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Brain lesions caused by cerebral ischemia lead to network disturbances in both
hemispheres, causing a subsequent reorganization of functional connectivity both locally
and remotely with respect to the injury. Quantitative electroencephalography (qEEG)
methods have long been used for exploring brain electrical activity and functional
connectivity modifications after stroke. However, results obtained so far are not univocal.
Here, we used basic and advanced EEG methods to characterize how brain activity and
functional connectivity change after stroke. Thirty-three unilateral post stroke patients in
the sub-acute phase and ten neurologically intact age-matched right-handed subjects
were enrolled. Patients were subdivided into two groups based on lesion location:
cortico-subcortical (CS, n = 18) and subcortical (S, n = 15), respectively. Stroke patients
were evaluated in the period ranging from 45 days since the acute event (T0) up to
3 months after stroke (T1) with both neurophysiological (resting state EEG) and clinical
assessment (Barthel Index, BI) measures, while healthy subjects were evaluated once.
Brain power at T0 was similar between the two groups of patients in all frequency
bands considered (δ, θ, α, and β). However, evolution of θ-band power over time
was different, with a normalization only in the CS group. Instead, average connectivity
and specific network measures (Integration, Segregation, and Small-worldness) in the
β-band at T0 were significantly different between the two groups. The connectivity and
network measures at T0 also appear to have a predictive role in functional recovery
(BI T1-T0), again group-dependent. The results obtained in this study showed that
connectivity measures and correlations between EEG features and recovery depend on
lesion location. These data, if confirmed in further studies, on the one hand could explain
the heterogeneity of results so far observed in previous studies, on the other hand they
could be used by researchers as biomarkers predicting spontaneous recovery, to select
homogenous groups of patients for the inclusion in clinical trials.
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INTRODUCTION

Stroke is a leading cause of severe long-term disability in both the
United States (Benjamin et al., 2018) and Europe (source)1.

Ischemic stroke damages the brain tissue in the affected
vascular territories, inducing a corresponding loss of function.
The structural lesion resulting from unilateral brain injury affects
the functional network architecture of the whole brain, causing
early modifications of its electrical activity (Grefkes and Fink,
2011; Assenza et al., 2013; Fanciullacci et al., 2017) and a
subsequent modification of functional connectivity both locally
and remotely with respect to the lesion (Rossini et al., 2003;
Caliandro et al., 2017). Due to the complexity of the brain
response to neurologic injury, the outcome of stroke recovery is
not only related to the extent of the initial damage (Chen et al.,
2000; Alexander et al., 2010), but also depends on the results
of brain plasticity processes, both structural and functional (Lin
et al., 2018; Pichiorri et al., 2018).

How stroke affects the electrical activity and the synchrony
of electrical oscillations in the cerebral neural network is still
largely unknown (Dubovik et al., 2012), and how these changes
are associated with neurological deficits is unclear. Recent studies
have shown that the activity of individual hemispheres plays
a key role in recovery after a unilateral stroke. In particular,
a relationship between interhemispheric activity balance and
functional recovery was demonstrated (van Putten, 2007; Agius
Anastasi et al., 2017) and a different involvement of the affected
and unaffected hemispheres (AH and UH, respectively) in
different post-stroke phases was also highlighted (Murase et al.,
2004; Sheorajpanday et al., 2011). In this regard, recent studies
have described a specific brain reorganization in the UH that
tends to interact with functional recovery in patients in the early
post stroke stage (Van Kaam et al., 2018). Furthermore, the UH
appears to be involved in a continuous support function even
long after the injury (Lotze et al., 2006; Riecker et al., 2010;
Finnigan and van Putten, 2013).

In addition to the activity of individual hemispheres, the
involvement of specific brain structures was also investigated
to characterize the clinical behavior after stroke. In this
regards, preclinical studies have demonstrated that lesion
location influences the degree of spontaneous recovery in
murine models of cortical and subcortical stroke (Karthikeyan
et al., 2019). Furthermore, in a recent longitudinal study,
cortical involvement was found to predict a poorer functional
outcome in subacute stroke patients (Qu et al., 2018).
Lesion location has also been correlated to the onset of
specific neuropsychiatric conditions after stroke, such as
apathy and depression, which can severely affect recovery
(Mihalov et al., 2016).

Recent findings based on TMS, fMRI and EEG studies pointed
out that cortico-subcortical and subcortical stroke patients have
different cortical activity and excitability levels of the motor
cortex (Luft et al., 2004; Thickbroom et al., 2015; Lamola et al.,
2016; Fanciullacci et al., 2017; Sarasso et al., 2020). However, the

1www.escardio.org

impact of these differences on functional outcome has not been
fully elucidated yet.

The brain is a complex, interconnected network. Pathological
perturbations of the brain are rarely confined to a single locus;
instead, they often spread via axonal pathways to influence
other regions. Understanding brain disorders requires knowledge
of how brain networks respond to pathological perturbations
(Alstott et al., 2009). For this reason, in addition to standard
quantitative EEG analyses, more advanced tools from graph
theory (Grefkes and Fink, 2011) have also been used in recent
years to describe brain function from a systemic perspective, an
approach known as Connectomics (Silasi and Murphy, 2014).
Graph theory looks at networks as a set of nodes with links
between them. Connectomics describes the links in the network
by means of brain connectivity measures.

For EEG recordings of brain network activity, the nodes
are the electrodes/sensors or reconstructed regions of interest
(ROIs), and the links can be considered the connections between
them, calculated with techniques such as linear or nonlinear
correlation, coherence, causality index (Astolfi et al., 2006;
Marinazzo et al., 2011; Jovanović et al., 2013; Guggisberg et al.,
2019). A graph type that shows both “good” local connections and
some distant connections can be called a “small world network”
(Watts and Strogatz, 1998). Small-world organization of brain
networks has been investigated also after stroke (Wang et al.,
2010; Caliandro et al., 2017), and this and other measures from
graph theory have been used to quantify the effects of changes
in brain connectivity on clinical impairment and functional
recovery of post-stroke patients (Jiang et al., 2013; Rehme and
Grefkes, 2013; Wu et al., 2015; Van Kaam et al., 2018).

The aim of this study is to use both standard and more
advanced methods for characterizing resting state EEG activity
and functional connectivity changes in a cohort of patients during
the sub-acute phase of unilateral ischemic brain injury. Our
focus is to understand the dependence of these modifications
on lesion type (cortico-subcortical vs. subcortical). In detail,
we hypothesize a specific effect of the type of lesion on
cortical electrical activity and network connectivity, and a
predictive role of the different early reorganization in functional
recovery over time.

MATERIALS AND METHODS

Participants
Thirty-three unilateral ischemic stroke patients (mean age
69 years, range 22–85; 21 males and 12 females) were enrolled at
the Neurorehabilitation Unit of the University Hospital of Pisa
in the subacute phase of the disease (between 10 and 45 days
after the stroke). Inclusion criteria were: (1) age between 18
and 80 years; (2) first-ever unilateral ischemic stroke in the
middle cerebral artery territory; (3) time from acute event within
45 days. Exclusion criteria were: (1) use of drugs targeting
CNS; (2) diagnosis of epilepsy; and (3) Mini-Mental State
Examination (MMSE) <24. Brain injury was assessed by means
of a standard Computed Tomography (CT) scan, performed
in the Neuroradiology Department of the University Hospital
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of Pisa. Based on brain CT images, lesions were defined as
subcortical if they involved the deep white matter inferior to the
corpus callosum, including the internal capsule, thalamus, basal
ganglia and spared the cerebral cortex. All lesions with a cortical
involvement were defined as cortical-subcortical. According to
the lesion site, the initial sample was divided into two groups:
18 with cortical-subcortical (CS) and 15 with subcortical (S)
lesions. Mean (range) age of S patients was 66 (22–82) years;
mean (range) age of CS patients was 72 (54–85) years. The first
clinical evaluation (T0) was performed after 23 days on average
(range 11–45) for S patients, and after 26 days (range 14–45) for
CS patients by trained neurologists. Patients were evaluated again
3 months after the acute event (T1). The Barthel Index (BI) was
used to measure functional autonomy. Data about age, gender,
side of the lesion (right or left hemisphere), stroke location, time
since stroke at the time of evaluation and clinical status for all
the patients are reported in Table 1. Ten neurologically intact
age-matched right-handed subjects (M/F: 4/6; mean age ± SD:
62.0 ± 10.3 years) were also included in the study as control
group. Each patient and healthy subject recruited gave written
informed consent in accordance with the Declaration of Helsinki.
This study was authorized by the local Ethics committee of
Area Vasta Nord Ovest (CEAVNO) for Clinical experimentation,
Tuscany (Italy), protocol n. 901.

Electrophysiological Recordings and
Data Preprocessing
EEG recordings lasting 10 min were performed at rest while
the subjects were seated in a comfortable chair, with eyes
closed, in an acoustically and electrically shielded room. The
EEG and the vertical electrooculogram (EOG) were recorded
using a 64-channel DC-coupled monopolar amplifier (Micromed
SD MRI, System Plus acquisition software). Electrodes were
positioned according to the 5% 10/20 system (Oostenveld and
Praamstra, 2001). After careful scalp preparation, EEG signals
were acquired at a sampling rate of 256 Hz. Skin/electrode
impedances were below 10 k� in at least 95% of derivations
throughout the experiment (electrode re-gelling was performed
whenever required). Data containing artifacts due to eye blinks,
significant muscle activity and electrode displacement were
removed in an offline visual screening. Although the influence
of ocular artifacts with eyes closed is lower than with eyes
open, small ocular movements may still be present. Given
their stereotyped nature, independent component analysis (ICA)
enabled us to identify and remove such residual ocular activity if
present. The EEG signals were offline re-referenced to the linked-
mastoids virtual reference, then high-pass filtered with a zero-
phase Chebyshev type-2 filter (1 Hz stopband, 2 Hz passband,
80 dB attenuation) and low-pass filtered with a Chebyshev
type 2 filter (45 Hz passband, 48 Hz stopband, and 80 dB
attenuation). Abnormal data with extreme magnitude (e.g., mean
deviations, jumps and large oscillations) with respect to the
continuous dataset were removed by using a customized version
of the routine flt_clean_windows (BCIlab) to compute a moving
windowed signal power. EEG windowed segments (1s) were
removed if their power exceeded the 90% distribution quantile.

Synchronous sudden increases in signal amplitude were detected
by computing the difference between the superior and inferior
envelopes (shape-preserving piecewise cubic interpolation; Butt
and Brodlie, 1993), EEG portions with values greater than
2.5 standard deviations (in amplitude distribution) were then
removed. The process followed three consecutive steps: (i) the
computation of inferior and superior all-channels envelopes; (ii)
the local range setting as all-channels envelopes, respectively; and
(iii) the detection of movement artifacts related to a suitable
threshold on the local range (2.5 standard deviations in amplitude
distribution; Artoni et al., 2012b). Bad channels were identified by
computing global channel measures (e.g., Kurtosis), and by visual
inspection. Eye blinks were identified by computing an adaptive
threshold on the moving-windows cross-correlation between the
EOG and the frontal EEG channels (Menicucci et al., 2014;
Sebastiani et al., 2015; Genna et al., 2017). Finally, ICA was
applied on the cleaned dataset and the ocular component was
removed (Artoni et al., 2012a, 2014).

EEG Data Analysis
Power Analysis
Power spectral density (PSD) was computed for each channel
by averaging periodograms of windowed signal sections (pwelch
function in Matlab). The window length was 2s (512 time
points), without zero padding or overlap. On average 8–9 min
of artifact-free EEG data per patient were available for power
analyses. The PSD was computed for the unaffected hemisphere
(UH) and for the affected hemisphere (AH). An “average scalp
power spectrum” was defined as the mean PSD across all scalp
electrodes. From the average scalp power spectra, we computed
the average PSD across the following frequency bands: delta
(2–4 Hz), theta (4–8 Hz), alpha (8–14 Hz) and beta (14–
30 Hz). PSD was also computed on 26 cortical regions of interest
(ROIs) reconstructed from the EEG signals (see section “Brain
Sources Reconstruction”), using the same methods as for the PSD
computation at the electrode level. The power in the frequency
bands of interest was estimated for each ROI by computing the
area under the PSD curve.

Brain Sources Reconstruction
Underlying brain source signals were determined by processing
IC-reconstructed scalp EEG data using source localization
functions in the eConnectome Matlab toolbox (He et al., 2011).
Relevant steps are explained in He et al. (2011) and in Artoni
et al. (2017) and summarized here for convenience. A cortical
current density source model was used to solve the inverse
problem from the artifact-pruned and retained IC-reconstructed
scalp EEG to cortical source distribution using the minimum
norm estimate (MNE) with the aid of a boundary element
method (BEM) forward head model (He et al., 1987; Hamalainen
and Sarvas, 1989) and Tikhonov regularization (Hansen, 2007).
A high-resolution cortical surface consisting of 41,136 triangles,
segmented and reconstructed for visualization from MRI images
of the Montreal Neurological Institute (MNI) brain using the
Curry software (NeuroScan, Charlotte, NC, United States) was
used. A source space was formed from this cortical surface
down-sampled to 7,850 voxel dipole locations, constrained to the
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TABLE 1 | Participant characteristics.

Patient Age Gender Lesion side/Location Lesion site T0 (days) BI (T0) BI (T1)

1 54 M R/Temporoparietal CS 31 5 30

2 65 M R/Frontotemporal CS 15 5 35

3 79 F L/Temporal CS 23 0 30

4 85 M L/Frontal CS 45 0 15

5 76 M R/Frontal CS 26 25 60

6 80 F L/Parietal CS 45 5 30

7 77 F R/Parietal CS 14 10 20

8 73 F R/Frontotemporoparietal CS 34 10 55

9 61 F R/Parietal CS 14 85 85

10 61 F L/Frontal CS 10 94 98

11 66 M L/Temporoparietal CS 19 5 45

12 69 F L/Temporal CS 17 100 100

13 67 M R/Temporal CS 23 90 95

14 67 M R/Frontotemporal CS 45 5 N/A

15 84 F R/Temporal CS 23 0 N/A

16 83 F L/Parietotemporal CS 28 0 N/A

17 59 M R/Parietal CS 19 90 N/A

18 85 F R/Frontotemporal CS 43 0 N/A

19 54 M R/Corona radiata S 22 35 65

20 59 M L/Pons S 45 10 20

21 78 M L/Centrum semiovale S 19 30 75

22 63 M R/Corona radiata S 19 30 55

23 65 M L/Centrum semiovale S 32 35 65

24 22 M L/Insula S 21 95 100

25 82 F R/Lenticulostriate S 27 20 30

26 52 M L/Corona radiata S 15 100 100

27 73 M R/Centrum semiovale S 11 55 75

28 80 M R/Insula S 18 20 50

29 77 M R/Pons S 20 50 85

30 71 M L/Internal capsule S 45 10 N/A

31 70 M L/Internal capsule S 23 15 N/A

32 62 M R/Thalamus S 11 15 N/A

33 82 F R/Internal capsule S 45 0 N/A

Gender: M, male; F, female. Lesion side: R, right; L, left. Lesion site: CS, cortico-subcortical; S, subcortical. Timing at T0 is the number of days after the stroke event.
BI, Barthel Index.

gray matter with orientations perpendicular to the containing
cortical surface voxel. The scalp surface, skull surface and
brain surface, segmented and reconstructed from the MNI
brain, are provided by the toolbox. The scalp surface, which
consists of 2,054 triangular voxels, forms the sensor space.
This approach enables the comparison of source localizations
across subjects in an atlas-based coordinate system that can be
used in most EEG studies in which subject MR head images
are not available (Darvas et al., 2006; Valdes-Hernandez et al.,
2009). With the pre-computed high-resolution lead field matrix
(2,054 × 7,850) relating all the scalp surface voxels to the
source voxels, a specific lead field matrix for a user-defined
electrode montage (standard 10–20 System in this case) can be
constructed as a subset of the pre-computed lead field matrix
and then used to solve an inverse problem. The solution of the
inverse problem yields estimates of continuous time courses for
cortical sources. Cortical regions of interest (ROI) can be defined

according to Brodmann areas. Thirteen ROIs were defined for
each cortical hemisphere: parietal cortex, associative area (BA5),
ventral premotor cortex (BA6), dorsal premotor cortex (BA6a),
occipital lobe, visuo-motor coordination (BA7), frontal cortex
(BA8), prefrontal cortex (BA9_46), occipital cortex (BA19),
supplementary motor (SMAp), cingulate motor cortex (CMA),
primary motor cortex, BA4, divided into foot area (MIF), lip
area (MIL), hand area (MIH), and the primary somatosensory
cortex, BA3, hand representation area (SIH). Each ROI source
signal was computed by averaging estimated cortical source
activities across the source space ROI voxels. It is important to
point out though that estimating the actual precision of source
localization is currently an open research field (Akalin Acar
et al., 2016). Even when inverse source solutions are estimated
(either as cortical patches or their equivalent dipoles) using an
electrical head model incorporating individual (or template) head
tissue geometries and generally assumed conductivity values,
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the resulting inverse source localization should be interpreted
“probabilistically” (Bigdely-Shamlo et al., 2013), with the spatial
confidence boundaries (of, in general, a cm or more) difficult to
estimate. In the case of distributed cortical surface estimates, the
size of the estimated source patch, in particular, may be highly
method-dependent.

Functional Connectivity Analysis
In this work, measures of lagged connectivity were preferred
to zero phase-lag coherence-type metrics as they proved to
be less biased and less affected by volume conduction effects
(Pascual-Marqui et al., 2011).

Formally, let Xi (t) , Yi (t) ∈ R3 ×1 denote the three-
dimensional time series for the current density vectors (i.e.,
the intracranial signals of electric neuronal activity) at any
two voxels, for the i -th recording epoch, at time t. The
complex-valued Fourier transforms at frequency ω are denoted
Xi (ω) , Yi (ω) ∈ C3 × 1 .

For N recording epochs, the complex-valued covariance can
be written in partitioned form as:

S(ω) =

(
SYY(ω) SYX(ω)

SXY(ω) SXX(ω)

)
=

1
N

N∑
i=1

Zi(ω) · Z∗i (ω) (1)

with:

Zi (ω) =

(
Xi(ω)

Yi(ω)

)
(2)

and where the superscript “∗” denotes the transposed and
complex conjugate vector. The partitioned coherence matrix
which conserves each intra-voxel structure is:

R(ω) =

(
S−1/2

YY (ω) 0
0 S−1/2

XX (ω)

)(
SYY(ω) SYX(ω)

SXY(ω) SXX(ω)

)(
S−1/2

YY (ω) 0
0 S−1/2

XX (ω)

)
(3)

Finally, as explained in detail in Pascual-Marqui et al. (2011),
the difference between the appropriate statistics for testing total
and instantaneous connectivities gives the well-defined measure
of lagged connectivity:

FX↔Y(ω) = ln |Re (R(ω))| − ln |R(ω)| (4)

or its transformation as lagged coherence:

r2
lag(ω) = 1− exp(−Flag(ω)) (5)

In the particular case for univariate time series xi(t) and yi(t),
the lagged coherence has a very simple and appealing form:

r2
lag(ω) =

[
sIm
xy (ω)

]2

sxx (ω) syy (ω)−
[

sRe
xy(ω)

]2 (6)

where the superscripts Re and Im denote real and imaginary
parts, respectively.

It is shown in Pascual-Marqui (2007) and Pascual-
Marqui et al. (2011) that the lagged connectivity measure
for intracranial signals contains physiological information,
minimally affected by volume conduction artifacts. Furthermore,
note that while coherence quantifies the linear relationship
between complex-valued variables, lagged coherence
measures exactly the same, but with the exclusion of
zero-lag contribution.

In this study, in order to explore interconnectivity between
the reconstructed ROIs, intracortical Lagged Linear Coherence
was computed between all possible pairs of ROIs for each of
the independent EEG frequency bands of interest: delta (2–
4 Hz), theta (4–8 Hz), alpha (8–14 Hz), and beta (14–30 Hz).
Then, the following connectivity measures were extracted: Global
connectivity, i.e., the average connectivity between all pairs of
ROIs; AH connectivity, i.e., the average connectivity between
ROIs in the affected hemisphere; UH connectivity, i.e., the average
connectivity between ROIs in the unaffected hemisphere; IH
connectivity, i.e., the average connectivity between ROIs located
in different hemispheres.

Network Analysis
A network is a mathematical representation of a real-
world complex system and is defined by a collection of
nodes (vertices) and links (edges) between pairs of nodes.
Nodes in large-scale brain networks represent brain regions,
while links represent anatomical or functional connections,
depending on the data set. Anatomical connections typically
correspond to white matter fiber tracts between pairs of gray
matter brain regions (cortical areas or subcortical relays).
Functional connections correspond to temporal correlations
in activity and may also occur between pairs of anatomically
unconnected regions. Connections between pairs of nodes in a
network can be differentiated by assigning them weights, which
measure their strength or intensity. In these cases, a weighted
network can be created.

In the following network analyses, LLC values computed
between all possible pairs of ROIs (nodes) were used as weighted
links to create undirected weighted graphs, for each frequency
band and for each subject separately. “Undirected” means that
the link between node i and node j (forward connection)
has the same strength of that between node j and node i
(backward connection).

We computed the core measures of graph theory that
summarize the aspects of segregation and integration of a
network. Segregation (or specialization) refers to the degree
to which network elements form individual and separate
clusters of nodes; the tendency of nodes to be organized
in clusters is measured by the clustering coefficient (C).
Integration refers to the capacity of the network as a
whole to become interconnected and exchange information;
the level of integration is measured by the characteristic
path length (L).

Since in the present study weighted brain networks were
analyzed, the weighted clustering coefficient (Cw) and the
weighted characteristic path length (Lw) were computed as a
measure of segregation and integration.
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The weighted clustering coefficient of a single node is defined
as:

Ĉi =
2

ki(ki − 1)

∑
j,k

(
ŵijŵjkŵki

)1/3 (7)

where ki is the degree of node i, and the weights are scaled
by the largest weight in the network, i.e., w̨ij = wij/ max(wij),
where max(wij) represents the value of the edge with the largest
weight in the network.

The mean weighted clustering coefficient (Cw) is computed by
averaging the weighted clustering coefficient of all single nodes
(Ĉl ) in the network. Cw is a measure for the tendency of the
network to be organized in local clusters.

For unweighted networks (Watts and Strogatz, 1998), the
characteristic path length is defined as:

L =
1
n

∑
i∈N

Li =
1
n

∑
i∈N

∑
j∈N, j 6=i dij

n− 1
(8)

where Li is the average distance between node i and all other
nodes; dij the shortest path length between nodes i and j, defined
as:

dij =
∑

auv∈gi↔j

auv (9)

where gi↔j is the shortest path (geodesic) between i and j.
The weighted characteristic path length (Lw) is thus defined as:

Lw =
1
n

∑
i∈N

∑
j∈N, j6=i dw

ij

n− 1
(10)

where dw
ij =

∑
auv∈gi→j

f (wuv) represents the shortest weighted

path length between i and j. f is a map (e.g., an inverse) from
weight to length, and gi↔j is the shortest weighted path between
i and j. In other words, Lw is the average of the shortest and
contemporary highest-weighted paths connecting each node to
all the other ones. In each subject, we normalized the values of Cw
and Lw of each band versus the respective mean values obtained
averaging each parameter through all the bands.

Originally described in social networks, the “small-world”
property combines high levels of local clustering among nodes
of a network (to form families or cliques) and short paths that
globally link all nodes of the network. This means that all nodes
of a large system are linked through relatively few intermediate
steps, even though most nodes maintain only a few direct
connections—mostly within a clique of neighbors. The measure
of network small-worldness, S, is defined as the ratio between the
weighted clustering coefficient and the characteristic path length.
For weighted networks, the weighted small-worldness, Sw, can be
thus defined as:

Sw =
Cw

Lw
(11)

where Cw and Lw are the weighted clustering coefficient and
the weighted characteristic path length, respectively, individually

normalized with respect to the frequency bands. The Sw
coefficient is used to describe the balance between the local
connectedness and the global integration of a network. Small-
world organization mixes short path length (typical of random
networks) and high clustering (typical of regular networks).
When Sw is larger than 1, a network is said to have small-
world properties.

Statistical Evaluation
The Shapiro–Wilk test was used to assess whether variables were
normally distributed. Group effect at single time points (T0 or
T1) was evaluated by means of a Kruskal–Wallis test. Post hoc
analyses (Mann-Whitney U tests) were performed to compare
groups, with Bonferroni correction. The Wilcoxon signed-rank
test was used to compare BI scores at T0 with scores at T1 in each
patient group. Spearman correlation analyses were performed
between clinical measures and relevant electrophysiological
variables. Correction for multiple comparisons was applied to
control the FDR as explained in Benjamini and Hochberg (1995).
Statistical analysis was performed with SPSS 20.0 software (SPSS
Inc., Chicago, IL, United States). Significance of statistical tests
was set at α = 0.05.

RESULTS

Clinical Evaluation
Patients in the CS group presented a similar global functional
status (assessed by BI) than patients in the S group, both at
admission (median BI score was 5 range 0–100 in CS and 30
range 0–100 in S; U = 85.0, p = 0.073) and in the follow up
(median BI score was 40 range 15–100 in CS and 65 range 20–
100 in S; U = 73.0, p = 0.402). Age and Timing of patients’
first assessment was not significantly different between the two
patient groups (Age: U = 107.0, p = 0.32; Timing: U = 125.5,
p = 0.735). Barthel Index at T0 was negatively correlated with
both age (R = −0.563, p = 0.001) and timing of patients’ first
assessment after the acute event (R = −0.532, p = 0.002). Despite
the functional status was largely variable at T0, 3 months after
the acute event (T1) the BI score showed a statistically significant
increase in both patient groups (CS: Z = −3.065, p = 0.002; S:
Z = −3.070, p = 0.002; Figure 1), meaning that patients reached
a higher degree of independence, on average. Information on
individual patients is presented in Table 1. Twenty-four (thirteen
CS and eleven S) of the initial thirty-three patients were available
to be reassessed at T1.

Power Spectral Density Analysis of EEG
Signals
The power spectral density was calculated for signals
from both the EEG sensors and the reconstructed sources
(ROIs), separately, from EEG data recorded at rest with eyes
closed (Figure 2).

EEG Sensors
The results of a multivariate Kruskal–Wallis test showed a main
effect of factor Group on average PSD values of the δ-band
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FIGURE 1 | Barthel Index score assessed at baseline (T0, black boxes) and at
the 3 months follow-up (T1, white boxes). BI, Barthel Index; CS,
cortico-subcortical stroke patients; S, subcortical stroke patients. **p < 0.01.

[H(2) = 10.745, p = 0.005] and of the θ-band [H(2) = 19.619,
p < 0.001] but not of the other frequency bands. Specifically,
as revealed by post hoc analyses, both CS and S patients showed
significantly increased power, compared to healthy subjects (H)
in these two bands (δ-band, CS vs. H: U = 28.0, p = 0.002; S vs.
H: U = 27.0, p = 0.007; θ-band, CS vs. H: U = 9.0, p < 0.001, S vs.
H: U = 2.0, p < 0.001).

Similar results were found when comparing PSD values only
in the affected hemisphere (AH) or in the unaffected hemisphere
(UH) between groups.

When tested again after 3 months (T1), significant differences
were still found between groups in the θ-band [H(2) = 8.947,

p = 0.011]. Specifically, PSD values of the θ-band of S patients
were still significantly higher than in healthy subjects (S vs. H:
U = 14.0, p = 0.003). No statistical differences were found in the
other frequency bands.

We investigated whether the initial (T0) and residual (T1)
increase of θ-band power in stroke patients could be linked
to a slowing of alpha frequency near theta ranges. We thus
estimated the Individual Alpha Frequency (IAF) for each patient
by averaging the center of gravity of each EEG channel in the
alpha band (8–14 Hz) from the power spectral density (Klimesch
et al., 1990). The Kruskal–Wallis test showed a main effect
of factor Group on average IAF values at T0 [H(2) = 9.765,
p = 0.008] but not at T1 [H(2) = 4.479, p = 0.106]. However,
the slowdown of alpha frequency at T0 was significant only in
S patients compared to healthy subjects (U = 26.0, p = 0.005),
and recovered at T1, unlike the increase in power in the
θ-band.

ROIs Activity
Interestingly, the multivariate Kruskal–Wallis test on PSD values
from ROIs showed complementary results. A main effect of
factor Group was found on average PSD values of the α-band
[H(2) = 6.698, p = 0.035] and of the β-band [H(2) = 7.318,
p = 0.026] but not of the other frequency bands. Specifically, S
patients had significantly increased α-rhythms and β–rhythms,
compared to healthy subjects (α-band, S vs. H: U = 28.0,
p = 0.008; β-band, S vs. H: U = 31.0, p = 0.014). No significant

FIGURE 2 | Average Power Spectral Density of EEG sensors (A) and of reconstructed ROIs (B) in δ, θ, α, and β bands at T0 and T1, respectively, for
cortico-subcortical (CS) patients, subcortical (S) patients and healthy subjects (H). *p < 0.05, **p < 0.01, ***p < 0.001.
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difference of average power was found at T1 between groups, in
all frequency bands (p > 0.05).

Correlation Between PSD Values at T0 and BI Scores
This analysis investigated whether BI scores at T0 (BI T0) or BI
scores variation (BI T1-T0) showed association with power of
EEG frequency bands of interest computed at T0 (Table 2) both
from EEG sensors and reconstructed ROIs.

In the CS group, the average power of the α-band computed
from EEG sensors showed a significant positive correlation with
BI T0 (R = 0.612, p = 0.007). Therefore, for patients with cortical
involvement in the stroke lesion, a higher PSD value in the
α-band corresponded to a higher degree of independence at
admission. For patients with subcortical lesions, the α-band did
not show any significant correlation with BI scores, as well as the
other EEG frequency bands.

No significant correlations were found between BI scores and
power of frequency bands of interest computed from the ROIs.

TABLE 2 | Spearman’s correlations between average power of EEG frequency
bands of interest and Barthel Index at T0 (BI T0) or Barthel Index
variation (BI T1-T0).

CS Sensors ROIs

δ-PSD θ-PSD α-PSD β-PSD δ-PSD θ-PSD α-PSD β-PSD

BI T0 −0.259 −0.047 0.612* 0.383 −0.409 −0.444 −0.211 −0.254

BI T1-T0 −0.119 −0.341 −0.522 −0.148 0.033 −0.060 −0.102 −0.044

S

BI T0 −0.175 0.014 −0.117 −0.188 0.335 0.285 0.169 0.081

BI T1-T0 −0.381 −0.256 0.250 0.306 −0.367 −0.351 −0.028 0.078

*p < 0.05 after correction for multiple comparisons. The bold values represent
statistical significance.

Topographic Representation of Resting State Activity
With illustrative purposes, we show in Figure 3 a topographic
map of average PSD values for the reconstructed ROIs in

FIGURE 3 | Topographic map of average power for the reconstructed ROIs at T0 (middle panels) and T1 (right panels) in each band of interest for the two group of
patients (CS, cortico-subcortical and S, subcortical), compared to healthy subjects (H; left panels). For visualization purposes, ROIs BA19, BA6a, and MIL are not
displayed as their mean power exceeds 3 median absolute deviations from the median value of all ROIs. The Kruskal–Wallis test was used to look for differences
between the healthy group (H) and the stroke subgroups (CS and S) in each ROI. The significant differences found are shown in Figure 4.
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FIGURE 4 | Topographic map showing significant differences of average power for the reconstructed ROIs between healthy subjects (H) and stroke patients (CS,
cortico-subcortical and S, subcortical) at T0 (left panels) and T1 (right panels) in each band of interest. ROIs with significantly higher power (p < 0.05) in one of the
stroke subgroups than in the healthy group are colored, in blue for CS and in red for S. Labels of significantly different ROIs are reported at the bottom of the
corresponding image (for the correspondence between the ROI label and its full name see section “Materials and Methods”).

the three groups (CS, S, and H), in each band of interest
separately. Depending on the band of interest, specific ROIs
display significantly different activity (i.e., average PSD) in
healthy subjects (H) compared to stroke patients, both at T0
and T1 (Figure 4). Remarkably, in S patients, the power of
dorsal premotor cortex (BA6a) in the affected hemisphere at T0
was significantly higher than in healthy subjects (for all bands
except δ-band). On the other hand, the activity of the prefrontal

cortex (BA9_46) in the unaffected hemisphere increased mainly
in CS patients, compared to healthy subjects. The activity of
both affected and unaffected hemispheres after 3 months almost
completely normalized in both stroke patients.

Average Lagged Linear Connectivity
The results of brain connectivity analysis, using reconstructed
ROIs, are shown in Figure 5. We used Lagged Linear
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Connectivity values to calculate a Global Connectivity index, two
(partial) connectivity indexes for the affected (AH Connectivity)
and the unaffected (UH Connectivity) hemispheres, and an
interhemispheric connectivity index (IH Connectivity).

We found that average connectivity between ROIs across
the whole brain (Global Connectivity) at T0 was significantly
different between groups in the θ-band [H(2) = 14.205, p = 0.001]
and β-band [H(2) = 8.702, p = 0.013]. Specifically, connectivity in
the θ-band was lower in the H group than in both patient groups
(CS vs. H: U = 32.0, p = 0.004; S vs. H: U = 13.0, p < 0.001),
while connectivity in the β-band was lower in subcortical patients
than in the other groups (S vs. H: U = 28.5, p = 0.008; S vs. CS:
U = 66.0, p = 0.012). No between-group differences were found
in the δ- and α-band (p > 0.05; δ-band data not shown).

At T1, Global Connectivity was still different between
groups in the θ-band [H(2) = 6.602, p = 0.037]. Specifically,
θ-band connectivity was still significantly higher in CS patients,
compared to healthy subjects (CS vs. H: U = 21.0, p = 0.016).

Analysis of connectivity at T0 in the unaffected hemisphere
(UH Connectivity) yielded non-significant differences across
groups (p > 0.05, data not shown), whereas connectivity in the
affected hemisphere (AH Connectivity) yielded similar results to
Global connectivity for θ-band [H(2) = 16.831, p < 0.001; CS vs.
H: U = 25.0, p = 0.001; S vs. H: U = 9.0, p < 0.001], but not for
β-band [H(2) = 5.595, p = 0.061].

At T1, θ-band connectivity in the affected hemisphere still
showed significant differences across groups [H(2) = 9.523,
p = 0.009]. Specifically, connectivity was still significantly higher
in both patient groups, compared to healthy subjects (CS vs. H:
U = 29.0, p = 0.016; S vs. H: U = 14.0, p = 0.003).

Analysis of interhemispheric connectivity at T0 (IH
Connectivity) showed a significant difference between groups in
the θ-band [H(2) = 15.115, p = 0.001] and β-band [H(2) = 6.168,
p = 0.046]. Specifically, interhemispheric connectivity in the
θ-band was higher in both patient groups, compared to healthy
subjects (CS vs. H: U = 29.5, p = 0.003; S vs. H: U = 10.0,
p < 0.001), while interhemispheric connectivity in the β-band
was lower in S patients than in CS patients (S vs. CS: U = 65.5,
p = 0.011).

At T1, interhemispheric connectivity in both the θ-band and
the β-band was no longer significantly different between patients
and healthy subjects (p > 0.05).

Correlation of Average Connectivity at T0 With BI
Scores
This analysis investigated whether BI scores at T0 (BI T0) or
BI scores variation (BI T1-T0) showed association with the
computed average connectivity measures at T0 (Table 3): Global
connectivity, i.e., the average connectivity between all pairs of
ROIs; AH connectivity, i.e., the average connectivity between
ROIs in the affected hemisphere; UH connectivity, i.e., the average
connectivity between ROIs in the unaffected hemisphere; IH
connectivity, i.e., the average connectivity between ROIs located
in different hemispheres.

We found a significantly positive correlation between BI T0
and all connectivity indices computed at T0 in the α-band of
CS patients (Global Connectivity, R = 0.569, p = 0.014; AH

FIGURE 5 | Lagged Linear Connectivity (LLC) values in θ-band (top panel),
α-band (middle panel) and β-band (bottom panel) at T0 and T1 for
cortico-subcortical (CS) and subcortical (S) patients, compared with LLC
values in the group of healthy subjects (H). *p < 0.05, **p < 0.01,
***p < 0.001.

Connectivity, R = 0.475, p = 0.046; UH Connectivity, R = 0.567,
p = 0.014; IH Connectivity, R = 0.539, p = 0.021). Global
Connectivity, UH Connectivity and IH Connectivity also showed
a significant negative correlation with BI T1-T0 (R = −0.602,
p = 0.023 and R = −0.679, p = 0.008, R = −0.584, p = 0.028,
respectively). Therefore, for patients with cortical involvement
in the stroke lesion, higher connectivity values in the α-band
corresponded to higher degrees of independence at admission,
but also to lower gains of independence over time (Table 3).
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TABLE 3 | Spearman’s correlations between connectivity or network measures and Barthel Index (BI) at T0 or Barthel Index variation (BI T1-T0).

Connectivity Network

CS ϑ Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 0.298 0.245 0.283 0.267 −0.407 0.326 0.342

BI T1-T0 −0.295 −0.181 −0.261 −0.246 0.268 −0.232 −0.221

α Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 0.569* 0.567* 0.475* 0.539* −0.479* 0.553* 0.514*

BI T1-T0 −0.602* −0.679* −0.423 −0.584* 0.584* −0.622* −0.566*

β Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 −0.654* −0.589* −0.642* −0.625* 0.629* −0.658* −0.654*

BI T1-T0 0.533 0.528 0.471 0.505 −0.509 0.522 0.533

S ϑ Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 −0.047 0.127 −0.094 −0.160 0.007 −0.098 −0.104

BI T1-T0 0.167 0.175 0.118 0.070 −0.278 0.134 0.167

α Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 −0.323 −0.117 −0.307 −0.326 0.380 −0.357 −0.364

BI T1-T0 −0.267 −0.676* −0.156 −0.264 0.289 −0.299 −0.298

β Glob T0 UH T0 AH T0 IH T0 INT T0 SEG T0 SW T0

BI T0 −0.079 −0.382 0.098 −0.052 0.145 −0.069 −0.079

BI T1-T0 0.245 0.504 0.100 0.200 −0.327 0.203 0.245

*p < 0.05 after correction for multiple comparisons. The bold values represent statistical significance.

On the other hand, a significant negative correlation was
found between BI T0 and all connectivity measures in the β-band
(Global Connectivity: R = −0.654, p = 0.003; AH Connectivity:
R = −0.642, p = 0.004; UH Connectivity: R = −0.589,
p = 0.01; IH Connectivity: R = −0.625, p = 0.006). Therefore,
contrary to the α-band, higher β-band connectivity values in
CS patients corresponded to lower degrees of independence at
admission (Table 3).

For S patients, on the other hand, non-significant correlations
were found between most of the connectivity indices computed
at T0 and the BI values (p > 0.05). Only a significant negative
correlation was found between BI T1-T0 and connectivity of
the unaffected hemisphere in the α-band (UH Connectivity,
R = −0.676, p = 0.011). Therefore, for patients without cortical
involvement in the stroke lesion, a higher β-band connectivity
in the unaffected hemisphere was associated with a lower gain of
independence in the activities of daily living over time.

Network Connectivity Measures
Graph Analysis
Brain networks of CS and S patients and their changes overtime
were also investigated with tools from graph theory. The
mean weighted clustering coefficient, Cw, the mean weighted
characteristic path length, Lw, and their ratio, Sw = Cw/Lw,
were computed from connectivity values between all pairs of
ROIs to measure brain network segregation, integration, and

small-worldness, respectively, for all the frequency bands of
interest (Figure 6).

We found that brain network integration (measured by the
Lw parameter) at T0 was significantly different between groups
in the θ-band [H(2) = 11.543, p = 0.003] and in the β-band
[H(2) = 6.383, p = 0.041]. Specifically, network integration in the
θ-band was lower in both patient groups, but was significantly
lower compared to healthy subjects only for subcortical patients
(S vs. H: U = 19.0, p = 0.001). Instead, network integration in
the β-band was significantly different between the two patient
groups, significantly higher in S patients than in CS patients (S
vs. CS: U = 66.0, p = 0.012).

On the other hand, network segregation (measured by the
Cw parameter) at T0 was also significantly different between
groups in the θ-band [H(2) = 14.771, p = 0.001] and in the
β-band [H(2) = 6.831, p = 0.033], but showed a different behavior.
Specifically, network segregation in the θ-band was significantly
higher in both patient groups, compared to healthy subjects (CS
vs. H: U = 31.0, p = 0.004; S vs. H: U = 11.0, p < 0.001), whereas
network segregation in the β-band was significantly lower in S
patients than in CS patients (S vs. CS: U = 61.0, p = 0.007).

Finally, brain network small-worldness (Sw) at T0 was
also significantly different between groups in the θ-band
[H(2) = 15.175, p = 0.001] and in the β-band [H(2) = 6.097,
p = 0.047]. Specifically, network small-worldness in the θ-band
was significantly higher in both patient groups, compared to
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FIGURE 6 | Pairwise comparison of network measures in θ-band (left panels), α-band (middle panels), and β-band (right panels) for cortico-subcortical (CS) patients,
subcortical (S) patients and healthy subjects (H). Computed metrics are Weighted Clustering Coefficient (Cw) for network segregation, Weighted Characteristic Path
Length (Lw) for network integration, and Weighted Small-Worldness (Sw) for small-world network characteristics. *p < 0.05, **p < 0.01, ***p < 0.001.

healthy subjects (CS vs. H: U = 28.0, p = 0.002; S vs. H: U = 10.0,
p < 0.001), whereas network small-worldness in the β-band was
significantly lower in S patients than in CS patients (S vs. CS:
U = 66.0, p = 0.012).

Therefore, the brain network of stroke patients at admission
had, in the θ-band, lower connectivity between distant nodes
(i.e., lower Lw), each connected with a higher number of closer
nodes (i.e., organized in a higher number of local clusters,
a tendency measured by Cw). This resulted in a significantly
higher value for the small-world property of the θ-band network
(small-world network: all node pairs can be linked in a few
steps, despite most nodes maintain only direct connections with
neighboring nodes).

β-band network measures showed instead a different brain
network structure in the two patient groups soon after lesion: Cw
was increased, while Lw decreased in the CS group compared to
the S group. Consequently, the β-band network structure in CS
patients had a higher small-world score compared to S patients
at T0. However, no significant differences between patient groups
and healthy subjects were found (p > 0.05).

At T1, Sw was still significantly different between groups in
the θ-band [H(2) = 7.023, p = 0.030]. Specifically, network small-
worldness in the θ-band was significantly higher in S patients
compared to healthy subjects (S vs. H: U = 20.0, p = 0.013).

No significant differences of the brain network structure in the
β-band were found between groups (p > 0.05).

Correlation of Network Measures With BI Scores
Finally, we investigated whether BI scores at T0 (BI T0) or
BI scores variation (BI T1-T0) showed association with the
computed brain network measures at T0 (Table 3).

In S patients, no significant correlations were found between
BI scores and the computed brain network measures (Table 3).

In CS patients, instead, Cw and Sw computed in the α-band
showed a significant positive correlation with BI T0 (R = 0.553,
p = 0.017; R = 0.514, p = 0.029, respectively), while Lw showed an
opposite behavior (R =−0.479, p = 0.044). Therefore, for patients
with cortical involvement in the stroke lesion, a higher degree of
independence at admission corresponded to higher Cw and lower
Lw values, i.e., to a network with a higher small-world score (Sw).
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In the β-band network, the association between BI T0 and the
computed brain network measures at T0 was reversed: BI T0 was
positively correlated with Lw (R = 0.629, p = 0.005), and negatively
correlated with Cw (R = −0.658, p = 0.003). As a consequence,
a higher degree of independence at admission corresponded to
a network with a lower small-world score, Sw (R = −0.654,
p = 0.003, respectively). No significant correlations were found
with BI T0 by network measures in the other frequency bands
(p > 0.05).

Network measures in the α-band at T0 were also correlated
with BI variation over time. In fact, BI T1-T0 was positively
correlated with Lw (R = 0.584, p = 0.028), and negatively
correlated with Cw (R =−0.622, p = 0.018). Consequently, BI T1-
T0 was also negatively correlated with Sw (R =−0.566, p = 0.035).
Therefore, for patients with cortical involvement in the stroke
lesion, a brain network at admission with a higher small-world
score (Sw) in the α-band was associated with a lower gain of
independence in the activities of daily living over time.

DISCUSSION

The results obtained in this study demonstrated that brain
electrical activity and connectivity are significantly modified by
a stroke event, and such modifications depend on lesion location.

Low-Frequency Activity
In our study, overall brain power computed from EEG
sensors in the δ- and θ-bands was higher in stroke
patients at T0 than in healthy controls, regardless of lesion
site, consistently with previous literature (Murri et al.,
1998; Tecchio et al., 2005, 2006; Assenza et al., 2013;
Fanciullacci et al., 2017; Zappasodi et al., 2019). When
considering the differences after 3 months, i.e., at T1,
significant changes of whole brain electrical activity were
detected only in the θ-band, and in stroke patients without
cortical involvement.

Previous studies in humans have also shown that δ-band
activity increases in correspondence of neural tissue damage,
necrosis or both structural or functional deafferentation, and
correlates with stroke lesion volume in the acute phase (Wu
et al., 2016) as well as with a worse clinical status both in the
acute and in the subacute phases (Assenza et al., 2009; Wu
et al., 2016; Zappasodi et al., 2019). Conversely, an attenuation
in θ power has been associated with greater disability in stroke
survivors (Rogers et al., 2020). In our study, however, we could
not reproduce these findings. Instead, analysis of brain power
computed from ROIs revealed that baseline clinical status (BI
T0) and low-frequency oscillations in stroke patients show
an opposite (albeit non-significant) correlation depending on
lesion location. Specifically, low frequency oscillations were
negatively (positively) correlated with baseline clinical status in
patients with (without) cortical involvement. These findings, if
confirmed by further studies with greater samples, highlight
the need for a stratification of stroke patients based on
lesion location.

α- and β-Band Activity
High oscillatory α-band activity has been associated with low
brain metabolism (Moosmann et al., 2003). In line with this
finding, we found a slight increase of α-band power in subcortical
post-stroke subjects compared to healthy individuals in the early
subacute phase, with a normalization in the late sub-acute phase.
Thibaut et al. (2017) hypothesized that an increase in high-
frequency EEG power could represent an attempt of cortical
reorganization, leading to maladaptive plasticity. Similarly, we
found that α-band power computed on ROIs was positively
correlated with BI at T0 in CS patients, while there was a non-
significant negative correlation with BI T1-T0. Moreover, in the
same study, a decrease in corticospinal excitability, indexed by
higher Resting Motor Threshold (RMT) values, was associated
with a worse clinical status as well. Further studies should try to
correlate different Transcranial Magnetic Stimulation (TMS) and
EEG parameters to build combined markers to understand and
predict stroke recovery.

When considering the relationship between α-power
alteration and clinical status, Zappasodi et al. (2019) did not
find any significant correlation between NIHSS and α-band
power, both measured either in the acute phase (5 days) and
in the sub-acute phase (2.5 months). However, Finnigan et al.
(2007, 2016) and Leon-Carrion et al. (2009) showed that α-band
rhythms could have a prognostic value, as relative α-band power
measured after 48 h from the event was negatively correlated
with the NIHSS score at 30 days, i.e., preservation (or even
an increase) of α-activity in the acute phase corresponded to a
higher outcome level after treatment. These discrepancies could
be related to the variability of the signal recording, inherent of
the high frequency bands, or to clinical variability such as timing
of patients’ assessment after the acute event and different injury
characteristics.

β-waves (14–30 Hz) seem to be related to the maintenance
of the current sensorimotor or cognitive state, varying during
cognitive information processing or physical activity (Engel
and Fries, 2010; Rossiter et al., 2014). In our study, we
found a difference in the β-band power, at T0, only between
subcortical stroke patients and healthy subjects. Nevertheless, the
relationship between abnormalities in β-power and impairment
following stroke is still unclear. Despite the β-power decrease
and the functional impairment are both driven by neuronal loss
following ischemic stroke (Wu et al., 2016), previous studies
showed a not direct correlation between β-activity and functional
impairment, therefore it is considered not significant for ischemia
monitoring (Finnigan et al., 2007). Our results confirm that β-
power doesn’t correlate with clinical status. Instead, connectivity
measures in the β-band could represent novel biomarkers of
post-stroke recovery (see below).

Functional Connectivity and Network
Measures
Changes of the resting state network, as measured by the
connectivity of reconstructed brain ROIs, were investigated with
both measures of average brain functional connectivity and of
network integration, segregation and small-worldness.

Frontiers in Human Neuroscience | www.frontiersin.org 13 July 2021 | Volume 15 | Article 669915

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-669915 June 30, 2021 Time: 13:55 # 14

Fanciullacci et al. Connectivity Measures in Stroke Patients

One of the main results obtained in our study are the
differences in θ and β-band connectivity. Specifically, θ-band
global connectivity was higher in both stroke subgroups than in
healthy subjects, while β-band global connectivity was lower in
the S group than in CS patients and healthy subjects. Previous
literature showed an interaction trend between changes of remote
functional connectivity and functional recovery (Wu et al., 2015;
Van Kaam et al., 2018), but no direct involvement of the lesion
site has been previously demonstrated.

Moreover, significant differences between brain network
measures were detected in the θ-band and β-band. Specifically,
network segregation was significantly higher, and network
integration lower, in both groups of patients, compared to healthy
subjects, leading to an increased small-worldness of the resting
state network in the θ-band at T0. At T1, small-worldness in
the θ-band was still higher in S patients compared to healthy
subjects. Accordingly, Caliandro et al. (2017) found an increased
segregation and a decreased integration in θ-band network,
and these results are consistent with previous fMRI studies
(Adhikari et al., 2017). On the other hand, β-band network
measures were significantly different between stroke patients,
with higher segregation and small-worldness in patients with
cortical involvement. Moreover, in the same group of patients,
a higher small-worldness in the α-band was predictive of poor
recovery of autonomy in the activities of daily living.

Previous works have shown that brain networks of patients in
both acute and subacute phases of stroke present rearrangements
with respect to controls, which could be detected by measuring
the network small-worldness (Wang et al., 2010; Tsirka et al.,
2011; De Vico Fallani et al., 2012; Li et al., 2013; Caliandro et al.,
2017). Small-worldness reflects an optimal network structure
associated with rapid synchronization and information transfer,
minimal wiring costs, as well as a balance between local
processing and global integration (Watts and Strogatz, 1998).
However, it is still not clear whether clinical recovery after
stroke is paralleled by a decreased small-world organization
of the brain (or parts of it), as suggested by some studies
(Wang et al., 2010; Caliandro et al., 2017) or, on the
contrary, by an increased small-worldness, as suggested by
others (Tsirka et al., 2011; De Vico Fallani et al., 2012; Li
et al., 2013). Several factors may in fact influence the evolution
of the small-world parameter, such as patient cohort, phase
of stroke, lesion type, brain areas investigated, brain signals
(e.g., fMRI or EEG), band selected, etc. Further studies are
thus required to investigate more in detail brain network
rearrangements after stroke and their evolution with time and
rehabilitation training.

Finally, we found that connectivity and network measures
could represent novel biomarkers of post-stroke recovery. In fact,
we found a positive correlation between α-band connectivity
at T0 in both hemispheres and degree of independence
in CS patients. However, when considering the BI changes
over time, we found a clear negative correlation between
baseline α-band connectivity in the UH and recovery. α-band
dominates the activity of the awake brain and is a measure
of the integrity of cortico-cortical and/or thalamo-cortical
networks (Cantero et al., 2002). Therefore, changes in α-band

connectivity are related to modifications of cortico-cortical and
thalamo-cortical interactions which may have consequences
on recovery after stroke. Contrary to what was found in
α-band, β-band connectivity in both hemispheres and inter-
hemispheric connectivity were inversely correlated with the
degree of independence at T0. Conversely, a previous study by
Pellegrino et al. (2012) has demonstrated that an increase in
inter-hemispheric functional connectivity in the β-band between
primary sensorimotor hand areas was associated with motor
recovery following upper limb robotic rehabilitation treatment
in chronic stroke patients. This discrepancy could be related to
the different timing of patients’ recruitment. However, given its
role in active motor control, investigating causal relationships
between β-band activity and impairment represents an important
progression in determining the clinical utility of EEG and
may direct further interventional studies to facilitate greater
functional recovery following stroke.

STUDY LIMITATIONS

This study has some potential limitations. First, the sample was
characterized by a variability in demographic and clinical aspects,
such as age, stroke-event entity, brain areas involved by the
ischemic injury. Results need thus to be confirmed in further
studies with a greater sample to increase statistical power.

Another limitation regards the fact that power of brain
rhythms was computed both at the electrode level and at the
ROI level, whereas functional connectivity (FC) only at the
ROI level. We initially discarded the idea of investigating FC
in the sensor space, because it is well-known that the activity
of an underlying EEG source typically spreads over more than
one sensor due to volume conduction effects, thus limiting the
usefulness of connectivity measures computed directly between
sensor recordings (Schoffelen and Gross, 2009; Brunner et al.,
2016; Lai et al., 2018; Van de Steen et al., 2019). Although
recent approaches (Sanchez et al., 2018) have shown that sensor
space FC analysis can still provide useful information if coupled
with FC measures that minimize volume conduction effects, we
preferred to focus on analyzing FC in the reconstructed source
space. We would like to compare in greater depth sensor space
and source space analyses in future works.

An additional limitation of our study is the use of an average
brain model for source localization from EEG signals. On
one hand, the absence of individual MRIs prevented us from
obtaining a subject-specific source-space representation, thus
reducing the accuracy of the analysis presented. On the other
hand, this method ensures the consistency and homogeneity of
ROIs reconstruction across subjects, and has already been widely
used in the literature (Vecchio et al., 2019a,b).

Finally, the use of pre-defined ROIs (offered by the
eConnectome software) may have limited the results of our study
regarding potential contributions of temporal and occipital areas
to the connectivity and network behavior of the brain after stroke.
Moreover, the fine parcelization of the sensorimotor area may
have given inaccurate results, due to the volume conduction
effects and the lack of individual MR images.
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CONCLUSION

Our results suggest that brain modifications of electrical activity
and connectivity are still present in the subacute stage of a stroke
event and, together with their evolution with time, they depend
on the lesion site in a frequency-dependent manner. Although
brain power in the early subacute stage was similar in patients
with cortico-subcortical or subcortical lesions, brain power
remained significantly altered at T1 only in the subcortical group,
and specifically in the θ-band. Moreover, the average connectivity
and network measures were initially different between stroke
patients and healthy subject (in the θ-band) or between the two
stroke groups (in the β-band). Finally, the connectivity metrics
also suggest their predictive role in functional recovery, still
dependent on lesion location. Specifically, initial α-band average
connectivity in the unaffected hemisphere negatively correlated
with independence gain after 3 months in both patient groups.
Whole-brain connectivity and network measures of segregation
and small-worldness in the α- and β bands, however, also showed
a predictive role, but only in patients with cortical involvement.
Considered together, these results showed a clearcut role of lesion
location on EEG features and provide complementary insights on
the field of recovery biomarkers after stroke.
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