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Dissipative Kerr solitons in a photonic dimer on
both sides of exceptional point

K. Komagata 12 A, Tusnin!, J. Riemensberger 1 M. Churaev!, H. Guo® '3, A. Tikan® "™ &
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Exceptional points are a ubiquitous concept widely present in driven-dissipative coupled
systems described by a non-Hermitian Hamiltonian. To date, exceptional points have been
extensively examined in the systems supporting only a few optical modes, thereby leaving the
observation of collective (multimode) effects outside of the scope of the study. In the present
paper, we analyze the role of exceptional points in nonlinear multimode photonics. Specifi-
cally, we provide insights into the complex nonlinear dynamics arising in a continuous wave-
driven pair of strongly coupled microresonators. Investigating this system, we demonstrate
mechanisms of dissipative Kerr soliton formation in two fundamentally different regimes
separated by a line of exceptional points. Highlighting the diversity of emergent nonlinear
effects, we describe the on-demand generation of single-solitons, perfect soliton crystals and
bright-dark soliton pairs on either side of exceptional points.
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ymmetry is one of the main fundamental concepts in

physics which underpins conservation laws, micro- and

macro-properties of matter, rising of degeneracies! and
topological properties?. Breaking of symmetry in spontaneous or
deterministic way is responsible for a variety of phenomena3->.
Systems obeying Parity-Time (P7) symmetry have been shown
to provide a possibility to treat open quantum systems described
by a non-Hermitian Hamiltonian and nonetheless retrieve a real
spectrum of eigenvalues®’. Eigenvalues of P7 symmetric
Hamiltonian have two typical regions on the parameters space
corresponding to preserved and broken symmetry. The transient
point where the eigenvalues and eigenvectors coalesce is called an
exceptional point (EP)32.

The effect has been observed in various physical systems’>1?,
Due to the well-controlled laboratory conditions and a wide range
of possible applications, guided optics serves as one of the pri-
mary platforms for investigating effects that emerge in
PT -symmetric systems®!1~13. These effects cover observation of
strong non-reciprocity in banded waveguides, enhanced lasing
and (classical noise limited) sensing in coupled ring resonators
with loss and gain (for more examples see review article®). It has
been shown that P7 symmetry can be unraveled in completely
passive resonators having different loss rates after a gauge
transformation®14, Here, it is important to mention that the
majority of these studies have been considering linear effects in
single-mode arrangements or nonlinear ones in nonresonant
systems!>-17,

Almost in parallel, another field of study has been rapidly
developing in photonics: design and fabrication of passive non-
linear coherent broadband light sources!®. For this purpose,
exactly the same optical platforms have been used: optical
waveguides and resonators but in the opposite, strongly nonlinear
regime. Nonlinear waveguides served as a sources of super-
continuum signals'®20, while micro- and macro-resonators has
been used for generation of stable and coherent frequency
combs?!. The latter has been achieved due to the observation of
localized coherent structures in passive optical micro-
resonators?2, These structures generated in media with 3
nonlinearity are called dissipative Kerr solitons (DKSs). They
have been widely investigated in nonlinear photonics over the last
decades?!?3-2>. The existence of DKSs relies on the balance
between chromatic dispersion, Kerr-type nonlinearity, parametric
gain and the intrinsic cavity losses?®. DKSs are exact solutions of
the damped-driven nonlinear Schrodinger equation known as
Lugiato-Lefever equation (LLE)?7-28. Their observation in passive
macroscopic (fiber) cavities?®> and (integrated) microcavity
systems?22? has spurred a vivid research effort unravelling a rich
inherent dynamical behavior30-36, The discovery of DKSs in
microresonators revolutionized the field, bringing coherent fre-
quency combs to outside-of-laboratory applications?!. Later, a
pioneering theoretical proposal considering the DKS generation
in the P7 -symmetric system has been presented in ref. 3”.

Recently, DKSs have been discovered in a high-Q multimode
photonic dimer (pair of strongly-coupled, almost identical non-
linear resonators)38. The photonic dimer has revealed a pleiad of
emergent phenomena including soliton hopping, periodic
appearance of commensurate and incommensurate dispersive
waves (DWs), and symmetry breaking related to the discreteness
of the system. Solitons have been generated in both resonators
simultaneously and due to the underlying field symmetry were
called gear solitons (GSs).

In this work, we investigate an all-passive photonic dimer with
a hidden (passive) P7T-symmetry (further referred to as
PT -symmetry for simplicity) in linear and nonlinear multimode
regimes. In the linear regime, we analyze conditions for the cri-
tical coupling and demonstrate that the line of EPs is a

demarcation of these conditions. The EP line splits the parameter
space into two parts, which we refer to as split resonance (P7
symmetric) and split dissipation (P7 -symmetry broken). In the
split resonance regime, we show insights into the effects pre-
viously reported in ref.38, using the supermode basis repre-
sentation. Passing through an EP, we observe the divergence of
the nonlinear interaction efficiency which hints at the enhanced
sensitivity. Further, we investigate the nonlinear dynamics in the
split dissipation regime which includes single-resonator DKS,
dark-bright DKSs pairs, and highly-efficient perfect soliton
crystals. Finally, we demonstrate switching of the soliton-
generating cavity caused by the nonlinear alteration of the P7T
symmetry.

Results

Exceptional point as a demarcation of the critical coupling
conditions. We consider the system of two multimode resonators
[Fig. 1(a)], with identical intrinsic loss rate xp, mode spacing Dj,
and geometry, such that the dispersion and Kerr nonlinearity
coefficient are also identical. A global offset between the resonant
frequencies w, of their respective modes y is introduced with the
inter-resonator detuning 8. The two resonators are coupled to
each other by the evanescent field with the rate J,, which generally
depends on the mode number. Each resonator is coupled to a
waveguide (through and drop ports) with the rates key;i=1,2.
Resonator 1 is pumped by a continuous wave (CW) laser at
frequency w,. Nonlinear dynamics in the photonic dimer can be
described by two coupled LLEs, which in Fourier space is
expressed as follows>837;

d 1 . 1
aA" = — |:5(K0 + Kex,1) + iw, + 56 —uD, — wp)] A,
+ ng}—[A|A|2]‘u + i]‘uB,u + 6/4,0 vV Kex7lsin (1)
d 1 . 1
EB/J = - E(KO + KeX,Z) + 1(6()}4 - 56 - AMDI - wp) B[u
+ ig  FIBIBP, + i,A,,
where g, = ;:fé;r: is the Kerr coefficient, ¢ stands for the speed of
0" e

light in vacuum, Z—the Planck constant, w,—the frequency of the
pumped mode, V 4 = AL—the effective mode volume (with
the effective nonlinear mode-area 4.4 and circumference of the
cavity L), ny and #n, are linear and nonlinear refractive indexes,

Pm -
haw,

respectively, &, is the Kronecker delta, s;, = the input

pump field amplitude, A,, B, are the field amplitudes of the
modes with index y in the first and second resonator, respectively.
The variables A, B are the slowly varying intra-resonator field
envelops, and F[...], denotes the pth-component of the discrete
Fourier transform, which are defined in Supplementary Note 1.

Modes of each resonator with identical angular momentum are
linearly coupled with the inter-resonator coupling rate J,. In
contrast, the Kerr nonlinearity couples all the modes within each
resonator via four-wave mixing (FWM) processes. The interplay
between the linear coupling in the spatial dimension and the
nonlinear coupling in the frequency dimension is the source of
the rich dynamics of the system.

In the present section, we restrict ourselves to a linear and single
mode analysis by considering only the central mode y =0 with
gk = 0. The critical coupling conditions are of particular interest for
maximizing the pump transfer to the resonators and the eigenvalue
analysis of the coupled mode matrix for finding the EP conditions,
which separate two conceptually different dimer states.
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Fig. 1 Linear analysis of the photonic dimer. a Schematic of the two resonators. b, ¢ Field intensity in the resonator 1 (blue) and 2 (red) as a function of the
laser detuning. b Shows a typical resonance splitting (orange shading) at critical coupling for J =10k, € the same for the split dissipation regime (purple
shading) at critical coupling for J=1.5«q. d Critical coupling coefficients as a function of J for ke, > = O, in the split dissipation (resonances) regime above
(below) the exceptional point line (dotted). The two conditions branch off at the exceptional point of J=1/2ko, highlighted by the star. e Real and

imaginary parts of the eigenvalues o. as a function of key for J=1.5xo.

Critical coupling conditions. Let us analyze the condition for
critical coupling. In the linear single-mode representation, Eq. (1)
is simplified as follows:

3(0)-4(2)

M (%S—iAKeX -7 )
- — 1o ip
Lo @
+(wy — w, 3 keI,

Sout,1 =

Sout2 =

In Eq. (2), we defined the external coupling mismatch Ak, =
Kex,1 — Kex2 and the average external coupling ko, = 3 (ke | + Koy )-
The identity matrix is denoted as I. Critical coupling is achieved
when the transmission via the through port [Fig. 1(a)] vanishes, i.e.,
Sou,1 =0. In the case of a single resonator, critical coupling is
achieved when the external coupling rate matches the loss, i.e., ey
= 12041, For two resonators, the conditions are easily found in case
of §=0. There are two possibilities

_ 4(]/K0)2 + Kex,Z/KO =+ 1
Kex,Z/KO + 1

(€)

Kex,l / Ko

(4)

Equation (3) is a natural generalization of the critical coupling
conditions for a single resonator that can be achieved by setting J
to zero. Equation (4) satisfies the critical coupling condition at

Kex,l/KO =2 + KexﬁZ/KO'

Wp

coupling, i.e., J> 3 (i + K. ,). The critical coupling conditions
are shown in Fig. 1(d) for x.,=0. We note that the latter
condition is the equivalent in the mean-field approximation to
that found using coupled matrix formalism*2. Typical cavity field
intensities for both cases are plotted in Fig. 1(b, ) as a function
laser detuning.

= wy*1/4J% — (i, + K., ,)*. This condition requires strong

The first critical coupling condition given by Eq. (3) has a
quadratic dependence on the inter-resonator coupling rate
[Fig. 1(d)]. It leads to a broad resonance with a dip in the first
resonator (blue) and a narrow resonance in the second
resonator (red) at the same resonance frequency [Fig. 1(c)].
The second critical coupling condition [Eq. (4)] branches off
the first one at J/xy = 0.5 and does not depend on the inter-
resonator coupling rate. It features split resonances with
identical linewidths [Fig. 1(b)].

Experimental implementation of the multimode photonic
dimer demonstrated the presence of the non-vanishing inter-
resonator detuning § caused by the fabrication imperfectness.
Nonetheless, the possibility to control and manipulate §, and
thereby establish control over the output solitonic spectrum, has
been demonstrated and efficiently implemented by imprinting
heaters directly on the photonic device®$43. Critical coupling at
non-vanishing & is possible as well. The inter-resonator detuning
introduces asymmetry in the distribution of the supermodes
(eigenvectors) in each resonator. Thus, the supermode confined
in the first (second) resonator requires smaller (larger) k., ; to be
critically coupled. It follows that in general when §# 0 only one
supermode can be critically coupled for a given value of «., ;. For
more details, see Supplementary Fig. 1 and Supplementary
Note 2.

The qualitative behavior of the photonic dimer can be
anticipated by examining the eigenvalues of the system Eq. (2).
Operating with a naturally Non-Hermitian system, we can exploit
the concept of EP8 to shed light on the nature of each critical
coupling conditions.

Eigenvalues and exceptional points. The eigenvalues of the matrix
M defined in Eq. (2) in case of § =0, ke, =0, and wy = w), are

given by
/1 1 |
0y = —1 EKO + erx,l * Z 16]° — ex,1’

where the real (imaginary) part corresponds to resonance fre-
quency (loss rate). The eigenvalues are shown in Fig. 1(e) as a
function of x.; for an inter-resonator coupling J= 1.5x,. Two
different regions of split resonance and split dissipation are

©)
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identified and shaded in Fig. 1 with orange and purple, respec-
tively. For ke 1 < 6K, the eigenvalues have degenerate imaginary
part and split real parts, associated with the split resonances as
depicted in Fig. 1(b). In contrast, k.. ; > 6k, leads to degenerate
real parts and split imaginary parts, i.e., to identical resonance
frequencies but different loss rates, as can be seen in Fig. 1(c). The
two regions correspond to the P7 -symmetric and P7 -symmetry
broken states, respectively.

An EP is found between the two regions at k. ; = 6k, where
the system eigenvalues become degenerate and the two
eigenvectors coalesce because of the vanishing square root in
Eq. (5). EPs lie along the line defined by «..; =4J, which
separates the two critical coupling conditions in the (J, key1)
plane. It is noteworthy that the two critical coupling conditions
and the EP line fork at ] = 1, «.,; = 2«,. This particular point
is highlighted by the blue star in Fig. 1(d). It is the only EP that
satisfies a critical coupling condition. This point also marks the
entry into the strong coupling regime (J > 1x,). Above reasoning
is valid when x,, =0. In the general case (ke #0) the line of
EPs can cross the line corresponding to critical coupling
conditions.

Concluding, there are two types of critical coupling conditions
in the photonic dimer. These conditions are found on both sides
of the EPs, such that critical coupling can be achieved in the
PT -symmetric as well as P7 -symmetry broken states. In the
next sections, we examine the versatile nonlinear dynamics and
dissipative Kerr soliton generation in these states.

Critically coupled resonators: split resonance (P7 -symmetric).
In the present section we discuss the case of the split resonance
(PT -symmetric). We revisit ideas presented earlier in ref. 38 by
looking at the nonlinear dynamics from the supermode per-
spective. We demonstrate a separability of the GS dynamics from
DWs living in the S supermodes. Finally, we show how this
representation explains the origin of soliton hopping effect. An
essential part of the investigation of the dynamics inherent to the
photonic dimer and described by Eq. (1) relies on numerical
simulations.

Four-wave mixing pathways between supermodes. The linear part
of Eq. (1) can be diagonalized by a linear transformation on each
pair of modes with index y. We define the complex inter-
resonator detuning &, = 8 — i1 Ax,,. If the inter-resonator cou-
pling is independent of the wavelength, the complex frequency

splitting Aw, = /4% + 82, and the (complex) normalized inter-

resonator detuning
dE = 6C/Aa)f

are independent of the mode index. Therefore, the non-unitary
transformation diagonalizing the linear part of Eq. (1) is given by
Asy=aA, + BBy, Aysy = BA, — aB,, where

a=Y" "% =V T% (6)

Here S and AS stand for the symmetric (S) and antisymmetric
(AS) mode, as they are completely symmetric (antisymmetric) at
d. = 0 in the split resonance regime. Then, by defining the spatial
envelope of the field in the S and AS modes A((6) = ZMAS,,,e’W,
A, (0) :EHAaWeW, we can express Eq. (1) in the supermode
basis (see details in Supplementary Note 3 and alternative

Hamiltonian formulation in ref. 38):

d . 1
aAS"’ = |—i(w, — D) — w, — 5 Re(Aw,))
1
- E (KO + Kex + Im (ch)):| As,y
+ 8/400‘\/ Kex,lsin + ng}- [tlAslAs|2 (7)
+ tZAas|As|2 + t4A§A:S + t3A5|Aas|2
1 1
+ E tSAisA: - 5 tZAas|Aas |2:|
u
d . 1
aAaW = |—i(w, —pD; —w, + 3 Re(Aw,.))

1
= (kg + Koy — Im (ch))} Agsp

, 1 (©))
+ 6}4,0ﬁ\/ Kex,lsin + ngF |:E t2A5|As|2

1
+ A AP + EtsASA;’; — HAJA
—tAGAT + A AL

as”™ s

As one can see, the linear anti-diagonal terms are eliminated in
the supermode basis, while the nonlinear terms (diagonal in the
resonator basis) induce nonlinear coupling between the super-
modes. In particular, we identify FWM processes between the
supermodes. We note that a similar diagonalization which
introduced high- and low-frequency soliton was made in the
context of P7 -symmetric nonlinear couplers!?.

The efficiencies of FWM pathways are associated with
nonlinear coupling coefficients t;,i=1,..,4, defined in Supple-
mentary Note 3 (see Eq. $20). For example, the term § ;A2 A¥ in
Eq. (7) signifies the annihilation of two photons in the AS
supermode and the creation of two photons in the S supermode.
The rate of the process is proportional to gxt;. Each FWM process
can be represented by a quantum Hamiltonian term, for example

At At oA N
ast."‘l as"“z aas‘#B aas,m ’ (9)

where &ZM (&i#) is the creation (annihilation) operator for

supermode i=s, as with longitudinal mode index y, and y; +
Uz = p3 + py. The nine different nonlinear processes from Eq. (7)
to Eq. (8) are depicted in Fig. 2(a), where they are arranged in
categories corresponding to intra-band even processes, inter-band
even processes and inter-band odd processes.

We refer to a nonlinear process as intra-band when two
annihilated and two created photons are from the same
supermode family, while inter-band processes imply nonlinear
mixing of photons belonging to different supermodes, inspired by
the concept of Bloch bands in condensed matter Physics. The
number parity of the process (even or odd) refers to the number
of photons from each supermode family that is involved. We note
that processes (2,4,7,9) are the counterparts of processes (1,3,6,8)
for permuted supermodes index. Schemes of possible FWM
pathways between the supermodes (while a solitonic state is
generated in the AS supermode family) are shown in Fig. 2(c,d)
These processes are distinguished by the nature of FWM: Fig. 2(c)
shows odd processes (except the conventional even process #1,
associated with Hamiltonian term &ZS%uZS’haaws Oys,,)> While
Fig. 2(d) shows even processes leading to soliton hopping.

While the index y has been omitted in Fig. 2(a) for readability,
both the mode number and the energy have to be conserved in a
FWM process. We employ the concept of integrated dispersion
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Fig. 2 FWM pathways between the dimer supermodes in split resonance (P77 -symmetric) regime. a Table of the nine possible FWM pathways

represented with quantum operators and corresponding coefficients t. b Real (solid) and imaginary (dashed) part of nonlinear coupling coefficients as a
function of the normalized inter-resonator detuning d for 2 values of the external coupling mismatch Ake, in the split resonance regime (J = 20kq). Akey iS
the source of the imaginary component, which however is small compared to the real part, except for t, around d = 0. ¢, d Schematic integrated dispersion
profile with emphasized FWM pathways. The labelling indexes are specified in (@). Empty dashed circles denotes cold cavity mode, filled circle denotes
Kerr comb mode, and color codes AS (green) or S (purple) mode family. € GS generated in the AS supermodes via conventional FWM (even intra-band
processes) and the emergence of commensurate dispersive waves via odd inter-band processes. d Soliton in the AS supermodes and the generation of a

soliton in the S supermodes caused by even processes.

Dine(¢) = w, — (wo + Dyy) to depict the processes which satisfy
the phase matching conditions.

The real and imaginary parts of the nonlinear coupling
coefficients are shown in Fig. 2(b) as a function of the normalized

inter-resonator detuning d = §/+/4J* + 82 with solid and dashed
dotted lines, respectively. The parameters are chosen in the split
resonance regime with J=20x,. Vanishing and non-vanishing
Ak, are considered, emphasizing that the imaginary parts of all
the nonlinear coupling coefficients originate from the external
coupling mismatch. The imaginary part, however, generally
constitutes only a small fraction of the absolute value of the
nonlinear coupling coefficients.

Coefficient t, is responsible for the intra-band processes, that
is, the usual FWM within the same mode family (S) or (AS). It
has its lowest value equal to 0.5 at the maximum hybridization (d
=0). In contrast, coefficient #; is maximized at d =0 and causes
inter-band and even processes. The coefficients ¢, and t, are
responsible for inter-band and odd processes. Their real parts are
odd with respect to d. Therefore, there are no odd FWM
processes at d=0, unless an external coupling mismatch is
present. In this case, coefficient f, has a non-vanishing
absolute value.

Nonlinear dynamics and soliton generation in split resonance
(PT -symmetric) regime. The type of the critical coupling condi-
tions corresponding to the split resonances allows for accessing
dynamical states characterized by efficient generation of bright
DKSs in both cavities. Emergent dynamical effects described in
ref. 38 are found in this regime. In this section, we provide an
additional (to the result already shown in ref.3%) and com-
plementary description of these phenomena by representing the
inter-resonator field in the hybridized supermodes basis.

Modulation instability state. We restrict ourselves to the AS
supermodes pumping scheme since we did not observe dynamics
different from the single resonator case when exciting the S
supermode family. Figure 3(a, b) show the intracavity power
evolution as a function of laser detuning in the resonator and
supermode basis, respectively. It is numerically generated by
exciting the system in a soft manner, i.e., adiabatically changing
the laser detuning &= wy — w, from blue to red side of the AS
hybridized resonance. Initial dynamics is found to be similar to
the single resonator case. We observe the formation of primary
combs in the AS supermode family followed by cnoidal waves
(Turing rolls). The subsequent chaotic modulation instability
stage [yellow area in Fig. 3(a, b)] already demonstrates a sig-
nificant difference. Namely, the average intracavity power evo-
lution in the second resonator, which is depicted by the red line,
as a function of normalized detuning &/Aw exhibits a local
maximum inside the modulation instability area which corre-
sponds to the efficient photon transfer to the S supermodes [violet
curve in Fig. 3(b)]. At these values of detuning ({/Aw = —1), we
observe an enhancement of spectral components distinct from the
modulation instability gain region. The mode number of the
components correspond exactly to the distance from the pumped
mode to the lower (S supermodes) parabola for a given value of
the laser detuning, as described in ref. 3. This is a first signature
of the interaction between the supermodes.

Figure 3 (c, d) provide the underlying evolution of intracavity
power (spatiotemporal diagram) in the supermode basis. The
modulation instability region in the conventional basis does not
differ for the single-particle dynamics. However, the supermode
basis reveals that the transfer of photons to the S supermode
family occurs after a certain detuning threshold. As follows from
the spatiotemporal diagram of the AS state, it occurs in the
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Fig. 3 Numerical simulations of the split resonance regime

(PT -symmetric case). a Evolution of the intracavity field power Py in
resonator basis. b Intracavity field power evolution in supermode basis. ¢, d
Spatiotemporal diagrams for the field evolution in AS and S supermodes,
respectively. Parameters of numerical simulations are close to the exact
critical coupling conditions: ko/27 = 50 MHZ, kex1/27 =100 MHZz, ke 2/ 27
=20 MHz, 6/2r =4 GHz, J/2x= 4.5 GHz, the pump power was fixed to
1.2 W. DWs: dispersive waves.

developed AS supermodes modulation instability stage, where
collision and annihilation of unstable coherent structures lead to
the enhancement of wings in the optical spectrum** and thereby
populates the modes in vicinity of the symmetric resonances.

Breathing state. As in conventional single resonator systems
above a threshold pump power level, the modulation instability
region is followed by the breathing solitons region [violet area in
Fig. 3(a, b)]. Breathing originates from the Hopf bifurcation as
demonstrated for the single resonator case*”. It manifests itself as
a periodic oscillation of localized coherent structures (similar to
solitons on a finite background, such as Kuznetsov-Ma
soliton*®47—a solution of the nonlinear Schrédinger equation),
which radiates DWs at every cycle of oscillation. Figure 4(a)
shows the intracavity power evolution. Breathers in the photonic
dimer exist in both resonators and oscillate in phase. However,
the intracavity trace is found to be randomly deviating from the
average because of the photon transfer to the S supermodes and,
therefore, the generation of additional DWs.

The periodic oscillation of a coherent structure in slow time
results in the appearance of a ladder of straight and equally-
spaced lines on the nonlinear dispersion relation®s. The presence
of such ladder has been experimentally demonstrated (sees,
supplementary information) by reconstructing the comb spec-
trum with high resolution. Indeed, as follows from Fig. 4(c, e) the
breathing frequency is given by the frequency offset between the
lines. The same reasoning can be applied to the single resonator
breathing states. There, it has been demonstrated experimentally
that the breathing frequency linearly depends on the pump laser
detuning32. Therefore, we can make a conjecture that the
breathing occurs due to the photon transfer between the Kerr-
shifted dispersion parabola and the first solitonic line given by the
laser detuning, while the breathing frequency 1is the

corresponding gap. In the points where the ladder crosses the
AS supermodes parabola enhancement of the comb power is
observed. Therefore, optical spectrum of a breather contains a set
of sidebands32:49-20,

In the supermode basis [see Fig. 4(b)] it becomes evident that
the breathing occurs mostly in AS supermode families. Therefore,
the breathing dynamics in the AS mode family does not show
significant difference from the conventional breathing found in
the single resonator case as follows from the nonlinear dispersion
relation [Fig. 4(d)], although it demonstrates significant differ-
ences in the resonator basis. Figure 4(f) shows the nonlinear
dispersion relation for the S supermode family. The origin of the
DWs which perturb the breathing state can be seen as an
enhancement of the certain supermodes in the S family (p = +70)
in the places where the ladder from AS supermodes crosses the S
parabola.

Soliton hopping state. The soliton hopping state recently pre-
dicted in the photonic dimer® is characterized by a periodic
energy exchange between the coupled resonators in the presence
of temporally-localized coherent structures. Inter-resonator
oscillations have a frequency equal to the splitting between the
supermode parabolas. The average power modulation is much
stronger than in the breathing state, which leads to the enhanced
sideband amplitudes in the optical spectrum [see Fig. 5(b)].
The spatiotemporal diagrams for the diagonalized system [see
Fig. 3(c, d)] reveal an insight about the soliton hopping state. The
soliton hopping range [blue area in Fig. 3(a, b)] coincides with the
emergence of a localized coherent structure in the S supermodes
family accompanied by a characteristic solitonic step in the
average intracavity power evolution as follow from Fig. 3(b). This
coherent structure is generated via the emerged FWM pathways
depicted in Fig. 2(d). Soliton in AS supermode family acts in this
case as a source of photons which triggers the parametric
processes, thereby resonantly populating the S parabola in the
vicinity of the Oth mode (i.e., with the offset — Aw) via the process

AT At A ~ . .
#5 (g, g, dy, a,, ). Energy conservation is ensured by

populating supermodes offset by approximately + Aw. Cascaded
parametric process #2 (&;r_’ .‘41&2-7/"2 a4, ) populates the neighbor-
ing S supermodes similarly to the CW-pumped single resonator.
Therefore, we assume that the coherent structure generated in S
supermodes is a GS (i.e., supermode dissipative Kerr soliton).
Thus, the origin of the oscillatory behavior can be seen as a time
periodic interference of coherent structures living in different
supermodes.

Figure 5 (a) shows the dimer dynamics at fixed pump laser
detuning, in the soliton hopping regime in AS and S supermodes
representation. It can be obtained numerically by seeding the
solitonic state in the AS supermode (see Supplementary Note 4)
and further tune into the soliton hopping state. The average
power exhibits small amplitude oscillations around a certain
value. Periodic oscillations in slow time results into the series of
sidebands (similar to Kelly-sidebands widely present in the mode-
locked lasers®!) in the optical spectrum as has been shown in
ref. 38, Corresponding nonlinear dispersion relation shows a
ladder of lines similar to the breathing state, but the spacing
between them is equal to the splitting between the DWs
parabolas. The origin of the double maxima spectral sidebands
is well seen in the supermode basis [see Fig. 5(b)]. They appear
due to the different Kerr nonlinearity-induced shift of super-
modes in the presence of inter-resonator detuning. White dots
indicate the point where the ladder crosses dispersive parabolas
and the continuing arrows indicate the corresponding spectral
components enhancement. Both nonlinear dispersion relations
depicted in Fig. 5(c, d) contain a corresponding DW parabola and
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the hopping ladder. Since the ladder crosses parabolas at slightly
different mode numbers, sidebands have two maxima.

Experimental and numerical evidences of the deterministic single
soliton generation. Deterministic generation of a single soliton
state in optical microresonators is essential for a turn-key dis-
sipative Kerr soliton-based broadband frequency combs genera-
tion. Indeed, passing the chaotic modulation instability stage,
soliton arrangement inside the cavity can be arbitrary which leads
to a non-homogeneous spectral profile due the interference of
different solitonic components. One way to control and structure
the soliton arrangement inside the cavity is to introduce a
background modulation which leads to the generation of perfect
soliton crystals3>. However, the single soliton state is, nonetheless,
difficult to achieve in this configuration.

Another way to naturally fall into the single soliton state has
been described in ref. °2. It has been proposed to employ a strong
avoided mode crossing with higher-order modes of the resonator,
which leads to an extensive cavity Cerenkov radiation?>>3>4, In
this case, the soliton, being a line on the nonlinear dispersion
relation?0->>, crosses the distorted cavity mode, which leads to
effective photon transfer toward the higher-order modes?®. In this
way, every soliton acts as a source of DWs. Therefore, if the
energy of the DWs is sufficient to perturb the solitonic states the
number of solitons will decay toward unity, where the state will be
stabilized.

Here, we present a deterministic version of this mechanism
utilizing discovered properties of the photonic dimer33. Due to
the more complex dispersion landscape, the single soliton
generation process does not require any additional interaction
with higher-order mode, even though it is shown to be enhanced
for certain supermodes due to the underlying symmetry>’.
Indeed, the periodic intra-resonator field enhancement due to
the crossing of the S supermode parabola is found to be sufficient
to trigger the process discussed in ref. >2. In order to verify this
claim, we investigate both numerically and experimentally the
GSs generation. Figure 6 shows the qualitative comparison of
numerical and experimental phase diagrams. As follows from the
numerical simulations of coupled LLEs (1), single soliton
generation occurs when passing a threshold power of 0.9 W
[see Fig. 6(b, ¢)]. A similar result follows from the experimental
investigations. A schematic of the experimental setup is shown in
Fig. 6(a). Single GSs are generated with an integrated Si;Ny

MRAMAMAMNANANN — AS mode

‘:é —— S mode
= 0.5-NVV\/V\/\/VVVV\/VVVVVVVVV\
&
0 T T T T
0 0.2 0.8 1
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Fig. 5 Soliton hopping state. a, b Intracavity field power evolution and
power spectral density (PSD) at fixed laser detuning corresponding to the
the soliton hopping regime, in supermode basis. ¢, d Nonlinear dispersion
relation for AS and S supermode families, respectively. White dots show
points on the nonlinear dispersion relation where the spectral components
are enhanced. Arrows connect these points with the corresponding spectral
components.

photonic dimer driven by external cavity diode laser. The CW
pump is amplified by an erbium doped fiber amplifier to achieve
the power level need for the investigation of the threshold of the
process. After passing a fiber polarization controller needed to
guarantee that the solitons are generated in a single polarization
mode family, the light is injected in the photonic dimer. The
generated light is filtered by a fiber Bragg grating (FBG) and
recorded with a fast oscilloscope. Figure 6(d, e) show 50 traces of
the generated combs power at different values of the pump power
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as a function of the laser detuning from the position of the AS
resonance. The central frequency of a widely tunable external
cavity diode laser has been controlled by the piezo-tuning
technique. Other details of the experimental measurements can
be found in ref. 38, Methods section.

Critically coupled resonators: split dissipation (P7 -broken).
Passing through an EP, which exhibits a singularity of nonlinear
interactions efficiency, we enter the domain of split dissipation
(PT -symmetry broken phase), which exhibits drastically differ-
ent dynamical features. We study soliton generation in this region
and show that P7 -symmetry breaking leads to soliton generation
in either cavities. The soliton localization can be switched by
increasing the pump power and thereby flipping the broken
PT -symmetry. Four distinct dynamical states are identified, we
observe among them on-demand perfect soliton crystals genera-
tion, which can be a promising alternative to the existing tech-
nology relying on the resonator’s mode interaction3>.

Nonlinear coupling coefficients and their divergence at the excep-
tional point. The system of Eq. (1) can be diagonalized to Eq. (7)
and Eq. (8) in the PT -symmetry broken state in the same way as
in the P7T -symmetric state, by applying a transformation matrix
Tm such that T, MT.' is diagonal [see Eq. (2)]. The diag-
onalization enables the computation of the nonlinear coupling
coefficients describing the nonlinear interaction between the
supermodes. The non-vanishing values of the nonlinear coupling

coefficients are displayed in Fig. 7(c) as a function of ], where the
external coupling . is varied quadratically with J to satisfy the
critical coupling condition [Eq. (3)]. The nonlinear coupling
coefficients are normalized by a real factor

j— iAKeX
T 20w’

(10)

equal to the square of the norm of Tr,(1, 0)%. Indeed, the system is
non-Hermitian such that T;, does not preserve the norm (the
transformation is not Unitary). This means the variables |A,
le, |Aas,[,|2 are not proportional to the number of photons. The
normalization allows the interpretation of figx/N as a rate per
photon.

The nonlinear coupling coefficients behave differently in the
regime of split dissipation with d =0 than in the regime of split
resonance: t3, associated with even inter-band processes, vanishes
completely, while t,, t4, (;) become purely imaginary (real). These
are related to odd inter-band (even intra-band) processes. At the
EP (J/xo=0.5) they diverge. The normalization corrects the
divergence of #; and t,, but not of #,, which exhibits a singularity
at the EP. The constant value ;/N = 1 signifies that the rate of the
intra-band FWM does not vary with ] in this critical coupling
condition.

Although the linear concepts of P7 symmetry are useful to
understand the dynamics of the P7 -symmetry broken state, we
observe that the solitonic states presented in the next section are
not distributed spatially according to the supermode basis like in
the PT -symmetric regime. On the contrary, they are distributed
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in the resonator basis, which is diagonal with respect to
nonlinearity.

Phase diagram: inter-resonator coupling vs pump power. We
numerically explore the phase diagram under the condition of
critical coupling in the nondegenerate dissipation regime [see
Fig. 7(a)]. In Fig. 7(a, ¢), Kex,1 is varied with J in the way that the
critical coupling condition [Eq. (3)] is satisfied across the phase
diagram and the dimer is in a state of broken P7T -symmetry (split
dissipation). An EP is found at ] = 0.5x, [see Fig. 1(d)].

Dynamical states in split dissipation (P7 -broken) regime. We
differentiate four dynamical states in this regime: multi or single
soliton in resonator 1 (S1, blue region), soliton crystal in reso-
nator 1 (Cl, cyan region), coexistence of periodic coherent
structures in resonator 1 and soliton in resonator 2 (S2/C1, green
region), and soliton in resonator 2 (S2, yellow region). The
parameter regions enabling their generation are coloured on the
phase diagram and their characteristic intracavity intensity profile
are shown in the insets [see Fig. 7(a)]. White region refer to the
absence of solitonic states.

At weak inter-resonator coupling (J< jxy), the system
qualitatively follows the single resonator dynamics and features
the S1 state, where DKSs exist in resonator 1 while resonator 2
only features their low-power projection. Increasing the inter-
resonator coupling, dynamical regions corresponding to states
C1, S2/Cl, and eventually S2 are accessed.

The states are almost exactly partitioned in the resonator basis.
For example, state S1 is confined in resonator 1 although a
negligible amount (<<1%) is found in resonator 2. That is, the
field amplitude distribution between the resonators does not
follow the supermode distribution which is given by linear
analysis. We assume that the nonlinearity changes the field
distribution of the supermode, making them localized in the

resonators. These supermodes are referred to as high-loss
(confined in resonator 1) and low-loss (confined in resonator 2).

Parametric switching of the soliton-localization. In the range of
1.2x9 ST S 1.8k, the four stable states can also be accessed by
changing the pump power. Figure 7(b) shows the intracavity
power evolution as a function of the laser detuning for pump
power levels corresponding to four dynamical states in this range
of J. Therefore, gradually increasing the pump power, states S2,
S2/C1, C1, and S1 can be sequentially accessed.

In this process, the soliton-localization switches from resonator
2 to resonator 1. Linear analysis predicts that the resonant soliton
will be confined in the low-loss supermode while the red-detuned
CW background will be in the high-loss supermode [see Fig. 1(c)]
as is the case for state S2 [inset of Fig. 7(a)]. However, despite the
field distribution predicted by the linear analysis, the presence of
nonlinearity in the system introduces a mechanism allowing for
the parametric switching between the cavities.

Indeed, at low pump power, only the low-loss supermode has a
quality factor sufficient for the soliton generation, resulting in
state S2. At higher pump powers, both supermodes can sustain a
coherent structure, leading to the coexistance of soliton and
periodic coherent structure that has been observed in a limited
intermediate range of parameters. Above a threshold, solitons are
not generated in resonator 2. Moreover, in the C1 and S1 state,
the parametric gain is able to compensate the difference of losses
between the supermodes, and invert the P7 symmetry: the
parametric gain (via intra-band FWM) is larger in the supermode
localized in resonator 1 than in the other supermode making the
state of broken P7 -symmetry flipped in comparison to the linear
regime for longitudinal modes with y # 0.

We note that no specific solitonic state was found at the EP.
We suppose that the Kerr shift lifts the degeneracy between the
two supermodes. However, an extensive investigation of the
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soliton generation in the close vicinity of the EP is beyond the
scope of this study.

Deterministic soliton crystal and efficient comb generation. In this
section, we study the generation of state C1, which corresponds to
the deterministic generation of a soliton crystal3. Figure 8 shows
the numerical simulations of Eq. (1) setting the pump power to
0.2W and J/2mr=75 MHz. Figure 8(a) shows the intracavity
power in both resonators as a function of laser detuning. The
incident light couples into both high- and low-loss, supermodes
of the system simultaneously, such that the low-loss supermode
features a chaotic regime while the high-loss supermode remains
in the cnoidal wave regime [Fig. 8(c, e)]. After passing a critical
detuning (~7x,), resonator 2 leaves the chaotic regime without
any coherent structures generated while cnoidal waves of reso-
nator 1 transition into a soliton crystal state. Figure 8(b) shows
that the crystal state at detuning I [Fig. 8(a)] is perfect3®> with
more than 100dB of extinction over almost the full existence
range.

This state is known to exhibit a high conversion efficiency due
to the high occupancy of the resonator 1 as shown in Fig. 8(b, d).
Figure 8(f) shows the output power in the pump mode (u =0)
and comb modes (u#0). We observe that the perfect soliton
crystal formation leads to a conversion efficiency higher than
75%. Also, we note that the pump is almost completely absorbed
by the system, such that an effective nonlinear critical coupling is
achieved. According to ref. 3, the soliton crystal is generated
deterministically when the pump power is below the threshold to
avoid spatiotemporal chaos under the condition that modal
crossings with higher-order modes trigger background modula-
tion. Here, we observe deterministic soliton generation in the
absence of modal crossings.

Bright-dark solitons coexistence and their interaction with periodic
coherent structures. We perform and analyze a simulation with J/
2m =75 MHz, P;, = 0.1W, as shown in Fig. 9 in order to generate
S2/C1 state depicted by green in the phase diagram [Fig. 7(a)].
The power trace [Fig. 9(a)] shows the presence of a step in each
resonator. The spectrum and temporal intensity at detuning I are
shown in Fig. 9(b). A soliton exists in resonator 2, while back-
ground modulation reminiscent of C1 state are present in both

10

resonators. The comb modes in both resonators are excited in this
state, hinting at nonlinearly-induced P7 -transition that restores
the P7 symmetry in the comb modes®®>°. Spatiotemporal dia-
grams shown in Fig. 9(c, e) as a function of the laser detuning
indicate that the S2/CI state decays into a S2 state after the end of
the soliton existence range in resonator 1. After transitioning to
the S2 state, the field in resonator 1 acts as a source for resonator
2, resonantly supplying additional energy to the solitonic state.
This results into a coexistence of a bright and dark solitons
synchronously rotating in the resonators. This situation is similar
to a dual fiber loop arrangement presented in ref. °© but in the
limit of equal cavities.

While the existence of a periodic coherent structure in
resonator 1, bright-dark soliton pair can be generated as well. A
simulation at a fixed detuning starting from the initial conditions
I [Fig. 9(b)] is shown in the spatiotemporal diagrams Fig. 9(d, f).
We observe that the soliton pair is bounded by the effective
nonlinear potential induced by the periodic structures in the
neighboring cavity. The spatiotemporal diagram depicts the
possibility for the bright-dark soliton pair to tunnel from one
potential unit cell to another interacting with their boundaries in
an oscillatory manner. In addition to the fast oscillations, a
random walk of the pair is observed at a slower timescale.

Discussion

In this article we investigate nonlinear dynamics in a driven-
dissipative photonic dimer exhibiting an EP. We analyze the
generation of DKSs on both sides of the EP, which acts as a
demarcation of the dimer critical coupling conditions. These two
regimes are the split resonance regime (with the preserved sym-
metry) and split dissipation regime (with broken symmetry), as
found in conventional P7T -symmetric systems with gain and loss.
Each regime exhibits unique nonlinear dynamics not found in the
single resonator.

In the split resonance regime, which has been substantially
discussed in ref. 38, we observe that dimer solitons can be gen-
erated in either supermodes, however, only the AS one exhibits
non-conventional soliton dynamics related to the emerging effi-
cient FWM pathways. The dynamics is conveniently expressed in
the supermode basis, for which we developed the concepts of
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inter-band four-wave mixing. Supermode representation reveal
that, despite the complexity of the dimer system, we are able to
separate conventional single-resonator soliton dynamics from the
DWs emerging in another supermode. Breathing state of the
photonic dimer in the supermode basis appears to be similar to its
single-resonator counterpart except for a small perturbation. In
this case, the intra-resonator power of both cavities oscillates in
phase. Rapid and counter-phase power oscillations (soliton
hopping) are observed above a threshold pump power, originat-
ing from the generation of synchronized solitons in both super-
modes. We highlight the fact that all the dynamics appearing in
the split resonance regime can be well understood in the super-
mode representation.

The same does not apply to the regime of split dissipation. The
absence of the resonance splitting implies the pumping of both
supermodes simultaneously. Therefore, the most convenient
representation in this case is the conventional resonator basis
which exhibits the broken P7T -symmetry of the system. Satisfying
the critical coupling condition, we impose different loss rates on
the two resonators so resonator 1 becomes substantially over-
coupled. We observe the generation of four different stable soli-
tonic states localized in either or both resonators. In these states
we observe: the synchronization of bright-dark soliton pairs (in
resonators 2 and 1, respectively), the interaction of periodic
coherent structures in resonator 1 with the bright-dark soliton
pair, the deterministic generation of soliton crystal states with
more than 75% pump conversion efficiency into the comb lines,
and bright solitons in resonator 1. Thereby, the pump power
enables the parametric switching of the soliton localization
between resonator 1 and 2. The switching is induced by flipping
the broken P7 symmetry so the lossy resonator 1 has more gain
in the comb modes than resonator 2. We suspect nonlinearly-
induced P7T transition to take place in the intermediate
regime>®>%. Moreover, we compute the nonlinear coupling
coefficients between the supermodes. We normalize the diver-
gence of two of them. One however seems to exhibit a singularity
at the EP, which could demonstrate enhanced sensitivity in its
vicinity®l.

Concluding, we would like highlight the abundance of non-
linear dynamics occurring in the simplest element of soliton
resonator lattices - photonic dimer. Despite the formal similarities

with the single-mode dimer systems extensively studied in the
context of non-Hermitian photonics, massively multimode non-
linear dimer exploiting another degree freedom reveals a variety
of solitonic states and emerging dynamics, which cannot be
covered in depth in one study. The fundamental aspects of this
systems—two ideal coupled resonators—can be of interest far
beyond the photonics community.

Methods
Numerical simulations. The system is modelled numerically based on Eq. (1). We
employ step-adaptative Dormand-Prince Runge-Kutta method of Order 8(5,3). In
the strong coupling regime, we approximate the dispersion operator by pseudo-
spectral method. The coupling coefficient J is considered linear and frequency
independent. The inter-resonator detuning & is incorporated in the integrated
dispersion. Seed noise is taken on the level of 10~¢ photons per mode with uni-
formly distributed random phases.

The intracavity field is numerically reconstructed by exciting the system by
adiabatically changing the central frequency of the pump w,, from blue to red side
of resonances.

Numerical reconstruction of the phase diagram. We selected 14 values of pump
power distributed logarithmically from 0.01 W to 1.5 W and 13 values of inter-
resonator detuning distributed linearly from Ox, to 2.4x,. For each set of para-
meters, we employ the conventional soliton generation scheme by scanning the
resonance from blue to red-detuned side. The spatiotemporal and spectrum evo-
lution diagrams in the resonator basis is used to identify the stable soliton state
that is generated during the scan. Thus, for different points on the phase
diagram, the value of detuning is not the same. If several stationary states are
identified, we choose the first state in the soliton existence range. The phase dia-
gram is averaged over 3 realizations and the pump laser frequency is swept at the
speed 3¢ /27, corresponding to a change of frequency , every 10 photon life-
times (271/xy).

Experimental setup. The experimental setup used in this manuscript represents a
simplified version of the experimental setups used in previous works31:38, We
employ a tunable external cavity diode laser Toptica CTL operating in the optical C
band (ECDL). The optical pump is amplified by an erbium-doped fiber amplifier
(EDFA) and coupled to the photonic chip. Chips are fabricated with the photonic
Damascene reflow process on SizN,%2. The laser is tuned into the AS resonance via
the piezo tuning method described in ref. >2. The generated light can be either
detected at the transmission or drop waveguide ports. The pump light is
reflected by a tunable FBG redirected by an optical circulator (CIRC), transmitted
light impinges onto a fast photodiode (PD). The passive stability of the pump
laser and fiber-chip coupling is sufficient to retain the state of the soliton during
a scan.
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