ, γ)(·) (e.g.
Γ′ = (φ, γ)Γ).

1. If Γ′ ` S′ <: T ′ | U ′, then Γ′ ` S′ <: T ′ or Γ′ ` S′ <: U ′.

2. If Γ′ ` S′ & T ′ <: U ′, then Γ′ ` S′ <: U ′ or Γ′ ` T ′ <: U ′.

3. If Γ′ ` B′1 <: B′2, then Γ′, ~X / B′1 ` ~X / B′2

4. If Γ′ ` [~v ~X / B′1] =>>S′1 <: [~v ~X / B′2] =>>S′2, then Γ′, ~X / B′1 ` ~X / B′2 and Γ′, ~X / B′1 ` S′1 <: S′2
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5. If Γ′ ` def m[~Y / B′1](~x : ~S′1) : T ′1 <: def m[~Y / B′2](~x : ~S′2) : T ′2, then:
Γ′, ~Y / B′1 ` ~Y / B′2

Γ′, ~Y / B′1, ~x : ~S′1 ` ~S′2 <: ~S′1

Γ′, ~Y / B′1, ~x : ~S′1 ` T ′1 <: T ′2

6. If Γ′ ` Cls[~S′] <: Cls[~T ′], then Γ′ ` ~S′ <:~v ~T ′ and Γ′ ` ~S′ / B′

7. If Γ′ ` R1 <: R2, then:
Γ′, z : R′1 ` B′1 <: B′2

Γ′, z : R′1 ` ~F ′1 <: ~F ′2

Γ′, z : R′1 ` def
−−−−−−−−−−−−−−→
m[~Y / B′Y,1](~x : ~U ′1) : ~V ′1 <:

def
−−−−−−−−−−−−−−→
m[~Y / B′Y,2](~x : ~U ′2) : ~V ′2

8. If a class Cls1 of arity M ≥ 0 does not extend a class Cls2 (distinct from Cls1) of arity L ≥ 0, then
for any ~A ∈ T M and any ~B ∈ T L, Γ′ 6` Cls1[ ~A′] <: Cls2[ ~B′].

9. If a member M of a refinement R2 is not included in a refinement R1, then Γ′ 6` R′1 <: R′2.

10. For any refinement R, class Cls of arity L ≥ 0, and types ~A ∈ T L, Γ′ 6` R′ <: Cls[ ~A′].

Proof. Straightforward induction on the subtyping derivation. Self-conformance takes care of the assumptions
introduced by (<:-TyVar) and (TyVar-<:) and combined with (Trans).

Lemma 3.4.2 (Bounds subtyping). Let B1, B2 : B be bound constraints with the same ordered domain
~X.

Then, for any assignments φ, γ, we have:

φ, γ |= B1 � B2

⇐⇒

∀ ~A ∈ (T cl)|
~X|. φ[ ~X 7→ ~A], γ |= B1 =⇒ φ[ ~X 7→ ~A], γ |= B2

where the quantified ~A has the same kind as ~X.

Proof.
Direction ( =⇒ ).
We assume that X̄ # ftv(Γ). Such condition can always be satisfied with appropriate α-renaming.
From the inversion lemma of constraint meaning, we have (φ, γ)Γ ` (φ, γ)B1 <: (φ, γ)B2. We then employ

the subtyping inversion lemma to obtain (φ, γ)Γ, ~X / (φ, γ)B1 ` ~X / (φ, γ)B2; note that ~X is bound in B1

and B2 and is therefore unaffected by φ.
In the following steps, we will need to replace the ~X within B1 and B2. As such, we should unwrap

~X / (φ, γ)B1 (and similarly ~X / (φ, γ)B2). The shorthand expands into Xi >: (φ′, γ)L1,i <: (φ′, γ)H1,i for all
Xi ∈ ~X with (L1,i, H1,i) = B1(Xi) and φ′ = φ[ ~X 7→ ~X]; φ′ ensures that we do not substitute the ~X because
these are bound to B1 and B2. To range over all i, we shorten the syntax to ~X >: (φ′, γ)~L1 <: (φ′, γ) ~H1

We therefore have:

(φ, γ)Γ, ~X >: (φ′, γ)~L1 <: (φ′, γ) ~H1 ` ~X >: (φ′, γ)~L2 <: (φ′, γ) ~H2

Applying axiom 2.3.3, we get for all closed ~A:

(φ, γ)Γ ` ~A >: [ ~X 7→ ~A](φ′, γ)~L1 <: [ ~X 7→ ~A](φ′, γ) ~H1

=⇒

(φ, γ)Γ ` ~A >: [ ~X 7→ ~A](φ′, γ)~L2 <: [ ~X 7→ ~A](φ′, γ) ~H2
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We can hoist (φ′, γ) due to ~A being closed and φ′ being the identity for ~X. Then:

(φ, γ)Γ ` (φ′, γ)( ~A >: [ ~X 7→ ~A]~L1 <: [ ~X 7→ ~A] ~H1)

=⇒

(φ, γ)Γ ` (φ′, γ)( ~A >: [ ~X 7→ ~A]~L2 <: [ ~X 7→ ~A] ~H2)

Because X̄ # ftv(Γ), (φ, γ)Γ and (φ′, γ)Γ are equal. Then, rule (CM-TSubtype) gives us:

φ′, γ |= [ ~X 7→ ~A]~L1 � ~Af ~A � [ ~X 7→ ~A] ~H1

=⇒

φ′, γ |= [ ~X 7→ ~A]~L2 � ~Af ~A � [ ~X 7→ ~A] ~H2

Lemma 3.3.2 allows us to move [ ~X 7→ ~A] to φ′.

φ[ ~X 7→ ~A], γ |= ~L1 � ~Af ~A � ~H1

=⇒

φ[ ~X 7→ ~A], γ |= ~L2 � ~Af ~A � ~H2

where we have used the fact that φ′[ ~X 7→ ~A] = φ[ ~X 7→ ~X][ ~X 7→ ~A] = φ[ ~X 7→ ~A]
To conclude, it is sufficient to remark that B1 – when viewed as a constraint – is a shorthand for

~L1 � ~Af ~A � ~H1 (and similarly for B2).

Direction (⇐= ).
The steps employed for the direction ( =⇒ ) can also be taken backwards, where we replace the application

of subtyping and constraint meaning rules by the respective inversion lemmas and vice-versa.

Lemma 3.4.3 (Class subtyping). Let Cls a class of variance ~v and let ~S and ~T two vectors of types in
T matching the signature of Cls.

Then, for any assignments φ, γ under which ~S and ~T satisfy the bounds of Cls, φ, γ |= Cls[~S] � Cls[~T ]

if and only if φ, γ |= ~S �~v ~T .

Proof. Straightforward application of rule (Cls-<:-Cls) and subtyping inversion lemma.

Corollary (Class subtyping). Under the same conditions, lemma 3.4.3 can be expressed as follows.
For any constraint C, if C  Cls[~S] � Cls[~T ], then C  ~S �~v ~T .
For any constraint C entailing the bounds satisfaction of Cls by ~S and ~T – that is, if φ, γ satisfy C, then

(φ, γ)~S and (φ, γ)~T satisfy the bounds of Cls – if C  ~S �~v ~T , then C  Cls[~S] � Cls[~T ].

Lemma 3.4.4 (Extension of a class). Let a class Cls1 of arity L ≥ 0 extending N times a class Cls2 of
arity M ≥ 0 through the mappings σi : T L → T M , 1 ≤ i ≤ N

For any assignments φ, γ and any ~S ∈ T L, if (φ, γ)S satisfies the bounds of Cls1, then:

φ, γ |= Cls1[~S] �&N
i Cls2[σi(~S)]

Furthermore, for any ~T ∈ T M , if φ, γ |= Cls1[~S] � Cls2[~T ] then φ, γ |= &N
i Cls2[σi(~S)] � Cls2[~T ]

Proof. Straightforward application of rule (Cls1-<:Cls2).

Corollary. Under the same conditions, lemma 3.4.4 can be formulated as follows.
For any constraint C entailing the bounds satisfaction of Cls1 by ~S – that is, if φ, γ satisfy C, then

(φ, γ)~S satisfies the bounds of Cls1 – we have:

C  Cls1[~S] �&N
i Cls2[σi(~S)]
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Furthermore, for any ~T ∈ T M , we have:

Cls1[~S] � Cls2[~T ] &N
i Cls2[σi(~S)] � Cls2[~T ]

Lemma 3.4.5 (Absence of subtyping irrefutability). If a class Cls1 of arity L ≥ 0 does not extend
a class Cls2 6= Cls1 of arity M ≥ 0, then for any ~S ∈ T L and any ~T ∈ T M of appropriate kind,
Cls1[~S] � Cls2[~T ] ≡ false.

Proof. Straightforward application of the subtyping inversion lemma.

Lemma 3.4.6 (Higher-kinded abstractions subtyping). For any assignments φ, γ:

φ, γ |= [~v ~X / B1] =>>S1 � [~v ~X / B2] =>>S2

⇐⇒

∀ ~A ∈ (T cl)|
~X|. φ[ ~X 7→ ~A], γ |= B1 =⇒ φ[ ~X 7→ ~A], γ |= B2 f S1 � S2

where the quantified ~A has the same kind as ~X.

Proof. Straightforward application of rules (Hk-<:-Hk) and subtyping inversion lemma, using similar steps
as for the proof of lemma 3.4.2.

Lemma 3.4.7 (Intersection of invariant positions). Let Cls a class, and let ~S and ~T two vectors of
types in T matching the signature of Cls.

Let p a path in P. For any assignments φ, γ satisfying the constraint p : Cls[~S] & Cls[~T ], the assertion
φ, γ |= Si � Ti holds for all i ∈ {i : vi = ±, 1 ≤ i ≤ |~v|}, where ~v is the variance sign vector of Cls.

Proof. Straightforward application of rule (Path-&) The satisfaction of the bounds of Cls is granted by the
assumptions that φ, γ satisfy p : Cls[~S] & Cls[~T ].

Corollary. Under the same conditions, lemma 3.4 can be expressed as follows:

p : Cls[ ~A] & Cls[ ~B]  Ai � Bi

Lemma 3.4.8 (Methods subtyping). Let the two following methods with the same name, type parameters
and term arguments:

def m[~Y / B1](~x : ~S1) : T1

def m[~Y / B2](~x : ~S2) : T2

Then, for any assignments φ, γ:

φ, γ |= def m[~Y / B1](~x : ~S1) : T1 �

def m[~Y / B2](~x : ~S2) : T2

⇐⇒

∀ ~A ∈ (T cl)|
~Y |, ~p ∈ (Pcl)|~x|. φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B1 f ~x : ~S1 =⇒

φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B2 f ~S2 � ~S1 f T1 � T2

where the quantified ~A has the same kind as ~Y .
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Proof.
Direction ( =⇒ ).
We assume that ftmv(B1, B2) # x̄. We also assume that (Ȳ ∪ x̄) # (ftv(Γ) ∪ ftmv(Γ)). Such conditions

can always be satisfied with appropriate α-renaming.
By the inversion lemma of constraint meaning, we have:

(φ, γ)Γ ` def m[~Y / (φ′, γ′)B1](~x : (φ′, γ′)~S1) : (φ′, γ′)T1 <:

def m[~Y / (φ′, γ′)B2](~x : (φ′, γ′)~S2) : (φ′, γ′)T2

with φ′ = φ[~Y 7→ ~Y ] and γ′ = γ[~x 7→ ~x]. We observe that (φ, γ)Γ is equal to (φ′, γ′)Γ and that
(φ′, γ′)B1 = (φ, γ)B1 (and similarly for B2) thanks to the α-renaming assumption.

By the subtyping inversion lemma, we obtain:

(φ, γ)Γ, ~Y / (φ′, γ′)B1 ` ~Y / (φ′, γ′)B2

(φ, γ)Γ, ~Y / (φ′, γ′)B1, ~x : (φ′, γ′)~S1 ` (φ′, γ′)~S2 <: (φ′, γ′)~S1

(φ, γ)Γ, ~Y / (φ′, γ′)B1, ~x : (φ′, γ′)~S1 ` (φ′, γ′)T1 <: (φ′, γ′)T2

We can apply a similar reasoning as for the proof of lemma 3.4.2 to deduce that φ[~Y 7→ ~A], γ |= B1

implies φ[~Y 7→ ~A], γ |= B2 for all closed ~A. Because x̄ does not appear free in B1 and B2, we have by lemma
3.3.3 that φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B1 implies φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B2 for all closed paths ~p.

We now turn our attention on:

(φ, γ)Γ, ~Y / (φ′, γ′)B1, ~x : (φ′, γ′)~S1 ` (φ′, γ′)~S2 <: (φ′, γ′)~S1

We observe that we can swap ~Y /(φ′, γ′)B1 and ~x : (φ′, γ′)~S1 in the extension of (φ, γ)Γ because (φ′, γ′)B1

is closed and therefore does not contain any free term variable.
Next, we again apply a similar reasoning as lemma 3.4.2 to deduce that:

(φ, γ)Γ, ~x : (φ′, γ′)~S1 ` ~Y / (φ′, γ′)B1

implies:

(φ, γ)Γ, ~x : (φ′, γ′)~S1 ` [~Y 7→ ~A](φ′, γ′)~S2 <: [~Y 7→ ~A](φ′, γ′)~S1

for all closed ~A. By axiom 2.3.1, we can remove ~x : (φ′, γ′)~S1 from the judgement (φ, γ)Γ, ~x : (φ′, γ′)~S1 `
~Y / (φ′, γ′)B1.

Combining this with lemma 2.3.1, we obtain that the two following judgements:

(φ, γ)Γ ` ~Y / (φ′, γ′)B1

(φ, γ)Γ ` ~p : [~x 7→ ~p](φ′, γ′)~S1

imply:

(φ, γ)Γ ` [~x 7→ ~p]([~Y 7→ ~A](φ′, γ′)~S2) <: [~x 7→ ~p]([~Y 7→ ~A](φ′, γ′)~S1)

for all closed paths ~p.
We can hoist (φ′, γ′) and combine them with [~x 7→ ~p] and [~Y 7→ ~A] to get:

(φ, γ)Γ ` (φ[~Y 7→ ~A], γ[~x 7→ ~p])~S2 <: (φ[~Y 7→ ~A], γ[~x 7→ ~p])~S1

By assumptions, Ȳ and x̄ do not appear free in Γ, we can thus “update” φ and γ with [~x 7→ ~p] and
[~Y 7→ ~A] respectively:

(φ[~Y 7→ ~A], γ[~x 7→ ~p])Γ ` (φ[~Y 7→ ~A], γ[~x 7→ ~p])~S2 <:

(φ[~Y 7→ ~A], γ[~x 7→ ~p])~S1
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Using (CM-TSubtype) and the previous derivations, we get that:

φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B1 f ~x : ~S1

implies

φ[~Y 7→ ~A], γ[~x 7→ ~p] |= B2 f ~S2 � ~S1

for all closed types ~A and paths ~p.
To obtain φ[~Y 7→ ~A], γ[~x 7→ ~p] |= T1 � T2, we apply a similar reasoning as done for φ[~Y 7→ ~A], γ[~x 7→

~p] |= ~S2 � ~S1.

Direction (⇐= ).
It suffices to take the ( =⇒ ) direction backwards, where we employ the weakening axiom 2.3.2 instead

of the strengthening axiom 2.3.1.

Lemma 3.4.9 (Refinements subtyping). Let R1 and R2 the following refinements:

R1 = {z =>
type ~T / B1

type ~T ′ / B′

val ~f : ~F1

val ~f ′ : ~F ′

def
−−−−−−−−−−−−−−→
m[~Y / BY,1](~x : ~U1) : ~V1

def
−−−−−−−−−−−−−−→
m′[~Y ′ / B′Y ](~x′ : ~U ′) : ~V ′

}

R2 = {z =>
type ~T / B2

val ~f : ~F2

def
−−−−−−−−−−−−−−→
m[~Y / BY,2](~x : ~U2) : ~V2

}

Then, for any assignments φ, γ, the assertion φ, γ |= R1 � R2 holds if and only if, for all closed paths p
such that φ, γ |= p : R1, the following holds:

φ, γ[z 7→ p] |= B1 � B2 f ~F1 � ~F2 f

def
−−−−−−−−−−−−−−→
m[~Y / BY,1](~x : ~U1) : ~V1 �

def
−−−−−−−−−−−−−−→
m[~Y / BY,2](~x : ~U2) : ~V2

Proof. We follow a similar reasoning as the proof for lemma 3.4.8.

Lemma 3.4.10 (Absence of refinements subtyping irrefutability). If a member M of a refinement
R2 is not included in a refinement R1, then the constraint R1 � R2 is unsatisfiable.

Proof. Straightforward application of the subtyping inversion lemma.

Lemma 3.4.11 (Absence of refinement and class subtyping irrefutability). For any refinements R,
classes Cls of arity L ≥ 0, and types ~A ∈ (T cl)L, the constraint R � Cls[ ~A] is unsatisfiable.

Proof. Straightforward application of the subtyping inversion lemma.

Lemma 3.4.12.
1. S � T & U  S � T f S � U

2. S | T � U  S � U f T � U
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3. If φ, γ |= S � T | U , then φ, γ |= S � T or φ, γ |= S � U

4. If φ, γ |= S & T � U , then φ, γ |= S � U or φ, γ |= T � U

Proof. Straightforward application of the subtyping rules related to intersection and union types.

Lemma 3.4.13. p : S & T f T � U  p : S & U .

Proof. Straightforward application of the (presumed) subsumption typing rule.

Now that we have established the corresponding lemmas for all considered types, we can state the
following lemma:

Lemma 3.4.14. For any type S, T ∈ T of same kind and any type U ∈ T , the entailment S � T  [S 7→
T ]U � U holds.

Proof. Straightforward structural induction on U .

3.5 Determinacy of types

Before concluding this chapter, we introduce the concept of determined types.
We deem it is best to explain the reason for their consideration by taking a detour and having a look at

the big picture.
As we will see in the next chapter, the GADT inference problem is comprised of a constraint generation

and a constraint simplification part. The former generates the assumptions introduced by the GADT pattern
which are then passed to the simplification part. In chapter 5, we will see that the constraint simplification
problem can be tackled by maintaining a structure of accumulated knowledge coming from sequentially
processing the assumptions.

Intuitively, we would like to record constraints that are as simple as possible in order to exploit the
accumulated knowledge. However, sometimes it is not possible to simplify a constraint without further
examining the other GADT assumptions. To avoid losing potentially precious information, we should record
the constraint and come back to it whenever we learn more information about its constituents.

As an example, suppose we are given the constraint F [A] � F [B], with F abstract. We record that
constraint and keep on. After some amount of work on the other assumptions, we find out that F is equal
to [+X / B] =>> MyCovTrait[X] with B a trivial constraint (i.e. ⊥ � X � >). Assuming the covariance of
MyCovTrait, the previous constraint then simplifies into A � B.

If we generalize the example a bit, we observe that the simplification process for a constraint of the form
T1 � T2 has the following outcomes:

• Canonical, that is, as simple as possible. Subtyping constraints such as X � T and T � X with T an
arbitrary type (which may contain type variables as well) are canonical. true and false are canonical
as well. This is the type of constraints we are aiming for. It is similar to values in programming
languages.

• Reducible, for instance the constraint MyCovTrait[A] � MyCovTrait[B] reduces to A � B. In more
complex cases, we have to consider the accumulated knowledge to reduce a constraint. It is similar to
reducible expressions in programming languages.

• Stuck, a constraint that cannot be reduced and not canonical. For instance, X & Y � T & S is stuck
since we cannot deduce anything about X or Y individually. It is similar to non-value normal forms in
programming languages. Such constraints are not really useful at the time of examination, but we
should keep them since further knowledge may enable them to get unblocked.

We can observe (without giving a proof) that these following types allow progression if they are tied in a
subtyping constraint:

• Ground types, as they do not contain any free type variable. Then, we can simplify them into true or
false because we know how to compare ground types.
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• Traits and classes, thanks to their injectivity.

• A disjunctive normal form (DNF) of ground types, and applied traits or classes with further conditions
which we discuss in more detail next. The conditions essentially boil down to having each type in the
DNF be distinct.

In a way, these types are determined by their shape. Taking a previous example, in MyCovTrait[A] �
MyCovTrait[B], we get to compare two determined types, which reduces the constraint into A � B. Another
example is MyCovTrait[A] � Int, where the two types are determined too. In that case, the constraint
reduces to false.

We formally define the determinacy of a type under some assignments φ, γ before considering an example
involving DNFs.

Definition 3.5.1 (Determinacy of a type). Given some assignments φ, γ and a type T ∈ T , we say that T
is determined under φ, γ if and only if det(φ, γ, T ) holds.

The predicate det is defined below. We note that the third case only applies to non-trivial DNFs.

det(φ, γ, T ) =



true if ftv(T ) ∪ ftmv(T ) = ∅

true if T = Cls[~S]

n∧
i

mi∧
j

det(φ, γ, Ti,j) ∧

n∧
i

mi∧
j1 6=j2

φ, γ 6|= Ti,j1 � Ti,j2 ∧ φ, γ 6|= Ti,j2 � Ti,j1 ∧

n∧
i1 6=i2

φ, γ 6|= &
mi1

j Ti1,j �&
mi2

j Ti2,j ∧

φ, γ 6|= &
mi2

j Ti2,j �&
mi1

j Ti1,j

if T = |ni&mi

j Ti,j

false otherwise

Figure 3.4 – Determinacy of a type T under assignments φ, γ

We give four examples illustrating the reduction of determined types.

Example 3.5.1. Let TC1[A] and TC2[A] be two unrelated traits. Then, for any S and T , the constraint
TC1[S] � TC2[T ] reduces to false.

Example 3.5.2. Let the following traits:

trait Inv[A]

trait TC1[A]

trait TC2[A] extends TC1[Inv[A]]

Then, the constraint TC2[S] � TC1[T ] reduces to TC1[Inv[S]] � TC1[T ] which is itself reducible to
Inv[S] � Inv[T ′] if T is of the form Inv[T ′] and false otherwise.

Example 3.5.3. Let the traits Cov1[+A], Cov2[+A] and Cov3[+A] be unrelated and covariant traits. Then,
for any type A, B, and C, the type:

(Cov1[Cov2[A]] & Cov1[Cov3[B]]) | (Cov1[Cov2[C]] & Int)
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is determined. In the first conjunct, we neither have Cov1[Cov2[A]] � Cov1[Cov3[B]] nor Cov1[Cov3[B]] �
Cov1[Cov2[A]] for any assignments γ, φ (thanks to Cov2 and Cov3 being unrelated). The same reasoning
applies to the second conjunct.

Similarly, the two disjunctions Cov1[Cov2[A]] & Cov1[Cov3[B]] and Cov1[Cov2[C]] & Int are not subtype
of each other.

Then, for any types R, S, T , U and V , the constraint:

(Cov1[Cov2[R]] & Cov1[Cov3[S]]) | (Cov1[Cov2[T ]] & Int)

�
(Cov1[Cov2[U ]] & Cov1[Cov3[V ]]) | (Cov1[Cov2[W ]] & Int)

reduces to R � U f S � V f T �W .

Example 3.5.4. Let CovChild[+A] a trait extending a trait Cov[+A]. Let Inv1[A] and Inv2[A] be two
unrelated traits. Then, for any types A and B the types CovChild[Inv1[A]] & CovChild[Inv2[B]] and
Cov[Inv1[A]] & Cov[Inv2[B]] are determined.

Furthermore, the following constraint is reducible and eliminates all outer intersection and union:

CovChild[Inv1[S]] & CovChild[Inv2[T ]]

� Cov[Inv1[U ]] & Cov[Inv2[V ]]

Indeed, we first reduce it to :

CovChild[Inv1[S]] & CovChild[Inv2[T ]] � Cov[Inv1[U ]]

f

CovChild[Inv1[S]] & CovChild[Inv2[T ]] � Cov[Inv2[V ]]

For the first conjunct, we have:

CovChild[Inv1[S]] � Cov[Inv1[U ]]

or
CovChild[Inv2[T ]] � Cov[Inv1[U ]]

Both constraints reduce to:

Cov[Inv1[S]] � Cov[Inv1[U ]]

or
Cov[Inv2[T ]] � Cov[Inv1[U ]]

The first disjunction reduces to S � U while the second one to false. We similarly get that the second
conjunct reduces to T � V . The original constraint therefore reduces to S � U f T � V .

Determinacy of types plays an important part of the simplification algorithm. However, the definition
relies on subtyping querying with a given set of assumptions. Since type-checking in DOT and pDOT is
thought undecidable [12, 13], we have to resort to using an approximated, conservative version of determinacy.

Finally, we point out that the concept of determinacy is not needed for proving soundness of any constraint
simplification algorithm. It is nonetheless helpful when describing the strategies employed by the proposed
algorithm.
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Chapter 4

GADTs constraint reasoning principles

In this relatively short chapter, we present the GADT inference problem as a constraint generation and
simplification problem leveraging the constraint language C introduced in the previous chapter.

Before doing so, we first need to set up the context in which the GADT inference problem is situated.

4.1 Context

We informally describe the instantiation of the parameters of C, that is, T cl, Pcl, VX , Vx and Γ.
Γ is set to the typing environment just after the introduction of the pattern match. The set T cl is

generated from the set of classes and traits symbols visible in the scope of the problem. VX contains all
type variables in scope, plus an infinite and denumerable set of distinct type variables used for fresh type
variables. Vx is similarly created. A peculiarity is that we consider the terms introduced within the enclosing
function of the pattern match as term variables and are therefore elements of Vx. The set Pcl is composed of
all terms and paths that are “outside” of the considered function.

As an example, consider the following snippet where we are interested in the inference problems at line 9
and line 12:

1 // Assuming Foo has a field named "f"
2 val x: Foo = Foo(f = 42)
3 // ...
4 def enclosing[X](a: Bar) {
5 // ...
6 def patmat[Y](s1: Qux, s2: Foo) = {
7 val b: String = "hello"
8 s1 match {
9 case p1: Foo =>

10 val y: Int = 12
11 // ...
12 case p2: Bar =>
13 // ...
14 // ...
15 }
16 }
17 }

Listing 8 – GADT problem within a scope introducing type and term variables.

In both problems, Pcl would (among other) contain x, x.f and a, but not s1, s2 or b. These would be
contained in Vx and P. Furthermore, s2.f would be contained in P as well. In the problem at line 9, p1
would be contained in Vx, and Γ would include p1 : Foo. However, y : Int is outside of the scope of the
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problem and would therefore not be contained in Γ. The situation is analogous for the problem at line 12
with p2 : Bar.

We furthermore assume, for simplicity, that the matched expression is in administrative normal form.
Finally, it is worthwhile to point out that the sets T cl, Pcl, VX and Vx are solely considered for establishing
a setup for C. In an implementation, we do not need to be concerned about them.

4.2 Constraint generation

Given a scrutinee s : S and a pattern case p : P , we are interested in generating a constraint CG describing
the GADT inference problem.

Parreaux and Boruch-Gruszecki [7], and Waśko [16] explain in details the constraints brought in scope
when a p : P matches a scrutinee s : S. In essence, the bound pattern variable p must be of type P & s.type.
For our needs, it is simpler to instead consider p : P & S.

Furthermore, it is possible to have further assumptions on the type or term variables. For instance, a
type parameter in a function can be bound-constrained. We assume that such assumptions can be encoded
in the constraint language C; we denote these conjunctions of constraints as C.

Finally, Parreaux and Boruch-Gruszecki [7] argue that, in presence of a pattern whose type is a final
class, the type of the pattern must be a subtype of S as well.

Based on the cited works, the constraints generation phase proceeds as follows. If P is not a final class,
the constraint (p : P & S) f C is generated, where C is a (possibly trivial) constraint capturing further
assumptions brought by the pattern or the enclosing scope. If P is a final class, we instead generate the
more precise constraint P � S f (p : P & S)f C.

We now give the generated constraints for listings 5 through 7.

Example 4.2.1 (Generated constraints for listing 5). We simply generate:

p : P & S[X,Y ]

In this example, C is trivial due to the lack of type or term variables constraining.

Example 4.2.2 (Generated constraints for listing 6). This time, the pattern p : P[pX] introduces an
existentially quantified type variable pX. We thus get:

p : P[pX] & S[Inv[X] & Y ]

Example 4.2.3 (Generated constraints for listing 7). Here, we can incorporate further knowledge about
F [Z] and pF by adding these to CG:

p : P[pX, pY, pF ] & S[X,F ]f

[Z] =>>F [Z] � [Z] =>> Inv2[Z, Y ] &X f

[Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> pF [Z]

We have omitted the variance signs (defaulting to invariance i.e. ±) and the (trivial) bounds in the
higher-kinded abstraction for clarity.

The second conjunct comes from the bound constraints on F introduced by the function patmat while
the third originates from the constraint on the third type parameter of P.

4.3 Constraints simplification

Given the GADTs base constraints CG, we are interested in computing a C ′ such that CG entails C ′. In
other terms, we are interested in computing a necessary constraint C ′. Naturally, we are striving to be as
precise as possible: otherwise, the problem is trivially solved by simply returning true.
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We may ask ourselves the reason why we are looking for a necessary constraint C ′ and not, let’s say,
a sufficient one. In fact, sufficient conditions are to type inference as necessary conditions are to GADT
inference. In the type inference problem, we are interested in computing a C ′ entailing the given constraint
problem.

Let us illustrate this with an adapted version of listing 6:

1 trait Inv[X]
2 trait S[X]
3 final class P extends S[Inv[Int] & Inv[String]]
4

5 def patmat[X, Y](s: S[Inv[X] & Inv[Y]], y: Y): Y = s match {
6 case p: P => y
7 }
8

9 val p = new P
10 val got1: String = patmat(p, "a")
11 // The annotation is here to help type inference.
12 val got2: Int = patmat(p: S[Inv[String] & Inv[Int]], 3)

Listing 9 – An altered version of listing 6

Starting with the type inference problem, at line 10, we are (intuitively) given the constraint CI :

P � S[Inv[X] & Inv[Y ]]f String � Y

The problem of type inference is interested in simplifying the given constraint “bottom-up”. For the call
at line 10, we remark that a solution found by the compiler is:

X � Intf Y � String

This solution is incontestably correct. It is nonetheless useful to prove it, by starting with the solution
and going downward the original constraint:

X � Intf Y � String X � Intf Y � Stringf

P � S[Inv[Int] & Inv[String]] By lemmas 3.3.6 and 3.4.4
 P � S[Inv[X] & Inv[Y ]]f String � Y By lemma 3.4.14

At line 12, the compiler finds another solution to the same problem (i.e., the same original constraint):

X � Stringf Y � Int

We can again see that it entails the original constraint:

X � Stringf Y � Int X � Stringf Y � Intf

P � S[Inv[String] & Inv[Int]] By lemmas 3.3.6 and 3.4.4
 P � S[Inv[X] & Inv[Y ]]f String � Y By lemma 3.4.14

We observe that the type inference problem is seeking a sufficient solution.
We now turn our attention on the GADT inference, at line 6. We are interested in computing a necessary

solution. For CG, we are given the constraints:

P � S[Inv[X] & Inv[Y ]]f (p : P & S[Inv[X] & Inv[X]])

We have by lemma 3.4.4:

CG  S[Inv[String] & Inv[Int]] � S[Inv[X] & Inv[Y ]]f

p : S[Inv[String] & Inv[Int]] & S[Inv[X] & Inv[X]]

 Inv[String] & Inv[Int] � Inv[X] & Inv[Y ]
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We cannot deduce anything about X and Y , which is to be expected because line 10 instantiates X to
Int and Y to String while line 12 instantiates them the other way around.

We now go over listings 5 through 7 and compute a necessary solution for each of these.

Example 4.3.1 (A solution for listing 5). A correct solution is X � Int. We indeed have:

p : P & S[X,Y ]  p : S[Int, String] & S[X,Y ] By lemmas 3.4.12 and 3.4.4
X � Int By lemmas 3.4.7

We remark that nothing is inferred for Y : there are no laws allowing to extract any useful information. It
may be surprising that we cannot deduce Y � String. It is due to its covariance definition in S. Giarrusso
[3], Parreaux and Boruch-Gruszecki [7] remark that inferring such inequality is unsound. Indeed, since P is
not final, one could declare the trait WickedP extending both S and P:

1 // Note: does not compile
2 trait Foo
3 trait S[X, +Y]
4 trait P extends S[Int, String]
5 trait WickedP extends P with S[Int, Foo]
6

7 def patmat[X, Y](s: S[X, Y]): Y = s match {
8 case p: P => "Strings not allowed"
9 }

10 // Would produce a CastClassException if allowed
11 val got: Foo & String = patmat(new WickedP{})

Example 4.3.2 (A solution for listing 6). A correct solution is:

p : P[pX] & S[Inv[X] & Y ]  p : S[pX & Inv[String]] & S[Inv[X] & Y ] By lemmas 3.4.12 and 3.4.4
 Inv[pX] & Inv[String] � Inv[X] & Y By lemmas 3.4.7

It is not possible to reduce the solution further: for instance, it is incorrect to deduce X � String. In
other word, we have:

Inv[pX] & Inv[String] � Inv[X] & Y 6 X � String

Listing 6 shows a counter-example by picking pX = X = Int and Y = Inv[String]. In terms of
constraints, if we pick φ = φ′[pX,X 7→ Int;Y 7→ Inv[String]] (for any arbitrary φ′) and any arbitrary γ,
the assignments φ, γ satisfy the equality in the antecedent but not the conclusion.

Example 4.3.3 (A solution for listing 7). We claim a correct solution is Y � pY f pX � pY .
We have:

CG  p : P[pX, pY, pF ] & S[X,F ]

 p : S[Inv[pX], F ] & S[X,F ] By lemmas 3.4.12 and 3.4.4
X � Inv[pX]f F � pF By lemmas 3.4.7

Combining this with the CG assumptions and lemma 3.4.14, we have:

CG  CG f [Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> Inv2[Z, Y ] &X

 [Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> Inv2[Z, Y ] & Inv[pX] By lemmas 3.4.14

Let φ, γ be any assignments satisfying CG. Then, they satisfy the conclusion of the above entailment as
well.
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By lemma 3.4.6, we have for all A ∈ T cl:

φ[Z 7→ A], γ |= Inv2[Z, pY ] & Inv[pY ] � Inv2[Z, Y ] & Inv[pX]

where we have simplified the bounds satisfaction since these are trivial.
By lemma 3.4.12, we have:

φ[Z 7→ A], γ |= Inv2[Z, pY ] & Inv[pY ] � Inv2[Z, Y ]f

Inv2[Z, pY ] & Inv[pY ] � Inv[pX]

For the first conjunct, by applying lemma 3.4.12 again, we have φ[Z 7→ A], γ |= Inv2[Z, pY ] � Inv2[Z, Y ]
or φ[Z 7→ A], γ |= Inv[pX] � Inv2[Z, Y ]. The latter is unsatisfiable by lemma 3.4.5, so we have φ[Z 7→
A], γ |= Inv2[Z, pY ] � Inv2[Z, Y ] and as such φ[Z 7→ A], γ |= pY � Y .

Using a similar reasoning, we get φ[Z 7→ A], γ |= pY � pX from the second conjunct.
Because Z is distinct from pX, pY and Y , we have by lemma 3.3.4 φ, γ |= Y � pY f pX � pY . All

assignments φ, γ satisfying CG satisfy Y � pY f pX � pY too, as such CG  Y � pY f pX � pY .
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Chapter 5

A constraint simplifier

We dedicate this chapter to the presentation of a constraint simplification algorithm.
The goal of the constraint simplifier is to take a constraint CG originating from the GADT constraints

generation and rewrite it into a constraint C ′ such that CG  C ′ and that is as precise and simple as possible.
The main idea of the algorithm is to maintain a structure K representing the knowledge we have

accumulated so far from decorticating the assumptions one by one. The structure K is essentially an
organized set of accumulated constraints. Furthermore, when new information is assimilated in K, the
algorithm may unveil further knowledge arising from combining that information with K.

This chapter is structured as follows. First, we present some preliminary notions needed to define the
knowledge structure K. Then, we properly introduce and define K; we give it an interpretation in C by
transforming it into a conjunctions of constraints. We then present the simplification algorithm.

5.1 Preamble

5.1.1 Equivalence classes
François Pottier and Didier Rémy [11] present the inference problem in DM as a constraint solving problem,
which is based on HM(X) [6]. In particular, their constraint solver maintain a unification state establishing
equality relationships between the encountered types. To do so, they (in particular) employ a union-find
data structure [2].

While the setting of Pottier and Rémy constraint solver is of an equality-only free tree model [11], we
will see that there are great benefits in building a structure that reserves a special treatments for types tied
in an equality.

We are interested in maintaining (within K) a partition of encountered types that are considered equal –
in other words, we would like to build a data structure to represent equivalence classes (EC) of types. That
is, if two types belong to the same EC, then they are considered equal. Types belonging to the same EC
must have the same kind, and for higher-kinded types, the same variance as well.

To implement such a collection, we employ a union-find data structure [2]. For simplicity, we use an
immutable variant where usual mutating operations such as Union or MakeSet are adapted to return an
updated copy of the data structure.

We do not directly store types in the union-find structure: we store them in another structure that is
not part of the union-find. Instead, the union-find data structure works with some opaque elements whose
representation is not of an importance for our use case. We denote ECH the set of these opaque elements
(for Equivalence Class Handle) and let the meta-variables [a], [b] denote elements of that set. When the
context is clear, we refer to [a], [b] as “equivalence class” and drop the word “handle”.

We list the operations we expect from a union-find data structure in appendix B.1.1. We employ the
meta-variables Q to denote union-find structures.
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For each equivalence class in Q, we associate a set of types in a structureM to represent types that are
equal to each other.

The figure below illustrates how the union-find data structure is essentially used as an intermediary
to implement equivalence classes between types. In this example, Q is composed of three partitions with
representatives [a], [b] and [c]. The partition [b] in Q contains the EC handles [c] and [d] as well. Each
representative is associated a set of types. For instance, [a] is associated the set {T1, T2, T3}, meaning that
these types are considered equal.

Later on, we receive an update specifying that T3 and S2 are equal. A Q-Union is performed on [a] and
[b]; the sets inM are merged as well.

Union-Find state

Repr:

Repr:

Repr:

Members state

Union-Find state

Repr: Repr:

Members state

Figure 5.1 – Equivalence classes of types using a union-find data structure Q.

One may wonder why we do not have Q andM fused into a single structure. We delay the answer to
this question to the next section.

5.1.2 Types with equivalence classes handles
Equivalence classes handles become interesting when integrating them into types. For instance, suppose
that we have a Q with two partitions, [a] and [b], such that [c] belongs to the same EC (or partition) as
[a]. Then, intuitively, the types MyTrait

[
[a]
]
and MyTrait

[
[c]
]
are equal since [a] and [c] both belong to the

same partition. On the other hand, we may not say anything about MyTrait
[
[a]
]
and MyTrait

[
[b]
]
.

For the sake of the example, suppose that Q is extended with two new partitions, [d] and [f ], where
[d] is associated (inM) the set of types {MyTrait

[
[a]
]
} and [f ] the set of types {MyTrait

[
[b]
]
}. Suppose

furthermore that [a] and [b] get merged. Then, the types MyTrait
[
[a]
]
and MyTrait

[
[b]
]
now become equal:

we should then merge [d] and [f ] into one partition in Q andM.
We can now answer the question left in suspense in the last section. The reason behind having separate

structures Q andM is to avoid having to go over all collected types and having to perform a substitution of
types to some type representative. With equivalence classes, we get the substitution semantic “for free”.
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We can extend equivalence classes of types to higher-kinded types as well. As an example, suppose that
we have an EC [a] with an associated set of types {[X] =>> MyTrait[Inv[X]], [X] =>>F [X]}. We write [a]

[
S
]

to represent the type that is equal to MyTrait[Inv[S]] or F [S]. We refer to [a]
[
S
]
as an applied equivalence

class. We naturally need to ensure that the types withinM have all the same kind, otherwise, this definition
is ill-formed.

We now have the necessary tools to introduce the following grammar to denote types with equivalence
classes handles. It is loosely based on the grammar 2.2, except that there are no refinements; furthermore,
intersection and union types must be in a disjunctive normal form (DNF).

T ::= Type
> top
⊥ bottom
X type variable
|& T DNF
Cls[~T ] concrete type con. app.
F [~T ] abstract type con. app.
[~v ~X / B] =>>T HK abstraction
p.type singleton type
p.Q path-dependent type
p.Q[~T ] path-dependent type app.
[a] equivalence class
[a]
[
~T
]

applied equivalence class

X, Y , Z, F Type variable
a, f Field
Q Type member
Cls Class and trait
B Bounds
p, q ::= Path
x variable
p.a field selection

v ::= Variance
+ covariance
− contravariance
± invariance

Figure 5.2 – Syntax for types with equivalence classes handles

We employ the meta-variable TEC to denote subsets of the set of all well-formed types generated from
the above grammar. We similarly define BEC .

The structure K exclusively works with TEC (except for one sub-structure that is used in a specific
case). We do not need to worry about conformance of TEC at this stage. This problem is tied with the
interpretation of K, which we examine in 5.2.2.

5.1.3 Type handles
We now refine the earlier description from 5.1.1 about the components Q andM of the structure K.

The structure K will need to record information about types within equivalence classes. Instead of
directly mapping types within an EC to some information concerning it, we map a type handle to that
information. That way, if we need to update the type – for instance, we need to perform some explicit
substitution – we do not have to update the information mapping (as long as the information about the
new type is maintained). Then, the structureM stores type handles and not types. We store the mapping
between the type handles and the actual types in the structure Θ.

The type handles are opaque elements. We use the meta-variable h to denote type handles and denote
the set of these elements as TH (for Type Handle). We suppose it is possible to generate fresh type handles.

It is important to differentiate equivalence classes handles (set ECH) from type handles (set TH). Type
handles are just indirection from actual types.

The figure below shows Q,M, Θ as well as some other structures cooperating together. In this example,
we assume that S1 needs to be substituted to Bar and U3 to Foo. Assuming the properties about hS1

and
hU3 remain, it is not needed to update the structures mentioning these handles.
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Union-Find state

Repr:

Repr:

Repr:

Members state

Underlying types state Other structures

Union-Find state

Repr:

Repr:

Repr:

Members state

Underlying types state Other structures

(unchanged)

(unchanged)(unchanged)

Figure 5.3 – Type handles and equivalence classes handles.
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5.2 Knowledge structure K

5.2.1 Definition

We define the knowledge structure K , (M,Θ,R,D,Q, I, TR, G�, GEC , GS , Gp) where:
• M : ECH ⇀P(TH) gives the set of members belonging to a given ECH .

• Θ : TH ⇀ TEC retrieves the underlying type of a given type handle TH .

• R : TH ⇀ ECH retrieves the EC handle of a type handle.

• D : ECH ⇀ TH retrieves the type handle whose underlying type is determined, if it exists.

• Q is a union-find data-structure that works with the opaque equivalence classes ECH .

• I : P ⇀ T is employed to record constraints of the form p : T . It is the only structure involving plain
T types and is solely used in a specific case.

• TR : ECH ⇀ TH which associates for each equivalence class a type handle whose underlying type is a
type not containing any ECH . We refer to these types as type representative. This mapping allows to
turn a TEC type into a T type by substituting all ECH into T types. This substitution is there to ease
the correctness proof; in an implementation, we would not perform the substitution. We come back to
the usage of TR in the next section where we introduce the interpretation of K as a conjunctions of
core constraints.

• The acyclic and forward-free graph G� = (V�, E�) where V� ⊆ ECH and E� ⊆ V� × V�. This
graph records the subtyping relations between the equivalence classes. The graph does not contain
any forward edge: that is, for any chain (u1, u2), (u2, u3), ..., (un−1, un) ∈ E�, n ≥ 3, we have that
(u1, ui) 6∈ E�, 3 ≤ i ≤ n.

• The bipartite graphGEC = (UEC , VEC , EEC , LEC) where UEC ⊆ ECH , VEC ⊆ TH ,EEC ⊆ UEC×VEC
and LEC : EEC → {H,NH}. The purpose of GEC is to record the appearances of equivalence classes
in other equivalence classes’ types. The labeling function LEC specifies whether the EC appears in
head (label H for Head) or not (label NH for Non-Head).

For instance, if we have a handle h whose underlying type is MyTrait
[
[a], [b]

]
& [a] belonging to the EC

[c], we would have [a], [b] ∈ UEC , h ∈ VEC , ([a], h), ([b], h) ∈ EEC and LEC([a]) = H,LEC([b]) = NH.

• The bipartite graph GS = (US , VS , ES) where US ⊆ S, VS ⊆ TH and ES ⊆ US × VS . It records the
appearance of abstract type constructors, traits, classes and type variable symbols in head positions
within equivalence classes members.

For instance, assuming that F is an abstract type constructor and that we have at our disposal the
handle h with the underlying type F [A], we would have F ∈ US , h ∈ VS and (F, h) ∈ VS .

• The bipartite graph Gp = (Up, Vp, Ep) where Up ⊆ P × S, Vp ⊆ TH and Ep ⊆ Up × Vp. It records the
appearance of path-dependent types and singleton types in head positions within equivalence classes
members.

5.2.2 Interpretation of K

The knowledge structure K is nothing more than an (organized) accumulation of core constraints. Therefore,
we can give K an interpretation by transforming it into a conjunction of constraints. In fact, in our proofs,
we use the the constraints-view of K to show that functions returning an updated K yield a K′ entailed by
the original K.

To transform K into a constraint, we have to be a bit careful: in K, we are (essentially) establishing
subtyping constraints within types in TEC that may contain equivalence class handles. The constraint
language C only treats T types. This is where TR comes into play: this mapping associates for each
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equivalence class a T type 1. The idea is to substitute each equivalence class handle with its associated type
representative, allowing to turn a TEC into a T . In an implementation, we would not need to perform such
substitution. Furthermore, the transformation of K into a constraint is purely used for proofs.

Before establishing the transformation of K into a constraint, we give below the definition of ECH-Subst
whose purpose is to create a partial mapping ς of TEC into T . ECH-SubstApply defines the substitution of
a T : TEC type for a given ς, previously created with ECH-Subst. The substitution is partial and may yield
↑ (undefined) for some TEC types.

ECH-Subst is rather simple: for each equivalence class (or partition) [r], it maps all elements [a] belonging
to [r] to the associated type representative of that partition.

ECH-SubstApply proceeds by recursively substituting the given type T . The base cases are [a] and
[a]
[
~U
]
. When T is of the form [a], we just need to perform a lookup in ς. Since ς is partial, [a] may not

defined in ς. In such case, the substitution is undefined as well. If T is of the form [a]
[
~A
]
, we similarly

perform a lookup of [a] in ς. The looked-up value needs to be higher-kinded and match the length of ~A to
be defined. If it is the case, we recursively substitute ~A into ~A′ and check that the kind of ~A′ corresponds to
the kind of the looked-up value. We then return the application of the higher-kinded abstraction to ~A′.

Algorithm 1: Substitution of ECH into T
ECH-Subst (K)

Precondition: K-WellFormed(K)
ς ← ∅
for ([a], [r]) ∈ {([a], [r]) : [a] ∈ Q-MembersOf(Q, [r]), [r] ∈ dom(M)} do

ς ← ς[[a] 7→ Θ(TR([r]))]

return ς

ECH-SubstApply (ς, T : TEC)
match T :

case [a] :
match ς([a]) :

Note: S may be higher-kinded.
case S :

return S

case ↑:
return ↑

case [a]
[
~A
]

:
match ς([a]) :

Note: the bounds satisfcation must be ensured when forming [a]
[
~A
]

case [~v ~X / B] =>>S where | ~X| = | ~A| :
~A′ ← ECH-SubstApply(ς, ~A)
if ~A′ = ↑ ∨ kind( ~A′) 6= kind( ~X) then

return ↑
else

return [ ~X 7→ ~A′]S

otherwise :
return ↑

Other cases proceed like standard substitution and are omitted. If a recursive call is undefined, ↑ is
returned.

1More precisely, a type handle whose underlying type is a T type.
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When the context is unambiguous, we employ ς to mean ECH-Subst(K). We also abuse notation and
write ς(T ) to mean ECH-SubstApply(ECH-Subst(K), T ).

Example 5.2.1 (Substitution of TEC into T , simply-kinded). Let a structure K with two partitions [a] and
[b] such that [c] belongs to the partition of [a]. Suppose that TR([a]) = MyTrait[Int] and TR([b]) = List[X].

Then, ς , ECH-Subst(K) is equal to
[
[a], [c] 7→ MyTrait[Int]; [b] 7→ List[X]

]
.

Furthermore:

ς(OtherTrait
[
[b], [c]

]
)) , ECH-SubstApply(ECH-Subst(K), OtherTrait

[
[b], [c]

]
)

is equal to OtherTrait[List[X], MyTrait[Int]].
On the other hand, ς(MyTrait

[
[d]
]
) is undefined since [d] is not contained in K (with the assumption

that [d] is distinct from [a], [b] and [c]).

Example 5.2.2 (Substitution of TEC into T , higher-kinded). Let a structure K with two partitions [a]
and [b] such that [c] and [d] respectively belong to the partition of [a] and [b]. Suppose that TR([a]) =
[Z] =>> ATrait[Z, Int] and TR([b]) = Option[X].

Then, ς , ECH-Subst(K) is equal to:[
[a], [c] 7→ [Z] =>> ATrait[Z, Int]; [b], [d] 7→ Option[X]

]
Furthermore:

ς([c]
[
String & [b]

]
) , ECH-SubstApply(ECH-Subst(K), [c]

[
String[b]

]
)

is equal to ATrait[String & Option[X], Int].
The expressions ς([a]

[
X, [d]

]
) and ς([a]

[
[a]
]
) are undefined. The former does not respect the arity of

TR([a]) while the latter does not respect the kind of TR([a]).

We now give the definition of the transformation of K into C. The idea is to build constraints by
employing the subtyping graph G�, equaling each member of an equivalence class to their type representative
as well as restoring the typing constraints from I. The typing constraints do not need to be transformed
through ς because the involved types are elements of T .

Algorithm 2: Transforming K into a C : C
K-to-C (K) : C : C

ς ← ECH-Subst(K)
return

c
{ς([x]) � ς([y]) : ([x], [y]) ∈ E�} fc
{ς([r]) � ς(Θ(h)) : ([r], h̄) ∈M, h ∈ h̄} fc
{p : T : (p, T ) ∈ I}

To reduce the burden of notation, we write K instead of K-to-C(K) whenever we need to interpret K
as a constraint.
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5.2.3 Invariants
Because K plays a major part in the constraint simplification algorithm, it is primordial to establish some
core properties.

There are three main invariants: K-WellFormed, K-Valid and TEC-in-Θ-Inv, defined below.
The first invariant, K-WellFormed, ensures that all components within K agree with each other and

are consistent. The K-Valid invariant is based on K-WellFormed and adds two properties. These two
invariants are split for technical reasons: the properties stated by K-Valid need a well-formed K to be
meaningful.

The third invariant TEC-in-Θ-Inv concerns the TEC stored in the mapping Θ of K. These restrictions
allow us to facilitate some of the function definitions or to rule out meaningless cases. We underline that
these invariants are only applied to TEC contained within Θ, not for all considered TEC .

We deem useful to discuss some of the rules of TEC-in-Θ-Inv, as these are seemingly arbitrary.
The rule (1) inhibits storing equivalence classes handles in Θ as-is. That is, we may not have an [a] in

Im(Θ). On the other hand, types such as [a] & [b] or [X] =>> [a] are valid. The reason of this peculiar rule is
best explained with an example. Suppose that we have a structure K containing three partitions [a], [b]
and [c] such that [d] belongs to [a]. Suppose that the partition of [a] has two associated types with handles
h1 and h2. If we have Θ(h1) = X and Θ(h2) = T & [c], we should interpret X and T & [c] as being equal.
Furthermore, we can view all occurrences of [a] and [d] as being equal to X and T & [c]. Now, if we add an
h3 to [a] with Θ(h3) = [b], we should view [b] as being equal to X and T & [c], or, in other words, view [b]
as equal to [a]. Instead of storing [b] in Θ(h3), it is wiser to have [a] and [b] unified and merged, as we can
benefit from having all associated types in [b] equal to those in [a]. The rule (1) is here to ensure that we do
not miss out on equivalence classes merges.

The rule (3) ensures that no free occurrences of type variables appear in the types contained in Θ (except
if they appear as themselves). For instance, if a free type variable X is associated to [a], it is preferable
to have [a] & T than X & T . Intuitively, if we get to know more about [a], it is easier to search for the
occurrences of [a] than searching for the occurrences of all type variables associated to [a].

The rule (6) is similar in essence to rule (3) but concerns applied abstract type constructor.
We finally arrive at the rule (7) which applies to non-trivial DNFs. First, all types in K may not

contain a DNF in a non-head position (i.e., in an argument position). As we will see in 5.3.5.2, we can
always extract DNFs into their own equivalence class, even if they capture bound type variables from an
enclosing higher-kinded abstraction. This peculiar restriction facilitates the propagation of type determinacy
of DNFs and within DNFs – which we discuss in further detail in 5.3.5.5. Second, we do not allow free type
variables appearing in a head position within a DNF. We can always extract them into an equivalence class.
This restriction has the same purpose as the head appearance of DNFs, namely to facilitate determinacy
propagation.
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K-WellFormed (K)
Type handle references (K-INV1):

Im(D), Im(TR), VEC , VS , Vp ⊆ dom(Θ) = dom(R) =
⋃

Im(M)

Equivalence class handles in sub-structures (K-INV2):
All EC handles are contained in Q-AllMembers(Q):

Im(D), V�, UEC ⊆ dom(M) = Im(R) = dom(TR) ⊆ Q-AllMembers(Q)
Furthermore, the referenced handles are the representatives:
∀[a] ∈ dom(M). Q-Find(Q, [a]) = [a]

Equivalence class references in types (K-INV3):
[a] ∈ T, T ∈ Im(Θ) =⇒ [a] ∈ Q-AllMembers(Q)

In particular, we do not require Q-Find(Q, [a]) = [a] for the [a] contained in types. It would defeat the
purpose of equivalence classes as we would have to perform substitution.

Non-empty ECs (K-INV4):
∀[a] ∈ dom(M). M([a]) 6= ∅

Substructures relationship (K-INV5):
∀(h, [a]) ∈ R. h ∈M([a])
∀([a], h) ∈ D. h ∈M([a])
∀([a], h) ∈ TR. h ∈M([a])

Types satisfy the TEC-in-Θ-Inv predicate (K-INV6):
∀T ∈ Im(Θ � (dom(Θ) \ Im(TR))). TEC-in-Θ-Inv(T)

Form of TR types (K-INV7):
Representative do not contain ECH :
∀h ∈ Im(TR). Θ(h) ∈ T

(These are not necessarily closed; they may contain free type or term variables)

Same kind within an EC (K-INV8):
∀h̄ ∈ Im(M), h1, h2 ∈ h̄. TEC-kind(K,Θ(h1)) = TEC-kind(K,Θ(h2))

No determinacy for TR (K-INV9):
Im(TR) # Im(D)

Validity of G� (K-INV10):
Well-formedness:
E� ⊆ V� × V�

Acyclicity and forward-free:
G� is acyclic and forward-free, that is, for any chain (u1, u2), (u2, u3), ..., (un−1, un) ∈ E�, n ≥ 3, we
have that (u1, ui) 6∈ E�, 3 ≤ i ≤ n.

Same kind for EC tied in an inequality:
∀([a], [b]) ∈ E�. TEC-kind(K, [a]) = TEC-kind(K, [b])

Validity of GEC (K-INV11):
Well-formedness:
EEC ⊆ UEC × VEC and dom(LEC) = EEC

Validity of GS (K-INV12):
Well-formedness:
ES ⊆ US × VS

Appearance of symbols in head:
∀(sym, h) ∈ ES . TEC-InHead(Q, sym,Θ(h))

Validity of Gp (K-INV13):
Well-formedness:
Ep ⊆ Up × Vp

Appearance of path-dependent types in head:
∀((p, ty), h) ∈ ES . TEC-InHead(Q, p.ty,Θ(h))
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K-Valid (K)
Well-formedness:

K-WellFormed(K)

Types marked as determined are determined (K-INV14):
∀h ∈ Im(D). TEC-IsDet(K,Θ(h))

ς is defined on all contained types (K-INV15):
∀T ∈ Im(Θ). ς(T )↓

TEC-in-Θ-Inv (T : TEC , inHead : B, boundTyVars : P(VX))
Remark: Default arguments: inHead← true, boundTyVars← ∅
match T :

(1) case [a] :
inHead =⇒ boundTyVars 6= ∅

(2) case [a]
[
~S
]

:
∀S ∈ S̄. TEC-in-Θ-Inv(S, false, boundTyVars)

(3) case X :
X 6∈ boundTyVars =⇒ inHead

(4) case p.Q :
true

(5) case Cls[~S] or p.F [~S] :
∀S ∈ S̄. TEC-in-Θ-Inv(S, false, boundTyVars)

(6) case F [~S] :
(∀S ∈ S̄. TEC-in-Θ-Inv(S, false, boundTyVars)) ∧

F 6∈ boundTyVars =⇒ inHead
(7) case |ni &mi

j Ti,j :
inHead ∧
∀Ti,j . match Ti,j :

case [a] :
true

We do not want free occurrences of X to appear in a DNF; we would like them to be extracted
into their own EC.
case X where X 6∈ boundTyVars :

false
Same applies for F .
case F [~S] where F 6∈ boundTyVars :

false
Note: An HK appearing is an intersection type is ill-formed and is not a TEC as such.
otherwise :
TEC-in-Θ-Inv(Ti,j , inHead, boundTyVars)

(8) case [~v ~X / B] =>>S :
dom(B) = X̄ ∧

BEC-in-Θ-Inv(B, boundTyVars) ∧
TEC-in-Θ-Inv(S, inHead, boundTyVars ∪ X̄)

(9) otherwise :
false

BEC-in-Θ-Inv (B : BEC , boundTyVars : P(VX))
dom(B) # boundTyVars ∧
∀(L,U) ∈ Im(B).
TEC-in-Θ-Inv(L, true, boundTyVars ∪ dom(B)) ∧
TEC-in-Θ-Inv(U, true, boundTyVars ∪ dom(B))
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5.3 Constraint simplification

We first present a high-level overview of the constraint simplifier. Next, we quickly discuss some conventions
used in the definition of the algorithm. Finally, we present the core parts of the simplifier.

5.3.1 High-level overview
The algorithm is composed of three principal parts.

The entry point is C-Simplify, whose goal is to rewrite CG. It maintains the accumulated knowledge K
and the set of core constraints that need to be processed. Initially, K is empty (i.e. true), and the set is
initialized with the GADT assumptions CG. C-Simplify proceeds by picking a constraint in the set and
repeatedly calls the deduction and compaction phase until the set is empty.

The deduction phase, Deduction, is given the current knowledge K and a core constraint C#. It reduces
C# into conjunctions of constraints

c
iDi where the Di are of the form true, false, S � T – with S and

T free of any refinement – or p : U . Sometimes, the deduction phase does not have enough information to
completely reduce a constraint. In such cases, it yields the constraint back. As we have seen in section 3.5,
doing so may allow further accumulated knowledge to “unblock” the constraint and have it reduced.

The compaction phase Compact combines K and
c
iDi together into a K′, one constraint at a time.

This phase may yield back new constraints coming from merging K and
c
iDi. If so, these are added to

the set of constraints. The compaction phase is itself composed of four sub-phases that we do not need to
discuss for this overview.

We now give three examples of how C-Simplify would operate if we were to give the GADT assumptions
for listings 5 through 7.

Example 5.3.1.1 (Workflow for listing 5). We remind ourselves we start with the following CG:

p : P & S[X,Y ]

A run of C-Simplify would be:
1. The set of constraints is initialized to {p : P & S[X,Y ]} and K to K-New.

2. The constraint p : P & S[X,Y ] is picked:

(a) Deduction simplifies the picked constraint into X � Int.
(b) The compaction phase assimilate X � Int into K, yielding an updated K. It does not yield any

additional constraint.

3. All constraints in the maintained set have been processed. We return the maintained K whose
interpretation is X � Int.

Example 5.3.1.2 (Workflow for listing 6). We are given the following CG:

p : P[pX] & S[Inv[X] & Y ]

A run of C-Simplify would be:
1. The set of constraints is initialized to {p : P[pX] & S[Inv[X] & Y ]} and K to K-New.

2. The constraint p : P[pX] & S[Inv[X] & Y ] is picked:

(a) Deduction simplifies the picked constraint into Inv[pX] & Inv[String] � Inv[X] & Y but cannot
reduce it further.

(b) The compaction phase assimilate the deduced constraint into K, yielding an updated K. No
additional constraints result from the compaction.

3. All constraints in the maintained set have been processed. We return the maintained K whose
interpretation is Inv[pX] & Inv[String] � Inv[X] & Y .
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Example 5.3.1.3 (Workflow for listing 7, run (i)). We are given the following CG:

p : P[pX, pY, pF ] & S[X,F ]f

[Z] =>>F [Z] � [Z] =>> Inv2[Z, Y ] &X f

[Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> pF [Z]

To help with readability, we name the conjuncts C1, C2 and C3 respectively.
A run of C-Simplify where C1 is picked after C2 and C3 would be:
1. The set of constraints is initialized to {C1, C2, C3} and K to K-New.

2. The constraint C2 is picked:

(a) The deduction phase cannot deduce any useful information out of it with the current knowledge.
Therefore, this constraint is given back. Future knowledge may help extracting information from
C2.

(b) The compaction phase assimilates C2 into K and does not create new constraints.

3. The constraint C3 is picked:

(a) The deduction phase cannot reduce C3 and gives it back.
(b) The compaction phase assimilates C3 into K. No new constraints are created.

4. The constraint C1 is picked:

(a) The deduction phase reduces C1 into X � Inv[pX]f F � pF
(b) The compaction phase assimilates X � Inv[pX] and F � pF into K sequentially. It yields the

constraint:

C4 , [Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> Inv2[Z, Y ] & Inv[pX]

(c) C4 is added to the set of constraints to process.

5. The constraint C4 is picked:

(a) The deduction phase reduces C4 into Y � pY f pX � pY .
(b) Y � pY and pX � pY are assimilated into K. The compaction phase does not produce new

constraints.

6. All constraints in the maintained set have been processed. We returned the maintained K whose
interpretation is Y � pY f pX � pY .

Example 5.3.1.4 (Workflow for listing 7, run (ii)). If we pick C1, C2 and C3 in that order, we would
instead get:

1. The constraint C1 is picked:

(a) The deduction phase reduces C1 into X � Inv[pX]f F � pF
(b) The compaction phase assimilates X � Inv[pX] and F � pF into K sequentially. No further

constraints are produced.

2. The constraint C2 is picked:

(a) The deduction phase cannot deduce any useful information out of it with the current knowledge
and gives it back.

(b) The compaction phase assimilates C2 into K and does not create new constraints.

3. The constraint C3 is picked:

(a) The deduction phase cannot reduce C3 and gives it back.
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(b) The compaction phase assimilates C3 into K and generate the same constraint C4 as the previous
run.

4. The constraint C4 is picked: the output is similar to the previous run.

5.3.2 Conventions
We discuss some assumptions and conventions used when describing the different functions. We think these
are all reasonable but state them nonetheless to reduce ambiguity.

We start with type pattern matching. Given case pattern such as Cls[~S], only (applied) traits and classes
may match the case. Furthermore, we assume that nullary type constructors (e.g. Int) match the case, with
~S being the empty vector.

All applied type constructors (including bound and path-dependent) match the pattern case TyCon[~S].

Example.

match T :
String matches the pattern.
FooTrait[X, Int] matches the pattern with ~S = (X, Int).
F [X] does not match the pattern (assuming F is abstract)
case Cls[~S] :

(...)

We assume that appropriate implicit η-expansion and uncurrying are performed to have the body of the
higher-kinded abstractions be of simple kind. Furthermore, we assume that implicit α-renaming is performed
on the scrutinee to match a given pattern.

Example.

match (S, T ) :
The pair ([+Y <: Foo] =>>A1, [+Z >: Bar] =>>A2) matches the pattern.
The pair ([−X] =>>A1, [+X] =>>A2) does not match the pattern due to the sign difference.
The pair ([X <: Foo] =>> [−Y ] =>>A1, [Z >: Bar] =>> [−W <: Qux] =>>A2) matches the pattern with:
~v = (±,−),
B1 = {(X, (⊥, Foo)), (Y, (⊥,>))},
B2 = {(X, (Bar,>)), (Y, (⊥, Qux))},
U = A1,
V = [Z 7→ X,W 7→ Y ]A2

case ([~v ~X / B1] =>>U, [~v ~X / B2] =>>V ) :
(...)

We assume that the pattern |ni&mi
j Ti,j may only be matched by non-trivial DNF types. No assumptions

on the order of the Ti,j are needed.

We conclude by stating a final assumption that is not needed for correctness but is desired to help the
process of constraint simplification. Given two types S and T , we assume that the & (and similarly | )
constructor is “smart”: if S is ⊥ or >, then S & T is simplified to ⊥ and T respectively (and analogously
for | ). Furthermore, & and | coalesce the arguments of type constructors as follows. For a covariant
(resp. contravariant) type constructor TyCon, TyCon[A] & TyCon[B] is reduced to TyCon[A&B] (resp.
TyCon[A |B]). The same applies for | , with the result swapped. The coalescing behavior is extend to type
constructors of arity greater than one as well; however, the coalescing may not be possible if there is at least
one invariant position.
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5.3.3 Entry point: C-Simplify
The entry point of the constraint simplification process is C-Simplify, defined in algorithm 3. The body of
the function is quite simple and closely follows the description from 5.3.1. We maintain a set cstrts of core
constraints that we wish to simplify, as well as the knowledge structure K.

We pick a constraint from the set and, given our accumulated knowledge K, try to simplify it by passing
it through Deduction. It results in a conjunctions of potentially simpler constraints. We then compact and
assimilate these constraints into K. The compaction phase may give back some new constraints, which are
added to the set of maintained constraint.

There are two notable differences from the description in 5.3.1. The first is that we allow C-Simplify to
be passed an initial K. One may create an initial K (whose interpretation is just true) with K-New.

The second has to do with the compaction phase. The high-level overview states that the compaction
phases assimilates any core constraint into K. It is not quite true, as we only feed Compact subtyping
constraint of the form S � T . Path typing constraints such as p : T are processed within C-Simplify by
just adding them into I. Finally, true and false are trivially handled without involving K.

The C-Simplify function guarantees that the returned K is entailed by the conjunction of the original
K and the GADT assumptions CG. We prove partial correctness of C-Simplify in appendix A.3. We do
not provide a formal proof of C-Simplify termination, but sketch one in appendix A.10.

Algorithm 3: Constraints simplifier
C-Simplify (K, CG =

cn
i Ci) : K ] {false}

Input: An initial K and a conjunction of core constraints
Output: A conjunction of core constraints entailed by the original ones. The value false denotes that
the given constraints are unsatisfiable.

Precondition: K-Valid(K)
Precondition: The Ci are core constraints.
Postcondition: Entailment of the result:

• If the result is not false:
K f

cn
i Ci  K′

• If the result is false:
K f

cn
i Ci  false

cstrts← {Ci, 1 ≤ i ≤ n}
K(1) ← K

Loop Invariant: K-Valid(K(1))
Loop Invariant: K f

cn
i Ci  K(1) f

c
cstrts

(1) while ∃C ∈ cstrts do
(1a) if C = false then

return false
(1b) if C = true then

cstrts← cstrts \ {C}
continue

(1c)
cm

j Dj ← Deduction(K(1), C)
n stands for next. This little dance with indices eases a bit the analysis because we need to reference
“old” K’s and “new” K’s.

K(n) ← K(1)

cstrts(n) ← cstrts
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Loop Invariant: K-Valid(K(n))
Loop Invariant: K f

cn
i Ci  K(n) f

c
cstrts(n)

(1d) for j ← 1 to m do
match Dj :

(1d.i) case true :

K′ ← K(n)

cstrts′ ← ∅
(1d.ii) case false :

return false
(1d.iii) case Sj � Tj :

(K′, cstrts′)← Compact(K(n), Sj , Tj)
Here, we could do better by propagating the inhabitation to the upper bounds of Tj. To avoid
duplicating inhabitation constraints, we would have to store a set of types for which the
inhabitation constraints have already been examined.

(1d.iv) case p : Tj :
if p ∈ dom(I) then
I′ ← I[p 7→ Tj ]

else
I′ ← I[p 7→ Tj & I(p)]

K′ ← K[I 7→ I′]
cstrts′ ← ∅

Update and continue.
K(n) ← K′

cstrts(n) ← cstrts(n) ∪ cstrts′

Update and continue.
K(1) ← K(n)

cstrts← cstrts(n) \ {C}

(2) return K(1)
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5.3.4 The deduction phase
Given a valid K and a core constraint C#, the goal of the deduction phase is to reduce C# into a conjunction
of core constraints

cn
i Di that are entailed by K and C#. Furthermore, the subtyping constraints must not

contain any refinements because we do not support them in the latter phases.
As briefly discussed in 5.3.1, the deduction may return the original constraint (provided its satisfies the

above requirements) if it is irreducible at the current iteration but is nonetheless worthwhile to keep.
The function Deduction (defined in algorithm 4) is the entry-point of the deduction phase. It is just a

wrapper performing a case analysis on the given (core) constraint C#. If the constraint C# is a subtyping
constraint, the work is delegated to DeductionIneq, which we describe afterwards.

Otherwise, the constraint is a path typing of the form p : T . The path p can also be a term variable,
such as x. We then extract all fields accessible from p and hand them over to DeductionTypedPath. For
instance, if we consider the following definitions:

case class InvCov[A,+B](a : A, b : B)

case class Foo[A,B,C,D](a : Bar, b : InvCov[A,B] & InvCov[C,D])

case class Bar(a : List[Int])

and that we are given p : Foo[X,Y, Z,W ], we would pass to DeductionTypedPath the following con-
straints2:

p.a : Bar

p.b : InvCov[X,Y ] & InvCov[Z,W ]

p.a.a : List[Int]

Algorithm 4: Deduction entry-point
Deduction (K, C#) :

cn
i Di

Precondition: K-Valid(K)
Precondition: C# is a core constraint that is not true or false
Postcondition: K f C# 

cn
i Di where the Di are of the form true, false, S � T

with S and T free of any refinement or p : U .

match C :
(1) case p : T :

D ← true
for (q, S) ∈ T -InhabitedTypes(p, T) do

D ← Df DeductionTypedPath(K, q, S)
return D

(2) case T1 � T2 :
return DeductionIneq(K, T1, T2)

DeductionTypedPath (algorithm 5) reduces a path typing by essentially equating the types of intersections
of traits (or classes) at invariant positions. Resuming the previous example, DeductionTypedPath reduces
p.b : InvCov[X,Y ] & InvCov[Z,W ] to X � Z because X and Z appear at an invariant position of the same
class InvCov. Y and W are untouched because they appear in a covariant position 3.

For the other path typings, however, nothing is deduced because their types are not intersection types.

2Note that we do not return fields from intersection of types, such as p.b.a : A or p.b.a : B. It is unclear whether it is always
sound to do so.

3This reduction stems from lemma 3.4.7 which is based on rule (Path-&)
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Algorithm 5: Reduction of a path constraint into simpler constraints
DeductionTypedPath (K, p : P, T : T ) :

cn
i Di

Precondition: K-Valid(K)
Postcondition: K f p : T 

cn
i Di where the Di are of the form true, false, S1 � S2

with S1 and S2 free of any refinement or q : U .

Set of types that are common to all disjunctions in a DNF. For example, the set of common types in
(T & S & U) | (T & S & V ) is {T, S}
commonTys← T -CommonTypes(TEC-SimplifyDNF(K, T))

(1) if |commonTys| ≤ 1 then
Nothing to deduce.
return p : T

D ← p : T
(2) for (S,U) ∈ {(S,U) : S,U ∈ commonTys, S 6= U} do

match (S,U) :

(2a) case (Cls[ ~A], Cls[ ~B]) :

Then, ~A and ~B must agree on invariant positions. ~v is the variance sign vector of Cls
for j ∈ {j : vj = ±, 1 ≤ j ≤ |~v|} do

D ← Df DeductionIneq(K, Aj , Bj) f DeductionIneq(K, Bj , Aj)

(2b) case (Cls1[ ~A], Cls2[ ~B]) where Cls1 extends Cls2 :
Then, Cls1 extends Cls2 N ≥ 1 times through σ1, ...,σN such that:
Cls1[ ~A] � &N

i Cls2[σi( ~A)] � Cls2[ ~B].
for i← 1 to N, j ∈ {j : vj = ±, 1 ≤ j ≤ |~v|} do

D ← Df DeductionIneq(K,σi( ~A)j , Bj) f DeductionIneq(K, Bj ,σi( ~A)j)

otherwise :
pass

return D

The reduction of a constraint subtyping requires a bit more work. This task is granted to DeductionIneq,
defined in algorithm 6. We give it an overview by going over some of its interesting cases.

Case (1).
When the compared types are closed, we simply leverage T -IsSubtype. The subtyping can be incomplete

(and it is expected to be so), but we require uncertainty to be denoted as undet.

Case (6).
We must first verify whether B2 is “bigger” than B1 by checking if it subsumes B1. In case of uncertainty,

we return the constraint unchanged only if it the bodies do not contain any refinement. It is possible that
some further accumulations of knowledge render the constraint reducible.

Then, we recursively perform a deduction on the body of the abstractions. For each Di, there are four
possible cases, of which two are of interest. The first case, (6c), adds the simplified conjunct to the returned
solution whenever the bounds of B1 are satisfied under K (that is, entailed by K) and whenever the type
variables X̄ do not appear in the reduced constraint. For example, suppose K  U � V holds and that we
would like to simplify:

[X >: U <: V ] =>> InvCovTrait[X,Y ] � [X >: U <: V ] =>> InvCovTrait[X,Z]

Then, the recursive call would yield Y � Z and we would return the constraint as it is.
If we cannot prove a subtyping relationship between the lower and upper bounds of B1 (with the

assumption that K holds), we may not return the simplified constraint as-is because we could introduce
subtyping relationship that do not hold.

The case (6d) is here to avoid wasting potentially useful information by introducing the assumptions on
the subtyping relationship back, by just constructing an abstraction on top of the reduction. It also covers
the case where the reduced constraint contains a bound type variable.
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Case (8).
Reducing a subtyping constraint between two refinements closely follows the results from lemmas 3.4.9

and 3.4.10. At (8a), we ensure that all members of R2 are included in R1 as well. Then, at (8b), we check
in I if we have previously recorded a constraint witnessing the inhabitation of R1. If not, we give up by
returning true 4.

Deducing new constraints from the type of the fields and the bounds of the type members is quite
straightforward (lines (8c) and (8d)).

The reduction of subtyping between methods performed within the loop at (8e) is more interesting.
Given a method of name mi, we first ask an (incomplete) oracle whether the types ~U1,i of the arguments ~x
are inhabited. We do not know whether such check is necessary to be sound: lemma 3.4.8 (based on rule
(Met-<:-Met) which extends pDOT’s (All-<:-All) rule) requires a ~q such that φ, γ[~x 7→ ~q] |= ~x : ~U1,i.

The rest loosely follows the results of lemma 3.4.8. Because type parameters and higher-kinded types
have similar constraints semantics, we leverage the higher-kinded DeductionIneq cases by construction an
HK abstraction out of the type parameters ~Yi.

Cases (11) and (12).
For conciseness, we only consider the case (11); the same reasoning applies to (12).
Assuming T1 � U |V , we have T1 � U or T1 � V . When performing a deduction on T1 � U and T2 � V ,

we have D1 or D2. The constraint language C does not have a notion of disjunction g, so we cannot return
D1 gD2.

We can however approximate the disjunction as follows, knowing that D1 and D2 are solely composed of
subtyping constraints (modulo true and false). We take all types appearing in the subtyping constraints
in D1 and D2. For each type T , we look-up its lower and upper bounds L1 and U1 in D1. If the lower bound
(respectively the upper bound) is missing, we default it to ⊥ (respectively >). We do the same for the bounds
in D2. We then add the constraint L1 & L2 � T f T � U1 | U2 to the approximation result. The function
ApproxDisjunction is charged in performing such approximation.

As an example, suppose that D1 , T � S f T � V f S �W and that D2 , B � T f T � A.
Then, the lower and upper bounds of S, T , V and W in D1 are:

L1(S) = T U1(S) = W

L1(T ) = ⊥ U1(T ) = S & V

L1(V ) = T U1(V ) = >
L1(W ) = S U1(W ) = >

In D2, the lower and upper bounds of T , A, B are:

L2(T ) = B U2(T ) = A

L2(A) = T U2(A) = >
L2(B) = ⊥ U2(B) = T

The approximation for T is B &⊥ � T f T � (S & U) |A, which is equal to ⊥ � T f T � (S & U) |A.
Intuitively, if D1 holds, then T � S &U holds as well – thus entailing the approximation. On the other hand,
if D2 holds, then B � T f T � A holds, which entails the approximation too.

For S, the approximation yields T & ⊥ � S f S � W | >, which is equal to ⊥ � S f S � > which is
equivalent to true. In other words, we did not extract any information for S. We similarly get trivial results
for V , W , A and B.

The result of the approximation of the disjunction of D1 and D2 is then T � (S & U) | A. We have
unfortunately lost a substantial amount of information; we believe however that such approximation should
be good enough for most real-world use cases.

4One may notice that it is wiser to instead return R1 � R2 and come back latter to that constraint if we find a p inhabiting
R1. Because the next phases do not support refinements, we must unfortunately drop the constraint. We leave such enhancement
for future improvements.
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Case (13).
We first simplify T1 and T2. It is possible that we eliminate some conjunctions or disjunctions with the

accumulated knowledge. For instance, if T1 is X & Y & Z and that K  X � Y , the simplification process
would yield X & Z (or Y & Z). It is possible for a DNF to be simplified into a type that is not an union or
an intersection type.

Next, we perform a deduction on the simplified types as we would normally do. We do not directly recur
here because we would end up in the same case, so we use an helper function, DeductionIneqDNF, that
dissects the DNFs into “atomic” types and calls DeductionIneq on them.

Once the result D obtained from DeductionIneqDNF, we may be tempted to return it and continue.
However, by just returning D, we may lose some crucial information that could be useful latter on. For
example, suppose that we are given X & Y � Z & W with no knowledge on X, Y , Z and W . Then,
DeductionIneqDNF would return D = true due to how logical disjunctions are approximated. If we just
returned D (i.e. true), we would inadvertently throw the constraint X & Y � Z & W . In such case, we
should return X & Y � Z &W as well.

Yet, we would also like to minimize the amount of duplicated information we return.
It turns out that, if U and V are both determined under K, then we have extracted all useful information

that we could possibly derive. Further knowledge will not benefit us if we add the original constraint, so we
may just return D. On the other hand, if one of the type is not determined, we may miss out on further
knowledge refinement.

As an example, let us consider the following traits:

trait TC1[A]; trait TC2[A]; trait InvInv[A,B]

as well as the following constraint:

T1 � T2 , InvInv[U, V ] & InvInv[U,W ] � InvInv[X,Y ] & InvInv[X,Z]

where U , V , W , X, Y and Z are all type variables. Suppose that we have a K that does not contain any
information about these type variables.

We observe that T1 and T2 are not determined under K: indeed, for T1 we cannot prove that no subtyping
relationship exists between InvInv[U, V ] and InvInv[U,W ] since we do not know anything about U , V and
W . The same applies for T2 as well.

The only useful simplified constraint we deduce is U � X.
For the sake of the example, suppose furthermore that we deduced elsewhere the following constraint:

V � TC1[V ′]fW � TC2[W ′]f Y � TC1[Y ′]f Z � TC2[Z ′]

and that this knowledge is latter on integrated into K.
By using the above knowledge, the original constraint becomes:

InvInv[U, TC1[V ′]] & InvInv[U, TC2[W ′]] � InvInv[X, TC1[Y ′]] & InvInv[X, TC2[Z ′]]

Since TC1 and TC2 are unrelated, the updated versions of T1 and T2 are determined.
If we give the updated constraint a second chance by passing it to DeductionIneq, we would obtain

(with the left conjunct of T2):

DeductionIneq(InvInv[U, TC1[V ′]] & InvInv[U, TC2[W ′]], InvInv[X, TC1[Y ′]])

⇒ DeductionIneq(InvInv[U, TC1[V ′]], InvInv[X, TC1[Y ′]])

⇒ U � X f V ′ � Y ′

⇒ DeductionIneq(InvInv[U, TC2[W ′]], InvInv[X, TC1[Y ′]])

⇒ false

⇒ U � X f V ′ � Y ′
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We similarly obtain U � X fW ′ � Z ′ from the right conjunct of T2. In particular, we have deduced a
new knowledge V ′ � Y ′ fW ′ � Z ′ that we would have missed if we dropped the original constraint and
only kept U � X.

We provide correctness proofs (including termination) for Deduction, DeductionTypedPath and
DeductionIneq in appendix A.4.

Algorithm 6: Reduction of a subtyping constraint into simpler constraints
DeductionIneq (K, T1 : T , T2 : T ) :

cn
i Di

Inputs: The knowledge K, the assumed constraint T1 � T2 to be reduced
Output: A (possibly trivial) conjunction of constraints

cn
i Di entailed by K and T1 � T2.

Precondition: K-Valid(K)
Postcondition: K f T1 � T2 

cn
i Di where the Di are of the form true, false or U1 � U2

with U1 and U2 free of any refinement.
match T1 � T2 :

(1) case T1 � T2 where T1, T2 ∈ T cl :
(1a) if T -IsSubtype(T1, T2) = false then

return false
(1b) else

return true

(2) case T � T :
return true

(3) case T1 � > :
return true

(4) case ⊥ � T2 :
return true

(5) case Cls1[~S1] � Cls2[~S2] :
(5a) if Cls1 does not extend Cls2 then

return false
(5b) else if Cls1 = Cls2 then

With ~v the variance signs of Cls1

return DeductionIneqVec(K, ~S1, ~S2, ~v)
(5c) else

Then, Cls1 extends Cls2 N ≥ 1 times through σ1, ...,σN such that:
Cls1[~S] � &N

i Cls2[σi(~S)] � Cls2[~S2].
return DeductionIneq(K,&N

i Cls2[σi(~S)], Cls2[~S2])

Note: assumes implicit α-renaming to have X̄ fresh.
(6) case [~v ~X / B1] =>>S1 � [~v ~X / B2] =>>S2 where B1 and B2 do not contain refinements:

sub ← BEC-Subsumes(K, B2, B1)
(6a) if sub = false then

return false
(6b) else if sub = undet then

(6b.i) if T1 and T2 do not contain refinements then
return T1 � T2

(6b.ii) else
Give up.
return true

cm
i Di ← DeductionIneq(K, S1, S2)

entailed← BEC-BoundsEntailed(K, B1)

54



Dacc ← true
for Di ∈

cm
i Di do

match Di :
(6c) case U1 � U2 where entailed ∧ ftv(U1, U2) # X̄ :

Dacc ← Dacc f U1 � U2

(6d) case U1 � U2 :

Dacc ← Dacc f
(
[~v ~X / B1] =>>U1 � [~v ~X / B2] =>>U2

)
(6e) case false where entailed :

return false
otherwise :

pass

return Dacc

(7) case R � Cls[~S] :
return false

(8) case R1 � R2 :
R1 cannot be a subtype of R2 if there are some “missing” members.

(8a) if R2 6⊆ R1 then
return false

Deconstructing R1 and R2. We assume that the z (the “self”) is α-renamed to be fresh and equal
in both R1 and R2.

We furthermore assume that the arguments ~x for all methods are α-renamed such that they are all
distinct between themselves, z and ftmv(K).
{z =>
type ~T / B1

type ~T ′ / B′

val ~f : ~F1

val ~f ′ : ~F ′

def
−−−−−−−−−−−−−−→
m[~Y / BY,1](~x : ~U1) : ~V1

def
−−−−−−−−−−−−−−→
m′[~Y ′ / B′Y ](~x′ : ~U ′) : ~V ′} ← R1

{z =>
type ~T / B2

val ~f : ~F2

def
−−−−−−−−−−−−−−→
m[~Y / BY,2](~x : ~U2) : ~V2} ← R2

(8b) if ¬(∃p. (p,R1) ∈ I) then
We simply give up.
return true

Dacc ← true
Subtyping between the type of the fields...

(8c) for i← 1 to |~F | do
D ← DeductionIneq(K, [z 7→ p]F1,i, [z 7→ p]F2,i)

(8c.i) Dacc ← Dacc fD

... between the bounds of type members...
(8d) for i← 1 to |~T | do

(L1, U1)← [z 7→ p]B1,i

(L2, U2)← [z 7→ p]B2,i

D1 ← DeductionIneq(K, L2, L1)
D2 ← DeductionIneq(K, U1, U2)

(8d.i) Dacc ← Dacc fD1 fD2
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... and finally between the methods.
(8e) for i← 1 to |~m| do

(8e.i) if ¬(
∧|~x|

i T -IsInhabitedOracle(xi, U1,i,j)) then
continue

~v ← (±)|
~Yi|

if |~Yi| 6= 0 then
Here, we take advantage of the fact that HK abstraction subtyping rules are similar to the
ones for methods.

(8e.ii) for j ← 1 to |~xi| do
U ′1 ← [z 7→ p]

(
[~v~Yi / BY,2,i] =>>U1,i,j

)
U ′2 ← [z 7→ p]

(
[~v~Yi / BY,1,i] =>>U2,i,j

)
cn

l Dl ← DeductionIneq(K, U ′2, U
′
1)

We only keep constraints that do not mention the parameters x̄. Otherwise, they would
escape their original scope.
Dacc ← Dacc f

c
{Dl : Dl ∈

cn
l Dl, x̄# ftmv(Dl)}

V ′1 ← [z 7→ p]
(
[~v~Y / BY,1,i] =>>V1,i

)
V ′2 ← [z 7→ p]

(
[~v~Y / BY,2,i] =>>V2,i

)
(8e.iii)

cn
l Dl ← DeductionIneq(K, V ′1 , V

′
2)

Dacc ← Dacc f
c
{Dl : Dl ∈

cn
l Dl, x̄# ftmv(Dl)}

else
(8e.iv) for j ← 1 to |~xi| docn

l Dl ← DeductionIneq(K, [z 7→ p]U2,i,j , [z 7→ p]U1,i,j)
Dacc ← Dacc f

c
{Dl : Dl ∈

cn
l Dl, x̄# ftmv(Dl)}

(8e.v)
cn

l Dl ← DeductionIneq(K, [z 7→ p]V1,i, [z 7→ p]V2,i)
Dacc ← Dacc f

c
{Dl : Dl ∈

cn
l Dl, x̄# ftmv(Dl)}

return Dacc

(9) case T1 � U & V where DNF(T1) does not contain non-trivial conjunctions:
Examples:
X � T & Y matches the branch
X | Y | Trait[A] � T & S matches the branch
X & Y � T & S does not match the branch
X | Y | (Z & Trait[A]) � T & S does not match the branch
D1 ← DeductionIneq(K, T1, U)
D2 ← DeductionIneq(K, T1, V )
return D1 fD2

(10) case U | V � T2 where DNF(T2) does not contain non-trivial disjunctions:
D1 ← DeductionIneq(K, U, T2)
D2 ← DeductionIneq(K, V, T2)
return D1 fD2

(11) case T1 � U | V where DNF(T1) does not contain non-trivial conjunctions:
D1 ← DeductionIneq(K, T1, U)
D2 ← DeductionIneq(K, T1, V )
return ApproxDisjunction(D1, D2)

(12) case U & V � T2 where DNF(T2) does not contain non-trivial disjunctions:
D1 ← DeductionIneq(K, U, T2)
D2 ← DeductionIneq(K, V, T2)
return ApproxDisjunction(D1, D2)
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(13) case T1 � T2 where T1 and T2 are intersection or union types and do not contain refinements:
U is a (possibly trivial) DNF of the form |ni &mi

j Ui,j.
Note that T1 and T2 do not contain any refinement, and are therefore TEC .
U ← TEC-SimplifyDNF(K, DNF(T1))
Same goes for V , though the n and mj are likely different .
V ← TEC-SimplifyDNF(K, DNF(T2))
D ← DeductionIneqDNF(K, U, V )

(13a) if D = false then
return false

(13b) else
isDetU ← TEC-IsDet(K, U)
isDetV ← TEC-IsDet(K, V )
if isDetU ∧ isDetV then

return D
else

return D f U � V

(14) case T1 � T2 where T1 and T2 do not contain refinements:
return T1 � T2

(15) otherwise :
We just give up.
return true

5.3.5 The compaction phase

5.3.5.1 Entry point: Compact

The compaction phase is defined in Compact, algorithm 7. The goal of this phase is to integrate a subtyping
constraint S � T into K so that we may use it for further constraints deductions.

As previously seen in the running examples, the assimilation process can give new constraints back. The
returned constraints are solely subtyping constraints and are not arbitrary. They tie two determined types
together: we have seen in 3.5 that a subtyping constraint of two determined types is interesting because it
can always be reduced. These constraints, along with the updated K, are then fed back to C-Simplify.

The compaction phase is composed of four sub-phases. The first phase (lines (1)-(2)) consists of looking
for the equivalence classes of S and T , or creating them if they do not exist.

The second phase (line (3)) connects S and T by their subtyping relationship through their associated
equivalence classes. This step may result in having to merge multiple ECs and generate new constraints. We
will see the reasons when discussing the inequality phase.

The two last phases are interleaved and are executed within the loop at (4). The third phase merges the
equivalence classes coming from the second phase. It may schedule further ECs for merging. The fourth
phase propagates the determinacy of ECs becoming determined due to being merged to determined ECs.

We provide a correctness proof of the compaction phase in appendix A.5. To help readability, we employ
the following shorthands in the specifications:

[a] ∈ K , [a] ∈ Q-AllMembers(K)

h ∈ K , h ∈ dom(Θ)

M(K, toMerge) ,
{
ς([x]) � ς([y]) : {[x], [y]} ∈ toMerge

}
I(K, ineqs) ,

{
ς([x]) � ς([y]) : ([x], [y]) ∈ ineqs

}
L(K, toMerge) ,

∑
{[a],[b]}∈toMerge

1 if ([a], [b]), ([b], [a]) 6∈ ES 0 otherwise
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We furthermore remind that ς is a shorthand for ECH-Subst(K). When there are multiple K in scope,
we accordingly annotate the ς.

Algorithm 7: Compaction entry-point
Compact (K, S : T , T : T ) : (K′, cstrts)

Inputs: The structure knowledge K and the constraint S � T to assimilate into K
Outputs: (K′, cstrts) where cstrts is a set of core constraints to be added to the maintained
constraints set of C-Simplify.

Precondition: S and T do not contain any refinement.
Precondition: K-Valid(K)
Postcondition: K f C  K′ f

c
cstrts

Postcondition: K-Valid(K′)

(1) (K(1), [s])← T -FindOrCreateEC(K, S, ∅, ∅, true, true)
(2) (K(2), [t])← T -FindOrCreateEC(K(1), T, ∅, ∅, true, true)
(3) (K(3), cstrts, toMerge)← TryAddInequality(K(2), [s], [t])

K(4) ← K(3)

Loop Invariant: K-Valid(K(4)) ∧
⋃

toMerge ⊆ K(4) ∧
∀{[x], [y]} ∈ toMerge. TEC-kind(K(4), [x]) = TEC-kind(K(4), [y])

Loop Invariant: K f S � T  K(4) f
c

cstrts fM(K(4), toMerge)
(4) while ∃{[a], [b]} ∈ toMerge do

We should first “refresh” [a] and [b] by getting their respective representatives.
[a]← Q-Find(Q(4), [a])
[b]← Q-Find(Q(4), [b])
If it turns out that [a] and [b] are already merged, we simply continue.

(4a) if [a] = [b] then
toMerge(n) ← toMerge \ {[a], [b]}
toMerge← toMerge(n)

(4b) else
(K(n), cstrts′, toMerge′)← Merge(K(4), [a], [b])
cstrts(n) ← cstrts ∪ cstrts′

toMerge(n) ← (toMerge ∪ toMerge′) \ {[a], [b]}
(K(4), cstrts, toMerge)← (K(n), cstrts(n), toMerge(n))

(5) return (K(4), cstrts)

5.3.5.2 Finding and creating equivalence classes

The goal of the first phase is to turn S and T (elements of T ) into [s] and [t] (elements of ECH), which are
more suited for our needs.

To do so, we employ the function T -FindOrCreateEC, defined in algorithm 8. The first two arguments,
K and T : T , are rather straightforward. The third and fourth arguments, BX and ~vX , respectively represent
the enclosing bounds and the variance sign of the bound type variables that are introduced by a higher-kinded
abstraction. When there are no enclosing bounds, we simply pass these arguments the empty set. The fifth
argument inHead : B indicates whether we are situated in a head position or not. We set the argument to
false when entering the arguments of applied type constructors. Finally, the sixth argument, create : B,
tells the function to create equivalence classes as needed to turn the given type into a TEC type.

The T -FindOrCreateEC function returns an updated K and the result of turning the given type into a
TEC . Furthermore, the property Q-FEC3 states that, if BX is set to the empty set, T -FindOrCreateEC is
guaranteed to return an ECH , which is also a TEC type. Hence, the [s] and [t] returned within Compact at
lines (1) and (2) are indeed ECH elements. If not, the returned type satisfies some other properties that are
specified by Q-FEC4. In essence, these properties state that the returned type is suitable to be stored in Θ
by maintaining the TEC-in-Θ-Inv invariant, provided it is not an ECH .

To help accomplish its task, T -FindOrCreateEC leverages TEC-FindOrCreateEC (algorithm 9) which
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turns a given TEC type into TEC guaranteed to satisfy Q-FEC3 and Q-FEC4. In TEC-FindOrCreateEC, we
first try to find if the given T type is equivalent to at least one type in each equivalence classes. To avoid
iterating over all types and equivalence classes, we call TH-Candidates to generate a list of candidates that
could be equivalent T . This function leverages the graphs GS , GEC and Gp to rule out types that cannot
possibly be equivalent to T . If we find a type equivalent to T , we return the EC of that type (lines (1a.i)
and (2a.i)).

Otherwise, if T has a simple kind, we try to find an EC, when applied, is equivalent to T . This attempt
is carried out at line (1b).

Finally, if all these attempts fail, we create an EC for T if create is true and return NIL otherwise. The
creation of ECs is undertaken by the function TEC-CreateEC, defined in algorithm 10.

We provide a proof for the claims upheld by these ECs processing functions in appendix A.6.

Algorithm 8: Finding an equivalence class for a T type if it exists
T -FindOrCreateEC (K, T : T , BX : BEC , ~vX , inHead : B, create : B)

: (K′, T ′ : TEC ] {NIL})
Precondition (P-FEC1): K-Valid(K)
Precondition (P-FEC2): Valid scope:
|dom(BX)| = |~vX | ∧
dom(BX) # ftv(K) ∧
dom(BX) 6= ∅ =⇒

(
ς(BX)↓ ∧ BEC-in-Θ-Inv(BX , ∅)

)
Precondition (P-FEC3): T does not contain any refinement.
Postcondition (Q-FEC1): K′ and K agree on common domains:

K-Valid(K′) ∧ M′ � K =M ∧ Θ′ � K = Θ ∧ R′ � K = R ∧
D′ � K = D ∧ Q′ � K = Q ∧ T ′R � K = TR

where the � K is a shorthand for restriction to elements contained in K.
This implies that ς ′ � K = ς.
It also implies that the ECH in K have the same kind as in K′:
∀[a] ∈ K. TEC-kind(K, [a]) = TEC-kind(K′, [a])

Postcondition (Q-FEC2): T ′ 6= NIL =⇒
[
ς ′(T ′)↓ ∧

TEC-kind(K′, T) = TEC-kind(K′, T ′)
]

Postcondition (Q-FEC3): Provided that T ′ is not NIL, if dom(BX) = ∅, then T ′ is an ECH

contained in K′ and the representative of its EC under K′.
Postcondition (Q-FEC4): Provided that T ′ is not NIL, if dom(BX) 6= ∅, then T ′ is not
of the form X with X 6∈ dom(BX) or F [~S] with F 6∈ dom(BX). Furthermore, either T ′ an ECH ,
or the assertion TEC-in-Θ-Inv(T ′, inHead, dom(BX)) holds.

Postcondition (Q-FEC5): Find mode does no update; create guarantees non-nil:
(¬create =⇒ K = K′) ∧ (create =⇒ T ′ 6= NIL)

Postcondition (Q-FEC6): Entailment of K′:
K  K′

Postcondition (Q-FEC7): Equivalence of T and T ′:
T ′ 6= NIL =⇒ K  ς ′(T ) � ς ′(T ′)

match T :
(1) case X where X ∈ dom(BX) :

return (K, X)

(2) case F [~S] where F ∈ dom(BX) :

(2a) (K(1), ~S′)← T -FindOrCreateECVec(K, ~S,BX , ~vX , false, create)
(2b) if ~S′ = NIL then

return (K, NIL)
(2c) else

return (K(1), F [~S′])

(3) case X or p.Q :
return TEC-FindOrCreateEC(K, T,BX , ~vX , create)
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(4) case TyCon[~S] :

(4a) (K(1), ~S′)← T -FindOrCreateECVec(K, ~S,BX , ~vX , false, create)
(4b) if ~S′ = NIL then

return (K, NIL)
We keep the head constructor if TyCon is a trait or a class whenever we are under an enclosing
HK abstraction as substituting them into an EC may hinder determinacy (a type with an EC in
a head position is not considered determined, even if the EC itself is determined). On the other
hand, an abstract type constructor F is not determined, and substituting it with an applied EC
can help the propagation of determinacy. If F becomes determined, we can benefit from its
determinacy as well.

(4c) else if TyCon is a class/trait ∧ dom(BX) 6= ∅ then
return (K(1), T yCon[~S′])

(4d) else
(K(2), T ′)← TEC-FindOrCreateEC(K(1), T yCon[~S′], BX , ~vX , create)
return (K(2), T ′)

(5) case T1 & T2 or T1 | T2 :
|ni &mi

j Si,j ← DNF(T)
S′i,j ← NIL for 1 ≤ i ≤ n, 1 ≤ j ≤ mi

K(1) ← K
(5a) for i ← 1 to n, j ← 1 to mi do

If Si,j is a class or trait, we keep the head constructor as substituting it to an EC or applied
EC would render further analysis on DNFs a bit harder.
match Si,j :

(5a.i) case Cls[~U ] :

(K(n), ~U ′)← T -FindOrCreateECVec(K(1), ~U,BX , ~vX , inHead, create)
if ~U ′ = NIL then

return (K, NIL)
else

S′i,j ← Cls[~U ′]

(5a.ii) otherwise :

(K(n), S′i,j)← T -FindOrCreateEC(K(1), Si,j , BX , ~vX , inHead, create)
if S′i,j = NIL then

return (K, NIL)

K(1) ← K(n)

Before going on, attempt to simplify what we have.
(5b) S′ ← TEC-SimplifyDNF(K(1), |ni &mi

j S′i,j)
(5c) if S′ ∈ ECH then

The simplification yielded a simple ECH (i.e., S′ is of the form [a]), so we directly return.
return (K(1), S′)

If we appear in head and under an HK abstraction, we leave the DNF as-is. The reasoning is
similar to (4c), except here we require to be in a head position to be compliant with
TEC-in-Θ-Inv

(5d) else if TEC-IsDNF(S′) ∧ inHead ∧ dom(BX) 6= ∅ then
return (K(1), S′)

(5e) else
(K(2), S′′)← TEC-FindOrCreateEC(K(1), S′, BX , ~vX , create)
return (K(2), S′′)
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This is a special case of (7) where we avoid creating an applied EC for F [~Y ] as it is not necessary.
This case is not needed for correctness.
Note: assumes implicit α-renaming to have Ȳ fresh.

(6) case [~vY ~Y / BY ] =>>F [~Y ] where F 6∈ dom(BX) :

(6a) (K(1), B′Y )← B-FindOrCreateEC(K, BY , ~vY , BX , ~vX , create)
(6b) if B′Y = NIL then

return (K, NIL)
(6c) else

(K(2), T ′)← TEC-FindOrCreateEC(K, [~vY ~Y / B′Y ] =>>F [~Y ], create)
return (K(2), T ′)

Note: assumes implicit α-renaming to have Ȳ fresh.
(7) case [~vY ~Y / BY ] =>>S :

(7a) (K(1), B′Y )← B-FindOrCreateEC(K, BY , ~vY , BX , ~vX , create)
(7b) if B′Y = NIL then

return (K, NIL)

(7c) (K(2), S′)← T -FindOrCreateEC(K(1), S,BXB
′
Y , ~vX~vY , inHead, create)

(7d) if S′ = NIL then
return (K, NIL)

(7e) else
(K(3), T ′)← TEC-FindOrCreateEC(K(2), [~vY ~Y / B′Y ] =>>S′, BX , ~vX , create)
return (K(3), T ′)

Match is syntactically exhaustive: all cases are covered

Algorithm 9: Finding an equivalence class for a TEC type if it exists
TEC-FindOrCreateEC (K, T : TEC , BX : BEC , ~vX , create : B)

Precondition: Same as P-FEC1 and P-FEC2
Precondition: ς(T )↓ ∧ TEC-in-Θ-Inv(T, true, dom(BX))

Note: even if T does not appear in head, we require it to satisfy the predicate as-if it appeared in head.
Precondition: T not of the form X with X ∈ dom(BX) or F [~S] with F ∈ dom(BX).
Postcondition: Same as Q-FEC1 - Q-FEC7
match T :

(1) case T where TEC-kind(K, T) = ? :
candidates← TH-Candidates(K, T,dom(BX))

(1a) if ftv(T ) # dom(BX) then
for h ∈ candidates do

match Θ(h) :
case S where kind(S) = ? :

(1a.i) if TEC-Equiv(K, T, S) then
return (K,R(h))

otherwise :
continue

(1b) T ′ ← TEC-TryFindApplied(K, T,BX)
(1c) if T ′ 6= NIL then

return (K, T ′)

(1d) if create then
return TEC-CreateEC(K, T,BX , ~vX)

(1e) else
return (K, NIL)
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Note: assumes implicit α-renaming to have Ȳ fresh.
(2) case [~vY ~Y / B1] =>>S1 :

if ftv(T ) # dom(BX) then
for h ∈ TH-Candidates(K, T,dom(BX)) do

(2a) match Θ(h) :

case [~vY ~Y / B2] =>>S2 :
(2a.i) if BEC-Equiv(K, B1, B2) ∧ TEC-Equiv(K, S1, S2) then

return (K,R(h))

otherwise :
continue

Here, we could do better by trying to find an appropriate [~vX~vY ~X~Y / BX , BY ] =>> [a]
[
~X, ~Y

]
(2b) if create then

return TEC-CreateEC(K, T,BX , ~vX)
(2c) else

return (K, NIL)

Match is syntactically exhaustive: all cases are covered

TEC-TryFindApplied (K, T : TEC , BX : BEC , create : B)
Precondition: Same as P-FEC1 and P-FEC2
Precondition: ς(T )↓ ∧ TEC-kind(K, T) = ? ∧ TEC-in-Θ-Inv(T, true, dom(BX))
Precondition: T not of the form X with X ∈ dom(BX) or F [~S] with F ∈ dom(BX).
Postcondition: Similar to Q-FEC2, Q-FEC3, Q-FEC4, Q-FEC7
match T :

We are not interested in finding an applied EC in such cases.
case [a] or X or p.Q :

return NIL

otherwise :
for h ∈ TH-Candidates(K, T, dom(BX)) do

match Θ(h) :
Note: assumes implicit α-renaming to have Ȳ fresh.
case [~vY ~Y / BY ] =>>S :

(1) σ ← TEC-TryMatch(K, Ȳ , S, T)
if σ = NIL then

continue
(2) Extending σ with > for Y ’s not appearing in S

σ′ ← σ[Y 7→ >kind(Y ), Y ∈ Ȳ \ dom(σ)]
Destructuring σ′.
[~Y 7→ ~A]← σ′

(3) if ¬BEC-Satisified(K, BY , [~Y 7→ ~A]) then
continue

(4) applied←R(h)[ ~A]
(5) if ftv(T ) # dom(BX) ∧ ftv(applied) = ∅ then

(5a) [a]← TEC-TryFindECOfApplied(K, applied)
(5b) if [a] 6= NIL then

return [a]

(6) if ftv(T ) ∩ dom(BX) 6= ∅ then
return applied

otherwise :
continue

return NIL

62



Algorithm 10: Creating an equivalence class for a given TEC
TEC-CreateEC (K, T : TEC , BX : BEC , ~vX)

Precondition: Same as P-FEC1 and P-FEC2
Precondition: ς(T )↓ ∧ TEC-in-Θ-Inv(T, true, dom(BX))
Precondition: T not of the form X with X ∈ dom(BX) or F [~S] with F ∈ dom(BX).
Postcondition: Same as Q-FEC1 - Q-FEC7
~X ← dom(BX)

The type T̃ will be put in Θ whereas T ′ is the type that we will return. T ′ will either be an ECH or an
applied ECH .
let T̃ , T ′

Note: since [a] is fresh, it cannot appear in T .
(1) (Q(1), [a])← Q-MakeSet(Q)
(2) match T :

(2a) case T where kind(T ) = ? :
(2a.i) if ftv(T ) # X̄ then

T̃ ← T
T ′ ← [a]

(2a.ii) else
T̃ ← [~vX ~X / BX ] =>>T
EC application well formed because the ~X are guarded by the enclosing scope, ensuring the
bounds are satisfied.
T ′ ← [a]

[
~X
]

(2b) Note: assumes implicit α-renaming to have Ȳ fresh.
case [~vY ~Y / BY ] =>>S :

(2b.i) if ftv(T ) # X̄ then
T̃ ← T
T ′ ← [a]

(2b.ii) else
T̃ ← [~vX~vY ~X~Y / BX , BY ] =>>S
T ′ ← [~vY ~Y / BY ] =>> [a]

[
~X, ~Y

]
(3) Type handle for T̃

hT̃ ← fresh TH

Now we create the “representative” type handle.
hR ← fresh TH

M(1) ←M
[
[a] 7→ {hT̃ , hR}

]
R(1) ←R

[
hT̃ , hR 7→ [a]

]
T

(1)
R ← TR

[
[a] 7→ hR

]
Θ(1) ← Θ

[
hT̃ 7→ {T̃}, hR 7→ {ς(T̃ )}

]
K(1) ← K[M 7→M(1),Θ(1) 7→ Θ,R(1) 7→ R,Q(1) 7→ Q, T (1)

R 7→ TR]

(4) (syms, ecsH, ecsNH, pathDep)← TEC-Composition(T̃ , X̄)
(5a) if syms 6= ∅ then

U
(2)
S ← U

(1)
S ∪ syms

V
(2)
S ← V

(1)
S ∪ {hT̃ }

E
(2)
S ← E

(1)
S ∪ {(sym, hT̃ ) : sym ∈ syms}

G
(2)
S ← (U

(2)
S , V

(2)
S , E

(2)
S )

(5b) else
G

(2)
S ← G

(1)
S
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(6) K(2) ← K[GS 7→ G
(2)
S ]

(7a) if ecsH ∪ ecsNH 6= ∅ then
U

(3)
EC ← U

(2)
EC ∪ ecsH ∪ ecsNH

V
(3)
EC ← V

(2)
EC ∪ {hT̃ }

E
(3)
EC ← E

(2)
EC ∪ {([b], hT̃ ) : [b] ∈ ecsH ∪ ecsNH}

L
(3)
EC ← L

(2)
EC ∪ {(([b], hT̃ ), H) : [b] ∈ ecsH} ∪ {(([b], hT̃ ), NH) : [b] ∈ ecsNH}

G
(3)
EC ← (U

(3)
EC , V

(3)
EC , E

(3)
EC , L

(3)
EC)

(7b) else
G

(1)
EC ← GEC

(8) K(3) ← K[GEC 7→ G
(3)
EC ]

(9a) if pathDep 6= ∅ then
U

(4)
p ← U

(3)
p ∪ pathDep

V
(4)
p ← V

(3)
p ∪ {hT̃ }

E
(4)
p ← E

(3)
p ∪ {((p, sym), hT̃ ) : (p, sym) ∈ pathDep}

G
(4)
p ← (U

(4)
p , V

(4)
p , E

(4)
p )

(9b) else
G

(4)
p ← G

(3)
p

(10) K(4) ← K[Gp 7→ G
(4)
p ]

(11a) if TEC-IsDet(K(4), T̃) then
D(5) ← D(4)

[
[a] 7→ hT̃

]
(11b) else

D(5) ← D(4)

(12) K(5) ← K[D 7→ D(5)]

(13) return (K(5), T ′)

5.3.5.3 Adding a subtyping relationship

The second phase – consisting in tying S and T through their ECs [s] and [t] – is defined in TryAddInequality,
algorithm 11.

We first start with the reason why TryAddInequality may return new constraints or schedule ECs for
merging. When we add a link in the subtyping DAG G� between [s] and [t], we may create some interesting
subtyping relations as a result.

As an example, let us consider the figure 5.4. In this scenario, tying [s] and [t] results in transitively
connecting many ECs together, such as [x] to [a], [c], and [b] to [a], [c]. In particular, the established
relationship between [a] and [x] is of interest because both are determined. The determined type for [a]
is Cov

[
[b]
]
and the determined type for [x] is Cov

[
[g]
]
. Having a constraint tying two determined types is

interesting since that constraint can be simplified. In that example, we add Cov
[
[g]
]
� Cov

[
[b]
]
to the set of

returned constraints cstrts. Latter on, the C-Simplify loop will in turn simplify the above constraint into
[g] � [b].

On the other hand, we would like avoid “polluting” the returned constraint sets with pointless information
we already have. For instance, we do not return the constraint F

[
[a]
]
� [d] & [e] since we cannot say much

about it.
One may notice that we do not exactly return Cov

[
[g]
]
� Cov

[
[b]
]
but ς(Cov

[
[g]
]
) � ς(Cov

[
[b]
]
). In

5.2.2, we have explained that ς serves to substitute the equivalence classes appearing in types with their
associated type representative. We have furthermore affirmed that such substitution is only needed for
interpreting constraints with TEC types because C solely treats T types. It is not quite true: in (4d), we use
ς to substitute the TEC types into T types before forming a subtyping constraint. The reason is to simplify
the proofs, as we would need to introduce a syntax for constraints composed of TEC and T and define their
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interpretation under ς. In an implementation, we would not perform such substitution and return these
types as-is. We would need to adapt DeductionIneq to process equivalence classes similarly to how they are
treated in TEC-IsSubtype.

interesting, added
not interesting

not interesting

Figure 5.4 – Discovering new constraints as the result of
the new subtyping relation between [s] and [t]

Connecting [s] and [t] may also result in creating forward edges. However, these can be dealt with locally
and do not require any “global action”. Tying [s] and [t] may nonetheless result in a cycle, as shown in figure
5.5. In that case, we do not connect [s] and [t] together to maintain the acyclicity of G� (hence the Try
prefix of TryAddInequality). A cycle essentially means that the ECs in that cycle are actually equivalent
to each other. Instead, we schedule [s] and [t] for merging by returning them into the set toMerge. The
merge loop phase at (4) will take care of merging all ECs appearing in the cycle that would be formed if we
connected [s] and [t].

Figure 5.5 – A new subtyping relation between
[s] and [t] resulting in a cycle.
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We prove the claims stated by TryAddInequality in appendix A.7.

Algorithm 11: Tying two ECs in an inequality
TryAddInequality (K, [a], [b]) : (K′, cstrts : P(C), toMerge : P(

(
ECH

2

)
))

Precondition: K-Valid(K) ∧ [a], [b] ∈ K ∧ TEC-kind(K, [a]) = TEC-kind(K, [b])
Postcondition: K-Valid(K′) ∧ M′ =M ∧ Θ′ = Θ ∧ R′ = R ∧
D′ = D ∧ Q′ = Q ∧ T ′R = TR

Postcondition:
⋃

toMerge ⊆ K ∧
∀{[x], [y]} ∈ toMerge. TEC-kind(K′, [x]) = TEC-kind(K′, [y])

Postcondition: K f ς([a]) � ς([b])  K′ f
c

cstrts fM(K′, toMerge)
Postcondition: ¬ExistUndirChain(G�, [a], [b]) =⇒ ([a], [b]) ∈ E′�
[a]← Q-Find(Q, [a])
[b]← Q-Find(Q, [b])

(1) if [a] = [b] then
return (K, ∅, ∅)

(2) else if ExistChain(G�, [a], [b]) then
Either [a] and [b] are directly connected with an edge, or there are some intermediate types between
them. In either case, we already have [a] � [b] so we just return.
return (K, ∅, ∅)

(3) else if ExistChain(G�, [b], [a]) then
Adding an edge between [a] and [b] would result in cycle, which we do not want. We schedule [a] and

[b] for merging. The Merge function will determine what to do with the other types tied between [b]
and [a].
return (K, ∅,

{
{[a], [b]}

}
)

(4) else
(4a) ς ← ECH-Subst(K)

Get all (known) lower bounds of [a].
allLower← LeadingTo(G�, [a]) ∪ {[a]}
Do the same for the upper bounds of [b].
allUpper← ReachableFrom(G�, [b]) ∪ {[b]}
In case [a] and [b] were not already contained in the graph.

(4b) V ′� ← V� ∪ {[a], [b]}
We remove all edges becoming forward due to directly connecting [a] and [b]
E′� ← E� \ (allLower × allUpper)
G′� ← (E′�, V

′
�)

(4c) Retain (strict) lower bounds of [a] that have a determined type.
allLowerdet ← dom(D) ∩ (allLower \ {[a]})
Do the same for the strict upper bounds of [b].
allUpperdet ← dom(D) ∩ (allUpper \ {[b]})
Create new constraints based on the cartesian products of these two sets and return.

(4d) cstrts← {ς(Θ(D([l]))) � ς(Θ(D([u]))) : [l] ∈ allLowerdet, [u] ∈ allUpperdet}
return (K[G� 7→ G′�], cstrts, ∅)

5.3.5.4 Merging two equivalence classes

The merge loop phase, situated at (4), maintains a set of equivalence classes to merge, and is initialized
with the returned set by TryAddInequality at line (3) (which is either empty or {{[s], [t]}}). It similarly
maintains a set of constraints, and is initialized with the returned set by TryAddInequality as well.

The loop repeatedly dequeues pairs of ECs to merge and calls Merge, defined in algorithm 12. The Merge
function, charged in merging the given [a] and [b], may return more ECs to merge and new constraints,
which are added to the set toMerge and cstrts respectively.

Let us have a look at the definition of Merge. At (1) and (4), we prepare K to facilitate the merging. The
actual merge occurs at (5) with the call to MergeHelper, defined in algorithm 13. We start by considering
(4).
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The preparations at (4) essentially involve treating equivalence classes determinacy. If one equivalence
class has a determined type (making the EC determined) while the other not, the merging of these two
classes will turn the non-determined class determined ((4b) and (4c)). In such scenarios, we perform a
propagation of determinacy which can reveal new constraints and equivalency between other ECs. The
propagation of determinacy is carried out by the PropagateDeterminacy function that we describe in more
detail in the next section. Otherwise, if both classes are determined (4a), we may retain only one determined
type. We arbitrarily keep the determined type of [b]: to not lose the information provided by [a], we generate
a constraint stating that the determined type of [a] and [b] must be equal. It must be the case, because we
are asked to merge [a] and [b] due to becoming equivalent.

We now go back to (1) whose task is to adjust G�. Intuitively, updating K to accommodate the union
of [a] and [b] is rather straightforward, except for the subtyping graph G�. We need to make sure it remains
acyclic and forward-free.

The arrangements at (1) are there to ease the process. We start by analyzing the relationship between
[a] and [b] with respect to subtyping.

If there is a directed edge between [a] and [b] or [b] and [a] (cases (1a) or (1c.i)), we do not perform any
preparation and do not touch G�. Then, the MergeHelper function can proceed. We do not need to worry
about forming a cycle. We have to however take care of removing edges becoming forward as a result of
merging [a] and [b]. This case is illustrated by figure 5.6. Here, [ab] refers to either [a] or [b] and depends on
which one is picked by Q-Union as a representative for the merged partition.

Merging and 

Figure 5.6 – [a] and [b] are directly connected and are merged into the node [ab].
The red dotted lines refer to edges becoming forward and need to be removed.

On the other hand, if there is a path [x1], ..., [xn] with n greater or equal to 1 between [a] and [b] or
[b] and [a] (cases (1b) or (1c.ii)), merging [a] and [b] would cause a cycle. Instead, we schedule the merge
of [a] with [x1], [x1] with [x2] and so on. We do so by adding them to a set toMerge and have it returned
from Merge 5. These ECs will be picked up by the merge loop in Compact at (4). Figure 5.7 illustrates this
scenario.

Finally, if there are no path between [a] and [b] or [b] and [a], we artificially add a subtyping relationship
between [a] and [b]. We are “allowed” to do so because we are under the assumption that [a] and [b] became
equivalent. Note that this cannot create a cycle; as a consequence, TryAddInequality will add a subtyping
edge between [a] and [b]. The merging then operates identically to (1a).

5We could alternatively recur; since we already have a merge loop at disposal, we may as well use it.
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Scheduling merge of

Figure 5.7 – [a] and [b] are connected by a non-trivial path:
the nodes constituting it are scheduled for merging.

The Merge function (and similarly MergeHelper) essentially guarantees that the returned K and con-
straints set are entailed by the conjunction of the original K and the constraint tying [a] and [b] in an
equality. We provide a proof for these two functions in appendix A.8.

Algorithm 12: Fusing two equivalence classes into one
Merge (K, [a], [b]) : (K′, cstrts : P(C), toMerge : P(

(
ECH

2

)
))

Precondition: K-Valid(K) ∧ [a], [b] ∈ K ∧ Q-Find(K, [a]) = [a] ∧
Q-Find(K, [b]) = [b] ∧ [a] 6= [b] ∧ TEC-kind(K, [a]) = TEC-kind(K, [b])

Postcondition (Q-MG1): K-Valid(K′) ∧
(
[x] ∈ K ⇐⇒ [x] ∈ K′

)
∧

∀[x] ∈ K. TEC-kind(K, [x]) = TEC-kind(K′, [x])
Postcondition (Q-MG2):

⋃
toMerge ⊆ K ∧

∀{[x], [y]} ∈ toMerge. TEC-kind(K′, [x]) = TEC-kind(K′, [y])
Postcondition (Q-MG3):[(

([a], [b]), ([b], [a]) 6∈ E� ∧ ExistUndirChain(G�, [a], [b])
)

=⇒
K′ = K ∧ L(K, toMerge) = 0

]
∧[

¬
(
([a], [b]), ([b], [a]) 6∈ E� ∧ ExistUndirChain(G�, [a], [b])

)
=⇒

|dom(M′)| < |dom(M)|
]

Postcondition (Q-MG4): K f ς([a]) � ς([b])  K′ f
c

cstrts fM(K′, toMerge) fc
{ς([x]) � ς ′([x]) : [x] ∈ K}

K(1) ← K

cstrts(1) ← ∅
We now verify what ties [a] and [b] together, and adjust if necessary.

(1) match Chain(G�, [a], [b]):
(1a) case ([a], [b]) :

i.e. [a] and [b] are directly connected, in which case we do not perform anything special.
pass

(1b) case ([a], [x1], ..., [xn], [b]), n ≥ 1 :
We break the chain into simple chains that we can merge more easily. We note that we do not
need to keep the order of the chain.
toMerge←

{
{[a], [x1]}

}
∪
{
{[xi], [xi+1]}, 1 ≤ i < n

}
∪
{
{[xn], [b]}

}
return (K, ∅, toMerge)
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case NIL :
Maybe there is a chain in the other direction.

(1c) match Chain(G�, [b], [a]):
(1c.i) case ([b], [a]) :

As in the outer match.
pass

(1c.ii) case ([b], [x1], ..., [xn], [a]), n ≥ 1 :
As in the outer match.
toMerge←

{
{[b], [x1]}

}
∪
{
{[xi], [xi+1]}, 1 ≤ i < n

}
∪
{
{[xn], [a]}

}
return (K, ∅, toMerge)

(1c.iii) case NIL :
No link between [a] and [b], so we artificially add one and keep on. Note that this cannot
result in a cycle; as such, we can ignore the returned toMerge set.

(K(1), cstrts(1),_)← TryAddInequality(K, [a], [b])

Note: the first assertion is about G� (from the original K) while the second one is about G(1)
� (from the

updated K(1)).
(2) assert ¬

(
([a], [b]), ([b], [a]) 6∈ E� ∧ ExistUndirChain(G�, [a], [b])

)
(3) assert ([a], [b]) ∈ E(1)

� ∨ ([b], [a]) ∈ E(1)
�

K(2) ← K(1)

cstrts(2) ← cstrts(1)

toMerge(2) ← ∅
If one of [a] and [b] is determined while the other one is not, the merge will render the non-determined
EC determined, by the virtue of merging it with a determined EC.

(4) match ([a] ∈ dom(D(1)), [b] ∈ dom(D(1))) :
(4a) case (true, true) :

Both ECs are determined and we may only keep one determined type. We generate a constraint
tying both determined types in an equality and arbitrarily remove the determined type of [a].

No determinacy propagation is needed, since both ECs were already determined.
ς(1) ← ECH-Subst(K(1))
cstrts(2) ← cstrts(1) ∪ {ς(1)(Θ(1)(D(1)([a]))) � ς(1)(Θ(1)(D(1)([b])))}
K(2) ← RemoveMember(K(1),D(1)([a]))

(4b) case (true, false) :

(K′, cstrts, toMerge)← PropagateDeterminacy(K(1), [b],D(1)([a]))
cstrts′ ← cstrts(1) ∪ cstrts
toMerge(2) ← toMerge
The propagation of determinacy may have rendered [b] determined under K′. If it is the case, we
do something similar to the (4a) case.

(4b.i) if [b] ∈ dom(D′) then
ς ′ ← ECH-Subst(K′)
cstrts(2) ← cstrts′ ∪ {ς ′(Θ′(D′([a]))) � ς ′(Θ′(D′([b])))}
K(2) ← RemoveMember(K′,D′([b]))

(4b.ii) else
K(2) ← K′

cstrts(2) ← cstrts′
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(4c) case (false, true) :

(K′, cstrts, toMerge)← PropagateDeterminacy(K(1), [a],D(1)([b]))
cstrts′ ← cstrts(1) ∪ cstrts
toMerge(2) ← toMerge

(4c.i) if [a] ∈ dom(D′) then
ς ′ ← ECH-Subst(K′)
cstrts(2) ← cstrts′ ∪ {ς ′(Θ′(D′([a]))) � ς ′(Θ′(D′([b])))}
K(2) ← RemoveMember(K′,D′([a]))

(4c.ii) else
K(2) ← K′

cstrts(2) ← cstrts′

(4d) otherwise
No propagation is needed if both ECs are non-determined.
pass

(5) (K(3), cstrts, toMerge)← MergeHelper(K(2), [a], [b])
(6) return (K(3), cstrts(2) ∪ cstrts, toMerge(2) ∪ toMerge)

Algorithm 13: Updating K to accommodate for the fusion of two ECs
MergeHelper (K, [a], [b]) : (K′, cstrts : P(C), toMerge : P(

(
ECH

2

)
))

Precondition: K-Valid(K) ∧ [a], [b] ∈ K ∧ Q-Find(K, [a]) = [a] ∧
Q-Find(K, [b]) = [b] ∧ [a] 6= [b] ∧ TEC-kind(K, [a]) = TEC-kind(K, [b])

Precondition: (([a], [b]) ∈ E� ∨ ([b], [a]) ∈ E�) ∧
¬([a] ∈ dom(D) ∧ [b] ∈ dom(D))

Postcondition (Q-MGH1): K-Valid(K′) ∧ |dom(M′)| < |dom(M)| ∧
[x] ∈ K ⇐⇒ [x] ∈ K′ ∧
∀[x] ∈ K. TEC-kind(K, [x]) = TEC-kind(K′, [x])

Postcondition (Q-MGH2):
⋃

toMerge ⊆ K ∧
∀{[x], [y]} ∈ toMerge. TEC-kind(K′, [x]) = TEC-kind(K′, [y])

Postcondition (Q-MGH3): K f ς([a]) � ς([b])  K′ f
c

cstrts fM(K′, toMerge) fc
{ς([x]) � ς ′([x]) : [x] ∈ K}

Unifying [a] and [b]
Merging [a] and [b] together. The yielded [ab] is either [a] or [b] (it is not a new element).

(1a) (Q(1), [ab])← Q-Union(Q, [a], [b])
assert [ab] ∈ {[a], [b]}
K(1) does not satisfy K-Valid because the second part of K-INV2 does no longer hold.

(1b) K(1) ← K[Q 7→ Q(1)]

Merging the members M
We first “undefined” [a] and [b]. Then, we add the entry for [ab]. We remind that [ab] is either [a] or [b],
so we have to perform the copy-update sequentially.

(2a) M(2) ←M
[
[a], [b] 7→ ↑

][
[ab] 7→ M([a]) ∪M([b])

]
(2b) K(2) ← K(1)[M 7→M(2)]

We do not update Θ to use the new [ab] over [a] and [b]
One of the reason of using ECs is to avoid having to perform substitution. For that, when comparing types
in Θ, we have to be careful to first perform a Q-Find on each EC constituting the type to get the
“up-to-date” representatives. We use TEC-Equiv to test whether two types in Θ are equivalent.
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Updating the range of R to refer to [ab]

(3a) R(3) ← {(h, [ec]) : h ∈ dom(R), [ec] = [ab] if R(h) ∈ {[a], [b]} or R(h) otherwise}
(3b) K(3) ← K(2)[R 7→ R(3)]

Merging the determined type
By assumptions, at most one of [a] or [b] has a determined type.

(4a) if [a] ∈ dom(D) then
D(4) ← D

[
[a], [b] 7→ ↑

][
[ab] 7→ D([a])

]
(4b) else if [b] ∈ dom(D) then

D(4) ← D
[
[a], [b] 7→ ↑

][
[ab] 7→ D([b])

]
(4c) else

D(4) ← D
[
[a], [b] 7→ ↑

]
(4d) K(4) ← K(3)[D 7→ D(4)]

Merging the type representative
We arbitrarily choose to keep [a]’s type representative.

(5a) T
(5)
R ← TR

[
[a], [b] 7→ ↑

][
[ab] 7→ TR([a])

]
(5b) K(5) ← K(4)[TR 7→ T

(5)
R ]

Updating G�
Retrieve all (known) lower bounds of [a] and [b].

(6a) allLower← (LeadingTo(G�, [a]) ∪ LeadingTo(G�, [b])) ∪ {[a], [b]}
Do the same for their upper bounds.
allUpper← (ReachableFrom(G�, [a]) ∪ ReachableFrom(G�, [b])) ∪ {[a], [b]}
forward←{([l], [u]) : [l] ∈ allLower, [u] ∈ allUpper}

\
(
{([l], [ab]) : ([l], [a]), ([l], [b]) ∈ E�}

∪ {([ab], [u]) : ([a], [u]), ([b], [u]) ∈ E�}
)

(6b) lower← {[l] : ([l], [a]) ∈ E�, [l] 6= [b]} ∪ {[l] : ([l], [b]) ∈ E�, [l] 6= [a]}
upper← {[u] : ([a], [u]) ∈ E�, [u] 6= [b]} ∪ {[u] : ([b], [u]) ∈ E�, [u] 6= [a]}
Edges containing [a] or [b]
abConns← {([x], [y]) : ([x], [y]) ∈ E�, [x] ∈ {[a], [b]} ∨ [y] ∈ {[a], [b]}}
extra← {([l], [ab]) : [l] ∈ lower} ∪ {([ab], [u]) : [u] ∈ upper}

(6c) V
(6)
� ← (V� \ {[a], [b]}) ∪ {[ab]}

(6d) E
(6)
� ← (E� \ (forward ∪ abConns)) ∪ (extra \ forward)

(6e) K(6) ← K(5)[G� 7→ (V
(6)
� , E

(6)
� )]

Updating GEC

Getting all members where [a] and [b] occur. We will use the set to update EEC .
(7a) occ[a] ← {h : ([a], h) ∈ EEC}
(7b) occ[b] ← {h : ([b], h) ∈ EEC}

Grouping all of the above members by their belonging equivalence class. Note that [a] and [b] may appear
in grp as well, in case of cyclical or mutually recursive references. We will use this set further below.

(7c) grp←
{

([ec], {h : h ∈ occ[a] ∪ occ[b], R(6)(h) = [ec]}) : [ec] ∈ UEC

}
We now remove [a] and [b] from GEC . We will use what we have built earlier to reconstruct GEC with [a]
and [b] merged.

(7d) U
(7)
EC ← (UEC \ {[a], [b]}) ∪ {[ab]}

(7e) E′EC ←
(
EEC \

{
([x], [y]) : ([x], [y]) ∈ EEC , [x] ∈ {[a], [b]} ∨ [y] ∈ {[a], [b]}

})
(7f) E

(7)
EC ← E′EC ∪ {([ab], h) : h ∈ occ[a] ∪ occ[b]}

(7g) L
(7)
EC ← (LEC � E′EC) ∪

{
(([ab], h), pos) : h ∈ occ[a] ∪ occ[b],

pos = NH if LEC([a], h) = LEC([b], h) = NH or H otherwise
}

(7h) K(7) ← K(6)[GEC 7→ (U
(7)
EC , VEC , E

(7)
EC)]
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No update for GS and Gp

These graphs work with type handles and not with with EC handles.
(7i) assert K-Valid(K(7))

Removing duplicate members
We collect all members whose underlying type became equivalent thanks to the merging of [a] and [b]. It is
also possible that we remove some members of [ab] too.
rmTyHandles← ∅

(8) for ([ec], h̄) ∈ grp do
for {h1, h2} ∈

{
{h1, h2} : h1, h2 ∈ h̄, h1 6= m2

}
do

If one of the member is to be removed, ignore that entry.
if {h1, h2} ∩ rmTyHandles 6= ∅ then

continue
That is, both [a] and [b] appear in both h1 and h2.
if {h1, h2} ∩ occ[a] 6= ∅ ∧ {h1, h2} ∩ occ[b] 6= ∅ then

if TEC-Equiv(K(7),Θ(7)(h1),Θ(7)(h2)) then
h1 should not be a type representative, but doing so eases the correctness proof.
rmTyHandles← rmTyHandles ∪ ({h1} \ Im(T

(7)
R ))

K(8) ← K(7)

(9) for h ∈ rmTyHandles do
K(n) ← RemoveMember(K(8), h)
K(8) ← K(n)

occ[a] ← occ[a] \ rmTyHandles
occ[b] ← occ[b] \ rmTyHandles

Searching for other classes to merge.
Due to the fusion of [a] and [b], it is possible that some (distinct) ECs [x] and [y] become equivalent by
having a member in [x] become equivalent to a member in [y].
toMerge← ∅

(10) for {h1, h2} ∈
{
{h1, h2} : h1 ∈ occ[a], h2 ∈ occ[b]

}
do

[ec1]←R(8)(h1)

[ec2]←R(8)(h2)
We are not interested in merging an EC with itself. We also skip ECs that are already marked for
merging.

(10a) if [ec1] = [ec2] ∨ {ec1, ec2} ∈ toMerge then
continue

(10b) if TEC-kind(K(8), [ec1]) = TEC-kind(K(8), [ec2]) ∧ TEC-Equiv(K(8),Θ(8)(h1),Θ(8)(h2)) then
toMerge← toMerge ∪ {[ec1], [ec2]}

Similarly to TryAddInequality, we generate subtyping constraints between the determined types of the
lower and upper bounds of [ab].

(11) U ← ReachableFrom(G(8)
� , [ab])\{[ab]}

Udet ← {Θ(8)(D(8)([u])) : [u] ∈ dom(D(8)([u])), [u] ∈ U}
L← LeadingTo(G(8)

� , [ab])\{[ab]}
Ldet ← {Θ(8)(D(8)([l])) : [l] ∈ dom(D(8)([l])), [l] ∈ L}
cstrts← {ς(8)(Tl) � ς(8)(Tu) : Tl ∈ Ldet, Tu ∈ Udet}

(12) return (K(8), cstrts, toMerge)
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5.3.5.5 Propagation of determinacy

The function PropagateDeterminacy is charged in performing the propagation of determinacy of an
equivalence class. This phase can reveal new constraints and equivalency between other ECs. It is defined in
algorithm 14.

As seen in the last section, this phase happens during a merge of two equivalence classes [a] and [b]. In
particular, if one class is determined while the other is not, the propagation is triggered for the class that is
not determined. For this discussion, we suppose that [b] is determined and [a] is not (corresponding to case
(4c) in Merge). Then, a propagation is performed for [a] with the determined type of [b] which we refer to as
T . We point out that, while [a] is technically speaking not yet determined, we treat and view it as if it was
determined with T .

The result of PropagateDeterminacy is a triplet of the updated structure K, a set of constraints arising
from the determinacy propagation as well as a set of unordered pairs of ECs that are equivalent under the
updated K – awaiting to be merged by the merge loop of Compact.

The propagation phase proceeds as follows:
• We look for non-determined types within Θ where [a] appears in a head position and collect their
type handles TH into a set headSubst. We similarly search types where [a] transitively appears in
a non-head (i.e. argument) position within a non-determined DNF and gather the associated type
handles into a set refreshDNF. This step is done at line (1) through the function GatherAffected,
defined in algorithm 18.

• We scan all types where [a] could appear through its members constituted of an abstract type
constructors and assemble all type handles into a set trySubst. This step is done at line (2) through
GatherPotentiallyAffected (algorithm 19).

• We explicitly substitute [a] to the determined type T for all types referenced by the set headSubst.
These substitutions can yield new constraints, reveal equivalency between ECs needing to be merged,
and render ECs to be determined. This step is performed at line (3) with PropagateHeadSubst, defined
in algorithm 15.

• We attempt to simplify all DNFs referenced by the set refreshDNF as a result of the de-
terminacy of [a]. This step is carried out by PropagateDNFRefresh at line (4). Similarly to
PropagateHeadSubst, we may unveil new constraints, equivalency between ECs and turn some ECs
determined. PropagateDNFRefresh is defined in algorithm 16.

• We attempt to substitute the abstract type constructors referenced by trySubst with
PropagateTrySubst at line (4). We get the same type of result as PropagateHeadSubst and
PropagateDNFRefresh. PropagateTrySubst is defined in algorithm 17.

• All ECs that became determined from steps (3)-(5), have their determinacy recursively propagated.
This operation is carried out within the loop at (7).

As an example, consider the scenario depicted in figure 5.8. We are interested in propagating the
determinacy of [a], whose determined type is T = Cov[S]. We will ignore the steps done at (2) and (5) and
reserve them for the next example.

We naturally start with the gathering step, at line (1). Leveraging the GEC graph, we get to know
that [a] appears in a head position in hec2 (a member of [e]), in a head position in hc2 and in a non-head
position in hc1 (both members of [c]). Because [a] appears in head within hc2 and he2 , we schedule these for
substitution by inserting them into headSubst.

We are also interested in searching for types where [a] transitively appears in an argument (or non-
head) position within non-determined DNFs. The rational behind is, if some argument in a DNF becomes
determined, then there is a chance that the DNF become determined as a result. In this example, [a] appears
in an argument position within hc1 , a member of [c] which is also the determined type of [c] 6. We then look

6If hc1 was not the determined type of [c], we would have eagerly stopped the search, as the determinacy of [a] could not
possibly turn the candidates DNFs determined.
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for appearance of [c] in any positions. We stumble on hd1 , whose class [d] does not appear anywhere; hd1 is
not a DNF so we do not retain it. Contrarily, hf1 is a non-determined DNF and is therefore inserted into
refreshDNF.

Non-Head

Head

Non-Head

Non-HeadHead

Figure 5.8 – Appearance of an EC [a] in other ECs.
Each EC is comprised of at least the stated members.

We arrive at line (3). Starting with hc2 , a substitution of [a] to Cov[S] yields Cov[S] & [g], which is not
determined 7. Nonetheless, we update hc2 with this new type. For he2 , the substitution yields Cov[S]&Cov[S]
which is equal to Cov[S]. This type is determined, but [e] already has a determined type. Since all types
within an EC are equal, we deduce that Cov[V ] and Cov[S] must be equal. As such, we generate the constraint
Cov[V ] � Cov[S] and remove he2 from [e] because it is no longer useful. Later on, the deduction phase will
infer that V and S are equal. Note that, akin to TryAddInequality, the actual generated constraints are
passed under ς to substitute out the potential ECs involved in the constraints. For readability, we omit the ς
for the current and the next example.

The function PropagateDNFRefresh is called with a set of a single element, namely hf1 . We proceed by
trying to simplify the DNF referred by hf1 , i.e. Foo

[
[c]
]

& Foo
[
Inv
[
Inv
[
[h]
]]]

. TEC-SimplifyDNF returns
the DNF unchanged because the determined type of [c] and Inv

[
Inv
[
[h]
]]

are not equivalent. However,
assuming that Cov and Inv are unrelated, we can check that the underlying type hf1 is now determined.
Indeed, the determined type of [c], Inv[Cov[S]], and Inv

[
Inv
[
[h]
]]

are provably not subtype of each other.
Since hf1 is now determined, [f ] becomes determined and is thus added to the set of determined ECs.
PropagateDNFRefresh continues by updating the underlying type of hf1 with the result returned by
TEC-SimplifyDNF. TEC-SimplifyDNF returned the identity, so the update is a no-op. Note that we do not
substitute [c] in Foo

[
[c]
]

& Foo
[
Inv
[
Inv
[
[h]
]]]

with its determined type: because [c] appears in an argument
position, the substitution does not offer any advantage and is therefore avoided.

We finally reach the loop at (7). Only [f ] became determined as a result of the determined of [a]. Because
[f ] does not appears in other ECs, the recursive call is trivial.

Figure 5.9 shows the state of K once the propagation of determinacy has been accomplished, as well as
the unveiled, resulting constraints.

7A DNF with an EC appears in a head position is not considered determined. Had the EC been determined, we would have
substituted it with its determined type in an earlier iteration.
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Resulting constraints set:

Figure 5.9 – The result of passing the scenario described by 5.8
through the determinacy propagation of [a].

We now illustrate steps (2) and (5) through the scenario depicted in figure 5.10. We will only consider
equivalence classes of simple kind, these steps nonetheless apply to higher-kinded ECs as well.

We first look for all abstract type constructors appearing in [a]. In this case,F andG are the sole candidates.
Using the GS graph, we then search for appearances of F and G within types of other equivalence classes
and record a mapping for substitutability check. We get trySubst =

{
hc2 7→ {F [Inv[S]], F [Cov[S]]}, hd2 7→

{G[Cov[V ]]}
}
.

Step (5) then proceeds as follows. We loop through trySubst and check if hc2 and hd2 are equivalent to
one of their respective candidates. Starting with hc2 , we check whether F [Inv[V ]] is (provably) equivalent
to F [Cov[U ]]. Because we do not know the nature of F , we cannot say anything and continue with the
next entry, namely F [Cov[U ]]. Because F [Cov[U ]] is equivalent to itself, we can substitute it to Foo[A]. We
then proceed similarly to steps (3) and (4). Due to [c] already having a determined type and Foo[A] being
determined, we remove hc2 from [c] and create the constraint Foo[A] � Foo[B]. We carry out analogous
operations for hd2 , resulting in the generation of the constraint Foo[A] � Foo[C] and the removal of hd2
from [d].
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Resulting constraints set:

Figure 5.10 – Left: appearance of an EC [a] in other ECs, all containing the stated
abstract type constructors. Right: resulting K from the determinacy propagation of [a].

We provide correctness proofs for all the functions (directly) involved in the determinacy propagation in
appendix A.9.

Algorithm 14: Propagating the determinacy of an EC
PropagateDeterminacy (K, [a] : ECH , T : TEC) : (K′, cstrts : P(C), toMerge : P(

(
ECH

2

)
))

Precondition: K-Valid(K) ∧ [a] ∈ K ∧ Q-Find(Q, [a]) = [a] ∧
ς(T )↓ ∧ TEC-IsDet(K, T) ∧ TEC-kind(K, [a]) = TEC-kind(K, T) ∧
TEC-in-Θ-Inv(T)

Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition:

⋃
toMerge ⊆ K ∧

∀{[x], [y]} ∈ toMerge. TEC-kind(K′, [x]) = TEC-kind(K′, [y])
Postcondition: dom(D) ⊆ dom(D′)
Postcondition: K f ς([a]) � ς(T )  K′ f

c
cstrts fM(K′, toMerge)

(1) (headSubst, refreshDNF,_)← GatherAffected(K, [a], ∅)
(2) trySubst← GatherPotentiallyAffected(K, [a])
(3) (K(1), cstrts(1), toMerge(1), dets(1))← PropagateHeadSubst(K, [a], T, headSubst)

It is not necessary to “refresh” DNFs for which a substitution has been performed.
(4) (K(2), cstrts(2), toMerge(2), dets(2))← PropagateDNFRefresh(K(1), refreshDNF \ headSubst)
(5) (K(3), cstrts(3), toMerge(3), dets(3))← PropagateTrySubst(K(2), trySubst, T)
(6) (K(4), cstrts(4), toMerge(4), dets(4))← (K(3),

⋃3
i=1 cstrts

(i),
⋃3

i=1 toMerge(i),
⋃3

i=1 dets
(i))

Loop Invariant: K-Valid(K(4)) ∧ ς = ς(4) ∧ ς = Q(4) ∧ TR = T
(4)
R ∧

G� = G
(4)
�

Loop Invariant:
⋃

toMerge(4) ⊆ K ∧
∀{[x], [y]} ∈ toMerge(4). TEC-kind(K(4), [x]) = TEC-kind(K(4), [y])

Loop Invariant: dom(D) ] dets ⊆ dom(D(4))

Loop Invariant: K f ς([a]) � ς(T )  K(4) f
c

cstrts fM(K(4), toMerge(4))

(7) for [x] ∈ dets(4) do
(K(n), cstrts′, toMerge′)← PropagateDeterminacy(K(4), [x],Θ(4)(D(4)([x])))
cstrts(n) ← cstrts(4) ∪ cstrts′

toMerge(n) ← toMerge(4) ∪ toMerge′

(K(4), cstrts(4), toMerge(4))← (K(n), cstrts(n), toMerge(n))

(8) return (K(4), cstrts(4), toMerge(4))
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Algorithm 15: Propagating the determinacy of an EC within the heads of affected ECs
PropagateHeadSubst (K, [a] : ECH , T : TEC , headSubst : P(TH)) :

(K′, cstrts : P(C), toMerge : P(
(
ECH

2

)
), dets : P(ECH))

Precondition: K-Valid(K) ∧ [a] ∈ K ∧ Q-Find(Q, [a]) = [a] ∧
ς(T )↓ ∧ TEC-kind(K, [a]) = TEC-kind(K, T) ∧
TEC-in-Θ-Inv(T)

Precondition: headSubst # dom(TR) ∧ headSubst ⊆ dom(Θ) ∧
∀h̃ ∈ headSubst. ¬TEC-IsAbsAppTycon(Θ(h̃)) ∧ TEC-InHead(Q, [a],Θ(h̃))

Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition: dom(Θ′) ∪ headSubst = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ headSubst. Θ(h̃) = Θ′(h̃)

Postcondition: dom(D) ] dets ⊆ dom(D′)
Postcondition: K f ς([a]) � ς(T )  K′ f

c
cstrts fM(K′, toMerge)

K(1) ← K

headSubst(1) ← headSubst
cstrts, toMerge, dets← ∅
Remark: We define headSubst(1),c as an alias for headSubst \ headSubst(1).
Loop Invariant: K-Valid(K(1)) ∧ ς = ς(1) ∧Q = Q(1) ∧ TR = T

(1)
R ∧

G� = G
(1)
�

Loop Invariant: dom(Θ(1)) ∪ headSubst(1),c = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ headSubst(1),c. Θ(h̃) = Θ(1)(h̃) ∧
headSubst(1) ⊆ dom(Θ(1))

Loop Invariant: dom(D) ] dets ⊆ dom(D(1))

Loop Invariant: K f ς([a]) � ς(T )  K(1) f
c

cstrts fM(K(1), toMerge)
(1) while ∃h ∈ headSubst(1) do

headSubst(n) ← headSubst(1) \ {h}
(2) if TEC-IsDNF(Θ(1)(h)) then

Note that we do not work with
[
[a] 7→ T

]
Θ(1)(h) as we are only interested in substituting the [a]’s

appearing in head positions, not all occurrences of [a].
(2a) S(1) ← TEC-ApplyHeadSubstitution(K(1),Θ(1)(h), [a], T)

It is not clear whether S(1) always satisfy the invariant or not. If not, we just skip.
(2b) if ¬TEC-in-Θ-Inv(S(1)) then

headSubst(1) ← headSubst(n)

continue
(2c) S(2) ← TEC-SimplifyDNF(K(1), S(1))
(2d) if S(2) ∈ ECH then

The simplification yielded a simple ECH ; that is, S(2) is of the form [x]. In that case, we
restrain ourselves from updating h with S(2): it is better to merge R(1)(h) with S(2). We also
ensure that we do not try to merge a class with itself to keep toMerge well-formed by being a
set of unordered pairs.

(2d.i) if Q-Find(K(1), S(2)) 6= R(1)(h) then
toMerge(n) ← toMerge ∪ {S(2),R(1)(h)}
toMerge← toMerge(n)

Otherwise, we give up and continue with the next h.
(2e) else if TEC-IsDet(K(1), S(2)) then

(K(n), cstrts′, toMerge′, dets′)← UpdateMemberDetermined(K(1), h, S(2))
(cstrts(n), toMerge(n), dets(n))← (cstrts ∪ cstrts′, toMerge ∪ toMerge′, dets ∪ dets′)
(K(1), cstrts, toMerge, dets)← (K(n), cstrts(n), toMerge(n), dets(n))

(2f) else
K(n) ← UpdateMember(K(1), h, S(2))
K(1) ← K(n)
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(3) else
S ← TEC-ApplyHeadSubstitution(K(1),Θ(1)(h), [a], T)
if TEC-IsDet(K(1), S) then

(K(n), cstrts′, toMerge′, dets′)← UpdateMemberDetermined(K(1), h, S)
cstrts(n), toMerge(n), dets(n) ← cstrts ∪ cstrts′, toMerge ∪ toMerge′, dets ∪ dets′

(K(1), cstrts, toMerge, dets)← (K(n), cstrts(n), toMerge(n), dets(n))

else
K(n) ← UpdateMember(K(1), h, S)
K(1) ← K(n)

headSubst(1) ← headSubst(n)

(4) return (K(1), cstrts, toMerge, dets)

Algorithm 16: Propagating the determinacy of an EC within DNFs
PropagateDNFRefresh (K, refreshDNF : P(TH)) :

(K′, cstrts : P(C), toMerge : P(
(
ECH

2

)
), dets : P(ECH))

Precondition: K-Valid(K) ∧ refreshDNF # Im(TR) ∧ refreshDNF ⊆ dom(Θ) ∧
∀h̃ ∈ refreshDNF. TEC-IsDNF(Θ(h̃))

Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition: dom(Θ′) ∪ refreshDNF = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ refreshDNF. Θ(h̃) = Θ′(h̃)

Postcondition: dom(D) ] dets ⊆ dom(D′)
Postcondition: K  K′ f

c
cstrts fM(K′, toMerge)

K(1) ← K

refreshDNF(1) ← refreshDNF
cstrts, toMerge, dets← ∅
Remark: We define refreshDNF(1),c as an alias for refreshDNF \ refreshDNF(1).
Loop Invariant: K-Valid(K(1)) ∧ ς = ς(1) ∧Q = Q(1) ∧ TR = T

(1)
R ∧

G� = G
(1)
�

Loop Invariant: dom(Θ(1)) ∪ refreshDNF(1),c = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ refreshDNF(1),c. Θ(h̃) = Θ(1)(h̃) ∧
refreshDNF(1) ⊆ dom(Θ(1))

Loop Invariant: dom(D) ] dets ⊆ dom(D(1))

Loop Invariant: K  K(1) f
c

cstrts fM(K(1), toMerge)
(1) while ∃h ∈ refreshDNF(1) do

refreshDNF(n) ← refreshDNF(1) \ {h}
assert TEC-IsDNF(Θ(1)(h))

(2) S ← TEC-SimplifyDNF(K(1),Θ(1)(h))
(3) if S ∈ ECH then

if Q-Find(K(1), S) 6= R(1)(h) then
toMerge(n) ← toMerge ∪ {S,R(1)(h)}
toMerge← toMerge(n)

(4) else if TEC-IsDet(K(1), S) then
(K(n), cstrts′, toMerge′, dets′)← UpdateMemberDetermined(K(1), h, S)
(cstrts(n), toMerge(n), dets(n))← cstrts ∪ cstrts′, toMerge ∪ toMerge′, dets ∪ dets′

(K(1), cstrts, toMerge, dets)← (K(n), cstrts(n), toMerge(n), dets(n))
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(5) else
K(n) ← UpdateMember(K(1), h, S)
K(1) ← K(n)

refreshDNF(1) ← refreshDNF(n)

(6) return (K(1), cstrts, toMerge, dets)

Algorithm 17: Propagating the determinacy of an EC within potentially affected ECs
PropagateTrySubst (K, trySubst : TH ⇀P(TEC), T : TEC) :

(K′, cstrts : P(C), toMerge : P(
(
ECH

2

)
), dets : P(ECH))

Precondition: K-Valid(K) ∧ ς(T )↓ ∧ TEC-in-Θ-Inv(T)
Precondition: dom(trySubst) # Im(TR) ∧ dom(trySubst) ⊆ dom(Θ)
∀h̃ ∈ dom(trySubst). TEC-IsAbsAppTycon(Θ(h̃)) ∧
∀U ∈

⋃
Im(trySubst).

[
ς(U)↓ ∧ TEC-IsAbsAppTycon(U) ∧ TEC-in-Θ-Inv(U) ∧

TEC-kind(K, U) = TEC-kind(K, T)
]

Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition: dom(Θ′) ∪ dom(trySubst) = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ dom(trySubst). Θ(h̃) = Θ′(h̃)

Postcondition: dom(D) ] dets ⊆ dom(D′)
Postcondition: K  K′ f

c
cstrts fM(K′, toMerge)

K(1) ← K

trySubst(1) ← trySubst
cstrts, toMerge, dets← ∅
Remark: We define trySubst(1),c as an alias for trySubst \ trySubst(1).
Loop Invariant: K-Valid(K(1)) ∧ ς = ς(1) ∧Q = Q(1) ∧ TR = T

(1)
R ∧

G� = G
(1)
�

Loop Invariant: dom(Θ(1)) ∪ dom(trySubst(1),c) = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ dom(trySubst(1),c). Θ(h̃) = Θ(1)(h̃) ∧
dom(trySubst(1)) ⊆ dom(Θ(1))

Loop Invariant: dom(D) ] dets ⊆ dom(D(1))

Loop Invariant: K  K(1) f
c

cstrts fM(K(1), toMerge)
(1) while ∃(h, Ū) ∈ trySubst(1) do

trySubst(n) ← trySubst(1) \ {(h, Ū)}
(2) for U ∈ Ū do
(3) S ← TEC-TryApplyHeadSubstitution(K(1),Θ(1)(h), U, T)
(4) if S 6= NIL ∧ TEC-IsDet(K(1), S) then

(4a) (K(n), cstrts′, toMerge′, dets′)← UpdateMemberDetermined(K(1), h, S)
cstrts(n), toMerge(n), dets(n) ← cstrts ∪ cstrts′, toMerge ∪ toMerge′, dets ∪ dets′

K(1), cstrts, toMerge, dets← K(n), cstrts(n), toMerge(n), dets(n)

break

trySubst(1) ← trySubst(n)

(5) return K(1), cstrts, toMerge, dets
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Algorithm 18: Collecting all ECs containing the determined EC in a head position
GatherAffected (K, [b] : ECH , processedECs : P(ECH)) :

(headSubst : P(TH), refreshDNF : P(TH), processedECs′ : P(ECH))
Precondition: K-Valid(K) ∧ {[b]} ∪ processedECs ⊆ dom(M) ∧ Q-Find(Q, [b]) = [b]
Postcondition: headSubst # Im(TR) ∧ headSubst ⊆ dom(Θ) ∧
∀h̃ ∈ headSubst. ¬TEC-IsAbsAppTycon(Θ(h̃)) ∧ TEC-InHead(Q, [b],Θ(h̃))

Postcondition: refreshDNF # Im(TR) ∧ refreshDNF ⊆ dom(Θ) ∧
∀h̃ ∈ refreshDNF. TEC-IsDNF(Θ(h̃))

Postcondition: processedECs ⊆ processedECs′ ⊆ dom(M)

(1) if [b] ∈ processedECs then
return (∅, ∅, processedECs)

headSubst, refreshDNF← ∅
processedECs(1) ← processedECs
Iterate over all h where [b] appears.
To ease the proof correctness, we skip type representatives. We argue that correctness is ensured even if we
did not skip these but it is just easier to add that extra filter.
Loop Invariant: headSubst # Im(TR) ∧ headSubst ⊆ K
∀h̃ ∈ headSubst. ¬TEC-IsAbsAppTycon(Θ(h̃)) ∧ TEC-InHead(Q, [b],Θ(h̃))

Loop Invariant: refreshDNF # Im(TR) ∧ refreshDNF ⊆ K
∀h̃ ∈ refreshDNF. TEC-IsDNF(Θ(h̃))

Loop Invariant: processedECs ⊆ processedECs(1) ⊆ dom(M)
(2) for h ∈ {h : ([b], h) ∈ EEC} \ Im(TR) do

headSubst(n), refreshDNF(n), processedECs(n) ← headSubst, refreshDNF, processedECs(1)

That is, if h is the determined type of its EC, where [b] appears. We propagate with NH, as [b] must
appear in non-head position since h was already the determined member before we started the
propagation process.

(2a) if D(R(h)) = h then
Ignoring the returned headSubst′ because [b] is not in a head position in these h′.
(_, refreshDNF′, processedECs′)←

GatherAffected(K,R(h), NH, processedECs(1) ∪ {[b]})
refreshDNF(n) ← refreshDNF ∪ refreshDNF′

processedECs(n) ← processedECs(1) ∪ processedECs′

(2b) else if ¬TEC-IsAbsAppTycon(Θ(h)) then
(2b.i) if TEC-InHead(Q, [b],Θ(h)) then

headSubst(n) ← headSubst ∪ {h}
(2b.ii) else if TEC-IsDNF(Θ(h)) then

refreshDNF(n) ← refreshDNF ∪ {h}

headSubst, refreshDNF, processedECs(1) ← headSubst(n), refreshDNF(n), processedECs(n)

(3) return (headSubst, refreshDNF, processedECs)
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Algorithm 19: Collecting all ECs that may contain the determined EC in a head
position
GatherPotentiallyAffected (K, [a])

Precondition: K-Valid(K) ∧ [a] ∈ K
Postcondition: dom(trySubst) # Im(TR) ∧ dom(trySubst) ⊆ dom(Θ)
∀h̃ ∈ dom(trySubst). TEC-IsAbsAppTycon(Θ(h̃)) ∧
∀U ∈

⋃
Im(trySubst).

[
ς(U)↓ ∧ TEC-IsAbsAppTycon(U) ∧ TEC-in-Θ-Inv(U) ∧

TEC-kind(K, U) = TEC-kind(K, [a])
]

trySubst← ∅
(1) Loop Invariant: Analogous to postcondition

for h ∈M([a]) do
match Θ(h) :

Note that we have TEC-IsAbsAppTycon(Θ(h)). We pattern match on Θ(h) in order to extract the
head symbol F .

(2) case [~v ~X / B] =>>F [~S] or F [~S] :
trySubst′ ← trySubst

(2a) Here, all h′ are abstract type constructor application (i.e. applied F ) by validity of K.
for h′ ∈ {h′ : (F, h′) ∈ ES} \ (Im(TR) ∪M([a])) do

(2a.i) if h′ ∈ dom(trySubst) then
trySubst′ ← trySubst′[h′ 7→ {Θ(h)} ∪ trySubst′(h′)]

(2a.ii) else
trySubst′ ← trySubst′[h′ 7→ {Θ(h)}]

trySubst(n) ← trySubst′

otherwise :
pass

trySubst← trySubst(n)

(3) return trySubst

5.3.5.6 Compaction phase for the running examples

We give three examples showcasing the compaction phase for listings 5-7 based on the runs of 5.3.1.1, 5.3.1.2
and 5.3.1.3. We omit the details of the compaction phase for the run 5.3.1.4 because the example covering
the run 5.3.1.3 is quite extensive.

Example 5.3.5.1 (Compactions for listing 5). Compact is called twice, sequentially. One call is done to
compact X � Int and another one to compact Int � X. Assuming X � Int is assimilated into K first, we
get:

1. We create the ECs [x] and [i] for X and Int respectively. The [x] and [i] ECs respectively contain X
and Int as their sole members. Furthermore, Int is set as the determined type for [i].

2. Through TryAddInequality, we add an edge from [x] to [i] in G�; the returned cstrts and toMerge
are empty.

3. The merge loop is not entered; we return without any new constraints.

Compacting Int � X gives:
1. T -FindOrCreateEC manages to retrieve the EC for Int and X created earlier. In particular, it calls
TEC-FindOrCreateEC which finds the ECs at line (1a.i).

2. We attempt to form a cycle by adding an edge from [i] to [x]. As such, TryAddInequality does not
update G� and returns

{
{[i], [x]}

}
for toMerge.

3. The merge loop picks {[i], [x]} from toMerge and calls Merge. A propagation of determinacy is done
for [x] with T = Int but does not yield anything new because [x] does not appear anywhere. The
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merge of [i] and [x] proceeds with the call to MergeHelper in a straightforward manner.
There are no other ECs to merge and no new constraints.

4. We return from compaction with no new constraints.

Example 5.3.5.2 (Compactions for listing 6). We assume Inv[pX]&Inv[String] � Inv[X]&Y is assimilated
into K first:

1. The EC creation for Inv[pX] & Inv[String] proceeds as follows:

(a) In T -FindOrCreateEC, case (5) is matched. Inv[pX] and Inv[String] both match case (5a.i)
resulting in the creation of the ECs for pX and String which we refer to as [px] and [s] respectively.

(b) The TEC-SimplifyDNF call at (5b) yields the identity.
(c) We call TEC-FindOrCreateEC with Inv

[
[px]

]
& Inv

[
[s]
]
as argument.

(d) TEC-FindOrCreateEC does not find any EC for the given type and calls TEC-CreateEC to create
an EC containing Inv

[
[px]

]
&Inv

[
[s]
]
. We refer to the created EC as [a]. Due to Inv

[
[px]

]
&Inv

[
[s]
]

not being determined, [a] does not have an associated determined type in D.
(e) T -FindOrCreateEC eventually returns with the updated K and [a].

2. The EC creation for Inv[X] & Y proceeds similarly. We refer to its associated EC as [b].

3. We add an edge from [a] to [b] in G�; the returned cstrts and toMerge are empty.

4. We do not enter the merge loop and return with an empty set of constraints.

The compaction of Inv[X] & Y and Inv[pX] & Inv[String] is similar to the previous example, where
adding an edge from [b] to [a] would cause a cycle. The merging of [a] and [b] proceeds similarly as well
(except that there are no propagation of determinacy since [a] and [b] are not determined).

We however discuss the retrieval of the EC of Inv[pX] & Inv[String] by T -FindOrCreateEC:
1. As in the first call, case (5) in T -FindOrCreateEC is matched with Inv[pX] and Inv[String] both

matching case (5a.i). TEC-FindOrCreateEC retrieves the EC [px] and [s] for pX and String respectively
through the loop at (1a).

2. The TEC-SimplifyDNF call at (5b) yields the identity as well.

3. We call TEC-FindOrCreateEC with Inv
[
[px]

]
& Inv

[
[s]
]
, which finds [a] through the loop at (1a) too.

4. T -FindOrCreateEC returns K unchanged and [a].

T -FindOrCreateEC finds the EC of Inv[X] & Y analogously.

Example 5.3.5.3 (Compactions for listing 7, run (i)). We follow the calls to Compact in the order they
appear in example 5.3.1.3.

Compaction of [Z] =>>F [Z] � [Z] =>> Inv2[Z, Y ] &X.
The compaction proceeds as follows:
1. We first need to create an EC containing [Z] =>>F [Z] with T -FindOrCreateEC:

(a) We match case (6). Because the bounds are trivial, we get B′ = {Z 7→ (⊥,>)} at (6a) We then
continue with the call to TEC-FindOrCreateEC.

(b) TEC-FindOrCreateEC delegates the EC creation to TEC-CreateEC.
(c) An EC is created containing [Z] =>>F [Z], which is not determined. We refer to this EC as [f ].
(d) T -FindOrCreateEC returns an updated K and [f ].

2. We then create an EC for [Z] =>> Inv2[Z, Y ] &X:

(a) We match case (7). We similarly get B′ = {Z 7→ (⊥,>)} and keep on with the recursive call at
(7b).
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i. Inv2[Z, Y ] &X matches the case (5). Within the loop at (5a), Inv2[Z, Y ] matches (5a.i) and
X matches (5a.ii). Starting with Inv2[Z, Y ], we recursively call T -FindOrCreateECVec with
Z and Y . Because Z is bound to the enclosing scope, we match (1) and return Z. For Y , an
EC which we refer to as [y] is created.
We similarly create an EC for X, referred to as [x].

ii. The DNF simplification at (5b) gives the identity.
iii. Because we are in a head position and under an enclosing scope, we match (5d) and return

Inv2
[
Z, [y]

]
& [x].

(b) The recursive call yields Inv2
[
Z, [y]

]
& [x]. We go on with the call to TEC-FindOrCreateEC with

[Z] =>> Inv2
[
Z, [y]

]
& [x] and empty bounds as arguments.

(c) TEC-FindOrCreateEC delegates the EC creation to TEC-CreateEC, creating an EC [a] containing
[Z] =>> Inv2

[
Z, [y]

]
& [x].

(d) T -FindOrCreateEC returns an updated K and [a].

3. At this point, we have four ECs:

[a] : {[Z] =>> Inv2
[
Z, [y]

]
& [x]} [x] : {X}

[f ] : {[Z] =>>F [Z]} [y] : {Y }

None of these ECs are determined.

4. We add an edge from [f ] to [a] in G�; the returned cstrts and toMerge are empty.

5. We do not enter the merge loop and return with an empty set of constraints.

Compaction of [Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> pF [Z].
The compaction proceeds similarly and is thus omitted. We now have the following ECs with their

corresponding members:

[a] : {[Z] =>> Inv2
[
Z, [y]

]
& [x]} [b] : {[Z] =>> Inv2

[
Z, [py]

]
& Inv

[
[py]

]
}

[f ] : {[Z] =>>F [Z]} [py] : {pY }
[x] : {X} [pf ] : {[Z] =>> pF [Z]}
[y] : {Y }

with the edges ([f ], [a]) and ([b], [pf ]) in G�.

Compaction of X � Inv[pX].
Assuming we are tasked to compact X � Inv[pX] first, we get:
1. T -FindOrCreateEC manages to retrieve the EC of X which is [x].

2. Inv[pX] does not have an associated EC: T -FindOrCreateEC creates an EC for pX, [px], and creates
an EC [ipx] containing Inv

[
[px]

]
. Inv

[
[px]

]
is set as the determined type of [ipx].

3. We add an edge from [x] to [ipx] in G�; the returned cstrts and toMerge are empty.

4. We do not enter the merge loop and return with no new constraints.

For Inv[pX] � X, we obtain:
1. T -FindOrCreateEC retrieves the ECs of Inv[pX] and X which are [ipx] and [x] respectively.

2. We attempt to form a cycle by adding an edge from [ipx] to [x]. TryAddInequality therefore does
not update G� and returns

{
{[ipx], [x]}

}
for toMerge.

3. The merge loop picks {[ipx], [x]} from toMerge and calls Merge.

4. Because [ipx] is determined and [x] not, a propagation of determinacy is done for [x] with T = Inv
[
[px]

]
:
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(a) [x] only appears in [a]. The propagation then proceeds by calling PropagateHeadSubst
with the type handle of the sole member of [a]. [x] gets substituted to Inv

[
[px]

]
, yielding

[Z] =>> Inv2
[
Z, [y]

]
& Inv

[
[px]

]
. Then, UpdateMemberDetermined update [a] to contain this new

type and set that type to be the determined type of [a].
(b) Since [a] became determined, a propagation of determinacy is done for [a] with T =

[Z] =>> Inv2
[
Z, [y]

]
& Inv

[
[px]

]
. The propagation is trivial because [a] does not appear any-

where.

5. We resume the merge of [ipx] and [x] and call MergeHelper. We assume that Q-Union of [ipx] and
[x] choses [x] as the representative for the union of these two partitions.

6. We exit the merge loop and return with no new constraints.

We have the following ECs:

[a] : {[Z] =>> Inv2
[
Z, [y]

]
& Inv

[
[px]

]
} [b] : {[Z] =>> Inv2

[
Z, [py]

]
& Inv

[
[py]

]
}

[f ] : {[Z] =>>F [Z]} [px] : {pX}
[x] : {Inv

[
[px]

]
} [py] : {pY }

[y] : {Y } [pf ] : {[Z] =>> pF [Z]}

with the edges ([f ], [a]) and ([b], [pf ]) in G�. Furthermore, [a], [b] and [x] are determined.

Compaction of F � pF .
Assuming we first compact F � pF , we get:

1. We expand F and pF into [Z] =>>F [Z] and [Z] =>> pF [Z] respectively.

2. T -FindOrCreateEC retrieves their ECs [f ] and [pf ].

3. We add an edge from [f ] to [pf ] in G�; the returned cstrts and toMerge are empty.

4. We do not enter the merge loop and return with no new constraints.

G� records the inequalities [f ] � [a], [b] � [pf ] and [f ] � [pf ].
For pF � F , we have:
1. T -FindOrCreateEC retrieves the ECs [pf ] and [f ].

2. We attempt to form a cycle by adding an edge from [pf ] to [f ]. TryAddInequality does not update
G� and returns

{
{[pf ], [f ]}

}
for toMerge.

3. The merge loop picks {[pf ], [f ]} from toMerge and calls Merge, which in turn calls MergeHelper. We
assume that the Q-Union (line (1a)) of [pf ] and [f ] picks [f ] as the representative for the union.
The update made to the G� graph at (6e) (caused by fusing the node [f ] and [pf ] into [f ]) cre-
ates a path between [b] and [a]. Because [b] and [a] are determined, we generate the constraint
[Z] =>> Inv2[Z, pY ] & Inv[pY ] � [Z] =>> Inv2[Z, Y ] & Inv[pX] at line (11) 8.

4. We exit the merge loop and return with the above constraint.

Compaction of Y � pY f pX � pY .
The assimilation of Y � pY f pX � pY results in four calls to Compact. We omit them because they do

not produce anything new of interest.

8[y], [px] and [px] have been substituted to Y , pX and pY respectively through ς leveraging the type representatives from
TR. We did not explicitly track these as it would considerably increase the example length.
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5.4 Caveats

In section 2.3, we have mentioned that the rule (Path-&) introduces unsoundness in presence of implicit
null and explicit casts.

This unsoundness affects the proposed algorithm as well. We start with the null problem.
Suppose we are given the following problem:

1 // Note: does not compile under Scala 3.0.0
2 class Box[T](a: T)
3 class Inv2[S, T](a: Box[S] & Box[T])
4

5 def patmat[X, Y](s: Inv2[X, Y], x: X): Y = s match {
6 case p: Inv[xy] => x
7 }

We have s.a : Box[X] & Box[Y ] and would deduce that X and Y are equal. We would thus authorize the
given snippet.

However, if pass patmat new Inv(null), we cause unsoundness if we instantiate X and Y to different
types as in the following example:

1 // Would cause a ClassCastException.
2 val got: Int = patmat[String, Int](new Inv2(null), "hello")

We remark that explicits nulls would forbid the above snippet from compiling and should resolve the
problem.

The other issue involves asInstanceOf casts. Consider the following snippet:

1 // Note: compiles and produces a ClassCastException under Scala 3.0.0
2 class Inv[T]
3

4 def patmat[X, Y](s: Inv[X] & Inv[Y], x: X): Y = s match {
5 case p: Inv[xy] => x
6 }
7

8 val inv = new Inv[Any].asInstanceOf[Inv[String] & Inv[Int]]
9 val got: Int = patmat[String, Int](inv, "hello")

We deduce that X and Y are equal as well.
This problem is more general and affects Scala 3.0.0 as well. The underlying cause of this unsoundness is

the presence of phantom types. A similar issue is tracked under ticket 8430 9.

5.5 Constraint order-sensitivity

Before concluding this chapter, it is important to point out that the proposed algorithm is sensitive to the
order in which the constraints are processed. It is in some sense non-deterministic.

As an example, let us consider a constraint C1 = p : R1 (where R1 is a refinement), and another constraint
C2 = R1 � R2 for some refinement R2. The subtyping constraint C2 will be passed to DeductionIneq,
which will look for a p′ in I that inhabits R1. If we process C1 first, DeductionIneq will retrieve p, resume
the deduction, and potentially derive new constraints. Otherwise, if C1 is processed after C2, DeductionIneq
will give up and abandon the constraint C2.

We believe that an enhanced version of the algorithm taking care of performing a path typing propagation
will still likely be sensitive to the constraint order, as various “give-up” cases may be triggered or avoided
depending on the constraints ordering.

9https://github.com/lampepfl/dotty/issues/8430
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Chapter 6

Related work

The following two works analyze the GADT problem in Scala’s context.
Parreaux and Boruch-Gruszecki [7] have examined foundations for GADTs in Scala and have shown that

GADTs can be explained and understood in terms of already present, simpler features such as type members.
Waśko [16] has analyzed the requirements of encoding GADTs within a calculus. He then presented an

encoding of GADTs into the pDOT calculus as well as the necessary steps to formally prove the validity of
the encoding.

The constraint language presented in chapter 3 has been largely inspired by the constraint language
introduced by Pottier and Rémy [11]. They have presented a variant of HM(X) (covered next) where the
constraints are interpreted within a model; conjunction and existential quantification are given their usual
meaning. They have defined a constraint solver for HM(=) leveraging a standard first-order unification
algorithm.

HM(X) has been introduced by Odersky, Sulzmann and Wehr [6]. It is a general framework for Hindley-
Milner alike type systems with constraints and is parameterized by a constraint system X. When instantiated
to the trivial constraint system – with X set to = – one obtains the Hindley-Milner system. The authors
prove that type systems in HM(X) are sound for standard untyped compositional semantics and give a
generic type inference algorithm.

The following works consider GADT inference in a different context than ours but are nonetheless
interesting in how their authors have approached the problem.

Simonet and Pottier [15] have studied HMG(X) which extends the constraint-based type system HM(X)
with (among other features) GADTs. Their settings allow arbitrary constraints, ranging from deep patterns
to subtyping. They prove HMG(X) sound and show that the type inference problem can be reduced to
constraint solving. Due to the parameterized nature of HMG(X), Simonet and Pottier do not provide a
constraint solver. They argue however that any constraint solver is expected to be computationally expensive,
especially due to the presence of the implication connective within constraints.

Peyton Jones, Vytiniotis, Weirich and Washburn [8] have specified a language supporting GADTs and
user-supplied type annotations. They introduced the key concept of wobbly types, allowing to express the
uncertainty of incremental type inference algorithms. They proved the type system sound and that it is a
conservative extension of Hindley-Milner. Furthermore, the authors have implemented GADTs type inference
for the Glasgow Haskell Compiler. A particular point of interest is the fact that wobbly types allow the type
inference algorithm to be insensitive to the AST traversal order.

Kennedy and Russo [4] have presented a generalization of the type constraints mechanism of Java and
C] to avoid the need for user-supplied explicit casts. They have formalized the extension for a subset of C]
and proved its soundness.
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Chapter 7

Conclusion

In this work, we have presented (without proving) an extension of the pDOT calculus with nominal subtyping
and higher-kinded types. This extension allowed us to reason about some constructs that are not present in
pDOT, such as class inheritance and higher-kinded abstractions.

Based on the work of François Pottier and Didier Rémy, we have developed a simple constraint language
enabling formal reasoning about the GADT inference problem. With this abstraction, we have not only
derived useful laws that guided the design of the proposed algorithm but also found some counter-examples
of accepted programs that should be rejected 1.

We have presented an algorithm that accumulates constraints into a structure with an assimilation
process that may result in discovering further information about the type variables. We have also proved
the soundness of the algorithm and provided an incomplete proof of its termination. We have seen some
examples where the proposed algorithm is capable of inferring interesting properties that the Scala 3.0.0
compiler does not intercept.

7.1 Future work

As we have seen throughout this report, there is still room for improvement.
On the formalization side, some definitions remain wobbly and not-so-formal. Another point of concern

is basing a substantial amount of our work on the assumptions of the subtyping rules as stated in section 2.3.
In particular, the rule (Path-&) is questionable: we have seen two unsound issues in section 5.4 – though
we deem these “reasonable”.

On the algorithmic side, some constructs are not used to their full potential. For instance, path-dependent
types are not entirely leveraged. Furthermore, the support of term variables is quite lackluster – especially
for bound term variables introduced by methods. The first step towards this goal would be to introduce
proper equivalence classes for term variables – akin to equivalence classes of type variables. These equivalence
classes would also allow abstracting over term variables, just like higher-kinded equivalence classes. However,
such a feature would likely introduce a considerable amount of complexity and may not be worthwhile.

Another important point to discuss is the fact that we strip all refinements before handing them over to
the compaction phase. To improve the support of refinements, we would need to, in particular, adapt the
family of the EC processing functions (T -FindOrCreateEC, TEC-FindOrCreateEC, and so on). Creating and
finding ECs of refinements may need implementing ECs for bound term variables as well to be satisfactory.

Besides, there are still some low-hanging fruits. We discuss two of them here. The first enhancement is to
propagate a path inhabitation constraint p : T to the upper bounds of T . The other relatively straightforward
enhancement is to propagate subtyping relationship to other equivalence classes. For instance, if we are
asked to add a subtyping relationship between two ECs [a] and [b], we should look in G� for other ECs that
could potentially end up in a subtyping relation due to [a] becoming a subtype of [b].

1See issues #11103, #11545, #11565 in Dotty repository: https://github.com/lampepfl/dotty.
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At last but not least, an implementation of the proposed algorithm would help in deciding what parts
could help the Scala 3 compiler in accepting a wider range of correct GADT programs – and potentially
correct some of the remaining unsoundness holes.
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Appendix A

Core functions proofs

A.1 Outline

This appendix section is dedicated to the proof of the core parts of the algorithm that we presented in 5.3.
Before diving in, we state some simple lemmas with respect to K.

A.2 Useful lemmas

Lemma A.2.1. Let K be a valid knowledge structure. Then, for all h̄ ∈ Im(M), h1, h2 ∈ h̄, the entailment
K  ς(Θ(h1)) � ς(Θ(h2)) holds.

Proof. Straightforward use of the definition K-to-C and lemma 3.3.8.

Lemma A.2.2. Let K be a valid knowledge structure and [a] contained in K. Then, for all h̄ ∈M([a]), h ∈ h̄,
the entailment K  ς([a]) � ς(Θ(h)) holds.

Proof. Straightforward use of the definition K-to-C.

Lemma A.2.3. Let K be a valid knowledge structure. Then, for all ([a], [b]) ∈ E�, the entailment K 
ς([a]) � ς([b]) holds.

Proof. Straightforward use of the definition K-to-C.

Corollary. Let K be a valid knowledge structure. Then, if [a] and [b] are in K and that there is a chain
between [a] and [b] with respect to G�, the entailment K  ς([a]) � ς([b]) holds.

A.3 Simplification loop (partial correctness)

We are interested in proving partial correctness of the C-Simplify function. While we do not provide a
formal proof of C-Simplify termination, we sketch one in A.10.

Proof. The proof revolves around the loops at (1) and (1d).
Outer loop (1).
It is straightforward to check that the loop invariants for the outer loop hold before the first iteration.
Now that the base case is established, we proceed by analyzing each statement.
For the return at (1a), we have by the loop invariant hypothesis (LIH) K f

cn
i Ci  false since the

considered C = false is in cstrts. (1b) is straightforward.
The call to Deduction at (1c) is well-formed. By the LIH, K(1) is valid. Its postconditions state we

have K(1) fC 
cm
j Dj with each Dj being true, false, Sj � Tj with Sj and Tj free of any refinement or

pj : Uj .
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From the LIH and these postconditions, we can furthermore deduce K f
cn
i Ci 

cm
j Dj . Indeed, by the

LIH, we have K f
cn
i Ci  K(1) f

c
cstrts and because C is in

c
cstrts, we have K f

cn
i Ci  K(1) f C.

Combining this with the postconditions of Deduction we get K f
cn
i Ci  K(1) f C 

cm
j Dj (result (�)).

Inner loop (1d).
The invariants hold before the first iteration thanks to the LIH of the outer loop.
Case (1d.i) is straightforward: we just need to apply the inner LIH. Case (1d.ii) is a straightforward

application of the above observation. Case (1d.iv) is a straightforward application of the inner LIH and the
definition of K-to-C.

For (1d.iii), we should first ensure that the requirements of the call to Compact are met: by the inner
LIH, K(n) is valid and Deduction ensures that Sj and Tj do not contain any refinement. Compact states
that K′ is valid and that K(n) f Sj � Tj  K′ f

c
cstrts′.

Then, we are interested in proving that the inner LIH holds at the end of the iteration. The first one
obviously holds. For the second one, we are interested in showing:

K f
nk

i

Ci  K′ f
k

cstrts(n) f
k

cstrts′

From the inner LIH, we have K f
cn
i Ci  K(n). With (�) and lemma 3.3.6, we get K f

cn
i Ci 

K(n) f C 
cm
j Dj . As such, thanks to Compact, we have K f

cn
i Ci  K′ f

c
cstrts′.

Using the inner LIH again, we have K f
cn
i Ci  cstrts(n). We then apply lemma 3.3.6 once again to

glue all pieces together.
End of the outer loop (1).
The first outer LIH holds by the inner LI. For the second one, the goal is to show:

K f
nk

i

Ci  K(n) f
k

cstrts(n) \ {C}

which holds thanks to the inner LI.
Returned result (2).
Provided that the outer loop terminates, the postconditions of C-Simplify are respected by the LI of

the outer loop.

A.4 Deduction phase

We are interested in showing that Deduction, DeductionIneq and DeductionTypedPath terminate and
hold their claims.

A.4.1 DeductionIneq

We start by giving a measure for DeductionIneq to help us prove termination. Next, we show that
DeductionIneq yields constraints entailed by its argument. To do so, the induction hypothesis will employ
the same measure as the termination.

The measure is in fact quite trivial. We just need to be careful about the case (5c) where the size
of the arguments increases. A simple solution consists in having a single bit denoting whether the heads
of the argument are the same or not. More formally, we define m : T × T → N × {0, 1} × N with
m(T1, T2) = (size(T2), diffHead, size(T1)) where diffHead is 1 if T1 is a (possibly trivial) conjunction
&n
i Cls[S1,i] and T2 is of the form Cls[S2] for some types S1,i, S2 and some class symbol Cls. Otherwise,

diffHead is 1. Then, the relation (T × T , {(t, s) : m(t) < m(s), t, s ∈ T × T }) is well-founded where < is
the lexicographic order on N × {0, 1} × N. As such, we can employ usual tools to prove termination and
correctness.

Next, we need to show that each recursive call strictly decreases the measure.
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Proof. By case analysis.
Cases (1)-(4), (6)-(15).
Straightforward. For case (13), we need to unfold the definition of DeductionIneqDNF to unveil the calls

to DeductionIneq and note that the measure decreases as well.

Case (5).
For case (5b), it suffices to unfold the definition of DeductionIneqVec to note that the measure decreases

as well. Case (5c) is the raison-d’être of this measure. We note that we have m(T1, T2) = (size(T2), 1, size(T1))
because Cls1 6= Cls2. The measure for the recursive call is m(U1, U2) = (size(U2), 0, size(U1)) =

(size(T2), 0, size(U1)) < m(T1, T2) where U1 = &N
i Cls2[σi(~S1)] and U2 = Cls2[ ~S2] = T2.

We now would like to show that the constraints returned by DeductionIneq are entailed by K and
T1 � T2, or in other words, that K f T1 � T2  DeductionIneq(K, T1, T2).

Furthermore, we would like to prove that the types contained within each constraints must be free of any
refinement.

Proof. By induction on m(T1, T2). We assume that the property holds for all S1, S2 for which we have
m(S1, S2) < m(T1, T2). We proceed by a case analysis.

Case (1).
Subcase (1b) is trivial, since all constraints entails true. For subcase (1a), we have Γ 6` T1 <: T2. T1 and

T2 are closed: they are therefore idempotent element w.r.t. (φ, γ)(·). We thus have Γ 6` (φ, γ)T1 <: (φ, γ)T2

for all φ, γ. Because T1 and T2 are closed, having Γ mapped through φ, γ does not alter the judgement, so
we also have (φ, γ)Γ 6` (φ, γ)T1 <: (φ, γ)T2 for all φ, γ. The contrapositive of the inversion lemma tells us
that φ, γ 6|= T1 � T2 (for all φ, γ), so we indeed have T1 � T2 ≡ false.

Cases (2)-(4).
Trivial.

Case (5).
For (5a), we just need to apply lemma 3.4.5. (5b) is a straightforward application of the induction

hypothesis and the corollary of lemma 3.4.3, after having unfolded the definition of DeductionIneqVec.
For (5c), applying lemma 3.4.4 gives us:

Cls1[~S1] � Cls2[~S2] &N
i Cls2[σi(~S1)] � Cls2[~S2]

.
Lemma 3.3.6 allows us to add K to both side of the entailment, giving:

K f Cls1[~S1] � Cls2[~S2]  K f&N
i Cls2[σi(~S1)] � Cls2[~S2]

The IH yields:

K f&N
i Cls2[σi(~S1)] � Cls2[~S2]  DeductionIneq(K,&N

i Cls2[σi(~S1)], Cls2[~S2])

which also corresponds to the result of DeductionIneq(K, T1, T2) since it is returned.
Combining these two observations with the transitivity of entailment, we get the desired result.
Finally, the requirement of having constraints free of refinements is guaranteed by the IH.

Case (6).
Let us verify that the calls to BEC-Subsumes and BEC-BoundsEntailed are well-formed. Both functions

require the given bounds to be BEC bounds. Since B1 and B2 are B bounds, this condition is equivalent to
requiring B1 and B2 to be free of any refinements, which is ensured by the guard on the case pattern.

For BEC-Subsumes, the domain of B1 and B2 are equal by the assumptions of well-formed subtyping
constraints. As stated by the comment for this case, we assume that the domain of B1 and B2 – X̄ – is
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disjoint from the free type variables of K. It is always possible to satisfy this condition by a suitable α-
renaming. These observations allow to conclude that the calls to BEC-Subsumes and BEC-BoundsEntailed
are well-formed.

Let us now treat (6a) and (6b): (6b) is split in two subcases on whether T1 and T2 are free of refinements
in order to satisfy the free-of-refinements requirement. For (6b.i), it simply returns the assumed T1 � T2

without changing anything, so we naturally have K f T1 � T2  T1 � T2. (6b.ii) is trivial.
For (6a), for all assignments γ, φ satisfying K, there is a ~U ∈ T | ~X| such that:

φ[ ~X 7→ ~U ], γ |= B1 ∧ φ[ ~X 7→ ~U ], γ 6|= B2

By applying this result to lemma 3.4.6, we get that φ, γ 6|= T1 � T2. By lemma 3.3.7, we have K f T1 �
T2  false.

Let us now turn our attention on the loop. Since the loop is simple, we skip the details on establishing a
loop invariant. We proceed for each subcase. We omit the otherwise subcase since it is trivial.

Subcase (6c).
Let φ, γ be any assignments satisfying K f T1 � T2. We need to show that φ, γ |= U1 � U2. The

requirement of having U1 and U2 free of refinements is guaranteed by the IH.
We observe the following points:
• With entls being true, the postcondition of BEC-BoundsEntailed tells us that we have:

∀ ~A ∈ (T cl)|
~X|. φ[ ~X 7→ ~A], γ |= B1

• With the ( =⇒ ) direction of lemma 3.4.6, we have:

∀ ~A ∈ (T cl)|
~X|. φ[ ~X 7→ ~A], γ |= B1 =⇒

φ[ ~X 7→ ~A], γ |= B2 f S1 � S2.

Let ~A be any element of (T cl)|
~X| with the same kind as ~X. By combining these two points together, we

get φ[ ~X 7→ ~A], γ |= S1 � S2.
Since X̄ # ftv(K), we have by lemma 3.3.4 φ[ ~X 7→ ~A], γ |= K.
Then, by the IH, we have φ[ ~X 7→ ~A], γ |=

cm
i Di. Since U1 � U2 ∈

cm
i Di, we also have φ[ ~X 7→ ~A], γ |=

U1 � U2. We remark that the pattern guard guarantees that no type variable in X̄ appears free in U1 and
U2. As such, we can apply lemma 3.3.4 yielding the desired result φ, γ |= U1 � U2.

Subcase (6d).
Let φ, γ be any assignments satisfying K f T1 � T2. We would like to show that the assignments φ, γ

satisfy [~v ~X / B1] =>>U1 � [~v ~X / B2] =>>U2 and that the entailed constraint is free of refinement. By the
IH, U1 and U2 do not contain any refinement and the pattern guard guarantees that B1, B2 are free of
refinement.

Let ~A be any element in (T cl)|
~X| with the same kind as ~X such that φ[ ~X 7→ ~A], γ |= B1. Due to Subsumes

returning true, we have φ[ ~X 7→ ~A], γ |= B2. If we manage to show that φ[ ~X 7→ ~A], γ |= U1 � U2, we can
apply the (⇐= ) direction of lemma 3.4.6 to derive the desired result.

With the ( =⇒ ) direction of lemma 3.4.6 and the assumptions about ~A, we get φ[ ~X 7→ ~A], γ |= S1 � S2.
As for the previous subcase, we can apply lemma 3.3.4 to get φ[ ~X 7→ ~A], γ |= K since X̄ is disjoint
from ftv(K). Applying the IH yields φ[ ~X 7→ ~A], γ |=

cm
i Di. Because U1 � U2 is in

cm
i Di, we obtain

φ[ ~X 7→ ~A], γ |= U1 � U2.
Subcase (6e).
Let φ, γ be any assignments satisfying K Our goal is to prove that φ, γ cannot satisfy T1 � T2. Once the

goal proved, it is sufficient to apply lemma 3.3.7.
Let ~A be any element of (T cl)|

~X| with the same kind as ~X. By applying a similar reasoning to (6c), we
get φ[ ~X 7→ ~A], γ |= K f B1 f B2 f S1 � S2. By the IH, we get that φ[ ~X 7→ ~A], γ do not actually satisfy
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K fB1fB2fS1 � S2. Applying the contrapositive of the ( =⇒ ) direction of lemma 3.4.6 gives the desired
result.

Case (7).
Straightforward application of lemma 3.4.11

Case (8).
We first remark that the returned false at (8a) holds the postconditions by lemma 3.4.10. We then note

that if we do not satisfy the condition at (8b), the returned value trivially satisfies the postconditions. From
now on, we assume the existence of a p such that (p,R1) is in I. It is important to point out that p may not
be a closed path.

We split the case analysis in three parts according to the deduction with respects to fields (8c), type
members (8d) and methods (8e).

Fields (8c).
Let φ, γ be any assignments satisfying K f R1 � R2. We would like to prove that φ, γ satisfy D. We

first remark that, by K-to-C, φ, γ also satisfy p : R1.
Because φ, γ |= p : R1, we also have φ, γ |= γ(p) : R1.
Furthermore, the IH tells us that, for any φ′, γ′ satisfying K f [z 7→ p]F1,i � [z 7→ p]F2,i, the constraint

D is satisfied by φ′, γ′.
Since φ, γ |= R1 � R2 f γ(p) : R1, lemma 3.4.9 gives us φ, γ[z 7→ γ(p)] |= F1,i � F2,i. By applying lemma

3.3.2, we get φ, γ |= [z 7→ γ(p)]F1,i � [z 7→ γ(p)]F2,i, which implies φ, γ |= [z 7→ p]F1,i � [z 7→ p]F2,i (due to
γ(p) being closed). It suffices to apply the IH to conclude.

Bounds (8d).
Analogous to the previous case, with the extra step of applying lemma 3.4.2.
Methods (8e).
Argument types (8e.ii).
Let φ, γ be any assignments satisfying K fR1 � R2. We are interested in showing φ, γ |= Dl assuming

we have succeeded the check at (8e.i) and that x̄# ftmv(Dl). We also note that z does not appear in Dl

since it is substituted to p.
Similarly to (8c), the successful check at (8b) guarantees us the existence of p such that φ, γ |= p : R1

holds. Remarking that γ(p) is closed and that we have φ, γ |= γ(p) : R1 as in the previous case, the application
of lemma 3.4.9 gives us:

φ, γ[z 7→ γ(p)] |= def mi[~Yi / BY,1,i](~xi : ~U1,i) : V1,i �

def mi[~Yi / BY,2,i](~xi : ~U2,i) : V2,i

We get from lemma 3.4.8, for all ~A ∈ (T cl)|
~Y | and ~q ∈ (Pcl)|~x|:

φ[~Yi 7→ ~A], γ[z 7→ γ(p), ~x 7→ ~q] |= B1,i f ~x : ~U1,i

=⇒

φ[~Yi 7→ ~A], γ[z 7→ γ(p), ~x 7→ ~q] |= B2,i f U2,i,j � U1,i,j

By the oracle check at (8e.i), we know that φ′, γ′ |= ~x : ~U1,i for all assignments φ′, γ′. We therefore have
γ[z 7→ γ(p), ~x 7→ ~q] |= ~x : ~U1,i as well.

Applying the (⇐= ) direction of lemma 3.4.6 yields:

φ, γ[z 7→ γ(p), ~x 7→ ~q] |= [~v~Yi / BY,1,i] =>>U2,i,j � [~v~Yi / BY,2,i] =>>U1,i,j

Due to γ(p) be closed, the above implies:

φ, γ[~x 7→ ~q] |= [z 7→ p]
(
[~v~Yi / BY,1,i] =>>U2,i,j � [~v~Yi / BY,2,i] =>>U1,i,j

)
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Then, we use the IH to get φ, γ[~x 7→ ~q] |= Dl. Since ({z} ∪ x̄) # ftmv(Dl), we can apply lemma 3.3.5 to
get the desired result φ, γ |= Dl.

Return type (8e.iii).
Analogous to the previous case.
Argument types (8e.iv).
Similar to (8e.ii), except that we do not apply the lemma 3.4.6. We note that, since ~Yi is empty, an

extension of φ such as φ[~Yi 7→ ~A] results in φ.
Return type (8e.v).
Analogous to the previous case.

Cases (9)-(13).
Straightforward application of the IH and lemma 3.4.12, alongside the property of ApproxDisjunction.

Cases (14)-(15).
Trivial.

A.4.2 DeductionTypedPath

Since termination is trivial, we focus on showing that the claimed postcondition is correct.

Proof. Case (1) is trivial. An appropriate invariant for the loop at (2) is K f p : T  D, which naturally
holds before the first iteration. Assuming K f p : T  D, we proceed by a case analysis on the matched
pattern and show that the loop invariant holds.

Case (2a).
T -CommonTypes tells us that we have p : Cls[ ~A] & Cls[ ~B]. By lemma 3.4.7 we have K f p :

Cls[ ~A]&Cls[ ~B]  Aj � Bj for all j such that vj = ±. We also have KfAj � Bj  D1 and KfBj � Aj  D2

where D1 = DeductionIneq(K, Aj , Bj) and D2 = DeductionIneq(K, Bj , Aj). By combining everything
together, we indeed get K f p : T  D fD1 fD2.

Case (2b).
We have p : Cls1[ ~A]&Cls2[ ~B] with Cls1 6= Cls2. Lemma 3.4.4 tells us that Cls1[ ~A]&Cls2[ ~B]  Cls1[ ~A] �

&N
i Cls2[σi( ~A)]. Applying lemmas 3.4.12 and 3.4.13 yields p : Cls2[σi( ~A)]&Cls2[ ~B] for 1 ≤ i ≤ N . Applying

lemma 3.4.7 for 1 ≤ i ≤ N and for each j such that vj = ± yields p : Cls2[σi( ~A)] & Cls2[ ~B]  σi( ~A)j � Bj .
Noticing that we call DeductionIneq with σi( ~A)j and Bj , we can apply the same reasoning as in the
previous case to conclude.

A.4.3 Deduction

Proof. By case analysis. Case (2) follows from DeductionIneq. For (1), T -InhabitedTypes guarantees us
that x : T  p : S for all iterated p, S and that the returned set is finite. With lemma 3.3.6, we can add K
to the antecedents, yielding K f x : T  p : S. We then get K f x : T  DeductionTypedPath(K, p, S) for
all iterated p, S. The accumulation of entailments with disjunctions maintains the invariant K f x : T  D,
as stated by lemma 3.3.6.

A.5 Compaction entry point

We are interested in proving the claims affirmed by the Compact function.

96



Before going on, we remind the used notation:

[a] ∈ K , [a] ∈ Q-AllMembers(K)

h ∈ K , h ∈ dom(Θ)

ς , ECH-Subst(K)

M(K, toMerge) ,
{
ς([x]) � ς([y]) : {[x], [y]} ∈ toMerge

}
I(K, ineqs) ,

{
ς([x]) � ς([y]) : ([x], [y]) ∈ ineqs

}
L(K, toMerge) ,

∑
{[a],[b]}∈toMerge

1 if ([a], [b]), ([b], [a]) 6∈ ES 0 otherwise

Proof. We proceed line by line.

Statements (1), (2).
The calls are naturally well-formed. We deduce the following points:
1. By Q-FEC1, K(1) is valid. Furthermore K and K(1) agree on M, Θ, R, D, Q and TR for entries

defined at K.

2. By Q-FEC5, [s] is not NIL. Because we pass an empty set for the bound variables, Q-FEC3 guarantees
that [s] an ECH .

3. By Q-FEC2, S and [s] have the same kind under K(1).

4. By Q-FEC6: K f S � T  K(1).

5. We furthermore have K  S � ς(1)([s]) by Q-FEC7 and because ς(1)(S) = S (S does not contain any
ECH as it is a T type).

We deduce similar points for (2). We note that, since S and T have the same kind (thanks to the
well-formedness of constraints), so do [s] and [t] under K(2) (Q-FEC1 guarantees that the kindness for EC
is preserved across “updates” of K’s).

Before going on, let us show that K f S � T  ς(2)([s]) � ς(2)([t]) (�). We have at our disposal
K  S � ς(1)([s]) and K(1)  T � ς(2)([t]). Due to [s] belonging to K(1), we apply Q-FEC1 to deduce that
ς(1)([s]) = ς(2)([s]), leading us to K f S � T  S � ς(2)([s])f T � ς(2)([t]). We then apply lemma 3.3.8 to
conclude.

Statement (3).
It is straightforward to check that the call to TryAddInequality is well-formed.
We deduce:
1. K(3) is valid. All ECs appearing in toMerge are contained in K(3); furthermore the members of the

unordered pairs in toMerge have the same kind.

2. We have K(2) f ς(2)([s]) � ς(2)([t])  K(3) f
c

cstrts fM(K(3), toMerge) and from (�), we have
K f S � T  K(3) f

c
cstrtsfM(K(3), toMerge)

Loop (4).
The loop invariants holds before the first iteration thanks to the postconditions of TryAddInequality.

However, the termination proof is not straightforward. We first prove that the loop terminates and proceed
to show that the invariants hold at the end of each iteration.

Loop (4): termination.
To prove termination, we employ the measure m(K, toMerge) = (|dom(M)|, L(K, toMerge), |toMerge|).

We show that m(K(n), toMerge(n)) < m(K(4), toMerge). Case (4a) is straightforward.
For case (4b), we employ Q-MG3 of Merge. We perform a case analysis on:

([a], [b]), ([b], [a]) 6∈ E(4)
� ∧ ExistUndirChain(G

(4)
� , [a], [b])

If it is false, then we have |dom(M(n))| < |dom(M(4))|, so the measure decreases.
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Otherwise, we have K(4) = K(n), L(K(4), toMerge′) = L(K(n), toMerge′) = 0 and furthermore ([a], [b]),
([b], [a]) 6∈ E�. We remark that L(K(4), {[a], [b]}) = L(K(n), {[a], [b]}) = 1. As such, we get:

L(K(n), toMerge(n)) = L(K(n), (toMerge ∪ toMerge′) \ {[a], [b]})
= L(K(n), toMerge \ {[a], [b]}) + L(K(n), toMerge′ \ {[a], [b]})
= L(K(n), toMerge)− L(K(n), {[a], [b]})
= L(K(n), toMerge)− 1

= L(K(4), toMerge)− 1

< L(K(4), toMerge)

In the third equality, we have used the fact that {[a], [b]} ∈ toMerge to transform the set removal into a
subtraction. The term L(K(n), toMerge′ \ {[a], [b]}) is simplified because L(K(n), toMerge′) = 0.

Since K(4) = K(n), we have |dom(M(4))| = |dom(M(n))|, and the measure decreases due to the decrease
of the second component of m.

Loop (4): correctness.
We show that the invariants hold at the end of each iteration. The branch (4a) trivially maintains the LI.
For branch (4b), we first have to ensure that the precondition of Merge are satisfied. These require to

have [a] and [b] distinct, be the representatives of their equivalence class and to have the same kind, which
we naturally have thanks to the previous calls to Q-Find, the check for equality and the LIH respectively.
The validity of K(4) is guaranteed thanks to the LIH.

Starting with the first loop invariant, Merge states that K(n) is valid and that the set of ECH of K(3) and
K(n) are identical 1. By Q-MG2 and this observation, toMerge′ ⊆ K(n) and by the LIH, toMerge(n) ⊆ K(n).
By Q-MG2, the pairs in toMerge′ have the same kind.
To prove that the pairs in toMerge have the same kind under K(n), we apply Q-MG1 to deduce that each
[x] ∈

⋃
toMerge keeps the same kind under K(n) and apply the LIH to deduce that the members of the

pairs have the same kind.
It remains to show the second loop invariant. It is beneficial to show that KfS � T  K(4)f ς(4)([a]) �

ς(4)([b]). Thanks to the LIH, we have K f S � T  K(4) fM(K(4), toMerge). By using the definition of M
and because {[a], [b]} is in toMerge, we have K f S � T  K(4) f ς(4)([a]) � ς(4)([b]).

We break the entailment of the second loop invariant into sub-entailments and prove that these hold.
1. K f S � T  K(n):

Straightforward.

2. K f S � T 
c

cstrts(n):
Straightforward application of the LIH with Q-MG4 and noting that we have “access” to the entailed
conjuncts thanks to having K f S � T  K(4) f ς(4)([a]) � ς(4)([b]).

3. K f S � T M(K(n), toMerge(n)):
We note that showing K f S � T M(K(n), toMerge(n) ∪ {[a], [b]}) proves the desired result as well;
it is less cumbersome to prove this claim instead. We note that [a] and [b] are still contained in K(n),
so any operation applied to them remains valid.
We can split M(K(n), toMerge(n) ∪ {[a], [b]}) into M(K(n), toMerge′) f M(K(n), toMerge(4)). The
entailment K f S � T M(K(n), toMerge′) is straightforward.
Showing K f S � T M(K(n), toMerge) is a bit tricky because we do not have ς(4) = ς(n). Instead,
Merge gives the weaker property that:

K(4) f ς(4)([a]) � ς(4)([b]) 
k
{ς(4)([x]) � ς(n)([x]), [x] ∈ K(4)}

1Note that Merge reduces by one the number of equivalence classes, not the number of equivalence classes handles: these
are simply regrouped into the same equivalence class.
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Unfolding M , using the LIH and applying lemma 3.3.8 yields:

K f S � T
 K(4) f ς(4)([a]) � ς(4)([b])


k
{ς(4)([x]) � ς(n)([x]), [x] ∈ K(4)}f

k{
ς(4)([x]) � ς(4)([y]) : {[x], [y]} ∈ toMerge

}


k{
ς(n)([x]) � ς(n)([y]) : {[x], [y]} ∈ toMerge

}
,M(K(n), toMerge)

Returned result (5).
The postconditions of Compact are respected by the LI of (4).

A.6 ECs processing

The task of finding and creating ECs is divided into multiple functions. We prove them in the following
order:

1. T -FindOrCreateEC

2. TEC-FindOrCreateEC

3. TEC-TryFindApplied

4. TEC-CreateEC

A.6.1 T -FindOrCreateEC
Proof. By induction on the size of T with a case analysis on the shape of T . K, BX and ~vX are held abstract.
T -FindOrCreateECVec and B-FindOrCreateEC contain recursive calls to T -FindOrCreateEC. They are

meant to be unfolded. It is then straightforward to check that all recursive calls strictly decrease the size of
the argument.

Case (1).
We remark that ς(X) = X, taking care of the definedness and equivalence requirements present in

Q-FEC2 and Q-FEC7 respectively. Q-FEC3 is vacuous. Q-FEC4 is straightforward.

Case (2).
We first need to unfold the definition of T -FindOrCreateECVec at (2a), which unveils a recursive call

within a loop.
If we return at (2b), the postconditions are held (in that case, we must have create = false by the IH).

Therefore, we focus on (2c).
Returning back to the unfolding of T -FindOrCreateECVec, by the IH, all the K′i within the loop satisfy Q-

FEC1 and Q-FEC6. We thus have a chain of entailment K  K′1  K′2  ...  K(1) and K,K′1,K
′
2, ...,K

(1)

all agree on common domains. Combining this observation with the IH, ς(1) is defined for all S′i ∈ ~S′.
Furthermore, ~S and ~S′ have the same kind under K(1). We also deduce that K entails ς(1)(~S) � ς(1)(~S′),
therefore it entails ς(1)(F [~S]) � ς(1)(F [~S′]) as well.

It remains to show Q-FEC3 and Q-FEC4. We remark that the former is vacuous. By the IH, all S′i satisfy
the property stated by Q-FEC3 and Q-FEC4 with inHead = false. All the possible forms for each S′i satisfy
TEC-in-Θ-Inv(S′i, false, dom(BX)). Therefore, TEC-in-Θ-Inv(F [~S′], true, dom(BX)) holds.

Case (3). All but two preconditions for TEC-FindOrCreateEC are directly implied by those of
T -FindOrCreateEC. We note that X and p.Q are idempotent under ς (because they do not contain
any ECH), as such, ς(T ) is defined. It is straightforward to check that TEC-in-Θ-Inv(T, true, dom(BX))
holds. The second precondition, which restrains the form of T , is guaranteed by having filtered these cases
out with (1) and (2).
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The postconditions of T -FindOrCreateEC are ensured by TEC-FindOrCreateEC.

Case (4).
Using a similar reasoning as (2), we get to conclude that all S′i satisfy the property stated by Q-FEC3

and Q-FEC4, as well as the assertion TEC-in-Θ-Inv(S′i, false,dom(BX)).
We only consider (4d) since (4b) is trivial and (4c) straightforward.
In (4d), we call TEC-FindOrCreateEC which has two extra sets of requirements that is not directly

covered by the assumptions of T -FindOrCreateECVec. We start with the first one.
Because ς(1)(~S′) is defined, ς(1)(TyCon[~S′]) is defined as well. For TEC-in-Θ-Inv(TyCon[~S′], true,

dom(BX)) 2, we need to prove that TEC-in-Θ-Inv(S′i, false, dom(BX)) is true for all S′i ∈ S̄′, which
we already have. Furthermore, if TyCon is a bound abstract type constructor, the argument inHead of
TEC-in-Θ-Inv must be set to true, which is the case by assumption.

The second set of requirements has already been taken care of at (2).

Now that we have ensured the well-formedness of the call to TEC-FindOrCreateEC, we can turn our
attention on proving the claims Q-FEC1 through Q-FEC7.
TEC-FindOrCreateEC guarantees the same set of properties as T -FindOrCreateEC for K(2) and T ′,

so the conclusion is rather straightforward. K, K(1) and K(1), K(2) agree on common domains, so K,
K(2) agree as well, satisfying Q-FEC1. Q-FEC2 stems from TEC-FindOrCreateEC and the fact that T
has the same kind as TyCon[~S′]. Q-FEC5 is straightforward. Q-FEC6 is straightforward as well because
K  K(1)  K(2).

The properties Q-FEC3 and Q-FEC4 are guaranteed by TEC-FindOrCreateEC.
It remains to prove Q-FEC7. We have at our disposal:

K  ς(1)(~S) � ς(1)(~S′) From (4a)

K(1)  ς(2)(TyCon[~S′]) � ς(2)(T ′) From (4d)

Since T = TyCon[~S], we also have K  ς(1)(T ) � ς(1)(TyCon[~S′]).
Because K, K(1) and K(2) agree on common domains, we get that:

K  ς(2)(T ) � ς(2)(TyCon[~S′])

K(1)  ς(2)(TyCon[~S′]) � ς(2)(T ′)

With lemmas 3.3.6 and 3.3.8, we have:

K(1) f ς(2)(T ) � ς(2)(TyCon[~S′])  ς(2)(T ) � ς(2)(T ′)

Since K  K(1) f ς(2)(T ) � ς(2)(TyCon[~S′]), we have K  ς(2)(T ) � ς(2)(T ′) which is the desired result.

Case (5).
By the IH, K(1) and each S′i,j satisfy the properties stated by Q-FEC1 through Q-FEC7. As such,

ς(1)(|ni&mi
j S′i,j) is defined. Moreover, each S′i,j is either an applied type constructor of a class, of a bound

abstract type constructor , or of the form [s] or [s]
[
~X
]
with ~X = dom(BX). Then, the DNF |ni&mi

j S′i,j
satisfies the TEC-in-Θ-Inv predicate in a head position with bound variables dom(BX) (�).

These observations allows us to conclude that the call to TEC-SimplifyDNF is well-formed. If S′ is an
ECH (branch (5c)), the properties Q-FEC3 and Q-FEC4 are trivially satisfied. On the other hand, if we
reach (5d), the conclusion is straightforward.

It remains (5e). This case is similar to (4) except for proving that the preconditions of
TEC-FindOrCreateEC hold. In particular, we need to show that TEC-in-Θ-Inv(S′, true, dom(BX)).
We first remark that TEC-SimplifyDNF may only remove terms in the DNF. Then, if S′ remains a
DNF, the predicate is satisfied as point out by (�). Otherwise, if S′ is not a DNF, it must satisfy
TEC-in-Θ-Inv(S′, true,dom(BX)) by Q-FEC4 of the IH because S′ cannot be an ECH (such case has
been filtered out by (5c)).

2TEC-FindOrCreateEC requires TyCon[ ~S′] to satisfy the predicate in a head position even if we are in a non-head context.
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Now that we have ensured that that the call to TEC-FindOrCreateEC is well-formed, we apply the same
reasoning as for (4) to glue all pieces together.

Case (6).
As stated by the associated comment, this case is a specialized version of (7). As such, we prove its

correctness by showing (7).

Case (7).
We first unfold the definition of B-FindOrCreateEC at (7a), revealing two recursive calls.
We should ensure that the recursive calls are well-formed. By assumptions, K is valid and by the IH, K′

(K(1) in the body of the considered case) keeps its validity throughout the updates. It is straightforward to
check that Btmp satisfies P-FEC2.

We now analyze B′Y . If L
′
i and U ′i are not NIL, then their shapes are described by properties Q-FEC3

and Q-FEC4 of the IH in a head position. For all possible shapes, L′i and U ′i satisfy TEC-in-Θ-Inv in a
head position under the type variables X̄ ∪ Ȳ . With proper prior α-renaming of Ȳ (as stated by the comment
on the analyzed case (7)), we have Ȳ # X̄: as such, we have BEC-in-Θ-Inv(B′Y , X̄). By P-FEC2, we have
BEC-in-Θ-Inv(BX , ∅); it is therefore straightforward to check that we have BEC-in-Θ-Inv(BXBY , ∅).

We are also interested in showing that ς(1)(B′Y ) is defined. We need to ensure that ς(1)(L′i) and ς(1)(U ′i)

are defined, for all Yi ∈ ~Y with (L′i, U
′
i) = B′Y (Yi). For each iterated Yi, the associated ς(a) is defined for

L′i. Similarly, the associated ς(n) is defined for U ′i . By Q-FEC1 of the IH, ς, and all the ς(a) and ς(n) within
the loop agree on common domains. As such, for all Yi, ς(1)(L′i) and ς(1)(U ′i) must be defined because the
domain of ς(1) extends the domain of the iterated ς(a) and ς(n).

These observations allow us to conclude that the recursive call to T -FindOrCreateEC at (7c) is well-
formed. Therefore, by the IH, K(2) and S′ satisfy Q-FEC1 through Q-FEC7. Because the return at (7d) is
straightforward, we focus on the else branch at (7e).
TEC-FindOrCreateEC requirements are all straightforward except for:

ς(2)([~vY ~Y / B′Y ] =>>S′)↓ ≡ ς(2)(B′Y )↓ ∧ ς(2)(S′)↓

TEC-in-Θ-Inv([~vY ~Y / B′Y ] =>>S′, true, BX , ~vX)

By the IH, ς(2)(S′) is defined. By the IH, ς(1) and ς(2) agree on common domain, so ς(2)(B′Y ) is defined
as well.

For the second requirement, we need to show:

dom(B′Y ) = Ȳ ∧ BEC-in-Θ-Inv(B′Y , X̄) ∧
TEC-in-Θ-Inv(S′, true, X̄ ∪ Ȳ )

The first conjunct is straightforward. We already have the second from an earlier observations. For the
third conjunct, we employ the facts about the shape of S′, which must obey Q-FEC4.

We have ensured that the call to TEC-FindOrCreateEC situated in the branch at (7e) is well-formed.
TEC-FindOrCreateEC states that K(3) and T ′ satisfy Q-FEC1-Q-FEC7.

Using a similar reasoning as for the analysis of (4), we can conclude Q-FEC1 through Q-FEC6.
Unsurprisingly, showing Q-FEC7 is different from (4). We are looking to prove the following:

K  ς(3)([~vY ~Y / BY ] =>>S) � ς(3)(T ′)

≡

K  [~vY ~Y / BY ] =>>S � ς(3)(T ′)

where we have removed ς(3)(·) due to its idempotence on T types.
From TEC-FindOrCreateEC and using the fact that K  K(2), we have:

K  ς(3)([~vY ~Y / B′Y ] =>>S′) � ς(3)(T ′)

≡

K  [~vY ~Y / ς(3)(B′Y )] =>> ς(3)(S′) � ς(3)(T ′)
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where we have “pushed” ς(3)(·) within the HK abstraction in the left member. As stated by the comment
of the branch, it is possible to α-rename ~Y to have Ȳ fresh, ensuring that the domain of ς(3) is disjoint from
Ȳ .

Our goal is then to show the following:

K  [~vY ~Y / BY ] =>>S � [~vY ~Y / ς(3)(B′Y )] =>> ς(3)(S′)

as we can connect [~vY ~Y / BY ] =>>S and ς(3)(T ′) together in an equality with lemma 3.3.8.
To do so, we expand the equality into two inequalities and employ the (⇐= ) direction of lemma 3.4.6.

We need to resort to using the “low-level” concept of entailment with φ, γ.
Let φ, γ be any assignments satisfying K. Then, we are striving to show:

∀ ~A ∈ (T cl)|
~Y |. φ[~Y 7→ ~A], γ |= BY =⇒ φ[~Y 7→ ~A], γ |= ς(3)(B′Y )f S � ς(3)(S′)

∀ ~A ∈ (T cl)|
~Y |. φ[~Y 7→ ~A], γ |= ς(3)(B′Y ) =⇒ φ[~Y 7→ ~A], γ |= BY f ς

(3)(S′) � S

where we have expanded the � constraint into two � constraints.
It is sufficient to show:

∀ ~A ∈ (T cl)|
~Y |. (φ[~Y 7→ ~A], γ |= BY ⇐⇒ φ[~Y 7→ ~A], γ |= ς(3)(B′Y ))

∀ ~A ∈ (T cl)|
~Y |. φ[~Y 7→ ~A], γ |= S � ς(3)(S′)

Let ~A be any element of (T cl)|
~Y |. Before continuing, we remark that, by assumptions, we have Ȳ # ftv(K).

This allows us to apply lemma 3.3.4 to conclude that he assignments φ[~Y 7→ ~A], γ satisfy K as well.
As usual, we start with the easy part, that is:

φ[~Y 7→ ~A], γ |= S � ς(3)(S′)

From the recursive call at (7c), we deduce:

φ[~Y 7→ ~A], γ |= ς(2)(S) � ς(2)(S′)

≡

φ[~Y 7→ ~A], γ |= S � ς(3)(S′)

where we have remove ς(2)(·) on the left-handside member due to being an T (that is, not containing
any ECH) and have used the fact that ς(3) � K(2) = ς(2) (by Q-FEC1).

To conclude the case and the proof for T -FindOrCreateEC, it remains to show:

φ[~Y 7→ ~A], γ |= BY ⇐⇒ φ[~Y 7→ ~A], γ |= ς(3)(B′Y )

The bounds constraint BY expands into:
k
{Li � Yi f Yi � Ui : (Yi, (Li, Ui)) ∈ BY }

while ς(3)(B′Y ) expands into (with some rewriting):
k
{ς(3)(L′i) � Yi f Yi � ς(3)(U ′i) : (Yi, (L

′
i, U
′
i)) ∈ B′Y }

The Yi is idempotent under ς(3)(·) because Ȳ is fresh and thus free in K.
From the unfolding of B-FindOrCreateEC at (7a), we have for every Yi ∈ ~Y :

φ[~Y 7→ ~A], γ |= ς(3)(Li) � ς(3)(L′i)f ς
(3)(Ui) � ς(3)(U ′i)

≡

φ[~Y 7→ ~A], γ |= Li � ς(3)(L′i)f Ui � ς(3)(U ′i)

where (Li, Ui) = BY (Yi) and (L′i, U
′
i) = B′Y (Yi). We have again used the fact that ς(3), the ς(a) and ς(n)

within the loop all agree on common domains.
Then, it is a matter of assembling the pieces together with lemma 3.3.8.
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A.6.2 TEC-FindOrCreateEC

Proof. By a case analysis on the form of T .
Case (1).
We are interested in showing that the returned values at (1a.i), (1c), (1d) and (1e) satisfy the postconditions

of TEC-FindOrCreateEC.
Of these, only the return at (1a.i) is of interest, as the other ones are straightforward.

TEC-TryFindApplied and TEC-CreateEC requirements are trivially satisfied and their postconditions
correspond to TEC-FindOrCreateEC.

Let us then show that the return at (1a.i) satisfies the postconditions. Since K is left unchanged, Q-FEC1,
Q-FEC6 are trivially satisfied.

We now look at Q-FEC2. We have ς(R(h)) = TR(R(h)) which is defined, so ς(R(h))↓. We remark that
TR(R(h)) and h are contained inM(R(h)) as stated by K-INV5. As such, their underlying type must have
the same kind (by K-INV8), therefore, since S has simple kind, so must TR(R(h)) = ς(R(h)).

Q-FEC3 and Q-FEC4 are straightforward.
It remains Q-FEC7: we are interested in showing K  ς(T ) � ς(R(h)). TEC-Equiv states we have

K  ς(T ) � ς(Θ(h)). By K-INV5 and lemma A.2.2, we have K  ς(R(h)) � ς(Θ(h)). Applying lemma 3.3.8
concludes this subcase.

Case (2).
We would like to show that all exit points (2a.i), (2b) and (2c) hold the claim of TEC-FindOrCreateEC
Since (2b) and (2c) are straightforward, we focus on (2a.i).
The postconditions Q-FEC1, Q-FEC5, Q-FEC6 are trivially satisfied.
For Q-FEC2, we first remark that Θ(h) and T must have the same kind under K, otherwise, we would

not have matched (2a). We deduce that R(h) and Θ(h) have the same kind under K, so R(h) and T have
the same kind under K as well.

Q-FEC3 and Q-FEC4 are straightforward.
We are once again left with Q-FEC7, for which we would like to prove

K  ς([~v~Y / B1] =>>S1) � ς(R(h))

≡ (�)

K  [~v~Y / ς(B1)] =>> ς(S1) � ς(R(h))

We have “pushed” ς(·) within the HK abstraction in the left member. This is possible thanks to the
freshness of Ȳ .

By definition of ς, we have ς(R(h)) = Θ(TR(R(h))). Let us analyze the shape of Θ(TR(R(h))).
Since R(h) is higher-kinded, Θ(TR(R(h))) is of the form [~v~Y / BU ] =>>U (up to α-renaming). Because h

and TR(R(h)) both belong toM(R(h)), we have by lemma A.2.1:

K  ς(Θ(h)) � ς(Θ(TR(R(h))))

≡

K  ς([~v~Y / B2] =>>S2) � ς([~v~Y / BU ] =>>U)

≡

K  [~v~Y / ς(B2)] =>> ς(S2) � [~v~Y / ς(BU )] =>> ς(U)

Using the primary goal (�), it is then sufficient to prove:

K  [~v~Y / ς(B1)] =>> ς(S1) � [~v~Y / ς(B2)] =>> ς(S2)

To do so, we need to employ the (⇐= ) direction of lemma 3.4.6. Then, the goal becomes:

∀ ~A ∈ (T cl)|
~Y |. φ[~Y 7→ ~A], γ |= ς(B1) =⇒ φ[~Y 7→ ~A], γ |= ς(B2)f ς(S1) � ς(S2)

∀ ~A ∈ (T cl)|
~Y |. φ[~Y 7→ ~A], γ |= ς(B2) =⇒ φ[~Y 7→ ~A], γ |= ς(B1)f ς(S2) � ς(S1)
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for all φ, γ satisfying K, where the quantified ~A have the same kind as ~Y .
We prove the first subgoal; the second one is analogous.
Let φ, γ be any assignments satisfying K, and let any ~A ∈ (T cl)|

~Y | with the same kind as ~Y . Then, since
Ȳ is fresh, φ[~Y 7→ ~A], γ satisfy K as well (by lemma 3.3.4).

From TEC-Equiv, we obtain φ[~Y 7→ ~A], γ |= ς(S1) � ς(S2).
Similarly, since dom(B1) = dom(B2) = Ȳ , we get from BEC-Equiv:

φ[~Y 7→ ~A], γ |= ς(B1) =⇒ φ[~Y 7→ ~A], γ |= ς(B2)

thus concluding this subcase.

A.6.3 TEC-TryFindApplied

Proof. By analyzing all points of return. Returning NIL trivially satisfies the claim. We are therefore
interested in the returns at (5b) and (6).

It is straightforward to check that the calls to TEC-TryMatch and BEC-Satisified at (1) and (3) are
well-formed; the expression at (1) is meant to extend σ to satisfy the requirements of BEC-Satisified.
The call to TEC-TryFindECOfApplied at (5a) requires applied to be closed and to have ς(applied) defined.
The first requirement is ensured by the if guarding this case. For the second requirement, we observe that
the head ς(R(h)) is defined by validity of K and the definedness of ς( ~A) is guaranteed by TEC-TryMatch.

We can now go back on analyzing (5b) and (6).
We start with (5b). Q-FEC2, Q-FEC3 and Q-FEC4 are straightforward. The property Q-FEC7 is ensured

by TEC-TryFindECOfApplied.

The return at (6) demands a bit more work. For Q-FEC2, ς is defined for applied as observed. Furthermore,
applied is of simple kind like T . Q-FEC3 is vacuous by the guarding if.

For Q-FEC4, we need to ensure that TEC-in-Θ-Inv(applied, true, dom(BX))) holds – which is equivalent
to showing that all Ai ∈ ~A satisfy the TEC-in-Θ-Inv predicate in a non-head position and bound variables
dom(BX). By assumptions, T satisfies the predicate in a head position and bound variables dom(BX). Since
T has a simple kind and that we have filtered out the cases where it is of the form [a], X or p.Q, it must be
a DNF or an applied type constructor. If T is an applied type constructor, all Ai must therefore appear in
an argument position, thus satisfying TEC-in-Θ-Inv(Ai, false, dom(BX))). Otherwise, (if T is a DNF),
then an Ai appearing in an argument position within a head of T satisfies the requirement. Indeed, if Ai is
a head, it must be either of the form [a], or of the form [a]

[
~V
]
, or of the form Cls[~S] or p.F [~S] (such that

TEC-in-Θ-Inv(~S, false, dom(BX)) holds). All these forms satisfy TEC-in-Θ-Inv(Ai, false, dom(BX)).

Unsurprisingly, we are left with Q-FEC7. The goal is to prove:

K  ς(T ) � ς(R(h)[ ~A])

From TEC-TryMatch, we know that:

K  ς([~Y 7→ ~A]S) � ς(T )

We start by having a look at R(h). We remark that TR(R(h)) and h are contained inM(R(h)) as stated
by K-INV5. As such, their underlying type must have the same kind (by K-INV8), therefore, Θ(TR(R(h)))

is of the form [~vY ~Y / BU ] =>>U (up to α-renaming of ~Y ).
These observations allows us to expand ς(R(h)[ ~A]), using the definition of ECH-SubstApply:

ς(R(h)[ ~A]) = [~Y 7→ ς( ~A)]U

Then, our goal becomes:

K  ς([~Y 7→ ~A]S) � [~Y 7→ ς( ~A)]U
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as lemma 3.3.8 allows us to connect ς(T ) and ς([~Y 7→ ~A]U) together.
We first remark that ς(U) = U because U does not contain any ECH (by K-INV7).
Next, we claim the following equalities:

ς([~Y 7→ ~A]S) = ς([~Y 7→ ς( ~A)]S) = [~Y 7→ ς( ~A)]ς(S)

The first equality comes from the fact that ς is idempotent under types with no ECH , which is the
case for ς( ~A). For the second equality, we observe that the codomain of [~Y 7→ ς( ~A)] and the domain of ς
are disjoint because the domain of ς is a subset of ECH whereas ς( ~A) does not contain any ECH . On the
other hand, the domain of [~Y 7→ ς( ~A)] and codomain of ς are subsets of T . Thanks to the freshness of ~Y , ~Y
appears free in the codomain of ς. As such, we can swap ς and [~Y 7→ ς( ~A)].

Our goal is then refined to:

K  [~Y 7→ ς( ~A)]ς(S) � [~Y 7→ ς( ~A)]U

We then remember that Θ(h) is [~vY ~Y / BY ] =>>S, and that TR(R(h)) and h belong both toM(R(h)).
Applying lemma A.2.1 gives us:

K  ς([~vY ~Y / BY ] =>>S) � ς([~v~Y / BU ] =>>U)

≡ [~vY ~Y / ς(BY )] =>> ς(S) � [~vY ~Y / ς(BU )] =>>U

We now need to employ the lower-level concepts of assignments. Let φ, γ be any assignments satisfying
K.

Using the � part of the above equality with the ( =⇒ ) direction of the lemma 3.4.6 gives us:

∀ ~A′ ∈ (T cl)|
~Y |. φ[~Y 7→ ~A′], γ |= ς(BY ) =⇒ φ[~Y 7→ ~A′], γ |= ς(BU )f ς(S) � U (�)

By BEC-Satisified, K  ς( ~A) / ς(BY ). With some rewriting, the entailed constraints expands into:
k
{[~Y 7→ ς( ~A)]ς(Li) � ς(Ai)f ς(Ai) � [~Y 7→ ς( ~A)]ς(Ui) : (Yi, (Li, Ui)) ∈ BY }

Since φ, γ satisfy K, they also satisfy the expanded entailed constraint.
Before continuing, it is important to point out that ς( ~A) is not closed, so we cannot instantiate the ~A′ in

(�) to ς( ~A). On the other hand, (φ, γ)ς( ~A) is closed. Because it is closed and by composition of φ, γ, the
assignments φ, γ satisfy the following as well:

k
{[~Y 7→ (φ, γ)ς( ~A)]ς(Li) � (φ, γ)ς( ~A)f

(φ, γ)ς( ~A) � [~Y 7→ (φ, γ)ς( ~A)]ς(Ui) : (Yi, (Li, Ui)) ∈ BY }

Then, with lemma 3.3.2, we have:

φ[~Y 7→ (φ, γ)ς( ~A)], γ |=
k
{ς(Li) � Yi f Yi � ς(Ui) : (Yi, (Li, Ui)) ∈ BY }

≡

φ[~Y 7→ (φ, γ)ς( ~A)], γ |= ς(BY )

We can instantiate the quantified ~A′ to (φ, γ)ς( ~A) from (�) and eliminate the implication, yielding:

φ[~Y 7→ (φ, γ)ς( ~A)], γ |= ς(BU )f ς(S) � U

With lemma 3.3.2, we almost get the � part of the goal:

φ, γ |= [~Y 7→ (φ, γ)ς( ~A)]ς(S) � [~Y 7→ (φ, γ)ς( ~A)]U

105



Because (φ, γ)ς( ~A) is closed and by composition of φ, γ, the assignments φ, γ also satisfy:

φ, γ |= [~Y 7→ (φ, γ)ς( ~A)]ς(S) � [~Y 7→ (φ, γ)ς( ~A)]U

corresponding to the � part of the goal.

We now employ the � part of the equality and apply lemma 3.4.6 again:

∀ ~A′ ∈ (T cl)|
~Y |. φ[~Y 7→ ~A′], γ |= ς(BU ) =⇒ φ[~Y 7→ ~A′], γ |= ς(BY )f U � ς(S) (F)

We can instantiate the quantified ~A′ to (φ, γ)ς( ~A) from (F). We note that we have obtained φ[~Y 7→
(φ, γ)ς( ~A)], γ |= ς(BU ) from the � derivation, enabling us to eliminate the implication:

φ[~Y 7→ (φ, γ)ς( ~A)], γ |= U � ς(S)

Applying lemma 3.3.2 and peeling off (φ, γ)(·) from ς( ~A) conclude this case.

A.6.4 TEC-CreateEC

We organize the proof as follows. First, we argue about the validity of the constructed T̃ . Next, we show
that K(1), K(2), K(3), K(4) and K(5) are all valid. We then show that they form an entailment chain and
that they are all entailed by K. We subsequently present some properties about the returned value. Finally,
we gather all results and show that the postconditions are satisfied.

A.6.4.1 Validity of T̃

We are interested in showing that ς(T̃ ) is defined and that TEC-in-Θ-Inv(T̃ ) holds. We remind that the
last two arguments of TEC-in-Θ-Inv default to true (for the head position) and ∅ (for the set of bound
type variables).

For branches (2a.i) and (2b.i) where ftv(T ) # X̄ and T̃ = T , ς(T̃ ) is defined thanks to the preconditions.
For the predicate satisfaction, no free type variable in T appear in X̄, as such, TEC-in-Θ-Inv(T̃ , true, X̄)
implies TEC-in-Θ-Inv(T̃ , true, ∅)

Otherwise, the form of T̃ depends on the kind of T .
Starting with (2a.ii), we have T̃ = [~vX ~X / BX ] =>>T . For the definedness, we get:

ς
(
[~vX ~X / BX ] =>>T

)
↓

≡
ς(BX)↓ ∧ ς(T )↓

which holds thanks to the preconditions.
To show TEC-in-Θ-Inv(T̃ ) ≡ TEC-in-Θ-Inv(T̃ , true, ∅), we unfold the definition for the HK case:

dom(BX) = X̄ ∧ BEC-in-Θ-Inv(BX , ∅) ∧
TEC-in-Θ-Inv(T, true, X̄)

dom(BX) = X̄ and BEC-in-Θ-Inv(BX , ∅) hold by P-FEC2. TEC-in-Θ-Inv(T, true, X̄) holds by the
preconditions.

For the branch at (2b.ii), we have T̃ = [~vX~vY ~X~Y / BX , BY ] =>>S. Showing ς(T̃ )↓ proceeds similarly:

ς
(
[~vX~vY ~X~Y / BX , BY ] =>>S

)
↓

≡
ς(BX)↓ ∧ ς(BY )↓ ∧ ς(S)↓
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ς(BX)↓ holds by P-FEC2. ς(BY ) and ς(S) are defined because ς(T ) is defined (from which BY and S
come).

To conclude this part, it remains to show TEC-in-Θ-Inv(T̃ ). Unfolding the predicate for the HK case,
we get:

dom(BX , BY ) = X̄ ∪ Ȳ ∧ BEC-in-Θ-Inv((BX , BY ), ∅) ∧
TEC-in-Θ-Inv(S, true, X̄ ∪ Ȳ )

We have dom(BX , BY ) = X̄ ∪ Ȳ by P-FEC2 and by TEC-in-Θ-Inv(T, true, X̄).
For BEC-in-Θ-Inv((BX , BY ), ∅), we have at our disposal (by the preconditions):

BEC-in-Θ-Inv(BX , ∅) ∧ BEC-in-Θ-Inv(BY , X̄)

Expanding this conjunction and remembering that X̄ = dom(BX) gives:

dom(BX) # ∅ ∧ dom(BY ) # dom(BX) ∧
∀(L,U) ∈ Im(BX).

[
TEC-in-Θ-Inv(L, true, dom(BX)) ∧

TEC-in-Θ-Inv(U, true, dom(BX))
]
∧

∀(L,U) ∈ Im(BY ).
[
TEC-in-Θ-Inv(L, true, dom(BX) ∪ dom(BX)) ∧

TEC-in-Θ-Inv(U, true, dom(BX) ∪ dom(BY ))
]

We can almost fold this expression into BEC-in-Θ-Inv((BX , BY ), ∅). To do so, we need to show that:

∀(L,U) ∈ Im(BX).
[
TEC-in-Θ-Inv(L, true, dom(BX)) ∧

TEC-in-Θ-Inv(U, true,dom(BX))
]

implies

∀(L,U) ∈ Im(BX).
[
TEC-in-Θ-Inv(L, true, dom(BX) ∪ dom(BY )) ∧

TEC-in-Θ-Inv(U, true, dom(BX) ∪ dom(BY ))
]

As stated by the comment in (2b), it is possible to α-rename ~Y to have Ȳ #BX . Then, for all (L,U) ∈
Im(BX), we have ftv(L,U) # dom(BY ) which implies the desired conclusion. We can then fold back the
expression back into BEC-in-Θ-Inv((BX , BY ), ∅).

Finally, TEC-in-Θ-Inv(S, true, X̄ ∪ Ȳ ), stems from the assumptions TEC-in-Θ-Inv(T, true, X̄) which
unfolds to the HK case (8) (since T = [~vY ~Y / BY ] =>>S).

A.6.4.2 Validity for constructed K

We start with K(1). All but K-INV3, K-INV8, K-INV6, K-INV7, and K-INV15 are straightforward.
For K-INV3, we remark that ς(T̃ )↓ is equivalent to [x] ∈ T̃ =⇒ [x] ∈ Q-AllMembers(Q).
K-INV8 holds because ς(T̃ ) and T̃ have the same kind.
K-INV6 holds as well; T̃ satisfies the TEC-in-Θ-Inv predicate with default arguments as shown earlier.

It is not required for ς(T̃ ) (picked as the type representative) to satisfy the predicate.
For K-INV7, we remark that Θ(1)(hR) = ς(T̃ ) does not contain any ECH . Indeed, we have shown that

ς(T̃ ) is defined; as such, all ECH are substituted into types not containing ECH thanks to K-INV7 of K.
For K-INV15 we first remark that ς(1) is an extension of ς. Then, because ς is defined on all T contained

in Θ, so must ς(1). It remains to show that ς(1) is defined for T̃ and ς(T̃ ). We note that ς(T̃ ) does not contain
any ECH , so ς(T̃ ) is idempotent under ς(1). Because [a] is fresh, it cannot appear in T̃ (which is built from
T ). Therefore, ς(1)(T̃ ) = ς(T̃ ) for which we previously have shown definedness.

We now move on with K(2), on which we only need to show that GS satisfies K-INV1 and K-INV12. If
we match (5a), these hold thanks to TEC-Composition. Otherwise, they trivially hold by validity of K(1).
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K(3) validity is straightforward: we do not require anything special from G
(3)
EC excepts that it may only

refer to TH and ECH contained in dom(Θ) and dom(M), which is ensured by TEC-Composition.

The validity of K(4) is ensured by TEC-Composition as well. Finally, the validity of K(5) is straightfor-
ward.

A.6.4.3 Entailment of K

We start with the easy part. It is straightforward to check that we have K(1)  K(2)  K(3)  K(4)  K(5).
Indeed, the interpretation of K relies onM, Θ, Q, I and TR and these structures are left untouched for the
mentioned K.

For K  K(1), we need to show K-to-C(K)  K-to-C(K(1)), or in its expanded form:
k
{ς([x]) � ς([y]) : ([x], [y]) ∈ E�}︸ ︷︷ ︸

C�

f
k
{ς([r]) � ς(Θ(h)) : ([r], h̄) ∈M, h ∈ h̄}︸ ︷︷ ︸

C�

f

k
{p : T : (p, T ) ∈ I}︸ ︷︷ ︸

Cp


k
{ς(1)([x]) � ς(1)([y]) : ([x], [y]) ∈ E(1)

� }︸ ︷︷ ︸
C

(1)
�

f
k
{ς(1)([r]) � ς(1)(Θ(1)(h)) : ([r], h̄) ∈M(1), h ∈ h̄}︸ ︷︷ ︸

C
(1)
�

f

k
{p : T : (p, T ) ∈ I(1)}︸ ︷︷ ︸

C
(1)
p

Because E� = E
(1)
� , and that ς(1) and ς agree on common domain, the subtyping constraint set in the

conclusion is trivially entailed by the antecedent. I is left untouched i.e. I = I(1). As such, Cp and C(1)
p

cancel out.
Employing the definition of K(1), we can rewrite C(1)

� as follows:

C
(1)
�

≡
k
{ς([r]) � ς(Θ(h)) : ([r], h̄) ∈M, h ∈ h̄}︸ ︷︷ ︸

=C�

f

k{
ς(1)([r]) � ς(1)(Θ(1)(h)) : ([r], h̄) ∈ {([a], {hT̃ , hR})}, h ∈ h̄

}
≡

C� f ς
(1)([a]) � ς(1)(Θ(1)(hR))f ς(1)([a]) � ς(1)(Θ(1)(hT̃ ))

≡
C� fΘ(1)(hR) � ς(1)(ς(1)(T̃ ))fΘ(1)(hR) � ς(1)(T̃ )

≡
C� f ς(T̃ ) � ς(T̃ )f ς(T̃ ) � ς(T̃ )

with ς(1)(T̃ ) = ς(T̃ ) because T̃ cannot contain [a] due to [a]’s freshness.
Since C� is contained in the antecedent and that ς(T̃ ) � ς(T̃ )f ς(T̃ ) � ς(T̃ ) is a tautology, this concludes

the proof for K  K(1).
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A.6.4.4 Equivalence of T and the returned result T ′

We are essentially interested in showing Q-FEC7: K  ς(5)(T ) � ς(5)(T ′). Because K  K(5), showing
K(5)  ς(5)(T ) � ς(5)(T ′) implies the primary goal.

We proceed by a case analysis analogous to the branching at (2).
Case ftv(T ) # X̄.
Then, T ′ = [a] and the goal is to prove that K(5)  ς(5)(T ) � ς(5)([a]).
Since [a] 6∈ T , we have ς(5)(T ) = ς(T ). Furthermore, by definition, we have ς(5)([a]) = Θ(1)(hR) = ς(T̃ ).

We also have T̃ = T , thus concluding this case.

Case ftv(T ) ∩ X̄ 6= ∅ ∧ kind(T ) = ?.
Then we have T ′ = [a]

[
~X
]
. The goal is to prove that K(5)  ς(5)(T ) � ς(5)([a]

[
~X
]
).

As for the previous case, we have ς(5)(T ) = ς(T ). We also have:

ς(5)([a]) = Θ(1)(hR) = [~vX ~X / ς(BX)] =>> ς(T )

As such, we get ς(5)([a]
[
~X
]
) = [ ~X 7→ ~X]ς(T ) = ς(T ), concluding this case.

Case ftv(T ) ∩ X̄ 6= ∅ ∧ kind(T ) = κ⇒ ?.
We have T = [~vY ~Y / BY ] =>>S and T ′ = [~vY ~Y / BY ] =>> [a]

[
~X, ~Y

]
. The goal is to prove:

K(5)  ς(5)([~vY ~Y / BY ] =>>S) � ς(5)([~vY ~Y / BY ] =>> [a]
[
~X, ~Y

]
)

Due to the freshness of [a], it cannot appear in BY or S. Then, it is equivalent to prove:

K(5)  [~vY ~Y / ς(BY )] =>> ς(S) � [~vY ~Y / ς(BY )] =>> ς(5)([a]
[
~X, ~Y

]
)

We have:

ς(5)([a]) = Θ(1)(hR) = [~vX~vY ~X~Y / ς(BX), ς(BY )] =>> ς(S)

and as such, ς(5)([a]
[
~X, ~Y

]
) = [ ~X 7→ ~X, ~Y 7→ ~Y ]ς(S) = ς(S) which concludes the case.

A.6.4.5 Postconditions

Q-FEC1 is straightforward because the substructures of K(5) in question are all extension of K. Validity
has been shown in A.6.4.2. Q-FEC2, Q-FEC3 and Q-FEC4 are straightforward. Q-FEC6 and Q-FEC7 have
been shown in A.6.4.3 and A.6.4.4 respectively.

A.7 Adding inequality

We would like to prove that TryAddInequality holds its claims.

Proof. Cases (1)-(3) are straightforward.
For (4), the only non-trivial points to prove are the validity of K′ – boiling down to showing property

K-INV10 – and the entailment K f ς([a]) � ς([b])  K′ f
c

cstrts.
We start with a proof by contradiction that G′� is forward-free: assuming the existence of a chain

[x1], ..., [xn] of length x ≥ 3 in G′� such that ([x1], [xn]) ∈ E′�, we show that such chain cannot, in fact, exist.
We first remark that there must be an i such that [xi] and [xi+1] are equal to [a] and [b] respectively.

Otherwise, the chain [x1], ..., [xn] inG′� is also a chain inG� with ([x1], [xn]) a forward edge, thus contradicting
the forward-freeness of G�. Therefore, all [xj ] with j ≤ i are contained in allLower and all [xk] with k ≥ i+ 1
are contained in allUpper. In particular, [x1] is in allLower and [xn] in allUpper. But E′� removes all edges
formed from the cross product between allLower and allUpper, contradicting the existence of the chain
[x1], ..., [xn] with the forward edge ([x1], [xn]).
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We now proceed to prove the acyclicity by contradiction. Assuming there is a cycle in G′�, we show that
there is a cycle in G� – a contradiction.

Let [x1], ..., [xn] be a cycle in G′�. We first remark that there cannot be cycles of length 1 due to [a] and
[b] being distinct. Furthermore, there must be an i such that [xi] and [xi+1] are equal to [a] and [b]; otherwise
we would have a cycle in G�. Then, [xi+1], ..., [xi] (equivalent to [b], ..., [a]) is chain in G′�. However, we have
ensured with the check at (3) to filter out such cases.

It remains to prove K f ς([a]) � ς([b])  K′ f
c

cstrts. To do so, we need to employ the interpretation
of K as a constraint, defined with K-to-C, that is, we are interested in proving K-to-C(K) f ς([a]) �
ς([b])  K-to-C(K′)f

c
cstrts.

If we unfold the definitions, our goal is to show that the following entailment holds.
k
{ς([x]) � ς([y]) : ([x], [y]) ∈ E�}︸ ︷︷ ︸

C�

f
k
{ς([r]) � ς(Θ(h)) : ([r], h̄) ∈M, h ∈ h̄}︸ ︷︷ ︸

C�

f

k
{p : T : (p, T ) ∈ I}︸ ︷︷ ︸

Cp

f ς([a]) � ς([b])


k
{ς ′([x]) � ς ′([y]) : ([x], [y]) ∈ E′�}︸ ︷︷ ︸

C′�

f
k
{ς ′([r]) � ς ′(Θ′(h)) : ([r], h̄) ∈M′, h ∈ h̄}︸ ︷︷ ︸

C′�

f

k
{p : T : (p, T ) ∈ I ′}︸ ︷︷ ︸

C′p

f {ς(Θ(D([l]))) � ς(Θ(D([u]))) : [l] ∈ allLowerdet, [u] ∈ allUpperdet}︸ ︷︷ ︸
cstrts

Because all sub-structures except G� are left untouched, we have ς = ς ′ and C�, C ′� and Cp, C ′p are
equal and cancel out.

To prove the entailment of C ′�, it is sufficient to remark that E′� is a subset of E� ∪ {([a], [b])}; C ′� is
therefore entailed by C� f ς([a]) � ς([b]).

For K f ς([a]) � ς([b])  cstrts, we claim it is sufficient to show:

K f ς([a]) � ς([b]) 
k
{ς([l]) � ς([u]) : [l] ∈ allLowerdet, [u] ∈ allUpperdet} (�)

Indeed, for all such [l] and [u], we have K  ς([l]) � ς(Θ(D([l]))) f ς([u]) � ς(Θ(D([u]))) by lemma
A.2.2 (D([l]) and D([u]) being defined, they are part of dom(M)). Assuming the claim K f ς([a]) � ς([b]) 
ς([l]) � ς([u]) we get:

K f ς([a]) � ς([b])  ς([l]) � ς([u])f ς([l]) � ς(Θ(D([l])))f ς([u]) � ς(Θ(D([u])))

 ς(Θ(D([l]))) � ς(Θ(D([u])))

where the first entailment stems from combining the previous entailments using lemma 3.3.6 while the
second is obtained by applying lemma 3.3.8.

Let us show (�). Let any [l] ∈ allLowerdet and [u] ∈ allUpperdet. From the definition of allLowerdet and
allUpperdet, there is a chain between [l] and [a] and between [b] and [u] in G�. From the corollary of lemma
A.2.3, we have K  ς([l]) � ς([a])f ς([b]) � ς([u]) and therefore K  ς([l]) � ς([u]).
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A.8 Merging

We proceed to prove the correctness of Merge and of MergeHelper.

A.8.1 Merge

Proof. We examine each statement, starting with the match at (1).
Case (1).
We claim that all execution paths reaching the end of the match expression without returning satisfy the

following assertions (�):

1. K-Valid(K(1)) ∧ ς = ς(1) fQ = Q(1) ∧ TR = T
(1)
R

2. K f ς([a]) � ς([b])  K(1) f
c

cstrts(1)

We note that 1. satisfy Q-MG1; for kind preservation, we remark that TEC-kind is based on ς which
remains untouched. Points 2. implies Q-MG4.

Cases (1a) and (1c.i).
These cases trivially satisfy the above claim.
Case (1b).
We do not have to hold the claim because this case exits the function. Since K = K′ and that the

returned constraint set is empty, it is sufficient to prove, for each postcondition set:

• Q-MG1: Nothing since K = K′.

• Q-MG2:
⋃

toMerge ⊆ K ∧ ∀{[x], [y]} ∈ toMerge. TEC-kind(K, [x]) = TEC-kind(K, [y])

• Q-MG3: ([a], [b]), ([b], [a]) 6∈ E� ∧ ExistUndirChain(G�, [a], [b]) ∧ L(K, toMerge) = 0

• Q-MG4: K f ς([a]) � ς([b]) M(K, toMerge)

We proceed sequentially.
Postcondition Q-MG2.
We have ([a], [x1]), ..., ([xn], [b]) ∈ E�; furthermore, all the ECH of these pairs have the same kind (by

K-INV10). They are all contained in K as well by K-INV2.
Postcondition Q-MG3.
As hinted earlier, it suffices to show K′ = K ∧ L(K, toMerge) = 0. Indeed, we claim that:

([a], [b]), ([b], [a]) 6∈ E� ∧ ExistUndirChain(G�, [a], [b])

holds in the analyzed case. Since we have matched a chain, ExistUndirChain(G�, [a], [b]) is necessarily
true. To show that ([a], [b]) 6∈ E� we use the “forward-free” property K-INV10 of the G� graph. In our case,
this invariant particularly specifies that ([a], [b]) 6∈ E�. We also have ([b], [a]) 6∈ E�: if it were the case, we
would have a loop in G�, which is not possible thanks to K-INV10.

Finally, L(K, toMerge) = 0 results due to toMerge being an (unordered) chain.
Postcondition Q-MG4.
By lemma A.2.3, we have K  ς([a]) � ς([x1])f ...f ς([xn]) � ς([b]). The lemma 3.3.6 allows us to add

ς([a]) � ς([b]) to both side of the entailment, giving us:

K f ς([a]) � ς([b])  ς([a]) � ς([b])f ς([a]) � ς([x1])f ...f ς([xn]) � ς([b])
 ς([a]) � ς([x1])f ...f ς([xn]) � ς([b])
M(K, toMerge)

where we have employed the definition of � and applied lemma 3.3.6.

Case (1c.ii).
Analogous to (1b)
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Case (1c.iii).
The call to TryAddInequality is well-formed by the preconditions of Merge.
We deduce the following:

1. K-Valid(K(1)) ∧ ς = ς(1) ∧Q = Q(1) ∧ TR = T
(1)
R

2. K f ς([a]) � ς([b])  K(1) f
c

cstrts(1)

Point 1. exactly matches the corresponding point of (�). Point 2. implies the corresponding point of (�).

Assertions (2) and (3).
The first assertion is useful because we only need to prove the second conjunct of Q-MG3. We proceed

by proving that all execution paths from the case at (1) satisfy the assertion.
Cases (1a) and (1c.i) respectively witness the fact that ([a], [b]) ∈ E� and ([b], [a]) ∈ E�. Cases (1b) and

(1c.ii) exit and never reach the assertion. Case (1c.iii) witnesses that there are no undirected path between
[a] and [b] under G�.

The second assertion is proven analogously and by noting that the call to TryAddInequality at (1c.iii)
states that ([a], [b]) ∈ E(1)

� since there are no undirected paths between [a] and [b].

Match (4).
In the same vein as the match expression at (1), we claim the following hold at the end of the match (F):

1. K-Valid(K(2)) ∧ ς = ς(2) ∧Q = Q(2) ∧ TR = T
(2)
R ∧G(1)

� = G
(2)
�

2.
⋃

toMerge(2) ⊆ K ∧ ∀{[x], [y]} ∈ toMerge(2). TEC-kind(K(2), [x]) = TEC-kind(K(2), [y])

3. K f ς([a]) � ς([b])  K(2) f
c

cstrts(2) fM(K(2), toMerge(2))

4. ¬([a] ∈ dom(D(2)) ∧ [b] ∈ dom(D(2)))

Case (4a).
We ensure first that the created constraint is well-formed: ς(1)(Θ(1)(D(1)([a]))) and ς(1)(Θ(1)(D(1)([b])))

must be defined and have the same kind. Since [a] and [b] are in K(1), that [a] and [b] are the representatives
of their class, that [a] and [b] are determined, and that K(1) is valid, these expressions are well-defined. By
K-INV5 and K-INV8, ς(1)(Θ(1)(D(1)([a]))) has the same kind as [a] (and similarly for [b]). Since [a] and [b]
have by assumptions the same kind, so do ς(1)(Θ(1)(D(1)([a]))) and ς(1)(Θ(1)(D(1)([b]))).

We should now ensure that the call to RemoveMember is well-defined. K(2) is naturally valid, and
D(2)([a]) ∈ dom(Θ(2)) by K-INV1. We have D(2)([a]) 6∈ Im(T

(2)
R ) by K-INV9.

Now that well-formedness is established, we show that the claim (F) holds. The first point holds by
RemoveMember. The second one holds as shown by the analysis for the well-formedness of toMerge(2).

For the third one, RemoveMember tells us we have K(1)  K(2). By applying lemma 3.3.6 to this
entailment and to the facts (�), we obtain K f ς([a]) � ς([b])  K(2) f

c
cstrts(1). Since ς = ς(2), we have

M(K(1), toMerge(1)) = M(K(2), toMerge(2)). It remains to show:

K f ς([a]) � ς([b])  ς(1)(Θ(1)(D(1)([a]))) � ς(1)(Θ(1)(D(1)([b])))

We have:

K f ς([a]) � ς([b]) K(1)

 ς(1)([a]) � ς(1)(Θ(1)(D(1)([a])))f

ς(1)([b]) � ς(1)(Θ(1)(D(1)([b])))

 ς(1)(Θ(1)(D(1)([a]))) � ς(1)(Θ(1)(D(1)([b])))

The second entailment stems from the validity of K(1) and lemma A.2.2.
To conclude this case, it remains to show point 4. From RemoveMember, we get to conclude that [a] 6∈

dom(D(2)), a sufficient condition for point 4.
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Case (4b).
We first ensure that the preconditions for PropagateDeterminacy are met. K(1) is valid. [b] is in K(1)

and the representative of its EC by the preconditions and the fact that Q = Q(1). ς(1)(Θ(1)(D(1)([a]))) is
defined using a similar reasoning as for the previous case. By K-INV14, Θ(1)(D(1)([a])) is determined under
K(1). From the previous observations, Θ(1)(D(1)([a])) and [b] have the same kind under K(1). By K-INV9,
D(1)([a]) is not contained in TR and by K-INV6, Θ(1)(D(1)([a])) satisfies TEC-in-Θ-Inv.

We obtain from PropagateDeterminacy:

1. K-Valid(K′) ∧Q(1) = Q′ ∧ T (1)
R = T ′R ∧G

(1)
� = G′�

2.
⋃

toMerge ⊆ K ∧ ∀{[x], [y]} ∈ toMerge. TEC-kind(K′, [x]) = TEC-kind(K′, [y])

3. K(1) f ς(1)([b]) � ς(1)(D(1)([a]))  K′ f
c

cstrtsfM(K′, toMerge(2))

With the facts (�), this in turns leads to (N) 3:

1. K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G
(1)
� = G′�

2.
⋃

toMerge(2) ⊆ K ∧ ∀{[x], [y]} ∈ toMerge(2). TEC-kind(K′, [x]) = TEC-kind(K′, [y])

3. K f ς([a]) � ς([b])  K′ f
c

cstrts′ fM(K′, toMerge(2))

We now perform an analysis on the branches (4b.i) and (4b.ii) and show that the claim (F) holds.
Branch (4b.i).
By applying the same reasoning as in (4a) to the above observations, we get to show points 1-4.
Branch (4b.ii).
Points 1-3 are satisfied since K(2) = K′. Point 4 is satisfied because [b] 6∈ dom(D′) = dom(D(2)).

Case (4c).
Analogous to (4b).

Case (4d).
Trivially holds thanks to the facts (N).

Statement (5).
We should first ensure that the call to MergeHelper is well-defined. Since Q = Q(2), the first set

of preconditions is held. We also have ¬([a] ∈ dom(D(2)) ∧ [b] ∈ dom(D(2))) from the the facts (F).
([a], [b]) ∈ E(2)

� ∨ ([b], [a]) ∈ E(2)
� holds as well as shown in the analysis of the assertion (3) and due to having

G
(1)
� = G

(2)
� .

We obtain (�):
1. K-Valid(K(3)) ∧ |dom(M(3))| < |dom(M(2))| ∧ ([x] ∈ K(2) ⇐⇒ [x] ∈ K(3)) ∧
∀[x] ∈ K(2). TEC-kind(K(2), [x]) = TEC-kind(K(3), [x])

2.
⋃

toMerge ⊆ K(2) ∧ ∀{[x], [y]} ∈ toMerge. TEC-kind(K(3), [x]) = TEC-kind(K(3), [y])

3. K(2)f ς(2)([a]) � ς(2)([b])  K(3)f
c

cstrtsfM(K(3), toMerge)f
c
{ς(2)([x]) � ς(3)([x]) : [x] ∈ K(2)}

Returned result (6).
We show that each postcondition set is satisfied.
Postcondition Q-MG1.
We remark that we have Q = Q(2). As such, [x] ∈ K ⇐⇒ [x] ∈ K(2) is true, so we get [x] ∈ K ⇐⇒

[x] ∈ K(3) as well. From (�), we know that the kinds of the EC are preserved from K(2) to K(3). Because
ς = ς(2), the kinds are preserved from K to K(2) and we therefore have ∀[x] ∈ K. TEC-kind(K, [x]) =
TEC-kind(K(3), [x]).

Postcondition Q-MG2.
Straightforward combination of the facts from (F), (�), and remembering that we have [x] ∈ K ⇐⇒

[x] ∈ K(3).

3Notice that we do not necessarily have G� = G
(1)
� , hence we simply report G

(1)
� = G′� back
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Postcondition Q-MG3.
We only have to show |dom(M(3))| < |dom(M)| because we have ¬

(
([a], [b]), ([b], [a]) 6∈ E�, as stated

by the proved assertion at (2). From (�), we have |dom(M(3))| < |dom(M(2))|. Since Q = Q(2), we have
dom(M) = dom(M(2)).

Postcondition Q-MG4.
Combining everything we have in our hands (and in particular exploiting the equality ς = ς(2)), we have:

K f ς([a]) � ς([b]) K(3) f
k

cstrts(2) f
k

cstrtsfM(K(2), toMerge(2))f

M(K(3), toMerge)f
k
{ς([x]) � ς(3)([x]) : [x] ∈ K(3)}

We almost have the desired expression: we have everything except M(K(3), toMerge(2)). Expanding
M(K(2), toMerge(2)) (and using ς = ς(2) again), we have:

M(K(2), toMerge(2)) ,
k{

ς([x]) � ς([y]) : {[x], [y]} ∈ toMerge(2)
}

With lemma 3.3.8 and
c
{ς([x]) � ς(3)([x]) : [x] ∈ K(3)}, we get:

k
{ς([x]) � ς(3)([x]) : [x] ∈ K(3)}f

k{
ς([x]) � ς([y]) : {[x], [y]} ∈ toMerge(2)

}


k{
ς(3)([x]) � ς(3)([y]) : {[x], [y]} ∈ toMerge(3)

}
,M(K(3), toMerge(2))

Putting back everything together:

K f ς([a]) � ς([b]) K(3) f
k

cstrts(2) f
k

cstrtsfM(K(2), toMerge(2))f

M(K(3), toMerge)f
k
{ς([x]) � ς(3)([x]) : [x] ∈ K(3)}

K(3) f
k

cstrts(2) f
k

cstrtsfM(K(3), toMerge ∪ toMerge(2))f
k
{ς([x]) � ς(3)([x]) : [x] ∈ K(3)}

as desired.

A.8.2 MergeHelper

Proof. The proof is organized as follows. We first show that K(7) is well-formed. We then show that it is
entailed by K f ς([a]) � ς([b]), and that it is valid. Then, we prove that K(8) remains valid and entailed,
and that the returned set of classes to merge is well-formed and entailed by K f ς([a]) � ς([b]).

A.8.2.1 Well-formedness of K(7)

K-INV1. Straightforward. We remind that Θ(7) = Θ as it is left untouched.
K-INV2. Straightforward; we note that Q-AllMembers(Q(7)) = Q-AllMembers(Q(1)) =

Q-AllMembers(Q) and that dom(M(7)) = dom(M(2)) = (dom(M) \ {[a], [b]}) ∪ {[ab]}.
K-INV3. Trivially holds by the facts that Θ(7) = Θ and Q-AllMembers(Q(7)) = Q-AllMembers(Q).
K-INV4-K-INV7. Straightforward.
K-INV8. It is sufficient to prove that for any T ∈ Θ, the kind of T under K and K(7) are equal.
By inspecting TEC-kind, we remark that we only need to consider the case where T is of the form [x].
Let [r1], [r2] be the representatives of [x] under Q and Q(7) respectively (i.e. [r1] = Q-Find(Q, [x]) and

[r2] = Q-Find(Q(7), [x])). Then, the goal is to show kind(Θ(TR([r1]))) = kind(Θ(T
(7)
R ([r2]))).

If [r2] = [ab], then T (7)
R ([a]) = TR([a]). Furthermore, [r1] must be either [a] or [b]. If [r1] = [a], we are

done. Otherwise, we use the first set of precondition stating that [a] and [b] have the same kind under

114



K. That is, we have kind(ς([a])) = kind(ς([b]))) which expands into kind(Θ(TR([a]))) = kind(Θ(TR([b]))).
Combining this with kind(Θ(T

(7)
R ([a]))) = kind(Θ(TR([a]))) and the fact that [ab] is [a] or [b] and that

[r1] = [b] concludes this case.
Otherwise, [r2] must be different from [a] and [b]. We must also have [r1] = [r2] because the representatives

for other EC members other than [a] and [b] remain unchained. As such, we have TR([r1]) = T
(7)
R ([r1]),

concluding the proof for this invariant.
K-INV9. Straightforward.
K-INV10. The first part is straightforward. We show that G(7)

� (which is equal to G(6)
� ) is acyclic,

forward-free and “kind-preserving”.
Acyclicity.
Without loss of generality, we assume that [ab] = [a].
We proceed with a proof by contradiction: assuming that there is a cycle in G(7)

� , we show that there is a
cycle or a forward edge in G�, a contradiction.

We observe three points:

1. There are cannot be cycles of length 1 in G(7)
� : by construction, there are no [x] such that ([x], [x]) ∈ E(7)

� .

2. All cycles in G(7)
� must go through [a]: indeed, for any cycle [x1], ..., [xn], there must be an i such that

([xi], [xi+1]) ∈ G(7)
� but ([xi], [xi+1]) 6∈ G�. By the definition of G(7)

� , either [xi] = [a] or [xi+1] = [a].

3. All edges ([x], [y]) ∈ E(7)
� with [x], [y] different from [a] and [b] are in E� as well.

With these observations, we deduce that there must exist a cycle C [a], [x1], ..., [xn], [a] in G
(7)
� with

n ≥ 1 such that ([a], [x1]), ([xn], [a]) ∈ E(7)
� and ([xi], [xi+1]) ∈ E(7)

� with 1 ≤ i < n and [xi] 6= [a], 1 ≤ i ≤ n.
Because [b] does not appear in G(7)

� , point 3. of the above observation allows us to deduce that the edges
([xi], [xi+1]) are in E� as well.

We split the analysis in two parts on whether ([a], [b]) ∈ E� or ([b], [a]) ∈ E�. The preconditions
guarantees there is a direct link between [a] and [b]. Then, for each part, we proceed by a case analysis on
the origin of the connection between ([a], [x1]) and ([xn], [a]).

Case ([a], [b]) ∈ E�.
Subcase ([a], [x1]) 6∈ E� ∧ ([xn], [a]) 6∈ E�.
By construction of E(7)

� , we must have ([b], [x1]) ∈ E� and ([xn], [b]) ∈ E�. Since the chain [x1], ..., [xn]

in G(7)
� is also a chain in G�, [b], [x1], ..., [xn], [b] is a chain and a cycle in G�.
Subcase ([a], [x1]) 6∈ E� ∧ ([xn], [a]) ∈ E�.
Then we must have ([b], [x1]) ∈ E�. Because ([a], [b]) ∈ E�, [b], [x1], ..., [xn], [a], [b] is a chain and a cycle

in G�.
Subcase ([a], [x1]) ∈ E� ∧ ([xn], [a]) 6∈ E�.
Then we must have ([xn], [b]) ∈ E�. But ([a], [b]) ∈ E� actually constitutes a forward edge. Indeed, we

have (in G�) the chain [a], [x1], ..., [xn], [b] (with n ≥ 1), so ([a], [b]) is a forward edge.
Subcase ([a], [x1]) ∈ E� ∧ ([xn], [a]) ∈ E�.
The cycle C in G(7)

� is also a cycle in G�.

Case ([b], [a]) ∈ E�.
Subcase ([a], [x1]) 6∈ E� ∧ ([xn], [a]) 6∈ E�.
We must have ([b], [x1]) ∈ E� and ([xn], [b]) ∈ E�. Then, [b], [x1], ..., [xn], [b] is a chain and a cycle in G�.
Subcase ([a], [x1]) 6∈ E� ∧ ([xn], [a]) ∈ E�.
Then we must have ([b], [x1]) ∈ E�. In that case, ([b], [a]) ∈ E� is a forward edge because

[b], [x1], ..., [xn], [a] is a chain in G�.
Subcase ([a], [x1]) ∈ E� ∧ ([xn], [a]) 6∈ E�.
We then have ([xn], [b]) ∈ E�. Combined with the fact that ([b], [a]) ∈ E�, [a], [x1], ..., [xn], [b], [a] is a

chain and a cycle in G�.
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Subcase ([a], [x1]) ∈ E� ∧ ([xn], [a]) ∈ E�.
The cycle C in G(7)

� is also a cycle in G�.

Forward-free.
Without loss of generality, we assume that [ab] = [a].
We proceed with a proof by contradiction: assuming that there is a chain [x1], ..., [xn] of length n ≥ 3 in

G
(7)
� such that ([x1], [xn]) ∈ E(7)

� , we show that such a chain cannot exist.
We observe there are two possible cases:
1. ([x1], [xn]) 6∈ E�, so the forward edge has been explicitly added (i.e. ([x1], [xn]) is in extra \ forward).

2. ([x1], [xn]) ∈ E� but there is an i such that ([xi], [xi+1]) 6∈ E�. Such an i must exist because G� is
forward-free. By the definition of G(7)

� , we have [xi] = [a] or [xi+1] = [a]: in either case the chain passes
through [a].

Case ([x1], [xn]) 6∈ E�.
Then, by construction of G(7)

� , the edge ([x1], [xn]) must satisfy at least one of the following:
i. ([x1], [xn]) is of the form ([x1], [a]) such that ([x1], [a]), ([x1], [b]) ∈ E�.
ii. ([x1], [xn]) is of the form ([a], [xn]) such that ([a], [xn]), ([b], [xn]) ∈ E�.
We show that subcase i. leads to a contradiction. Subcase ii. is similar.
Because we either have ([a], [b]) ∈ E� or ([b], [a]) ∈ E� (by the preconditions of MergeHelper), we run

into a contradiction.
Indeed, if ([a], [b]) ∈ E�, then [x1], [a], [b] and [x1], [b] are chains in G�, and ([x1], [b]) constitutes a

forward edge. Otherwise, ([b], [a]) ∈ E� implies that [x1], [b], [a] and [x1], [a] are chains in G�, and ([x1], [a])
constitutes a forward edge.

Case ([x1], [xn]) ∈ E�.
We remark that ([x1], [xn]) cannot be contained in the forward as it is removed from the built graph. As

such, we must have [x1] 6∈ allLower or [xn] 6∈ allUpper.
We show that [x1] 6∈ allLower leads to a contradiction. The [xn] 6∈ allLower subcase is analogous.
By construction of the allLower set, [x1] cannot be [a]. Since we are in case 2, we also know that there

is an i > 1 such that [xi] = [a]. This in turn implies that ([xi−1], [a]) ∈ E� or ([xi−1], [b]) ∈ E� by the
definition of G(7)

� . Then, the (possibly trivial) chain [x1], ...[xi−1] in G(7)
� is also a chain in G�, so [x1] is a

transitive lower bound of [a] or [b], a contradiction.

Kind-preserving.
By the construction of G(7)

� , is it sufficient to show:

∀[l] ∈ lower. TEC-kind(K(5), [l]) = TEC-kind(K(5), [ab])

∀[u] ∈ upper. TEC-kind(K(5), [u]) = TEC-kind(K(5), [ab])

where we exploit the fact that TEC-kind relies on ς for retrieving the kind of an ECH , which depends
on Θ, TR and Q. These values are frozen at K(5).

We show that the first point holds; the second one is proved analogously.
We note that for all [l] ∈ lower, we have Q-Find(Q(5), [l]) = [l] because [l] is neither [a] nor [b] and that

the representatives for ECs other than [a] and [b] are left untouched. As such, we have:

TEC-kind(K(5), [l]) = kind(Θ(T
(5)
R ([l]))) = kind(Θ(TR([l])))

For TEC-kind(K(5), [ab]), we have:

TEC-kind(K(5), [ab]) = kind(Θ(T
(5)
R ([ab]))) = kind(Θ(TR([a])))

and by the assumptions, we furthermore get kind(Θ(TR([a]))) = kind(Θ(TR([b]))). To conclude the proof,
we observe that we have ([l], [a]) ∈ E�, in which case kind(Θ(TR([l]))) = kind(Θ(TR([a]))) or ([l], [b]) ∈ E�,
in which case kind(Θ(TR([l]))) = kind(Θ(TR([b]))).
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K-INV11. Straightforward.
K-INV12-K-INV13. Trivially hold, as GS and Gp are left untouched.

A.8.2.2 Entailment of K(7)

Next, we are interested in showing K f ς([a]) � ς([b])  K(7). That is, we would like to show K-to-C(K)f
ς([a]) � ς([b])  K-to-C(K(7)), or in its expanded form:

k
{ς([x]) � ς([y]) : ([x], [y]) ∈ E�}︸ ︷︷ ︸

C�

f
k
{ς([r]) � ς(Θ(h)) : ([r], h̄) ∈M, h ∈ h̄}︸ ︷︷ ︸

C�

f

k
{p : T : (p, T ) ∈ I}︸ ︷︷ ︸

Cp

f ς([a]) � ς([b])


k
{ς(7)([x]) � ς(7)([y]) : ([x], [y]) ∈ E(7)

� }︸ ︷︷ ︸
C

(7)
�

f
k
{ς(7)([r]) � ς(7)(Θ(h)) : ([r], h̄) ∈M(7), h ∈ h̄}︸ ︷︷ ︸

C
(7)
�

f

k
{p : T : (p, T ) ∈ I(7)}︸ ︷︷ ︸

C
(7)
p

I is left untouched, as such Cp and C(7)
p cancel out.

Before resuming, it is useful to remember that, in any valid K′, ς ′([x]) = Θ(T ′R([x])) provided that
[x] is the representative of its EC (i.e. Q-Find(Q′, [x]) = [x]). In our case, we have ς([a]) = Θ(TR([a])),
ς([b]) = Θ(TR([b])) and ς(7)([ab]) = Θ(T

(7)
R ([ab])) = Θ(TR([a])) (by construction of T (7)

R = T
(5)
R and because

Θ = Θ(7)).
We now proceed by showing that each of the conclusion is entailed by the antecedents.

Subtyping constraint set C(7)
� .

Employing the definition of K(7), we can rewrite the subtyping constraint as follows:

C
(7)
�

≡
k
{ς([x]) � ς([y]) : ([x], [y]) ∈ E� \ (fwd ∪ abConns)}f

k
{ς(7)([x]) � ς(7)([y]) : ([x], [y]) ∈ extra \ fwd}

For the first set of conjunction, we have used the fact that ς(7)([x]) = ς([x]) (similar for [y]) because these
[x] and [y] are different from [a] and [b], and are the representatives of their EC. We remark that the first
set of conjunctions is trivially entailed by the antecedent.

For the second set of conjunctions, we proceed by showing K f ς([a]) � ς([b])  ς(7)([x]) � ς(7)([y])
for each contained ([x], [y]). We observe that each ([x], [y]) must be of the form ([l], [ab]) with ([l], [a]) ∈
E� ∨ ([l], [b]) ∈ E�, or of the form ([ab], [u]) with ([a], [u]) ∈ E� ∨ ([b], [u]) ∈ E�.

We proceed by a case analysis on the form of ([x], [y]). Since the analysis is similar for both cases, we
only prove the first one.

Assuming ([x], [y]) = ([l], [ab]), we are interested in showing K f ς([a]) � ς([b])  ς(7)([l]) � ς(7)([ab]), or
equivalently K fΘ(TR([a])) � Θ(TR([b]))  Θ(TR([l])) � Θ(TR([a])) as pointed out by the above remark,
using the fact that [l] is different from [a] and [b], and that [l] is the representative of its EC under Q and
Q(7). By assumptions, we have ([l], [a]) ∈ E� or ([l], [b]) ∈ E�, both of which are present in the antecedent
in the form of a subtyping constraint.
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If ([l], [a]) ∈ E�, we get:

K fΘ(TR([a])) � Θ(TR([b])) Θ(TR([l])) � Θ(TR([a]))fΘ(TR([a])) � Θ(TR([b]))

Θ(TR([l])) � Θ(TR([a]))

On the other hand, if we have ([l], [b]) ∈ E�, we obtain:

K fΘ(TR([a])) � Θ(TR([b])) Θ(TR([l])) � Θ(TR([b]))fΘ(TR([a])) � Θ(TR([b]))

Θ(TR([l])) � Θ(TR([a]))

Equality constraint set C(7)
� .

We similarly employ the definition of K(7) to rewrite the equality constraint set:

C
(7)
�

≡
k{

ς(7)([r])︸ ︷︷ ︸
=ς([r])

� ς(7)(Θ(h)) : ([r], h̄) ∈M � (dom(M) \ {[a], [b]}), h ∈ h̄
}
f

k{
ς(7)([ab])︸ ︷︷ ︸

=ς([a])

� ς(7)(Θ(h)) : h̄ ∈M([a]), h ∈ h̄
}
f

k{
ς(7)([ab])︸ ︷︷ ︸

=ς([a])

� ς(7)(Θ(h)) : h̄ ∈M([b]), h ∈ h̄
}

We note that ς([r]) = Θ(TR([r])) and ς([a]) = Θ(TR([a])).
To keep going, we need to unfold the definition of ς(7). We claim (without giving a proof) it is equivalent to

[Θ(TR([b])) 7→ Θ(TR([a]))] ◦ ς where we have used composition of substitution instead of the usual extension
operation. Then, for all T : TEC such that ς(7)(T ) is defined, we have:

ς(7)(T ) ≡ [Θ(TR([b])) 7→ Θ(TR([a]))]ς(T )

For the first conjunct, for all ranged [r] and h, we remark that the antecedent possesses the equality
Θ(TR([r])) � ς(Θ(h)). Starting with that equality and with lemma 3.4.14, we then have:

Θ(TR([r])) � ς(Θ(h))fΘ(TR([a])) � Θ(TR([b]))

 Θ(TR([r])) �
[
Θ(TR([b])) 7→ Θ(TR([a]))

]
ς(Θ(h))

≡
Θ(TR([r])) � ς(7)(Θ(h))

The second conjunct is proved similarly.
For the third conjunct, for all ranged [r] and h, we do not necessarily possess Θ(TR([a])) � ς(Θ(h)) in the

antecedent: we instead have Θ(TR([b])) � ς(Θ(h)). Using the same reasoning as for the first two conjuncts,
we obtain the following:

Θ(TR([b])) � ς(Θ(h))fΘ(TR([a])) � Θ(TR([b]))  Θ(TR([b])) � ς(7)(Θ(h))

With lemma 3.3.6, we get the desired result:

Θ(TR([a])) � Θ(TR([b]))fΘ(TR([b])) � ς(Θ(h))fΘ(TR([a])) � Θ(TR([b]))

 Θ(TR([a])) � ς(7)(Θ(h))
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A.8.2.3 Validity of K(7)

We now know that K(7) is well-formed. We are interested in showing K-INV14 and K-INV15. We start with
the latter.

We pick an arbitrary T from Im(Θ) and proceed to show ς(7)(T )↓ by a structural induction on T . By
validity of K, we know that ς(T ) is defined. Since the application of the IH is straightforward, we focus on
the base cases.

Case T = [x].
Subase Q-Find(Q(7), [x]) ∈ {[a], [b]}.
Then, [x] ∈ Q-MembersOf(Q(7), [ab]), so ς(7)([x]) = Θ(T

(7)
R ([ab])) = Θ(TR([a])) = ς([a]) which is defined

by validity of K.
Subase Q-Find(Q(7), [x]) = [r], [r] 6∈ {[a], [b]}.
Then, [x] ∈ Q-MembersOf(Q(7), [r]), and since [r] is neither [a] nor [b], we have ς(7)([x]) = Θ(T

(7)
R ([r])) =

Θ(TR([r])) = ς([r]) which is defined.

Case T = [x]
[
~A
]
.

Subase Q-Find(Q(7), [x]) ∈ {[a], [b]}.
Similar to the T = [x] case, we have ς(7)([x]) = Θ(TR([a])) = ς([a]). As such, ς(7)([x]

[
~A
]
) = ς([x]

[
~A
]
)

which is defined.
Subase Q-Find(Q(7), [x]) = [r], [r] 6∈ {[a], [b]}.
We have ς(7)([r]) = Θ(TR([r])) = ς([r]). Unsurprisingly, we have ς(7)([r]

[
~A
]
) = ς([r]

[
~A
]
) which is defined.

Showing K-INV14 is curiously quite straightforward. Given the fact that Im(D(7)) ⊆ Im(D) and Θ = Θ(7),
it is sufficient to show that, if a type T ∈ TEC for which ς is defined and determined under K, it is determined
under K(7) as well. To do so, we examine the definition of TEC-IsDet. We remark that the only non-trivial
case is, of course, the DNF one. Then, we are interested in showing that, if two types U and V are provably
not subtype of each other under K, the absence of subtyping remains under K(7). Inspecting TEC-IsSubtype
reveals two base cases where false can be returned. The first one is the case where U and V are closed.
The result does not depend on the knowledge structure, so the absence of subtyping remains. The second
one is the case comparing two classes together where one class does not extend the other. This result is
independent of the knowledge structure as well. As such, for any types U and V , if TEC-IsSubtype(K, U, V )
returns false, the result of TEC-IsSubtype(K(7), U, V ) is false as well.

A.8.2.4 Epilogue

It is straightforward to see that, at the end of the loop at (9), K(8) is valid and K(7)  K(8). We now focus
on showing the postconditions, starting with the first set.

Postcondition Q-MGH1.
Straightforward, except for:

∀[x] ∈ K. TEC-kind(K, [x]) = TEC-kind(K(8), [x])

≡
∀[x] ∈ K. kind(ς([x])) = kind(ς(8)([x]))

By RemoveMember, ς(8) = ς(7), Q(8) = Q(7) and T
(8)
R = T

(7)
R . We proceed on a case analysis on

Q-Find(Q, [x]).
Case Q-Find(Q, [x]) = [a].
Then, kind(ς([x])) = kind(Θ(TR([a]))) = kind(Θ(T

(8)
R ([a])))

Case Q-Find(Q, [x]) = [b].
By the preconditions, kind(ς([a])) = kind(ς([b])), so kind(Θ(TR([a]))) = kind(Θ(TR([b]))). As such, we

have kind(ς([x])) = kind(Θ(TR([b]))) = kind(Θ(TR([a]))) = kind(Θ(T
(8)
R ([a]))).
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Case Q-Find(Q, [x]) = [y], [y] 6∈ {[a], [b]}.
Then, kind(ς([x])) = kind(Θ(TR([y]))) = kind(Θ(T

(8)
R ([y]))).

Postcondition Q-MGH2.
Straightforward. For toMerge ⊆ K, we recall that all [x] in K are in K(8) and vice-versa. By validity of

K(8) and construction of occ[a] and occ[b], R(8)(h1) and R(8)(h2) are defined and are in K(8).

Postcondition Q-MGH3.
We essentially need to show:

K f ς([a]) � ς([b]) 
k

cstrtsfM(K(8), toMerge)f
k
{ς([x]) � ς(8)([x]) : [x] ∈ K}

Note that we already have K f ς([a]) � ς([b])  K(8).
We start by showing K f ς([a]) � ς([b]) 

c
cstrts. Using a similar reasoning as the proof for

TryAddInequality, we get K(8) 
c

cstrts. With the previous remark, we get to conclude this point.
To show K f ς([a]) � ς([b])  M(K(8), toMerge), it is sufficient to analyze the branch at (10b). In

particular, we are interested in showing:

K f ς([a]) � ς([b])  ς(8)([ec1]) � ς(8)([ec2])

Since [ec1] and [ec2] are the representatives of their EC, the goal entailment is equivalent to

K(8)  Θ(8)(T
(8)
R ([ec1])) � Θ(8)(T

(8)
R ([ec2]))

By K-INV5, we obtain:

T
(8)
R ([ec1]) ∈M(8)([ec1])

h1 ∈M(8)([ec1])

T
(8)
R ([ec2]) ∈M(8)([ec2])

h2 ∈M(8)([ec2])

Combining this with lemma A.2.1 gives:

K(8)  ς(8)(Θ(8)(T
(8)
R ([ec1]))) � ς(8)(Θ(8)(h1))f

ς(8)(Θ(8)(T
(8)
R ([ec2]))) � ς(8)(Θ(8)(h2))

The underlying types of TR do not contain any ECH (by K-INV7); as such these are idempotent under ς:

K(8) Θ(8)(T
(8)
R ([ec1])) � ς(8)(Θ(8)(h1))f

Θ(8)(T
(8)
R ([ec2])) � ς(8)(Θ(8)(h2))

TEC-Equiv states:

K(8)  ς(8)(Θ(8)(h1)) � ς(8)(Θ(8)(h2))

Combining these facts together with lemmas 3.3.6 and 3.3.8 concludes the proof for K f ς([a]) � ς([b]) 
M(K(8), toMerge).

We are left with showing the entailment:

K f ς([a]) � ς([b]) 
k
{ς([x]) � ς(8)([x]) : [x] ∈ K}

Similarly to A.8.2.2 in the equality constraint set section, we claim ς(8) is equivalent to [TR([b]) 7→ TR([a])]◦
ς. Then, for all T : TEC such that ς(8)(T ) is defined, we have ς(8)(T ) ≡ [Θ(TR([b])) 7→ Θ(TR([a]))]ς(T ).

Since ς([a]) = Θ(TR([a])) and ς([b]) = Θ(TR([b])), we apply lemma 3.3.8 with the definition of ς(8) to
obtain the entailment.
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A.9 Propagation of determinacy

The propagation of determinacy is divided into multiple small functions. We prove these in the following
order:

1. PropagateHeadSubst

2. PropagateDNFRefresh

3. PropagateTrySubst

4. PropagateDeterminacy

5. GatherAffected

6. GatherPotentiallyAffected
In particular, we prove the “main function” PropagateDeterminacy in 4th because we deem it is useful

to know the underlying of the other functions before examining PropagateDeterminacy.

A.9.1 PropagateHeadSubst

Proof. The proof for PropagateHeadSubst is essentially based around the loop at (1). As usual, we first
prove that the invariants hold before the first iteration and that they are maintained at the end of each
iteration. Since the base case is trivial, we go ahead with the iterative step.

Branch (2).
We start by analyzing the branch at (2).
Statement (2a).
We argue that the call to TEC-ApplyHeadSubstitution is well-defined. From the LIH, we have ς = ς(1).

As such, since ς(T ) is defined (by the precondition), ς(1)(T ) is defined as well. ς(1)([a]) is defined because
[a] ∈ Q = Q(1) and ς(1)(Θ(1)(h)) is defined as well by validity of K(1) and due to having h ∈ K(1). By
assumptions, [a] and T have the same kind under K. Since ς = ς(1), we have kind(ς([a])) = kind(ς(1)([a]))
(and similarly for T ). The kinds are thus preserved under K(1). Because h is not in TR we have by K-INV6
that Θ(1)(h) satisfies the TEC-in-Θ-Inv predicate. T satisfies it by assumptions.

We can now use TEC-ApplyHeadSubstitution postconditions:
• S(1) is defined and we have ς(1)([a]) � ς(1)(T )  ς(1)(Θ(1)(h)) � ς(1)(S(1)).

• S(1) and Θ(1)(h) have the same kind.

Branch (2b).
We short-circuit. It is straightforward to check that the loop invariants are maintained.
Statement (2c).
The requirement for the call are satisfied, thanks to S(1) being defined and the escape hatch at (2b). We

remark that (�):
• ς(1)(S(2)) is defined and we have K(1)  ς(1)(S(1)) � ς(1)(S(2)).

• With the previous observation and lemma 3.3.8, we have:

K(1) f ς(1)([a]) � ς(1)(T )  ς(1)(Θ(1)(h)) � ς(1)(S(2))

• With the LIH, we furthermore have that the previous expression is entailed by K f ς([a]) � ς(T ):

K f ς([a]) � ς(T )  K(1) f ς(1)([a]) � ς(1)(T )  ς(1)(Θ(1)(h)) � ς(1)(S(2))

• TEC-SimplifyDNF states that, if S(2) is not an ECH , then it must satisfy the TEC-in-Θ-Inv predicate.

• S(1), S(2) and Θ(1)(h) have the same kind under K and K(1). Due to the validity of K(1), R(1)(h) has
these three types.
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Branch (2d).
We notice that the implicit else branch of (2d.i) maintains the invariants. For (2d.i), we essentially need

to show that K f ς([a]) � ς(T )  ς(1)(S(2)) � ς(1)(R(1)(h)). By K-INV5, h ∈ Im(R(1)(h)) and by lemma
A.2.1, we get that K(1)  ς(1)(Θ(1)(h)) � ς(1)(R(1)(h)). Combining this observation with (�) concludes this
subcase.

Branch (2e).
We should first ensure that the call to UpdateMemberDetermined is well-formed. K(1) is valid by the

LIH. S(2) is determined under K(1) since we have matched the branch. h is in dom(Θ(1)) by the LIH since
h ∈ headSubst(1). From the precondition of PropagateHeadSubst and the LIH, we have h 6∈ Im(T

(1)
R ) as

well. ς(1)(S(2)) is defined as stated in (2c). The predicate TEC-in-Θ-Inv(S(2)) is satisfied due to S(2) not
being an ECH (this case is filtered out by the if at (2d)).

We now show that the four loop invariant are held at the end of the iteration (of course assuming that
we have matched branch (2e)).

First loop invariant.
From the first stated postcondition of UpdateMemberDetermined, we have:

K-Valid(K(n)) ∧ ς(1) = ς(n) ∧Q(1) = Q(n) ∧ T (1)
R = T

(n)
R ∧G(1)

� = G
(n)
�

By the LIH, we can conclude that the first invariant holds.
Second loop invariant.
We are interested in showing:

dom(Θ(n)) ∪ headSubst(n),c = dom(Θ) ∧

∀h̃ ∈ dom(Θ) \ headSubst(n),c. Θ(h̃) = Θ(n)(h̃) ∧

headSubst(n) ⊆ dom(Θ(n))

given the LIH and the second postcondition of UpdateMemberDetermined stating:

dom(Θ(n)) ∪ {h} = dom(Θ(1)) ∧
∀h̃ ∈ dom(Θ(1)) \ {h}. Θ(1)(h̃) = Θ(n)(h̃)

We start by showing the third conjunct:

headSubst(n) ⊆ headSubst(1) \ {h}
⊆ dom(Θ(1)) \ {h}
⊆ dom(Θ(n)) \ {h}
⊆ dom(Θ(n))

The first inequality comes from the definition of headSubst(n). The second one comes from the LIH
headSubst(1) ⊆ dom(Θ(1)) where we have subtracted {h} from both sides. The third one uses the second set
of postconditions of UpdateMemberDetermined where we have subtracted {h} from both sides as well.

Next, we show the first conjunct, starting with the equality given by UpdateMemberDetermined:

dom(Θ(n)) ∪ {h} = dom(Θ(1))

⇒ dom(Θ(n)) ∪ {h} ∪ headSubst(1),c = dom(Θ(1)) ∪ headSubst(1),c

⇒ dom(Θ(n)) ∪ headSubst(n),c = dom(Θ)

In the second equality, we add headSubst(n),c to both members. In the third equality, we apply the LIH
to obtain the right member; for the left member, we use the definition of headSubst(n),c.
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We now show that the second conjunct tying Θ and Θ(n) holds.
From the LIH, we have:

∀h̃ ∈ dom(Θ) \ headSubst(1),c. Θ(h̃) = Θ(1)(h̃)

From UpdateMemberDetermined, we get:

∀h̃ ∈ dom(Θ(1)) \ {h}. Θ(1)(h̃) = Θ(n)(h̃)

We remark that showing:

dom(Θ) \ headSubst(n),c ⊆ dom(Θ(1)) \ {h}

and

dom(Θ) \ headSubst(n),c ⊆ dom(Θ) \ headSubst(1),c

is sufficient to prove the desired result as we can connect Θ, Θ(1) and Θ(n) with an equality for all
h̃ ∈ dom(Θ) \ headSubst(n),c.

We remark that the second inclusion is straightforward as headSubst(1),c ⊆ headSubst(n),c.
For the first inclusion, we start with the LIH:

dom(Θ) ⊆ dom(Θ(1)) ∪ headSubst(1),c

⇒ dom(Θ) \ headSubst(n),c ⊆ (dom(Θ(1)) \ headSubst(n),c) ∪ (headSubst(1),c \ headSubst(n),c)

⇒ dom(Θ) \ headSubst(n),c ⊆ dom(Θ(1)) \ headSubst(n),c ⊆ dom(Θ(1)) \ {h}

The second inequality comes from subtracting headSubst(n),c from both sides. For the third inequality,
we have used the fact that headSubst(1),c ⊆ headSubst(n),c to simplify headSubst(1),c \ headSubst(n),c and
that h ∈ headSubst(n),c.

Third loop invariant.
From UpdateMemberDetermined, we have dom(D(1)) ] dets′ ⊆ dom(D(n)). From the LIH, we have

dom(D) ] dets ⊆ dom(D(1)). We thus have dets’ # dom(D) and dom(D) ] (dets ∪ dets′) ⊆ dom(D(n)) as
expected.

Fourth loop invariant.
UpdateMemberDetermined states that we have:

K(1) f ς(1)(Θ(1)(h)) � ς(1)(S(2))  K(n) f
k

cstrts′ fM(K(n), toMerge′)

Combining this with (�) gives:

K f ς([a]) � ς(T )  K(n) f
k

cstrts′ fM(K(n), toMerge′)

To conclude this case, it remains to show:

K f ς([a]) � ς(T ) 
k

cstrts(n) fM(K(n), toMerge)

By the LIH and the previous observation, we indeed have:

K f ς([a]) � ς(T ) 
k

cstrts(n)

By the LIH, we also have:

K f ς([a]) � ς(T ) M(K(1), toMerge)
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Since ς(1) = ς(n), we get

K f ς([a]) � ς(T ) M(K(n), toMerge)

Branch (2f).
Similar to (2e), except for an additional precondition for UpdateMember requiring Θ(1)(h) to not be

determined (due to the non-determinacy of S(2)). ApplyHeadSubstitution and TEC-SimplifyDNF guarantee
that, if the result is not determined, then the argument must be non-determined; therefore, Θ(1)(h) is not
determined under K(1).

Branch (3).
This case is similar to (2e) and (2f).

Returned result (4).
At the end of the loop, we have headSubst(1),c = headSubst. Therefore, the postconditions of

PropagateHeadSubst hold by the LIs.

A.9.2 PropagateDNFRefresh

Proof. The proof is similar to PropagateHeadSubst. A notable difference is the call to TEC-SimplifyDNF
at (2) requiring Θ(1)(h) to be a DNF. By assumptions, Θ(h) is a DNF. By the LIH, Θ(h) = Θ(1)(h) (since
h ∈ refreshDNF(1)); as such, Θ(1)(h) is a DNF.

A.9.3 PropagateTrySubst

Proof. The proof is similar to PropagateHeadSubst as well. TEC-TryApplyHeadSubstitution extra pre-
conditions are satisfied by the preconditions of PropagateTrySubst.

A.9.4 PropagateDeterminacy

Proof. We proceed by examining each statement.
Statements (1) and (2).
It is straightforward to see that the calls to GatherAffected and GatherPotentiallyAffected are

well-formed.

Statement (3).
The first set of preconditions of PropagateHeadSubst is guaranteed by the preconditions of Propagate-

Determinacy. The second set is ensured thanks to the postconditions of GatherAffected.
We obtain (�):

1. K-Valid(K(1)) ∧ ς = ς(1) ∧Q = Q(1) ∧ TR = T
(1)
R ∧G� = G

(1)
�

2. dom(Θ(1)) ∪ headSubst = dom(Θ) ∧
(
∀h̃ ∈ dom(Θ) \ headSubst. Θ(h̃) = Θ(1)(h̃)

)
3. dom(D) ⊆ dom(D(1)) ∧

(
∀[x] ∈ dets(1). [x] ∈ dom(D(1)) ∧ [x] 6∈ dom(D)

)
4. K f ς([a]) � ς(T )  K(1) f

c
cstrts(1) fM(K(1), toMerge(1))

Statement (4).
We verify that the call to PropagateDNFRefresh is well-formed. The validity of K(1) comes from the first

point of (�). GatherAffected states that refreshDNF#Im(TR), so we have (refreshDNF\headSubst)#Im(TR)

as well. From point 1 of (�), we have TR = T
(1)
R , we therefore have (refreshDNF \ headSubst) # Im(T

(1)
R ). To
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verify (refreshDNF \ headSubst) ⊆ dom(Θ(1)), we start with the fact that refreshDNF ⊆ dom(Θ) and subtract
headSubst from both side of the inequality, yielding:

refreshDNF \ headSubst ⊆ dom(Θ) \ headSubst

Next, we employ fact 2 of (�) and subtract headSubst from both side as well, giving:

dom(Θ(1)) \ headSubst = dom(Θ) \ headSubst

Combining these two observations together, we get the desired result:

refreshDNF \ headSubst ⊆ dom(Θ) \ headSubst ⊆ dom(Θ(1)) \ headSubst ⊆ dom(Θ(1))

It remains to show ∀h̃ ∈ refreshDNF \ headSubst. TEC-IsDNF(Θ(1)(h̃)) in order to conclude the well-
formedness of the call. Noticing that refreshDNF \ headSubst ⊆ dom(Θ) \ headSubst, we can apply fact 2 of
(�) to get:

∀h̃ ∈ refreshDNF \ headSubst. Θ(h̃) = Θ(1)(h̃)

From GatherAffected, we know that all h̃ in refreshDNF have their underlying type Θ(h̃) being DNFs
which concludes the point.

We can now extract the postconditions of PropagateDNFRefresh (F):

1. K-Valid(K(2)) ∧ ς(1) = ς(2) ∧Q(1) = Q(2) ∧ T (1)
R = T

(2)
R ∧G(1)

� = G
(2)
�

2. dom(Θ(2)) ∪ (refreshDNF \ headSubst) = dom(Θ(1)) ∧
∀h̃ ∈ dom(Θ(1)) \ (refreshDNF \ headSubst). Θ(1)(h̃) = Θ(2)(h̃)

3. dom(D(1)) ⊆ dom(D(2)) ∧
(
∀[x] ∈ dets(2). [x] ∈ dom(D(2)) ∧ [x] 6∈ dom(D(1))

)
4. K(1)  K(2) f

c
cstrts(2) fM(K(2), toMerge(2))

Statement (5).
We check that the first set of precondition of PropagateTrySubst are held. Validity of K(2) is ensured

thanks to the point 1 of (F). Since ς = ς(2) and that ς(T )↓, we have ς(2)(T )↓ as well. TEC-in-Θ-Inv(T )
stems from the preconditions.

Next, we need to show that the second set of preconditions holds as well. We have dom(trySusbt)#Im(T
(2)
R )

by the postcondition of GatherPotentiallyAffected and the fact that TR = T
(2)
R . To show dom(trySubst) ⊆

dom(Θ(2)), we first observe that dom(trySubst) is disjoint from headSubst and refreshDNF. Indeed, for
all h1 ∈ dom(trySubst), we have IsAbsAppTycon(Θ(h1)). For the h2 ∈ headSubst, we have the inverse,
that is, ¬IsAbsAppTycon(Θ(h2)). Finally, since the h3 ∈ refreshDNF are DNFs, they cannot be an ap-
plied abstract type constructor by definition of TEC-IsDNF and TEC-IsAbsAppTycon (we thus have
¬IsAbsAppTycon(Θ(h3))). Combining this fact with the postcondition of GatherPotentiallyAffected
yields:

dom(trySubst) ⊆ dom(Θ) \ (headSubst ∪ refreshDNF)

Picking fact 2 from (�) and subtracting by headSubst ∪ refreshDNF gives:

dom(Θ(1)) \ (headSubst ∪ refreshDNF) = dom(Θ) \ (headSubst ∪ refreshDNF)

We do the same with fact 2 from (F):

dom(Θ(2)) \ (headSubst ∪ refreshDNF) = dom(Θ(1)) \ (headSubst ∪ refreshDNF)
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Gluing these facts together gives us the expected result:

dom(trySubst) ⊆ dom(Θ) \ (headSubst ∪ refreshDNF)

⊆ dom(Θ(1)) \ (headSubst ∪ refreshDNF)

⊆ dom(Θ(2)) \ (headSubst ∪ refreshDNF)

⊆ dom(Θ(2))

We now show that ∀h̃ ∈ dom(trySubst). TEC-IsAbsAppTycon(Θ(h̃)). Adapting and combining fact 2
from (�) and (F) gives us:

∀h̃ ∈ dom(Θ) \ (headSubst ∪ refreshDNF). Θ(h̃) = Θ(2)(h̃)

All h̃ in dom(trySubst) satisfy TEC-IsAbsAppTycon(Θ(h̃)) and since:

dom(trySubst) ⊆ dom(Θ) \ (headSubst ∪ refreshDNF)

they also satisfy TEC-IsAbsAppTycon(Θ(2)(h̃)).
To conclude the well-formedness of the call to PropagateTrySubst, it remains to show:

∀U ∈
⋃

Im(trySubst).
[
ς(U)(2) ↓ ∧ TEC-IsAbsAppTycon(U) ∧ TEC-in-Θ-Inv(U) ∧

TEC-kind(K(2), U) = TEC-kind(K(2), T )
]

All of these conjuncts stem from GatherPotentiallyAffected and the fact that ς = ς(2) (we remind
that TEC-kind(K(2), U) expands to kind(ς(2)(U)) = kind(ς(U)), the same applies for T ).

This little journey allows us to extract the postcondition of PropagateDNFRefresh:

• K-Valid(K(3)) ∧ ς(2) = ς(3) ∧Q(2) = Q(3) ∧ T (2)
R = T

(3)
R ∧G(2)

� = G
(3)
�

• dom(D(2)) ⊆ dom(D(3)) ∧
(
∀[x] ∈ dets(3). [x] ∈ dom(D(3)) ∧ [x] 6∈ dom(D(2))

)
• K(2)  K(3) f

c
cstrts(3) fM(K(3), toMerge(3))

We did not include the properties satisfied by dom(Θ(2)) and dom(Θ(3)) as we do no longer need them.

Statement (6).
We now connect all facts together (�):

1. K-Valid(K(4)) ∧ ς = ς(4) ∧Q = Q(4) ∧ TR = T
(4)
R ∧G� = G

(4)
�

2. dom(D) ⊆ dom(D(4)) ∧
(
∀[x] ∈ dets(4). [x] ∈ dom(D(4)) ∧ [x] 6∈ dom(D)

)
3. K f ς([a]) � ς(T )  K(4) f

c
cstrts(4) fM(K(4), toMerge(4))

For point 3, we have used the fact that ς = ς(1) = ς(2) = ς(3) = ς(4), which allows us to combine the
M(K(i), toMerge(i)) together.

Loop (7).
The loop invariants are held before entering the loop, as shown in (�).
To prove correctness, we have to show that the call to PropagateDeterminacy is well-formed, find a

measure that is decreased for the recursive call, and finally, that the loop invariants are held after the end of
the iteration.

Starting with well-formedness, the validity of K(4) is ensured by the LIH. [x] is necessarily contained
in K(4) by the LIH and the validity of K(4). Because [x] ∈ dom(D(4)), we also have Q-Find(Q(4), [x]) by
validity of K(4). Θ(4)(D(4)([x])) is defined and determined under K(4) by validity of K(4). Again, by validity
of K(4), Θ(4)(D(4)([x])) satisfies the TEC-in-Θ-Inv invariant and has the same kind as [x].

Next, we find a measure and show that the measure of the arguments of the recursive call is decreased
with respect to the current instance. We choose m(K) = |Q-AllMembers(K)| − |dom(D)| and show that
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m(K(4)) < m(K). It is only defined for valid K’s where dom(D) ⊆ Q-AllMembers(K).
The first observation we make is that Q-AllMembers(K) = Q-AllMembers(K(4)), as implied by the LIH
Q = Q(4). It is thus sufficient to show that |dom(D)| < |dom(D)(4)|. By the LIH, we have dom(D) ] dets ⊆
dom(D)(4). Because dom(D) and dets are disjoint and that dets has at least one element (otherwise we would
not have entered the loop), we obtain |dom(D)| < |dom(D)|+ |dets| ≤ |dom(D(4))|.

Showing the loop invariants hold is a matter of a straightforward application of the LIH and the IH.

Returned result (8).
The postconditions of PropagateDeterminacy are respected by the LI.

A.9.5 GatherAffected

Proof. By induction on the measure m(processedECs) = |dom(M)| − |processedECs|. The measure only
applies for processedECs ⊆ dom(M), which is ensured by the precondition for the current instance.

As usual, we proceed by examining statement. We remark that the early return at (1) trivially satisfies
the postconditions. Furthermore, the loop invariants of (2) are trivially satisfied as well before the first
iteration.

We are now interested in proving that the invariants hold at the end of each iteration.
Branch (2a)
We should first prove that the call to GatherAffected is well defined. Thanks to the validity of K, we

indeed have Q-Find(Q,R(h)) = R(h) (by K-INV2). We also have processedECs(1) ∪ {[b],R(h)} ⊆ dom(M)

by the precondition and the LIH. Next, we prove that the measure decreases: m(processedECs(1) ∪ {[b]}) <
m(processedECs). By the LIH, processedECs(1) ⊇ processedECs. Since [b] 6∈ processedECs (otherwise, we would
have returned at (1)), we have processedECs(1) ∪ {[b]} ⊃ processedECs, therefore, the measures decreases. To
prove that the loop invariants hold at the end of the iteration for the considered case, it is sufficient to apply
the LIH and the IH.

Branch (2b.i)
Straightforward application of the LIH.

Branch (2b.ii)
Straightforward application of the LIH.

Returned result (3).
The postconditions are respected by the LI.

A.9.6 GatherPotentiallyAffected

Proof. Straightforward proof by establishing a loop invariant. We only show that we maintain the invariant
at (2a.i) and (2a.ii). Since the loop invariant and the postconditions are similar, the LI guarantees the
postconditions of GatherPotentiallyAffected.

For (2a.i), trySubst′(h′) satisfies the invariant by the LIH. As such, it suffices to show that {Θ(h)}
maintains them as well (which will also prove case (2a.ii)). We note that h′ 6∈ Im(TR) by construction of the
iterated set. By validity of K, h′ must be in dom(Θ) (K-INV2 and K-INV12).

Showing that Θ(h′) is an abstract type constructor application is slightly intricate. First, by K-INV12, F
must appear in a head position within Θ(h′). Since F is an abstract type constructor and that Θ(h′) satisfies
the TEC-in-Θ-Inv predicate (by K-INV9 and K-INV6), F must be the unique head in Θ(h′); therefore,
Θ(h′) is an abstract type constructor application.

It remains to show that Θ(h) satisfies the last conjunct of the LIH. By K-INV3, all ECH appearing
in Θ(h) appear in K, therefore ς(Θ(h)) is defined. Since we have matched Θ(h) against an abstract type
constructor application, it must satisfy the TEC-IsAbsAppTycon predicate. Finally, by K-INV8 and K-INV6,
it is of the same form as [a] and it satisfies the TEC-in-Θ-Inv predicate (because h is not in TR).
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A.10 Termination of the simplification loop (sketch)

The termination condition of C-Simplify essentially boils down to ensuring that the compaction phase does
not give back constraints we have already accumulated.

Given the subtyping constraint S � T we would like to integrate into K, we observe that Compact may
only yield new constraints in the following two cases:

1. ([s], [t]) 6∈ E�
2. [s] and [t] need to be merged.
These two cases are mutually exclusive: if the edge ([s], [t]) is not in E�, then TryAddInequality returns

an empty set of ECs to merge; we therefore do not enter the merge loop.
If the number of ECs we create is bounded (with respect to the original constraints CG), the number of

subtyping edges we can add (case (1)) and the number of ECs we can merge (case (2)) are bounded as well.
To prove termination, we therefore need to show that the number of ECs we can possibly create is bounded.
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Appendix B

Utility functions

B.1 Presumed functions

B.1.1 Operations on union-find data structure

Q-New () : Q
Output: A new union-find data structure Q.

Q-MakeSet (Q) : (Q′, [a])
Input: The union-find structure Q
Output: The updated Q′ and a fresh [a] that is the representative of the newly created partition.

Q-Union (Q, [a], [b]) : (Q′, [ab])
Input: The union-find Q and two distinct partitions to merge. [a] and [b] must be contained in Q
and be the representatives of their respective partition.

Output: The updated Q′ and an [ab] which is the representative of the merged partition
and is either [a] or [b].

Q-Find (Q, [a]) : [r]
Input: The union-find Q and the element for which we would like to find the representative.

[a] must be be contained in Q.
Output: The representative of [a].

Q-AllMembers (Q) : P(ECH)
Input: The union-find Q.
Output: The set of all members in Q.

Q-MembersOf (Q, [a]) : P(ECH)
Input: The union-find Q. [a] must be contained in Q and be the representative of its partition.
Output: The set of all members of the partition [a] in Q.
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B.1.2 Operations on types

T -IsSubtype (K, T1 : T cl, T2 : T cl) : K3

Remark: As indicated by the signature, T1 and T2 are closed, that is:
ftv(T1) = ftv(T2) = ftmv(T1) = ftmv(T2) = ∅.

Postcondition: Returns true if Γ ` T1 <: T2, false if Γ 6` T1 <: T2 and undet otherwise.
T -Fields (T : T ) : VX ⇀ T

Output: A partial mapping of the fields contained in T to their type.
DNF (K, T : T ∪ TEC)

Postcondition: Returns the DNF expansion of T . Only the heads need the transformation.
T -IsInhabitedOracle (T : T ) : K3

Postcondition: Returns true if, for all assignments φ, γ, there is a p such that φ, γ |= p : T ,
false if no such p exist and undet otherwise.

B.1.3 Operations on DAG

Chain (G = (V,E), a, b)
Precondition: G is a DAG
Output: A chain a, x1, ..., xn, b (n ≥ 0) such that (a, x1), ..., (xi, xi+1), ..., (xn, b) ∈ E if it exists,
and NIL otherwise.

ExistChain (G = (V,E), a, b)
Precondition: G is a DAG
Default implementation:
Chain(G, a, b) 6= NIL

ExistUndirChain (G = (V,E), a, b)
Precondition: G is a DAG
Default implementation:
ExistChain(G, a, b) ∨ ExistChain(G, b, a)

ReachableFrom (G = (V,E), a)
Precondition: G is a DAG
Output: The set of all vertices in V that are reachable from a.

LeadingTo (G = (V,E), a)
Precondition: G is a DAG
Output: The set of all vertices in V that reach a.
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B.2 Auxiliary functions

B.2.1 Shape of types predicates

TEC-IsDNF (K, T : TEC) : B
Precondition: K-WellFormed(K) ∧ TEC-in-Θ-Inv(T)
Output: Return true if T is a non-trivial DNF and false otherwise

match T :
case |ni &mi

j Ti,j :
return true

otherwise :
return false

TEC-IsDet (K, T : TEC) : B
Precondition: K-WellFormed(K) ∧ TEC-in-Θ-Inv(T)
Postcondition: If res = true:
∀φ, γ. φ, γ |= K =⇒ det(φ, γ, ς(T ))

match T :
case |ni &mi

j Ti,j :
return ∀Ti,j . TEC-IsDetSingleHead(Ti,j) ∧
No (provable) subtyping relationship between all ordered pairs of types in each conjuncts
∀(Ti,j1 , Ti,j2) ∈ {(Ti,j1 , Ti,j2) : 1 ≤ i ≤ n, 1 ≤ j1, j2 ≤ mi, j1 6= j2}.
TEC-IsSubtype(K, Ti,j1 , Ti,j2) = false ∧

No (provable) subtyping relationship between all ordered pairs conjuncts
∀(Ti1 , Ti2) ∈ {(&

mi1
j Ti1,j ,&

mi2
j Ti2,j) : 1 ≤ i1, i2 ≤ n, i1 6= i2}.

TEC-IsSubtype(K, Ti1 , Ti2) = false

otherwise :
return TEC-IsDetSingleHead(T)

TEC-IsDetSingleHead (T : TEC) : B
Precondition: TEC-in-Θ-Inv(T) ∧ ¬TEC-IsDNF(T)

match T :
case T where ftv(T ) = ftmv(T ) = ∅ :

return true
~S can be empty.
case Cls[~S] :

return true
Note: [a] and [a]

[
~S
]
with their HK variants are not considered determined, even if they have a

determined type. The reason is because we perform an explicit substitution when they become
determined
otherwise :

return false

TEC-IsAbsAppTycon (T : TEC) : B
Precondition: TEC-in-Θ-Inv(T)

match T :
Note: only matches abstract type constructors (which may be bound in an enclosing HK abstraction).
case F [~S] or [~v ~X / B] =>>F [~S] :

return true
otherwise :

return false
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TEC-InHead (Q, sym, T : TEC) : B
Precondition: TEC-in-Θ-Inv(T)
Precondition: ([a] ∈ sym =⇒ [a] ∈ Q) ∧ ([a] ∈ T =⇒ [a] ∈ Q)
Remark: We employ Q instead of the whole K because well-formedness of K uses this function

match T :
case |ni &mi

j Ti,j :
return ∃Ti,j . TEC-InSingleHead(Q, Ti,j)

otherwise :
return TEC-InSingleHead(Q, T)

TEC-InSingleHead (Q, sym, T : TEC) : B
Precondition: TEC-in-Θ-Inv(T) ∧ ¬TEC-IsDNF(T)
Precondition: ([a] ∈ sym =⇒ [a] ∈ Q) ∧ ([a] ∈ T =⇒ [a] ∈ Q)

match (sym, T ) :
case ([a], [b]) where Q-Find(Q, [a]) = Q-Find(Q, [b])

return true
case ((p,Q), p.Q) :

return true
case ((p, F ), p.F [~S]) :

return true
case (TyCon, TyCon[~S]) :

return true
Note: assumes implicit α-renaming to have X̄ fresh.
case (sym, [~v ~X / B] =>>S) :

return TEC-InSingleHead(Q, sym, S)
otherwise :

return false
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B.2.2 Deduction

ApproxDisjunction (C1, C2) : C3

Precondition: C1 and C2 are trivial or composed of subtyping constraints
(i.e., no constraints of the form p : T )

Postcondition: ∀φ, γ. φ, γ |= K =⇒[
φ, γ |= C1 ∨ φ, γ |= C2 =⇒ φ, γ |= C3

]
if C1 = true then

return C2

else if C2 = true then
return C1

All types appearing in constraints C1 and C2 respectively.
T1 ←

⋃{
{S, T} : S � T ∈ C1

}
T2 ←

⋃{
{S, T} : S � T ∈ C2

}
Lower and upper bounds for all types.
L1 ←

{
(T, {L : L � T ∈ C1}) : T ∈ T1

}
L2 ←

{
(T, {L : L � T ∈ C2}) : T ∈ T2

}
U1 ←

{
(T, {U : T � U ∈ C1}) : T ∈ T1

}
U2 ←

{
(T, {U : T � U ∈ C2}) : T ∈ T2

}
C3 ← true
for T ∈ T1 ∪ T2 do

if T ∈ dom(L1) ∩ dom(L2) then
L← ⊥

else
Note: L1(T ) and L2(T ) cannot be empty, by construction.
L← &(L1(T ) ∪ L2(T ))

if U ∈ dom(U1) ∩ dom(U2) then
U ← >

else
U ← |(U1(T ) ∪ U2(T ))

C3 ← C3 f L � T f T � U
return C3

DeductionIneqVec (K, ~S : T N , ~T : T N , ~v) : D
Remark: This function is meant to be unfolded within DeductionIneq.
Remark: Default value for ~v is (+)N .

D ← true
for i← 1 to |~S| do

match vi :
case + :

D ← D f DeductionIneq(K, Si, Ti)

case − :
D ← D f DeductionIneq(K, Ti, Si)

case ± :
D ← D f DeductionIneq(K, Si, Ti) f DeductionIneq(K, Ti, Si)

return D
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DeductionIneqDNF (K, |ni &mi
j Si,j , |oi &

pi
j Ti,j)

Remark: This function is meant to be unfolded within DeductionIneq.

D ← true
for i← 1 to p do

D′ ←
cn

i′ DeductionIneqConjunct(K,&
mi′
j Si′,j ,&

mi
j Ti,j)

D ← ApproxDisjunction(D,D′)

return D

DeductionIneqConjunct (K, &m
j Sj , &p

j Tj)
Remark: This function is meant to be unfolded within DeductionIneqDNF.

D ← true
for j ← 1 to m do

D′ ←
cp

j′ DeductionIneq(K, Sj , Tj′)
D ← ApproxDisjunction(D,D′)

return D
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B.2.3 Operations on K

K-New () : K
Postcondition: K-Valid(K)
Postcondition: K-to-C(K) ≡ true

return [M 7→ ∅, Θ 7→ ∅, R 7→ ∅, D 7→ ∅, Q 7→ Q-New(), I 7→ ∅,
TR 7→ ∅, G� 7→ (∅, ∅), GEC 7→ (∅, ∅, ∅, ∅), GS 7→ (∅, ∅, ∅), Gp 7→ (∅, ∅, ∅)]

TEC-kind (K, T : TEC) : κ
Precondition: K satisfies K-INV1, K-INV2, K-INV5 and K-INV7
Precondition: [a] ∈ T =⇒ [a] ∈ K

match T :
case [a] :

[r]← Q-Find(Q, [a])
return kind(Θ(TR([r]))

case [a]
[
~A
]

:
return ?

otherwise :
We assume that the ECH composing T are not an issue to obtain the kind.
return kind(T )

UpdateMember (K, h, S : TEC) : K′

Description: Replace the underlying type of h with S. S must have the same determinacy
as the current underlying type referenced by h

Precondition: K-Valid(K) ∧ h 6∈ Im(TR) ∧ ς(S)↓ ∧ TEC-in-Θ-Inv(S) ∧
TEC-kind(K, S) = TEC-kind(K,R(h)) ∧ h ∈ dom(Θ) ∧
TEC-IsDet(K,Θ(h)) ⇐⇒ TEC-IsDet(K, S)

Postcondition: K-Valid(K′) ∧ Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition: dom(Θ′) = dom(Θ) ∧
∀h̃ ∈ dom(Θ) \ {h}. Θ(h̃) = Θ′(h̃)

Postcondition: K f ς(Θ(h)) � ς(S)  K′

Θ′ ← Θ[h 7→ S]
We need to update GEC , GS and Gp as well (similarly to TEC-CreateEC)
(syms, ecsH, ecsNH, pathDep)← TEC-Composition(S, ∅)
if syms 6= ∅ then

U ′S ← US ∪ syms
We first remove all “old” appearances of h before adding the new ones
E′S ← (ES \ {(sym, h) : (sym, h) ∈ ES}) ∪ {(sym, h) : sym ∈ syms}
h is already in VS
G′S ← (U ′SVS , E

′
S)

else
G′S ← GS

if ecsH ∪ ecsNH 6= ∅ then
U ′EC ← UEC ∪ ecsH ∪ ecsNH
E′EC ← (EEC \ {([a], h) : ([a], h) ∈ EEC}) ∪ {([a], h) : [a] ∈ ecsH ∪ ecsNH}
L′EC ←

(
LEC � (dom(LEC) \ {([a], h) : ([a], h) ∈ dom(LEC)})

)
∪{(([a], h), H) : [a] ∈ ecsH} ∪{(([a], h), NH) : [a] ∈ ecsNH}

G′EC ← (U ′EC , VEC , E
′
EC , L

′
EC)

else
G′EC ← GEC

if pathDep 6= ∅ then
U ′p ← Up ∪ pathDep
E′p ← (Ep \ {((p, sym), h) : ((p, sym), h) ∈ Ep}) ∪ {((p, sym), h) : (p, sym) ∈ pathDep}
G′p ← (U ′p, Vp, E

′
p)

else
G′p ← Gp

return K[Θ 7→ Θ′, GS 7→ G′S , GEC 7→ G′EC , Gp 7→ G′p]
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UpdateMemberDetermined (K, h, S : TEC) : (K′, cstrts, toMerge, dets)
Description: Replace the underlying type of h with S. S must be determined.
Precondition: K-Valid(K) ∧ TEC-IsDet(K, S) ∧ h ∈ dom(Θ) ∧ h 6∈ Im(TR) ∧ ς(S)↓ ∧
TEC-in-Θ-Inv(S) ∧ TEC-kind(K, S) = TEC-kind(K,R(h))

Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′�
Postcondition: dom(Θ′) ∪ {h} = dom(Θ)
∀h̃ ∈ dom(Θ) \ {h}. Θ(h̃) = Θ′(h̃)

Postcondition: dom(D) ] dets ⊆ dom(D′)
Postcondition: K f ς(Θ(h)) � ς(S)  K′ f

c
cstrts fM(K′, toMerge)

if R(h) ∈ dom(D) then
ς ← ECH-Subst(K)
cstrts← {ς(S) � ς(D(R(h)))}
K ← RemoveMember(K, h)
return (K, ς(S) � ς(D(R(h))), ∅, ∅)

else
(_, [x])← TEC-FindOrCreateEC(K, S, ∅, ∅, true, false)
if [x] 6= NIL ∧ [x] 6= R(h) then

K ← RemoveMember(K, h)
return (K, ∅,

{
{R(h), [x]}

}
, ∅)

else
D ← D

[
R(h) 7→ h

]
K ← UpdateMember(K, h, S)
return (K, ∅, ∅, {[x]})

RemoveMember (K, h) : K′

Precondition: K-Valid(K) ∧ h 6∈ Im(TR) ∧ h ∈ dom(Θ)
Postcondition: K-Valid(K′) ∧ ς = ς ′ ∧Q = Q′ ∧ TR = T ′R ∧G� = G′� ∧(

D(R(h)) = h =⇒ R(h) 6∈ dom(D′)
)

Postcondition: K  K′

M′ ←M[R(h) 7→ M(R(h)) \ {h}]
D′ ← D[R(h) 7→ ↑]
Θ′ ← Θ[h 7→ ↑]
R′ ←R[h 7→ ↑]
E′S ← ES \ {(sym, h) : (sym, h) ∈ ES}
G′S ← (USVS \ {h}, E′S)

E′EC ← EEC \ {([a], h) : ([a], h) ∈ EEC}
L′EC ←

(
LEC � (dom(LEC) \ {([a], h) : ([a], h) ∈ dom(LEC)})

)
G′EC ← (UEC , VEC \ {h}, E′EC , L

′
EC)

E′p ← Ep \ {((p, sym), h) : ((p, sym), h) ∈ Ep}
G′p ← (Up, Vp \ {h}, E′p)

return K[M 7→M′,Θ 7→ Θ′,R 7→ R′,D 7→ D′, GS 7→ G′S , GEC 7→ G′EC , Gp 7→ G′p]
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B.2.4 Operations on types

TEC-ApplyHeadSubstitution (K, T : TEC , [a], S : TEC) : T ′ : TEC

Description: In T , replace all head occurrences of [a] with S.
Precondition: K-Valid(K)
Precondition: ς([a])↓ ∧ ς(S)↓ ∧ ς(T )↓ ∧ TEC-kind(K, S) = TEC-kind(K, [a]) ∧
TEC-in-Θ-Inv(T) ∧ TEC-in-Θ-Inv(S)

Postcondition: ς(T ′)↓ ∧ ς([a]) � ς(S)  ς(T ) � ς(T ′)
Postcondition: TEC-kind(K, T) = TEC-kind(K, T ′)
Postcondition: TEC-IsDet(K, T) =⇒ T = T ′

match T :
case [b] where Q-Find(Q, [a]) = Q-Find(Q, [b])

return S

case [b]
[
~A
]
where Q-Find(Q, [a]) = Q-Find(Q, [b])

We can deconstruct S because it has the same kind as [a] and [b] whose application is well-formed.
([~v ~X /_] =>>U)← S

return [ ~X 7→ ~A]U

case |ni &mi
j Ti,j

T ′i,j ← NIL for 1 ≤ i ≤ n, 1 ≤ j ≤ mi

for i ← 1 to n, j ← 1 to mi do
match Ti,j :

case [b] where Q-Find(Q, [a]) = Q-Find(Q, [b])
T ′i,j ← S

case [b]
[
~A
]
where Q-Find(Q, [a]) = Q-Find(Q, [b])

([~v ~X /_] =>>U)← S

return [ ~X 7→ ~A]U

otherwise :
T ′i,j ← Ti,j

If S is a DNF, T ′ loses its DNF form, so we make sure to avoid that by applying a DNF
transformation.
return DNF(|ni &mi

j T ′i,j)

Note: assumes implicit α-renaming to have X̄ fresh.
case [~v ~X / B] =>>U :

U ′ ← TEC-ApplyHeadSubstitution(K, U, [a], S)
return [~v ~X / B] =>>U ′

otherwise :
return T
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TEC-TryApplyHeadSubstitution (K, S : TEC , U : TEC , V : TEC) : S′ : TEC ] {NIL}
Description: In S, try to replace U to V . U and V must be of same kind. The head of S and T must be
an applied abstract type constructor.

Remark: While U and V must have the same kind, S and U (or V ) may have different kind.
Example: With S = U = F [String] and V = Foo, we get S′ = V = Foo.
Example: With S = [X,Y ] =>>F [Y, Int], U = [Z] =>>F [Z, Int], and V = [Z] =>> List[Z],
we get S′ = [X,Y ] =>> List[Y ].

Example: With S = [X] =>>F [X], U = [Z] =>>F [Inv[Z]], and any V , we get S′ = NIL.
Example: With S = F [Option[Int]], U = [Z <: Int | String] =>>F [Option[Z]], and
V = [Z <: Int | String] =>> List[Z], we get S′ = List[Int].

Precondition: K-Valid(K) ∧ ς(S)↓, ς(U)↓, ς(V )↓
Precondition: TEC-IsAbsAppTycon(S) ∧ TEC-IsAbsAppTycon(U) ∧
TEC-kind(K, U) = TEC-kind(K, V ) ∧ TEC-in-Θ-Inv(S) ∧
TEC-in-Θ-Inv(U) ∧ TEC-in-Θ-Inv(V )

Postcondition: S′ 6= NIL =⇒ ς(S′)↓ ∧K f ς(U) � ς(V )  ς(S) � ς(S′)
Postcondition: S′ 6= NIL =⇒ TEC-kind(K, S) = TEC-kind(K, S′) ∧ TEC-in-Θ-Inv(S′)
Postcondition: (S′ 6= NIL ∧ TEC-IsDet(K, V )) =⇒ TEC-IsDet(K, S′)

case (S,U) :

case (F [ ~A1], F [ ~A2]) :

if TEC-EquivVec(K, F [ ~A1], F [ ~A2]) then
return V

else
return NIL

Note: assumes implicit α-renaming to have X̄ and Ȳ fresh.
case ([~vX ~X / B] =>>F [ ~A1], [~vY ~Y /_] =>>F [ ~A2]) :

σ ← TEC-TryMatch(K, Ȳ , F [ ~A2], F [ ~A1])
if σ 6= NIL then

We can deconstruct V because it has the same kind as U .
([~vY ~Y /_] =>> Ṽ )← V

return [~vX ~X / B] =>>σ(Ṽ )
else

return NIL
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Note: assumes implicit α-renaming to have Ȳ fresh.
case (F [ ~A1], [~vY ~Y / BU ] =>>F [ ~A2]) where TEC-kind(K, ~A1) = kind(~Y ) :

σ ← TEC-TryMatch(K, Ȳ , F [ ~A2], F [ ~A1])
Extending σ with > for Y ’s not appearing in F [ ~A2]
σ′ ← σ[Y 7→ >kind(Y ), Y ∈ Ȳ \ dom(σ)]
Destructuring σ′.
[~Y 7→ ~A′]← σ′

if σ 6= NIL then
We can deconstruct V because it has the same kind as U .
([~vY ~Y / BV ] =>> Ṽ )← V
~A′ must satisfy the bounds BV if we want it to be applied to V .
Since we claim K f ς(U) � ς(V )  ς(S) � ς(S′), we can assume that U and V are equivalent
under K. As such, we can also check if ~A′ satisfy BU if we cannot prove it satisfies BV .
if BEC-Satisified(K, BV , [~Y 7→ ~A′]) ∨ BEC-Satisified(K, BU , [~Y 7→ ~A′]) then

return [~Y 7→ ~A′]Ṽ
else

return NIL

else
return NIL

otherwise :
return NIL

T -InhabitedTypes (p : P, T : T ) : P ⇀ T
Description: Recursively retrieve all types that are inhabited by a field in T .
Postcondition: ∀(q, S) ∈ res. p : T  q : S

toVisit← {(p, T )}
visited← ∅
while ∃(q, S) ∈ toVisit do

visited← visited ∪ {(q, S)}
fields← T -Fields(S)
Remove fields whose type has already been visited.
fields← fields � (dom(fields) \ Im(visited))
toVisit← (toVisit \ {(q, S)}) ∪ {(q.a, U) : (a, U) ∈ fields}

return visited
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B.2.5 DNF related

T -CommonTypes (|ni &mi
j Ti,j : T ) : P(T )

return
⋂{
{Ti,j : 1 ≤ j ≤ mi} : 1 ≤ i ≤ n

}
TEC-SimplifyDNF (K, T : TEC) : T ′ : TEC

Remark: Also accepts trivial DNFs and (possibly trivial) DNFs in HK abstraction as well.
Precondition: K-Valid(K) ∧ ς(T )↓ ∧ TEC-in-Θ-Inv(T)
Postcondition: ς(T ′)↓ ∧ K  ς(T ) � ς(T ′)
Postcondition: TEC-kind(K, T) = TEC-kind(K, T ′)
Postcondition: T ′ 6∈ ECH =⇒ TEC-in-Θ-Inv(T ′)
Postcondition: TEC-IsDet(K, T) =⇒ TEC-IsDet(K, T ′)

match T :
case |ni &mi

j Ti,j :
We first try to simplify the inner conjuncts. We represent the DNF with a set, as it is easier to
work with.
T̄ is used as an intermediate result to store the DNF with simplified conjuncts.
T̄ ← ∅
for i ← 1 to n do

T̄i ← ∅
for j1 ← 1 to mi, j2 ← 1 to j1 do

if TEC-Equiv(K, Ti,j1 , Ti,j2) then
T̄i ← T̄i ∪ {Ti,j1}

else
T̄i ← T̄i ∪ {Ti,j1 , Ti,j2}

T̄ ← T̄ ∪ T̄i

T̄ ′ ← ∅
Now we attempt to simplify the disjunctions.
for {T̄i, T̄j} ∈

(
T̄
2

)
do

Note: T̄i and T̄i have each at least one element. A singleton results in a trivial conjunction.
if TEC-Equiv(K,&T̄i,&T̄j) then

T̄ ′ ← T̄ ′ ∪ {T̄i}
else

T̄ ′ ← T̄ ′ ∪ {T̄i, T̄j}

Note: may result in a trivial DNF (which is acceptable).
return |&T̄ ′

Note: assumes implicit α-renaming to have X̄ fresh.
case [~v ~X / B] =>> T̃ :

T̃ ′ ← TEC-SimplifyDNF(K, T̃)
return [~v ~X / B] =>> T̃ ′

otherwise :
return T
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B.2.6 Equivalency of types and bounds

TEC-Equiv (K, S : TEC , T : TEC) : B
Precondition: K-Valid(K) ∧ ς(S)↓ ∧ ς(T )↓
Postcondition: res = true =⇒ K  ς(S) � ς(T )

match (S, T ) :
case (X,X) :

return true

case ([a], [b]) where Q-Find(Q, [a]) = Q-Find(Q, [b]):
return true

case ([a]
[
~U
]
, [b]
[
~V
]
) where Q-Find(Q, [a]) = Q-Find(Q, [b]):

return TEC-EquivVec(K, ~U, ~V )

case (TyCon[~U ], T yCon[~V ]) where Q-Find(Q, [a]) = Q-Find(Q, [b]):

return TEC-EquivVec(K, ~U, ~V )

Note: assumes implicit α-renaming to have Ȳ fresh.
case ([~v~Y / B1] =>> S̃, [~v~Y / B2] =>> T̃ ) :

return BEC-Equiv(K, B1, B2) ∧ TEC-Equiv(K, S̃, T̃)
Note: matches the i and mj as well. Furthemore, we assume that the mj are sorted in an ascending
order; that is, m1 ≤ m2, ...,≤ mn.
case (|ni &mi

j Ti,j , |ni &mi
j Si,j) :

The idea is to go over all set of conjunctions having the same number of terms and ensure that all
conjuncts in T have an equivalent conjunct in S and vice-versa.
for ī ∈

{
{i′ : mi = mi′ , 1 ≤ i′ ≤ n} : 1 ≤ i ≤ n

}
do

Indices of conjuncts in T and S that have an equivalent conjunct in the other type.
T̄i, S̄i ← ∅
for (i1, i2) ∈ ī× ī do

We remind that mi1 = mi2

if TEC-EquivConjunct(K,&
mi1
j Ti1,j ,&

mi2
j Si2,j) then

T̄i ← T̄i ∪ {i1}
S̄i ← S̄i ∪ {i2}

If some conjuncts were not “matched”, we cannot prove equivalency.
if T̄i 6= ī ∨ S̄i 6= ī then

return false

return true

otherwise :
return false

TEC-EquivVec (K, ~S : T N
EC , ~T : T N

EC) : B
return ∀i. 1 ≤ i ≤ |~S| =⇒ TEC-Equiv(K, Si, Ti)

TEC-EquivConjunct (K, &m
j Tj : TEC , &m

j Sj : TEC) : B
We do something similar as in TEC-Equiv.
T̄j , S̄j ← ∅
for j1, j2 ← 1 to m do

if TEC-Equiv(K, Tj1 , Sj2) then
T̄j ← T̄j ∪ {j1}
S̄j ← S̄j ∪ {j2}

return T̄j = S̄j = ī
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BEC-Equiv (K, B1 : BEC , B2 : BEC) : B
Precondition: K-Valid(K) ∧ ς(B1)↓ ∧ ς(B2)↓ ∧ dom(B1) = dom(B2) ∧

dom(B1) # ftv(K)
Postcondition: If res = true:
∀φ, γ. φ, γ |= K =⇒ ∀~T ∈ (T cl)|

~X|. φ[ ~X 7→ ~T ], γ |= ς(B1) ⇐⇒ φ[ ~X 7→ ~T ], γ |= ς(B2)
where ~X = dom(B1). The quantified ~T has the same length and kind as ~X.

return ∀X ∈ dom(B1).
TEC-Equiv(K, π1(B1(X)), π1(B2(X))) ∧
TEC-Equiv(K, π2(B1(X)), π2(B2(X)))
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B.2.7 Constraints satisfaction

BEC-Subsumes (K, B1 : BEC , B2 : BEC) : K3

Precondition: K-WellFormed(K)
Precondition: dom(B1) = dom(B2) ∧ dom(B1) # ftv(K)
Postcondition: If res = true:
∀φ, γ. φ, γ |= K =⇒

[
∀~T ∈ (T cl)|

~X|. φ[ ~X 7→ ~T ], γ |= B1 =⇒ φ[ ~X 7→ ~T ], γ |= B2

]
where ~X = dom(B1). The quantified ~T has the same length and kind as ~X.

Postcondition: If res = false:
∀φ, γ. φ, γ |= K =⇒

[
∃~T ∈ (T cl)|

~X|. φ[ ~X 7→ ~T ], γ |= B1 ∧ φ[ ~X 7→ ~T ], γ 6|= B2

]
return ∀X ∈ dom(B1).
TEC-IsSubtype(K, π1(B2(X)), π1(B1(X))) ∧
TEC-IsSubtype(K, π2(B1(X)), π2(B2(X)))

BEC-BoundsEntailed (K, B : BEC) : K3

Precondition: K-WellFormed(K)
Precondition: dom(B) # ftv(K)
Postcondition: If res = true:
∀φ, γ. φ, γ |= K =⇒ ∀~T ∈ (T cl)|

~X|. φ[ ~X 7→ ~T ], γ |= B
where ~X = dom(B). The quantified ~T has the same length and kind as ~X.

Postcondition: If res = false:
∀φ, γ. φ, γ |= K =⇒ ∃~T ∈ (T cl)N . φ[ ~X 7→ ~T ], γ 6|= B

return ∀X ∈ dom(B1).
TEC-IsSubtype(K, π1(B(X)), π2(B(X)))

BEC-Satisified (K, B : BEC , [ ~X 7→ ~A])

Precondition: K-WellFormed(K) ∧ ς(B)↓ ∧ ς( ~A)↓ ∧ X̄ = dom(B)
Postcondition: res = true =⇒ K  ς( ~A) / ς(B)

return ∀(Xi, (Li, Ui)) ∈ B.
TEC-IsSubtype(K, [ ~X 7→ ~A]Li, Ai) ∧
TEC-IsSubtype(K, Ai, [ ~X 7→ ~A]Ui)

TEC-IsSubtype (K, T1 : TEC , T2 : TEC) : K3

Precondition: K-WellFormed(K)
Postcondition: Returns true if K  T1 � T2

false if, for all φ, γ satisfying K, φ, γ 6|= T1 � T2 and undet otherwise.

match T1 � T2 :

case T1 � T2 where T1, T2 ∈ T cl :
return T -IsSubtype(T1, T2)

case T � T :
return true

case T1 � > :
return true

case ⊥ � T2 :
return true
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case Cls1[~S1] � Cls2[~S2] :
if Cls1 does not extend Cls2 then

return false
else if Cls1 = Cls2 then

With ~v the variance signs of Cls1

return TEC-IsSubtypeVec(K, ~S1, ~S2, ~v)
else

Then, Cls1 extends Cls2 N ≥ 1 times through σ1, ...,σN such that:
Cls1[~S] � &N

i Cls2[σi(~S)] � Cls2[~S2].
return TEC-IsSubtype(K,&N

i Cls2[σi(~S)], Cls2[~S2])

Note: assumes implicit α-renaming to have X̄ fresh.
case [~v ~X � B1] =>>S1 � [~v ~X � B2] =>>S2 :

return BEC-Subsumes(K, B2, B1) ∧ TEC-IsSubtype(K, S1, S2)

For simplicity, we assume it is possible to deconstruct a DNF as follows.
case T1 � U & V :

return TEC-IsSubtype(K, T1, U) ∧ TEC-IsSubtype(K, T1, V )

case U | V � T2 :
return TEC-IsSubtype(K, U, T2) ∧ TEC-IsSubtype(K, V, T2)

case T1 � U | V :
return TEC-IsSubtype(K, T1, U) ∨ TEC-IsSubtype(K, T1, V )

case U & V � T2 :
return TEC-IsSubtype(K, U, T2) ∨ TEC-IsSubtype(K, V, T2)

case [a] � [b] :
[a]← Q-Find(Q, [a])
[b]← Q-Find(Q, [b])
if [a] = [b] ∨ ExistChain(G�, [a], [b]) then

return true
No recorded link between [a] and [b]. If they both have a determined type, we can try that.
else if [a] ∈ dom(D) ∧ [b] ∈ dom(D) then

return TEC-IsSubtype(K,D([a]),D([b]))
else

return undet

case [a]
[
~S1

]
� [b]

[
~S2

]
:

[a]← Q-Find(Q, [a])
[b]← Q-Find(Q, [b])
We would like to get the variance sign of the equivalence classes. Since the constraint and the
applications of [a] and [b] are well-formed, these have the same kind and variance. We can
extract the variance sign by picking the type representative of [a].

([~v ~X /_] =>>_)← ς([a])

if ExistChain(G�, [a], [b]) ∧ TEC-IsSubtypeVec(K, ~S1, ~S2, ~v) then
return true

else if [a] ∈ dom(D) ∧ [b] ∈ dom(D) then
Same comment applies as above.
Note: assumes implicit α-renaming to have X̄ fresh.
([~v ~X / B1] =>> T̃1)← D([a])

([~v ~X / B2] =>> T̃2)← D([b])

return BEC-Subsumes(K, B2, B1) ∧ TEC-IsSubtype(K, [ ~X 7→ ~S1]T̃1, [ ~X 7→ ~S2]T̃2)
else

return undet
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case [a] � T2 :
[a]← Q-Find(Q, [a])
if [a] ∈ dom(D) then

return TEC-IsSubtype(K,D([a]), T2)
else

return undet

case T1 � [a] :
[a]← Q-Find(Q, [a])
if [a] ∈ dom(D) then

return TEC-IsSubtype(K, T1,D([a]))
else

return undet

case [a]
[
~S
]
� T2 :

[a]← Q-Find(Q, [a])
if [a] ∈ dom(D) then

Note: assumes implicit α-renaming to have X̄ fresh.
([~v ~X /_] =>> T̃1)← D([a])

return TEC-IsSubtype(K, [ ~X 7→ ~S]T̃1, T2)
else

return undet

case T1 � [a]
[
~S
]

:
[a]← Q-Find(Q, [a])
if [a] ∈ dom(D) then

Note: assumes implicit α-renaming to have X̄ fresh.
([~v ~X /_] =>> T̃2)← D([a])

return TEC-IsSubtype(K, T1, [ ~X 7→ ~S]T̃2)
else

return undet

otherwise :
return undet

TEC-IsSubtypeVec (K, ~S : T N
EC , ~T : T N

EC , ~v) : K3

Remark: This function is meant to be unfolded within TEC-IsSubtype.
Remark: Default value for ~v is (+)N .

res← true
for i← 1 to |~S| do

match vi :
case + :

res← res f TEC-IsSubtype(K, Si, Ti)

case − :
res← res f TEC-IsSubtype(K, Ti, Si)

case ± :
res← res f TEC-IsSubtype(K, Si, Ti) f TEC-IsSubtype(K, Ti, Si)

return res
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B.2.8 Composition of a TEC

TEC-Composition (T : TEC , boundTyVars : P(VX)) :
(syms : P(S), ecsH : P(ECH), ecsNH : P(ECH), pathDep : P(P × S))

Description: Decorticate a TEC into symbols, EC handles, and path-dependent type projections.
Postcondition: sym ∈ syms =⇒ TEC-InHead(_, sym, T)
Postcondition: [a] ∈ ecsH ∪ ecsNH =⇒ [a] ∈ T
Postcondition: (p, ty) ∈ pathDep =⇒ TEC-InHead(_, p.ty, T)

syms, ecsH, ecsNH, pathDep← ∅
match T :

Note: For conveniance, we use X̄ in the where clause even though X̄ is not defined if the first
pattern is matched. In that case, we default it to ∅.
case Y or [~v ~X / B] =>>Y where Y 6∈ boundTyVars ∪ X̄ :

syms← syms ∪ {Y }
Same comment applies here and for the body of the case as well.
case TyCon[~S] or [~v ~X / B] =>>TyCon[~S]
where TyCon 6∈ boundTyVars ∪ X̄ :

syms← syms ∪ {TyCon}
for S ∈ S̄ do

(_, ecsH′, ecsNH′,_)← TEC-Composition(S, boundTyVars ∪ X̄)
ecsNH← ecsH′ ∪ ecsNH′

case p.type or [~v ~X / B] =>> p.type :
pathDep← pathDep ∪ {(p, type)}

case p.Q or [~v ~X / B] =>> p.Q :
pathDep← pathDep ∪ {(p,Q)}

case p.F [~S] or [~v ~X / B] =>> p.F [~S] :
pathDep← pathDep ∪ {(p, F )}
for S ∈ S̄ do

(_, ecsH′, ecsNH′,_)← TEC-Composition(S, boundTyVars ∪ X̄)
ecsNH← ecsH′ ∪ ecsNH′

case [a] or [~v ~X / B] =>> [a] :
ecsH← ecsH ∪ {[a]}

case [a]
[
~S
]
or [~v ~X / B] =>> [a]

[
~S
]

ecsH← ecsH ∪ {[a]}
for S ∈ S̄ do

(_, ecsH′, ecsNH′,_)← TEC-Composition(S, boundTyVars ∪ X̄)
ecsNH← ecsH′ ∪ ecsNH′

case |ni &mi
j Si,j or [~v ~X / B] =>> |ni &mi

j Si,j :
for i ← 1 to n, j ← 1 to mi do

match Si,j :
(syms′, ecsH′, ecsNH′, pathDep′)← TEC-Composition(S, boundTyVars ∪ X̄)
syms← syms ∪ syms′

ecsH← ecsH ∪ ecsH′

ecsNH← ecsNH ∪ ecsNH′

pathDep← pathDep ∪ pathDep′

otherwise :
pass

return (syms, ecsH, ecsNH, pathDep)
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TH-Candidates (K, T : TEC , boundTyVars : P(VX)) : res : P(TH)
Description: Return the set of type handles that contain the same constituents as a given TEC .
Precondition: K-WellFormed(K)
Postcondition: res ⊆ dom(Θ)

We collect things appearing in T and then remove type handles whose underlying type contain do not
contain one of those.

(tycons, ecsH,_, pathDep)← TEC-Composition(T, boundTyVars)
return (

⋃
Im(Θ))\(
{h : (sym, h) 6∈ ES , sym ∈ tycons, h ∈

⋃
Im(Θ)}

∪ {h : ([a], h) 6∈ EEC , [a] ∈ ecsH, h ∈
⋃

Im(Θ)}
∪ {h : ((p, sym), h) 6∈ Ep, (p, sym) ∈ pathDep, h ∈

⋃
Im(Θ)}

)
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B.2.9 EC processing

T -FindOrCreateECVec (K, ~T : T N , BX : BEC , ~vX , inHead : B, create : B)
Remark: This function is meant to be unfolded within T -FindOrCreateEC.
K′ ← K

~T ′ ← NIL|
~T |

for i ← 1 to |~T | do
(K(n), ~T ′i )← T -FindOrCreateEC(K′, ~Ti, BX , ~vX , inHead, create)
if ~T ′i = NIL then

return (K, NIL)

K′ ← K(n)

return (K′, ~T ′)

B-FindOrCreateEC (K, BY : B, ~vY BX : B, ~vX , create : B)
Remark: This function is meant to be unfolded within T -FindOrCreateEC.
~Y ← dom(BX)
We will recur on the bounds indicated in BY : B in order to build a B′Y : BEC . For that, we prepare a
Btmp with the enclosing BX .

To have a well-formed Btmp, we need to somehow give a B′Y to Btmp, but it is the thing we are trying to
build. It is sufficient to give trivial bounds.

Concatenate BX and the trivial bounds.
Btmp ← BX · (Y 7→ (⊥kind(Y ),>kind(Y )), Y ∈ ~Y )
K′ ← K
The B′Y : BEC that we will build
B′Y ← ∅
for (Yi, (Li, Ui)) ∈ BY do

(K(a), L′i)← T -FindOrCreateEC(K′, Li, Btmp, ~vX~vY , true, create)
(K(n), U ′i)← T -FindOrCreateEC(K(a), Ui, Btmp, ~vX~vY , true, create)
if L′i = NIL ∨ U ′i = NIL then

return (K, NIL)

K′ ← K(n)

B′Y ← B(n) · (Yi 7→ (L′i, U
′
i))

return (K′, B′Y )

TEC-TryFindECOfApplied (K, [a]
[
~S
]
)

Precondition: K-Valid(K) ∧ ftv(~S) = ∅ ∧ ς([a]
[
~S
]
)↓

Postcondition: Similar to Q-FEC2, Q-FEC3, Q-FEC7

for h ∈ TH-Candidates(K, [a]
[
~S
]
, ∅) do

match Θ(h) :

case [b]
[
~U
]
where Q-Find(Q, [a]) = Q-Find(Q, [b]):

if TEC-EquivVec(K, ~S, ~U) then
return (K,R(h))

otherwise :
continue

return NIL
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B.2.10 Matching

TEC-TryMatch (K, X̄ : P(VX), T : TEC , S : TEC)
Description: Attempt to match the type variables X̄ appearing in T with respect to S.
S may not contain any type variable in X̄. If T and S “match”, a non-nil σ representing the
substitution of X̄ is returned. Note that σ may be empty, in which case no X̄ appear in T .

Example: With X̄ = {X1, X2}, T = F [X1, Int] and S = F [Foo, Int], we get σ = [X1 7→ Foo].
Example: With X̄ = {X1, X2}, T = F [X1, Int] and S = F [Foo, Y ], we get σ = NIL, assuming that Y

is distinct from X1 and X2 and that K does not have any information about Y .
Precondition: K-WellFormed(K) ∧ ς(T )↓ ∧ ς(S)↓
Precondition: X̄ # (ftv(S) ∪ ftv(K))
Postcondition: σ 6= NIL =⇒ dom(σ) ⊆ X̄ ∧ ς(σ(T ))↓ ∧K  ς(σ(T )) � ς(S)

if X̄ # ftv(T ) then
if TEC-Equiv(K, T, S) then

return ∅
else

return NIL

match (T, S) :
case (X,S) where X ∈ X̄ :

return [X 7→ S]

case ([a]
[
~U
]
, [b]
[
~V
]
) where Q-Find(Q, [a]) = Q-Find(Q, [b]):

return TEC-TryMatchVec(K, X̄, ~U, ~V )

case (TyCon
[
~U
]
, T yCon

[
~V
]
) :

return TEC-TryMatchVec(K, X̄, ~U, ~V )

case ([~v~Y / B1] =>>U, [~v~Y / B2] =>>V ) :
~Z ← fresh type variables of same length and kind as ~Y
σbody ← TEC-TryMatch(K, X̄ ∪ Z̄, [~Y 7→ ~Z]U, [~Y 7→ ~Z]V )
σB ← ∅
Matching the upper and lower bounds of ~Z
for Z ∈ Z̄ do

(L1, U1)← ([~Y 7→ ~Z]B1)(Z)

(L2, U2)← ([~Y 7→ ~Z]B2)(Z)

σL ← TEC-TryMatch(K, X̄ ∪ Z̄, [~Y 7→ ~Z]L1, [~Y 7→ ~Z]L2)
σU ← TEC-TryMatch(K, X̄ ∪ Z̄, [~Y 7→ ~Z]U1, [~Y 7→ ~Z]U2)
σB ← TEC-TryCombineSubstMatch(σB , TEC-TryCombineSubstMatch(σL, σU))

σ ← TEC-TryCombineSubstMatch(σbody, σB)
if σ = NIL then

return NIL

We ensure that the ~Z are matched against each other, and that they do not appear in the returned
solution.
σZ̄ ← σ � Z̄
σZ̄c ← σ � (dom(σ) \ Z̄)

if σZ̄ = {~Z 7→ ~Z} ∧ ftv(σZ̄c) # Z̄ then
return σZ̄c

else
return NIL
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Note: matches the i and mj as well. Furthemore, we assume that the mj are sorted in an ascending
order; that is, m1 ≤ m2, ...,≤ mn.
case (|ni &mi

j Ti,j , |ni &mi
j Si,j) :

σacc ← ∅
for ī ∈

{
{i′ : mi = mi′ , 1 ≤ i′ ≤ n} : 1 ≤ i ≤ n

}
do

σconj ← NIL
Trying to find a match for &mi

j Ti,j and &mi
j Si,j for i ranging in ī

for i ∈ ī do
σ ← TEC-TryMatchConjunct(K, X̄,&mi

j Ti,j ,&
mi
j Si,j)

A NIL σ means that this particular matching failed but there are other matching to try,
so we keep on
if σ 6= NIL then

if σconj = NIL then
σconj ← σ

We have already found a matching before. We want all found matching to be equivalent
since we do not accept ambiguous substitutions
else if ¬TEC-EquivSubstMatch(K, σconj, σ) then

return NIL

if σconj = NIL then
return NIL

else
σacc ← TEC-TryCombineSubstMatch(σacc, σconj)

return σacc

otherwise :
return NIL

TEC-TryMatchConjunct (K, X̄ : P(VX), &m
j Tj : TEC , &m

j Sj : TEC)
Precondition: K-WellFormed(K)
Precondition: X̄ # ftv(&m

j Sj)

Postcondition: σ 6= NIL =⇒ dom(σ) ⊆ X̄ ∧ TEC-Equiv(K, σ(&m
j Tj),&

m
j Sj)

σacc ← ∅
for j ← 1 to m do

σj ← NIL
for j′ ← 1 to m do

This is similar to what we do with whole conjuncts in TEC-TryMatch
σ ← TEC-TryMatch(K, X̄, Tj , Sj′)
if σ 6= NIL then

if σj = NIL then
σj ← σ

else if ¬TEC-EquivSubstMatch(K, σj , σ) then
return NIL

if σj = NIL then
return NIL

else
σacc ← TEC-TryCombineSubstMatch(σacc, σj)

return σacc
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TEC-TryMatchVec (K, X̄ : P(VX), ~T : T N
EC , ~S : T N

EC)
Precondition: K-WellFormed(K)
Precondition: |~T | = |~S| ∧ X̄ # ftv(~S)
Postcondition: σ 6= NIL =⇒ dom(σ) ⊆ X̄ ∧ TEC-EquivVec(K, σ(~T ), ~S)

σ ← ∅
for i← 1 to |~T | do

σ ← TEC-TryCombineSubstMatch(σ, TEC-TryMatch(K, X̄, Ti, Si))

return σ

TEC-TryCombineSubstMatch (K, σ1 : VX ⇀ TEC ∪NIL, σ2 : VX ⇀ TEC ∪NIL)
Precondition: K-WellFormed(K)
Precondition: σ1 6= NIL ∧ σ2 6= NIL =⇒ (dom(σ1) ∪ dom(σ2)) # (ftv(σ1) ∪ ftv(σ2))

if σ1 = NIL ∨ σ2 = NIL then
return NIL

σ ←
(
σ1 � (dom(σ1) \ dom(σ2))

)
∪
(
σ2 � (dom(σ2) \ dom(σ1))

)
for X ∈ dom(subst1) ∩ dom(subst2) do

if TEC-Equiv(K, σ1(X), σ2(X)) then
σ ← σ ∪ {X 7→ σ1(X)}

else
return NIL

return σ

TEC-EquivSubstMatch (K, σ1 : VX ⇀ TEC , σ2 : VX ⇀ TEC)
Precondition: K-WellFormed(K)
Precondition: (dom(σ1) ∪ dom(σ2)) # (ftv(σ1) ∪ ftv(σ2))

return dom(σ1) = dom(σ2) ∧ (∀X ∈ dom(σ1). TEC-Equiv(K, σ1(X), σ2(X)))
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