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1Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
2Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

3Van der Waals–Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
4QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands

5Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands

(Received 22 February 2021; revised 11 May 2021; accepted 7 June 2021; published 6 July 2021)

We investigate a species selective cooling process of a trapped SU(N ) Fermi gas using entropy redistribution
during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we
show that when a subset NA < N of the single-atom levels experiences a stronger trapping potential in a certain
region of space, the dimple, it leads to improvement in cooling as compared to an SU(NA) Fermi gas only. We
show that optimal performance is achieved when all atomic levels experience the same potential outside the
dimple and we quantify the cooling for various NA by evaluating the dependence of the final entropy densities
and temperatures as functions of the initial entropy. Furthermore, considering 87Sr and 173Yb for specificity,
we provide a quantitative discussion of how the state selective trapping can be achieved with readily available
experimental techniques.
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I. INTRODUCTION

In recent years, there has been considerable effort to ex-
perimentally control ultracold Fermi gases with the aim of
realizing models of strongly interacting electrons, in partic-
ular the Hubbard model, upon loading the atoms into a deep
optical lattice [1]. Of particular interest are ultracold quantum
degenerate Fermi gases with nuclear spin I that is decoupled
from the electronic spin, such as 173Yb [2–4] and 87Sr [5–7],
which feature N = 2I + 1 hyperfine states in the ground-state
manifold.

The SU(N ) Fermi gases have attracted considerable atten-
tion as they allow for SU(N ) generalizations of the Hubbard
model [8] and can host a plethora of exotic phases including
various spin orders and liquids [9–14], Mott-insulator–metal
transitions and crossovers [15,16], valence bond solids and
semimetals [17,18], unconventional superconductors [19],
and collective motional modes [20]. Remarkably, some of
these scenarios have been probed also experimentally for N >

2 [21–25]. The limit of large interaction gives rise to SU(N )
magnetism [26,27], where the system can be effectively de-
scribed in terms of a Heisenberg model. This stimulated
theoretical investigations using representation theory [28–31],
variational approaches [32], and large-scale simulations at
finite temperature [33]. Furthermore, depending on N and
the lattice geometry, the Heisenberg Hamiltonians can be
linked to Wess-Zumino-Witten models when at a critical point
[34,35] and feature chiral spin liquids [36] and magnetic
orders such as generalized valence bond solids [37] and pla-
quette [38,39], Néel and stripelike long-range [40,41], and
antiferromagnetic orders [42].

To observe these magnetic orders the atoms need to
be cooled to temperatures below the superexchange energy

4t2/U , where t and U are the tunneling rate and interaction
strength of the parent Hubbard model, respectively. Here a
promising approach is based on an (adiabatic) entropy redis-
tribution akin to the Pomeranchuk effect in solid helium [43].
For cold atoms in optical lattices this effect has been studied
theoretically by means of dynamical mean-field theory in
[44], where the entropy was removed from a certain region,
a dimple, by appropriately shaping the trapping potential.
In the context of SU(N ) fermions, Refs. [45,46] studied the
enhancement of the cooling due to higher N (see also [47] for
adiabatic cooling of interacting fermions and [48,49] for adi-
abatic cooling of noninteracting fermions). Pomeranchuk and
dimple cooling were experimentally demonstrated in [50,51],
respectively, leading to an antiferromagnetic order [23,52]
with [51] reporting the final temperature of T/t = 0.25 [see
also [53] for experimental realization of short-range antiferro-
magnetic order, [22] for probing the Mott-insulator transition,
and [25] for the thermodynamics of the interacting SU(N )
Fermi gas].

Motivated by these developments, in this work we study
the effect of adiabatically loading an initially harmonically
trapped SU(N ) Fermi gas into a deep optical lattice in a
species selective way. Specifically, we consider a bipartition
of the atomic levels in two families A and B such that N =
NA + NB and an optical potential which forms a dimple for
only the A family (hereafter we refer to the different atomic
levels as colors). Using the high-temperature expansion of the
Hubbard model, we compute the entropy density and show
that this results in further enhancement of the cooling of the
Mott-insulating state of the A-family atoms in the dimple
compared to an SU(NA) Fermi gas only.

The paper is structured as follows. In Sec. II we describe
the model and methodology, in Sec. III we present the results,
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FIG. 1. Schematics of the experimental protocol. A harmonically
trapped SU(N ) free Fermi gas with atoms belonging to families A
(blue) and B (red) of initial total entropy Si and temperature Ti is
adiabatically loaded in a deep optical lattice with potentials VA and
VB for the two families such that VA < VB in the dimple (blue shaded
region) and VA = VB in the reservoir (red shaded region).

in Sec. IV we discuss a possible experimental implementation,
and we conclude in Sec. V.

II. MODEL

Our main focus is on studying the cooling of an SU(N )
Fermi gas initially trapped in a harmonic potential. The trap is
adiabatically transformed into a deep optical lattice such that
the system can be effectively described by a Hubbard model.
We assume that the final potential is such that a number NA

of the N colors experience a different potential in a certain
region of space, a dimple, than the remaining NB = N − NA

components (see Fig. 1).
Specifically, we consider an SU(N ) Fermi gas of Ni =∑N
α=1 Nα particles, with Nα the particle number of each color

α. We take the system to be initially a free gas in a harmonic
potential V (r) = 1/2m

∑d
j=1 ω2

j x
2
j , where m is the atom mass,

r = (x1, . . . , xd ), d is the dimensionality of the system,
and ω j is the trapping frequency with the geometric mean
ω̄ = (ω1 · . . . · ωd )1/d . Denoting further the chemical poten-
tial of each color by μα and taking the gas to be at an initial
temperature Ti, to first order in Ti/μα the particle number and
the chemical potential are related through (we use h̄ = kB = 1
throughout the article) [46]

Niα = μd
α

ω̄d d!
. (1)

The initial entropy of color α is then given by

Siα = Ti
μd−1

α

ω̄d (d − 1)!

π2

3
. (2)

Now taking into account the chemical potentials of each fam-
ily, μA and μB, the total number of particles becomes

Ni = NiA + NiB, (3)

where

NiF =
∑
α∈F

Niα = NF μd
F

ω̄d d!
(4)

is the particle number of family F = A, B [cf. Eq. (1)]. Using
that for a noninteracting gas the total initial entropy Si =∑

α Siα , the entropy per particle is given by

Si

Ni
= π2

3
d

Ti

TF,eff
. (5)

Here

TF,eff = NAμd
A + NBμd

B

NAμd−1
A + NBμd−1

B

(6)

is the effective Fermi temperature given by the weighted com-
bination of the chemical potentials of both families.

Next we assume that a deep optical lattice is loaded in an
adiabatic isentropic fashion such that the system is effectively
described by a Hubbard Hamiltonian with tunneling rate t and
isotropic on-site interaction strength U for all species [26]:

H = −t
∑
〈 jk〉,α

c†
α, jcα,k +

∑
j,α

Vα, j n̂α, j + U

2

∑
j

n̂ j (n̂ j − 1)

=
∑

j

h j . (7)

Here cα, j are the fermionic annihilation operators for a particle
of color α on site j with the usual anticommutation relations
{cα, j, c†

β,k} = δαβδ jk , n̂α, j = c†
α, jcα, j , and n̂ j = ∑

α n̂α, j . The
sum in Eq. (7) runs over L sites and 〈 jk〉 denotes nearest
neighbors.

Crucial ingredients of the present work are the species- and
position-dependent on-site potentials Vα, j . Here we consider
a different potential for each family: VF, j ≡ Vα, j if α ∈ F ,
F = A, B. In particular, we consider boxlike potentials, where
VA < VB in a central region, which we call a dimple D. We
refer to the remainder of the sites as the reservoir R. The
assumption of boxlike potentials is motivated by the fact that
in a quantum simulation of SU(N ) magnetism, one ideally
wishes to create a flat optical lattice to faithfully simulate the
Hubbard model. There is indeed an ongoing effort to achieve
this goal in current cold-atom experiments [51] as well as
in creating box-shaped rather than harmonic potentials [54].
Without loss of generality, we choose the potentials as

VA, j =
{

0 for j ∈ R
VA for j ∈ D,

(8a)

VB, j = 0 ∀ j, (8b)

with VA < 0 (see Fig. 1). In what follows we analyze the
two-family Hubbard model using its high-temperature ex-
pansion in the grand-canonical setting [55] and local density
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approximation (LDA), which is commonly adopted for deep
optical lattices realizing the tight-binding models [23,46,50]
(we comment further on the applicability of the LDA for the
box potentials below). The particle and entropy densities at
site j are given by (F = A, B)

n̄F, j = −∂μF � j, (9)

s j = −∂T � j, (10)

where � j is the local contribution to the grand potential [cf.
Eq. (15)]. Furthermore, we define the entropy density per
particle as

s̄ j = s j

n̄A, j + n̄B, j
. (11)

A. Atomic limit

We start our analysis by first considering a single site in the
atomic limit t = 0. The single-site partition function is given
by z0, j = tr(e−βh j ), where h j is a single-site Hamiltonian in
Eq. (7) and the trace is taken over a basis of single-site orbitals
of h j . In this case, the single-site partition function reads

z0, j =
NA∑

nA=0

NB∑
nB=0

(
NA

nA

)(
NB

nB

)
e−βε j (nA,nB ), (12)

where β = 1/T and

ε j (nA, nB) = (nA + nB)(nA + nB − 1)U/2

+ (VA, j − μA)nA + (VB, j − μB)nB. (13)

It is instructive to consider further the limit of small tem-
peratures and investigate the behavior of the particle densities
(9) in the dimple and the reservoir as functions of the chemical
potentials μF . For β � 1, the partition function (12) is domi-
nated by a single term, corresponding to the minimum of the
energy (13), with the particular combination of (nA, nB) such
that nA = n̄A, nB = n̄B, and (12) reduces to

z0, j ≈
(

NA

n̄A

)(
NB

n̄B

)
e−βε j (n̄A,n̄B ).

Consequently, the entropy density is given by

s j = ln

[(
NA

n̄A

)(
NB

n̄B

)]
. (14)

For specificity, in what follows we seek to create a “clean”
Mott-insulating state with n̄A = 1 and no B particles, n̄B = 0,
in the dimple, a scenario we analyze in detail in Sec. III. In this
case, the value of VA has to be chosen in the interval (−U, 0),
avoiding the proximity of the limiting values VA = −U, 0.
This is to prevent possible double occupancies (when VA =
−U ) and to ensure n̄A = 1 (avoiding a too shallow dimple
VA = −ε, ε 	 1) at finite temperature. We have found that
these constraints are well respected for VA = −0.8U , which
we consider in the remainder of the paper. We also note that
n̄AR < n̄AD as a consequence of the dimple potential (8).

Analogously, as discussed in detail in Appendix A, a suit-
able choice of the chemical potential for the B family is

FIG. 2. Single-site particle densities in the dimple n̄AD and n̄BD

and in the reservoir n̄AR and n̄BR vs μA. The densities are plotted in
the atomic limit t = 0 for T = 0 (dashed lines) and T = U/25 (solid
lines) with NA = 2, NB = 8, and VA = −0.8U [cf. Eq. (8)] and at
fixed μB = −0.1U (the densities n̄BD and n̄BR are identically zero
at zero temperature). The arrow depicts the offset |VA| between the
dimple and the reservoir particle densities (see the text for details).

μB < 0, in which case n̄BD = n̄BR = 0 at zero temperature and
n̄A undergoes changes in integer steps (0 → 1 → · · · → NA)
as μA is increased from −∞ to positive values (cf. the dashed
lines in Fig. 2). The transitions from n̄A to n̄A + 1 occur at
μA = VA + n̄AU in the dimple and μA = n̄AU in the reservoir,
which differ by VA, as indicated by the arrow in Fig. 2.

The effect of the finite temperature is the characteristic
smearing of the staircase profile of the particle densities as
well as resulting in n̄B > 0 in the μA → −∞ limit (cf. the
orange and red solid lines in Fig. 2). The precise values of
n̄AR and n̄BR can be further adjusted by μA,B, which we tune
in the vicinity of 0 (cf. Fig. 2) such that the Mott-insulating
state is achieved in the dimple (see Sec. III and Appendix A
for further details).

B. The t/U expansion at finite temperature

Next we turn to the t �= 0 regime. Since we assume a
box-shaped potential, the LDA is satisfied everywhere but at
the boundary between the dimple and the reservoir, where the
potential VA changes in a steplike fashion. For large enough
reservoir and dimple, we expect the thermodynamic properties
of the Fermi gas far from the boundary between the two
regions to be still well captured by the LDA. Under this ap-
proximation, the grand-canonical potential of the two-family
Hubbard model (7), up to second order in t/U for t 	 T 	
U , reads [55]

� =
L∑

j=1

� j = −β−1
L∑

j=1

ln(z0, j ) +
L∑

j=1

�2, j, (15)

where L = LD + LR, LD,R being the number of sites in the
dimple and the reservoir, respectively, and (see Appendix B

013304-3



AARON MERLIN MÜLLER et al. PHYSICAL REVIEW A 104, 013304 (2021)

for derivation)

�2, j = − β−1t2c
z−2
0, j

∑
F=A,B

[
NF

NF∑
n1F =1

NF̄∑
n1F̄ =0

NF −1∑
n2F =0

NF̄∑
n2F̄ =0

× e−β[ε j (n1A,n1B )+ε j (n2A,n2B )]

(
NF − 1

n1F − 1

)(
NF − 1

n2F

)(
NF̄

n1F̄

)(
NF̄

n2F̄

)
I (U [n1,A + n1,B − n2,A − n2,B − 1])

]
. (16)

Here F̄ denotes the complement of the family F , i.e., either
F = A or F̄ = B or vice versa, c
 is the coordination number
of the lattice, the energies ε j (nA, nB) are given by (13), and the
function I is given by

I (�) =
{

β2

2 , � = 0
1

�2 (eβ� − β� − 1), � �= 0.
(17)

III. RESULTS

For the present simulations, we consider a two-dimensional
square lattice with coordination number c
 = 4. Motivated by
possible applications in ongoing experiments with 87Sr atoms,
we also set N = 10 [5–7].

A. Particle densities in the dimple and reservoir

We start our investigation by discussing the role of the
particle densities. It follows from the form of the potential
for family A [Eq. (8a)] and the discussion in Sec. II that as
μA is increased, particles of family A will accumulate in the
dimple until they reach unit filling. Upon a further increase

FIG. 3. (a) Isolines of the initial entropy density per particle s̄i as
a function of the particle densities in the reservoir at fixed Tf = 4t .
The plus indicates the location (n̄AR,max, n̄BR,max) of maximum of
s̄i. The dashed and solid lines correspond to the atomic limit and
second-order high-temperature expansion of the Hubbard model,
respectively. The inset shows a larger range of reservoir particle den-
sities, with a black dashed line delimiting the Mott-insulating regions
n̄AD = 1, 2 in the dimple. (b) Plot of n̄AR,max vs n̄BR,max for various NA.
The data points correspond to various dimple and reservoir sizes LD

and LR. (c) Plot of n̄AR,max and n̄BR,max as a function of the relative size
of the dimple LD and the reservoir LR. The parameters are U/t = 100,
VA = −0.8U , and LD/LR = 1/50. In (a) and (c) NA = 2 and NB = 8.

of μA, they will start to populate the reservoir (see Fig. 2).
Subsequently, when increasing μB, for μB < U , particles of
family B will start to populate only the reservoir as they will
be repelled from the dimple by particles A present therein.
Focusing specifically on the range of chemical potentials re-
sulting in n̄A,D = 1 [see the inset of Fig. 3(a)], in Fig. 3(a) we
show the dependence of the entropy density per particle s̄i =
Si/(NA + NB) = (LRsR + LDsD)/(NA + NB) at a given final
temperature (Tf = 4t) as a function of the particle densities.
Ultimately, we seek conditions which minimize the entropy
density per particle s̄D in the dimple, which we analyze in the
subsequent section. Alternatively, one can invert the question
and ask, given the final temperature Tf , what parameter set
maximizes the (total) initial entropy density per particle s̄i. It
is apparent from Fig. 3(a) that there is a unique combination
of particle densities n̄AR,max and n̄BR,max, denoted by a plus,
which maximizes s̄i. Two comments are in order. First is the
fact that nB,max > 0 clearly indicates an improved cooling due
to the presence of family B. Intuitively, this is an expected
result, since the presence of family B increases the number of
degrees of freedom in the reservoir which are able to absorb
the entropy from the dimple. Second, starting from the parti-
tion function in the atomic limit (12) in the regime n̄A, n̄B,< 1,
in Appendix C we show that (n̄AR,max, n̄BR,max) corresponds to
the symmetric point μA = μB restoring the SU(N ) Hubbard
model in the reservoir. In Fig. 3(b) we show the dependence
of n̄BR,max on n̄AR,max for various NA and LD/LR denoted by
the data points in Fig. 3(c). This dependence can be under-
stood by considering the atomic limit, in which NB nBR,max =
NA nAR,max, which follows directly from the properties of the
partition function (12) (see Appendix C).

Next, in Fig. 3(c) we show the dependence of n̄FR,max vs
LD/LR. This is motivated by the requirement that within the
finite amount of space available to the experiment, one has a
tradeoff between the size of the dimple and the reservoir. In
order to optimize the cooling, one has to adjust the particle
densities in the reservoir. In particular, in the limit of infinite
reservoir size LD/LR → 0, the optimal cooling is achieved for
n̄FR,max → 0.1

We now turn our attention to the cooling in the dimple,
where we compare the cooling in the presence of family B
with the situation when it is absent, the latter corresponding
to the SU(NA) Hubbard model only.

1In this context, Ref. [44] discusses the improvement in cooling
when flattening the harmonic profile of the reservoir, resulting in the
flat (boxlike) profile considered here.
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FIG. 4. Entropy density per particle in the dimple s̄D vs the initial
entropy density s̄i for (a) NA = 3 and (c) NA = 9. The dark blue (light
orange) curves correspond to situations with (without) family B. The
solid, dash-dotted, and dashed lines correspond to the entropy density
s̄D and the final temperature Tf to second-order expansion (16) and
in the atomic limit, respectively. On the top horizontal axis of (a) and
(c) we show Ti/TF,eff, where TF,eff is the effective Fermi temperature
(6). (b) and (d) Corresponding particle densities in the dimple n̄AD.

B. Dimple cooling

Using the analysis described above, for each Tf we find a
maximum s̄i and evaluate the entropy density per particle in
the dimple s̄D. The dependence of s̄D and Tf on s̄i is shown
in Figs. 4(a) and 4(c) for NA = 3 and 9, respectively. Fig-
ures 4(b) and 4(d) show the corresponding particle densities
in the dimple. For illustration we also show the corresponding
initial temperatures Ti evaluated using Eq. (5) and specific
experimental parameters (see the caption for details). It is
apparent from the figures that the improvement in cooling,
i.e., achieving the same s̄D for a larger initial entropy density,
increases with increasing NB. We further note that the atomic
limit predictions [dashed lines in Figs. 4(a) and 4(c)] saturate
for a certain s̄i at s̄D = ln NA, signaling the necessity to in-
clude higher-order terms (16) to capture the behavior of the
entropy in the dimple. The relatively small change in s̄D can
be attributed to the fact that for the high temperatures Tf � t
considered here the entropy density is only weakly dependent
on the temperature.2

Addressing quantitatively the regime of small final temper-
atures Tf � t relevant for the superexchange physics would
require different theoretical tools, such as dynamical mean-
field theory (DMFT) [44,56] or quantum Monte Carlo or
tensor-network-based approaches [57]. The complexity of
adapting these methods to the problem of the two-family
SU(N ) Hubbard model goes beyond the scope of this work.
However, in Appendix D we compare the employed (second-
order) high-temperature expansion to the DMFT results
of Ref. [44] for an SU(2) Hubbard model with a three-

2See, e.g., [45] or Fig. 1 in [58], which analyzed the entropy density
for a one-dimensional chain with c
 = 2. Since we rely on the LDA,
we expect the dependence of s̄D to qualitatively hold for the square
lattice with c
 = 4 as it appears only as a prefactor in Eq. (16).

dimensional dimple. We find good agreement, similarly to
Ref. [56], between the two methods in the expected regime of
validity Tf � t . This agreement is a strong indication in favor
of the quantitative correctness of the data shown in Fig. 4,
which clearly indicate the enhancement of the cooling when
considering the B family in the reservoir as compared to the
case when no B family is present.

IV. EXPERIMENTAL CONSIDERATIONS

In this section we briefly discuss a possible implementa-
tion of the proposed scheme. We seek parameters that satisfy
the following constraints: (i) a deep optical lattice with po-
tential amplitude Vlatt ≈ O(10Er ), where Er = (h̄klatt )2/2m is
the recoil energy, such that the tight-binding approximation
holds; (ii) the lattice band gap, which for the deep lattice we
estimate as a single lattice site harmonic oscillator frequency
Egap ≈ √

2Vlattklatt/m, to be much larger than the interaction
energy to neglect higher band excitations Egap � U ; and
(iii) a negligible off-resonant scattering rate with respect to the
Hamiltonian energy scales. For the sake of concreteness, in
the following we specifically focus on fermionic 87Sr [5–7,59]
and provide a quantitative example restoring the dimensionful
quantities using h̄.

In the far-detuned regime, the optical potential and
off-resonant scattering rate are given by the classical formulas
V = −(3πc2/2ω3

0 )γ [1/(ω0 − ω) + 1/(ω0 + ω)]I and
γsc = (3πc2/2h̄ω3

0 )(ω/ω0)3γ 2[1/(ω0 − ω) + 1/(ω0 − ω)]2I ,
where ω0, ω, γ , and I are the atomic transition frequency, the
laser light frequency, the atomic excited-state decay rate, and
the laser intensity, respectively [60].

We consider the dimple potential to be created by
a laser light on the |S〉 - |P 〉 transitions, where |S〉 ≡
|1S0, F = 9

2 〉 , |P 〉 ≡ |3P2, F ′ = 11
2 〉 for brevity [61]. The

choice of the P manifold is motivated by the fact that the
main optical lattice wavelength λlatt = 900 nm is approxi-
mately magic for the |S〉 - |P 〉 transition [62], which ensures
a position-independent frequency selection of the individual
mF states. To this end, a laser intensity of the lattice Ilatt =
5 kW/cm2 yields Vlatt/Er ≈ 20 and with U = 5 kHz we get
Egap ≈ 160 kHz � U as desired. We also anticipate that the
dominant scattering rate corresponds to the scattering of the
lattice light on the |S〉 - |1P1〉 transition and evaluates to γsc ≈
6 mHz, which is negligible compared to the Hamiltonian
energy scales.

Next, defining � = ω0 − ω and requiring that |�| � |VA|
such that the far-detuning approximation holds, we find that
the desired VA ≈ −U is achieved for I ≈ 20 W/cm2 and
� = 50 kHz. This value of � is compatible with the single
mF -level addressability using the Zeeman splitting of the P
manifold with the energy shift between adjacent mF states of
0.255 MHz/G giving, say, 25 MHz for a magnetic field of
100 G [63] (see also [3] for an experimental demonstration
using 173Yb).

Importantly, the dimple light gives rise to an additional
contribution to the dimple potential δV ≈ NA × 2 kHz for all
mF states stemming from the |S〉 - |1P1〉 transition, which is
of the order comparable to the target dimple offset U . Here
the factor NA accounts for the NA dimple laser beams. In prin-
ciple, one could mitigate this additional potential by further
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reducing � (while modifying the dimple laser intensity I to
keep |VA| ≈ U ); however, this is precluded by the requirement
|�| � |VA| so that one remains in the far-detuned regime
to prevent detrimental light scattering. A possible remedy is
to compensate for the additional dimple potential δV with a
dipole laser beam in the dimple that is blue detuned to the
|S〉 - |1P1〉 transition or, alternatively, a red-detuned one in the
reservoir region.

Finally, we note that using 173Yb instead might provide
further improvement in reducing the additional dimple poten-
tial [63–67]. This stems from the stronger |S〉 - |P 〉 transition
with the decay rate of approximately 6 mHz for 87Sr and
approximately 95 mHz for 173Yb. This in turn allows for a
reduction of the dimple laser intensities and consequently of
the additional dimple potential by a factor of 95

6 ≈ 15.

V. CONCLUSION AND OUTLOOK

We have studied the enhancement of cooling of an SU(N )
Fermi gas exploiting state selective trapping of a subset of
NA atomic levels for which the trapping potential forms a
dimple. We could demonstrate such enhancement and quan-
tify the cooling using the high-temperature expansion of the
Hubbard model by explicit evaluation of the entropy densities
and final temperatures leading to an SU(NA) Mott insulator in
the dimple. We could also demonstrate that optimal cooling
occurs when the chemical potentials for both families are
equal in the reservoir, leading to the symmetry restoration of
the SU(N ) Hubbard model therein. While these results are
encouraging for the current experiments with cold fermionic
gases featuring N sublevels, such as 173Yb or 87Sr, the high-
temperature expansion used here is not suitable to describe the
regime of sufficiently small temperatures where exotic mag-
netic phases driven by the superexchange interaction could
be achieved. Faithfully quantifying the cooling at such low
final temperatures Tf < t requires implementing some of the
methods discussed in Sec. III, such as the DMFT [44,56] or
some of the quantum Monte Carlo or tensor-network-based
approaches [57], which we leave for future work.
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APPENDIX A: PARTICLE DENSITIES IN THE ATOMIC
AND ZERO-TEMPERATURE LIMIT

Here we discuss the particle densities in the dimple and
the reservoir in the atomic and zero-temperature limits. The
particle densities are given by Eq. (9), which in the atomic

limit and using the LDA reduces to

n̄F, j = −∂μF �0, j =
∑NA

nA=0

∑NB
nB=0

(NA

nA

)(NB

nB

)
e−βε j (nA,nB )nF

z0, j
,

(A1)
where we have used the expression �0, j = −1/β ln z0, j for
the atomic limit grand potential [cf. Eq. (15)] and F =
A, B. We note that in the infinite-temperature limit β →
0 the expression for the particle densities (A1) reduces to
n̄F, j = NF /2, which is the expected result as all the particle
numbers become equally likely. On the other hand, in the
zero-temperature limit β → ∞, Eq. (A1) is dominated by a
single term with the lowest energy ε j [cf. Eq. (13)], which we
rewrite as [dropping the site index j for simplicity and setting
ṼB = 0; cf. Eq. (8)]

2ε̃ = n2
A + n2

B + 2nAnB + nA(2ṼA − 2μ̃A − 1)

− nB(2μ̃B + 1). (A2)

Here we have denoted by tilde the quantities rescaled by the
interaction energy, ε̃ = ε/U , ṼF = VF /U , and μ̃F = μF /U .
It should be noted that the fact that the sum in Eq. (A1) is
dominated by a single term of given nA and nB implies that
the particle densities correspond to these, n̄F = nF . In order to
determine the particle numbers n̄F as a function of μ̃F it thus
suffices to identify the combination (nA, nB) which minimizes
the energy (A2) for a given set of parameters μ̃F and ṼA.

To demonstrate this, let us first consider a limit μ̃A →
−∞ such that the lowest energy corresponds to nA = 0 and
Eq. (A2) becomes

2ε̃(nA = 0, nB) = nB(nB − 1 − 2μ̃B). (A3)

Similarly, the minimum of (A3) implies nB = 0 for μ̃B →
−∞. Increasing μ̃B then leads to a series of transitions, in
steps of 1, in the particle number n̄B and the threshold values
of μ̃B can be obtained from the relation

ε̃(0, nB) = ε̃(0, nB + 1), (A4)

which leads to

μ̃
(nB↔nB+1)
B = nB. (A5)

This allows us to analyze the situation of Fig. 2 and to identify
the particle numbers as μ̃A is varied. For μ̃B = −0.1 Eq. (A5)
implies nB = 0. As we increase μ̃A from −∞, more A par-
ticles will populate the dimple and the reservoir and thus nB

remains zero. The energy (A2) simplifies to

2ε̃(nA, nB = 0) = nA(nA + 2ṼA − 2μ̃A − 1). (A6)

From the condition ε̃(nA, 0) = ε̃(nA + 1, 0) we get the thresh-
old values for μ̃A,

μ̃
(nA↔nA+1)
A = ṼA + nA, (A7)

for which the number of A particles changes from nA to nA + 1
until the saturation nA = NA for μ̃A > ṼA + NA − 1.

In principle, it is straightforward to extend this analysis to
other set of parameters, which we do not perform explicitly as
we are mainly interested in the parameter regime of vanishing
density of B particles in the reservoir.

Finite temperature. The effect of finite temperature is to
smear out the staircase structure of n̄A as is apparent from
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Fig. 2. Similarly, we note that for the parameters of Fig. 2 the
nonzero value of n̄B in the μ̃A → −∞ limit is the consequence
of nonzero temperature, which interpolates between n̄B = 0
for β → ∞ and n̄B = NB/2 for β = 0.

APPENDIX B: DERIVATION OF EQ. (16)

In this Appendix we provide the details of the derivation
of Eq. (16) following closely the treatment in Refs. [68] and
[55] (Chaps. 1, 7, and 8) (see also [69–71] for related devel-
opments). It is obtained using the high-temperature expansion
of the Hubbard model (7) in the strongly interacting limit with
t 	 T 	 U [55]. Splitting explicitly the potential term for the
two families and including the chemical potentials μA,B as in
Eq. (13), we first write the Hamiltonian (7) as

H (t ) = U

2

∑
j

n̂ j (n̂ j − 1) +
∑
j,α∈A

(VA, j − μA)n̂α, j

+
∑
j,α∈B

(VB, j − μB)n̂α, j − t
∑
〈 jk〉,α

c†
α, jcα,k

= H0 − tT . (B1)

Having defined the hopping operator as T = ∑
〈 jk〉,α c†

α, jcα,k ,
the lowest nontrivial term contributing to the grand potential
� is second order in the small expansion parameter t and is
given by

−β�2 = t2
∫ β

0
dτ1

∫ τ1

0
dτ2〈T̃ (τ1)T̃ (τ2)〉L, (B2)

where T̃ (τ ) = eτH0T e−τH0 , 〈Ô〉 = Tr(e−βH0 Ô)/Tr(e−βH0 ) is
the expectation value of operator Ô with respect to the atomic
limit Hamiltonian H0, and 〈O〉L stands for the term in 〈O〉
proportional to the number of sites L (see [68] and Chap. 8
of [55] for details).

In the atomic limit H0 = H (t = 0) = ∑L
j=1 h0 j is a sum

of Hamiltonians acting only on a single site j of the system.
Similarly, T connects only nearest-neighbor sites which differ
by a single particle of color α. In this case, two such nearest-
neighbor sites (denoted by 1 and 2 hereafter) are spanned by
eigenvectors of H0, |m12〉 = |m1〉 |m2〉, with the correspond-
ing eigenenergy Em12 = 〈m12|H0|m12〉 = εm1 + εm2 , where the
single-site energies εmj are given by Eq. (13). Using this and
the LDA, Eq. (B2) can be written as −β�2 = −β

∑
j �2, j ,

where

−β�2, j = t2c
z−2
0

∑
m12,p12

e−β(εm1 +εm2 )|〈p12|T |m12〉|2

× I
(
εm1 + εm2 − εp1 − εp2

)
, (B3)

where c
 is the coordination number of the lattice, z0 is the
single-site partition function (12), and

I (�) =
∫ β

0
dτ1

∫ τ1

0
dτ2eτ1�eτ2�

=
{

β2

2 , � = 0
1

�2 (eβ� − β� − 1), � �= 0,
(B4)

with the result stated in Eq. (17).

The sum in Eq. (B3) can be evaluated as follows. Let us
denote the number of particles of family F and its complement
F̄ on sites 1 and 2 by n1F , n2F , n1F̄ , and n2F̄ , respectively. Next
we consider a hopping of a particle of the family F from site
1 to site 2. The only nonvanishing contribution to the sum
(B3) comes from a configuration where there is exactly one
particle of color α ∈ F on site 1 and zero such particles on site
2. We can choose the color α on site 1 from NF possibilities.
The remaining n1F − 1 particles of family F on site 1 can be
chosen in (NF − 1

n1F − 1) ways. Similarly, there are (NF − 1
n2F

) possible
configurations of particles of family F on site 2. The number
of configurations of particles belonging to the complementary
family F̄ is not constrained by the configurations of the family
F and is given by (NF̄

n1F̄
) and (NF̄

n2F̄
) on sites 1 and 2, respectively.

The overall combinatorial factor is thus the product of all these
factors, namely,

NF

(
NF − 1

n1F − 1

)(
NF − 1

n2F

)(
NF̄

n1F̄

)(
NF̄

n2F̄

)
, (B5)

which appears in Eq. (16). We also note that to convert the
sum over m12 and p12 in Eq. (B3) to a sum over n1F , n2F ,
n1F̄ , and n2F̄ , we have exploited the fact that the single-site
energies εmj = εmj (n jA, n jB) [Eq. (13)] are only functions of
n jF and n jF̄ .

APPENDIX C: EXTREMA OF THE ENTROPY DENSITY

In this Appendix we show by explicit computation in the
atomic limit and in the regime of small particle density in
the reservoir, n̄AR + n̄BR < 1, that the symmetric choice of
chemical potentials μA = μB for the two families corresponds
to the extremum of the entropy density per particle

s̄ = s̄i = LRsR + LDsD

LR(n̄AR + n̄BR) + LD(n̄AD + n̄BD)

= sR + rsD

n + rnD

=:
Y

W
, (C1)

investigated in Fig. 3(a). Here n = ∑
F=A,B n̄FR, nD =∑

F=A,B n̄FD, and r = LD/LR is the ratio of the dimple and
the reservoir sizes. The functions Y and W in Eq. (C1) stand
for the nominator and the denominator, respectively, and are
defined for future convenience.

In the limit of zero tunneling (atomic limit), large inter-
actions, βU � 1, and μF < U , the dominant contribution to
the single-site partition function in the reservoir comes from
the configurations containing at most one particle such that
Eq. (12) can be approximated as

z0 ≈ 1 +
∑

F

NF eβμF , (C2)

where we have used the fact that VA, j = VB, j = 0 (we drop
the site index hereafter for simplicity as we will be concerned
solely with the quantities in the reservoir and the atomic
limit; we also use F = A, B and for a given F we denote its
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complement by F̄ throughout this Appendix). The corre-
sponding particle and entropy densities (9) and (10) read

n̄F = 1

z0
NF eβμF , (C3)

s = ln(z0) − β

z0

∑
F

μF NF eβμF . (C4)

From (C3) we find eβμF NF = n̄F z0, which allows us to express
the partition function (C2) as

z0 = 1

1 − n
(C5)

and consequently the entropy density (C4) as

s = − ln(1 − n) −
∑

F

βμF n̄F . (C6)

It is interesting to verify that by combining (C3) and (C5) we
also get

n2 − n + Neβμ = 0, (C7)

which has real solutions only in the interval 0 � n � 1, con-
sistently with the approximate expressions for the on-site
partition function (C2), which neglects contributions from
larger particle densities (we recall that N = NA + NB is the
total number of colors).

Next we assume that the entropy and particle densities
in the dimple sD and n̄FD do not vary with the chemical
potentials μF , which is well satisfied when the dimple is in
the Mott regime (we further comment on this assumption
below). In what follows we investigate the extrema of the
reservoir density (C1) with respect to μF . Defining ∂ ≡ ∂μF

and ∂̄ ≡ ∂μF̄
to simplify the notation, the extremum has to

satisfy ∂ s̄ = ∂̄ s̄ = 0. Applying this condition to Eq. (C1), we
find

∂ s̄ = 0 ⇔ W ∂Y − Y ∂W = 0, (C8)

which yields the constraint for the values of μA and μB ex-
tremizing s̄. Using

∂ n̄F = β(1 − n̄F )n̄F , (C9a)

∂̄ n̄F = −βn̄F n̄F̄ , (C9b)

∂z0 = βz0n̄F , (C9c)

we have

∂Y = βn̄F [βμF (n̄F − 1) + βμF̄ n̄F̄ ], (C10a)

∂W = βn̄F (1 − n). (C10b)

To proceed, rather than investigating the properties of the
constraint (C8) for the general variables μA and μB, we ask
whether it can be satisfied for μA = μB = μ. In this case

n = N

NF
n̄F , (C11a)

n̄F = NF

NF̄
n̄F̄ , (C11b)

βμ = ln

(
1

N

n

1 − n

)
. (C11c)

Substituting these expressions into (C8), we find
βn̄F [r(nDβμ + sD) + nβμ + s] = 0. (C12)

The first solution is, with the help of (C11a), the trivial limit
n = 0, i.e., vanishing particle density in the reservoir. The
second solution can be cast in the form

P

Q
= r, (C13)

where

P = −(nβμ + s) = ln(1 − n), (C14a)

Q = nDβμ + sD = nD ln
(ηD

N

n

1 − n

)
. (C14b)

Here ln ηD = sD/nD and we have used the expression
(C11c) for βμ. For a given dimple to reservoir size ratio r,
Eq. (C13) thus represents the condition for n, and through
(C11a) for n̄F and n̄F̄ , which maximizes s̄. For the physically
meaningful scenario nD > 0 we find that for n ∈ (0, 1) [cf.
Eq. (C7)], P ∈ (−∞, 0), and Q ∈ (−∞,∞) with the limit
limn→0+ P = 0. This implies that the condition (C13) can be
satisfied for arbitrary r for 0 < n < 1, proving that μA = μB

corresponds to the extremum of s̄ in the atomic limit as
claimed.

To demonstrate this, we consider the case studied in
Fig. 3(a), where r = 1

50 and nD = n̄AD = 1 such that sD =
ln NA and thus ηD = NA. Solving numerically Eq. (C13) and
using (C11a) and (C11b), we get for the maximum (n̄A, n̄B) ≈
(0.016, 0.063), in agreement with Fig. 3(a).

To conclude, we remark that the upper limit n = 1 corre-
sponds to the boundary delimiting the Mott regimes in the
dimple, the particle densities of which differ by one [see the
inset in Fig. 3(a)], with n̄BR = 1 − n̄AR delimiting regions of
n̄AD = 1 and 2, respectively.

APPENDIX D: BENCHMARKING THE SECOND-ORDER
HIGH-TEMPERATURE EXPANSION AGAINST DMFT

The high-temperature expansion of the Hubbard model is
appealing due to its relative simplicity; however, its validity
is limited, as the name suggests, to high temperatures Tf � t
[56]. While the use of advanced numerical methods to address
low temperatures goes beyond the scope of the present work
(see also the discussion in Secs. III and V), here we compare
the second-order high-temperature expansion against existing
DMFT data of Ref. [44] for an SU(2) Hubbard model with a
dimple. This is a scenario which is conceptually equivalent to
the present study.

Based on [44], we consider a Hubbard model with a
three-dimensional rotationally symmetric potential V (r, z) =
Vharmonic + Vdimple + Vbarrier + V0, with

Vharmonic(r, z) = Vh(r2 + γ 2z2)/a, (D1a)

Vdimple(r, z) = −Vd exp
( − 2r2/w2

d

)
, (D1b)

Vbarrier(r, z) = Vb exp
[ − 2(r − rb)2/w2

b

]
(D1c)

and the parameters γ 2 = 50, Vh/6t = 1.8 × 10−4, Vb/6t = 6,
Vd/6t = 15, rb = 15a, wb = 5a, wd = 15a, and a the lattice
spacing. As the system is three dimensional, the coordination
number c
 = 6 for a simple cubic lattice. The offset V0 is
chosen such that V (0, 0) = 0.
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Using the high-temperature expansion to second order
within the LDA, we evaluate the entropy density per particle
s̄C in the dimple (r < rb) as a function of the initial entropy
density per particle s̄i. The results (solid circles and lines) for
different values of the interaction strength and total number
of particles N are shown in Fig. 5, where they are compared
with the DMFT results (diamonds) extracted from Fig. 3(b)
of [44]. For all data, we find reasonable agreement which
improves with increasing s̄i (increasing Ti). Furthermore, the
data agree semiquantitatively (within a factor of 2) in the limit
of low final temperatures Tf ≈ t corresponding to the region
with s̄i ≈ 1 in Fig. 5.

We note that a similar comparison between the DMFT and
high-temperature expansions (up to tenth order) of the Hub-
bard model has been performed in Ref. [56], which reached
the identical conclusion, namely, that the high-temperature
expansion agrees with the DMFT for temperatures down
to Tf � t . As in the main text we consider Tf > 2t , the
agreement shown in Fig. 5 is a strong indication of the
reasonable quantitative accuracy of the high-temperature ex-
pansion used in the present context of the two-family Hubbard
model.

FIG. 5. Entropy density per particle s̄C in the center of the dimple
(D1) as a function of the initial entropy density per particle s̄i. The
solid circles connected by lines are obtained using second-order
high-temperature expansion of the Hubbard model. The diamonds
are the DMFT data taken from Fig. 3(b) of Ref. [44]. Blue,
green, and red data correspond to the interaction strengths U/6t =
2.5, 0.5, 0.5 and the total number of particles N = (12, 8, 12) × 104,
respectively.
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