
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

High-Level Synthesis of Dynamically Scheduled Circuits

Lana JOSIPOVIĆ

Thèse n° 7211

2021

Présentée le 27 août 2021

Prof. B. Falsafi, président du jury
Prof. P. Ienne, directeur de thèse
Dr D. Burger, rapporteur
Prof. J. Cong, rapporteur
Prof. J. Cortadella, rapporteur
Prof. G. De Micheli, rapporteur

Faculté informatique et communications
Laboratoire d’architecture des processeurs
Programme doctoral en informatique et communications

Acknowledgments

I would like to express my gratitude to all those who made this thesis possible and who had a

significant impact on this great chapter of my life.

First and foremost, I am deeply grateful to my PhD advisor, Paolo Ienne, who introduced me

to the world of research and profoundly impacted both my personal and my professional

development. His constant feedback, encouragement, and enthusiasm continue to motivate

and inspire me to achieve my best. I truly could not have wished for a better mentor to guide me

through my PhD journey.

I would like to thank Doug Burger, Jason Cong, Jordi Cortadella, and Giovanni De Micheli for

serving on my thesis jury, as well as Babak Falsafi for presiding it. Their insightful comments

and questions have significantly improved this thesis. I am also very grateful for the tremendous

support and assistance they provided me in defining my future career steps.

I am thankful that I had the opportunity to collaborate and learn from many inspiring and

talented people. A very special thanks again to Jordi Cortadella, whose expertise has greatly

influenced this thesis and whose continuous support throughout my PhD has enabled me to

advance and grow. I had the pleasure of collaborating with George Constantinides, whom I

especially thank for his valuable advice and his kind support of my career development. I would

also like to extend my gratitude to Steve Neuendorffer for helping me to expand my skills and

knowledge, as well as for his friendliness and hospitality during my stay in California.

I thank all the members of the FPGA community that I had the pleasure of meeting and dis-

cussing with throughout the years, as well as all my colleagues and friends at Xilinx and Microsoft

Research who made my internship experiences unforgettable. I am thankful to all the students

and collaborators who contributed to my research and the work described in this thesis.

I was very fortunate to work alongside many current and former LAP members, including Ana,

André, Andrea, Andrew, Aya, Chantal, David, Dewmini, Grace, Jovan, Mikhail, Nithin, René,

Sahand, and Stefan. I would especially like to thank Andrea for his significant work on Dynamatic,

Chantal for helping me survive in French-speaking Switzerland, David for motivating me to

pursue a PhD, and Sahand for his constant availability and willingness to help out. Finally, my

biggest thanks goes to Grace, whose amazing support, extreme caring, and many hugs made a

huge difference in my PhD life.

i

Abstract

I am grateful to everyone from EDIC who started the PhD journey with me and stayed close

throughout, as well as all the EPFL friends I made along the way, for making my PhD incredibly

fun and enjoyable. Special mentions go to Dušan, Helena, and Hermina for making Lausanne

feel a bit closer to home, as well as George, Lefteris, and Marios for sharing my skiing enthusiasm

and always being up for a day on the slopes. An extra thanks to Lefteris for being a great neighbor

and the person that I could always count on. Many thanks to Endri for the weekly coffees and

long conversations, as well as to Javier for making TAing surprisingly fun.

Next, I would like to thank all my Croatian friends who enthusiastically cheered me on along the

way, including Ami, Dragec, Karla, Kuna, Matea, Petra, Tea, and Tena. I very much appreciate

that we managed to stay in touch and that we find time to get together whenever I come home.

A very special thanks to Tea and Tena for their lifelong friendship and for being there for me no

matter what. Above all, I thank Marko for his endless patience, strong devotion, and continuous

encouragement during the past years; I am extremely grateful for having him by my side.

Last, but in no way least, I would like to thank my family: my parents Tatjana and Ivo, and

my grandparents Mimi, Zora, and Ante, for enabling me to achieve all my goals with their

unconditional love and support.

Lausanne, January 18th, 2021 Lana Josipović

ii

Abstract

High-Level Synthesis (HLS) tools generate hardware designs from high-level programming lan-

guages. These tools almost universally build datapaths that are controlled using a centralized

controller which relies on a static, compile-time schedule to determine the cycle when each

operation executes. Such an approach results in high-throughput pipelines in cases where mem-

ory accesses are provably independent and critical control decisions are determinable during

code compilation. Unfortunately, when this is not the case, the tools must make pessimistic

assumptions, yielding inferior schedules and lower performance. An alternative HLS approach

is to create dataflow circuits out of high-level code. Dataflow circuits are built out of units which

communicate using point-to-point pairs of handshake control signals; data is propagated from

unit to unit as soon as memory and control dependences allow it and stalled by the handshaking

mechanism otherwise. This distributed control mechanism effectively implements a dynamic

schedule, where scheduling decisions are made locally in the circuit as it runs, hence achieving

behaviors which are beyond the capabilities of statically scheduled circuits.

Although translating high-level code into dataflow circuits seems relatively straightforward, a

naive translation is not sufficient to achieve functional correctness, high performance, and area

efficiency. Firstly, without appropriate buffer placement and sizing, dataflow circuits exhibit only

limited pipelining capabilities. Secondly, in the absence of a static schedule, resource sharing

opportunities are difficult to identify; in addition, sharing may cause deadlock and compromise

the functionality of the circuit. Thirdly, memory accesses in a dataflow circuit may execute in

an order different than the one specified in the original program—a naive memory interface is

not always sufficient to guarantee that all memory dependences are honored. Finally, standard

dataflow circuits do not support speculation, i.e., the ability to execute some operations before

it is certain whether they are correct or required, which prevents pipelining when a memory or a

control dependence takes a long time to resolve.

The contribution of this thesis is to develop techniques that make dataflow circuits truly compet-

itive in the HLS context. We first present a complete set of rules and transformations to create

dataflow circuits out of high-level specifications (i.e., C/C++ programs). We detail a methodology

to systematically place and size buffers in dataflow circuits to achieve high-throughput pipelines.

We show how to automatically identify performance-acceptable resource sharing opportuni-

ties and describe a sharing mechanism which achieves functionally correct and deadlock-free

dataflow designs. We detail the construction of a memory interface (i.e., a load-store queue)

iii

Abstract

for dataflow circuits that can correctly handle memory accesses arriving out of order and show

how to automatically customize this interface to a particular application. Further, we present

a generic framework for handling speculation in dataflow circuits. Finally, we show that these

techniques can reap significant area/performance benefits in appropriate situations.

All these features enable dataflow circuits to achieve dynamic behaviors similar to those of

modern superscalar processors; we believe that these behaviors are key for HLS to be successful

in new contexts and broader application domains.

Keywords: high-level synthesis, dataflow circuits, dynamic scheduling.

iv

Résumé

Des outils de Synthèse de haut-niveau (HLS) peuvent générer des circuits électroniques à partir

d’un language de programmation haut-niveau. Ces outils créent quasiment toujours un chemin

de données contrôlé à partir d’un controlleur centralisé utilisant un ordonnancement statique

connu au temps de compilation pour déterminer le cycle pendant lequel chaque opération

s’exécute. Une telle approche permet de créer des pipelines ayant une bande passante élevée

dans les cas où les accès à la mémoire sont prouvablement indépendants et que des décisions de

contrôle critiques sont déterministiques pendant la compilation du code. Malheureusement,

quand ce n’est pas le cas, les outils doivent faire des hypothèses pessimistes, créant ainsi des

ordonnancements de plus basse qualité et une performance réduite. Une solution HLS alterna-

tive est de créer des circuits dataflow à partir de code de haut niveau. Les circuits dataflow sont

conçus à partir d’unités qui communiquent en utilisant des signaux d’établissement de liaison

(handshake) ; les données se propagent d’unité à unité aussitôt que les dépendances de contrôle

et de mémoire le permettent, et sont arrêtés par le mechanisme de handshake le cas échéant.

Ce mechanisme de contrôle distribué implémente ainsi un ordonnancement dynamique où les

décisions d’ordonnancement sont faites de façon local dans le circuit pendant qu’il s’exécute. De

tels circuits peuvent ainsi atteindre des comportements qui dépassent les capacités de circuits

ordonnancés de façon statique.

Bien que la traduction de code haut-niveau en circuits dataflow est relativement simple, une

traduction naïve n’est pas suffisante pour atteindre un fonctionnement correct, une haute per-

formance, ainsi qu’un bon rendement au niveau du surface nécessaire pour concevoir le circuit.

Premièrement, sans un bon placement et dimensionnement de mémoires tampon, les circuits

dataflow n’auraient qu’une capacité limitée pour être pipeliné. Deuxièement, en l’absence

d’un ordonnancement statique, il est difficile de détecter des opportunités pour partager des

ressources. De plus, un tel partage de ressources pourrait causer un interblocage et ainsi compro-

mettre la fonctionalité du circuit. Troisièmement, les accès à la mémoire dans un circuit dataflow

peuvent s’exécuter dans un ordre différent que celui spécifié dans le programme original — une

interface mémoire naïve n’est parfois pas suffisante pour guarantir que toutes les dépendances

des accès à la mémoire sont honorées. Finalement, les circuits dataflow standards ne supportent

pas de spéculation, c’est à dire la capacité d’exécuter certaines opérations avant qu’il ne soit

certain qu’elles soient necessaires, ce qui empêche le pipelining quand une dépendance de

donnée ou de contrôle prend du temps à résoudre.

v

Abstract

La contribution de cette thèse est de développer des techniques qui permettent aux circuits

dataflow d’être véritablement compétitifs dans le contexte de la HLS. Nous présentons en

premier un ensemble de règles et de transformations pour créer des circuits dataflow à partir de

spécifications de haut-niveau telles que des programmes C/C++. Nous détaillons ensuite une

méthodologie pour placer et dimensionner des mémoires tampons dans des circuits dataflow

afin de créer des pipelines à bande passante élevée. Nous montrons comment identifier de façon

automatique des opportunités de partage de ressources ayant des performances acceptables et

décrivons un mécanisme de partage pour créer des circuits dataflow étant fonctionnellement

corrects et sans interblocage. Nous détaillons la construction d’une interface mémoire (une

load-store queue) pour des circuits dataflow qui peut traîter des accès à la mémoire arrivant

dans le désordre et montrons comment adapter cette interface à une application spécifique. De

plus, nous présentons un cadre générique pour traîter la spéculation dans les circuits dataflow.

Finalement, nous montrons que ces techniques permettent de gagner significativement plus de

performance et de rendement de surface dans des situations appropriées.

Toutes ces fonctionnalités permettent aux circuits dataflow d’exposer un comportement dy-

namique similaire à celui des processeurs superscalaires modernes. Nous pensons que ces

nouvelles techniques sont la clé pour le succès de la HLS dans de nouveaux contextes ainsi que

dans des domaines d’application plus large.

Mots clefs : synthèse de haut-niveau, circuits dataflow, ordonnancement dynamique.

vi

Contents
Acknowledgments i

Abstract (English/Français) iii

List of Figures xiii

List of Tables xvii

List of Algorithms xvii

1 Introduction 1

1.1 The Limitations of Today’s HLS . 1

1.2 A Completely Different Way to Do HLS . 4

1.3 Computer Architects Have Been There Already . 5

1.4 Thesis Contribution . 6

2 Dynamically Scheduled High-Level Synthesis 7

2.1 How Does Classic HLS Work? . 7

2.1.1 Scheduling in HLS . 9

2.2 Why Dynamic Scheduling? . 10

2.2.1 Dataflow Circuits . 11

2.3 Synthesizing Dataflow Circuits . 12

2.3.1 Dataflow Units . 12

2.3.2 Implementing Control Flow . 14

2.3.3 Ensuring Determinism . 17

2.3.4 Constructing the Datapath . 19

2.4 The Challenges of Dynamic Scheduling . 20

2.4.1 Achieving High-Performance Pipelines . 20

2.4.2 Saving Resources through Sharing . 21

2.4.3 Introducing Out-of-Order Memory to HLS 22

2.4.4 Minimizing the Complexity of the Memory Interface 23

2.4.5 Enabling General Speculative Execution . 25

2.4.6 A Complete HLS Methodology . 26

vii

Contents

3 Buffer Placement and Sizing for High-Performance Dataflow Circuits 27

3.1 Buffers in Dataflow Circuits . 27

3.1.1 Buffer Properties . 27

3.1.2 Buffers and Circuit Functionality . 28

3.1.3 Buffers and Avoiding Deadlock . 28

3.1.4 Buffers and Performance . 29

3.2 Modeling Dataflow Circuits as Marked Graphs . 31

3.2.1 Marked Graphs . 31

3.2.2 Key Intuition . 32

3.3 Optimizing Performance . 32

3.3.1 Extracting Choice-Free Dataflow Circuits . 32

3.3.2 Optimizing Choice-Free Circuits . 35

3.3.3 MILP Model for Performance Optimization 36

3.3.4 Optimizing Multiple CFDFCs . 39

3.4 Modeling Computational Units and If-Conversion 41

3.4.1 Modeling Pipelined Units . 41

3.4.2 Modeling Variable Initiation Interval . 42

3.4.3 Modeling Variable Latency . 43

3.4.4 Modeling If-Conversion . 44

3.5 Scalability . 46

3.6 Evaluation . 47

3.6.1 Methodology . 47

3.6.2 Benchmarks . 48

3.6.3 Comparison with Naive Buffer Placement 49

3.6.4 MILP Runtime Analysis . 51

3.6.5 Comparison of MILP Solutions . 52

3.6.6 Variable Latency, II, and If-Conversion . 55

3.6.7 Effectiveness of the CP Constraint . 57

3.7 Conclusions . 58

4 Resource Sharing in Dataflow Circuits 59

4.1 Motivation . 59

4.2 Deciding What to Share in a Dataflow Circuit . 61

4.3 Resource Sharing in Dataflow Circuits . 62

4.3.1 Sharing in Straight Datapaths . 62

4.3.2 Sharing in General Datapaths . 63

4.3.3 Sharing and Performance . 64

4.3.4 Extending the Ordering Scheme . 66

4.4 Ordering Implementation and Model . 68

4.4.1 Implementation . 68

4.4.2 Sharing Model for Performance Analysis . 68

4.4.3 Optimized Implementation . 70

viii

Contents

4.5 Putting It All Together . 72

4.6 Evaluation . 74

4.6.1 Methodology and Benchmarks . 74

4.6.2 Results: Effectiveness of the Sharing Strategy 75

4.6.3 Results: Comparison with Static HLS . 77

4.7 Conclusions . 79

5 An Out-of-Order Load-Store Queue for Spatial Computing 81

5.1 Inadequacy of Processor Load-Store Queues . 81

5.2 Supplying a Sequential Order to the LSQ . 85

5.3 Our Allocation Strategy . 86

5.4 LSQ Implementation . 89

5.4.1 The Queues and the Overall Structure . 90

5.4.2 Group Allocator . 91

5.4.3 Access Port Enable and Dispatchers . 93

5.4.4 Checking Dependences and Executing . 94

5.5 Connecting the Dataflow Circuit to the LSQ . 94

5.6 Evaluation . 96

5.6.1 Resource Utilization and Timing Analysis . 97

5.6.2 Benchmark Evaluation . 98

5.7 Conclusions . 101

6 Minimizing the Use of LSQs in Dataflow Designs 103

6.1 Motivation . 103

6.2 Background . 105

6.2.1 Alias Analysis . 105

6.2.2 Polyhedral Analysis . 105

6.3 Memory Interface Optimizations . 106

6.3.1 The Ordering Problem . 106

6.3.2 Exploiting Data Dependences . 107

6.3.3 Global Instruction Dependence . 108

6.3.4 From Two Memory Instructions to Many . 109

6.3.5 Why Not CFG Dominance? . 112

6.3.6 Another Ordering Guarantee . 113

6.3.7 How Long a Walk Does One Need? . 114

6.4 Evaluation . 115

6.4.1 Memory Analysis Implementation . 115

6.4.2 Experimental Methodology . 115

6.4.3 Benchmarks . 116

6.4.4 Results . 117

6.5 Conclusions . 119

ix

Contents

7 Speculative Dataflow Circuits 121

7.1 Why HLS Needs Speculative Behavior . 121

7.2 Speculation in Dataflow Circuits . 122

7.3 Units for Speculation . 125

7.3.1 Speculator . 125

7.3.2 Commit Unit . 126

7.3.3 Save Unit . 127

7.4 Placing the Units . 128

7.5 Connecting the Units . 130

7.5.1 Connecting the Speculator to the Commit Unit 130

7.5.2 Connecting the Speculator to the Save Unit 131

7.6 Multiple Speculations from a Single Speculator . 131

7.6.1 Merging the Save and Commit Unit . 132

7.6.2 Connecting the Speculator to the Save-Commit Unit 134

7.7 Speculations from Multiple Speculators . 134

7.8 Evaluation . 134

7.8.1 Benchmarks . 135

7.8.2 Results . 135

7.8.3 Analysis . 137

7.9 Conclusions . 138

8 Related Work 139

8.1 High-Level Synthesis . 139

8.2 Dynamic Scheduling in HLS . 140

8.3 Performance Optimizations of Dataflow Circuits 142

8.4 Resource Optimizations of Dataflow Circuits . 143

8.5 Speculation in Dataflow Circuits . 144

8.6 Computer Architecture . 144

9 A Complete Flow 147

9.1 Dynamatic HLS Compiler . 147

9.1.1 DOT Intermediate Representation . 148

9.1.2 VHDL Output . 148

9.1.3 Functional Verification . 150

9.2 Evaluation . 150

9.2.1 Methodology . 151

9.2.2 Benchmarks . 151

9.2.3 Comparison with Static HLS . 152

9.2.4 Conclusions . 154

10 New Avenues for Dynamic Scheduling 155

10.1 Application Domains for Dynamically Scheduled HLS 155

10.2 Reducing the Costs of Dynamically Scheduled HLS 156

x

Contents

10.2.1 Dataflow Graph Optimizations . 156

10.2.2 Backend-Aware Transformations . 158

10.2.3 Memory Interface Simplifications . 159

10.2.4 Partial Schedule Rigidification . 160

10.3 Perspectives . 162

10.3.1 Multithreaded Execution . 162

10.3.2 Reconfigurable Dataflow Architectures . 163

10.3.3 Hardware Compilers and Dataflow Representations 164

10.3.4 Formal Verification . 164

10.4 Final Remarks . 165

Bibliography 176

Curriculum Vitae

xi

List of Figures
1.1 Limitations of standard HLS. 3

1.2 A statically and a dynamically scheduled circuit. 4

1.3 Thesis contribution. 6

2.1 Design space exploration with static HLS. 8

2.2 The schedules of the three design points from Figure 2.1. 9

2.3 Static vs. dynamic scheduling. 10

2.4 A dynamically scheduled, dataflow circuit. 12

2.5 Dataflow units. 13

2.6 Implementing control flow. 15

2.7 Nondeterministic behavior at SSA phi nodes. 17

2.8 Ensuring determinism. 18

2.9 Triggering constants. 19

2.10 Adding buffers (i.e., FIFOs) to resolve backpressure and pipeline a dataflow circuit. 21

2.11 Resource sharing in static and dynamic scheduling. 22

2.12 Conveying program order to the memory interface. 23

2.13 Connecting a dataflow circuit to memory. 24

2.14 Nonspeculative and speculative schedule for the code in the figure, repeating the

situation from Figure 1.1c. 25

3.1 Buffer properties. 28

3.2 Adding buffers. 29

3.3 Buffering for performance. 30

3.4 A choice-free dataflow circuit, which has the properties of a marked graph. 31

3.5 Extracting CFG cycles. 33

3.6 Obtaining a choice-free dataflow circuit (CFDFC) from a dataflow circuit. 34

3.7 Performance optimization of a choice-free dataflow circuit. 35

3.8 Path constraints of the MILP model. 37

3.9 Token retiming with throughput and path constraints for P ≤ 3. 39

3.10 Extracting multiple CFDFCs. 40

3.11 A model of a sequential (pipelined) unit. 41

3.12 Modeling variable II and variable latency. 43

3.13 Modeling if-conversion, implemented using a select unit. 45

xiii

List of Figures

3.14 Splitting the circuit into disjoint CFDFC sets to ensure MILP scalability. 46

3.15 Runtime comparison of the full MILP with the MILP applied on individual CFDFC

sets. 53

3.16 Comparison of solutions obtained by applying the MILP on individual CFDFC sets

with the optimal MILP solutions. 54

3.17 Speedup of the optimized kernels with respect to the naive kernels for varying data

and control dependences. 56

4.1 Dataflow circuit and a possible implementation of resource sharing. 60

4.2 Resource sharing in static and dynamic scheduling. 61

4.3 Hardware for sharing. 63

4.4 Deadlock situations. 65

4.5 Performance impact of sharing. 67

4.6 Sharing implementation and model. 69

4.7 Optimized sharing implementation. 70

4.8 Implementation of the selector unit. 71

4.9 Example execution of our sharing strategy. 74

4.10 Execution time and resources of dataflow circuits with sharing, normalized to the

designs without sharing. 76

5.1 A schedule created by an HLS tool unable to disambiguate dependences, compared

to a dynamic schedule possible with a dataflow approach. 82

5.2 A typical processor LSQ with head and tail pointers and two sample entries. . . . 83

5.3 The basic operation of an LSQ in an out-of-order processor. 83

5.4 A partial dataflow graph derived from the code of Figure 5.1. 84

5.5 Allocating entries when the arguments are supplied to the LSQ. 85

5.6 Allocating entries statically before execution. 86

5.7 Allocating entries by groups. 87

5.8 A program with memory accesses divided into groups which are connected to the

LSQ. 88

5.9 Overall structure of the LSQ. 90

5.10 Detailed load queue entry of the LSQ. 91

5.11 Group allocator. 92

5.12 Allocating groups to the LSQ. 93

5.13 Connecting the dataflow circuit to the memory interface. 95

5.14 Execution time and resource utilization of the Vivado HLS designs compared to

the dynamically scheduled designs with the LSQ in different sizes. 100

6.1 Memory interface configurations of a dataflow circuit. 104

6.2 Memory traces of two programs with a single load and a single store instruction. 106

6.3 Two (out of many) possible memory traces of the code in the figure. 108

6.4 Code snippets and their control/data flow graphs which we use to illustrate the

global instruction dependence property in Section 6.3.3. 110

xiv

List of Figures

6.5 Control/data flow graph of the example in Figure 6.3. 112

6.6 Another ordering guarantee. 113

7.1 A nonspeculative schedule, compared to a schedule produced by a system sup-

porting speculative behavior. 122

7.2 A dataflow circuit executing the code of Figure 7.1. 123

7.3 A region of a dataflow circuit implementing our speculative execution paradigm. 124

7.4 Branch speculator. 126

7.5 Components for speculation. 127

7.6 Placing commit units. 128

7.7 Placing save units. 129

7.8 Extending dataflow units with a speculative tag. 130

7.9 Connecting the speculator to the commit units. 130

7.10 Connecting the speculator to the save units. 131

7.11 Enabling multiple speculations from a single speculator in the example from

Figure 7.2. 132

7.12 The structure of the save-commit unit. 133

7.13 Code used for the analysis of Section 7.8.3, qualitatively similar to the Newton-

Raphson benchmark. 137

8.1 BB variable synchronization by Huang et al. 140

8.2 Memory access synchronization by Budiu et al. 141

8.3 Dataflow optimization in Vivado HLS. 142

8.4 Early evaluation with anti-tokens in elastic systems. 144

8.5 Actor primitives of a dataflow processor. 145

9.1 Dynamatic HLS compiler: software-to-hardware flow. 148

9.2 Intermediate representation of a dataflow circuit in Dynamatic. 149

9.3 Snippet of the intermediate representation of the dataflow circuit in DOT format. 150

9.4 Resource utilization and execution time of the dynamically scheduled designs,

normalized to the corresponding static designs produced by Vivado HLS. 154

10.1 Dataflow circuit optimizations. 157

10.2 Limitation of our static timing analysis. 158

10.3 Memory optimization opportunities. 159

10.4 Dataflow circuit rigidification. 161

10.5 Multithreaded execution. 162

10.6 A reconfigurable dataflow array. 163

xv

List of Tables
3.1 Benchmark characteristics. 49

3.2 Timing comparison of naive and optimized dataflow circuits. 50

3.3 Resource comparison of naive and optimized dataflow circuits. 51

3.4 Timing and resources of kernels which contain computational units with variable

latency and II, as well as if-conversion. 55

3.5 Exploration of the effectiveness of the clock period (CP) constraint on a tree of

combinational adders. 58

4.1 Resources of dataflow circuits without sharing (i.e., Naive) and with sharing (i.e.,

Shared), after place-and-route with Vivado. 75

4.2 Timing of dataflow circuits without sharing (i.e., Naive) and with sharing (i.e.,

Shared). 76

4.3 Resources of circuits produced by Vivado HLS (i.e., Static) and dataflow circuits

with sharing (i.e., Shared). 77

4.4 Timing of circuits produced by Vivado HLS (i.e., Static) and dataflow circuits with

sharing (i.e., Shared). 78

5.1 Comparison of different entry allocation options. 87

5.2 LSQ clock period (CP) and resource utilization for different numbers of groups. . 96

5.3 LSQ clock period (CP) and resource utilization for different numbers of ports. . . 97

5.4 LSQ clock period (CP) and resource utilization for different queue depths. 98

6.1 Memory access patterns of our benchmarks. 116

6.2 Memory optimization comparison, timing results. 117

6.3 Memory optimization comparison, resource utilization. 118

7.1 Timing and resource requirements of static, dynamic, and speculative circuits. . 136

7.2 Timing and resource requirements of the loop from Figure 7.13. 138

9.1 Timing comparison of dynamically scheduled circuits (our dataflow circuits) and

statically scheduled circuits (Vivado HLS). 152

9.2 Resource comparison of dynamically scheduled circuits (our dataflow circuits)

and statically scheduled circuits (Vivado HLS). 153

xvii

List of Algorithms
2.1 Implementing control flow. 16

3.1 Performance optimization. 48

4.1 Sharing strategy. 73

6.1 Memory optimization based on global instruction dependence. 111

xix

1 Introduction

The slowdown in transistor scaling and the end of Moore’s law signal a clear need to invest in new

computing paradigms [105]. Specialized hardware devices, such as Field Programmable Gate

Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs), are a promising solution to

achieve high processing capabilities and energy efficiency; recently, these devices have been

customized for large-scale AI applications [78, 49], integrated into datacenters to accelerate

massive data [23, 3], and packaged with processors for high parallelism [29]. However, a major

barrier to the global success of specialized computing is the difficulty of hardware design.

High-Level Synthesis (HLS) tools can generate hardware designs from high-level programming

languages and should liberate designers from the details of hardware description languages like

VHDL and Verilog. Despite their progress and some commercial success in the last decade, HLS

tools still tend to be criticized for the difficulty of extracting the desired level of performance:

generating good circuits from high-level languages still requires peculiar code restructuring,

expert user interaction, and extensive experimentation with the tools [72]. Moreover, current

HLS techniques face a fundamental issue when handling irregular applications: because they

rely on static scheduling, i.e., the cycle in which each operation executes is fixed at compile

time [47], they force worst-case assumptions on memory and control dependences. Therefore,

HLS tools are still usable only by designers with hardware expertise and acceptable only for

some classes of applications. If specialized computing is to play a key role in dealing with the

increasing computational demands in the post-Moore era, it is imperative that hardware design

becomes accessible to a variety of users from different application domains.

1.1 The Limitations of Today’s HLS

Circuits produced by HLS tools are typically built out of datapaths that are controlled using

a preplanned, central controller. The controller relies on a static schedule, fixed at compile

time, to determine the clock cycle when each operation can execute. Such an approach is effec-

tive in regular code where compile-time information is sufficient to obtain a high-throughput,

pipelined schedule. However, when the code contains unpredictable memory or control de-

1

Chapter 1. Introduction

pendences, long-latency control decisions, or variable-latency events, the tool must make

pessimistic assumptions, yielding inferior schedules and lower performance.

Unpredictable memory dependences. The example in Figure 1.1a illustrates the behavior of

standard HLS approaches when memory access patterns cannot be determined at compile

time. In this loop, there is a possible read-after-write dependence between the memory read

of hist[x[i+1]] and the memory write to hist[x[i]] of the previous iteration. There is

intrinsically no way a compiler or an HLS tool can determine whether such a dependence exists,

nor is it, in general, possible for a programmer to help the tool: in practice, the read may seldom

or even never address the same value just written in memory, but there is no way to exclude a

priori that this might happen. Ultimately, any HLS technique based on static scheduling hits the

problem of potential dependences and needs to account for the worst-case scenario, irrespective

of the actual data fetched from memory. The result is a conservative schedule, valid for any

possible input values, which assumes a dependence in every loop iteration and postpones the

read until the previous, possibly dependent write has been completed [70].

Unpredictable control flow. A similar issue occurs in the presence of unpredictable control flow.

The loop in Figure 1.1b has a control flow decision (if) which depends on the actual data being

read from arrays a[] and b[]. The operation which might take place in a specific iteration

(s += d) introduces a dependence between iterations and delays the next iteration whenever

the condition is true. When pipelining this loop, a typical HLS tool needs to create a conservative

execution plan for the various operations in the loop which is valid in every possible case. The

resulting schedule is shown in the figure: although the condition is true only for the second and

third iteration, a “space” is reserved in the schedule as if the condition were true everywhere,

hence limiting the pipelining of the loop.

Long-latency control flow decisions. Although static scheduling supports predication and if-

conversion, these techniques are not applicable to every performance-critical control decision

and are limited in the presence of memory accesses or complex control flow. A simple example

is illustrated in Figure 1.1c: the condition on the loop continuation takes multiple cycles to

compute and a new loop iteration can start only after this condition has been determined, hence

completely preventing loop pipelining. This conservatism is due to the limited ability of a static

schedule to adapt to different outcomes and to revert the state in case of a failed prediction.

Variable-latency events. Standard HLS techniques suffer in the presence of variable-latency

operations or memory accesses: a typical example is that of data accesses from an external

shared memory, where latencies may vary due to memory system hierarchy or system-level con-

tentions. In such situations, static HLS techniques typically need to stall the complete pipeline

when a long-latency event (e.g., a cache miss) occurs; alternatively, they resort to adding exces-

sive pipeline stages to accommodate for the worst-case delay [108]. These performance- and

area-degrading solutions are a clear artifact of the inability of static scheduling to accommodate

dynamic events.

2

1.1. The Limitations of Today’s HLS

hist[x[0]] + weight[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

ld
hist[x[0]]

C13 C14

ld x[0]

C15 C16 C17

ld x[1]

st
hist[x[0]]

ld x[2]

hist[x[1]] + weight[1]
ld

hist[x[1]]
st

hist[x[1]]

hist[x[2]] + weight[2]
ld

hist[x[2]]
st

hist[x[2]]

for (i=0; i<N; i++) {
hist[x[i]] = hist[x[i]] + weight[i];

}

1: x[0]=5 → ld hist[5]; st hist[5];
2: x[1]=4 → ld hist[4]; st hist[4];
3: x[2]=4 → ld hist[4]; st hist[4];

RAW

(a) Code with memory dependences undeterminable at compile time and its static schedule.

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

ld a[0]
ld b[0]

C15 C16 C17

s += d

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2] d ≥ 0?
ld a[2]
ld b[2] s += d

d = a[3] - b[3] d ≥ 0?
ld a[3]
ld b[3] s += d

.
.
.

float d, s = 0.0; int i;
for (i=0; i<100; i++){

d = a[i] - b[i];
if (d >= 0)

s += d;
}

a[0]=1.0; b[0]=3.0;
a[1]=4.0; b[1]=3.0;
a[2]=2.0; b[2]=2.0;
a[3]=4.0; b[3]=5.0;

(b) Code with control flow undeterminable at compile time and its static schedule.

d0!=x? d1 = a[0] + b[0] c[0]=d11

2

3

d1!=x? d2 = a[1] + b[1] c[1]=d2

d2!=x? d3 = a[2] + b[2] c[2]=d3

d3!=x?
return

d34

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

float d=0.0; x=100.0; int i=0;

while (d<x) do {
d = a[i] + b[i];
c[i] = d;
i++; }

return d;

1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

(c) Code with a long-latency control decision and its static schedule.

Figure 1.1 – Limitations of standard HLS. In the presence of unpredictable memory accesses, control
flow, or long-latency control flow decisions, static HLS tools create a conservative schedule, resulting in
lower performance.

3

Chapter 1. Introduction

i

ld x[i] +

1

<

N

ld hist[x[i]]

ld weight[i]

st hist[x[i]]

+

Static
controller

(a)

Merge

Buff

Fork

+

1

Start: i=0

<

N

ld hist[x[i]]

ld weight[i]

st hist[x[i]]

+

Exit: i=N

FIFO

Fork

FIFO

Merge

data

valid ready

Buff

Fork

Branch

ld x[i]

(b)

hist[x[0]] + weight[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

ld
hist[x[0]]

C13 C14

ld x[0]

C15

ld x[1]

st
hist[x[0]]

hist[x[1]] + weight[1]
ld

hist[x[1]]
st

hist[x[1]]

hist[x[2]] + weight[2]
ld

hist[x[2]]
st

hist[x[2]]
ld x[2]

ld x[3] hist[x[3]] + weight[3]
ld

hist[x[3]]
st

hist[x[3]]
4

(c)

Figure 1.2 – A statically (Figure 1.2a) and a dynamically (Figure 1.2b) scheduled circuit. The static circuit
has a preplanned controller which determines the time when each operation will execute; it implements
the conservative schedule from Figure 1.1a. In contrast, the dynamically scheduled circuit contains a
distributed control system which enables decision-making at runtime and offers greater flexibility and
performance, achieving the schedule in Figure 1.2c.

1.2 A Completely Different Way to Do HLS

The key to avoid the limitations of static scheduling is to refrain from triggering the operations

through a centralized preplanned controller (Figure 1.2a), but to make scheduling decisions

locally in the circuit as it runs: as soon as all conditions for execution are satisfied (e.g., the

operands are available or critical control decisions are resolved), an operation starts. Dataflow

circuits [37] are a natural method to realize such behavior. Such circuits are built out of units

that implement latency-insensitivity by communicating with their predecessors and successors

through point-to-point pairs of handshake control signals, which indicate the availability of

a new piece of data from the source unit and the readiness of the target unit to accept it (Fig-

ure 1.2b). The data is propagated from unit to unit as soon as memory and control dependences

allow it—otherwise, the handshaking mechanism stalls the data on-the-fly. This distributed

control mechanism effectively implements a dynamic schedule, such as the one in Figure 1.2c:

4

1.3. Computer Architects Have Been There Already

when a read-after-write dependence exists (in this case, between the second and the third

iteration) the dynamically scheduled circuit will stall the pipeline to prevent a hazard. Otherwise,

in the absence of an address collision, it will start a new iteration on every cycle and gain, in this

case, up to a factor 5 in performance. Similar dynamic behaviors are achievable in the other

situations from Figure 1.1—we will discuss them in the following chapters. These behaviors are

beyond what classic static techniques can achieve.

1.3 Computer Architects Have Been There Already

The contrast between static and dynamic scheduling in HLS is in line with the experience in

computer architecture with Very Long Instruction Processors (VLIWs) and superscalar out-of-

order processors [64].

In VLIWs, the problem of deciding when instructions can be executed is left completely to the

compiler: the hardware simply fetches at once and executes groups of operations which can be

performed together. The program is effectively a schedule computed statically by the compiler,

exactly as in the case of statically scheduled HLS. In contrast, superscalar processors rely on

complex mechanisms to achieve out-of-order behavior: reservation stations hold back fetched

and decoded instructions until all of their operands are available; while some instructions are

delayed due to a memory dependence or a cache miss, others can execute. Thanks to the reorder

buffer, these processors can execute instructions speculatively when the outcome of a preceding

branch is unknown or the existence of a memory dependence has not yet been ascertained.

As with dynamically scheduled HLS, there is no schedule planned in advance: the schedule

develops dynamically as operands become available.

While complex compilation techniques have been developed for VLIWs to exploit instruction-

level parallelism (often requiring either complex heuristics to drive the optimization or pragmas

from the programmers), dynamically scheduled out-of-order processors are capable of achieving

good levels of parallelism on-the-fly and without extensive code preparation. In fact, many

of the key transformations to exploit fine-grain parallelism between operators in statically

scheduled HLS derive from VLIW compilation techniques [82, 103]. Exactly as VLIWs, statically

scheduled HLS suffers when handling code with irregular memory or control dependences; they

are primarily successful in markets with extremely regular and predictable applications and

where it is acceptable to tune code manually.

The dichotomy in computer architecture may tell us something about the future of dynamically

scheduled HLS. With FPGAs moving to datacenters and facing broader application classes,

HLS tools might have to satisfy the needs of general-purpose markets as well. Apart from

the advantage of exploiting parallelism in cases where static scheduling cannot, the ability of

dynamic scheduling to find an acceptable solution without the programmer’s help may be

critical in a future where HLS will not be driven by hardware designers (available to study the

generated circuits and to restructure the input code) but by higher-level code generation tools

(e.g., Delite [52]) and, ultimately, by software programmers.

5

Chapter 1. Introduction

Reaping the benefits of
dynamic scheduling

Pipelining

Resource sharing

Out-of-order memory

Mul 1 Mul 2 Mul 1/2

Catching up with static HLS

Speculative execution

Figure 1.3 – Thesis contribution. We first describe optimizations which make dataflow circuits competi-
tive with static HLS circuits (i.e., pipelining and resource sharing); then, we implement behaviors which
are beyond the capabilities of classic HLS tools (i.e., out-of-order memory accesses and speculation).

1.4 Thesis Contribution

In this thesis, we pursue a form of HLS which produces dynamically scheduled, dataflow circuits

out of high-level code. However, a straightforward translation is not sufficient to obtain circuits

which are truly competitive and useful in the HLS context. The main contribution of this thesis,

outlined in Figure 1.3, is to enhance dataflow circuits with the capabilities which are beyond

those achievable by naively obtained dataflow circuits and existing HLS techniques. We first

describe methodologies to exploit the same optimization opportunities that standard HLS relies

on (i.e., pipelining and resource sharing), hence achieving circuits competitive to those created

with standard HLS techniques. We then use the properties of dataflow circuits to achieve char-

acteristics that standard HLS cannot support (i.e., out-of-order memory access execution and

speculation). The resulting behaviors are similar to those of modern superscalar processors

and achieve solutions which are, in particular cases, superior to statically scheduled HLS cir-

cuits: similarly to the tradeoff between VLIW processors and superscalars, the performance of

demanding applications is very significantly improved at an affordable cost.

6

2 Dynamically Scheduled High-Level
Synthesis

In this chapter, we discuss standard scheduling techniques and we explore in detail an example

of a situation where dynamic extraction of operation-level parallelism proves essential for per-

formance. We then present our methodology to automatically generate dynamically scheduled

circuits from C code. Our approach borrows several ideas from the asynchronous domain, but

produces perfectly synchronous designs which are directly comparable to standard HLS tech-

niques. We conclude this chapter with a summary of challenges in achieving high-performance,

area-efficient dataflow circuits and highlight the features that we will explore in the following

chapters.

2.1 How Does Classic HLS Work?

Hardware description languages (HDLs), such as VHDL and Verilog, have been used in the

electronic design industry for decades to specify the details of hardware design in terms of

low-level building blocks such as gates, registers, and multiplexers [8]. However, this description

level requires hardware expertise and, typically, a longer time to develop the design. High-level

synthesis tools allow designers to work at a higher level of abstraction by using a software

language to specify the hardware functionality. This approach enables software engineers

to program hardware and helps hardware engineers to speed up the design process as well

as to efficiently explore the design space [92]. Although HLS can benefit both ASIC and FPGA

designers, HLS tools are particularly gaining popularity in the FPGA domain, as the programming

challenges are one of the biggest barriers to the mainstream adoption of these devices [8, 33].

Different HLS tools rely on various high-level representations to describe the underlying hard-

ware; the most popular ones use C/C++ as an input language [119, 18]. Generally speaking, the

user provides the input functional specification and particular design constraints such as the

target device, desired clock frequency, and memory interface description; the tool then auto-

matically analyzes concurrency, inserts registers to achieve the specified frequency, generates

This chapter is based on the work published at the 26th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2018 [73].

7

Chapter 2. Dynamically Scheduled High-Level Synthesis

acc = 0;
for (i = 3; i >= 0; i--) {

if (i == 0) {
shift_reg[0] = x;
acc += x * c[0];

} else {
shift_reg[i] = shift_reg[i-1];
acc += shift_reg[i] * c[i];

}
}
y = acc;

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = shift_reg[3] * c[3];
acc += shift_reg[2] * c[2];
acc += shift_reg[1] * c[1];
acc += shift_reg[0] * c[0];

y = acc;

shift_reg[3] = shift_reg[2];
shift_reg[2] = shift_reg[1];
shift_reg[1] = shift_reg[0];
shift_reg[0] = x;

acc = 0;
for (i = 10; i >= 0; i--) {

#pragma HLS pipeline
acc += shift_reg[i] * c[i];

}
y = acc;

a. No optimization

b. Unrolling

c. Pipelining

Figure 2.1 – Design space exploration with static HLS [80]. All three codes in the figure describe the same
functionality (i.e., an FIR filter); yet, the resulting HLS solutions differ in area and performance.

the control and datapath logic, and maps data onto storage elements to optimize the bandwidth

and resource usage [80]. The user is typically required to restructure the code and annotate it

with pragmas to guide the tool in reaching the desired design point.

Figure 2.1 illustrates several possibilities to specify the functionality of a simple FIR filter in

C code as well as the resulting circuits produced by an HLS tool [80]; apart from the different

datapaths, as shown in the figure, each design has a kernel-specific controller which triggers

the datapath components at appropriate clock cycles; we will discuss this functionality in the

following section. The first circuit is obtained from a typical software representation, without

any hardware-specific annotations or code restructuring. The second code is manually unrolled

to explicitly express available parallelism to the HLS tool—as the corresponding circuit suggests,

this design will employ multiple operators which can be used concurrently. The third design

point uses a pragma to indicate to the tool that the code should be pipelined, i.e., the loop

8

2.1. How Does Classic HLS Work?

multiplication

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

add

4

a. No optimization:

rd/wr
regs

multiplication add
rd/wr
regs

rd/wr
regs

multiplication

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

4

b. Unrolling:

rd/wr
regs

c. Pipelining:

multiplication

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

add

4

multiplication add

multiplication add

multiplication add

rd/wr
regs

rd/wr
regs

rd/wr
regs

multiplication

multiplication

multiplication

add

add

add

rd/wr
regs

rd/wr
regs

rd/wr
regs

rd/wr
regs

Figure 2.2 – The schedules of the three design points from Figure 2.1.

iterations should overlap for performance benefits. It is evident from the figure that the circuits

differ in the number of employed resources (i.e., adders, multipliers, multiplexers); they also

differ in performance, as we will discuss next.

2.1.1 Scheduling in HLS

HLS relies on a series of compiler optimizations to achieve performance- and area-efficient

designs; some techniques are exploited by compilers in general (e.g., code motion, if-conversion),

whereas others are hardware-specific (e.g., bitwidth analysis, operation chaining). One of the key

algorithms in HLS synthesis is scheduling, i.e., deciding the clock cycle in which each operation

will execute. It is typically achieved through systems of difference constraints (SDC) modeling

which incorporates a variety of constraints, such as resource usage, data dependences, control

dependences, and clock frequency [17, 34, 120].

The three schedules in Figure 2.2 correspond to the circuits in Figure 2.1. The schedule of each

design is regulated by the controller; it implements a finite state machine (FSM) which controls

the behavior of the datapath by triggering operations, enabling registers, and multiplexing values

in appropriate clock cycles. The first schedule corresponds to the sequential execution of the

software code: one iteration starts after the previous one has completed. The code restructuring

in the second figure enables operations to execute in parallel, hence lowering the execution

time, but with the investment of additional resources. The third circuit employs loop pipelining:

9

Chapter 2. Dynamically Scheduled High-Level Synthesis

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

Static schedule:

ld a[0]
ld b[0]

C15 C16 C17

s += d

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2] d ≥ 0?
ld a[2]
ld b[2] s += d

d = a[3] - b[3] d ≥ 0?
ld a[3]
ld b[3] s += d

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

Static schedule:

ld a[0]
ld b[0]

C15 C16 C17

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2]
ld a[2]
ld b[2]

Dynamic schedule:

d = a[0] - b[0]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

1

2

3

d ≥ 0?

C13 C14

4

ld a[0]
ld b[0]

C15 C16 C17

d = a[1] - b[1] d ≥ 0?
ld a[1]
ld b[1] s += d

d = a[2] - b[2] d ≥ 0?
ld a[2]
ld b[2] s += d

d = a[3] - b[3] d ≥ 0?
ld a[3]
ld b[3]

.
.
.

float d, s = 0.0; int i;
for (i=0; i<100; i++){

d = a[i] - b[i];
if (d >= 0)

s += d;
}

a[0]=1.0; b[0]=3.0;
a[1]=4.0; b[1]=3.0;
a[2]=2.0; b[2]=2.0;
a[3]=4.0; b[3]=5.0;

Figure 2.3 – Static vs. dynamic scheduling. The top and middle schedule (realized as a pipeline and
a sequential state machine, respectively) are possible with standard HLS tools. A dynamic schedule
(bottom) is achievable with our approach; it results in the best possible parallelism which is reduced only
in the presence of actual loop-carried dependences.

a new loop iteration starts on every clock cycle and the resource requirements are minimal (i.e.,

new data is inserted into the single adder and the single multiplier on every cycle).

Loop pipelining is one of the key performance optimizations in HLS—as the example above

suggests, it allows loop iterations to overlap in the best possible manner while honoring all data

and control dependences of the program. The technique originates from software pipelining

techniques for VLIWs, which rely on modulo scheduling algorithms to exploit instruction-

level parallelism among successive loop iterations [82, 103]. A pipeline is characterized by its

initiation interval (II), i.e, the number of clock cycles between consecutive loop iterations; the

ideal II is equal to 1, as is the case for the pipelined schedule in the figure.

2.2 Why Dynamic Scheduling?

To illustrate the need to incorporate dynamic behavior into HLS, we revisit in Figure 2.3 the

example from Figure 1.1b.

10

2.2. Why Dynamic Scheduling?

As described before, this loop has a control flow decision (if) which depends on the actual

data being read from arrays a[] and b[]. Whenever the condition is true, a long-latency

operation (s += d) introduces a dependence between iterations. A typical HLS tool needs

to conservatively reserve a “space” in the schedule for this operation, even when it does not

occur, as shown on the top of Figure 2.3. An alternative could be to avoid pipelining the loop

and creating a sequential finite-state machine to achieve the middle schedule in Figure 2.3,

where indeed cycles are spent for the addition only when needed; however, the decision of not

pipelining the loop has removed one of the foremost potentials for parallelism (in this case, the

memory reads, the subtraction, and the comparison are perfectly independent across iterations

and could be pipelined).

Obviously, a good schedule is the bottom one in Figure 2.3: the operations of different iterations

are overlapped as much as possible and the parallelism is reduced only when the dependence is

actually there (that is, when the addition is executed). Such behavior is beyond what a statically

scheduled HLS tool can achieve. In recent years, many authors explored workarounds for

such problems—we will discuss these efforts in Chapter 8—but dynamically scheduled circuits

represent the most general solution to the problem.

2.2.1 Dataflow Circuits

Dataflow or latency-insensitive circuits [19, 37, 116, 45] realize the dynamic behavior in Figure 2.3.

These circuits are built out of units which communicate using pairs of handshake control signals;

data is propagated from unit to unit as soon as memory and control dependences allow it and,

otherwise, stalled by the handshaking mechanism.

Figure 2.4 shows a simplified version of a dataflow circuit implementing the loop of Figure 2.3.

Besides normal datapath units, this circuit uses a few control units labeled buff, merge, select,

fork, and branch. All directed edges in the figure represent data signals accompanied by hand-

shake control signals. The loop to the left of the figure shows the part of the circuit which updates

the iterator i: At the beginning, the constant 0 is sent from the entry point. The merge unit takes

this value and passes it further. The buffer unit is the register which holds i and distributes it on

the next clock cycle to three consumers through the fork unit; all successors must consume the

value before the fork accepts a new input value. The left branch compares the incremented i

with the loop bound; if the bound is not reached, the new value of i is sent back to the register

by the branch unit through the merge. Meanwhile, the other outputs of the first fork use i to

access a[] and b[] and to compute the subtraction, which is propagated to the rest of the

circuit.

The key to a good execution of this loop is that, ideally, a new value of i should be used

to start computing a[i] - b[i] on every cycle. This is the case in this circuit, contrary

to a conservative statically scheduled one: The cycle on the left of Figure 2.4 is completely

combinational excluding the buffer and thus a new value for i can be computed on every cycle.

It is the right part of the circuit which can delay this: when the if is not taken, the result of the

11

Chapter 2. Dynamically Scheduled High-Level Synthesis

Merge

Buff

1

Branch

N

+

<

Fork

Fork

i=0

End

Start BB

End BB

Loop BB
Merge

0

≤

Select

Load a[i] Load b[i]

Buff

ForkFork

FIFO

Fork

End

Branch

s=0

_

+

Figure 2.4 – A dynamically scheduled, dataflow circuit. This circuit implements the code from Figure 2.3
and achieves the optimal execution schedule (bottom schedule in that figure).

addition is dumped by the select unit as soon as it arrives through the merge and the old value

of s becomes immediately the new value that is sent back to the adder on the following cycle;

if, on the other hand, the result is needed, the select will wait for the sum to complete and the

adder will be stalled next cycle waiting for its right operand. Ultimately, a new subtraction will

not be computed and the memory accesses will not be performed due to backpressure from the

adder; the top fork will not allow a new i to proceed on the right branch. This slows down the

initiation of the loop and is exactly what the dynamic schedule in Figure 2.3 shows.

2.3 Synthesizing Dataflow Circuits

In this section, we detail our methodology to convert an arbitrary piece of code into a dataflow

circuit. We first present the dataflow units we use; we then show how we implement control flow,

ensure deterministic behavior, and construct the datapaths of our circuits.

2.3.1 Dataflow Units

Dataflow circuits are built out of units that implement latency-insensitivity by communicating

with their predecessors and successors through channels composed of data lines and paired with

handshake control signals: a valid signal indicates that a unit is sending a valid piece of data,

12

2.3. Synthesizing Dataflow Circuits

Fork

Sink

Join

Source

Branch

Merge Mux CMerge

=

Figure 2.5 – Dataflow units. All data channels are paired with bidirectional control signals, which indicate
the validity of data and the readiness of the successor unit to accept it.

referred to as a token [90], to its successor(s), whereas the ready signal informs the predecessor(s)

that a unit can accept a new piece of data.

Figure 2.5 outlines the dataflow units we use; their gate-level descriptions can be found in

literature [67, 37].

• An eager fork (fork) replicates every token received at the input to multiple outputs; as

soon as one successor is ready to accept the token, the fork sends it to the successor;

however, the fork can accept a new token only after all successors have accepted the

previous one.

• A lazy fork (lfork) has the same functionality as the eager fork; however, it distributes a

token to all successors at once (i.e., all successors must be ready for the lazy fork to send

the token).

• A join acts as a synchronizer—its output is triggered only after all of its inputs become

available.

• A branch implements program control-flow statements; it dispatches a token received at

its single input to one of its multiple outputs based on a condition.

• A merge is a nondeterministic unit which propagates a token received on any of its input

to its single output.

• A mux is a deterministic version of the merge; it propagates to its single output the input

token selected by a control input.

• A control merge (cmerge) is a merge which, apart from the data output, has an output

which indicates which of the inputs was taken by the merge.

• A source can always issue a valid token to its single successor (e.g., a constant).

13

Chapter 2. Dynamically Scheduled High-Level Synthesis

• A sink is always ready to consume tokens from its single predecessor; the token is simply

discarded in the sink.

In addition, we use any functional unit the code requires, such as integer and floating-point

units. Units that require multiple operands contain a join to trigger the operation only when

all inputs are available. Our circuits will require buffers which serve as registers in standard

synchronous designs—we will discuss their properties and placement in Chapter 3. Finally,

our circuits will interface to memory using read and write ports, yet, interfacing to memory is

challenging due to the out-of-order nature of our system; we will address this issue in Chapter 5.

2.3.2 Implementing Control Flow

The starting point for out circuit generation is a standard compiler intermediate representation

in static single assignment (SSA) form, where every variable is defined only once; phi nodes

are used to define a variable from multiple definitions along multiple control paths [110]. The

control-flow graph (CFG) of a program is organized into basic blocks (BBs), i.e., straight pieces

of code separated by control flow decisions. Each BB contains a dataflow graph of program in-

structions; it receives live-in variables from the predecessor BBs and produces live-out variables

for the successor BBs. Transforming the DFG of each BB into a corresponding interconnect of

dataflow units is relatively straightforward—we will describe this process in Section 2.3.4—but

there are a couple of problems when implementing control flow and sending values from one BB

to another due to the fundamental difference between software programs and dataflow circuits.

Figure 2.6 shows two examples: (1) In the example in Figure 2.6a, the variable a is defined in

BB0 and used in BB2. A typical representation in a compiler (left of the figure) propagates the

desired information directly from the source to the destination block (i.e., a live-in of a basic

block comes from a basic block which is not its immediate predecessor). This flow does not

pose problems in software, as successive values of a would be stored in a register of a processor

or in memory and the last value used when BB2 is reached. (2) In the example in Figure 2.6b,

BB1 is the only BB in the body of a loop and uses a value a produced in BB0. The value of a

does not change during the execution of BB1 and is used at every execution of BB1. Again, the

representation on the left would cause no problem in a processor—the value would be stored in

a register or memory and read as many times as needed.

Directly implementing such connections in a dataflow circuit would result in incorrect behavior

because every generated value is associated with a token; the number of tokens must exactly

match the number of distinct uses. The cases in the left of Figures 2.6a and 2.6b violate this

principle if implemented literally: (1) In the first case, if the control flow were {BB0-BB1-BB0-

BB1-BB2}, two new values (with the respective tokens) for a would have been generated and

sent to BB2; yet, BB2 can take only a single token and requires only the most recent value.

The execution would be incorrect or the circuit would not terminate because the tokens not

absorbed by BB2 would create backpressure to BB0 and stop it indefinitely. (2) In the second

case, BB1 would not be able to execute repeatedly due to a starving input. Assuming the control

14

2.3. Synthesizing Dataflow Circuits

BB0

a Live-out

a = x

b = a + c

BB1

BB2 a Live-in

BB0

a Live-out

a = x

b = a + c

BB1

BB2 a Live-in

a Live-in

a Live-out

(a)

a Live-out

a = x

b = a + c

a Live-in

a Live-out

a = x

b = a + c

a Live-in

a Live-out

BB0

BB1

BB0

BB1

(b)

Figure 2.6 – Implementing control flow. The left circuits of Figures 2.6a and 2.6b show two cases where
a direct conversion of a data and control flow graph into a dataflow circuit would fail. Coupling data
and control to ensure correct token transfers between BBs is shown on the right of the figures: data is
propagated exclusively from each BB to its immediate successors. For each live-in and live-out (shaded
yellow in the figure), we employ merge and branch units, respectively.

flow is {BB0-BB1-BB1}, the first execution of BB1 will consume the single data token for a and

any further execution of BB1 would stall indefinitely waiting for a token.

The solution to both problems is to strictly couple data propagation with control flow, as shown

on the right of Figures 2.6a and 2.6b. The following properties must hold: (1) every BB must

provide a live-out for every live-in of all of its immediate successor BBs and exclusively to

them, and (2) every BB must receive all of its live-ins from its immediate predecessor BBs and

exclusively from them. We implement these rules as outlined in Algorithm 2.1: (1) we employ

a standard liveness analysis algorithm [110] to determine the live-ins and live-outs of each

BB, (2) for every BB live-in and live-out, we instantiate a merge and a branch unit in the BB,

respectively, (3) we connect all operations within a BB that use a live-in to the appropriate merge

15

Chapter 2. Dynamically Scheduled High-Level Synthesis

// Input: CFG (control-flow graph)

// Input: DFG (SSA-based dataflow graph)

// Output: DFG (dataflow graph with coupled data propagation

// and control flow)

// Determine live-ins and live-outs of each BB in CFG

liveIns, liveOuts = LivenessAnalysis (CFG)

// Place merge for every live-in in every BB

foreach bb ∈ CFG do
foreach li ∈ liveIns (bb) do

mg = CreateMerge(bb, li,DFG)
// Connect all operations within the BB

// that use the live-in to the corresponding merge

foreach op ∈ operations (bb) do
if li ∈ predecessors (op) then

Connect (op,mg)

// Place branch for every live-out in every BB

foreach bb ∈ CFG do
foreach lo ∈ liveOuts (bb) do

br = CreateBranch (bb, lo,DFG)
// Connect branch to corresponding merges

// in successor BBs

foreach bbsucc ∈ successors (bb) do
mg = FindMerge (lo,bbsucc)
Connect (br,mg)

Algorithm 2.1: Implementing control flow.

of the same BB (i.e., the merge will inject tokens into the BB body to trigger the execution of its

operations), and (4) we connect the outputs of all branches to the inputs of the corresponding

merges in the immediate successor BBs. In Figure 2.6a, this strategy results in merges for a in

BB1 and BB2 and branches for a in BB0 and BB1. In Figure 2.6a, BB0 has a branch for a whereas

BB1 has a merge and a branch.

This strategy guarantees that every piece of data is sent correctly from BB to BB, following the

control flow of the program. Note that each BB contains as many merge units as it has incoming

variables and as many branch units as it has outgoing variables. Some merges correspond to

SSA phi nodes—they propagate into the BB a value chosen from one of the distinct predecessor

values (based on the control flow), whereas other merges propagate a single value (coming from

different control flow directions) to honor the rules above. This is the case, for instance, for the

merge for variable a in BB1 of Figure 2.6b. All branches of a BB share the same condition and

send tokens to the same successor BB based on a control flow decision.

16

2.3. Synthesizing Dataflow Circuits

BB1

Branch

+

5 5

Merge

Store a[i]

i
cond

i

x1 x2

long
latency

short
latency

BB2 BB3

BB4

for (i=0; i<N; i++)
if (cond)

x = 5*i;
else

x = 5+i;
a[i]=x;

x = x2, x1

*

Figure 2.7 – Nondeterministic behavior at SSA phis. The token entering BB4 is produced either by BB2 or
BB3; since these values are produced independently, the merge in BB4 may receive its inputs out of order.

2.3.3 Ensuring Determinism

Although different operations in a dataflow circuit may execute out of order, tokens are expected

to arrive to each individual operator strictly in order. Yet, there is one particular case in which

this property may not hold and which we discuss in this section.

The execution of our dataflow circuits is triggered by injecting a single token for each input

(i.e., program argument) into the start BB. The tokens propagate through the BBs, following the

control flow of the program—the BBs are triggered in exactly the same order as the software

execution of the unmodified original program. When a single value propagates through the

BBs, a token will always enter each BB from its single active predecessor—once the token enters

through a merge, no other source can reinject a token into the merge until the merge itself

produces a token, hence there is nothing that can interfere with the token ordering at the BB

input. Tokens will never reorder inside a BB as it contains only straight and unconditional

dataflow computation.

However, the situation is different in BB entry points where a value is redefined (i.e., when a token

enters a BB through a merge which corresponds to SSA phi node)—as each input represents a

distinct and, potentially, uncorrelated value, the input tokens may arrive in an order different

than specified in the original program. An example of such a case is illustrated in Figure 2.7,

which shows the CFG and a simplified datapath of the code in the figure. Assuming that the

control flow is {BB1-BB2-BB4-BB1-BB3-BB4} (determined by the condition cond in BB1), the

iterator from BB1 will first be sent to BB2 to compute the value of x1. This value takes multiple

17

Chapter 2. Dynamically Scheduled High-Level Synthesis

BB1

Branch

+
*

5 5

Mux

Store a[i]

i
cond

ix

BB2 BB3

BB4

CMerge

CMerge

Branch

Branch

Mux CMerge

x1 x2

in1, in2
Merge

x1 x2

x1
x2

x2
x1 ꭗ �

in1 in2

Figure 2.8 – Ensuring determinism. We extend the circuit from Figure 2.7 with a specialized in-order
control network that follows the control flow of the program—the cmerges of this network communicate
with the muxes of the same BB to indicate the correct input ordering.

cycles to compute, but the iterator can quickly propagate through BB4 and BB1 (the iterator path

is omitted from the figure; as described in the previous section, it follows the control flow of the

program). It will then enter BB3 which will trigger the short computation producing x2—this

value may arrive to the merge in BB4 before the value of x1; the merge would send the values to

the store out of order which would then produce incorrect results.

To ensure that tokens never enter a BB out of order, we replace every merge which corresponds to

an SSA phi node with a mux unit described in Section 2.5. We generate an in-order control path

that follows the control flow of the program through the BBs—essentially, a data-less variable

which is a live-in and live-out of each and every BB. This path enters each BB through a cmerge,

which connects to the muxes of the same BB and indicates the ordering of the inputs from

which they will receive data. The extended circuit from Figure 2.7 is shown in Figure 2.8: in the

previously discussed control flow sequence, the cmerge in BB4 would first receive a value on

input in1, coming from BB2, and then on input in2, coming from BB3—it would indicate this

ordering to the mux which would then not accept the value of x2 before it has received the value

of x1.

18

2.3. Synthesizing Dataflow Circuits

Store a[0] = 1

Store triggered only
when BB active �

Store triggered while
BB inactive ꭗ

Store a[0] = 1

10 10

CMerge

SourceSource Source

…

Fork

Figure 2.9 – Triggering constants. Setting constants as always valid (e.g., using a source) may incorrectly
trigger operations (in this example, the store would constantly store data to memory, although its execu-
tion may not be determined by the control flow). In such cases, at least one constant should be connected
to the in-order control network which ensures that the constant is triggered only when its BB is active.

This way of building dataflow circuits implies the following properties:

1. Determinism. The strict ordering of BBs reflected in the in-order control path guarantees

that the execution is race-free.

2. One token per cyclic path. In the steady state of a CFG cycle (i.e., a loop) execution, each of

its cyclic dataflow paths contains a single token (a token enters a cyclic path through a

merge or a mux; the same token is sent back to the merge/mux as many times as the CFG

cycle repeats before any other token can enter the cyclic path).

3. Strict token ordering on a path. If there are multiple tokens on an acyclic path, they could

only be injected into it by repeatedly forking at every passage the single token of a cycle and

the cyclic propagation of this token is determined by the in-order control flow decision.

2.3.4 Constructing the Datapath

Once the control flow is correctly handled, the BB internals are straightforward to design—each

instruction is literally converted into its dataflow unit (i.e., a functional unit with inputs and

outputs accompanied by handshake signals). When a unit has more than one direct successor,

we place a fork to replicate the token into an individual token for each of the successors (i.e.,

for each point-to-point data transfer). Unused unit outputs (e.g., branch outputs without

successors) connect to sinks which discard the unused tokens.

Some units (e.g., constants) do not have any inputs; we must ensure that they are appropriately

triggered and executed. Keeping units without inputs always active (e.g., by setting a source

as their input) may result in incorrect behavior, as they could trigger operations which are not

supposed to execute. An example is shown in Figure 2.9: a store with a constant address and data

would constantly send data to memory, regardless of the number of store executions specified

by the program. Another case is that of a branch with a constant data input and a constant

condition, which would constantly trigger a merge of some successor BB, even if this is not

decided by the control flow. For this purpose, we exploit the in-order control network described

in Section 2.3.3 and used to ensure determinism—we fork the token from this network and use

19

Chapter 2. Dynamically Scheduled High-Level Synthesis

it to trigger operations with no inputs only and as many times as their BB becomes active, as

shown on the right of Figure 2.9. Whenever a constant is an input to a unit that is triggered

only when the BB is active (i.e., at least one of the unit predecessors is a live-in of the BB), the

connection of the constant to the control path can be omitted and it can be triggered by a source

instead, which reduces the complexity of the dataflow network. This is the case for the constants

in BB2 and BB3 in Figure 2.7—the computational units will receive a data input and trigger the

computation only if the corresponding BB becomes active, so both constants can be triggered

with a source. Similarly, only one of the constant inputs to the store in Figure 2.9 requires a

connection to the control network.

2.4 The Challenges of Dynamic Scheduling

In this chapter, we described a complete set of rules to synthesize C/C++ code into a functional

(i.e., deadlock-free) dataflow circuit; we will present our fully automated HLS compiler which

implements this HLS strategy in Chapter 9. However, the resulting circuits are not yet competi-

tive with those produced by standard HLS tools: they are not able to achieve high-throughput

pipelines in cases where standard tools can, nor are they able to save resources through sharing

functional units. Although dataflow circuits have the ability to implement dynamic behaviors

that superscalar processors regularly exploit (i.e., out-of-order memory accesses and specula-

tion), the circuits described so far lack the necessary mechanisms to support these features. In

the rest of this section, we illustrate these challenges and outline the most significant features

and optimizations which we will discuss in the rest of this thesis.

2.4.1 Achieving High-Performance Pipelines

Dataflow circuits are naturally capable of pipelining, as the fine-grain handshake mechanism

allows certain operations to run ahead and, consequently, enables executions of different

operations to overlap. Yet, pipelining is not always possible due to backpressure: some paths take

a longer time to consume a token and prevent potentially quick and independent paths from

processing tokens at a high rate. This issue is illustrated on the left of Figure 2.10, showing the

dataflow circuit implementing the code in the bottom of the figure: the fork could, in principle,

issue tokens to the load (i.e., read memory port) on every cycle, but the path to the store (i.e.,

write memory port) stalls the first token until the multiplication completes, hence preventing

new tokens from issuing to the load and limiting loop pipelining; the achieved schedule will,

essentially, correspond to a nonpipelined schedule of a static HLS tool. Classic pipelining

algorithms which standard tools exploit are not applicable in the absence of a static schedule;

the solution here is to systematically identify and resolve backpressure to achieve the same

pipelining effect.

Just like standard synchronous circuits, dataflow circuits require buffers, i.e., registers, which

break combinational paths and, possibly, reduce the critical path of the circuit. Yet, in contrast

to standard circuits, buffers can be placed on any channel without compromising the circuit

20

2.4. The Challenges of Dynamic Scheduling

Merge

Buff

Start, i=0

End

Branch

N

< Store a[i]

Fork
*

Load a[i]

c

1

+

Fork

Merge

Buff

Start, i=0

End

Branch

N

< Store a[i]

Fork
*

Load a[i]

c

1

+

FIFO

Fork

stall

stall

ready

for (int i=0; i<N; i++){
a[i] = a[i] * c;

}

Figure 2.10 – Adding buffers (i.e., FIFOs) to resolve backpressure and pipeline a dataflow circuit.

functionality. This property can be exploited to mitigate backpressure by inserting buffers

into the paths that create stalls and lower system throughput, as illustrated on the right of

Figure 2.10. Buffers used for regulating throughput typically have a larger capacity (i.e., they

are implemented as FIFOs with multiple data slots) to hold all tokens issued by the predecessor

before the successor is ready to accept them—in this example, the buffer requires 3 slots to

constantly consume tokens from the fork; without the backpressure on the fork, the iterator

loop can issue a new token on every cycle and achieve a perfect pipeline with an II equal to 1.

In Chapter 3, we present a performance optimization model [77] for dataflow circuits which

relies on Petri net theory [90]. This model allows for resource-optimal buffer placement and

sizing, with the purpose of maximizing throughput of the performance-critical loops at the

desired clock frequency.

2.4.2 Saving Resources through Sharing

Standard HLS tools perform scheduling in conjunction with resource allocation and shar-

ing [120, 34]; depending on the optimization objective, they trade off area and performance

by deciding the cycle in which each operation executes and allocating units accordingly. The

left of Figure 2.11 shows two possible schedules for the code in the figure. The first schedule is

unconstrained in resources; by scheduling both multiplications in the same cycle, it employs two

multipliers to achieve the ideal loop pipeline with an initiation interval of 1. The second schedule

21

Chapter 2. Dynamically Scheduled High-Level Synthesis

C1 C2 C3 C4 C5

M1: mul1

M2: mul2

M1: mul1

M2: mul2

C1 C2 C3 C4 C5

M1/2: mul1

M1/2: mul2

M1/2: mul1

M1/2: mul2

C6 C7

Static scheduling Dynamic scheduling

M1 M2 M1/2

for (i = 0; i < N; i++)
a[i*x] = i*y;

M1 M2

2 muls, II = 1 1 mul, II = 2 2 muls, II = 1 1 mul, II = 2

Figure 2.11 – Resource sharing in static and dynamic scheduling.

enforces a resource constraint of one multiplier; each multiplication must be scheduled on

every second cycle and causes an increase of the II to 2.

Dataflow circuits face the same optimization objectives and area-performance trade-offs. Yet, in

the absence of a predetermined schedule, it is challenging to determine which operations can

share a functional unit without a performance penalty. Intuitively, one could rely on statistical

information on unit utilization to decide what to share, as illustrated on the right of Figure 2.11:

if the two multipliers are fully utilized (i.e., fully occupied with tokens), sharing would damage

throughput; if they are only half-utilized, one could employ a single multiplier instead that would

always be filled with tokens. Yet, this approach on its own may still compromise performance

because the execution of some operations may be delayed with respect to their execution in the

original circuit. More critically, although sharing seems to imply only some trivial circuitry, time-

multiplexing units in dataflow circuits may cause deadlock by blocking certain data transfers

and preventing operations from executing. Hence, a crucial step in making dataflow circuits

resource-competitive with standard HLS is to systematically identify good sharing opportunities

in an absence of a predetermined schedule, but also to build a sharing mechanism that always

results in functional dataflow circuits.

In Chapter 4, we present a technique to automatically identify performance-acceptable resource

sharing opportunities in dataflow circuits. Furthermore, we describe a sharing mechanism

which achieves functionally correct and deadlock-free dataflow designs.

2.4.3 Introducing Out-of-Order Memory to HLS

One of the key enablers of dataflow pipelines lies in the ability to execute memory accesses in

an order different than the one specified in the original program. As discussed in Section 1.2,

pipelining in cases where memory dependences cannot be determined at compile time may be

critical for dataflow computation to outperform statically scheduled HLS designs.

Out-of-order behavior has been exploited in out-of-order processors for decades [96, 104, 97]:

load-store queues are used to ensure that all memory dependences are honored, while inde-

22

2.4. The Challenges of Dynamic Scheduling

store x[i]

load y[i]

…

Processor
datapath

(out of order)

Memory
Ordering

(load-store
queue)

Instruction
fetch & decode

(in order)

Dataflow (out of order)

Memory

…

…
…

…
… ???

loop: lw $t2, 0($t4)

lw $t3, 100($t4)

mul $t5, $t2, $t3

addi $t5, $t5, $t1

sw $t5, 100($t4)

addi $t1, $t1, 4

bne $t6, $t1, loop

load x[0]

load x[i]

Ordering

(load-store
queue)

Figure 2.12 – Conveying program order to the memory interface. Program order is crucial to reorder
memory accesses at the memory interface. In contrast to a processor, a dataflow system has no notion of
fetching and decoding instructions to convey this order.

pendent memory requests may execute out of order for performance benefits. Dataflow circuits

require the same functionality, but a processor LSQ cannot be employed directly because of a

fundamental difference between the two systems, illustrated in Figure 2.12: In a processor, the

notions of fetching and decoding instructions immediately convey the correct sequential order

of requests at the memory interface. In contrast, dataflow circuits lack such notions and the

information of the original sequential program order is lost; an LSQ receiving memory requests

out of order would not be able to decide which reorderings are legal. Therefore, to employ an

LSQ and truly benefit from out-of-order execution, dataflow circuits require an alternative way

to perform allocation and to convey the correct order of memory requests to the LSQ.

In Chapter 5, we describe a practical way to organize an out-of-order memory interface (i.e., a

load-store queue) for dynamically scheduled circuits so that it can correctly handle memory

accesses arriving in arbitrary order while still respecting data dependences [71].

2.4.4 Minimizing the Complexity of the Memory Interface

Although LSQs enable dataflow circuits to achieve high performance in situations which static

scheduling cannot efficiently handle, they imply high resource requirements as well as power

and clock degradation when implemented on an FPGA. Hence, it is beneficial to leverage

compiler analysis to simplify the memory interface whenever possible—whenever the compiler

can disambiguate memory accesses, groups of accesses that cannot mutually conflict can use

23

Chapter 2. Dynamically Scheduled High-Level Synthesis

load y[i]

load x[i]

load x[0]

store x[i]

LSQ Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ
Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ

Memory

load y[i]

load x[0]

store x[i]

Memory
load x[i]

a. No analysis b. Alias
analysis

c. Alias + polyhedral
analysis

d. Alias + polyhedral

+ dedicated dataflow
analysis

LSQ

for (i = 1; i < N; i++)

x[i] = x[0] + x[i]*y[i];

load x[i]

store x[i]

+

*

load y[i]

load x[0]

Figure 2.13 – Connecting a dataflow circuit to memory. The memory interface can be simplified (i.e.,
the number of accesses connected to memory using an LSQ can be reduced) by analyzing the memory
accesses and excluding the presence of certain dependences.

separate LSQs, while those that certainly have no dependences with any other access can

connect to simple memory interfaces. While standard HLS approaches analyze and optimize

memory accesses, they are not always sufficient to obtain the best possible memory interface

configuration in a dataflow system.

The code in Figure 2.13 shows a loop with multiple memory accesses which are analyzed and

optimized using different memory analysis techniques. Without any memory analysis to reason

about actual memory dependences, all accesses must connect to a single, large LSQ. By exploit-

ing alias analysis and analyzing memory access patterns using polyhedral techniques, one can

determine that some accesses (i.e., those accessing different arrays and those targeting different

memory locations, respectively) cannot conflict; the memory interface can be simplified by

employing multiple smaller LSQs and removing some LSQs altogether, as the second and the

third memory configurations in the figure suggest. However, this is as far as standard techniques

can optimize: the inability to reason about the order of executions of the load and the store to

x[i] in an out-of-order dataflow system requires these accesses to connect to an LSQ. Yet, as

it is immediately evident from the datapath in the figure, the two accesses naturally occur in

the correct order as the load produces the data for the store—one can omit the LSQ completely

without compromising correctness. Hence, to minimize the complexity of the memory interface,

it is critical to determine cases where the temporal ordering of particular memory accesses is

guaranteed by the presence of data dependences; this information cannot be captured with

existing memory analysis techniques.

24

2.4. The Challenges of Dynamic Scheduling

d0!=x? d1 = a[0] + b[0] c[0]=d11

2

3

d1!=x? d2 = a[1] + b[1] c[1]=d2

d2!=x? d3 = a[2] + b[2] c[2]=d3

d3!=x?
return

d34

Nonspeculative schedule:

1

2

3

4

d0!=x? d1 = a[0] + b[0]
c[0]=d1
d1!=x?

d2 = a[1] + b[1]
c[1]=d2
d2!=x?

d3 = a[2] + b[2]

d4 = a[3] + b[3]

c[2]=d3
d3!=x?

d5 = a[4] + b[4]

discard
d4

discard
d55

Speculative schedule:

return
d3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[3]
ld b[3]

ld a[4]
ld b[4]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

float d=0.0; x=100.0; int i=0;

while (d<x) do {
d = a[i] + b[i];
c[i] = d;
i++; }

return d;

1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

Figure 2.14 – Nonspeculative and speculative schedule for the code in the figure, repeating the situation
from Figure 1.1c.

In Chapter 6, we explore techniques for reducing the cost of the memory interface in dataflow

designs. Apart from exploiting standard memory analysis techniques, we present a specialized

dataflow analysis [69] which relies on the topology of the control and dataflow graphs to infer

memory order with the purpose of minimizing the LSQ size and complexity.

2.4.5 Enabling General Speculative Execution

As in computer architecture, dynamic scheduling paves the way to one of the most powerful

ideas in computing: executing some operations before one has the certitude that they are

actually needed or that it is correct to execute them. Speculation can significantly improve

the execution of loops where the condition on the loop continuation that takes very long to

compute by predicting very early whether it makes sense to execute tentatively another iteration.

Similarly, speculation can further improve the problem of memory dependences, not only by

reordering accesses once the lack of dependence is known but even by assuming independence

early on and reverting back if the prediction was wrong.

The example in Figure 2.14 illustrates the need to enable speculative execution in HLS. A stan-

dard, nonspeculative schedule (repeated from Figure 1.1c) allows a new loop iteration to start

only after the condition to exit the loop (which, in this example, takes multiple cycles to com-

pute) has been checked; therefore, the loop cannot be pipelined. In contrast, a speculative

25

Chapter 2. Dynamically Scheduled High-Level Synthesis

system would achieve the lower schedule which tentatively starts a new loop iteration on every

clock cycle, before the loop condition is known.

The ability to implement speculation depends on reliable mechanisms to revert state changes

due to wrongly executed operations and discard misspeculated values—in this example, the

speculatively computed values from iterations 4 and 5 must be discarded and the result from the

third iteration must be returned. In processors, this functionality is entrusted to reorder buffers

and store queues [64], but these centralized units are not present in dataflow circuits. Therefore,

the challenge in supporting general forms of speculation lies in the ability to create a distributed

squash-and-replay mechanism in a generic dataflow network.

In Chapter 7, we describe a generic framework for handling speculation in HLS [74]. The idea is

to trigger parts of the circuit to execute speculatively; special state-holding components hold the

speculated data until the condition has been determined and dedicated components discard

misspeculated data when required.

2.4.6 A Complete HLS Methodology

All the features presented in this section are critical to truly benefit from dataflow design. After

we detail our strategies to achieve these features in Chapters 3 to 7, we discuss in Chapter 8 what

others have done before us to enable dynamic behaviors in HLS. We present our complete HLS

tool in Chapter 9; we compare our dynamic solutions with their statically scheduled counterparts

and discuss the area and performance tradeoffs of these two design strategies. Finally, we

conclude this thesis with an outline of possible future directions for dynamic scheduling in

Chapter 10.

26

3 Buffer Placement and Sizing for
High-Performance Dataflow Circuits

Dataflow circuits are naturally capable of overlapping loop iterations yet, as mentioned in Sec-

tion 2.4.1, their pipelining abilities critically depend on the placement and sizing of buffers.

In this chapter, we simultaneously tackle two aspects which are crucial for achieving high-

performance circuits: constraining the critical path and maximizing throughput. We discuss

the difficulties of performing such optimizations in the context of dataflow designs and present

a performance optimization model based on marked graph theory which achieves maximum

circuit parallelism at the desired clock frequency and with minimal resource cost. Our perfor-

mance optimization model supports important HLS features such as pipelined computational

units, units with variable latency and throughput, and if-conversion.

3.1 Buffers in Dataflow Circuits

The circuits produced by the compilation strategy described in the previous chapter do not

contain any buffers. In this section, we discuss buffer properties and their importance in

obtaining high-performance dataflow circuits.

3.1.1 Buffer Properties

Dataflow circuits require buffers which serve as registers in standard synchronous designs. A

buffer can hold a token (i.e., valid data) or a bubble (i.e., invalid data)—each time a token moves

forward, a bubble moves in the opposite direction, similar to electrons and holes in semicon-

ductors [56]. Every cycle of our circuit will always contain at most one token (see Section 2.3.3),

whereas bubbles can be freely allocated by adding buffers. Buffers are characterized with two

properties: (1) transparency, which indicates whether a buffer adds sequential delay onto a path

(a nontransparent buffer is used to break the combinational delay and implies a 1-cycle latency,

whereas a transparent buffer is implemented as a pass-through element and does not increase

This chapter is based on the work published at the 28th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2020 [77].

27

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

FIFO

1-slot N-buff 5-slot T-buff

stall

FIFO

ready

Figure 3.1 – Buffer properties. The figure contrasts a 1-slot nontransparent buffer, which can store a
single token and always breaks the combinational path (thus incurring a 1-cycle latency), with a 5-slot
transparent buffer, which can send data combinationally from input to output or store up to five tokens if
the successor is not ready to consume them.

cycle count), and (2) capacity (i.e., number of slots), which is used to regulate throughput. These

properties are illustrated in Figure 3.1: a single-slot nontransparent buffer is equivalent to a

register in a standard synchronous circuit; a common FIFO of size N with a combinational path

between input and output is here an N-slot transparent buffer.

3.1.2 Buffers and Circuit Functionality

Dataflow systems use distributed handshake signals to control the flow of data in the datapath.

These signals implicitly take care of stalling early data items when they need to synchronize with

late items [50]. Although buffers shift the executions of operations in time, their presence or

absence does not affect the functional correctness of the system, as any consumer of multiple

values synchronizes the corresponding valid tokens. Hence, contrary to registers in traditional

synchronous designs, buffers can be placed on any channel of the dataflow circuit—due to its

latency-insensitivity, this insertion will not compromise the functionality of the circuit [13], but

may impact its timing and throughput.

3.1.3 Buffers and Avoiding Deadlock

The following conditions are necessary to ensure deadlock-free execution of dataflow systems:

(1) Each combinational cycle must be broken with at least one nontransparent buffer; this

requirement is analogous to that in standard synchronous circuits, where each combinational

cycle needs to be broken using a register, and (2) each cycle in the circuit must contain at least

one token and one bubble [38]; this requirement ensures that a token and a bubble can always

exchange places and tokens can propagate through the cycle. As our circuit generation strategy

guarantees that each cycle will have exactly one token, our combinational cycles will require at

least two buffer slots to accommodate for the token and (at least) one bubble.

Figure 3.2 shows a combinational cycle of a dataflow circuit without a buffer, with a single-slot

nontransparent buffer (satisfying the first requirement above), and with a two-slot nontranspar-

28

3.1. Buffers in Dataflow Circuits

valid

ready

ready

readyvalid

stall

stall

stall

stall

stall

stall

valid

valid

Merge

1

Branch

+

Merge

1

Branch

+

N1-buff

Merge

1

Branch

+

(a) No buffer on
cycle: deadlock

(c) 2-slot buffer on
cycle: no deadlock

(b) 1-slot buffer on
cycle: deadlock

N2-buff

Figure 3.2 – Adding buffers. A combinational cycle without buffers or with a single buffer slot will cause
deadlock, as the token will not be able to propagate through the cycle. At least two buffer slots are
necessary to ensure deadlock-free execution.

ent buffer (satisfying both of the requirements above). In the first case, a token at the input of

the merge cannot propagate through the cycle due to the combinational relationship of the valid

and ready handshake signals on the cycle. Adding a nontransparent buffer (N1-buff) breaks the

combinational path and enables the token to enter the cycle, but there is no empty buffer slot

(i.e., bubble) for the token to loop back through the merge. A 2-slot buffer (N2-buff) ensures

deadlock-free execution as a token and a bubble can always exchange places.

3.1.4 Buffers and Performance

Figure 3.3a shows a dataflow circuit which calculates the cubes of array elements. The initial

value of the iterator i is injected into the loop BB through a merge to trigger the computation

start. The iterator is forked to a memory port to access an element of array a, which is sent to the

pipelined multipliers to calculate the cube. The result is then stored back into the array. At the

same time, the iterator value is incremented and compared to the loop bound. If the iterator has

not reached the bound, its updated value is sent back through the branch to the merge, which

triggers the start of the next loop iteration; otherwise, the program terminates.

The circuit in Figure 3.3a is completely functional and satisfies the correctness properties

described in the previous sections, as the cycle of the iterator contains a buffer to break the

combinational loop. However, this circuit fails to address two important performance aspects:

1. Critical path. The buffer is placed without any consideration for the combinational delays

of the units (all non-zero delays are indicated in the figure) and therefore does not restrict

the critical path in any way. The critical path of 6 ns is the sum of the output delay of the

first pipelined multiplier with the input delay of the second multiplier.

29

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Merge

N2-buff

1

Fork

Load a[i]

Branch

N

d = 2 ns

dout = 3 ns

d = 2 ns

+

<

Store a[i]

Fork

din = 3 ns

Fork

i=0

End

Start BB

End BB

Loop BB

stall

stall

*3 stages

*
3 stages

(a)

Merge

N2-buff

1

Fork

Load a[i]

Branch

N

d = 2 ns

dout = 3 ns

d = 2 ns

+

<

Fork

din = 3 ns

i=0

End

Start BB

End BB

Loop BB

N1-buff

T4-buff

Store a[i]

T8-buff

stallstall

Fork

*3 stages

*
3 stages

(b)

int i = 0;
for (i = 0; i < N; i++)

a[i]=a[i]*a[i]*a[i];

(c)

Figure 3.3 – Buffering for performance. A functionally correct, but unoptimized dataflow circuit (Fig-
ure 3.3a) implementing the code from Figure 3.3c contains a buffer placed to break all combinational
loops. The optimized circuit (Figure 3.3b) has nontransparent buffers placed strategically to restrict the
critical paths. The transparent buffers of larger capacity (i.e., FIFOs) in the paths with higher latency
mitigate backpressure and allow achieving the ideal loop initiation interval (in this case, equal to 1).

2. Throughput. A major performance limitation is caused by backpressure, which we in-

troduced in Section 2.4.1: some paths through the circuit take a longer time to process

data and prevent the faster paths from consuming tokens at a higher rate. This effect may

restrict loop pipelining—even if the need for another iteration can be decided very fast,

new tokens may not be able to trigger the following loop operations because tokens from

the previous iterations are stalled in the loop units.

In Figure 3.3a, the token carrying the array value a is forked into two pipelined multipliers,

but the lower multiplier cannot accept the token until the upper multiplier is done computing

(i.e., after 3 clock cycles). Similarly, the store can accept the iterator from the fork only after

the two chained 3-stage multipliers produce a result. These stalls cause backpressure on their

respective forks and prevent the short iterator path on the left from executing quickly: although

30

3.2. Modeling Dataflow Circuits as Marked Graphs

+
+

+

+

Buff

Fork n1

n2

n3

n4

n5

Figure 3.4 – A choice-free dataflow circuit, which has the properties of a marked graph. Circuits obtained
out of high-level code (such as the ones in Figure 3.3) contain choices (i.e., control flow decisions through
merges and branches) and cannot be represented as marked graphs.

a new iterator value could be computed on every clock cycle, the token with the updated value

is stalled until the previous tokens have been consumed, which effectively lowers the initiation

interval of the loop.

Figure 3.3b shows a circuit configuration with optimal throughput and the critical path con-

strained to 4 ns. The additional nontransparent buffer (N1-buff) lowers the critical path by

breaking the combinational delay of 6 ns between the pipelined multipliers. Inserting trans-

parent buffers of larger capacity into the slow paths corresponds to slack matching [87] and

increases effective parallelism, as accumulating data in these buffers allows to trigger the faster

paths at a higher rate. In this example, this is the case for the fast iterator path, which can now

reenter the loop and trigger the start of a new loop iteration on every clock cycle, hence achieving

a perfect pipeline with the initiation interval of 1.

3.2 Modeling Dataflow Circuits as Marked Graphs

In this section, we describe marked graphs, a particular class of Petri nets, which are the basis

for the performance model we introduce in Section 3.3.

3.2.1 Marked Graphs

Marked graphs are a class of Petri nets [90] which represent concurrent behavior, but never have

any choices, i.e., conditional execution. Figure 3.4 shows an example of a choice-free dataflow

circuit which exhibits the properties of a marked graph. The buffer on the back edge of the circuit

contains a token which infinitely loops through the combinational units: a token is forked from

unit n1 into both n2 and n4 concurrently, and the tokens from the two parallel paths are joined

into a single token in n5—the transitions n3 to n5 and n4 to n5 always occur simultaneously.

31

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

This concurrency of marked graphs is the foundation of many linear algebraic techniques for

their structural and performance analysis [102, 101, 16]; some address explicitly optimal buffer

placement in choice-free dataflow graphs [13].

It is immediately clear that circuits such as the ones in Figure 3.3 do not exhibit the choice-free

behavior of marked graphs, as each control flow edge between BBs represents a choice: the

merge can accept the initial value of i from the starting point of the program, or the updated

value sent back from the loop body; the branch can dispatch a value either through the back

edge into the loop, or to the end point of the program, as determined by the branch condition.

3.2.2 Key Intuition

The performance of dataflow circuits critically depends on buffer placement and sizing, yet

little is known about such optimizations. On the other hand, the timing properties of marked

graphs have been extensively studied [13]. However, these techniques are not applicable in

the context of dataflow circuits obtained from high-level code, which inevitably feature control

flow and, therefore, cannot be represented as marked graphs. We here combine the knowledge

from marked graph theory with dataflow circuits which implement choices in order to optimize

their performance: our work is based on the observation that choice-free subgraphs with the

properties of marked graphs can be extracted out of generic dataflow graphs. We describe an

approach to perform this extraction and adapt an existing performance optimization model for

marked graphs [13] to target dataflow circuits produced out of high-level code. We extend this

model to support several typical HLS features, such as pipelined computational units and if-

conversion. Finally, we discuss the optimization of complex dataflow circuits as well as methods

for ensuring scalability of our approach. We evaluate our technique on a set of benchmarks

obtained out of C code.

3.3 Optimizing Performance

In this section, we describe our strategy for extracting probabilistically most significant choice-

free subgraphs of a dataflow circuit. We introduce our performance optimization model for

obtaining the optimal buffer placement and sizes such that (1) the required cycle period is

satisfied and (2) the throughput of the choice-free circuits is maximized. We begin with the

single most important subgraph and then extend the approach to multiple subgraphs.

3.3.1 Extracting Choice-Free Dataflow Circuits

In this section, we describe our methodology for extracting the most significant choice-free

dataflow circuit (CFDFC) from a dataflow circuit. We define a CFDFC as a dataflow circuit

obtained from a cycle of the control-flow graph (CFG), i.e., from a CFG subgraph in which each

BB has exactly one input and one output edge. A CFDFC is, therefore, (1) choice-free (i.e., the

32

3.3. Optimizing Performance

BB2

for (i = 0; i < N; i++)
for (j = 0; j < M; j++)

…

BB1

BB3

BB2

BB1

BB3

BB2

e1

e2

e3

e5

e4

e6

e2

e3

e5

e4

BB0

BB4

Figure 3.5 – Extracting CFG cycles. The leftmost graph is a control flow graph of a nested loop with two
cycles. We optimize choice-free dataflow circuits (CFDFCs) which correspond to these cycles.

CFDFC has no control flow decisions), and (2) strongly connected (i.e., the CFDFC implements a

loop of the program); hence, it can be represented as a marked graph. Figure 3.5 shows a control

flow graph of a nested loop: it contains two cycles which, internally, correspond to two CFDFCs.

The performance optimization which we will introduce in Section 3.3.3 optimizes the most

frequently executed CFDFC. We identify this CFDFC by finding the most frequently executed

CFG cycle using an integer linear programming (ILP) model.

The ILP we employ has the following constants and variables:

• Ne (constant). Execution frequency of control flow edge e, i.e., the total number of times e

executes.

• SE
e (variable, binary). Indicates whether the control flow edge e belongs to the selected

CFG cycle.

• SBB
b (variable, binary). Indicates whether basic block b belongs to the selected CFG cycle.

• N (variable). Total number of times the CFG cycle executes.

• Nmax (constant). Upper bound on the number of executions, which has to be at least as

large as the execution count of the most frequently executed edge of the CFG.

The following constraint states that the number of times the CFG cycle executes (N) corresponds

to the minimum of the execution frequencies of the control-flow edges that belong to it. For

evey edge e of the CFG,

N ≤ SE
e ·Ne + (1−SE

e) ·Nmax. (3.1)

Here, Nmax ensures that N is not constrained by the execution frequencies of edges which do

not belong to the loop.

33

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Merge Merge

Branch

… …

e2 e2e3 e3

e4 e4

Merge Merge

Branch Branch

… …

e3 e3
Dataflow circuit CFDFC

BB2 BB2

Branch

Figure 3.6 – Obtaining a choice-free dataflow circuit (CFDFC) from a dataflow circuit. A CFDFC contains
all dataflow units and channels which belong to any of the BBs or edges of the extracted CFG cycle (in
this example, BB2 and edge e3 from Figure 3.5). Every merge and branch in a CFDFC have a single input
and output edge, respectively.

If a BB is a part of the selected cyle, exactly one of its input and one of its output edges belongs

to the cycle as well. For every BB b of the CFG,

SBB
b = ∑

e∈In(b)
SE

e (3.2)

and

SBB
b = ∑

e∈Out(b)
SE

e . (3.3)

Here, In(b) and Out(b) denote the sets of input and output edges of BB b, respectively. We

assume that BBs at the beginning and end of the program have respectively no input and no

output edge.

To ensure that only a single cycle is selected, only a single back edge of the CFG may belong to it:

∑
e∈Back(C FG)

SE
e = 1. (3.4)

Here, Back(C FG) denotes the set of all back edges of the CFG. Back edges are typically defined

as edges that point from a BB to another BB which dominates it (i.e., from a BB inside a loop to

the loop header); they can be detected using classical dataflow analysis [1].

We formulate the cost function to obtain the most frequently executed CFG cycle as follows:

max :
∑

e∈C FG
N ·SE

e . (3.5)

Once this cycle is identified, it is straightforward to find the corresponding CFDFC with its

dataflow units and channels. The following properties hold for every unit of the CFDFC: (1) for

every merge, only one input channel belongs to the CFDFC (corresponding to the chosen input

34

3.3. Optimizing Performance

3

3

3

3

2

1

3

3

32

12

3

3

3

3

2

1

3

3

32

12

3

3

3

3

2

1

3

3

32

12

3

3

3

3

2

1

3

3

32

12

Θ = 1
𝑃 = 25
Titer = 25

Θ = 1
𝑃 = 9

Titer = 9

Θ = ൗ1 2
𝑃 = 6

Titer = 12

Θ = ൗ1 3
𝑃 = 3
Titer = 9

(a) (b) (c) (d)

Figure 3.7 – Performance optimization of a choice-free dataflow circuit. Grey buffers are used for break-
ing combinational paths (i.e., nontransparent buffers). The white buffer is transparent and used for
throughput optimization. The circuits in the figure differ exclusively in buffering, which directly affects
their timing (i.e., the achievable clock period, throughput, and overall iteration time).

control flow edge of its BB), (2) for every branch, only one output channel belongs to the CFDFC

(corresponding to the chosen output control flow edge of its BB), and (3) for all other units, all

input and output channels belong to the CFDFC.

Figure 3.6 details the extraction of the most significant CFDFC of the program in Figure 3.5. The

ILP will identify the self-loop of BB2 as the cycle with the highest execution frequency (i.e., the

ILP result will be SBB
BB2 = 1, SE

e3 = 1, and all other BBs and edges are not selected). Therefore, for

each merge in BB2, we keep only the input channel which originates from BB2 and belongs to

edge e3; for each branch, we keep only the output channel leading back to BB2. All internal

channels and units in BB2 belong to the CFDFC as well.

The approach that we have presented in this section will select one of the innermost loops of the

circuit. We will extend our optimization model on multiple CFDFCs in Section 3.3.4.

3.3.2 Optimizing Choice-Free Circuits

The mathematical model presented in this chapter is based on the theory for performance

analysis of concurrent systems inherited from timed Petri nets [102, 101, 16, 13]. We apply it to

CFDFCs of the dataflow system, which can be represented as marked graphs (with functional

units as nodes and channels as edges) to determine the optimal buffer placement and sizes.

The buffer configuration of a CFDFC determines its throughput Θ (i.e., the inverse of the ini-

tiation interval, 1/II): every cycle of the circuit has a cycle ratio defined as the inverse of the

number of nontransparent buffers and the throughput is limited by the cycle with the minimum

cycle ratio [102]. As every cycle contains at least a single nontransparent buffer, the throughput

equals at most one (i.e.,Θ≤ 1).

35

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Fig. 3.7 demonstrates the exploration space for the performance optimization of a choice-free

dataflow circuit. In this example, there are two cycles that constrain the throughput. Every node

(i.e., a functional unit of the dataflow circuit) is labeled with its combinational delay. Fig. 3.7(a)

shows a solution with maximum throughput (Θ = 1) by only putting 2-slot nontransparent

buffers on the cycles, thus satisfying the requirement to accommodate a single token and a

single bubble on each cycle. The cycle period P is then 25 and a cycle iteration takes 25 time units

(Titer = P/Θ). Adding nontransparent buffers and moving the existing buffers reduces the critical

path while maintaining the maximum throughput (Fig. 3.7(b)). To prevent the topmost loop

to stall due to backpressure from the noncyclic path, an extra buffer (in white) has been added

to one of the paths. Since it is not required to cut combinational paths, it can be implemented

without adding any sequential delay (i.e., as a transparent buffer which acts as a FIFO, matching

in size the nontransparent buffer on the right). Constraining the system to work with P ≤ 8

requires the addition of nontransparent buffers on the cycles, thus degrading the throughput.

Fig. 3.7(c) shows a configuration with two buffers per cycle (Θ= 1/2) and optimal period (P = 6)

for this throughput, with Titer = 12. Surprisingly, under the constraint P ≤ 8, there is a more

efficient configuration with lower throughput. The solution is shown in Fig. 3.7(d) withΘ= 1/3

and P = 3, resulting in 9 time units per iteration.

Solution (a) is the optimum in terms of area. Solution (b) is the optimum in terms of performance

(Titer) that minimizes area. Finally, solution (d) is the optimum in performance under the

constraint P ≤ 8. The example shows the richness of solutions that can be explored in choice-

free dataflow systems by changing exclusively the buffer positions and sizing—we will rely on

this property to optimize the performance of our dataflow circuits.

3.3.3 MILP Model for Performance Optimization

We formulate our performance optimization model as a mixed-integer linear program-

ming (MILP) model which determines the channels where buffers need to be placed as well as

the buffer sizes. The model is based on the work of Bufistov et al. [13] for optimizing choice-free

circuits—we here adapt it to generic dataflow graphs. We first present the model for a single

CFDFC; in Section 3.3.4, we generalize our approach to multiple CFDFCs.

We class constants and variables of the MILP model into three groups: input constants (i.e.,

values given as input to the MILP), output variables (i.e., the solution of the buffer sizing prob-

lem), and internal variables (i.e., intermediate values found by the MILP solver but of little

consequence to the user).

Input constants of the model.

• P (integer). Target clock period of the circuit.

• Pmax (integer). Upper bound on the clock period of the circuit, which has to be at least as

large as any possible value of P.

• Bc (binary). Indicates whether channel c is a back edge (Bc = 1) of the dataflow graph.

36

3.3. Optimizing Performance

x
𝒕𝒄
𝒊𝒏

y
𝒕𝒄
𝒐𝒖𝒕𝒕𝒄′

𝒐𝒖𝒕

Dx Dy

Rc

Figure 3.8 – Path constraints of the MILP model. These constraints ensure that the dataflow circuit meets
the target clock period by accumulating delays across channels and inserting buffers (indicated with
Rc = 1) to break the combinational path.

• Du (real). Combinational delay of unit u.

Output variables of the model.

• Rc (binary). Indicates whether a sequential (nontransparent) buffer is present on channel

c.

• Nc (integer). The number of slots of the buffer on channel c. The presence of a buffer

implies at least one slot (i.e., Rc ⇒ Nc > 0). However, Nc > 0 and Rc = 0 indicates that a

transparent buffer is present in the channel.

Internal variables of the model.

• Θ (real). Throughput of the CFDFC.

•
•
Θc (real). Average occupancy of channel c (token presence).

•
◦
Θc (real). Average emptiness of channel c (bubble presence).

• ru (real). Fluid retiming of tokens across unit u.

• t in
c (real). Arrival time at the the input of channel c (i.e., output of unit x, where x

c→ y).

• t out
c (real). Arrival time at the output of the channel c (i.e, input of unit y , where x

c→ y).

We now describe the constraints of the MILP, grouped into path, throughput, and buffer sizing

constraints.

Path constraints. These constraints ensure that the entire circuit meets the target clock period.

They are therefore applied to the complete dataflow graph. For every channel c of the dataflow

graph,

t out
c ≥ t in

c −Pmax ·Rc , (3.6)

with t out
c ≥ 0. This constraint, depicted in Figure 3.8, propagates the combinational arrival time

at each channel. In case of the presence of a buffer (Rc = 1), the right term is guaranteed to be

negative and t out
c becomes zero, essentially disabling the further accumulation of delays through

this channel. The constraint requires an upper bound of the maximum cycle period (Pmax).

The following constraints model the propagation delay of each unit u of the dataflow graph with

a pair of input/output channels x
c1−→ u

c2−→ y :

P ≥ t in
c2

≥ t out
c1

+Du . (3.7)

37

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

The leftmost constraint enforces all delays to meet the cycle period P. For simplicity, we assume

that channels and buffers have zero delays. Channel, buffer setup, and clock-to-q delays could

be easily incorporated into the model by adding the corresponding constants.

Throughput constraints. Our circuit construction guarantees that there is a single token on each

cyclic path of a CFDFC. We initially consider that this token is placed on the back edge—once

the buffers are assigned to the edges of the system, the throughput constraints will distribute the

token across the cycle edges accordingly. These constraints are only applied to the choice-free

circuit (CFDFC) obtained using the methodology described in Section 3.3.1. For every channel

u
c→ v in the CFDFC,

•
Θc = Bc + rv − ru (3.8)

Θ ≤ •
Θc / Rc . (3.9)

The first constraint is analogous to the equations of classical retiming [84]; in this case, the

variables are real instead of integers (i.e., fluid retiming) and
•
Θc represents the average number

of tokens in the channel at the steady state of the system. The second constraint indicates that

the system throughput is determined by the channel with a minimum average number of tokens

among all channels with a nontransparent buffer. This constraint can be easily linearized taking

into account that Rc is binary andΘ≤ 1:

Θ ≤ •
Θc − Rc +1. (3.10)

For Rc = 1 (i.e., the channel contains a nontransparent buffer), the throughput is limited by the

channel occupancy (i.e.,Θ≤ •
Θc). Otherwise (i.e., for Rc = 0), the throughputΘ is not constrained

by the channel since the largest possible throughput value is 1 (and the right side of the equation

will be greater or equal to 1).

Figure 3.9 demonstrates fluid token retiming based on the throughput and path constraints.

The path constraints determine the buffer placement to achieve the target period of P ≤ 3. The

values next to the buffers represent the token occupancies
•
Θc . They indicate that every channel

of the upper loop with a buffer will contain a token every 1 out of 3 clock cycles, whereas the

buffer in the bottom left channel will contain a token 2 out of 3 clock cycles. The values next to

the units represent the retiming values r which indicate how much of the token must be retimed

from the initial position (i.e., the middle channel) to achieve the average occupancies
•
Θc . All

values that are equal to zero are omitted from the figure.

Buffer sizing constraints. Buffer sizing is essential for avoiding backpressure. It corresponds to

adding empty buffer slots, which do not affect circuit functionality. The average occupancy of

tokens and bubbles will determine the number of buffer slots at every channel of the CFDFC:

Nc = •
Θc +

◦
Θc . (3.11)

38

3.3. Optimizing Performance

r = 1/3

r = 2/3

1/3

1/3

1/3

2/3

2 2

12

2

2 2

12

2

Figure 3.9 – Token retiming with throughput and path constraints for P ≤ 3. The token from the middle
channel (left) is retimed during buffer assignment (right) and distributed in channels where the buffers
are placed.

The constraint for bubble occupancy is dual to that of token occupancy (and can be linearized

in the same manner); it ensures that each cycle has at least one bubble, thus avoiding deadlock:

Θ ≤ ◦
Θc / Rc . (3.12)

Cost function. Subject to the path and the throughput constraints, we maximize throughputΘ

for a given clock period P , while accounting for the minimization of the total number of buffer

slots in the channels of the dataflow circuit:

max : Θ−λ ·∑
c

Nc , (3.13)

where λ is a small coefficient that gives a lower priority to the minimization of buffer sizes. As

already mentioned, the path constraints include the complete dataflow graph, whereas the

throughput constraints apply to the most frequently executed CFDFC.

Without loss of generality, we here focus on maximizing the throughput of the system. The model

that we have presented in this section could easily be employed with different cost functions

and optimization objectives (e.g., minimizing the clock period or the buffer area cost under a

throughput constraint [13]).

3.3.4 Optimizing Multiple CFDFCs

The model that we have presented so far optimizes only the single, most frequently executed

CFDFC of the circuit. In this section, we extend our methodology to multiple CFDFCs.

We apply the ILP from Section 3.3.1 iteratively to extract one CFDFC after another based on

their respective execution frequencies. After finding the most frequently executed CFG cycle,

we update the execution frequencies by subtracting the execution values of the extracted CFG

edges. Applying the ILP on the CFG while considering only the remaining execution values

39

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

1

BB0

BB5

ILP, iteration 1

CFDFC 1

BB2

BB4

BB1

BB3

BB0

BB5

BB2

BB4

BB1

BB3

ILP, iteration 2

BB4

BB1

BB3 BB2

BB4

BB1

100

1

1

40

1

CFDFC 2

6040 40 0

60

60

60

40

40

40

6040 40 0

Figure 3.10 – Extracting multiple CFDFCs. The ILP from Section 3.3.1 can be iteratively applied while
updating the execution frequencies of the CFG edges to extract one CFDFC after another. In the figure,
the first extracted cycle (and the CFDFC which it represents) executes 60 times. After subtracting this
value from the execution count of each corresponding CFG edge, we extract the next cycle of 40 iterations.

extracts the next cycle and its corresponding CFDFC based on its share in the runtime of the

program. We illustrate this approach in Figure 3.10.

It is important to note that our ILP extracts cycles in the order of their importance (i.e., based

on their fraction in the application runtime). We could also employ any algorithm for finding

cycles in a directed graph [68], yet this approach would require extracting all graph cycles and

subsequently sorting them based on their execution frequencies (by repeatedly identifying the

most significant cycle and then updating the execution frequencies of all remaining cycles). The

fact that our ILP simultaneously orders and extracts the cycles makes it possible to terminate

the extraction as soon as appropriate criteria have been met (e.g., no remaining edge has

an execution frequency above some threshold or the extracted cycles collectively represent a

sufficient fraction of the application runtime). As we will discuss in Section 3.6, having such

criteria is of great importance to limit the MILP runtime; moreover, the optimization of all

CFDFCs is not always needed to maximize performance.

Optimizing multiple CFDFCs requires the extension of the MILP from Section 3.3.3 to maximize

throughputs of all CFDFCs. For every additional CFDFC, the MILP includes an additional set

of throughput and buffer sizing constraints (i.e., Equations 3.8 to 3.11). The cost function to

maximize system throughput considers a weighted sum of the individual throughputsΘ of all

extracted CFDFCs:

max :
∑

i
wi ·Θi −λ ·

∑
c

Nc , (3.14)

40

3.4. Modeling Computational Units and If-Conversion

Lu
IIu

Din Doutcu

in out

cin1

Unit u

cin2

cout

Figure 3.11 – A model of a sequential (pipelined) unit.

where the weight wi of each throughput is proportional to the frequency of execution of each

CFDFC (i.e., an approximation of the runtime fraction of each CFDFC in the program profile).

3.4 Modeling Computational Units and If-Conversion

The model that we have presented so far (as well as the model by Bufistov et al. [13] which our

work is based on) only accounts for combinational nodes (i.e., combinational dataflow units). In

this section, we extend the model to pipelined computational units and discuss how to apply it

to units with variable II and latency. We then use these insights to model if-conversion, a typical

HLS transformation.

3.4.1 Modeling Pipelined Units

To be able to handle cases such as the one in Figure 3.3, our MILP model needs to account

for pipelined units. For this purpose, we characterize a pipelined unit u using two classic

parameters: latency Lu and initiation interval IIu . Figure 3.11 depicts our model.

The pipelined unit is modeled as two combinational units, separated by a channel cu . The units

in and out are represented with the unit input and output delay, Di n and Dout . The channel

cu contains a nontransparent buffer with Lu slots, as the latency of the unit corresponds to the

number of tokens the unit can hold. The delays Di n and Dout participate in the path constraints

of the MILP (i.e., Equations 3.6 and 3.7), like those of any other unit. The maximal operating

frequency of the unit, fu,max , can be neither modified nor optimized by the MILP, hence we

provide it directly as a constraint on the target clock period (i.e., 1/ fu,max ≤ P). Unless this

constraint cannot be met (i.e., the MILP cannot find a feasible solution for the given target

period), it has no impact on the buffer placement and sizing.

The initiation interval of unit u puts a constraint on the average presence of tokens in channel cu

that cannot be greater than Lu/IIu . Thus, throughput constraints for channel cu can be written

as follows: •
Θu = rout − ri n (3.15)

and

Θ ·Lu ≤ •
Θu ≤ Lu/IIu , (3.16)

41

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

where ri n and rout are the corresponding retiming variables for the input and output combina-

tional units, in and out.

3.4.2 Modeling Variable Initiation Interval

The model from Section 3.4.1 assumes a constant latency Lu and a constant initiation interval

IIu for each computational unit. Yet, this may not always be the case—we here consider units

with a variable initiation interval, i.e., IIu = [IIu,mi n ,IIu,max]. Typical examples of units which

exhibit such behavior are read and write ports which connect to memory through a load-store

queue (LSQ)—we will discuss this unit in detail in Chapter 5. The role of the LSQ is to ensure

that all memory accesses with dependences are executed in the correct order—based on the

dependences present in the program, the LSQ may issue and receive data from the memory ports

at different rates, hence lowering their effective initiation interval. For instance, if a load has a

read-after-write dependence with a previous store, the LSQ will return its data only after the store

completes; this effect will temporarily lower the rate with which the load port issues data into

the circuit, hence resulting in an increased II. On the other hand, if there are no dependences,

the load port can issue data at a high rate (i.e., with a low II, ideally equal to 1).

Like any other sequential unit, units with variable II require the formulation of Equation 3.16,

which connects the unit II, IIu , to the CFDFC throughput, i.e., Θ ≤ 1/IIu . A higher IIu value

results in a tighter throughput constraint; hence, modeling a unit with an IIu value which is

larger than the II achieved during execution may conservatively constrain the throughput Θ.

Consequently, the resulting buffer configuration may be suboptimal and the achieved circuit

performance may be limited. The question here is, therefore, how to choose the appropriate

value of IIu for Equation 3.16 when the II of a unit is variable.

Consider the circuit in Figure 3.12, with the timing parameters of each unit listed under (a); all

units have fixed latencies, but the II of the multiplier varies between 1 and 2. If we include into

the MILP model the higher II, IImul ,max = 2, it will constrain the CFDFC throughput to 1/2 and

the buffers will be sized accordingly—in this case, the capacity of the transparent buffer before

the store will be set to 3. Although this buffer capacity is sufficient to sustain the throughput

of 1/2, it will cause backpressure when the multiplier operates with a lower II, hence always

(i.e., regardless of the actual II that the multiplier achieves) constraining the throughput to 1/2.

In contrast, optimizing the circuit for IIu,mi n = 1 (and, consequently, the throughput of 1) will

result in a larger buffer capacity (here equal to 6)—the buffer will be fully utilized when the

throughput is equal to one and underutilized otherwise, but it will never limit the throughput

and damage performance.

Given that our goal is to maximize throughput (and, consequently, performance), we model

each unit with its minimum initiation interval value, IIu,mi n .

42

3.4. Modeling Computational Units and If-Conversion

Merge

N-buff

Start, i=0

End

Branch

N

< Store a[i]

Fork
*

Load a[i]

c

1

c) Variable latency (cyclic path)
Add: latency = 1-4, II = 1, Load: latency = 2, II = 1,

Mul: latency = 4, II = 1
For Add latency = 1 T-buff size = 3, 𝜣𝒕𝒐𝒕=1/2
For Add latency = 4 T-buff size = 1, 𝜣𝒕𝒐𝒕=1/5 ꭗ

T-buff

for (i = 0, i<N, i++)
a[i] = a[i] * c;

Fork

Mul

+
Add

a) Variable II
Add: latency = 0, II = 1, Load: latency = 2, II = 1,

Mul: latency = 4, II = 1-2
For Mul II = 1 T-buff size = 6, 𝜣𝒕𝒐𝒕=1/2-1

For Mul II= 2 T-buff size = 3, 𝜣𝒕𝒐𝒕=1/2 ꭗ

b) Variable latency (noncyclic path)
Add: latency = 0, II = 1, Load: latency = 2, II = 1,

Mul latency = 1-4, II = 1
For Mul latency = 1 T-buff size = 3, 𝜣𝒕𝒐𝒕=1/2 ꭗ
For Mul latency = 4 T-buff size = 6, 𝜣𝒕𝒐𝒕=1

Figure 3.12 – Modeling variable II and variable latency. When a unit has variable II (case a), it is always
desirable to model its best-case (i.e., lowest) throughput to achieve optimal buffer placement and,
consequently, best possible performance. When a unit has variable latency (cases b and c), its model
depends on whether the unit lies on a cyclic path; if so, it should be modeled with its minimum latency
(so that it does not constrain throughput); otherwise, it is should be modeled with its maximum latency.

3.4.3 Modeling Variable Latency

Our circuits may also contain variable-latency units: for instance, computational units which

can take a variable number of cycles to compute the result depending on the input data as well

as load ports which wait a variable number of cycles for the memory to return the requested

data. As in the case of variable II, the modeled latency value may have a significant impact on

the circuit throughput and performance.

Consider the example in Figure 3.12, now with the parameters listed under (b), where now

the multiplier latency ranges from 1 to 4 cycles. If the MILP model considers the minimum

latency of 1, the capacity of the transparent buffer before the store will not suffice to eliminate

backpressure when the multiplier latency is higher than 1. In contrast, if the model considers

the maximum latency of 4, the MILP will produce a larger buffer which will relieve backpressure

for every possible case, hence achieving the best possible performance.

The situation is different with the timing assumptions of bullet (c)—the variable-latency adder

is on a cyclic path and its latency may constrain the CFDFC throughput. This effect occurs

because there is always a single token on a cycle, as mentioned in Section 3.3.2; a long-latency

unit on a cyclic path limits the rate with which the token can reenter the loop body, therefore

43

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

lowering the system throughput. Hence, considering the maximum latency value may create an

overly-conservative throughput constraint and buffer placement, similar to the effect discussed

in the previous section, i.e, the resulting buffers will not be able to sustain higher throughput,

achievable when the unit latency is lower. Hence, when a unit is on a cyclic path of the CFDFC,

it is desirable to consider its minimal latency; the MILP will optimize the system for the largest

achievable throughput and place buffers accordingly.

Therefore, to maximize performance, we model the latency of a variable-latency unit

Lu = [Lu,mi n ,Lu,max] in Equation 3.16 as follows: (1) if a unit is on a cyclic path of a CFDFC, we

consider its minimum latency, Lu,mi n , and (2) if a unit is on a noncyclic path, we consider its

maximum latency, Lu,max .

It is important to note that a unit may be on a cyclic path through one CFDFC but on a noncyclic

path of another (e.g., a loop-carried dependence of an innermost loop may not be on the cyclic

path through the outer loop). As each CFDFC has its own set of throughput constraints, each

CFDFC can consider the appropriate latency following the rules above to achieve the best

possible throughput.

The rules presented in this and the previous section could easily be adapted to different cost

functions and optimization objectives, discussed in Section 3.3.3. A possible modification

would be to consider average latencies and initiation intervals; such an approach may result

in lower resources (i.e., it may instantiate smaller buffers than the solutions we present here)

but, in contrast to our approach, it would not guarantee optimal performance for every possible

outcome.

3.4.4 Modeling If-Conversion

Compilers typically rely on optimizations such as if-conversion to convert conditional branches

into predicated instructions [110]; this transformation usually requires a dedicated instruction

which chooses one of the input values based on a condition (i.e., a select instruction). This

instruction translates directly into the corresponding select dataflow unit; it can be implemented

as a multiplexer which outputs data as soon as the condition and the chosen input are available,

whereas other inputs are simply discarded upon (possibly late) arrival [22, 36].

The performance optimization model that we have discussed so far considers all operations

within a BB as choice-free units—all inputs must become available for the unit to trigger. This

model is not suitable for a select unit, which needs only one of its inputs (i.e., the input chosen

by the condition) to trigger. If a select is on a cycle and one of its inputs takes more cycles to

compute than the other, our model would assume the worst-case latency and conservatively

model throughput, even if the long-latency input may actually be discarded and the computation

can proceed early on. This is the case for the circuit in Figure 3.13: even if the multiplier input

is not selected, the MILP accounts for the long-latency cyclic path (shown in red dashed) and

limits the obtainable throughput, exactly as described in the previous section.

44

3.4. Modeling Computational Units and If-Conversion

Merge

N-buff

a = 1

Branch

+*

2

x?

a = 1;
for (i = 0, i < N, i++)

if (x)
a *= 2;

else
a += 2;

2

Select

i < N?

a

Mul
Add

Add: latency = 0, Mul: latency = 3

Dataflow circuit Model

Merge

N-buff

a = 1

Branch

+*

2

x?

2

i < N?

a

Mul
Add

Merge

N-buff

a = 1

Branch

+*

2

x?

2

i < N?

a

Mul
Add

ForkFork

Select Select

Figure 3.13 – Modeling if-conversion, implemented using a select unit. The long-latency cycle (shown in
red dashed) through the select will limit achievable throughput, even if this input is never selected by the
unit; hence, we omit this input from the model to place and size buffers for the best-case throughput.

It is interesting to note that this behavior corresponds to the behavior of a variable-latency unit;

yet, instead of a single unit with varying latency, as we discussed in Section 3.4.3, the latency

variability is now due to the different latencies of the two paths between the fork and the select

(i.e., the path through the multiplier and the path through the adder). In this case, this variability

cannot be resolved at unit level, i.e., adapting the timing parameters of the select unit would

not impact the modeled latency of its incoming paths. Instead, we exclude from the throughput

constraints the input edge of the select unit which is on the long-latency cycle, as indicated in

Figure 3.13; essentially, the model will assume that this input is never taken and the best case

throughput will be computed accordingly.

We model the select unit inputs as follows: (1) we include into the throughput constraints each

select input edge which is on a noncyclic path, as this latency will never compromise throughput,

(2) if the select has a single input on a cyclic path, we exclude the corresponding input edge from

the throughput constraints, and (3) if the select has both inputs on cyclic paths, we exclude the

input edge on the cycle with more sequential stages; this situation is shown in Figure 3.13.

Note that this model produces optimal throughput regardless of which input is actually taken

during circuit execution, as the buffer sizes are determined based on the highest possible

throughput values—the produced buffering will support lower throughputs (potentially caused

by the slower input which our model ignored) as well. It is interesting to note that the same

effect could be achieved by handling the choices of the select unit similar to the choices in the

CFG graph, i.e., by decoupling a CFDFC with a select unit into two choice-free graphs (with

each graph considering only one of the select inputs). However, this strategy would increase the

45

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

BB2

BB1

BB3

BB2

BB1

BB3

BB2

e1

e2

e3

e5

e4

e2
e3

e5

e4

BB0

BB5

BB4

e7
e8

e6

BB4

e7

BB2

BB1

BB3

e2

e3

e5

e4

BB4

e7

CFG

CFDFCs Disjoint CFDFC sets

Figure 3.14 – Splitting the circuit into disjoint CFDFC sets to ensure MILP scalability. This circuit rep-
resented by the CFG in the figure consist of three CFDFCs which can be grouped into two disjoint sets.
Applying the MILP on each set separately reduces the size of each MILP and decreases overall runtime.

model complexity (by adding a new set of throughput constraints per input of each select unit),

while producing equivalent results.

3.5 Scalability

In this section, we discuss the runtime complexity of the MILP model described in Section 3.3.3

and propose a technique to ensure scalability when optimizing complex circuits.

The ILP for cycle extraction operates on the CFG of the program, which usually covers a limited

number of BBs and control-flow edges. Hence, this ILP is typically of low complexity and size

and it does not impact the overall algorithm runtime—we confirm experimentally this intuition

in Section 3.6. However, the MILP for performance optimization operates on the dataflow

graph of the program. While the throughput is optimized locally by applying the throughput

constraints on subsets of the circuits (i.e., the frequently executed CFDFCs), the relations for

path constraints (i.e., Equations 3.6 and 3.7) extend on the entire dataflow graph—they need

to ensure that the circuit as a whole meets the target period. The MILP size and runtime is

therefore dependent on the overall number of channels and units of the dataflow circuit, which

can result in large runtimes when optimizing complex designs.

A possible method to limit the MILP runtime of large applications is to split the dataflow graph

into disjoint sets of CFDFCs (i.e., into CFDFCs obtained from strongly connected components

of the CFG which do not share any BBs or edges among each other) and to optimize them

separately using the MILP. This procedure maximizes the throughputΘ and satisfies the period

constraint P within the CFDFCs of each disjoint set. Afterwards, we need to ensure that the

46

3.6. Evaluation

complete circuit satisfies the period constraint. Hence, we apply the path constraints (i.e.,

Equations 3.6 and 3.7) on the channels and units which were not covered by any of the CFDFC

sets. The buffer placement solutions (i.e., the values of Rc) from the CFDFC set optimization

are now set as constants to ensure that the combinational paths across set boundaries are

appropriately handled. The channels optimized in this step do not need to be subject to any

throughput constraints as they are of minimal importance for the overall performance (i.e., they

usually belong to paths executed only a single time as the circuit runs); the sizes of all buffers

correspondingly inserted can, therefore, be set to 1 (i.e., Nc = 1). The cost function of this final

step minimizes the number of inserted buffers:

min :
∑

c
Rc , (3.17)

Figure 3.14 illustrates this approach. The dataflow circuit represented by this CFG contains

three CFDFCs—two of them share BBs and need to be optimized together. The third CFDFC

(corresponding to BB4 in the figure) can be optimized separately. After solving the MILP for each

of the two independent CFDFC sets, their throughput Θ will be maximized and each set will

meet the target period P. To ensure that the complete circuit respects P, we subsequently need

to optimize the remaining parts of the dataflow circuit (in this case, the channels within BB0

and BB5, as well as those corresponding to edges e1, e6, and e8) using only the path constraints.

In summary, applying the MILP on disjoint CFDFC sets reduces the problem complexity while

satisfying the desired clock period and achieving the same CFDFC throughput as the global

MILP solution. We will show the effectiveness of this approach in Section 3.6.

3.6 Evaluation

In this section, we demonstrate the ability of our optimization technique to maximize through-

put under a given clock period constraint. We compare our optimization approach with a naive

buffer placement strategy, discuss the runtime of our algorithm and methods to improve it, and

investigate the effectiveness of the period constraint.

3.6.1 Methodology

Our optimization strategy is summarized in Algorithm 3.1. We profile the intermediate repre-

sentation of the benchmarks to obtain the execution frequencies of the CFG edges—we insert

counters into the IR code to count the control-flow decisions taken in each executed BB and

annotate the CFG with the obtained counts. After the IR has been transformed into a dataflow

circuit, as described in Chapter 2, we use the information on execution frequencies to identify

the CFDFCs using the ILP from Section 3.3.1. We then apply the MILP from Section 3.3.3 to

determine the buffer placement and sizes which satisfy the target clock period and maximize

the loop throughputs—we employ the cost function from Equation 3.14. The weights of each

47

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

// Input: CFG (control-flow graph)

// Input: DFG (dataflow graph)

// Output: buffers (list of dataflow channels characterized with

// buffer capacity and transparency)

// 1. Identify choice-free subgraphs of the dataflow graph
profile = ProfileApplication (CFG)
// ILP for iterative cycle extraction

cycles = ExtractCycles (CFG,profile)
// Find dataflow subgraph of each cycle

foreach c ∈ cycles do
subgraph (c) = FindDataflowSubgraph (c,DFG)

// 2. Optimize performance

foreach c ∈ cycles do

// Choice-free subgraph throughput

th.add(ThroughputConstraints(subgraph(c)))

foreach u ∈ DFG do

// CP of entire dataflow graph

cp.add(PeriodConstraints(u,e))

// MILP to max. throughput under CP constraint

buffers = MILP (th,cp,CPtarget)

Algorithm 3.1: Performance optimization.

throughput term are proportional to the runtime fraction of the corresponding CFDFC in the

program profile and the number of units it contains (i.e., for CFDFC i , wi = unitsi · freqi /freqtot).

We choose the constant λ= 10−5 to account for the minimization of buffer sizes. The MILP relies

on static timing information about the unit delays—we consider exclusively the datapath of

each unit. We present our results for two target periods: 4 ns and 3 ns—in the rest of this section,

we denote the corresponding results as MILP 4 and MILP 3.

We use ModelSim to measure throughput (represented as the average loop initiation interval, I I

= 1/Θ) and to verify functional correctness. We target a Xilinx Kintex-7 FPGA and we use Vivado

to measure the delays of the units. We obtain the clock period (CP) and the resource usage after

placement and routing. We use the CBC mixed-integer programming solver [24] and measure

its runtime on an Intel® Core™ i7-8550U CPU (i.e., a standard consumer laptop) at 1.80 GHz.

3.6.2 Benchmarks

We explore various kernels from literature [80, 99] and the PolyBench suite [98]; they contain

pipelined computational units and exhibit different loop properties and organizations, as listed

in Table 3.1: (1) Sumi3 calculates the sum of array element cubes; it is similar to the example

48

3.6. Evaluation

Table 3.1 – Benchmark characteristics. Set and CFDFC count of
our benchmarks, as well as main property of their loops.

Benchmark Sets CFDFCs Property

Sumi3 1 1 regular

Fir 1 1 regular

MatVec 1 2 regular

BiCG 1 2 regular

IIR 1 1 loop-carried dependence

Cordic 1 1 loop-carried dependence

Covar 3 7 regular

Covar (f) 3 7 loop-carried dependence

Gemver 4 7 regular

CDiv 1 2 conditional execution

from Figure 3.3c. FIR (Finite Impulse Response), MatVec (Matrix-Vector Multiplication), and

BiCG (BiCGStab Linear Solver) are regular kernels implemented as a single loop or loop nest.

IIR (Infinite Impulse Response) and Cordic (COordinate Rotation DIgital Computer) have loop-

carried dependences which take multiple cycles to compute and therefore limit the achievable

loop initiation interval. Covar and Covar (f) implement the integer and floating-point version

of the covariance computation, with and without multiple-cycle loop-carried dependences,

respectively. These two benchmarks as well as Gemver contain multiple loop nests (i.e., multiple

CFDFC sets), as indicated in the table. Finally, CDiv calculates a complex quotient of complex

numbers—the loop contains a noninlined if-else condition (i.e., it is implemented as two

CFDFCs, similar to the example in Figure 3.7); we assume a data distribution where the if-

condition is taken in 55% of the total loop iterations.

3.6.3 Comparison with Naive Buffer Placement

We demonstrate the performance superiority of our optimized circuits over equivalent designs

with buffers placed naively, based on an existing heuristic [73] which cuts every combinational

cycle with a single buffer and does not place any FIFOs into the designs.

Tables 3.2 and 3.3 show our main results. The circuits produced using the naive strategy (i.e.,

Naive) qualitatively correspond to the circuit in Figure 3.3a: they contain the minimal number

of buffers to create functional circuits (i.e., circuits with no combinational loops), but there is no

way to control the critical path and backpressure significantly lowers throughput. In contrast, the

designs optimized using our technique (i.e., MILP 4 and MILP 3) are able to achieve maximum

throughput (i.e., the best possible loop II) of the innermost loops.

The resource increase (shown in Table 3.3) is due to the additional buffers which our technique

employs, as indicated under Buffers. The designs with high throughput require transparent

buffers of larger sizes (i.e., FIFOs) to maintain the token rate; those with a lower target CP need

49

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Table 3.2 – Timing comparison of naive and optimized dataflow circuits. Dataflow circuits
optimized with our strategy, MILP 4 and MILP 3, with a target CP of 4 ns and 3 ns, respectively,
compared to a naive buffer placement (Naive). The II column indicates the initiation intervals
of the innermost loops. The rightmost column indicates the MILP runtime (the value of 3600
indicates a timeout of 1 hour).

Benchmark Method CP
(ns)

II= 1/Θ Execution
Time (µs)

Speedup MILP
Runtime (s)

Sumi3
Naive 4.3 10 43.0 − −

MILP 4 4.0 1 4.1 10.6× 0.1
MILP 3 3.5 2 7.1 6.1× 1.2

FIR
Naive 4.3 6 25.8 − −

MILP 4 3.6 1 3.6 7.2× 0.1
MILP 3 3.5 2 7.0 3.7× 0.8

MatVec
Naive 5.9 6 31.9 − −

MILP 4 4.0 1 3.6 8.9× 15.7
MILP 3 3.9 2 7.3 4.4× 25.0

BiCG
Naive 6.0 6 32.4 − −

MILP 4 5.9 1 6.4 5.0× 1328.4
MILP 3 4.1 2 7.7 4.2× 2195.5

IIR
Naive 5.9 6 35.4 − −

MILP 4 3.9 5 19.5 1.8× 1.1
MILP 3 3.4 5 17.0 2.1× 20.1

Cordic
Naive 5.8 20 116.1 − −

MILP 4 4.5 20 87.8 1.3× 8.1
MILP 3 5.0 20 97.6 1.2× 8.1

Covar
Naive 6.8 2, 4, 4 698.5 − −

MILP 4 6.5 1, 1, 1 197.5 3.5× 3600
MILP 3 5.6 2, 2, 2 182.9 3.8× 3600

Covar (f)
Naive 7.1 11, 11, 17 1833.6 − −

MILP 4 7.2 11, 1, 11 1057.2 1.7× 3600
MILP 3 5.4 11, 2, 11 865.7 2.1× 3600

Gemver
Naive 7.7 6, 10, 2, 10 180.7 − −

MILP 4 7.4 1, 1, 1, 1 23.5 7.7× 3600
MILP 3 5.5 2, 2, 2, 2 31.3 5.8× 3600

CDiv
Naive 10.5 40, 40 787.9 − −

MILP 4 7.5 3, 3 23.3 33.8× 25.4
MILP 3 7.2 5, 5 36.8 21.4× 153.9

more nontransparent buffers to cut the combinational paths but use smaller buffer sizes due

to the lowered throughput (consider, for instance, the buffer sizes in the MILP 4 and MILP 3

solutions of Sumi3). Setting a low target CP degrades throughput (as it requires the insertion

of multiple nontransparent buffers on cyclic paths) and, consequently, performance, in all

applications but the IIR, Covar and Covar (f). In these applications, the throughput is dictated by

the pipelined units on the cyclic paths and not influenced by the additional buffers, so the total

execution time benefits from the lowered CP. The discrepancies between the target and achieved

CP are largely due to the timing variations caused by FPGA place-and-route. Our timing model

could be further refined for greater accuracy without any qualitative change (e.g., by including

setup delays of the buffers and considering the impact of control paths).

50

3.6. Evaluation

Table 3.3 – Resource comparison of naive and optimized dataflow circuits. LUTs, FFs, and DSPs of
circuits optimized with our strategy, MILP 4 and MILP 3, with a target CP of 4 ns and 3 ns, respectively,
compared to a naive buffer placement (Naive). The types of instantiated buffers are shown under
Buffers (e.g., 3 N2-4 indicates the usage of 3 nontransparent buffers with two to four slots).

Benchmark Method LUTs FFs DSPs Buffers

Sumi3
Naive 287 331 6 3 N2

MILP 4 402 (+40%) 403 (+22%) 6 8 N1-2, T4, 2 T9
MILP 3 413 (+44%) 522 (+58%) 6 10 N1-2, 2 T1-2, 2 T5

FIR
Naive 380 384 3 3 N2

MILP 4 463 (+22%) 526 (+37%) 3 5 N1-2, 2 T6-7
MILP 3 628 (+65%) 688 (+79%) 3 7 N1-2, 2 T4-5

MatVec
Naive 626 517 3 6 N2

MILP 4 843 (+35%) 631 (+22%) 3 11 N1-2, 5 T3-8
MILP 3 947 (+51%) 849 (+64%) 3 16 N1-2, N4, 6 T1-3

BiCG
Naive 831 758 6 6 N2

MILP 4 1144 (+38%) 1157 (+53%) 6 16 N1-3, 7 T1-3, 4 T5-7
MILP 3 1140 (+37%) 1255 (+66%) 6 14 N1-2, 2 N4-5, 8 T1-3

IIR
Naive 648 663 6 5 N2

MILP 4 745 (+15%) 1096 (+65%) 6 10 N1-2, 6 T1-2
MILP 3 772 (+19%) 1094 (+65%) 6 12 N1-2, 5 T1-2

Cordic
Naive 1950 2754 24 7 N2

MILP 4 2075 (+6%) 3086 (+12%) 24 16 N1-2, 9 T1-2
MILP 3 2145 (+10%) 3016 (+10%) 24 17 N1-2, 9 T1-2

Covar
Naive 2347 1801 3 23 N2

MILP 4 3882 (+65%) 3024 (+68%) 3 44 N1-3, 16 T1-3, 6 T4-19
MILP 3 3953 (+68%) 3388 (+88%) 3 54 N1-3, 20 T1-3, 3 N4-9

Covar (f)
Naive 3493 3795 9 23 N2

MILP 4 4298 (+23%) 4727 (+25%) 9 43 N1-3, 18 T1-3, 3 N6-10, 4 T6-20
MILP 3 4558 (+30%) 5196 (+37%) 9 46 N1-3, 24 T1-3, 2 N5-6, 6 T4-13

Gemver
Naive 3098 2903 18 30 N2

MILP 4 4076 (+32%) 3990 (+37%) 18 60 N1-3, 7 T1-3, 8 N5-12, 5 T4-10
MILP 3 4066 (+31%) 4353 (+50%) 18 58 N1-3, 29 T1-3, 3 T4-7, 2 N5-7

CDiv
Naive 14461 14081 18 6 N2

MILP 4 15197 (+5%) 14780 (+5%) 18 11 N1, 6 T1-2, 8 T11-26, 8 N13-26
MILP 3 15164 (+5%) 14946 (+6%) 18 12 N1, 8 T1, 16 T6-16

3.6.4 MILP Runtime Analysis

The rightmost column of Table 3.2 reports the runtime of the MILP for performance optimization.

In all our benchmarks, the runtime of the ILP for extracting the CFDFC was negligible (i.e., less

than 0.1 s) in comparison to the MILP runtime. It is evident from the table that the MILP runtime

significantly depends on the size and complexity of the application—larger applications need a

prolonged MILP runtime because the MILP covers the units and channels of the entire dataflow

graph, as discussed in Section 3.5.

MILP solvers tend to find an acceptable solution (i.e., a near-optimal cost function value) early

on and then spend a long time attempting to improve it. This effect is evident from Figure 3.15a,

which shows the obtained cost function value (i.e., the sum of the weighted CFDFC throughputs,

as given in Equation 3.14), relative to the optimal cost function value for a given target CP. The

graph depicts only the results of the benchmarks which take longer than 1 second to converge

51

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

to the optimum value of 1. While it is clear that the convergence time is lower than the overall

MILP runtime reported in Table 3.2, it is still nonnegligible in certain cases (e.g., Gemver requires

at least 30 minutes of MILP runtime to find a good solution).

We investigate the effectiveness of the heuristic from Section 3.5 to reduce the MILP runtime. We

organize the CFDFCs into independent sets and employ the MILP on each set separately. The

results we obtain are plotted in Figure 3.15b which compares the obtained cost function result

to the optimal result, exactly as in the previous graph. Contrasting the two graphs indicates that

this method successfully lowers the time needed for the MILP to converge.

The two versions of the MILP which we have considered so far optimized all CFDFCs of the

program. Our next experiment is based on the intuition that some CFDFCs do not contribute

significantly to the execution time of the application (e.g., the outermost loop of a nested

loop)—they can be removed from the cost function without a notable performance penalty. We

demonstrate this effect in Figure 3.15c, where we compare the cost value of the MILP which

optimizes the throughput of a single, most important CFDFC per set, with the optimal MILP

cost value, as in the previous graphs. This MILP converges rapidly and, in most cases, obtains a

near-optimal value, as the removed CFDFCs contributed to the cost function with a negligible

weight factor. However, some applications such as CDiv suffer from this simplification: this

application has two CFDFCs with similar contributions (i.e., 55% and 45%) to execution time;

optimizing the throughput of only one CFDFC lowers the obtainable cost function value and,

consequently, application performance.

The results of our runtime analysis can, therefore, be summarized as follows: (1) it seems

possible to rely on timeouts to find good solutions in reasonable runtime, (2) the heuristic from

Section 3.5 helps in further reducing the MILP runtime, and (3) not all CFDFCs play an important

role in achievable application performance; it is possible to simplify the MILP to account for

this fact and to further reduce its runtime at a negligible penalty.

3.6.5 Comparison of MILP Solutions

To complement our runtime analysis from the previous section, we evaluate the quality of

solutions obtained in the following manner: (1) we choose a timeout of 1 minute to terminate

the MILP, (2) we split the CFDFCs into sets to employ the heuristic from Section 3.5, and (3) in

the cost function of each set, we include all CFDFCs, starting from the one with the highest

weight, until there is at least an order of magnitude difference in the cost term weight between

the last one included and the first one not included. This ensures that the most relevant CFDFCs

of each set are optimized (e.g., the innermost loops of our benchmarks; in CDiv, this approach

includes the throughput optimization of both the if and the else branch).

Figure 3.16 shows the cycle count, total execution time, and resource consumption of the

solutions obtained in such a manner, relative to the optimal MILP solutions from Tables 3.2

and 3.3. In applications which have a single CFDFC per set, the obtained cycle count is equal

52

3.6. Evaluation

Timeout (s)

R
el

at
iv

e
cu

m
u

la
ti

ve
 t

h
ro

u
gh

p
u

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Covar, MILP 4

Covar, MILP 3

Covar (f), MILP 4

Covar (f), MILP 3

Gemver, MILP 4

Gemver, MILP 3

Cdiv, MILP 4

Cdiv, MILP 3

(a) Full MILP (i.e., single MILP for entire application).

R
el

at
iv

e
cu

m
u

la
ti

ve
 t

h
ro

u
gh

p
u

t

Timeout (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Covar, MILP 4

Covar, MILP 3

Covar (f), MILP 4

Covar (f), MILP 3

Gemver, MILP 4

Gemver, MILP 3

Cdiv, MILP 4

Cdiv, MILP 3

(b) MILP in CFDFC sets.

R
el

at
iv

e
cu

m
u

la
ti

ve
 t

h
ro

u
gh

p
u

t

Timeout (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Covar, MILP 4

Covar, MILP 3

Covar (f), MILP 4

Covar (f), MILP 3

Gemver, MILP 4

Gemver, MILP 3

Cdiv, MILP 4

Cdiv, MILP 3

(c) MILP in CFDFC sets, single CFDFC per set.

Figure 3.15 – Runtime comparison of the full MILP with the MILP applied on individual CFDFC sets.

53

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Cycle count ratio (set MILP/full MILP)

0.8

0.9

1

1.1

1.2

1.3

Sumi3 FIR MatVec BiCG IIR Cordic Covar Covar (f) Gemver Cdiv

MILP 4 MILP 3

(a) Cycle count ratio (MILP in sets/full MILP).

0.8

0.9

1

1.1

1.2

1.3

Sumi3 FIR MatVec BiCG IIR Cordic Covar Covar (f) Gemver Cdiv

MILP 4 MILP 3

(b) Execution time ratio (MILP in sets/full MILP).LUT ratio (set MILP/full MILP)

0.8

0.9

1

1.1

1.2

1.3

Sumi3 FIR MatVec BiCG IIR Cordic Covar Covar (f) Gemver Cdiv

MILP 4 MILP 3

(c) LUT count ratio (MILP in sets/full MILP).FF ratio (set MILP/full MILP)

0.8

0.9

1

1.1

1.2

1.3

Sumi3 FIR MatVec BiCG IIR Cordic Covar Covar (f) Gemver Cdiv

MILP 4 MILP 3

(d) FF count ratio (MILP in sets/full MILP).

Figure 3.16 – Comparison of solutions obtained by applying the MILP on individual CFDFC sets with the
optimal MILP solutions. The optimal solutions are obtained by employing the MILP on the entire circuits,
as shown in Tables 3.2 and 3.3.

54

3.6. Evaluation

Table 3.4 – Timing and resources of kernels which contain computational units with variable latency
and II, as well as if-conversion. We compare kernels optimized with our strategy (MILP 4) to those with
a naive buffer placement (Naive). The II and execution time are shown as a range from the best-case
to the worst-case behavior, as determined by data dependences.

Bench-
mark

Method CP
(ns)

II= 1/Θ Execution
Time (µs)

Speedup LUTs FFs DSPs

Histogram
Naive 6.1 2.0-12.0 12.2-73.2 − 16627 3529 2

MILP 4 6.3 1.0-12.0 6.4-75.6 1.9−1.0× 16879 3562 2

Matrix
power

Naive 6.0 3.5-11.7 8.1-26.7 − 16870 3696 5
MILP 4 6.2 2.0-11.5 4.9-27.2 1.7−1.0× 16955 3744 5

If loop
add

Naive 4.9 12.0-20.0 58.8-98.0 − 903 1284 4
MILP 4 5.0 1.0-10.0 5.1-50.1 11.6−2.0× 960 1318 4

If loop
mul

Naive 5.0 12.0-16.0 60.0-80.0 − 858 1091 5
MILP 4 5.2 1.0-6.0 5.3-31.3 11.4−2.6× 892 1127 5

to the optimal because our heuristic covers the entire application; in others (i.e., applications

with nested loops) the count slightly increases because the throughput of the outer loops is not

optimized. The total execution time varies due to the changes in obtained frequency (largely

caused by FPGA place-and-route, as discussed earlier). In most cases, these solutions require

fewer resources than the optimal MILP solutions—as the throughputs of certain loops are not

optimized, fewer FIFOs are instantiated. All these variabilities are expected and in an acceptable

range for the significant MILP runtime reduction which this heuristic approach offers.

3.6.6 Variable Latency, II, and If-Conversion

In this section, we investigate the effectiveness of our method to model units with variable

latency and II, as well as if-conversion. The benchmarks we evaluate exhibit data-dependent

and variable behavior: Histogram and Matrix power have memory access patterns which cannot

be determined at compile time; as we will discuss in Chapter 5, they require a load-store queue

at the memory interface, which exhibits variable latency and II depending on the runtime-

determined data dependences. If loop add and If loop mul have a potential dependence across

loop iterations; the data to send to the following iteration is selected using a select unit based on

a data-dependent condition, determined during program execution; If loop add is the kernel

from Figure 2.3 and If loop mul differs only in the conditional computation. All these kernels

represent situations where dataflow circuits excel in contrast to statically scheduled HLS circuits.

We follow the rules from Sections 3.4.2, 3.4.3, and 3.4.4 to model the behavior of these kernels

and compare them to the same kernels where buffers are placed naively. Our results are shown

in Table 3.4. As the average II and execution time in all kernels depend on the input data, we

indicate these values as a range from their minimum to their maximum value. In the kernels

with the LSQ, the best-case scenario (i.e., with the smallest II and execution time) corresponds

to a situation where there are no RAW dependences among loop iterations; in the kernels with

55

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
u

p
 (

n
ai

ve
 b

u
ff

er
s/

o
p

t
b

u
ff

er
s)

Iteration distance of RAW dependences
(uniform distribution)

Histogram Matrix power

(a)

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Sp
ee

d
u

p
 (

n
ai

ve
 b

u
ff

er
s/

o
p

t
b

u
ff

er
s)

Percentage of short iterations (if condition not taken)

If loop add If loop mul

(b)

Figure 3.17 – Speedup of the optimized kernels with respect to the naive kernels for varying data and
control dependences. In Figure 3.17a, we change the number of iterations between dependent read and
write accesses. In Figure 3.17b, we change the percentage of short loop iterations (i.e., the percentage of
loop iterations where the long-latency if-condition is not taken).

56

3.6. Evaluation

the select unit, the same is achieved when there are no loop-carried dependences. The other

extreme is obtained when every pair of loop iterations has a RAW dependence and a loop-carried

dependence, respectively. All other possible data points fall in the middle of the shown ranges.

In Figure 3.17, we show the speedup (i.e., execution time ratio) of the optimized kernels with

respect to the naive kernels for a varying number of data or control dependences (i.e., the data

points which are within the execution time range shown in Table 3.4). In Figure 3.17a, we explore

the execution time of Histogram and Matrix power for a varying number of iterations between

dependent read and write accesses (e.g., distance 2 indicates that a load reads a value which is

stored into memory two iterations ago). In Figure 3.17b, we explore If loop add and If loop mul

while changing the percentage of short loop iterations, i.e., the iterations where the if-condition

is not taken and there is no loop-carried dependence.

As Table 3.4 and Figure 3.17 illustrate, the naive technique achieves only limited pipelining,

whereas the kernels optimized with our approach are able to achieve the highest possible

throughput. In these examples, the achievable throughput is variable and dependent on the

actual data dependences: When a large number of dependences is present, the II increases

to honor them; still, the optimized kernels typically achieve higher throughput than the naive

kernels, which suffer from backpressure and suboptimal buffering even in those cases. As the

number of dependences decreases (i.e., the iteration distance between RAWs or the percentage

of short iterations grows), the kernels become more pipelineable; the optimized designs benefit

from the appropriate buffering to achieve better performance and larger speedups. When there

are no dependences, all optimized kernels achieve the best possible II.

The resource trends in Table 3.4 follow the ones we discussed in Section 3.6.3 and depend on

the number and the capacity of the inserted buffers; the overheads of our technique are minor

and probably acceptable for the significant performance benefits, which indicates that our

technique is critical to truly capture the variable and dynamic behavior of dataflow circuits.

3.6.7 Effectiveness of the CP Constraint

In this section, we further explore the capabilities of our model to control the critical path.

We analyze the effects of the CP constraint on an unrolled accumulator, implemented as a

binary tree of adders with 16 inputs; this example gives more room for CP exploration than

the benchmarks from the previous section. We present the results in Table 3.5. The naively

obtained CP corresponds to the combinational path through the entire adder tree. Lowering

the constraint inserts buffers between different tree stages. Although the achieved CP tracks

well the constraint in most cases, the maximum frequency cannot be reached. This effect is

most likely due to the control paths which are not included in our timing model and become

dominant with tighter CP constraints. Our timing model could be further refined to account for

these effects as well.

57

Chapter 3. Buffer Placement and Sizing for High-Performance Dataflow Circuits

Table 3.5 – Exploration of the effectiveness of the clock period
(CP) constraint on a tree of combinational adders.

Target
CP (ns)

Achieved
CP (ns)

II =
1/Θ

Execution
Time (µs)

LUTs FFs

− 9.1 2 15.7 1578 1665
8 7.7 1 7.7 1632 1742
6 5.7 1 5.7 1661 1810
4 4.1 1 4.1 1853 2084
3 3.6 2 7.2 2188 2696

3.7 Conclusions

In this chapter, we presented a performance optimization model for dataflow circuits obtained

out of C code. Our mixed-integer linear programming model is based on the theory of marked

graphs and allows for resource-optimal buffer placement and sizing, with the purpose of maxi-

mizing throughput at the desired clock frequency. In addition to the exact model formulation,

we described a computationally-efficient heuristic which achieves near-optimal results; its

ability to handle large benchmarks makes our approach applicable to real-world and complex

workloads. On benchmarks obtained out of C code, we demonstrated the ability of our approach

to achieve high-throughput, pipelined dataflow circuits. We showed that our approach effec-

tively handles different HLS features such as pipelined computational units, variable-latency

memory interfaces, and if-converted code. This optimization is one of the key steps in making

dynamic scheduling truly competitive with existing HLS techniques.

58

4 Resource Sharing in Dataflow Circuits

Now that our circuits are able to achieve high-throughput pipelines, we address another impor-

tant optimization aspect: sharing functional units to save resources. As discussed in Section 2.4.2,

the scheduling flexibility of dataflow circuits makes sharing challenging: in the absence of a pre-

determined schedule, the cycle in which each operation executes is unknown. Hence, dataflow

approaches typically employ an individual unit for each operation and result in area-expensive

solutions. The intuition on how to implement sharing in a dataflow context is fairly straight-

forward: instead of relying on cycle information on operation execution, one could consider

statistical information on unit utilization—if a certain unit is, on average, underutilized (i.e.,

not always busy computing), it may be possible to share it with another underutilized unit.

However, on its own, this strategy does not consider two important concerns: (1) Sharing may

compromise some of the fundamental functional properties of dataflow circuits; one needs

to ensure that the resulting circuits are always deadlock-free. (2) Sharing may postpone the

execution of some operation with respect to its execution in the original dataflow circuit and,

consequently, compromise performance; one needs to evaluate and minimize this performance

impact.

In this chapter, we present a complete methodology to implement resource sharing in dataflow

designs. We illustrate the difficulties of performing resource sharing in the context of dataflow

circuits; we formulate the necessary requirements to ensure deadlock-free execution and im-

plement a sharing mechanism accordingly. We then discuss how to appropriately model and

minimize the impact of delays caused by sharing. Finally, we show that our technique results in

up to 72% DSP reduction with minimal or no impact on execution time compared to dataflow

circuits which do not implement resource sharing.

4.1 Motivation

To illustrate the challenges of resource sharing in dataflow circuits, we revisit the code from

Figure 2.11 in Figure 4.1. The execution of this circuit starts when a token enters through the

starting point; a new loop iteration is triggered as soon as a token reenters the loop body through

59

Chapter 4. Resource Sharing in Dataflow Circuits

Store a

i=0

End

Start BB

Loop BB

4 stages

Merge

Buff 1

1

Branch

N

+

<

Fork

*

Fork

x

M1 M2

End BB

y

*

Branch

Store a[i]

Mux Merge

ileft iright

x yileft iright

m1,1

m2,1
*

stall ???
Buff 2

for (i = 0; i < N; i++)
a[i*x] = i*y;

M1/2

4 stages

m1,1 m2,1

FIFO

Figure 4.1 – Dataflow circuit and a possible implementation of resource sharing. The two multiplications
of the loop could be computed using a single multiplier, with multiplexing logic at its inputs and its
output. However, this mechanism on its own does not guarantee that the circuit is deadlock-free nor that
its performance is optimal. The multiplication results are indicated as mop,i ter —e.g., m2,1 is the result of
operation M2 from loop iteration 1.

the cyclic path (in this example, every second clock cycle because of two buffers, Buff 1 and Buff

2, on the cyclic path through the merge and the branch).

The loop in the figure contains two pipelined, 4-stage multipliers; all other units, apart from

the buffers, are combinational. Since a new loop iteration starts every second cycle, the two

multiplications of the loop could be performed using a single multiplier. A simple and intuitive

implementation is given on the right of the figure—the merge and mux units are used to steer

one set of input tokens at a time into the shared unit (as indicated in the figure, these units must

communicate to ensure that they always accept the matching operands from their predecessors).

The branch at the output ensures that the result is sent to the appropriate successor, depending

on the origin of the operand tokens—this information is conveyed to the branch by the input

merge through a FIFO.

Surprisingly, this implementation does not guarantee a functional circuit: in this example, the

store needs both operands (i.e., both the address and the data) to execute; it therefore stalls the

available operand (m1,1, i.e., the result of M1 of the first iteration) while it waits for the second

operand (m2,1, i.e., the result of M2). However, because of the stall of m1,1, m2,1 will never be

able to exit the shared unit and arrive to the store, therefore causing deadlock.

Such problems are absent by construction in elementary dataflow circuits, described in Chap-

ter 2, where each operation uses an individual unit and only a single token per loop iteration is

transferred from one unit to another. However, introducing sharing compromises this property;

60

4.2. Deciding What to Share in a Dataflow Circuit

a) Static scheduling b) Dynamic scheduling

M1 M2

2 muls, II = 1 1 mul, II = 2

C1 C2 C3 C4 C5

M1: m1,1

M2: m2,1

M1: m1,2

M2: m2,2

C1 C2 C3 C4 C5

M1/2: m1,1

M1/2: m2,1

M1/2: m1,2

M1/2: m2,2

C6 C7

2 muls, II = 1 1 mul, II = 2

m1,1

m1,2

m2,1

m2,2

m2,1

m2,2

m1,1

m1,2

M1 M2 M1/2

m1,2

m1,4

m1,1

m1,3

m2,2

m2,4

m2,1

m2,3

Figure 4.2 – Resource sharing in static and dynamic scheduling. In static scheduling, resource sharing is
decided based on the cycle information on operation execution; in contrast, dataflow circuits can rely on
average unit utilization to identify good sharing candidates.

it is crucial that we develop a sharing mechanism that handles this issue and ensures the absence

of deadlock in every possible case.

4.2 Deciding What to Share in a Dataflow Circuit

Standard, statically scheduled HLS tools [119, 18] perform scheduling in conjunction with

resource allocation and sharing [120]; depending on the optimization objective, they trade-off

area and performance by deciding the cycle in which each operation executes and allocating

units accordingly. Figure 4.2a shows two possible schedules for the code from Figure 4.1: the

first achieves the ideal loop pipeline with an II of 1 by scheduling both multiplications in the

same cycle, hence employing two multipliers; the second increases the II to 2 and schedules

each multiplication on every second cycle, which allows the usage of a single multiplier.

Dataflow circuits face the same optimization objectives and area-performance trade-offs; how-

ever, there is no predetermined schedule and no information on when each operation executes

to decide how many units to employ. Instead, one can identify units which are, on average,

underutilized, and use this information to implement sharing.

Several authors have discussed techniques for analyzing the timing of dataflow circuits [77, 13,

102, 101, 16]; some determine the rate at which dataflow units compute and can directly provide

the information on average unit utilization. We here rely on our performance optimization

approach presented in the previous chapter, which maximizes the throughput of each CFG cycle

by appropriately placing and sizing buffers. The approach calculates the average occupancy of

each unit with tokens, i.e., for a given throughput of a CFG cycle, determines the average number

of tokens that each unit holds in the steady state of the cycle execution (see Section 3.3.3). We

can use this information to identify good candidates for sharing: if the sum of the tokens in two

units of the same type is at most equal to the unit latency (i.e., number of sequential stages), it

may be possible for the operations to use a single unit without damaging the throughput of the

CFG cycle. Figure 4.2b illustrates this reasoning: if the two multipliers are fully utilized, sharing

cannot be implemented without a throughput penalty; however, if they are only half-utilized,

one could employ a single multiplier instead.

61

Chapter 4. Resource Sharing in Dataflow Circuits

The dataflow circuit in Figure 4.1 exhibits the behavior on the right of Figure 4.2b: Because the

cyclic path contains two buffers, a new token enters the loop on every second cycle, i.e., the

achieved throughput is 1/2. It is then evident that a new token enters each multiplier on every

second cycle as well; in the steady state of the system, each multiplier holds two tokens and

has two empty slots (i.e., the occupancy of each multiplier is equal to 2). It is therefore possible

to implement the two multiplications using a single multiplier which will accept a new token

and start a new multiplication on every cycle—this multiplier will, in the steady state, contain

a token in every pipeline stage (i.e., its occupancy will be equal to 4) and the shared unit will

always be busy computing.

Such a performance analysis approach can ensure that each shared unit receives tokens at a

rate at which it is able to compute. However, this analysis on its own does not recognize that

sharing may postpone a specific computation. For instance, in Figure 4.1, prior to sharing,

both multiplications execute simultaneously (i.e., both m1,1 and m2,1 are computed at the same

time by the two multipliers); with sharing, one multiplication is delayed by one clock cycle (in

the right of Figure 4.2b, the multiplication m2,1 is computed one cycle after m1,1). In certain

cases, such delays may compromise throughput, as we will discuss later. More importantly,

as indicated in Section 4.1, nothing in this analysis guarantees that the dataflow circuit with

sharing is deadlock-free—addressing this issue is the main contribution of this chapter.

4.3 Resource Sharing in Dataflow Circuits

In this section, we present our methodology to implement resource sharing in dataflow circuits.

In Section 4.3.1, we show how to ensure that the circuit is functional when sharing operations in

a straight datapath (i.e., a single BB execution). However, this mechanism does not guarantee

a functional circuit when operations repeat (i.e., loops); thus, we generalize our approach in

Section 4.3.2. We further adapt our solution to address performance concerns in Section 4.3.3

and discuss possible extensions of our scheme in Section 4.3.4.

4.3.1 Sharing in Straight Datapaths

Sharing requires steering data into a unit from multiple predecessor units as well as sending

the output to the appropriate successor unit. This behavior can be realized as on the left of

Figure 4.3, which repeats the situation from Figure 4.1: the input of the shared unit has a merge

for one its operands and a mux for every other operand; the merge and muxes have as many data

inputs as there are shared operations. The merge indicates to the muxes and the output branch

which operand it took so that they can choose the corresponding operands and dispatch the

result to the correct successor, respectively. The merge and the branch communicate through a

FIFO, which has as many slots as there are pipeline stages in the unit.

Yet, as we have discussed before, this scheme is not sufficient to guarantee a functional circuit:

one token may be stalled inside the unit and prevent the others from exiting, potentially causing

62

4.3. Resource Sharing in Dataflow Circuits

Branch

Store a[i]

Mux

x y

m2,1

t-buff m1,1

*

t-buff

Merge

�

ileft iright

Branch

Store a[i]

Mux Merge

x yileft iright

m1,1

m2,1
*

stall ???

M1/2
FIFO

FIFO

Figure 4.3 – Hardware for sharing. A naive implementation (left) results in deadlock. Placing transparent
buffers (t-buffs) on the branch outputs (right) allows all tokens from a single datapath execution to exit
the shared unit and all the computation of the datapath to complete.

deadlock. In this example, as the successor unit needs to join tokens m1,1 and m2,1 to start

computing, m1,1 cannot exit the unit until m2,1 arrives; however, the exact same token (m1,1) is

blocking m2,1 from ever exiting the unit and reaching the store unit, therefore infinitely starving

the store and blocking the shared multiplier from processing other tokens.

The mechanism on the right of Figure 4.3 guarantees that all tokens from a straight datapath

(i.e., a single BB or a sequence of nonrepeating BBs) which enter the shared unit are able to

exit it by adding a 1-slot transparent buffer (i.e., t-buff) at each branch output. In a single BB

execution, each dataflow edge transfers a single token; the output edge of the shared unit, on

the other hand, does not honor this property (i.e., it transfers as many tokens as there are shared

operations), but it sends only one token to each branch output (corresponding to each individual

operation in the original circuit). Hence, the t-buff is sufficient to ensure that each token can

always exit the unit, regardless of the availability of the successor (i.e., if the successor is not

ready, the token will be stored in the t-buff ; otherwise, it will be immediately sent further, as

described in Section 3.1.1). No token will therefore be stalled in the unit, nor will it block other

tokens in the unit; all successor units of the same BB will be able to receive their data and all BB

computation will successfully complete, exactly as it would if no units were shared.

However, as we will see shortly, this hardware does not guarantee deadlock-free execution in

cases where BBs repeat, as in a loop.

4.3.2 Sharing in General Datapaths

The methodology from the previous section guarantees that the circuit is functional only when

sharing within a single BB or a loop iteration; we here extend this implementation to general

programs.

Figure 4.4 shows two examples where the mechanism from Section 4.3.1 still does not manage to

prevent deadlock: (1) Circuit 1 has a similar problem as discussed before, but occurring across

63

Chapter 4. Resource Sharing in Dataflow Circuits

loop iterations: a token from a successive iteration (m1,2) blocks the token from the previous

iteration (m2,1) from exiting the shared unit; at the same time, m1,2 cannot proceed before the

previous computation completes, so both tokens remain stalled in the shared unit indefinitely.

(2) Circuit 2 has a cyclic path from the output of the shared unit to its input. The unit may fill

with tokens and cause deadlock because there is no empty space for the tokens to move (i.e., the

property which guarantees the absence of deadlock, outlined in Section 3.1.3, is violated, as no

buffer slot on the cycle is empty): the token in the unit (m1,2) needs to move into t-buff on the

cycle, but the token in the t-buff (m1,1, corresponding to input z of M2) cannot move back into

the unit before another token exits.

Both problems are due to tokens entering the shared unit in an order different than the one

specified by the control flow of the program—some tokens enter the unit before all tokens

from the predecessor BBs have been sent into the unit and prevent the computation from the

preceding BBs to complete: (1) In circuit 1, instead of consecutively consuming both tokens

from the same BB execution, the unit inputs some tokens from the following loop iteration (i.e.,

the next BB execution) which then prevent one of the previous tokens from ever exiting the

unit. (2) In circuit 2, the token that belongs to the first BB execution (i.e., first loop iteration)

comes from the shared unit itself. However, instead of consuming this token to execute the first

multiplication of M2, the shared unit keeps taking tokens from the following iterations (coming

from the noncyclic path and performing several multiplications of M1), therefore filling the unit

and preventing the older token from the t-buff from propagating further.

The solution to both problems is to send tokens to the shared unit in the order specified by the

control flow (i.e., program order): once the execution of a BB is decided, all tokens from this

BB must be consumed by the shared unit before the tokens from the following BB are allowed

to enter. If all tokens from a BB are injected into the unit before any successive tokens, they

are guaranteed to exit the unit, as described in Section 4.3.1. Always sending tokens into the

unit in order of BB execution ensures that this property holds for any BB and any number of BB

executions, therefore guaranteeing the absence of deadlock.

To implement this behavior, we extend the circuit with a specialized mechanism which enforces

the ordering of tokens from different BBs as they enter the unit, as illustrated on the right of

Figure 4.4; we will detail its implementation in the following sections.

4.3.3 Sharing and Performance

The previous section highlighted the need to order tokens from different BBs as they enter a

shared unit to prevent deadlock. The ordering of tokens from the same BB does not compromise

the functioning of the circuit, but it may impact performance.

In a circuit with sharing, one needs to make sure that the latency of a throughput-critical cycle

is not increased by stalls introduced by the shared unit. Figure 4.5 illustrates this issue. In the

shown dataflow circuit, both multiplications execute simultaneously; M1 is on a loop which

64

4.3. Resource Sharing in Dataflow Circuits

Branch

Store a[i]

x yibuff

m1,2

m2,1

i

t-buff m1,1

*

t-buff

Merge

stall

??? Branch

Store a[i]

x yibuff

m2,1

m1,2

i

t-buff m1,1 t-buff
�

x yibuffi

*

Branch

Store a[0]

Mux Merge

x yz

m1,2

i

z = m1,1

t-buff

m1,3

m1,4

m1,5
stall

???

Branch

Store a[0]

m1,1

t-buff

�

xzi y

m2,1

Store a

i=0

End

Start BB

Loop BB
Merge

Buff 1

1

Branch

N

+

<

Fork

*

Fork
x

M1

End BB

M2*

yz

Store a

i=0

End

Start BB

Loop BB
Merge

Buff 1

1

Branch

N

+

<

Fork

*

Fork

x

M1

M2

End BB

*

i
Buff 2

ibuff y

for (i = 0; i < N; i++)
a[i*x] = i*y;

for (i = 0; i < N; i++)
a[0] = i*x*y;

Circuit 1:

Circuit 2:

Mux

FIFO
FIFO

FIFOFIFO

m1,1

MergeMux

Ordering across BBs

xibuffi MergeMux

Ordering across BBs

i

Figure 4.4 – Deadlock situations. In the shown dataflow circuits, deadlock can occur due to the reordering
of tokens from different BB executions. In circuit 1, the token from the second loop iteration (m1,2)
precedes the token from the first iteration (m2,1) and prevents it from ever exiting the unit. In circuit
2, tokens from multiple iterations may enter the unit before the second multiplication (M2) of the first
iteration issues; the unit fills with tokens and no token can move forward. The solution in both cases is to
force tokens to enter the unit in the order of BB execution, i.e., all tokens from one BB must enter the unit
before the tokens from the successor BBs, as shown in the rightmost figures.

65

Chapter 4. Resource Sharing in Dataflow Circuits

determines the throughput, equal to 1/5 (because of the buffer and the 4-stage multiplier on the

cycle). If the two multiplications share a single unit, one of them will be postponed for a clock

cycle while the multiplier consumes the inputs of the other. If the delayed computation is M1,

the latency of the loop increases and, consequently, lowers the throughput to 1/6.

Therefore, in addition to enforcing ordering of operations from different BBs, as previously

described, one could order operations within each BB as well, as suggested on the right of Fig-

ure 4.5, such that the throughput impact is minimal. We incorporate this notion into our sharing

strategy, as we will describe in Section 4.5: for every possible ordering of shared operations,

we use the performance analysis from Chapter 3 to determine the achievable throughput as

well as to obtain the optimal buffer placement and sizes for the particular configuration—this

exploration allows us to choose an ordering with the least impact on performance.

Note that we now implement a total order of the operations and, therefore, the corresponding

operands always arrive aligned to the unit; hence, the muxes at the unit inputs (see Section 4.3.1)

can be replaced by merges. This will be particularly clear in our implementation of the ordering

logic in Section 4.4.1 and Figure 4.6.

4.3.4 Extending the Ordering Scheme

The ordering rules that we have described so far ensure the absence of deadlock by ordering

tokens across BBs (Section 4.3.2); to ensure the best possible throughput in the presence of

such ordering, we order operations within a BB as well (Section 4.3.3). Interestingly, ordering

tokens across BBs may, in particular cases, lower the throughput of a loop, as it may limit the

overlapping of operations from different loop iterations. This is the case in the second circuit

from Figure 4.4: One could, in principle, implement sharing for M1 and M2 with a throughput of

1/2 (i.e., an II of 2) by starting one of the two multiplications on every consecutive clock cycle.

However, our strategy from Section 4.3.2 lowers the throughput to 1/5—as suggested on the

right of Figure 4.4, the first computation of M2 (m2,1) starts 4 cycles after the start of the first

computation from M1 (m1,1); the next operation from M1 can start on the cycle after the start of

M2. Concretely, our ordering enforces a cycle distance between two consecutive executions of a

single operation to be greater than the number of cycles between the start of the first and the

start of the last operation within the iteration; if this value is higher than the initial loop II, it can

constrain the throughput.

It is important to note that our ordering condition from Section 4.3.2 is sufficient to guarantee the

absence of deadlock in any dataflow circuit with the structural properties described in Chapter 2.

This condition is not always necessary—our generic ordering mechanism could be replaced

by application-specific multiplexing and buffering schemes. For instance, one could relax the

ordering constraint such that a particular number of executions from different iterations are

allowed to overlap—in the example above, allowing an operation from M1 to start before the

operation of M2 from the preceding iteration would lower the II.

66

4.3. Resource Sharing in Dataflow Circuits

Branch

m2,1

t-buff t-buff

ꭗ

y

*

Branch

t-buff t-buff

*

Ordering within a BB
for best throughput

FIFO FIFO

x yibuffi MergeMux

Ordering across BBs

xileft iright

1-cycle
stall

y

x yMerge

xileft iright

Merge

Ordering across
+ within BBs

Branch

t-buff t-buff

�

*

m1,1

FIFO

y

x yi MergeMux

Ordering across BBs

xileft iright

1-cycle stall

Computation order: M1, M2
Throughput = 1/5

Computation order: M2, M1
Throughput = 1/6

for (i = 0; i < N; i*=x)
a[i] = i*y;

Store a[i]

i=0

End

Start BB

Loop BB
Merge

Buff 1

Branch

N

<

Fork

Fork

M1 M2

End BB

y

**

x ileft iright

Figure 4.5 – Performance impact of sharing. The order in which tokens are sent to the shared unit may
impact performance by postponing the execution of a throughput-limiting computation (in this example,
M1 on the cyclic path). Hence, apart from ordering tokens from different BBs as they enter a shared unit,
we also enforce the ordering of tokens of the same BB which has the minimal performance impact.

Intuitively, the number of overlapping iterations could be determined based on the cycle dis-

tances between operation executions and the relation of this value with the achievable II, as

discussed above. To ensure the absence of deadlock, the buffers around the sharing logic

would need to be sized to accommodate for tokens from multiple overlapping iterations. The

technique from Section 4.3.3 would then be extended to order operations among all iterations

which overlap. Naturally, the search space for the appropriate ordering would increase with the

number of overlapping iterations and the ordering logic would grow with the more complex

ordering constraints. Without loss of generality, we here limit our ordering to a single iteration

and the rules from Sections 4.3.2 and 4.3.3. As we will later see, our ordering strategy effectively

implements sharing without a throughput penalty in realistic benchmarks.

67

Chapter 4. Resource Sharing in Dataflow Circuits

4.4 Ordering Implementation and Model

In the previous section, we showed that ordering tokens at the inputs of the shared unit ensures

that the circuit is functional and that its original throughput is maintained. We here detail how

to implement this ordering in the dataflow circuit as well as how to account for it when analyzing

circuit performance.

4.4.1 Implementation

To implement the desired ordering between operations which share a unit, we build an additional

network of dataflow units that strictly mimics the control flow of the program; this in-order

network propagates a data-less token which triggers the advancement of operands to the shared

unit in a predetermined order and only when control flow reaches the corresponding BB. Each

shared operation is associated with a lazy fork in this network; this fork is synchronized (using a

join) with a particular set of inputs to the unit. The fork must be lazy (see Section 2.3.1) so that a

token moves forward in the network and triggers the next fork only after the joined inputs have

been sent to the unit. The forks are separated by buffers which introduce a 1-cycle sequential

delay, i.e., two forks cannot be active at the same time. Hence, only one set of inputs to the unit

will be active at any given clock cycle and the order of activations corresponds to the desired

operation ordering.

Figure 4.6a shows a dataflow circuit with two CFG cycles; the circuit contains three multiplica-

tions which we, in this example, aim to implement using a single multiplier (all other dataflow

units are omitted from the figure for clarity). The in-order network which supplies ordering

information to the shared unit is shown on the left of Figure 4.6b—in this example, it implements

the orderings {M1, M2} in BB1 and {M3} in BB2. When the execution of BB1 starts, the first fork

keeps the token until both inputs of M1 become available and are consumed by the multiplier;

only then does the token from the lazy fork move to the next fork through a buffer, triggering

the execution of M2 at least once clock cycle later. Similarly, assuming that the control flow

decides on the execution of BB2, the in-order network will ensure that M3 executes before

the multiplications from the next iteration of BB1 (i.e., M1 and M2). The in-order network of

Figure 4.6b together with the joins effectively implements the functionality of the rightmost

ordering component in Figure 4.5.

4.4.2 Sharing Model for Performance Analysis

To determine whether sharing affects performance, as discussed in Section 4.3.3, we need to

analyze the throughput achieved in each CFG cycle and compare it to the throughput achieved

prior to sharing. The latter is directly obtainable for the circuit in Figure 4.6a using the per-

formance analysis from Chapter 3 which provides us with the throughput of the two CFG

cycles. However, the circuit representation in Figure 4.6b is not directly suitable for performance

analysis—determining the throughput of each CFG cycle requires every operation to be repre-

68

4.4. Ordering Implementation and Model

*
M1

M2

*M3

in1

Join

in2

Control-only, no buffs
Control-only

BB2

BB1

BB3

LForkLFork

Branch

Merge

Merge

Buff

LFork

Buff

LFork

Branch

*

*

*

BB2

BB1

BB3

a) Dataflow circuit b) Sharing implementation

c) Performance model of sharing

M1

M2

M3

for (i = 0; i < N; i++)
M1; M2;
if (cond) M3;

Data + control
Control flow

* FIFO

Buff

LFork

Merge Merge

in1

Join

in2

in1

Join

in2

in1

Join

in2

BB2

BB1

BB3

LForkLFork

Merge

Merge

Buff

Buff

Buff

LFork
in1

Join

in2

*

in1

Join

in2

Branch

Branch

Branch

LFork

LFork

M1/2/3

M1 inputs

M2 inputs

M3 inputs

Figure 4.6 – Sharing implementation and model. A specialized in-order dataflow network enforces the
specified ordering of operations in the shared unit. The same network is used during performance
analysis to model delays introduced by sharing.

69

Chapter 4. Resource Sharing in Dataflow Circuits

BB2

BB1

BB3

LForkLFork

Branch

Merge

Merge

LFork

Buff

Branch

xibuffi
BB1 start

BB2 start

* FIFO

Buff

Branch

Control-only, no buffs
Control-only

Data + control
Control flow

BB1 order: M1, M2
BB2 order: M3

Selector

LFork

Inputs of M1, M2, M3

in1 in2 sel

Figure 4.7 – Optimized sharing implementation. We use the in-order network described in Section 2.3.3
which, instead of sending an ordering signal per operand, sends a signal per BB; the selector uses this
information to enforce a preencoded ordering of operations within each BB.

sented as an individual unit in a particular BB (and, consequently, analyzable as part of a CFG

cycle); furthermore, the merge and branch units at the shared unit inputs and output are not

immediately compatible with the choice-free behavior that such performance analysis requires,

as detailed in Section 3.2.1.

Hence, for the performance analysis, we represent each operation individually in its original BB

and model the effects of sharing with the in-order network described in the previous section; it

connects the individual operators and describes the cycle-delays due to the enforced ordering,

as shown in Figure 4.6c. The performance analysis will determine the throughput achievable

with this circuit configuration and the corresponding delays. The comparison of the achieved

throughput with that of the original circuit indicates whether the sharing and the explored

ordering are desirable; we will include this aspect in the sharing strategy in Section 4.5.

4.4.3 Optimized Implementation

The sharing logic of Section 4.4.1 may quickly grow in complexity because each shared unit

requires its own in-order network with as many lazy forks and buffers as there are shared

operations; clearly, it is desirable to unify all these networks. Additionally, as we described in

Section 2.3.3, our circuits already have an in-order network expressing the dynamic succession

of BBs executed. Therefore, we adapt our implementation so that all shared units can directly

leverage this existing network.

Our simplified implementation is shown in Figure 7. The network on the left of the figure is

what already exists in the dataflow circuit: it emits tokens corresponding to the succession of

BBs and, as our original network, the use of lazy forks separated by buffers ensures that each BB

70

4.4. Ordering Implementation and Model

BB1 order: M1, M2
BB2 order: M3

BB id

BB operands

Mux Mux

BB1 start BB2 start
Inputs of M1,

M2, M3

reset count

BB order

0

1+

Outputs to
shared unit

in1 in2 sel

in
d

ex

Parameterizable logic with handshake interfaces

reg enable

mux input

va
lid

re
ad

y

valid

ready

Fo
rk

BB1 id BB2 id

Merge

Application-specific (encoded) BB information

=
FIFO

Figure 4.8 – Implementation of the selector unit. The internal selector logic (grey) selects the appropriate
data inputs of the muxes on the left based on the order of BB execution (i.e., the BB start signals) and the
preencoded operation order for each BB.

start signal is triggered strictly in order. Essentially, the difference compared to Figure 6b is that

the selector receives a single ordering signal per BB instead of an ordering signal per operand:

thus, every time a BB starts, the selector needs to enforce the ordering of the corresponding BB

operands (preencoded in the selector unit) before the operands of the subsequent BB.

Figure 4.8 details the selector unit implementation. It contains a FIFO which stores the IDs of the

incoming BBs as they arrive in program order and one at a time from the in-order network. The

BB id at the head of the FIFO selects the preencoded ordering information of the corresponding

BB (i.e., a vector with the operand order, BB order, and the total number of operands of this

BB, BB operands). An internal counter enables the appropriate input ports (mux input) of the

data muxes on the left of the figure; a mux port is enabled only after the previous port has sent

a token into the unit. A BB id is removed from the queue when all its operations have started

executing, moving the successor BB to the head of the queue and allowing its tokens to enter the

shared unit next.

The size of the encoded ordering information depends on the total number of operations

sharing the unit, S, maximal number of units within a single BB, Sbb , and the number of BBs

connected to the selector, B : (1) BB id requires max(1,
⌈

log2(B)
⌉

) bits, (2) BB order requires

Sbb ×max(1,
⌈

log2(S)
⌉

) bits, and (3) BB operands requires max(1,
⌈

log2(Sbb)
⌉

) bits. Typically,

only a few operations share a unit and these values are relatively small (e.g., in the example

of Figure 4.8, BB id, BB order, and BB operands require 1, 4, and 1 bits, respectively). The

complexity of the multiplexing logic in the selector follows the same trends; it is typically minor

in comparison to the 32- or 64-bit data multiplexers (left of the selector in Figure 4.8), which are

necessary in any sharing implementation and are not an overhead of our particular strategy.

71

Chapter 4. Resource Sharing in Dataflow Circuits

4.5 Putting It All Together

In the previous sections, we discussed how to achieve correct and performance-efficient resource

sharing in dataflow circuits; we here describe our sharing strategy, summarized in Algorithm 4.1.

Initially, every operation is considered a separate group (i.e., a separate unit). Our strategy

attempts to merge different groups which can share the same physical resource without com-

promising the throughput of any of the loops as follows:

1. Sharing within a loop nest, i.e., within a strongly connected component of the CFG graph.

For every pair of groups which belong to the same loop nest and whose sum of token

occupancies is at most equal to the unit latency (i.e., which are determined underutilized,

as described in Section 4.2), we exhaustively explore all ordering combinations between

the operations of these groups until an ordering which does not damage the throughput

of any of the loops is found. The ordering is modeled as illustrated in Section 4.4.2 and the

throughput evaluation is based on the performance analysis from Chapter 3. If such an

ordering exists, the groups will be merged and the occupancy of the group will be updated;

otherwise, the merging is discarded. This process repeats until no further merging can

be performed without a performance penalty. The final ordering within each group

corresponds to that found in the last successful merge and the buffer placement and

sizing to that determined in the last grouping.

2. Sharing across loop nests. In this step, we merge every distinct group of one loop nest with

any distinct group of another (if available and not already merged with another group

from the same loop nest); the ordering of operations of each BB remains as determined in

the previous step.

3. Sharing other units. We merge the units which do not belong to any loop with any of the

groups from the previous steps.

The first step ensures that sharing never damages the throughput of any of the interconnected

loops. In the second step, throughput analysis is not needed because different loop nests,

in general, execute consecutively—while some final iterations of one loop may overlap with

the initial iterations of another, two operations from different loop nests will never execute

simultaneously in the steady state. The same holds for units which do not belong to any loop.

Figure 4.9 illustrates this strategy with an example. The given CFG has two loop nests; although

not visible in the figure, we assume for the purpose of this example that M1 and M3 are on

paths which are critical for throughput and, hence, should not be shared. In the first step, the

operations are grouped while evaluating throughput, as shown on the right of the figure. The

second step groups operations across the loop nests (e.g., M5 is grouped with M1 and M2) and

the third step adds the remaining operations (M4) to the previously determined groups. In this

example, the resulting circuit implements five operations using two shared units.

Our strategy minimizes the number of units under a throughput constraint. It is possible to adapt

it to other optimization objectives as well, e.g., honoring a resource constraint: if the constraint

72

4.5. Putting It All Together

// Input: units (all units of the same type, e.g, mul, div,...)

// Input: sets (CFG loop nests, i.e., strongly connected

// components of the CFG)

// Output: globalGroups (sets of operations which share a resource)

// 1. Sharing within a loop nest

forall s ∈ sets do

// Initialize groups to individual units of the loop nest
groups (s) = {u | u ∈ units,u ∈ s}
// Grouping of units

while groups (s) modified do
forall g1, g2 ∈ groups (s), g1 6= g2 do

// If sum of token occupancies is at most equal to

// the unit latency, sharing may be possible

if
•
Θg1 +

•
Θg2≤ Lu then

// Exhaustive search for best ordering in group

forall ord ∈ possible_orderings (g1 ∪ g2) do

// Use MILP to evaluate throughputs

if throughput (s, ord) = throughput (s) then

// Merge groups and update the ordering

groups(s).update (g1, g2, g1 ∪ g2,or d)

// Update token occupancy of merged group
•
Θg1∪g2=

•
Θg1 +

•
Θg2

// Terminate ordering search

break

// 2. Sharing across loop nests

globalGroups = {}
forall s ∈ sets do

// Merge every distinct group of one loop nest

// with distinct groups of other nests

i = 0
forall group ∈ groups (s) do

globalGroups (i++).add (group (s))

// 3. Sharing other units

// Merge every remaining unit with any of the existing groups

i = 0
forall u ∈ {u | u ∈ units,∀s ∈ sets : u ∉ s} do

globalGroups (i++ mod globalGroups.size).add (u)

Algorithm 4.1: Sharing strategy.

73

Chapter 4. Resource Sharing in Dataflow Circuits

BB4

BB2

M2

Initial: {M1}, {M2}, {M3}, {M4}, {M5}

Step 1: Share within loop nests
Loop nest 1: {M1}, {M2}, {M3}
- Share unit for {M1} and {M2}? Yes
(found ordering with throughput
unmodified)

- Share unit for {M1, M2} and {M3}? No
(all orderings degrade throughput)

Loop nest 2: {M5} (nothing to group)

Result: {M1, M2}, {M3}, {M4}, {M5}

Step 2: Share across loop nests
- Share unit for {M1, M2} with {M5}

Result: {M1, M2, M5}, {M3}, {M4}

Step 3: Share other units
- Share unit for {M4} with {M3}

Final result: {M1, M2, M5}, {M3, M4}

BB3

M3

BB1

M1
*

BB5

M4

BB6

M5

* *

*

*

Figure 4.9 – Example execution of our sharing strategy. The execution assumes that units M1 and M3 are
on throughput-critical cycles and, therefore, should not be shared.

is tighter than the group count achieved naturally by our strategy, one could continue grouping

until it is met; the associated performance penalty could be minimized by exploring different

groupings. Our algorithm immediately identifies good sharing candidates (i.e., underutilized

units) for efficient exploration; the search space could be further reduced by a priori excluding

certain orderings within particular groups. We note that providing an efficient algorithm is

orthogonal to our main contribution: showing how to systematically build functional dataflow

circuits which implement sharing.

4.6 Evaluation

In this section, we demonstrate the ability of our approach to implement resource sharing in

dataflow circuits obtained from C code.

4.6.1 Methodology and Benchmarks

We use the methodology from Chapter 2 to implement our dataflow circuits and the performance

optimization from Chapter 3 to maximize their throughput. We evaluate a selection of floating-

point kernels from the PolyBench benchmark suite [98], which contain loop nests with different

properties and computational patterns; most have long-latency loop-carried dependences due

to pipelined floating-point operations which limit the loop initiation interval. In addition, we

74

4.6. Evaluation

Table 4.1 – Resources of dataflow circuits without sharing (i.e., Naive) and with sharing
(i.e., Shared), after place-and-route with Vivado.

Bench-
mark

DSPs LUTs FFs

Naive Shared ratio Naive Shared ratio Naive Shared ratio

atax 10 5 0.50 1970 2076 1.05 2206 1997 0.91
bicg 10 5 0.50 1627 1602 0.98 2018 1814 0.90
gemm 11 5 0.45 2339 2448 1.05 2500 2491 1.00
gemver 28 10 0.36 5580 5433 0.97 6753 5418 0.80
gesummv 18 5 0.28 2648 2666 1.01 3163 2528 0.80
2mm 16 5 0.31 3785 4200 1.11 4155 4153 1.00
3mm 15 5 0.33 3700 3653 0.99 3524 3096 0.88
mvt 10 5 0.50 2017 2029 1.01 2253 1878 0.83
if loop add 4 4 1.00 960 960 1.00 1318 1318 1.00

revisit the If loop add kernel from the previous chapter. Our primary goal is to minimize the DSP

usage without affecting loop throughput; we hence attempt to share floating-point operations

which are realized in DSPs following the strategy from Section 4.5 and implemented as described

in Section 4.4.3.

We use ModelSim to measure execution cycle count and to verify functional correctness. Our

designs target a Xilinx Kintex-7 FPGA and employ Xilinx floating-point arithmetic operations

(encapsulated in custom wrappers with handshake signals to communicate with the other the

dataflow units), whereas memory operations connect to dual-port BRAMs. We use Vivado to

obtain the clock period and resource usage of our designs after placement and routing.

4.6.2 Results: Effectiveness of the Sharing Strategy

To evaluate our technique, we compare the resources and performance of dataflow circuits

which do not implement sharing with the circuits optimized using our sharing strategy.

The results of our comparison are shown in Tables 4.1 and 4.2. The circuits without sharing

(labeled as Naive in the tables) achieve the best possible pipelines (i.e., limited exclusively by

the loop-carried dependences) and with a minimal number of cycles. However, they employ an

individual functional unit for each operation in the code, which is reflected in their DSP usage.

In contrast, the designs optimized with our strategy (labeled as Shared) share functional units

among multiple operations of the same type and, consequently, significantly reduce the number

of employed DSPs. The only example where this is not the case is if loop add, which implements

a perfect pipeline, hence, sharing is not desirable—we will further discuss this situation in the

following section. Our strategy ensures that the loop throughput remains unchanged; this is

evident from the cycle count, which either remains identical to the naive solution or, in some

cases, slightly increases. This increase is due to the increase in pipeline latency (i.e., some

operations which use a shared unit execute later than in the original circuit, as described in

Section 4.3.3) or transient effects when independent loops overlap (i.e., when one loop is ending

and another one is starting, sharing might temporarily lower throughput while both loops

75

Chapter 4. Resource Sharing in Dataflow Circuits

Table 4.2 – Timing of dataflow circuits without sharing (i.e., Naive) and
with sharing (i.e., Shared). We measure the cycle count in simulation and
obtain the clock period (CP) from Vivado, after place-and-route.

Bench-
mark

Cycle count CP (ns) Exec. time (µs)

Naive Shared Naive Shared Naive Shared ratio

atax 4140 4459 4.9 4.3 20.3 19.2 0.95
bicg 7909 7910 4.6 4.3 36.4 34.0 0.93
gemm 68827 68827 5.7 4.9 392.3 337.3 0.86
gemver 1817 1899 5.1 5.6 9.3 10.6 1.15
gesummv 7952 8391 5.0 4.9 39.8 41.1 1.03
2mm 16610 17325 5.5 5.6 91.4 97.0 1.06
3mm 24557 24621 5.2 5.5 127.7 135.4 1.06
mvt 15708 15740 4.9 4.9 77.0 77.1 1.00
if loop add 1106 1106 5.0 5.0 5.5 5.5 1.00

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2Ex
e

cu
ti

o
n

 t
im

e
, n

o
rm

al
iz

e
d

Resources, normalized
DSPs FFs LUTs Naive (DSPs, LUTs, FFs)

Figure 4.10 – Execution time and resources of dataflow circuits with sharing, normalized to the designs
without sharing. Note that the main aim of our optimization strategy is to reduce the DSP count.

compete for a shared resource, as indicated in Section 4.5). These effects are perfectly in line

with what we described earlier and arguably acceptable for the significant DSP savings.

The differences in clock period (labeled as CP in the table) are minor, indicating that sharing

does not cause notable CP degradation; the differences are largely due to the timing variations

caused by FPGA place-and-route. In addition to significant DSP reductions, our designs typically

require fewer LUTs and FFs as well, which indicates that the complexity of the components that

we introduce to implement sharing (i.e., selector at unit input, branch at unit output) is minor

compared to the shared resources (i.e., shared computational units with the corresponding

dataflow wrapper logic).

We summarize our main results in Figure 4.10, which shows the execution time (i.e., the product

of the CP and the cycle count) and resources (i.e., DSPs, LUTs, and FFs) of our designs, normal-

ized to the naive designs without resource sharing. It is important to note that all our solutions

are Pareto optimal in terms of DSP units; while sharing never reduces the clock cycle count,

76

4.6. Evaluation

Table 4.3 – Resources of circuits produced by Vivado HLS (i.e., Static) and dataflow
circuits with sharing (i.e., Shared). The Shared results are repeated from Table 4.1. The
matching DSP counts indicate that our approach successfully identified all sharing
opportunities. The LUT and FF overheads of dataflow circuits are completely expected,
as the explored benchmarks are regular kernels which do not benefit from dynamic
scheduling. The exception is if loop add, whose static version requires fewer DSPs, but at
significantly higher execution time than the dynamic kernel.

Bench-
mark

DSPs LUTs FFs

Static Shared ratio Static Shared ratio Static Shared ratio

atax 5 5 1.00 388 2076 5.35 762 1997 2.62
bicg 5 5 1.00 425 1602 3.77 824 1814 2.20
gemm 5 5 1.00 458 2448 5.34 837 2491 2.98
gemver 10 10 1.00 1032 5433 5.26 1631 5418 3.32
gesummv 5 5 1.00 553 2666 4.82 944 2528 2.68
2mm 5 5 1.00 598 4200 7.02 963 4153 4.31
3mm 5 5 1.00 666 3653 5.48 1104 3096 2.80
mvt 5 5 1.00 481 2029 4.22 802 1878 2.34
if loop add 2 4 2.00 315 960 3.05 525 1318 2.51

some designs even dominate their naive counterpart caused by the coincidental reduction in

CP due to place-and-route. While we opted to identify sharing opportunities which do not affect

throughput, our sharing mechanism can be easily extended to explore the design space and

discover other Pareto optimal solutions.

4.6.3 Results: Comparison with Static HLS

In the previous section, we demonstrated that our methodology effectively shares units and

reduces the resource requirements of dataflow designs. We are now interested in comparing

the capabilities of our sharing strategy with that of a standard statically scheduled HLS tool. It

should be noted upfront that, aside from if loop add, none of the benchmarks we here explore

have characteristics which can take advantage of dynamic scheduling. Hence, it is reasonable to

expect that our circuits incur resource (i.e., LUT and FF) and timing (i.e., achieved CP) overheads

in comparison to those from a classic tool; we will evaluate and discuss these costs in detail in

Chapter 9. Our purpose here is to investigate whether the unit count (i.e., number of employed

DSPs) achieved by our sharing strategy matches that of state-of-the-art HLS solutions.

We synthesized the benchmarks from Section 4.6.1 with Vivado HLS; in all of them, we employ

the pipeline directive in the innermost loops. We do not impose any resource constraints—hence,

the tool shares as many units as possible without damaging the II, which qualitatively matches

the strategy of our algorithm from Section 4.5 and makes the solutions directly comparable.

Tables 4.3 and 4.4 compare the results obtained by Vivado HLS with dataflow circuits which

implement sharing (i.e., the Shared columns repeat the results from Tables 4.1 and 4.2). As

indicated in the DSP column, the static designs employ the exact same number of DSPs as our

solutions in Table 4.1, which validates that our sharing strategy successfully identified all sharing

77

Chapter 4. Resource Sharing in Dataflow Circuits

Table 4.4 – Timing of circuits produced by Vivado HLS (i.e., Static) and
dataflow circuits with sharing (i.e., Shared). The Shared results are repeated
from Table 4.2. The CP overheads of dataflow circuits are completely
expected, as the explored benchmarks are regular kernels which do not
benefit from dynamic scheduling. The exception is if loop add, whose
static version requires fewer DSPs, but at significantly higher execution
time than the dynamic kernel.

Bench-
mark

Cycle count CP (ns) Exec. time (µs)

Static Shared Static Shared Static Shared ratio

atax 5041 4459 3.3 4.3 16.6 19.2 1.15
bicg 9421 7910 3.3 4.3 31.1 34.0 1.09
gemm 91201 68827 3.2 4.9 291.8 337.3 1.16
gemver 2534 1899 3.4 5.6 8.6 10.6 1.23
gesummv 9029 8391 3.4 4.9 30.7 41.1 1.34
2mm 24402 17325 3.3 5.6 80.5 97.0 1.20
3mm 34803 24621 3.3 5.5 114.8 135.4 1.18
mvt 18782 15740 3.3 4.9 62.0 77.1 1.24
if loop add 10014 1106 3.2 5.0 32.0 5.5 0.17

opportunities in the benchmarks we explore. None of the benchmarks suffer from the fact that

our technique enforces operation ordering across BBs, as described in Section 4.3.4, which

indicates the effectiveness of our current approach in a large variety of practical cases. The

only example where the DSP count is mismatched is if loop add, yet for a completely different

reason: the if condition within the loop prevents the static HLS tool from pipelining and the

conservative II makes sharing possible.

On the other hand, our solution for if loop add has a variable II which depends on the actual

control outcomes and is, in the best case, equal to 1—the dynamic kernel does not share

resources but it achieves a perfect pipeline and its execution time is, therefore, significantly

lower than that of the static kernel. This example is representative of a classic tradeoff between

static and dynamic scheduling [27]: the static kernel achieves minimal resources but suffers in

execution time, whereas the dynamic kernel effectively pipelines the design for performance

benefits and at a natural resource penalty.

As anticipated, the static kernels require fewer LUTs and FFs and achieve a lower CP (typically

resulting in a lowered overall execution time) than their dynamic counterparts. Our goal here was

to share computational resources (i.e., DSPs), which we have successfully achieved. Surprisingly,

we note that all our solutions require fewer clock cycles to execute than the static solutions—

while this effect is expected for if loop add, as discussed above, there is no fundamental reason for

the dynamic kernels to execute faster in the other, perfectly regular, benchmarks. There are two

explanations for this effect: (1) in some cases, our designs overlap different loops more effectively

than Vivado HLS; although a similar overlapping effect could be achieved by employing the

dataflow pragma in Vivado HLS, this optimization limits resource sharing between overlapping

loops [118] and prevents us from comparing DSP-optimal pipelined designs, and (2) in some

cases, the retiming algorithms of Vivado place an additional register on the critical loops and

78

4.7. Conclusions

increase the II by one clock cycle in comparison to our solutions; we employ a different register

placement strategy [77] which does not identify the need for this register. Both of these effects are

orthogonal to our contribution and have only a quantitative effect on the results; the matching

DSP counts of the static and dynamic designs clearly indicate the effectiveness of our sharing

approach.

4.7 Conclusions

Resource sharing is one of the key optimizations in high-level synthesis; if dataflow circuits are to

compete with standard HLS, they need to be able to exploit this optimization opportunity. In this

chapter, we presented a resource sharing methodology for dataflow circuits and we described a

sharing mechanism which achieves correct, deadlock-free execution. In addition, we presented

a method to identify sharing opportunities which do not compromise performance. On a set of

benchmarks, we demonstrated the ability of our approach to significantly improve the resource

efficiency of dataflow circuits. Our sharing mechanism achieves different area-performance

tradeoffs in dataflow designs and makes them competitive in terms of computational resources

(i.e., functional units and the corresponding DSP count) with circuits achieved using standard

HLS techniques.

79

5 An Out-of-Order Load-Store Queue for
Spatial Computing

Dataflow circuits achieved so far implement high-throughput pipelines and save resources

through sharing; however, they still lack the mechanisms to support dynamic features which

make them superior to statically scheduled circuits. Figure 5.1 shows a simple example, similar

to the one in Figure 1.1a, where static memory access disambiguation is impossible; in this case,

a statically scheduled accelerator would have to delay reading a[b[i+1]] until just after the

write to a[i] of the previous iteration, conservatively assuming a dependence between the two

accesses. On the other hand, a dynamically scheduled accelerator could potentially start a new

iteration every cycle (in the absence of an address collision) and gain in performance.

Supporting such dynamic behavior requires a memory interface that analyzes data dependences,

reorders memory accesses, and stalls in the presence of effective data hazards. Although these

features have been exploited in out-of-order processors for decades, there has been little effort to

create generic accelerator-memory interfaces supporting out-of-order execution. The reason lies

in a fundamental difference between the two systems: In a processor, the notions of fetching and

decoding instructions immediately convey the correct (or, more precisely, a correct) sequential

order of requests at the memory interface. In contrast, spatial circuits lack such notions and,

in the construction of a dataflow-like accelerator, the information of the original sequential

program order is lost unless explicitly maintained in an alternative manner.

In this chapter, we present an out-of-order load-store queue (LSQ) as an efficient interface

between a dataflow accelerator and memory. We detail the construction of the LSQ and present

a novel allocation policy which differentiates our LSQ from those found in standard processors.

5.1 Inadequacy of Processor Load-Store Queues

Consider a nonspeculative out-of-order processor with a traditional LSQ, similar to the one

shown in Figure 5.2, at the memory interface. The LSQ entry depicted here is generic and

This chapter is based on the work published at the International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems, 2017 and the ACM Transactions on Embedded Computing Systems, 2017 [71].

81

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

Static schedule:

i

i+1

i+2

i+3

i+4

Dynamic schedule:
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

computation

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

i

i+1

i+2

ld a[b[i]]

C13 C14

ld b[i]

C15 C16

ld
b[i+1]

st a[i]

ld
b[i+2]

computation
ld

a[b[i+1]]
st

a[i+1]

computation
ld

a[b[i+2]]
st

a[i+2]

for (i=0; i<N; i++) {
a[i] = const*a[b[i]];

}

computationld a[b[i]]ld b[i] st a[i]

ld
b[i+1] computation

ld
a[b[i+1]]

st
a[i+1]

ld
b[i+2] computation

ld
a[b[i+2]]

st
a[i+2]

ld
b[i+3] computation

ld
a[b[i+3]]

st
a[i+3]

ld
b[i+4] computation

ld
a[b[i+4]]

st
a[i+4]

Figure 5.1 – A schedule created by an HLS tool unable to disambiguate dependences, compared to
a dynamic schedule possible with a dataflow approach. The HLS tool will conservatively assume a
dependence between every loop iteration, whereas the dynamic design stalls only in the presence of an
actual dependence (in the figure, this is the case between iterations i + 2 and i + 3).

contains at least four fields: (1) an opcode indicating whether the operation is a load or a store,

(2) a memory address to access, (3) the data to be written (only used by store instructions), and

(4) a completion flag initialized to 0 and set to 1 when the LSQ has executed the operation. In

this example, the LSQ is organized as a single circular buffer with head and tail pointers—other

organizations are common but differences are irrelevant for this discussion.

Figure 5.3 depicts the six-step mechanism by which a processor gets load (“LD”) or store (“ST”)

instructions executed, emphasizing the interaction with the LSQ [64]:

• Instruction Fetch/Decode. The processor fetches the instruction from the I-cache, decodes

it, ascertains that it is a load or a store, and passes it to the LSQ.

• Allocate. The LSQ allocates a new entry for the instruction at the end of the queue and

logically connects the present instruction with the new entry.

• Supply Arguments. As the processor pipeline executes other instructions, it will eventually

determine the memory address and, for stores, the data value to be written. This infor-

mation is supplied to the LSQ which writes the actual address and data (if needed) in the

reserved entry of the queue.

• Execute: The LSQ executes the memory operation when ready—that is, whenever it is

sure that the operation does not depend on any of the accesses coming before (i.e., closer

to the head) in the queue and not yet executed. The LSQ may be able to execute the

operation locally (e.g., a LD operation that reads the value of a ST operation ahead of it in

82

5.1. Inadequacy of Processor Load-Store Queues

Load/Store Queue

H

T

LD 1@

ST 0? D

The head of the queue, where
entries are deallocated once executed

The tail of the queue, where
new entries are allocated

A typical LOAD entry, with the target
address "@" already available and the
executed flag set; when it reaches
the head, it will be deallocated

A typical STORE entry, with the
target address not yet available "?",
the data to store "D" already
available and not yet executed

Figure 5.2 – A typical processor LSQ with head and tail pointers and two sample entries. In general,
entries contain at least these elements: the operation type (“LD” or “ST”), the target address “@”, the data
to be stored “D”, if appropriate, and a flag to signal completion. All addresses and data are usually not
present at the moment of allocation (indicated with “?” in the figure).

LD 1@

H

Execute Deallocate

T

Allocate

Fetch & Decode

Supply Arguments

Receive Result

Processor LSQ

Allocate

Execute

Deallocate

1.
In-order

Out-of-order

Implementa�on
dependent

2.
3.
4.
5.
6.

LD 1@

H

T
LD 0?

H

T

 Supply Arguments

H

T

LD 0@

Figure 5.3 – The basic operation of an LSQ in an out-of-order processor. The allocation of entries in the
queue must happen in sequential program order because the position in the queue is used to determine
whether an access is safe to execute. Since, in a processor, this happens at Decode time, intrinsically
in-order, everything is fine; unfortunately, spatial accelerators have no equivalent phase to Decode.

the LSQ), otherwise it transmits the operation to the memory subsystem. The LSQ sets

the completion flag and returns the result to the processor.

• Receive Result: The processor receives the result of the memory operation from the LSQ

(either a completion signal for store operations or a data value for loads).

• Deallocate: Eventually, the LSQ deallocates the entry for the instruction, freeing it for

future use.

Steps 1 and 2 (Fetch/Decode and Allocate) must occur in the original sequential program order

because this sequence implicitly specifies to the LSQ the potential dependences that need to be

respected. In processors, the remaining steps typically occur out of order, but the LSQ ensures

that the dynamically-arising memory dependences are correctly sequentialized.

83

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

load b[i]

store a[i]

*

const. load a[b[i]]

3

1

2a
load b[i]

store a[i]

*

const. load a[b[i]]

2b

a) b)

Figure 5.4 – A partial dataflow graph derived from the code of Figure 5.1. Nodes are operators (including
memory accesses) and solid edges represent data flowing among them. Dashed edges correspond to the
ordering of memory accesses in the original program. Static analysis in the compiler may transform or
remove some of the edges (as shown in Figure 4b), but, generally, not all of them can be removed.

It is important to recognize that the LSQ shown in Figure 5.3 is built around the notion of a

sequential program whose instructions are dynamically fetched and decoded depending on,

among other things, the dynamic control flow of the program. The LSQ entries are allocated in

the order in which instructions are fetched by the processor; this in-order allocation is critical

because, once in the queue, potential dependences are verified between each entry and all

preceding entries in the queue—and, if all dependences are satisfied, memory operations may

execute out of order.

In a spatial computing system, there is no inherent notion of instructions or PC values. In

terms of the described six-stage process, there is no Fetch and no Decode (Step 1); there are

no instructions and no I-cache from which to read them. A typical spatial computing system is

designed by transforming a dataflow graph into a circuit. In general, the dataflow graph obtained

from the compiler will look like the example in Figure 5.4a, where solid edges represent actual

data dependences and are transformed into physical wires in the circuit. Dashed edges indicate

the sequence of memory operations (and, thus, the potential dependences) in the original

program. The compiler may eliminate or transform some of these edges based on static analysis;

however, it cannot safely remove dependence edges unless it is possible to guarantee, statically,

that memory dependences cannot occur. In the example, edges 1 and 3 can be removed because

they are implied by actual data dependences. On the other hand, edges 2a and 3 are unnecessary

because static analysis may determine that the relevant accesses (to a[] and to b[]) can never

conflict. Yet, the potential loop-carried dependence now needs to be represented by edge 2b,

resulting in the graph of Figure 5.4b. Edge 2b cannot be eliminated because the two connected

accesses lead to an incorrect result if reordered when their addresses collide.

We will discuss methods to analyze and optimize dependence edges between memory accesses

in Chapter 6. The question here is: what to do with them when generating a dataflow circuit?

Clearly, simply ignoring them would be incorrect, because then memory operations might

84

5.2. Supplying a Sequential Order to the LSQ

LD 1@

H

Execute Deallocate

T

Supply Arguments
and Allocate

LD 1@

H

T
LD 0@

H

T

Supply Arguments

Receive Result

Accelerator LSQ

Allocate
Execute

Deallocate

1.
In-order

Out-of-order
Implementa�on

dependent

2.
3.
4.
5.

Figure 5.5 – Allocating entries when the arguments are supplied to the LSQ. This scheme can work
correctly only if the circuits incorporate the dashed edges of Figure 5.4b: the arguments of a memory
access must only reach the LSQ if all memory predecessors have supplied their arguments. The result is a
major loss in the usefulness of dynamic dataflow execution and of the LSQ.

be triggered in any order and nothing in the circuit would carry the information necessary to

respect these dashed edges when addresses collide. Prior research on dataflow computing has

mentioned the possibilities of employing LSQs to resolve dynamic dependences (e.g., Huang

et al. [66], among others), but has not described when one allocates LSQ entries in a spatial

context—or, equivalently, by which mechanism one supplies ordering information to the LSQ.

Answering this question is the foremost contribution of this chapter.

5.2 Supplying a Sequential Order to the LSQ

The allocation of entries to the LSQ must happen in some correct sequential order—i.e., an order

that respects all dashed edges of Figure 5.4b, as this guarantees that all dependences are satisfied

and that memory accesses are correctly executed. We here describe and contrast two design

methodologies which ensure such behavior in dataflow circuits.

(1) Allocating entries to the LSQ as their arguments arrive. The interaction between the accelera-

tor and the LSQ is shown in Figure 5.5 and the idea is that allocation happens when the address

and/or data for a memory access are known. To ensure correctness, the accelerator must be

aware of dependences and delay the transmission of arguments to the LSQ until preceding

accesses (in terms of the dashed edges of Figure 5.4b) have already been allocated. This qualita-

tively corresponds to the scheduling approach of a classic HLS tool—the static schedule ensures

that memory accesses are allocated in sequential program order. However, this approach nulli-

fies the potential advantages of dynamic scheduling for applications that have ample memory

parallelism that cannot be discovered statically. For example, such a tool could not produce the

dynamic schedule shown at the bottom of Figure 5.1. Hence, the benefits of integrating such an

LSQ into an accelerator are limited [9, 66].

85

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

Supply Arguments ExecuteExecu�on Start

Supply Arguments

Receive Result

Accelerator LSQ

Allocate

Execute

1.Before execu�on

Out-of-order
2.
3.
4.

LD 0?

ST 0? ?

ST 0? ?

LD 0?

ST 0? ?

LD 0?

LD 0?

LD 0?

ST 0? ?

LD 0?

LD 0?

ST 0? ?

LD 0?

ST 0? ?

ST 0? D ST 1@ D

Figure 5.6 – Allocating entries statically before execution. This scheme depends on the possibility of
determining all accesses and their sequential program order at compile time, limiting it to only the most
trivial applications. Note that there is no more head and tail of the queue, since the queue contains
exactly all memory accesses of the program.

(2) Static allocation before execution. As an alternative, the HLS tool could statically allocate

all memory accesses through one sequence that respects all memory dependence edges (see

Figure 5.6). Such a system would allow the accelerator to supply operands as soon as they are

ready and the LSQ could issue memory accesses as soon as all dependences are resolved; this

would simplify the design of the accelerator and achieve the highest possible memory perfor-

mance. Although correct in theory, this idea is only feasible for trivial applications that feature

statically determinable control flow—which, once again, excludes the example of Figure 5.1,

unless N is a compile-time constant. This scheme is also impractical, as the LSQ would have

as many entries as the number of static memory accesses in the application, which would be

unrealistically large in all but the most trivial of cases. Others have shown that both the critical

path (assuming single-cycle accesses) and resource requirement demands grow as a function of

the number of LSQ entries [117]; our implementation results confirm this observation.

Figures 5.5 and 5.6 represent these two extremes: The former dynamically allocates LSQ en-

tries when arguments arrive, but must supply them in a statically-determined order which

complicates the control mechanism and limits the ability of the LSQ to dynamically resolve

dependences and issue memory accesses in parallel. The design in Figure 5.6 makes perfect

use of the LSQ and allocates each LSQ entry as soon as its arguments are ready, giving the LSQ

flexibility in terms of dynamically disambiguating memory accesses. However, the static analysis

required of the compiler is unrealistic for non-trivial applications; LSQ area utilization and

performance would degrade significantly as a result of the large number of entries. We desire a

policy that combines the flexibility of the former strategy with the effectiveness of the second.

5.3 Our Allocation Strategy

We desire a memory interface that can execute accesses out of order when dependences allow it.

As in ordinary processors, ordering is expressed by organizing the accesses in a linear reference

86

5.3. Our Allocation Strategy

LD 1@

H

Execute Deallocate

T

Group Allocate

Group Start

Supply Arguments

Receive Result

Accelerator LSQ

Group Allocate

Execute

Deallocate

1.
In-order

Out-of-order

Implementa�on
dependent

2.
3.
4.
5.
6.

LD 1@

H

T

LD 0?

H

T

 Supply Arguments

H

T

LD 0@LD 0?

ST 0? ?

Figure 5.7 – Allocating entries by groups. Our solution requires the accelerator to announce groups of
accesses when they become available. Groups are predefined sequences of accesses which are statically
known to a compiler and that can be inserted atomically. Once this is done, our LSQ works essentially
like a standard processor LSQ.

Table 5.1 – Comparison of different entry allocation options.

Strategy Pros Cons

Dynamically allocate entries
once address or data are

supplied to the LSQ
Applicable to any program

Accesses must be sequentialized to
ensure correctness, LSQ is arguably
almost useless

Statically allocate all entries
before program execution

Fast out-of-order execution
Applicable only to programs with
fully statically determinable accesses,
unfeasible LSQ size

Dynamically allocate entries
by group (our strategy)

Applicable to any program,
fast out-of-order execution

sequence (a queue): essentially, loads can be executed if the addresses of all preceding store

entries in the queue are known and do not alias, and vice versa. As indicated in the previous

section, the critical difficulty for spatial computing consists of creating such a sequence in the

queue, because we cannot rely on the allocation policy of processors (in-order allocation at

decode time). We thus propose a design option that is intermediary between the two approaches

described in Section 5.2 and that circumvents their fundamental limitations.

To this end, we introduce the notion of groups: A group is a sequence of accesses which cannot

be interrupted by a control flow decision (that is, if one access of a group executes, all other

accesses belonging to the same group will eventually execute as well). Determining a correct

order (i.e., an order that satisfies all the dependence edges) of accesses within a group is trivial

using static analysis, as there is no control flow decision that could invalidate it. Our strategy is

to dynamically allocate entries for all the memory operations of a group at once as soon as a

control flow decision is made (as shown in Figure 5.7). Once the entries have been allocated, the

87

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

LSQ

GR1

LD2

LD3

ST2

LD4

ST3

ST4

LD5

GR2

GR3

GR4
LD6

ST5

LD1

ST1

Allocate Gr1:
H

T

LD 0?

ST 0? ?

Allocate Gr3:
H

T

LD 0?

ST 0? ?

LD 0?

ST 0? ?

ST 0? ?

LD 0?

Figure 5.8 – A program with memory accesses divided into groups which are connected to the LSQ. Each
group has a GR signal to indicate its start and to trigger the allocation of its memory accesses into the
LSQ. In this case, groups correspond to basic blocks created by HLS tools. The figures on the right show
two consecutive allocations (of group 1 and group 3) into the LSQ.

memory access arguments can arrive out of order and will be executed as soon as dependences

can be determined (using the same strategy as a standard processor LSQ and described in

Section 5.1). Table 5.1 outlines the pros and cons of the different allocation strategies.

Our group-based allocation principle can be summarized as follows: (1) The order of memory

accesses of each group is produced through static analysis and encoded into the LSQ at compile

time. (2) The LSQ has as many load/store ports as there are load/store operations in the program.

(3) The ports are clustered by groups; every access port must belong to exactly one group.

(4) Whenever the accelerator ‘activates’ a group, all load/store operations belonging to that

group are allocated in the LSQ in the sequence that was statically determined for that group.

(5) Once a group has been allocated, the LSQ expects each of the corresponding ports to get an

access, eventually; dependences will be resolved based on the order of entries in the LSQ.

Consider a program with a control flow graph as shown in Figure 5.8 and with memory accesses

logically divided into four groups, based on the control flow of the program. The order of

accesses within each group can be statically predetermined using compiler analysis (we provide

an arbitrary ordering for each group in the figure). Every group is connected to the LSQ with a

dedicated GR signal which indicates to the LSQ the start of the particular group and triggers the

allocation of its accesses into the LSQ. The queues on the right of Figure 5.8 show the allocation of

group 1 and group 3 to the LSQ (assuming that a control flow decision determined the execution

of group 3 after group 1).

The LSQ proposed here is designed to be independent of the synthesis algorithms that form

groups and produce GR signals. Intuitively, each basic block could correspond to a group—we

apply this strategy in the example in Figure 5.8 and in our dataflow circuits. We will detail our

method to generate the GR signals in Section 5.5.

Our LSQ differs from traditional usage in processors for one key reason: even if an accelerator

obtained from a program containing N memory operations does indeed require N memory

88

5.4. LSQ Implementation

access ports, those ports seldom need to be connected to the same LSQ. Only accesses with

the potential to conflict demand to share the same LSQ. In the example of Figure 5.1, if one

determines that accesses to a[] and to b[] cannot conflict, one would need an LSQ with one

load and one store port for a[] and a simple memory port (without an LSQ) to access b[].

Intuitively, using many small queues is beneficial for timing and area compared to a large queue,

because both complexity and timing are certainly superlinear in the number of entries.

5.4 LSQ Implementation

Any LSQ needs to implement the following functionalities: (1) Allocate entries in the queue

for new accesses. (2) Enable the access ports and connect them logically to the respective LSQ

entries allocated in the previous step so that arguments and results can be dispatched. (3) Accept

arguments for the allocated LSQ entries as they arrive out of order. (4) Dynamically decide which

accesses can be safely executed without violating dependences in memory. (5) Return as soon

as possible available results to the load ports that requested the accesses. (6) Deallocate entries

in the queue when no longer needed. As pointed out earlier, almost everything related to steps

(2) to (6) is identical or very similar to what happens in a traditional processor LSQ, whereas the

implementation of function (1) is specific for spatial architectures.

As in any LSQ design, the challenge lies in implementing these functions concurrently with

minimal complexity and achieving the lowest possible cycle time. For simplicity, we perform

every function in a single cycle: this may result in a higher cycle time but has the significant

advantage of naturally making every step atomic (i.e., starting on a rising edge and completing

before the next edge), which avoids any difficulty with the concurrence of the operations (a

function cannot change the state inconsistently while the others are executing as all start from

a consistent state and all produce during a cycle their contribution to a new consistent state).

Although a long cycle time could be severely damaging, we will show that even under this

constraint the cycle time remains fairly affordable (that is, comparable to the cycle time of

simple accelerators). Removing this constraint would result in a more complex design but would

not significantly change the architecture and methodology we describe.

The only aspect where a multicycle nature is essential is the interface to the memory subsystem

(caches, etc.): although our current implementation assumes that memory can be read in a

single cycle, because this is the case in our system, it can be easily extended to support caches

and complex memory hierarchies in future work. It is important to realize that accommodating

this aspect of multicycle execution is much easier than the more general multicycle operation

discussed above: the execution decision is dependent on the state of the queues and nothing in

the system can revert this decision (that is, if a load can be executed before all other pending

stores, no further event may invalidate such a decision). Thus, there are no issues of atomicity

or concurrent state update here—the fact that the memory hierarchy provides a load result only

after a variable number of cycles has virtually no influence on the design and does not present

any of the difficulties that other multicycle updates may imply.

89

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

LOAD
MEMORY

PORTS

Dependence
Checks

&
Issue Logic STORE

MEMORY
PORTS

...

...
...

......

...

Load
Queue

Store
Queue

D
is

p
at

ch
er

Group Allocator

ALLOCATIONENABLE

LOAD
ACCESS
PORTS

STORE
ACCESS
PORTS

GROUPS

 Port
En.

Port
En.

Port
En.

Port
En.

Port
En.

Port
En.

D
is

p
at

ch
er

Figure 5.9 – Overall structure of the LSQ. At the center are separate load and store queues; the group
allocator prepares entries in the queues and links them to the access ports; dispatchers connect the
entries to the ports; the issue logic checks dependences and decides which entries are safe to send to the
memory subsystem.

In the following sections, we discuss the overall structure of the LSQ and detail the six previously-

mentioned functions, with particular attention to the allocation by group, which is unique to

our architecture.

5.4.1 The Queues and the Overall Structure

The overall structure of the LSQ is shown in Figure 5.9. The logic around store and load entries

of the queue is quite different, so we chose to implement two separate queues. Both queues

have a head and a tail register and contain a power-of-two number of entries.

Each entry of the store queue contains the following fields: (1) store address, (2) store data,

(3) number of the originating access port, (4) position in the load queue of the last load preceding

this store (indicating which loads need to be checked for conflicts before issuing this store to

memory—this mechanism will be discussed in detail in Section 5.4.2), (5) address validity flag,

indicating whether the access port has already supplied the corresponding argument, (6) data

validity flag, indicating if the access port has already supplied the data, (7) “executed” flag,

indicating that the store has been issued to memory.

Each entry of the load queue contains the following fields: (1) load address, (2) a field for data

received from memory, (3) number of the originating access port, (4) position in the store queue

of the last store preceding this load, (5) address validity flag, indicating if the access port has

already supplied the corresponding argument, (6) data validity flag, indicating whether the data

has been received from memory, (7) “executed” flag, indicating that the load request has been

issued to memory, (8) a flag indicating that the result has been sent back to the corresponding

port. Figure 5.10 visualizes a load queue entry.

90

5.4. LSQ Implementation

Load Queue

H

T

LD

Executed*
Data
valid

Address
valid* *

Address Data Port ID***

Preceding
store**

Returned
to port*

* 1-bit flags indicating the state of the entry
** Pointer to the last store entry in the store queue
 that needs to be checked for conflicts before
 executing the load (field size: log2(LSQ depth))
*** ID of the access port (field size: log2(total #ports))

Figure 5.10 – Detailed load queue entry of the LSQ. Apart from the address and data fields, each queue
entry contains the information about the port associated to the entry, the last preceding store request
in the sequence, and multiple flags describing the state of the entry. The entries of the store queues are
identical, apart from the last flag which can be omitted.

Despite the apparent complexity of the LSQ, as shown in Figure 5.9, concurrency is relatively

straightforward since every element of the state of the LSQ is produced independently. For

instance, the tails of both queues are only updated by the group allocator when new entries

are added to the LSQ. The group allocator is also responsible for filling in the field pointing to

the last preceding store/load position for each entry of the load/store queue. The access ports

themselves, through the dispatchers, are the only components affecting the argument entries of

both lists (memory addresses and store data). The parallel dependence checks and issue logic

on the right side of Figure 5.9 are the only entities that can modify the executed flags and update

the head pointers.

5.4.2 Group Allocator

The group allocator (Figure 5.11) is unique for our memory interface. When a group begins

to execute, the first step is to allocate locations in the LSQ for the group’s loads and stores,

while ensuring that the allocation process respects their sequential program order, which is

known statically. This enables the corresponding access ports (on the left of Figure 5.9) to accept

memory requests and allows them to arrive in arbitrary order, while appropriately maintaining

a mapping between memory operations and their LSQ entries.

Group allocation requests are sequential by definition, and thus only one new request can

arrive at any moment in time. Once a group has been allocated to the queue, its accesses can

execute before or in parallel with those in the other groups preceding it in the queue. Each

group allocation request addresses a ROM at the core of the group allocator. This ROM outputs

the following information: (1) number of loads in the group, (2) number of stores in the group,

(3) for each load in the reference sequence, the number of stores preceding it in the group (we

refer to this value as the offset value of the entry), (4) for each load in the reference sequence,

the access port ID, (5) for each store in the reference sequence, the number of loads preceding

it in the group (i.e., offset), and (6) for each store in the reference sequence, the access port

91

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

headLD
tailLD

tailST

headST

new tailLD

new tailST

ROM

ALLOCATE

+

Accept/stall group

tailST

...
...

. ..

GROUPS

#stores #loads

. ..

Access port
enables

LOADS STORES

Load queue
entries

tailL, ..., tailL+N

off0 port0 portNoffN off0 port0 portNoffN

Figure 5.11 – Group allocator. When a statically-determined sequence of accesses (a group) begins, this
unit allocates in parallel all the corresponding entries into each of the queues.

ID. For instance, group 3 from Figure 5.8 contains two loads and two stores whose sequential

program order is load, store, store, load and these come from access ports LD4, ST3, ST4, LD5;

the output of the ROM for this group is 2, 2, 0, 4, 1, 3, 1, 4, 2, 5. The first two values correspond to

the numbers of the loads and the stores in the group, respectively, and sets (0,4), (1,3), (1,4), (2,5)

represent (offset, port ID) pairs for each of the load and store ports of the group.

Using the first two output values of the ROM, the group allocator checks whether there is enough

space in the two queues (in this example, both the load and the store queue need to contain

two empty slots). If not, the allocation is deferred until the queues have enough space for the

new group and no further allocations are accepted. If the allocation can take place, the group

allocator tags each store by adding the number of preceding loads in the group (defined in the

ROM) to the value of the load tail prior to allocation. This sum is a pointer to the position that

the last preceding load occupies in the load queue (meaning that everything before it in the

queue comes earlier in program order and needs to be checked for conflicts before issuing the

store in question). This tag can correspond either to the previous load in the current group or to

the last load of the previous group (in case the value provided by the ROM was zero). The tagging

is done in parallel for each of the stores (and vice versa for each of the loads). Additionally, the

allocator stores the ID of the originating port for each of the entries, which enables inserting

values into the correct queue positions, and, for loads, returning the data fetched from memory

to the appropriate port. Figure 5.12 shows the allocation process of group 1 and group 3 from

the example in Figure 5.8, detailing the calculation of the tags of each queue entry.

The width of the ROM is determined by the size of the group with the largest number of memory

accesses (e.g., group 3 in the case of the program in Figure 5.8, discussed above). It is worth

noticing that, although in principle fairly wide, this ROM remains a small component in practical

cases. In the small kernels that we evaluate here, the number of groups is quite small, noting

that only accesses that cannot be statically disambiguated must be issued to the same queue. In

the histogram kernel reported in Section 5.6, the ROM contains only a single 6-bit words.

92

5.4. LSQ Implementation

T

H
LD1 ? 0

T

H
LD1 ?

LD4 ?

LD5 ?

0

1

3

1

1

4

5

T

H
ST1 ? 1

T

H
ST1 ?

ST3 ?

ST4 ?

1

2

2

1

1

3

4

?

?

?

?

STpos Port LDpos Port

STpos Port LDpos Port

No stores to check
for dependences, issue
to memory as soon as

address is received

Check the 1st load (LD1) for
dependence, issue to

memory when dependence
is resolved and data and

address are received

Check the 1st store (ST1)
for dependence,

issue to memory when
dependence is resolved
and address is received

Check the first two loads
(LD1, LD4) for dependences,

issue to memory when
both dependences

are resolved and data
and address are received

1. Allocate Gr1 {LD1, ST1}: LdTailold = 0, StTailold = 0

2. Allocate Gr3 {LD4, ST3, ST4, LD5}: LdTailold = 1, StTailold = 1

STpos(LD1) = StTailold + Offset (LD1)
= 0 + 0 [first op in Gr1]

STpos(LD4) = StTailold + Offset (LD4)
= 1 + 0 [first op in Gr3]

LDpos(ST1) = LdTailold + Offset (ST1)
= 0 + 1 [ST1 follows LD1]

LDpos(ST3) = LdTailold + Offset (ST3)
= 1 + 1 [ST3 follows LD4]

Load Queue

Load Queue

Store Queue

Store Queue

Figure 5.12 – Allocating groups to the LSQ. The figure details the allocation of group 1 and group 3 from
Figure 5.8. The offset values and port IDs are obtained from the ROM. The group allocator calculates the
last preceding load/store of each instruction, which the queue will use to perform dependence checks.

The critical path of the group allocator is fairly short and is essentially composed of the small

ROM, an adder whose number of bits is sufficient to address the elements in the queues (to

compute the absolute offset to save in the queues), and a multiplexer to bring the right offset to

the corresponding queue entry.

5.4.3 Access Port Enable and Dispatchers

An access port is enabled by the group allocator once the allocator assigns queue entries for the

group that this port belongs to. If the port sends a request prior to the allocation, it will be stalled

until the corresponding position in the queue has been allocated. On the other hand, a group

may be triggered again before all accesses of previous instances of the same group have received

the operands and have executed (think of many iterations of a loop executing concurrently);

this implies that ports may be linked to multiple entries of the queue. Therefore, the port has a

counter to determine how many arguments it can accept; every time the corresponding group is

allocated, the counter is incremented and every time the port receives an argument, the counter

is decremented. The port is disabled (that is, it stalls arriving arguments) when the counter is

null. Store ports contain separate enable logic for the data and the address, since they might not

arrive simultaneously to the LSQ.

All ports search concurrently all elements of the corresponding queue for the earliest entry they

are related to. The result of this search is used by the access port both to forward to the queue

93

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

newly arrived arguments and to pull newly available load results. The prioritization of queue

entries related to the same access port acknowledges the fact that accesses on a specific port

arrive in order and, most importantly, are returned in order. The critical path of the dispatchers

is essentially a comparator for the port numbers, a priority encoder, and either the control path

of a large multiplexer (with as many inputs as the elements of each of the queues, for returning

load results) or the decoder logic of the same size (for writing arguments into the queue).

5.4.4 Checking Dependences and Executing

The rest of the LSQ is practically identical to any processor LSQ: dependences must be checked

and accesses issued.

The load queue checks concurrently all loads, comparing each available address with all store

addresses which precede it (and determined thanks to the pointer to the last preceding store

that is part of the queue entry). If any of the preceding stores misses the address, the load is

left waiting. If all preceding stores have an address and there is no collision (the load address is

different from all store addresses), the load can be executed (i.e., sent to the memory subsystem).

A priority encoder takes the oldest executable loads and passes as many as possible to the

memory subsystem (i.e., as many as there exist ports to memory). If the load address equals one

or more of the store addresses, and if the latest of the colliding stores has already received the

data argument, the store is bypassed and the store data used as the result of the load access. The

load result (either received from memory or bypassed from the store queue) is entered in the

appropriate field of the load queue. As mentioned, load access ports pull concurrently all new

results from the load queue.

The store queue acts similarly but only checks as many oldest stores (i.e., at the head of the queue

and not yet executed) as there are store ports in the memory subsystem. For each, it compares

the address, if available, with all load addresses which precede it (and determined thanks to

the pointer to the last preceding load that is part of the queue entry). A store is executed only

if (1) the address and the data for the store are known, (2) all preceding stores have executed,

(3) the addresses of all preceding loads are known, and (4) there is no collision with any of the

previous loads. If any of the tests fail, the store is kept waiting.

Executed accesses at the heads of the queues are simply deallocated. The queues can simultane-

ously deallocate as many entries as can be sent to the memory subsystem.

5.5 Connecting the Dataflow Circuit to the LSQ

Our allocation policy relies on the in-order generation of the GR signals for the LSQ; we here

detail how to correctly produce and issue these signals from the dataflow circuit.

As mentioned earlier, we group memory accesses based on the BB they belong to (i.e., a single

BB corresponds to a single group). Our challenge here is to guarantee that the signals coming

94

5.5. Connecting the Dataflow Circuit to the LSQ

Merge Merge CMerge

Fork

cond.

Fork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

BB1 allocate

BB2 allocate

Only one fork output is stalled -> token enters BB2 before
BB1 allocate is completed -> incorrect allocation order

ꭗ LSQ stall

No
allocation

Allocation

LSQ ready

(a)

Merge Merge CMerge

Fork

cond.

LFork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

BB1 allocate

BB2 allocate

Token from lfork stored in buffer -> token enters BB2 before
BB1 allocate is completed -> incorrect allocation order

B
u

ff

Allocation

No
allocation

LSQ ready

LSQ stall

(b)

Merge Merge CMerge

Fork

cond.

LFork

Branch

Merge Merge CMerge

Fork

cond.

Fork

BranchBranch Branch

Branch Branch

LSQ stall

LSQ ready

BB1 allocate

BB2 allocate

Both outputs of lfork are stalled -> no token entering BB2
until BB1 allocate is completed -> correct allocation order

No
allocation

No
allocation

ꭗ ꭗ

(c)

Figure 5.13 – Connecting the dataflow circuit to the memory interface. Figures 5.13a and 5.13b give
examples of incorrect connections. In Figure 5.13a, the eager fork may send an allocation to BB2 before
the allocation of BB1 completes. In Figure 5.13b, the allocation order may be reversed due to the storage
element on the control line between the circuit and the LSQ. Figure 5.13c shows the correct way to
connect the LSQ—an allocation cannot occur unless all predecessor allocations have been completed.

95

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

Table 5.2 – LSQ clock period (CP) and resource utilization for
different numbers of groups.

Groups Depth Ports CP (ns) Slice LUT FF

1 8 8 4.6 1000 3498 1212

2 8 8 4.8 1243 4441 1287

4 8 8 4.9 1523 5541 1328

from the BBs needed for the LSQ are produced in order by a circuit which we have otherwise

designed to be as aggressively out-of-order as we could. To this end, we exploit the in-order

control path which we introduced in Section 2.3.3. The tokens in this path trigger the allocation

of BBs as soon as the control flows there (i.e., as soon as a decision has been made to enter a

particular BB). However, applying the standard dataflow circuit design strategy described in

the previous chapters might result in the incorrect order of token arrival to the LSQ. Figure 5.13

shows two example situations leading to a potentially wrong execution: (1) If the token is forked

to the LSQ using the typical eager fork, one of the fork outputs might send a token to the next BB

before the LSQ has accepted a token from its predecessor (Figure 5.13a). (2) Although placing

buffers in dataflow circuits has no impact on correctness (as discussed in Section 3.1), a buffer

on the fork output connected to the LSQ might compromise the order of token arrival to the

queue—if the token remains stored in the buffer, the successor BB could send a new token

before the prior allocation has been completed (Figure 5.13b).

The correct way to connect the LSQ to the dataflow circuit is shown in Figure 5.13c: (1) The forks

used to send the tokens to the LSQ are lazy forks (lforks)—if one of the fork outputs is stalled, the

others will stall as well. (2) No sequential elements (i.e., buffers) are allowed on the fork outputs

connected to the LSQ. This strategy ensures that a token can be passed to the successor BB only

when the allocation of its predecessor BB has been completed—if an allocation is deferred (e.g.,

due to limited space in the LSQ), the token stalls and no further allocation requests reach the

LSQ. This mechanism is exactly what we described in our implementation of resource sharing

in Section 4.4.3, where we used it to convey the order of triggered BBs to the selector unit.

To connect our datapaths to memory, we leverage compiler analysis to simplify our memory

interface—we will detail our approach in the following chapter. Whenever the compiler can

disambiguate memory accesses, groups of accesses that cannot mutually conflict use separate

LSQs, while accesses which cannot have dependences with any other accesses are connected to

simple memory interfaces.

5.6 Evaluation

In this section, we discuss the resource and timing characteristics of our LSQ and evaluate how

different queue parameters affect its performance and resource utilization. We demonstrate the

96

5.6. Evaluation

Table 5.3 – LSQ clock period (CP) and resource utilization for
different numbers of ports.

Groups Depth Ports CP (ns) Slice LUT FF

1 8 2 4.6 1073 3655 1254

1 8 4 4.4 1049 3693 1249

1 8 6 4.5 1381 4866 1316

1 8 8 4.6 1000 3498 1212

benefits that the load-store queue brings by comparing our designs of applications containing

irregular loops with those created by a standard HLS tool. All timing and resource information

for our VHDL designs are from the post-routing analysis of Vivado. We provide the resource

usage as the number of CLB slices, with the corresponding LUT and FF count.

5.6.1 Resource Utilization and Timing Analysis

Our queue designs are generated based on the required parameters (queue sizes, number of

groups, number of ports, etc.). We here evaluate and discuss the timing and resource require-

ments when these parameters change.

Sensitivity to group count. We discuss the effect of the number of groups connected to the LSQ

on the resources and the timing of the design. Table 5.2 provides the evaluation for queues with a

varying number of groups, while keeping the overall number of load and store ports (distributed

equally over the existing groups) and the queue depth constant. The change in the number of

groups and the way the ports are organized impacts only the group allocator and has no effect on

the rest of the design. Due to the parallel nature of this unit, changing its parameters has barely

any influence on the cycle time, which is only slightly affected by the explored modifications.

The resource requirements increase only moderately with the number of groups. This shows

that our approach can effectively implement designs with different numbers of groups and

implies the applicability of our solution to a wide range of applications.

Sensitivity to port count. In Table 5.3, we explore the effect of the number of ports on the resource

and timing characteristics of our LSQ by comparing designs of equal queue depths and group

count but containing different numbers of ports. We implement designs with an equal number

of load and store ports (i.e., the 2-port design has one load, and one store port; we add one

port of each type in every subsequent design). The number of ports does not significantly

impact the cycle time. Although each port adds resources to the design, it can be noted that

the overhead of a single port is minor compared to the overall resources of the LSQ. In some

cases, the logic synthesizer can reduce the complexity of the logic around the queues thanks to

the characteristics of the specific application it is customized for. This happens, for instance,

for the 8-port LSQ in Table 5.3: In this case, because of the integer ratio between the queue

97

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

Table 5.4 – LSQ clock period (CP) and resource utilization for
different queue depths.

Groups Depth Ports CP (ns) Slice LUT FF

1 2 2 3.6 102 254 286

1 4 2 3.7 354 1088 593

1 8 2 4.6 1073 3655 1254

1 16 2 5.9 4485 15922 2788

depth (8) and the length of the only possible group (4 loads, 4 stores), the LD/ST ports need to

be connected only to specific queue entries. The logic synthesizer can use this information to

reduce the design complexity and the effect is counterintuitive.

Sensitivity to LSQ depth. We compare now the timing and resource requirements for different

queue depths, always with a single group and a fixed number of ports (one load, one store

port). The results in Table 5.4 show a nonnegligible increase in resources and cycle time. Al-

though our design exhibits ample parallelism and performs most operations concurrently, some

functionalities cannot be implemented in constant time—for instance, to bypass data from the

store to the load queue, one needs to check the store queue from the head to the tail to find the

last conflicting data. This sensitivity to the number of queue entries is in line with the results

reported by others in conventional LSQ designs—previous efforts to implement conventional

LSQs in FPGAs have exhibited the same trends of resource and clock degradation with queue

size [117]. These results motivate us to consider alternative design options in the future—our

group allocation policy is generally applicable and can be incorporated into different queue

architectures. It should be noted that our contribution here is not to improve the design of a

conventional LSQ, but to propose a practical and efficient way to adapt conventional LSQs for

spatial computing. As we will demonstrate in the following section on real-life examples, we

successfully accomplish this task.

5.6.2 Benchmark Evaluation

In this section, we demonstrate the benefits or our LSQ on applications occurring in different

domains which exhibit irregular and conditional data-dependences:

(1) Histogram calculates the histogram of an array of features; we discussed this example in

Chapters 1 and 3. In each loop iteration, the value of one of the histogram bins needs to be

increased, based on the input data and its corresponding weight. The loop may contain an

inter-iteration read-after-write dependence if one of the following iterations needs to read the

same histogram bin that a previous iteration is writing into (similar to the example discussed

in Figure 5.1). Although the inter-iteration dependence rarely occurs, a static HLS tool cannot

determine when they are present. Hence, it creates a conservative schedule with an initiation

98

5.6. Evaluation

interval equal to the number of cycles needed to write into the histogram bin of one iteration

before reading a bin in the next iteration.

(2) Maximal matching is a graph algorithm which iterates through the edges of a graph and

checks them for matching, i.e., determines if two edges share a common vertex. In case they

are determined independent, the algorithm computes the new vertex values and updates the

vertices using conditional stores. The kernel contains conditional loop-carried dependences

which exist only when the stores need to be executed. In such cases, the HLS tool conservatively

stalls the beginning of the next loop iteration until the stores have been completed.

(3) Matrix power multiplies the elements of a sparse matrix and a vector. In each iteration of

a nested loop, a row and a column coordinate are read from memory and the corresponding

matrix element is updated. As inter-loop read-after-write dependences can occur, the HLS tool

fully sequentializes every loop iteration. We discussed this example in Chapter 3.

We compare our dataflow circuits (generated and optimized as described in the previous chap-

ters) with an LSQ with a statically scheduled design of the same computation, which we generate

using Vivado HLS. To provide an accurate and fair comparison of our designs against the one

generated by Vivado, we employ the same arithmetic units produced and used by the HLS tool

into our dynamic designs. The LSQ is connected to the very same memory subsystem that

Vivado creates, thus limiting overall differences to a minimum. We form the groups for our

designs corresponding to the basic blocks of the application. In the three explored designs, this

strategy results in the following: (1) the Histogram application has a single group connected

to the LSQ containing one load and one store port, (2) Maximal matching has two groups

connected to the LSQ; one of the groups contains two load ports, and the other contains two

store ports, (3) Matrix power contains two load ports and one store port in a group.

Exactly as Vivado HLS does and as explained at the end of Section 5.3, we connect the ports to

different memories or different LSQs if it can be proven that they cannot alias; we will discuss

our methodology to automatically determine this property in Chapter 6. This is the case for the

weight values in Histogram, for the edges in Maximal matching, and for the row and column

indexes in Matrix power.

Figure 5.14 shows the timing and resource utilization of the reference HLS designs together

with our dynamically scheduled designs connected to LSQs of different sizes. We calculate the

total execution time as the product of the clock period, obtained from the Vivado post-routing

analysis, and the number of cycles, acquired by simulating the designs in Modelsim.

In all applications, the HLS tool creates the worst-case schedule with a conservative II. In

contrast, our LSQ dynamically resolves memory access dependences, improving processing

efficiency while increasing throughput and lowering execution time. Even with the increased

cycle time, particularly for some LSQ sizes, the difference in cycle time is sufficiently small

compared to the potential improvement in II. With a still affordable resource cost (i.e., the design

with an LSQ of depth 8 occupies only under 5% of a typical FPGA), one can attain almost the

99

Chapter 5. An Out-of-Order Load-Store Queue for Spatial Computing

a) Histogram

b) Maximal matching

c) Matrix power

LSQ 16

LSQ 8

LSQ 4
0

1000

2000

3000

4000

5000

0 10 20 30 40 50

Sl
ic

e
s

Execution time (us)
Dataflow Static

LSQ 16

LSQ 8

LSQ 4
0

1000

2000

3000

4000

5000

0 5 10 15 20

Sl
ic

e
s

Execution time (us)
Dataflow Static

LSQ 8

LSQ 4

LSQ 2

0

500

1000

1500

2000

0 5 10 15 20 25 30

Sl
ic

e
s

Execution time (us)
Dataflow Static

Avg. II = 1.1
CP = 6.3 ns

Avg. II = 2.1
CP = 4.9 ns

Avg. II = 4.0
CP = 4.5 ns

II = 13
CP = 3.5 ns

Avg. II = 9.0
CP = 5.9 ns

Avg. II = 9.0
CP = 5.3 ns

Avg. II = 9.0
CP = 5.1 ns

II = 16
CP = 3.3 ns

Avg. II = 2.1
CP = 5.9 ns

Avg. II = 2.7
CP = 5.3 ns

Avg. II = 5.3
CP = 5.1 ns

II = 13
CP = 3.3 ns

Figure 5.14 – Execution time and resource utilization of the static designs compared to the dataflow
designs with the LSQ in different sizes (indicated in the labels next to the points). Although the LSQ
designs increase the resource requirements, they achieve significant speed-ups over the static designs.

100

5.7. Conclusions

maximum parallelism available in the application. It is perhaps worth noticing that all discussed

applications consist of little more than the memory accesses and thus require very few FPGA

slices, making our LSQ large in comparison but not necessarily in absolute terms.

5.7 Conclusions

Dataflow execution naturally calls for memory interfaces capable of dynamically reordering

accesses based on actual dependences through memory. Traditional LSQs for out-of-order

processors seem the right component for such memory interfaces; yet, dataflow circuits lack

the notion of program order which is necessary for their correct behavior. In this chapter, we

discussed possible LSQ allocation strategies and focused on a novel policy which we believe is

perfectly matched to the information available in HLS tools and silicon compilers. We presented

a microarchitecture for such an LSQ and showed its ability to efficiently handle unpredictable

memory accesses. Such memory interfaces are crucial for dataflow circuits to fully benefit from

out-of-order execution.

101

6 Minimizing the Use of LSQs in
Dataflow Designs

In the previous chapter, we demonstrated how to build a load-store queue which dynamically

resolves memory dependences and enables dataflow circuits to correctly handle out-of-order

memory accesses. While issuing every load and store request to memory through an LSQ guaran-

tees correctness, this solution is unattractive: LSQs incur significant resource overheads as well

as power and clock degradation with queue size; we have observed these effects in Section 5.6.

Although standard HLS optimizations can, in certain cases, help in reducing this cost, analyzing

memory access patterns of a dataflow circuit to decide where an LSQ is redundant remains a

challenge—there is no predetermined schedule to provide information on the temporal ordering

of memory accesses, so any two accesses targeting the same memory location may potentially

conflict and, therefore, may require an LSQ. In this chapter, we explore a novel memory analysis

technique which, based on the flow of data through the circuit, determines the activation order-

ing of certain memory accesses. This information allows us to rule out specific dependences

and simplify the memory interface accordingly, leading to significant area savings and a tangible

timing advantage.

6.1 Motivation

The code in Figure 6.1 shows a loop with multiple memory accesses which are analyzed and

optimized using different memory analysis techniques; we already introduced this example

in Section 2.4.4. The information about the memory accesses available in each analysis step

is illustrated on the top of the figure: the green dashed edges indicate a possible dependence

among accesses which the memory interface must appropriately handle (i.e., if two accesses

are certainly or possibly dependent, they require an LSQ). The memory interfaces obtained in

different analysis steps are illustrated below.

Without any memory analysis (Figure 6.1a) to reason about actual memory dependences, all

accesses must connect to a single, large LSQ. This solution is correct, yet it is extremely resource-

This chapter is based on the work published at the IEEE International Conference on Field Programmable Technology,
2019 [69].

103

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

load y[i]

load x[i]

load x[0]

store x[i]

LSQ Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ
Memory

load y[i]

load x[i]

load x[0]

store x[i]

LSQ

Memory

load y[i]

load x[0]

store x[i]

Memory
load x[i]

a. No analysis b. Alias
analysis

c. Alias + polyhedral
analysis

d. Alias + polyhedral

+ dedicated dataflow
analysis

LSQ

load

store

load

load

load x

store x

load y

load x

load x[i]

store x[i]

load y[i]

load x[0]

load x[i]

store x[i]

+

*

load y[i]

load x[0]

for (i = 1; i < N; i++)

x[i] = x[0] + x[i]*y[i];

Figure 6.1 – Memory interface configurations of a dataflow circuit. Potential memory dependences
between the memory accesses are indicated with green dashed edges. The circuit can be naively con-
nected to memory using a single, large LSQ (Figure 6.1a). Standard memory optimizations allow us to
disambiguate memory accesses targeting different memories (Figure 6.1b) as well as those which provably
do not collide with any other access (Figure 6.1c). The optimal configuration (Figure 6.1d) is obtained
using our specialized analysis for dataflow circuits. In this case, our analysis concludes that, since the
load must occur before the store to the same memory location (i.e., the load is a certain producer of data
for the store), the two accesses naturally occur in order and the LSQ can be omitted.

expensive, as it requires a large queue to maintain high parallelism and to consume all incoming

requests at a high rate.

By exploiting methods such as alias analysis, one can disambiguate memory accesses which

target different memories or memory regions and connect these accesses to independent

memory ports using multiple, smaller LSQs (Figure 6.1b). Analyzing memory access patterns

using techniques such as polyhedral analysis would allow us to simplify the design even further

by removing LSQs in cases where the loads and stores targeting the same memory provably never

access the same memory locations (Figure 6.1c). However, whenever this is not the case (i.e., the

loads and stores might access the same locations at some point in time), standard techniques do

not allow us to optimize our design any further—in a dataflow circuit, accesses may arrive at the

memory interface out of order and an LSQ is needed to prevent a hazard. The main contribution

of this chapter is an analysis which particularly targets dataflow circuits and, based on the flow

of data through the dataflow graph, enables us to rule out specific data hazards through memory.

In our example, it proves that a violation of the write-after-read dependence is impossible—the

104

6.2. Background

load of x[i] is the data producer for the store of x[i] and the two accesses can therefore never

occur out of order. This information enables us to completely remove the LSQ, as shown in

Figure 6.1d.

In the rest of this chapter, we discuss our methodology for optimizing the memory interface of

dataflow circuits. In Section 6.2, we discuss existing memory optimization techniques which

more conventional forms of HLS regularly exploit. In Section 6.3, we introduce our new tech-

nique for analyzing memory accesses in an out-of-order dataflow circuit. We evaluate the

effectiveness of our technique to simplify the memory interface in Section 6.4.

6.2 Background

This section provides an overview of standard memory analysis techniques which we will use.

6.2.1 Alias Analysis

The memory interface illustrated in Figure 6.1a corresponds to that of a compiler which does not

perform any analysis of the memory accesses. Such a compiler must assume that each access

in the code can point to any addressable value in memory [110] and therefore conservatively

connects all accesses of the circuit to memory using a single monolithic LSQ.

Alias analysis groups pointers into sets such that different groups never access the same memory

locations [110, 4]. HLS tools typically rely on alias analysis to simplify the memory interface by

connecting different alias groups to different memories or independent memory ports. In our

case, alias groups would connect to independent LSQs (see Figure 6.1b) which either insist on a

single memory system (e.g., in FPGA cloud applications) or on different memories (e.g., separate

block RAMs, like standard HLS tools employ [119]). Without loss of generality, we indicate in

Figure 6.1 a single monolithic memory system with appropriate arbitration between ports.

6.2.2 Polyhedral Analysis

The polyhedral model is a linear-algebraic representation of a program which provides analysis

capabilities for Static Control Parts (SCoPs). SCoPs are side-effect free regions of a program in

which all control flow decisions and memory accesses are known at compile time [57].

The loop from Figure 6.1 is a SCoP in which the iterator i is bound by the constraints 1 ≤ i < n and

increased by 1 in each iteration. Polyhedral analysis can generate the sequence of array indices

(i.e., memory addresses) that each memory instruction will access, which gives us information

on all read-after-write (RAW), write-after-write (WAW), and write-after-read (WAR) dependences.

In the example in Figure 6.1, there is a WAR dependence between the load and the store access of

the same iteration. Because the load of x[0] only accesses the disjoint set {0}, we can simplify

the memory interface to achieve the configuration from Figure 6.1c.

105

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Access

ld (2)

ld (3)

ld (5)

st (3)

ld (6)

ld (7)

st (6)

st (3)

ld (1)

st (6)

Access

ld (2)

ld (3)

ld (5)

st (3)

ld (6)

ld (7)

st (6)

st (3)

ld (1)

st (6)

WAR

WARWAW

WAW

WAW

�

WAR

�

WAR

�

WAW

�

All dependences enforced by access
ordering: an LSQ is not required

(a)

Access

st (5)

ld (3)

ld (5)

st (3)

ld (6)

ld (7)

st (6)

st (3)

ld (1)

ld (6)

Access

st (5)

ld (3)

ld (5)

st (3)

ld (6)

ld (7)

st (6)

st (3)

ld (1)

ld (6)

WAR

WARWAW

RAW

RAW RAW
???

RAW
???

WAW

�

WAR

�

WAR

�

Some dependences not enforced by
access ordering: an LSQ is required

(b)

Figure 6.2 – Memory traces of two programs with a single load and a single store instruction. The
programs contain RAW, WAR, and WAW dependences; the figures on the right show how we can exploit
the ordering information between accesses to conclude that certain dependences will always be honored.
Our analysis identifies data dependences between instructions (dashed arrows) which exclude access
reordering and eliminate the need to use an LSQ.

6.3 Memory Interface Optimizations

It should be clear from the previous section that standard analysis techniques allow us to

group memory instructions into a maximal number of memory sets such that the address of an

instruction in one given set can never collide with the address of an instruction in another set

(i.e., an LSQ is not needed across sets). Yet, without further analysis, each memory set with more

than a single instruction must employ an LSQ to handle all RAW, WAW, and WAR dependences

between the instructions; this is the very situation shown in Figure 6.1c. In the rest of this section,

we will describe our original effort to simplify the memory interfaces of dataflow circuits past

this design point, as suggested by Figure 6.1d.

6.3.1 The Ordering Problem

Let us assume that, using standard analysis techniques, we have clustered all memory instruc-

tions into a maximal number of mutually independent memory sets, as indicated above. We

will focus here on a program with only two instructions in a single set; we will generalize our ap-

proach to sets with multiple instructions in Section 6.3.4. The same reasoning we here describe

applies to programs with multiple sets by considering each set independently from the others.

We consider a program with a single load and a single store instruction in a memory set. In

fact, the ordering relations between load and store instructions will be the main focus of our

analysis; although the ordering of colliding memory accesses of two store instructions matters

as well, our analysis will not achieve any memory interface simplification in this case, as we will

106

6.3. Memory Interface Optimizations

later observe. On the other hand, the ordering of a pair of load instructions does not impact

correctness as none of the load accesses modifies the memory state.

Figures 6.2a and 6.2b show examples of sequential memory traces of two independent programs,

which both contain a load and a store instruction. The purpose of a dynamically scheduled

dataflow circuit is to execute each instruction as soon as its arguments are known, exactly as

in a superscalar out-of-order processor [64]. Therefore, we generally need to assume that the

circuit might try to reorder the shown sequences in any possible way. Some of these reorderings

might result in semantically incorrect execution, as indicated in the figure. For instance, both

sequences feature WAR dependences (i.e., there is a store access which writes into the same

memory address that some load which precedes it in program order reads) and WAW depen-

dences (i.e., there is a store access which writes into the same memory address as some store

which precedes it in program order). The second sequence also contains RAW dependences (i.e.,

there is a load access which reads from the same memory address into which some preceding

store writes). Although all other accesses can be reordered in the interest of execution speed,

dynamically scheduled processors [64] and circuits need an LSQ to enforce correct ordering

across the accesses with dependences. If we could otherwise ensure the correct ordering of

these accesses, we would be able to omit the LSQ.

6.3.2 Exploiting Data Dependences

To remove the LSQ from the memory interface of a pair of load-store instructions, we need to

reason about the ordering of their accesses in the execution of a dataflow circuit. There are two

sources of information on which we can rely.

Firstly, each instruction performs its accesses strictly in program order—this property is guaran-

teed by the construction strategy of the dataflow circuit, as detailed in Section 2.3.3. Secondly,

there might be a data dependence between a load access and the following store access which

would guarantee their correct ordering—if the load produces the data necessary to compute the

store value, there is no way for the store to run ahead in program execution.

The first property directly guarantees that WAW dependences are never a concern among write

accesses of a single store instruction. The combination of the first and the second property

ensures that any WAR dependence of a store access with any prior load access is maintained: if

the store access has a data dependence with the preceding load access, and the load accesses

execute in order, all previous load accesses will have completed before the store access, thus

honoring any WAR.

However, the properties above do not help us reason about RAWs: there is no data dependence

to rely on because the store is not a data producer for any other instruction, including the load.

A store access may be arbitrarily ordered with respect to some subsequent load access and an

LSQ is required to ensure correctness if their addresses collide.

107

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Access

ld (2)

ld (3)

ld (4)

st (3)

ld (6)

ld (7)

st (6)

WAR

WAR

x = 0;

for (i=0; i<7; i++)

if (cond[i])

x = a[i+2];

else

a[i] = x;

Access

ld (2)

st (1)

st (2)

ld (5)

ld (6)

st (5)

st (6)

WAR

WAR

WAR

In-order accesses of a single instruction

Data dependence between different
instructions

Figure 6.3 – Two (out of many) possible memory traces of the code in the figure. Because a data de-
pendence will always occur between a load access and its subsequent store access, the circuit does not
require an LSQ.

In summary, a pair of load-store instructions does not require an LSQ among themselves if

(1) all WAR dependences of the original program are enforced by a data dependence between

each store access and its preceding load access in the sequence and (2) there are no RAW

dependences between the load and the store instruction. As determining the presence and

absence of RAW dependences, among others, is often possible using standard analysis (as

discussed in Section 6.2), we will here focus on the first property which is original for this work.

The right sequences of Figures 6.2a and 6.2b illustrate how the two properties above enable us

to exclude certain dependences, assuming that a data dependence exists. In Figure 6.2a, both

properties hold and guarantee that all dependent accesses are correctly ordered, so an LSQ is

not needed. However, in Figure 6.2b, the second property does not hold and an LSQ is required.

Both conditions for omitting the LSQ hold for the example from Figure 6.1: each iteration

has a WAR dependence between the load and the store access of the same iteration which is

always honored because the load produces the data for the store. Furthermore, there are no

RAW dependences in the program. Of course, this is a trivial case where the load and the store

instruction are directly connected through the very datapath of the loop. A more interesting

example is given in Figure 6.3. This code exhibits many possible memory traces (depending on

the if-condition) which contain WARs across different (and not necessarily consecutive) loop

iterations. To make sure that WARs are honored, we need to make sure that all possible traces

have a data dependence between any load access and the store access that immediately follows.

We will formalize this property in the following section.

6.3.3 Global Instruction Dependence

In this section, we describe the property of two instructions which guarantees that their order

in the dataflow execution is equivalent to their order in the sequential program execution. As

108

6.3. Memory Interface Optimizations

described in Chapter 2, we consider a CFG of a program which is organized into BBs such that

each BB contains a DFG of instructions (we denote the BB that instruction I belongs to as BBI).

The dependence property that we will introduce applies to the induced DFG of a walk through

the program CFG, where, as customarily, a walk is any sequence of BBs directly connected by

control edges in the CFG (contrary to a path, a walk admits to visit every BB and traverse any

edge an arbitrary number of times).

Definition 1. An induced DFG of a CFG walk w , denoted as DFGi nd (w), is a DFG composed of a

succession of the DFGs of the BBs traversed in w , repeated as many times as each BB is visited;

the live-ins of each DFG are connected exclusively to the live-outs of the predecessor DFG.

Our analysis aims to determine Global Instruction Dependence (GID) of a pair of instructions.

Definition 2. Instructions N and M are globally dependent (written as N
GID−−→ M) if, for every

CFG walk w starting with BBN , ending with BBM , and containing BBN and BBM only once, N is

the predecessor of M in DFGi nd (w).

This property implies that, for every possible control flow sequence in which N and M execute,

there is always a data dependence between N and M which enforces their in-order execution.

To illustrate, consider the examples in Figure 6.4. The memory instructions IN and IM belong

to BB0 and BB2, respectively. The CFG objects and edges are shown in dashed in the figure. To

determine whether a dependence relation exists between IN and IM , we need to consider all

walks from BB0 to BB2, which are equivalent for both examples in the figure: w1 = [BB0,BB1,BB2]

and w2 = [BB0,BB2]. The DFGi nd of each walk is shown in the figures. In both DFGi nd (w1) and

DFGi nd (w2) of Figure 6.4a, IN is the predecessor of IM (i.e., the value to be written by IM has a

data dependence on the load IN). Regardless of which CFG path is taken, the execution of IM

implies that IN must have executed already, so IN
GID−−→ IM and the WAR dependence between the

two instructions is always honored. The same relation does not hold for the same instructions in

Figure 6.4b, because IN is not the predecessor of IM in DFGi nd (w1). If walk w1 is executed, there

is no way to guarantee the ordering of these two instructions—the store may execute before the

load which would result in a data hazard.

To summarize, instruction dependence (L
GID−−→ S) ensures that any WAR dependence between

a load instruction L and a store instruction S is honored for every possible execution of the

program. As mentioned earlier, we cannot exploit the same property to reason about RAW and

WAW dependences, i.e., it will never hold that S
GID−−→ L or S

GID−−→ S because a store instruction

never produces data and cannot be a predecessor of any instruction.

6.3.4 From Two Memory Instructions to Many

The properties from Section 6.3.2 with the original one formalized in Section 6.3.3 provide us

with the knowledge about the activation order of a certain load-store pair and enable us to

guarantee correct execution between them. Our algorithm, illustrated in Algorithm 6.1, exploits

109

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Phi

Store a[1]

+

2
Load a[1]

e4

e2

e3

Phi

Store a[1]

Load a[1]

e3

e1

w1: BB0-BB1-BB2
DFG_ind (w1):

w2: BB0-BB2
DFG_ind (w2):

Phi

BB0

BB1

Store a[1]

BB2

+

2

Load a[1]

e4

e2

e1

e3

y = a[1]; (I_N)

if (x)

y = y + 2; (I_O)

a[1] = y; (I_M)

(a)

Phi

Store a[1]

0

Load a[1]

e2

e3

Phi

Store a[1]

Load a[1]

e3

e1

w1: BB0-BB1-BB2
DFG_ind (w1):

w2: BB0-BB2
DFG_ind (w2):

Phi

Load a[1]

BB0

BB1

Store a[1]

BB2

e2

e1

e3

0

y = a[1]; (I_N)

if (x)

y = 0; (I_O)

a[1] = y; (I_M)

(b)

Figure 6.4 – Code snippets and their control/data flow graphs which we use to illustrate the global
instruction dependence property in Section 6.3.3. In the circuit in Figure 6.4a, the dependence property

IN
GID−−→ IM holds. This is not the case for the two instructions in Figure 6.4b because the load is not a

predecessor of the store along both control flow paths.

110

6.3. Memory Interface Optimizations

// Input: M (set of memory accesses with RAWs, WARs, and WAWs)

// Output: M (minimized memory access set which requires an LSQ)

// Remove loads from set

foreach load L ∈ M do

// remove: indicates whether L should be removed from M

remove = true
foreach store S ∈ M do

// If any of the WARs is not enforced by GID, L remains in M

if WAR (L,S) and not L
GID−−→ S then

remove = false

// If L has a RAW with any store, L remains in M

if RAW(L,S) then
remove = false

// Removing L from M

if remove then
RemoveFromSet (L, M)

// Remove stores from set

foreach store S ∈ M do

// remove: indicates whether S should be removed from M

remove = true
foreach load L ∈ M do

// If S has a RAW or WAR with any load, S remains in M

if WAR (L,S) or RAW (L,S) then
remove = false

foreach store S’ ∈ M do

// If S has a WAW with any store, S remains in M

if WAW (S,S’) then
remove = false

// Removing S from M

if remove then
RemoveFromSet (S, M)

Algorithm 6.1: Memory optimization based on global instruction dependence.

this information to reduce the number of instructions (i.e., the number of connections to an

LSQ) of memory sets with more than two instructions as well.

Concretely, a load instruction L can be removed from memory set M if the two properties

introduced in Section 6.3.2 hold for each store instruction S of M :

1. L
GID−−→ S, i.e., any WAR dependence between L and S is enforced by a data dependence.

111

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Phi

BB1

BB3

Store a[i]

BB4

Load a[i + 2]

BB2

BB0 (start)

BB5 (end)

x = 0

Figure 6.5 – Control/data flow graph of the example in Figure 6.3.

2. There are no RAW dependences between any of the accesses of L with any of the accesses

of S.

If all WAR dependences between the load L and every store of the memory set are provably

maintained in order and there are no RAW dependences with any store of the set, L does not

need an LSQ and can be removed from the set.

After certain load instructions have been removed from a memory set using the properties above,

it is trivial to re-evaluate the set to remove all store instructions which no longer have conflicting

accesses with any of the remaining instructions in the set.

6.3.5 Why Not CFG Dominance?

If one is familiar with classic compiler analysis, it may appear that our Global Instruction

Dependence should, in fact, be the classic notion of CFG dominance and post-dominance.

These notions describe the relations between BBs in a CFG as follows:

1. A basic block BBN dominates basic block BBM if every path from the entry of the graph to

BBM must go through BBN .

2. A basic block BBM post-dominates basic block BBN if all paths to the exit of the graph

starting at BBN must go through BBM [110].

It might seem that we could use these properties to describe a relationship between a load and a

store instruction. However, they would not suffice, as the examples in Figure 6.4 clearly illustrate:

112

6.3. Memory Interface Optimizations

Phi

BB0

BB1

Store a[1]

BB2

+

x = a[1]; y = 0;

for (i=0, i<N, i++) {

z = x + y;

y = x;

x = 0;

}

a[1] = z;

0

Load a[1]

Phi

0

(a)

Load a[1]

Phi

+

Store a[1]

y = 0

Phi

Phi

w1: BB0-BB1-BB1-BB2
DFG_ind (w1):

0

Load a[1]

Phi

y = 0

w2: BB0-BB1-BB1
-BB1-BB2
DFG_ind (w2):

+

Phi

+

Phi

0

+

Phi

0

Store a[1]

+

Phi

Phi

Phi

(b)

Figure 6.6 – Another ordering guarantee. The circuit in Figure 6.6a exhibits an absence of load-store
dependence only after two traversals of the CFG cycle through BB1, as illustrated in Figure 6.6b (path w2).
However, multiple instances of the same instruction are guaranteed by construction to execute in order.
These ordering dependences are indicated with dotted arrows; they provide additional dependences
between instructions (in this case, a dependence between the load and the store in path w2).

the CFGs of the two programs are the same (i.e., in both cases, BB0 dominates BB1 and BB2,

BB2 post-dominates BB0 and BB1), yet the memory instructions exhibit different dependence

relations, as discussed in Section 6.3.3. Therefore, determining instruction dependence using

these CFG properties might lead to incorrect results.

One could consider formulating properties similar to dominance at the instruction level: in-

formally, one could check whether, on each path from program entry to a store, one passes

through the load, or whether every path from the load to the exit passes through the store. While

not incorrect, this formulation would be restrictive. Consider the example from Figures 6.3

and 6.5: in this case, neither of these properties would hold (e.g., there is a path from the start

of the program to the store which does not pass through the load); one would conclude that

dominance does not exist and would conservatively place an LSQ. Our formulation is more

general and captures situations when there is effectively a load before the store.

6.3.6 Another Ordering Guarantee

Our definition is quantified on all walks through the CFG which have a single passage through the

BB of the load and the store. This constraint provides us with the ordering of the last execution

of the load before the execution of the store—if the dependence relation holds for these two

113

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

accesses, all previous load accesses and all successive store accesses can be ordered with respect

to this load-store pair. Yet, if the CFG has a cycle which does not contain the load or the store BB,

the absence of a load-store dependence may be detectable only after multiple traversals of the

cycle, as illustrated in Figure 6.6—the lack of data dependence is present only after two cycle

traversals (i.e., in walk w2) and, based on Section 6.3.4, would require an LSQ between the load

and the store. But there is more.

As discussed in Section 2.3.3, accesses of the same instruction always execute in order—we have

already used this property to order load and store accesses, but it applies to other instructions

as well. This particularity adds implicit dependence edges between multiple instances (corre-

sponding to multiple accesses) of the same instruction in induced DFGs and provides us with

additional dependence relations.

Property. Each instruction instance in a DFGi nd (w) has an ordering dependence on any pre-

ceding instance of the same instruction.

In Figure 6.6a, this property holds for the phi and add instructions which repeat (we indicate all

ordering dependences with red dotted edges in Figure 6.6b); the ordering between the instances

of the leftmost phi implies a dependence between the load and the store along every walk—in w2,

the load is not a data predecessor of the store, but the new ordering edges enforce their ordering

and allow us to disconnect them from the LSQ. In the following section, we will formalize how

this property enables us to assess dependences and to further simplify the memory interfaces.

6.3.7 How Long a Walk Does One Need?

Our current definition requires checking all CFG walks to determine load-store dependences; in

certain cyclic CFGs, it requires checking an infinite number of walks, which is not quite feasible.

In the rest of this section, we discuss how to use the property described in the previous section

to restrict our search to a finite subset of walks, making the test practical.

Theorem. If instructions N and M are dependent on the DFGi nd (p) of a path p from BBN to

BBM , they are also dependent on DFGi nd (w) of any walk w from BBN to BBM which contains p

(i.e., which includes all BBs and CFG edges belonging to path p).

We here consider a path to be a walk in which all vertices are distinct, except possibly the first

and the last [15].

Proof. Given a path p from BBN to BBM through any BBP , p = [BBN , ...,BBP , ...,BBM], a depen-

dence between N and M (denoted as N −→ M) on DFGi nd (p) implies that there exists at least

one instruction P in BBP such that N −→ P and P −→ M . Let us consider now a walk w which

covers a single CFG cycle and contains p; the cycle has a CFG edge which connects into p in

BBP ; w visits BBP multiple times, that is, w = [BBN , ...,BBPfirst , ...,BBPlast , ...,BBM], where BBPfirst

is the first visit to BBP in the walk and BBPlast is the last one. The dependence over the path p

ensures that N −→ Pfirst and Plast −→ M . The property of Section 6.3.6 also guarantees Pfirst −→ Plast.

Thus, transitively, N −→ M also on DFGi nd (w). The same reasoning applies for all walks with

114

6.4. Evaluation

whatever cycles or control flow merges into p: a dependence holds across each BB where w

connects into p and transitively holds across all of them. ■

This theorem restricts Definition 2 in Section 6.3.3 to paths instead of generic walks—we hence

refine it to formulate Global Instruction In-order Dependence (GIID):

Definition 3. Instructions N and M are globally in-order dependent (written as N
GIID−−−→ M) if, for

every CFG path p starting with BBN , ending with BBM , and containing BBN and BBM only once,

N is the predecessor of M in DFGi nd (p).

The decision to remove a load instruction L from a memory set can accordingly account for GIID

instead of GID (see the first property of Section 6.3.4): if L
GIID−−−→ S, any WAR dependence between

L and S is enforced by a data dependence. We rely on this formulation in our experiments in

Section 6.4.

6.4 Evaluation

In this section, we demonstrate the ability of our memory analysis to reduce the area and

performance cost of the memory interface of dataflow circuits.

6.4.1 Memory Analysis Implementation

We implement our memory optimization, detailed in Section 6.3, as an LLVM pass which

determines the appropriate memory interface of a dataflow circuit. We exploit the alias analysis

pass of LLVM (i.e., BasicAA [86]) to determine whether two pointers alias and to disambiguate

arrays that target different memory regions. To extract the information about the memory

access patterns, we rely on the ScopInfo pass of the Polly framework [58]. This pass detects

SCoP regions within a program and creates a polyhedral description of the memory accesses it

contains. We use this information to determine whether two instructions have RAW, WAW, and

WAR dependences. Whenever an instruction is not part of any SCoP (i.e., Polly does not provide

us with the memory access patterns), we connect it to an LSQ to ensure correctness.

To determine whether a dependence relationship holds between a load-store pair, we employ

depth-first search to find all CFG paths from the load to the store BB. We extract the DFGi nd of

each path and perform a traversal across it to determine whether the load precedes the store.

The information on the memory access patterns and the GIID relation determined in this step

(see Section 6.3.7) enable us to simplify the memory interfaces, as described in Section 6.3.4.

6.4.2 Experimental Methodology

In the rest of this section, we compare three design points: (1) designs without any optimization

of the memory interface, which qualitatively correspond to the interface of Figure 6.1a, where

115

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Table 6.1 – Memory access patterns of our benchmarks. The loop it-
erators are indicated as i and j . Function func is application-specific.

Benchmark Memory access pattern

Memory loop x[i] = func (x[0], x[i], y[i])

Scalar multiply x[i] = func (x[i])

Image revert x[i][j] = func (x[i][j])

Weighted sum x[i] = func (x[i], x[i-1], x[i+1], y[i], y[i-1], y[i+1])

Threshold {x[i], y[i], z[i]} = func (x[i], y[i], z[i])

Video filter x[i] = func (x[i]), y[i] = func (y[i]), z[i] = func (z[i])

Histogram x[y[i]] = func (x[y[i]], z[i])

Matrix power x[i][y[j]] = func (x[i][y[j]], x[i-1][w[j]], z[i])

all memory accesses of the circuit are connected to memory using a single LSQ; (2) designs opti-

mized using the information provided by standard techniques (i.e., alias analysis and polyhedral

analysis), and (3) our designs which, in addition to standard information, use the methodology

from Section 6.3 to simplify the memory interface.

Our circuits are synthesized automatically from C code using the strategies from Chapters 2

and 3; we use the LSQ implementation from Chapter 5. We manually choose the minimal

power-of-2 size which allows for maximum achievable loop parallelism (i.e., all designs are

pipelined to achieve the optimal loop initiation interval for the particular benchmark and

memory configuration). We connect disambiguated memory instructions to separate dual-port

BRAMs with a single-cycle read and write latency, either directly or through an LSQ.

We functionally verify all designs using ModelSim. We obtain the number of clock cycles from

the simulation and the clock period (CP) from the post-routing timing analysis with Vivado to

calculate the execution time. Vivado place-and-route gives us the resource usage (i.e., the FPGA

slices, LUT, FF, and DSP count). All designs target a Xilinx Kintex-7 FPGA.

6.4.3 Benchmarks

The designs that we evaluate are simple but realistic kernels from literature [53, 80, 40] which

contain different memory access patterns, summarized in Table 6.1: (1) Memory loop is the

example from Figure 6.1 which we have discussed in Section 6.1. (2) Scalar multiply reads the

values of a vector and rescales each value by a constant factor before storing it back into the

same memory location. (3) Image revert is a nested loop in which the value of each image pixel

(stored in a 2-dimensional array) is reverted by subtracting it from a constant. (4) Weighted sum

updates each value of a vector to the weighted sum of itself and its neighboring vector values.

The weights corresponding to each element are stored in a separate vector. (5) Thresholding

is an edge detection kernel with a conditional statement inside a loop: if the pixel intensity is

less than some fixed constant, it is replaced with a black pixel. (6) Video filter is a simple video

116

6.4. Evaluation

Table 6.2 – Memory optimization comparison, timing results. Timing of dataflow circuits
which exploit our memory interface optimization (This Work), compared to circuits with
naively built memory interfaces (No opt.) as well as memory interfaces created using
standard optimizations (Standard). The LSQs employed by each design are listed under
Interface, together with the LSQ depth (e.g., d8 indicates a depth 8) and the number of
connected ports (e.g., p2 indicates that two memory accesses connect to the LSQ).

Benchmark Optimization Interface CP (ns) Exec. Time (µs) Speedup

Memory
loop

No opt. LSQ (d8, p4) 6.7 13.6 −
Standard LSQ (d8, p2) 6.3 9.5 1.4×
This Work − 4.3 4.4 3.1×

Scalar
multiply

No opt. LSQ (d8, p2) 5.8 8.8 −
Standard LSQ (d8, p2) 5.8 8.8 1.0×
This Work − 4.0 4.0 2.2×

Image
revert

No opt. LSQ (d8, p2) 6.3 5.7 −
Standard LSQ (d8, p2) 6.3 5.7 1.0×
This Work − 6.3 5.7 1.0×

Weighted
sum

No opt. LSQ (d8, p7) 6.5 71.5 −
Standard LSQ (d4, p4) 5.4 48.6 1.5×
This Work LSQ (d2, p2) 4.0 36.0 2.0×

Threshold
No opt. LSQ (d4, p6) 13.6 136.5 −

Standard 3 LSQ (d2, p2) 11.1 88.9 1.5×
This Work − 11.1 33.4 4.1×

Video
filter

No opt. LSQ (d16, p6) 8.8 23.9 −
Standard 3 LSQ (d8, p2) 7.6 10.4 2.3×
This Work − 6.6 6.2 3.9×

Histogram
No opt. LSQ (d16, p4) 7.0 35.2 −

Standard LSQ (d16, p2) 6.3 7.3 4.8×
This Work LSQ (d16, p2) 6.3 7.3 4.8×

Matrix
power

No opt. LSQ (d16, p5) 8.0 18.4 −
Standard LSQ (d16, p3) 6.2 4.8 3.8×
This Work LSQ (d16, p3) 6.2 4.8 3.8×

processing application which, in a nested loop, applies a filtering function on each video pixel.

(7) Histogram calculates the weighted histogram, which has a potential RAW dependence which

cannot be determined at compile time. (8) Matrix power computes a series of matrix-vector

multiplications in a nested loop. The row and column coordinates of the read and written

elements are unknown at compile time. We explored the last two benchmarks in Chapter 5.

6.4.4 Results

Tables 6.2 and 6.3 summarize our comparison results. All cases where no memory optimization

is applied (Naive) need a single, large LSQ. The number of LSQ ports corresponds to the total

number of reads and writes within the kernel. The execution time suffers due to two effects:

(1) the large number of LSQ entries degrades frequency (see Section 5.6) and (2) multiple ports

simultaneously insist on the same LSQ and, consequently, the same dual-port BRAM, which

causes memory port congestion and limits parallelism.

117

Chapter 6. Minimizing the Use of LSQs in Dataflow Designs

Table 6.3 – Memory optimization comparison, resource utilization. Resources of dataflow circuits
which exploit our memory interface optimization (This Work), compared to circuits with naively
built memory interfaces (No opt.) as well as memory interfaces created using standard optimiza-
tions (Standard). The LSQs employed by each design are listed under Interface, together with the
LSQ depth (e.g., d8 indicates a depth 8) and the number of connected ports (e.g., p2 indicates that
two memory accesses connect to the LSQ).

Benchmark Optimization Interface Slices LUTs FFs DSPs

Memory
loop

No opt. LSQ (d8, p4) 1390 4755 1751 3
Standard LSQ (d8, p2) 1213 (-13%) 3892 (-18%) 1475 (-16%) 3
This Work − 107 (-92%) 316 (-93%) 282 (-84%) 3

Scalar
multiply

No opt. LSQ (d8, p2 1092 3506 1512 3
Standard LSQ (d8, p2) 1092 (-0%) 3506 (-0%) 1512 (-0%) 3
This Work − 100 (-91%) 262 (-93%) 317 (-79%) 3

Image
revert

No opt. LSQ (d8, p2) 1013 3425 1455 0
Standard LSQ (d8, p2 1013 (-0%) 3425 (0%) 1455 (-0%) 0
This Work − 123 (-88%) 392 (-89%) 287 (-80%) 0

Weighted
sum

No opt. LSQ (d8, p7) 1640 5272 2312 9
Standard LSQ (d4, p4) 628 (-62%) 1776 (-66%) 1442 (-38%) 9
This Work LSQ (d2, p2) 313 (-81%) 772 (-85%) 1013 (-56%) 9

Threshold
No opt. LSQ (d4, p6) 440 1356 831 0

Standard 3 LSQ (d2, p2) 350 (-20%) 917 (-32%) 847 (+2%) 0
This Work − 183 (-58%) 587 (-57%) 425 (-49%) 0

Video
filter

No opt. LSQ (d16, p6) 4356 15546 3596 9
Standard 3 LSQ (d8, p2) 3408 (-22%) 11282 (-27%) 4366 (+21%) 9
This Work − 385 (-91%) 1073 (-93%) 933 (-74%) 9

Histogram
No opt. LSQ (d16, p4) 5206 17860 3484 2

Standard LSQ (d16, p2) 4762 (-9%) 3562 (-5%) 3125 (+2%) 2
This Work LSQ (d16, p2) 4762 (-9%) 3562 (-5%) 3125 (+2%) 2

Matrix
power

No opt. LSQ (d16, p5) 5345 18394 3549 7
Standard LSQ (d16, p3) 4989 (-7%) 16955 (-8%) 3744 (+5%) 7
This Work LSQ (d16, p3) 4989 (-7%) 16955 (-8%) 3744 (+5%) 7

Standard memory analysis techniques (Standard) disambiguate memory accesses targeting

different arrays. All applications with accesses to multiple arrays benefit from the reduced port

count and, in certain cases, reduced LSQ depth. Consider, for instance, Video filter: the naive

implementation had a large LSQ with 6 ports which connected three arrays to memory (i.e.,

x, y , and z, as indicated in Table 6.1); this optimization step splits the single LSQ into three

smaller LSQs (one for each of the arrays). Apart from disambiguating accesses of different

memories, standard analysis determines read-only accesses which can be connected to memory

separately from the LSQ. This is the case, for instance, for x[0] in Memory loop and for accesses

to arrays y and z in Histogram and Matrix power. However, in all applications, all read and write

instructions which access the same memory locations still require an LSQ.

In all applications apart from Histogram and Matrix power, our technique (This Work) finds

timing relations between instructions which enable us to simplify or to completely remove the

LSQ from the memory interface, resulting in significant area savings (although remarkable, note

118

6.5. Conclusions

that the area savings due to the removal of the complex LSQ circuitry are probably exaggerated by

the simplicity of the kernels we consider). In Weighted sum, an LSQ is still required to handle the

loop-carried RAW dependence between the load of x[i+1] and store to x[i] (see Table 6.1),

yet even a queue of minimal depth sustains maximal throughput. Histogram and Matrix power

always require an LSQ to handle memory dependences which cannot be determined at compile

time (i.e., the kernels are not SCoPs and polyhedral analysis cannot extract the accessed indices).

These examples are representative of cases where dynamic scheduling of dataflow circuits is

superior to static HLS and an LSQ is essential—in any static approach, the loops cannot be

pipelined due to the possible read-after-write dependences; in contrast, dataflow circuits exploit

the LSQ to maximize parallelism, as we demonstrated in Chapter 5.

6.5 Conclusions

Reordering memory accesses in dataflow circuits implies the use of LSQs, qualitatively similar

to those used in processors. The problem is that spatial dataflow circuits essentially need an

LSQ port for every access, quickly making LSQs prohibitive in cost and terrible in performance,

especially on FPGAs; the risk of negating any advantage of dynamic scheduling is extremely

concrete. It seems intuitive that one should be able to use information from the source code to

disambiguate accesses and partition monolithic LSQs into smaller ones as well as bypass some

of the LSQs. In this chapter, we described how to build such a network of LSQs for arbitrary

applications. Our optimization exploits the fact that data dependences in the original code imply

sequential execution of some accesses in the corresponding dataflow circuit; this guaranteed

sequencing may remove the need for some LSQs or ports thereof. On average, we demonstrated

that a careful design can reduce by 65% the design area and improve performance by a factor of

3.1× compared to a naive approach.

119

7 Speculative Dataflow Circuits

In the realm of processors, VLIWs have most suffered from the inability to accommodate arbi-

trary forms of speculative execution: predicated execution (i.e., committing an instruction only

if a specific condition is true) can be seen as a form of speculation when used to implement

if-conversion (two branches of an if-then-else statement are both executed until the value of the

condition is known); yet, even aggressive predication is not applicable to every performance-

critical control decision. Analogously, statically scheduled circuits generated by standard HLS

tools suffer from the inability to exploit broad classes of speculative execution.

On the other hand, part of the success of speculative execution in dynamically scheduled

processors is the fact that a fairly limited set of universal techniques (i.e., register renaming,

reordering buffers, and commit mechanisms) is sufficient to support the speculation of virtually

any critical decision worth predicting. In this chapter, we explore whether similarly broad

classes of speculation can be supported in dataflow circuits. We demonstrate that this is indeed

possible, that it also needs a fairly small number of generic components and techniques, and

that the advantage can be significant when waiting for a key execution decision is particularly

time-consuming.

7.1 Why HLS Needs Speculative Behavior

Figure 7.1 revisits the example from Section 2.4.5, which illustrates the need to accommodate

speculative behavior. A standard, nonspeculative HLS tool would not allow a new loop iteration

to start until the condition to exit the loop has been checked—this condition is available only

after performing almost the entire loop body, which largely prevents pipelining of the loop. In

contrast, speculation would make possible a high-throughput pipeline which tentatively starts

another loop iteration on every clock cycle and, later on, discards the speculatively computed

values if the loop was supposed to terminate prior to their execution (in the case of Figure 7.1,

This chapter is based on the work published at the 27th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2019 [74].

121

Chapter 7. Speculative Dataflow Circuits

d0!=x? d1 = a[0] + b[0] c[0]=d11

2

3

d1!=x? d2 = a[1] + b[1] c[1]=d2

d2!=x? d3 = a[2] + b[2] c[2]=d3

d3!=x?
return

d34

Nonspeculative schedule:

1

2

3

4

d0!=x? d1 = a[0] + b[0]
c[0]=d1
d1!=x?

d2 = a[1] + b[1]
c[1]=d2
d2!=x?

d3 = a[2] + b[2]

d4 = a[3] + b[3]

c[2]=d3
d3!=x?

d5 = a[4] + b[4]

discard
d4

discard
d55

Speculative schedule:

return
d3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[0]
ld b[0]

ld a[1]
ld b[1]

ld a[2]
ld b[2]

ld a[3]
ld b[3]

ld a[4]
ld b[4]

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

float d=0.0; x=100.0; int i=0;

while (d<x) do {
d = a[i] + b[i];
c[i] = d;
i++; }

return d;

1: a[0]=50.0; b[0]=30.0
2: a[1]=40.0; b[1]=40.0
3: a[2]=50.0; b[2]=60.0 → exit

Figure 7.1 – A nonspeculative schedule, compared to a schedule produced by a system supporting specu-
lative behavior. This figure repeats the situation from Figure 2.14. The code below the schedules takes
multiple clock cycles to compute the condition for executing another loop iteration. A nonspeculative
circuit needs to wait for the condition, whereas the speculative circuit tentatively starts another iteration
and then discards the newly computed values if they are later on determined unneeded.

the addition results from the fourth and the fifth iteration are unneeded and will be discarded

once this is decided by the termination check in cycle C 7).

Figure 7.2 shows the dataflow circuit corresponding to the example in Figure 7.1; this simple

program needs a single branch and a single merge node for the loop iterator i. The token

carrying the iterator value is propagated to the next loop iteration whenever this is decided

by the branch condition (i.e., the comparison of the value d with x). Despite the flexibility of

dynamic scheduling, if the condition takes a long time to compute (as it is the case here), the

branch unit will hold the token representing i+1 until the token with the condition arrives, and

the start of a new loop iteration will be delayed—speculative execution (in this case, branch

prediction and speculation) is needed to achieve an efficient pipeline.

7.2 Speculation in Dataflow Circuits

Our goal is to create a generic framework for handling speculation in dataflow circuits. The idea

is that some units might be allowed to issue speculative tokens—that is, pieces of data which

might or might not prove correct and which will combine with other (nonspeculative) tokens,

resulting in more speculative tokens traveling through the circuit. In other words, speculative

122

7.2. Speculation in Dataflow Circuits

Merge

Buff

Load a[i] Load b[i]

+

Fork

Store c[i] <

Branch

+

Fork

Start, i=0

End

x

1 i

di d

3 stages

comb.

Figure 7.2 – A dataflow circuit executing the code of Figure 7.1. The branch requires both a value and a
binary condition before it can issue the value it has received to the merge and thus start a new iteration.
Hence, a condition which takes a long time to compute may significantly hinder performance.

tokens trigger some computations which might have to be squashed and possibly repeated with

the correct nonspeculative tokens. Figure 7.3 gives a sense of our strategy: speculative tokens

will be contained in a region of the circuit delimited by special units.

The first unit is a speculator. A speculator is a special version of a regular dataflow unit which,

besides its standard functionality, also has the liberty of injecting tokens before receiving any

at its input(s). The most natural example is that of a branch node which receives the value to

dispatch but not the condition; a branch speculator could predict the missing condition and

send tentatively the value through one of its outputs. If, after issuing a speculative token, the

speculator eventually receives the same data which it assumed speculatively (e.g., the condition

it predicted), all is fine and execution was probably sped up; if, on the other hand, the data

it eventually receives does not match the prediction, we have a case of misspeculation: the

speculator should now perform its function correctly (e.g., resend the value on the other output),

but must first make sure that the speculative work done is discarded.

The reason for the output boundary of the speculative region of Figure 7.3 is fairly evident:

clearly, speculative tokens cannot be allowed to propagate indefinitely and must not affect the

architectural state of the circuit, i.e., the part of the state which is known and visible to the user.

Therefore, the speculative region must be limited at least before units which store values in

memory or before the end of the circuit. The units at the output end of the speculative region

are called commit units. These units simply propagate further speculative results which turn

123

Chapter 7. Speculative Dataflow Circuits

MergeMerge

Load

ExitStore

Store

+

...

..
.

..
.

Fork

+

SpeculatorSave

Save

Branch

CommitCommit

Commit

Save

Figure 7.3 – A region of a dataflow circuit implementing our speculative execution paradigm. The
speculator initiates speculative execution by injecting tokens tentatively, save units capture required
inputs of the region to enable a correct replay in case of misspeculation, and commit units prevent
speculative tokens from affecting irreversibly the architectural state, such as memory. Speculative tokens
are marked explicitly using an additional bit (represented by the dotted line). A dataflow control circuit
(in red, dashed line) between the speculator and the save and commit units carries information about
speculative events (start, commit, squash, etc.).

out to be correct; as it happens in speculative software processors, misspeculated results are

simply squashed. Because commit units must differentiate speculative from nonspeculative

tokens (the former ones need explicit commit information before propagating, while the latter

ones can always go ahead), as Figure 7.3 suggests, all channels between the speculator and the

commit units must be enriched with a control signal which indicates the speculativeness of the

token being passed.

Finally, we need to bound the speculative region on the input side in order to save a copy of all

regular tokens which may combine with a speculative token so as to be able to reissue them if

the previous computation is squashed. To this end, we employ save units.

Section 7.3 details these new dataflow units and Section 7.4 describes how to correctly place

them in the circuit. An important aspect of a speculative region, i.e., the communication between

the speculative units, is only sketched in Figure 7.3: the speculator should communicate with

the commit and save units whenever it starts and stops a speculative event. We have elected

to implement this communication through an additional dataflow circuit connecting all the

new speculative units; while this communication is relatively straightforward (essentially, binary

tokens indicating whether a speculation was successful or not), there are a few peculiarities to

124

7.3. Units for Speculation

take into account when speculative tokens traverse merge and branch units. We will detail the

construction of this control circuitry in Section 7.5. A critical situation, not represented in the

qualitative example of Figure 7.3, occurs when the speculator is placed on a loop: we will use an

intuitive but too conservative approach in Section 7.4, likely to result in speculative circuits with

little performance advantage, and then fully tackle this problem in Section 7.6.

7.3 Units for Speculation

This section details the units needed to delimit a speculative region in a dataflow circuit: a

speculator to initiate the process, save units on the inputs of the region, and commit units on its

outputs. The units are, in general, built out of standard dataflow units and they communicate

with the rest of the design using the same handshake protocol.

7.3.1 Speculator

Speculative execution starts when a speculator triggers the execution of a part of the circuit

before it is certain that it needs to execute or that the execution is correct. Any dataflow unit can

operate as a speculator by issuing speculative tokens before all of the unit’s input information

is available (i.e., when only a subset of the input tokens is available at the inputs of the unit).

For instance, a speculator branch can speculate on the condition, causing the branch to output

the data token to one of its successors before the condition token arrives; a speculator within a

load-store queue can perform a speculative load and eagerly output a speculative data token as

soon as the load address is available and before all memory dependences are resolved.

Apart from issuing speculative tokens, the speculator’s role is to determine the correctness of

a speculation and trigger actions accordingly. It therefore saves the prediction and assesses

the situation once the missing input arrives. It is important to note that the tokens propagate

through each path of the circuit strictly in order (see Section 2.3.3); hence, the first token

arriving at the particular input whose value was speculated will hold the value which resolves

the first speculation. After deciding if the prediction was successful, the speculator informs

the appropriate units in the circuit of the comparison result, allowing them to commit the

speculative results or to discard the misspeculated tokens and recompute with the correct values.

In the second case, the speculator needs to insert the token holding the correct value into the

circuit in order for the computations to execute anew.

The structure of one of the most natural speculators, i.e. the branch speculator, is shown in

Figure 7.4. Unlike a standard branch, which waits for both the data and the condition to arrive

before producing an output, the branch speculator can output a data token even when the

condition is not yet present, together with a bit indicating whether the token is speculative.

Eventually, it will receive a regular condition token, which it will compare with the previously

speculated value (all speculatively issued values are stored in a queue within the speculator)

and send a confirmation or cancellation token to the other units. It will then either discard

125

Chapter 7. Speculative Dataflow Circuits

data

Fork

Predictor

condition

Branch

resend /drop

discard / pass
Compare spec.
and real data

cond. valid

data + handshake
speculative tag

Branch

sink

Branch

sink

Figure 7.4 – Branch speculator. A branch speculator can speculate on the branch condition and output a
speculative data token. It later on determines the correctness of a speculation and communicates this
information to the save and commit units.

the real token (using the branch subcomponent on the right of Figure 7.4) or resend it into the

circuit. The speculator can issue a token only when its basic block is active, otherwise, there

is no guarantee that the real token will eventually arrive to confirm or cancel the speculation

(this is easy for a branch speculator because the arrival of a data token is a guarantee that the

condition will also arrive).

Initially, we will discuss the case where only one speculative token at a time is issued into the

circuit—i.e., a new speculation cannot start before the previous one has been resolved. While

this is not a problem for pieces of code that do not need to repeat (i.e., speculating on a branch of

an if-else statement), it could easily result in suboptimal performance if the speculator is placed

on a cyclic path (i.e., speculating on a loop termination condition). We will make necessary

modifications to support multiple speculations from a single speculator in Section 7.6.

7.3.2 Commit Unit

All dataflow components, apart from the speculator, use a conservative firing rule: they produce

tokens only once all of the required input operands become available. However, if one of the

inputs of a dataflow component is a speculative token, the produced output token will become

speculative as well—there is no guarantee that the computed value or the decision made by the

component is correct until the speculation is resolved by the speculator. In case the speculation

is incorrect, the component will output incorrect data or send a token in the wrong control flow

direction: at some point, this misspeculated data will need to be discarded.

To this end, we use commit units that stall speculative tokens until they receive the corresponding

decision from the speculator: in case the speculation is determined correct, the speculative

tokens are converted into regular tokens and passed on to the rest of the circuit; otherwise, they

are discarded by this unit. Any regular token that reaches the unit is unaffected and simply

propagated through.

126

7.3. Units for Speculation

pass

discard/
pass

data

data + handshake
speculative tag

sink

Branch

(a) Commit unit.
Merge

Buff

resend/
drop

data

Fork

sink

Branch

(b) Save unit.

Figure 7.5 – Components for speculation. The commit unit (Figure 7.5a) stalls speculative tokens until
the correctness of the speculation has been determined. The save unit of Figure 7.5b saves tokens that
might interact with speculative ones to be able to replay the computations in case of a misspeculation.

Figure 7.5a outlines the structure of the commit unit. Data enters the unit through an internal

branch; depending on the value of the speculative bit, it is either directly passed on to the

successor components (in case the data is nonspeculative), or stalled until the unit receives a

decision from the speculator. Assuming that the data path from the speculator to this unit is

long, the speculator might issue and resolve multiple speculations before the data tokens arrive

at the commit unit. Hence, the unit contains a queue to save the decisions from the speculator

if they arrive before the data. As the tokens arrive in order on both paths, the timing relations

of the two paths cannot influence correctness: the commit unit will keep the first speculative

piece of data on one path until the first confirmation or cancellation on the other path becomes

available, and all tokens will be correctly matched. The output of the commit unit is always a

regular nonspeculative token.

7.3.3 Save Unit

In case a speculation is determined incorrect, speculative tokens are discarded and speculated

computations need to reexecute with the correct values. This means that each nonspeculative

token which at some point interacts with a speculative token needs to be appropriately saved

until the speculation is confirmed or canceled. To this end, we use save units which store the last

token that passed through it until the speculator determines the correctness of the speculation.

In case the speculator indicates that the speculation was correct or that it did not speculate on

the saved values, the saved tokens are not needed and can be discarded—these values have

already been correctly propagated through the circuit and their interactions with any token

issued by the speculator produced correct results. On the other hand, if the speculation was

127

Chapter 7. Speculative Dataflow Circuits

Merge

Fork

Spec.
Branch

Commit

Store

Merge

Exit

+

Commit

Commit

Spec.
Load

Commit

Branch

data + handshake
speculative tag

Figure 7.6 – Placing commit units. Our placement strategy ensures that memory is never modified by a
speculative token, the program never terminates before speculation is resolved, and only nonspeculative
values interact with units that might carry a speculative value.

incorrect, all save units need to reinsert their saved token into the circuit to repeat the previously

miscalculated computations.

The save unit in Figure 7.5b takes a nonspeculative token as input and outputs a nonspeculative

token. It requires only a single register for storing a token: for another token to arrive at the input

(possible only if the unit is on a loop), the previous speculation must have been resolved and the

old value inside the register has either already been reinserted into the circuit or determined

unneeded and discarded through the branch.

Note that the discard and resend outputs of the speculator, connected to the commit and save

units, respectively, are not equivalent: If a speculation does not occur, the save unit still kept

a token which needs to be thrown away—the speculator must inform the unit when issuing a

nonspeculative token. Commit units do not require any confirmation from the speculator to let

the nonspeculative tokens pass.

7.4 Placing the Units

Every speculative region needs to be delimited with its own set of commit and save units: they

ensure that misspeculated computations are appropriately squashed and replayed. This section

shows where to place commit and save units into dataflow designs.

Every speculation needs to be resolved before terminating the program—that is, before a token

reaches the exit node. Furthermore, only regular tokens can be used for modifying memory

128

7.4. Placing the Units

Spec.
Branch

Save

+ Merge

Spec.
Branch

Save Save

Commit

...

Save

data + handshake
speculative tag

Spec.
Load

Figure 7.7 – Placing save units. Each token that interacts with a speculative token must be saved until the
speculation is confirmed or canceled.

(assuming that writes cannot be reverted) or as inputs to the speculator (we will relax this

constraint in Section 7.6). Therefore, we place a commit unit on each path of the dataflow graph

which starts at the speculator and ends with the first of any of the following units encountered

on the path: (1) an exit point of the graph; (2) the speculator or a unit carrying a speculative

value; (3) a store unit. Figure 7.6 gives examples of correct placements of the commit unit.

Placing more than one commit unit on a single path does not bring any benefit, as the first

unit will always resolve the speculation. The commit units should be placed as far as possible

from the speculator, as this allows speculating on more computations and therefore increases

performance in case the speculation was correct.

A save unit is required whenever a regular token can interact with a speculative one, so the

operations can reexecute in the case of a misspeculation. The following paths must contain

a save unit: (1) each path from the start of the dataflow graph to any unit that could combine

the token with a speculative value and (2) each cyclic path containing a speculator or any unit

that could combine the token with speculative values. Since these cycles contain a commit

unit (see previous section), the save unit must be placed after it—this ensures that only regular

tokens enter the save unit, as any speculation will be previously resolved. Figure 7.7 shows

examples of placing the save units. To maximize performance (i.e., a smaller number of correct

computations to reexecute in case of a misspeculation) and minimize resource requirements

(i.e., a smaller number of save units required), we place the save units as close as possible to the

end of these paths (i.e., as close as possible to the paths carrying speculative tokens).

As already suggested, the dataflow circuit between a speculator and its commit units needs to

carry data with a speculative tag. This modification requires only a minor change to standard

dataflow units: it is simply one more bit of payload which is propagated or OR’ed from all inputs

to make the output is speculative when any of the inputs is speculative, as depicted in Figure 7.8.

129

Chapter 7. Speculative Dataflow Circuits

Merge +Buff

data + handshake
speculative tag

Figure 7.8 – Extending dataflow units with a speculative tag. In most cases (e.g., merge, buffer, fork),
the tag is simply an additional bit propagated with the data. Units that combine multiple inputs (e.g.,
arithmetic operations) require an OR to make the output speculative when any of the inputs is speculative.

+

Commit

Branch

Commit

...

...
Spec.
Load

Branch

cond.

discard/
pass

Figure 7.9 – Connecting the speculator to the commit units. The cancellation or confirmation from the
speculator must be directed only to the commit unit which is on the path of the misspeculated token.
Otherwise, another token could be discarded incorrectly: if both commit units in the figure were to
receive a cancellation signal and the misspeculated token took the left branch, a correct token coming
down the right branch would later be wrongly discarded.

7.5 Connecting the Units

When the speculator determines the correctness of a speculation, it needs to inform the appro-

priate save and commit units. We add a specialized handshake network for this purpose.

7.5.1 Connecting the Speculator to the Commit Unit

The speculator connects to the commit units through a specialized network and informs them

whether to discard or propagate speculative tokens. However, sending the decision to all commit

units would result in incorrect behavior. Consider the example in Figure 7.9: If a decision to

discard the token due to a misspeculation is sent to both commit units, and the misspeculated

token takes the left output of the branch, another token taking the right branch output later on

would be incorrectly discarded. Therefore, the information from the speculator needs to be sent

only to the units that were on the actual path taken by the speculative tokens. In such cases,

130

7.6. Multiple Speculations from a Single Speculator

Merge

Spec.
Branch

Save Save

...

Branch

resend/
drop

Figure 7.10 – Connecting the speculator to the save units. Any merge that is on the path from the save
units to the speculator should memorize where tokens came from so that the speculator can send the
correct resend or discard message to the appropriate save unit.

we place branches on the path connecting the speculator and the commit unit which receive

the same conditions as the regular branches of the dataflow circuit. Whenever a speculative

token passes, the branch in the specialized network will mimic the control flow decision taken

by the data token and thus correctly direct the information from the speculator to one of the

commit units.

7.5.2 Connecting the Speculator to the Save Unit

The complementary problem arises when connecting the save units—only some of them hold

tokens that need to be resent to the circuit. Consider the example in Figure 7.10, where the

save units are placed before a merge node. If the speculation is determined incorrect, only

one of the save units should reissue a token—however, there is nothing that can determine

which of the two save units holds the direct predecessor (i.e., which token needs to be reissued).

Therefore, merges that are on the path from the save units to the speculator need to remember

which side a token came from. The speculator uses this information to correctly direct the

confirmation/cancellation to the proper save unit. The dispatching is implemented in the

specialized network as a branch which takes the speculator decision as data and the information

from the original merge as the condition and forwards the decision accordingly.

7.6 Multiple Speculations from a Single Speculator

The approach described so far does not bring significant performance benefits when speculation

occurs in a loop, as it requires us to conservatively wait for one speculation to end to be able to

trigger a new one. This section discusses the modifications needed to increase loop parallelism.

In points where save and commit units meet, the approach described so far allowed a new

token to enter the save unit only after the commit unit sent out a confirmed token. Thus,

131

Chapter 7. Speculative Dataflow Circuits

x

Merge

Buff

Load Load

+

Store

<

+

Start, i=0

End

1

Save

Spec.
Branch

Commit

Commit

CommitCommit

Fork

Fork

1

2

3

(a) Speculating on a single value at a time.

x

Merge

Buff

Load Load

+

Store

<

+

Start, i=0

End

1

Save-
Commit

Spec.
Branch

Commit

CommitCommit

Fork

Fork

1

2

3

FIFO FIFO

(b) Speculating on multiple values.

Figure 7.11 – Enabling multiple speculations from a single speculator in the example from Figure 7.2.
Our strategy from Section 7.3 results in suboptimal behavior when the speculation occurs in a loop: as
Figure 7.11a shows, a token that is speculatively inserted into the loop will be stalled in the commit unit
(point 3 in the figure) until the speculation is resolved, preventing the triggering of a new speculation.
Merging the save and commit units on the loop into a single unit (Figure 7.11b) allows issuing a new
speculative token before the previous speculation has been resolved.

all speculations through cyclic paths are sequentialized, which prevents us from achieving a

high-throughput pipeline. Figure 7.11a shows the circuit from Figure 7.2 modified with the

speculative units and the strategies described in the previous sections (note that the speculative

tags are omitted for graphical simplicity). A nonspeculative token enters the merge through the

starting point (labeled as point 1 in the figure), passes through the commit and save unit (as it

is nonspeculative), and reaches the speculator (point 2). The speculator issues a speculative

value back through the merge and into the commit unit (point 3), which stalls the token until

the condition reaches the speculator and it informs the commit unit of the correctness of the

speculation—only then does the token pass through to the speculator again, triggering the start

of a new speculation.

7.6.1 Merging the Save and Commit Unit

Whenever a save and commit unit meet on a cyclic path, we can merge them into a single

unit which allows issuing a speculative token even before the previous speculation has been

132

7.6. Multiple Speculations from a Single Speculator

data

Fork

Merge

data

Branch

resend /
drop

discard /
pass

data + handshake
speculative tag

Branch

Branch

sink

FIFO empty

sink

Figure 7.12 – The structure of the save-commit unit.

resolved. The save-commit unit (Figure 7.12) performs the combined functionality of both units:

as a save unit, it issues regular tokens to restart computations or discards them when they are

no longer needed; as a commit unit, it turns speculative tokens into regular ones or discards

speculative tokens. However, unlike a regular commit unit, this unit will also let speculative

tokens pass to the successors; it will save all the tokens, corresponding to regular or speculated

data from multiple loop iterations, until they are no longer needed. We exploit the fact that

the tokens are stored in the unit in order, as well as that the decisions arrive in order from the

speculator—this allows us to easily match every decision to a token queued in this unit. The

action of reissuing or discarding a token (usually performed by a save unit) will be applied on

the oldest stored token which will, in both cases, be removed from the unit as it is no longer

required: If the speculator informs the unit that a speculation was correct, the oldest token will

be removed from the unit and its speculative successor will be transformed into a regular token.

If the speculator sends a decision to discard a misspeculated token, the oldest speculative token

will be discarded. The speculator will issue cancellations for each speculative token produced

after the first misspeculation and each will discard one of the queued tokens. If the data tokens

to cancel are not yet available, the cancellations are queued in a dedicated FIFO and the data is

discarded as soon as it enters the unit.

Figure 7.11b shows the circuit of Figure 7.11a where the save and commit unit on the loop has

been replaced with a combined save-commit unit. As before, the token enters through the merge

(point 1 in the figure) and is sent to the speculator. The speculator issues a speculative token

(point 2), which is stored in the save-commit unit (point 3), but also immediately propagated

133

Chapter 7. Speculative Dataflow Circuits

to the speculator to trigger another speculation, hence finally resulting in the high-throughput

pipeline achieving the lower schedule of Figure 7.1.

7.6.2 Connecting the Speculator to the Save-Commit Unit

There are two paths connecting the save-commit unit and the speculator, and both could contain

control flow decisions: the one from the save-commit output to the speculator could contain

merges (exactly like the path from the save unit to the speculator in Figure 7.10), and the one

from the speculator to the save-commit input could contain branches (same as the paths to

the commit units depicted in Figure 7.9). Therefore, as in the previous cases, our dedicated

network for sending decisions to this unit will have to collect the control flow information from

the original circuit to ensure that decision tokens are distributed the correct way. The principle

is exactly the same as for connecting the speculator to the save and commit units; however,

each control flow point will now have to hold multiple control flow decisions (as many as the

save-commit unit can accommodate tokens). Whenever the speculator sends a decision, the

oldest queued condition will be used and discarded. This ensures that every unit is correctly

informed of the speculation.

7.7 Speculations from Multiple Speculators

The methodology discussed in the previous section describes a circuit with only one speculator

issuing speculative tokens. Our approach could be easily extended to support multiple specula-

tors in the design. The save and commit units and their placement strategy would be exactly

the same; the only difference is that each speculative token would need to be tagged to keep

track of the speculation origin—these tags would enable each commit unit to properly handle

speculative tokens (i.e., each commit unit would consider as speculative only the tokens from

the speculator it is connected to; all speculative tokens of a different origin would be treated as

nonspeculative).

7.8 Evaluation

In this section, we evaluate our speculation technique by comparing static, dynamic, and

speculative circuits. The statically scheduled baselines are obtained using Vivado HLS. We

compare them with dynamic designs produced using the methodology described in Chapter 2,

which results in nonspeculative circuits like that of Figure 7.2; we extend these circuits with

the speculative units presented in this chapter to obtain circuits as in Figure 7.11b, which are

our main results. Although our speculative methodology is perfectly general, in our examples

we speculate on a single control flow decision using branch speculators from Figure 7.4. The

speculators contain a static predictor that assumes the branch is taken whenever the input

data becomes available. Each design contains as many speculators as there are variables which

need to be speculatively issued to the successor basic block. All designs use identical floating-

134

7.8. Evaluation

point and integer arithmetic units and connect to the exact same RAM interface as the baseline

designs from Vivado HLS. We use simulations in ModelSim [88] for functional verification and

for measuring the loop initiation intervals. We synthesize the designs with Vivado to obtain the

clock period and resource usage after placing and routing the designs.

7.8.1 Benchmarks

The designs that we consider in this section represent typical cases which can profit by branch

prediction and where speculative execution should bring significant performance benefits over

conservative, static scheduling. The benchmark loops are derived from real applications which

can be found in literature [99].

• While loop is the kernel from Figure 7.1. The dynamic design results in the circuit of

Figure 7.2 which we extend with speculative units to obtain the circuit of Figure 7.11b.

• Backtrack is the inner loop of the backtracking pass of the Bellman-Dijkstra-Viterbi algo-

rithm. After labeling each state with the minimum cost to reach it, the backtracking pass

looks for a unique set of edges that produce the global minimum. The states are traversed

in a for loop which breaks when the predecessor state with the minimum cost is found.

The break statement prevents loop pipelining, as the static tool starts a new loop iteration

only after the break condition from the previous iteration has been determined false.

• Subdiagonal is an inner loop of a QL algorithm for determining the eigenvalues of a

tridiagonal matrix. The loop looks for a single small subdiagonal element to split the matrix

and contains a conditional break inside the loop body to return the correct subdiagonal

index. As the condition for the return takes a long time to compute, it prevents static

scheduling from efficiently pipelining the loop.

• Fixed point is an iteration method for finding the real roots of a function. It consists of a

while loop which iterates through a sequence of improving approximate solutions until

the desired degree of accuracy is achieved. Static scheduling postpones the start of a new

iteration until the error computation from the previous iteration has been completed.

• Newton-Raphson is a hybrid algorithm of bisection and the Newton-Raphson method

for finding the roots of a function. The hybrid algorithm takes a bisection step whenever

Newton-Raphson would take the solution out of bounds and therefore improves the

convergence properties of the algorithm over the standard Newton-Raphson method. The

algorithm contains a for loop with an if-else statement to determine which of the two

methods to use for a particular data point. Static predication is limited by the complex if

condition and, as the next loop iteration requires the data computed in the current one, it

must be scheduled for after the condition has been determined.

7.8.2 Results

Table 7.1 reports the timing and resource requirements of our benchmarks. The static scheduler

constructs a conservative schedule which prevents almost any pipelining of these loops because

135

Chapter 7. Speculative Dataflow Circuits

Table 7.1 – Timing and resource requirements of static, dynamic, and speculative circuits.

Benchmark Design II CP
(ns)

Time
(µs)

Speedup Slices LUTs FFs DSPs

While
loop

Static 11 3.7 37.4 130 270 436 2
Dynamic 12 4.4 48.8 0.8× 129 (-1%) 353 511 2
Speculative ∼ 1 4.8 4.5 8.3× 186 (+43%) 486 582 2

Backtrack
Static 21 3.7 76.2 175 353 625 5
Dynamic 22 3.5 75.6 1.0× 251 (+43%) 555 859 7
Speculative ∼ 1 5.1 5.1 14.9× 320 (+82%) 774 956 7

Subdiagonal
Static 17 3.6 60.0 164 342 591 5
Dynamic 18 3.6 64.0 0.9× 179 (+9%) 424 611 5
Speculative ∼ 1 4.6 5.1 11.8× 233 (+42%) 559 650 5

Fixed
point

Static 15 3.3 3.3 187 354 573 5
Dynamic 17 3.3 3.8 0.9× 177 (-5%) 371 581 5
Speculative ∼ 6 3.8 1.6 2.1× 198 (+6%) 477 601 5

Newton-
Raphson

Static 8 5.4 4.3 201 585 636 9
Dynamic 10 5.0 5.1 0.8× 234 (+16%) 775 498 9
Speculative ∼ 1 5.5 0.6 7.2× 348 (+73%) 1181 603 9

it waits for the condition to be determined before starting a new loop iteration. Despite the

flexibility of dataflow circuits, dynamic scheduling alone does not suffice to achieve high paral-

lelism for the exact same reason as static scheduling: a new loop iteration is delayed until the

previous decision has been determined, i.e., the branch waits for the condition token to arrive

before propagating a data token backwards into the loop body. In contrast, the speculator in the

final design issues speculative tokens into the loop as soon as the input data becomes available

and enables achieving the ideal loop initiation interval. Note that the speculative initiation

interval IIspec is, in fact, a weighted average of the value in case of good prediction and of that

for a misprediction. For all circuits but Newton-Raphson, there is a single misprediction when

the loop is exited and, therefore, the average II is for all practical purposes exactly the one in

Table 7.1. Note that IIspec ≈ 1 for all benchmarks but Fixed point: in this case, the input data to

the branch takes 6 cycles to compute, therefore limiting the maximum issue rate of speculative

tokens. The resource increase and the longer critical path are due to the additional units for

speculation and the FIFOs that we added to achieve maximum parallelism.

Although the table indicates IIspec ≈ 1 for Newton-Raphson, the situation is slightly different

than in the other benchmarks: in this case, the misprediction is not an event happening only

once per loop execution, but every time a bisection step is taken. The actual II is therefore

data-dependent but still close to 1, as the bisection step is meant to be a relatively rare event. It

is worth noting that our circuits do not have any additional penalty for misprediction other than

incurring the longer latency of the corresponding dynamic nonspeculative circuit. Therefore, in

general and to a first-order approximation (because we ignore the difference in critical path),

our circuits would perform better than a static circuit whenever the prediction accuracy pcorrect

is such that pcorrect · IIspec_opt + (1−pcorrect) · IInonspec < IIst ati c . To put this in perspective using

136

7.8. Evaluation

int i = 0;
int s = 1;

for (i = 0; i < 12; i++){
if (x[i]*s >= 1000)

s+=1;
}

Figure 7.13 – Code used for the analysis of Section 7.8.3, qualitatively similar to the Newton-Raphson
benchmark.

this example and again ignoring the CP difference, our circuit needs here only pcorrect > 22% to

perform better, and this branch prediction accuracy is massively below typical achievable rates.

7.8.3 Analysis

It is clear from Table 7.1 that the use of a dynamically scheduled paradigm has a nonnegligible

cost in resources (we will discuss this overhead in detail in Chapter 9); the situation is only

aggravated by the support for speculation. Although all our designs are Pareto optimal (and

significantly faster than the baseline designs), it is worth looking closer into such results. As

suggested before, predication is the way purely static scheduling methods can implement

speculation (that is, by executing in parallel every possibility and selecting the right outcome

later). It is usually viable when the number of predicated branches is small; thus, it is customarily

used in the textbook case of if-conversion where only two short branches need to be followed

for a very short period and are soon resolved. If resources are not strongly limited (that is, in the

world of spatial computing as opposed to traditional VLIW compilation), one could explore an

aggressive use of if-conversion where many branches are predicated at once—for example, with

predication spanning multiple iterations of a loop body, as it would be required in some of our

benchmarks. In this section, we want to explore how competitive our technique is against highly

speculative, statically scheduled circuits beyond what our commercial tool produces.

We study here the code of Figure 7.13, which is qualitatively similar to our Newton-Raphson

benchmark but stripped for clarity of everything except key operations. The naive version by

Vivado HLS has II equal to 4 because of the loop-carried dependence ons and the multiplication

(with a 4-cycle latency) in the condition which determines the new s (the conditional addition

is predicated and executed in parallel). It is perfectly possible to restructure the code to perform

aggressive if-conversion across basic blocks: every iteration spawns two branches corresponding

to the new if condition, and this for each of the existing predicated branches; on the other hand,

four cycles later, the computed condition resolves pairwise all open branches and halves them,

leading to a steady state of in-flight branches. Assuming that the critical latencies are 1 for the

addition and 4 for the multiplication, as it is the case for the operators used by Vivado HLS,

achieving the II of 1 requires 16 parallel branches which compute s for every combination

of the if conditions in the last four iterations and 8 branches computing the new conditions,

also in turn depending on the conditions of the last three iterations. Essentially, the needed

137

Chapter 7. Speculative Dataflow Circuits

Table 7.2 – Timing and resource requirements of the loop from Fig-
ure 7.13. The code given to the static tool was restructured to produce an
aggressively-predicated schedule.

Design II CP (ns) Time (µs) Slice LUT FF DSP

Static 1 5.7 0.1 1281 2088 5311 24
Dyn. 6 4.3 0.3 65 163 156 3
Spec. 2.3 5.3 0.2 154 481 301 3

computational resources to achieve II of 1 with a purely static schedule are 8 multipliers, 8

adders, and 8 comparators to execute all predicated branches in parallel.

Table 7.2 shows the comparison of the static, manually restructured code (to achieve a static

schedule with II of 1), dynamic, and speculative design using a dataset which predicts correctly

the condition in 75% of the cases. These results suggest that, although more speculation than

what common HLS tools implement is possible, the cost can be very high (notice that the

cost is exponential in IIst ati c , which is only 4 in this case). Clearly, our speculative circuit is

Pareto-optimal compared to the aggressively-predicated static design. The area cost is due to

the fundamental inability of statically scheduled circuits to revert some arbitrary computation

and recompute it from scratch; a statically scheduled solution can only evaluate all possibilities

at once and only when the number of possible outcomes is tractable. This is not the case

in a situation we have not demonstrated here but is perfectly covered by our technique—the

prediction of independence through memory of a load from all previous pending stores. In

contrast, a dynamically scheduled, speculative circuit can simply execute the single most likely

path and squash and recompute mistakenly predicted outcomes. In all fairness, this also

implies a worsening of the execution time when almost-perfect predictions cannot be made,

like in the present example, whereas the static solution has exactly II equal to 1, irrespective of

predictability.

7.9 Conclusions

In this chapter, we presented a generic methodology to enable speculative execution in dataflow

circuits and demonstrated that it can reap significant benefits in appropriate situations. Our

simple and methodical approach to bring arbitrary forms of speculation to dataflow circuits mir-

rors out-of-order processors, where the same commit-or-squash-and-replay approach is at the

heart of very successful speculative mechanisms. We have shown in Chapter 5 that dependences

through memory are an important case where dynamic schedules are highly profitable: the

next logical step would be to build a speculative load-store queue which executes speculatively

loads before pending and unresolved stores, as in common processors; the generality of our

speculation scheme would work unmodified for this important situation.

138

8 Related Work

In this chapter, we outline what others have done to circumvent some of the problems of

statically scheduled HLS and we contrast our work with other dataflow-oriented approaches

and optimizations.

8.1 High-Level Synthesis

As already discussed in Chapter 1, standard HLS tools borrow many optimizations techniques

from VLIW processors to extract instruction-level parallelism: they rely on modulo schedul-

ing [103, 17, 120, 34] to create pipelines with the best possible loop initiation intervals under the

given clock and resource constraints and exploit aggressive code motion techniques to anticipate

the execution of some operations before it is certain [92, 59, 60, 83]. Techniques for analyzing

memory access patterns that we have discussed in Chapter 6, such as alias analysis and memory

dependence analysis [5, 33], as well as optimizations to improve memory bandwidth, such

as array partitioning and memory reuse [32], have been extensively studied in the context of

static HLS. However, the conservatism of static scheduling hinders all these optimizations in

the presence of complex control flow, statically undeterminable memory accesses, variable

latencies, and loops with irregular bounds.

Recent advances in HLS have explored methods to overcome the conservatism in static schedul-

ing and to remove the inability of HLS tools to handle dynamic events. Several techniques [2, 85]

generate multiple schedules which are dynamically selected during runtime, once the values

of all parameters are known; they rely on the capabilities of current HLS tools by replicating

the source code and dynamically selecting which copy of the code needs to be executed. The

drawback of these approaches is that they apply to only some very particular cases of depen-

dences through memory; they are also affected by the area (or reconfiguration) overhead of

synthesizing two or more versions of an accelerator and the cost of switching between them.

Tan et al. [109] describe an approach called ElasticFlow to apply loop pipelining on a particular

class of irregular loop nests with no inter-iteration dependences in the outer loops. In their

approach, multiple pipeline instances of a dynamic-bound inner loop are scheduled to execute

139

Chapter 8. Related Work

i

Branch

Join

x y

cond.
Synchronization
of BB variables

Figure 8.1 – BB variable synchronization by Huang et al. For all variables exiting a BB, Huang et al. [67]
employ a single join, which limits look pipelining. In contrast, we employ an individual branch for each
variable which enables tokens to exit the BB independently.

in parallel. Choi et al [31] et al. perform source-to-source HLS code transformations which

rely on partial pipelining and unrolling to increase resource utilization in loops with variable

bounds. Dai et al. [39] propose methods for pipeline flushing by performing static scheduling for

multiple initiation intervals of the pipeline to resolve different possible resource collisions; they

later developed application-specific dynamic hazard detection circuitry [40] and have shown

the ability of speculation but with stringent constraints (i.e., the approach lacks generality in the

ability to revert arbitrarily the state after failed predictions). Derrien et al. [42] provide support

for control and memory speculation in statically scheduled datapaths; they keep track of the

data from all speculated loop iterations which can be discarded and recomputed in case of

misspeculation. However, if misspeculation occurs, the entire pipeline needs to flush and repeat,

which may cause an increased misspeculation penalty in comparison to finer-grain speculation

mechanisms. Nurvitadhi et al. [95] perform automatic pipelining, assuming that the datapath is

already partitioned into pipeline stages. The underlying methodology in all these techniques

is still based on static scheduling adapted to enable some level of dynamic behavior, which

limits the achievable performance improvements only to some particular cases. We think that

this body of recent work points to the importance of the ultimate solution to the limits of static

scheduling: embracing general forms of dynamic scheduling.

8.2 Dynamic Scheduling in HLS

Different authors exploited latency-insensitive protocols [19, 37, 45] to construct synchronous

and asynchronous dataflow circuits. Elastic circuits [37] are probably the best-studied form of

latency insensitivity, but the original paradigm used in most of the papers by Cortadella and his

coauthors is too restrictive for HLS. Several approaches [65, 25] extended the SELF protocol [37]

with constructs similar to the branch and merge which we use in this work. Kam et al. [79] show

the ability of elastic circuits to create dynamic pipelines, but do not provide generic transforma-

tions to create such circuits out of high-level descriptions. Efforts in the asynchronous domain,

such as Balsa [44] and Haste/TiDE [93], applied syntax-driven approaches for mapping a pro-

gram into a structure of handshake components [106]; a synchronous backend for Haste/TiDE

has later been developed. Putnam et al. [100] also explored synthesizing dataflow-like circuits

from high-level specifications. Townsend et al. [111] used a functional programming interme-

140

8.2. Dynamic Scheduling in HLS

Figure 8.2 – Memory access synchronization by Budiu et al. The store in the figure may be dependent on
the load; the two accesses are synchronized with a token edge which allows the store to issue only after
the load has completed, hence preventing out-of-order execution when the two accesses are independent.
Our LSQ effectively handles such cases by dynamically resolving dependences and synchronizing accesses
only when needed. This figure is reprinted from the publication by Budiu et al. [12].

diate representation as a starting point for synthesizing dataflow networks. Dataflow circuits,

with their handshake signals, bring to mind Bluespec and its firing rules [116]. However, all

these approaches provide little information on some critical conversion aspects and features

which are at the heart of this work; to our best knowledge, these approaches have never been

contrasted to modern HLS tools.

The efforts closest to ours are the work by Huang et al. [67] and Budiu et al. [10, 9]. Huang et

al. generated dataflow circuits from C code, to be mapped to a coarse-grain reconfigurable

array [67]. Their circuit generation approach differs from ours in two aspects: (1) They use

a single branch node at the output of each basic block, which forces them to synchronize

all the basic block outputs (see Figure 8.1) and, consequently, prevents loop iterations from

overlapping (i.e., loops are not pipelined). (2) Their approach does not employ an LSQ at the

memory interface and, thus, all memory accesses which cannot be disambiguated at compile

time need to be conservatively sequentialized (“The memory dependence is implemented by

creating a lockstep between the corresponding [...] memory ports” [67]). Budiu et al. described a

compiler for generating asynchronous circuits from C code [10, 9]. Although their final circuits

are fundamentally different from ours (our circuits are perfectly synchronous and avoid the

traditional difficulties associated with asynchronous designs), the generation strategy is similar

to ours. Unfortunately, the exact methodology is never described in full detail and examples

across different papers by the same authors do not seem perfectly consistent; although they also

employ an LSQ to handle memory dependences and benefit from static analysis techniques

to simplify it [11], their LSQ allocation policy is more conservative than what we described in

Chapter 5: they serialize memory accesses whose dependences cannot be resolved statically

(“we insert a token edge between two instructions only if their points-to sets overlap and they

do not commute” [10]), as illustrated in Figure 8.2.

141

Chapter 8. Related Work

Figure 8.3 – Dataflow optimization in Vivado HLS. This optimization is applicable for coarse-grain tasks
without conditionals and feedback, whereas we target fine-grain dataflow design of individual datapaths.
This figure is reprinted from the Vivado HLS documentation [118].

Both the approach by Budiu et al. and by Huang et al. largely limit the benefits of dynamic

scheduling; although Budiu et al. maintain the LSQ, Huang et al. omit it, most likely due to its

seemingly limited value. Our LSQ, with its group allocation policy, enables spatial architectures

to fully exploit memory access parallelism. Although Budiu et al. acknowledge the need to

insert FIFOs of appropriate sizes to maximize throughput [10], they do not present a systematic

methodology to perform this optimization; we tackle this problem in Chapter 3. Their HLS

approach does not support resource sharing, which we include in Chapter 4. Finally, they failed

to implement a generic framework for speculation due to “the difficulty of building a mechanism

for squashing the computation on the wrong paths” [9], which is exactly what our scheme for

discarding and replaying computations from Chapter 7 achieves.

8.3 Performance Optimizations of Dataflow Circuits

The schedules of dataflow circuits are not predetermined at compile time; their performance can

be optimized using buffer retiming and recycling [20, 21], i.e., appropriate buffer insertion and

sizing, which we exploit in this work. The timing properties of dataflow circuits can be analyzed

using Petri net theory [102, 101, 16, 13]. We rely on this theory as well in our performance

optimization strategy from Chapter 3. Several approaches in asynchronous dataflow design

have explored slack matching, i.e., adding pipeline buffers to prevent stalls. Venkataramani et

al. [115] present a heuristic to avoid performance bottlenecks by inserting buffers to balance

reconverging paths in asynchronous circuits. Najibi et al. [91] describe slack matching for

asynchronous circuits with conditional computation and communication, where the conditions

correspond to different circuit operation modes; they employ a MILP based on Markov chains,

a wide class of Petri nets, to balance asynchronous pipelines while reducing the number of

slack-matching buffers. In contrast to these works, our model considers retiming and slack

matching simultaneously—we target synchronous dataflow circuits, so the clock period must be

optimized in conjunction with the throughput. Furthermore, our performance optimization

model accepts generic control flow schemes that commonly appear in high-level languages (e.g.,

nested loops) and accounts for typical HLS features (e.g., pipelined computational units and

if-convertible control flow).

142

8.4. Resource Optimizations of Dataflow Circuits

Standard HLS tools support task-level pipelining (referred to as “dataflow optimization” [118]),

which allows functions and loops to overlap to increase throughput and concurrency, as illus-

trated in Figure 8.3. The tasks are connected via channels, implemented as ping-pong buffers

or FIFOs, that allow the consumer function or loop to start operation before the producer task

has completed. The buffers are typically sized conservatively, so that they have the capacity

to hold all data exchanged between tasks. Task-level pipelining is usually applicable only to

tasks which do not have bypass, feedback, or conditionals between each other. In this thesis, we

explore finer-grain dataflow design (i.e., scheduling individual loop and function datapaths);

as we have demonstrated in our results, our approach successfully supports cyclic behavior

and conditionals and is able to compute the required FIFO sizes even in those cases. Other

HLS efforts also explore coarse-grain dataflow and the related buffer sizing problems. Cheng et

al. [28] describe sequential programs as networks of processes in which hardware accelerators

exchange data via FIFOs. To avoid deadlock, they analyze the static schedule of each accelerator

and size the FIFOs accordingly. Yet, this approach does not always provide a global optimal

solution for cases with multiple deadlock-causing cycles. Geilen et al. [51] use model checking

to minimize buffer requirements while avoiding deadlock in coarser Synchronous Dataflow

Graphs (SDFs). Our MILP model guarantees the absence of deadlock as well, while also maxi-

mizing throughput under a clock period constraint. Govindarajan et al. [54] target large-grain,

multi-rate actor graphs and present an approach to minimize buffer storage while executing at

the optimal computation rate. In contrast to our contribution, this approach does not consider

constraining the clock period and it does not guarantee the optimality of the buffer placement.

8.4 Resource Optimizations of Dataflow Circuits

Several dataflow approaches support forms of resource sharing. In the context of HLS, Blue-

spec [7] allows the user to specify the appropriate control logic around a shared resource in

a dataflow network using guarded atomic actions. Nielsen et al. [94] discuss the sharing of

dataflow constructs in the context of the Balsa asynchronous hardware description language.

Neither of these works addresses the correctness and performance aspects of sharing that we

discuss in Chapter 4; furthermore, our approach automatically achieves the correct sharing logic

without any user-given specifications.

Edwards et al. [45] present a nondeterministic sharing mechanism for dataflow circuits; yet,

as we have illustrated before, such a mechanism is not sufficient to guarantee the absence of

deadlock in dataflow circuits obtained out of imperative code. Cortadella et al. [35] describe

sharing in elastic circuits and indicate the need to build a local scheduler to decide, at each clock

cycle, which input can use the resource, both for avoiding unit starvation and for performance

benefits. Similarly, Hansen et al. [62] employ a local, centralized FSM for every shared unit in their

asynchronous pipelines to regulate the multiplexing of tokens at its inputs. However, both these

approaches are applicable only to simple loops without conditionals, where a predetermined

sequence of inputs can be encoded into a centralized scheduler. In contrast, our sharing method

143

Chapter 8. Related Work

1

-1

-1

a

a

b

b

b b

a

a

a

-1Buffer with token Empty buffer Anti-token

Figure 8.4 – Early evaluation with anti-tokens in elastic systems. This technique is applicable only for
standard if-conversion, whereas our speculation approach supports generic forms of speculation. This
figure is reprinted from the publication by Cortadella et al. [38].

applies to generic control flow construct obtained out of high-level code—we use a distributed

network to control the token multiplexing dynamically, based on control flow outcomes.

8.5 Speculation in Dataflow Circuits

Latency-insensitive protocols offer the flexibility needed for true speculation [50]. Several

latency-insensitive approaches [22, 36, 48] describe early evaluation—predicated execution

based on special tokens which discard mispredicted data. An example of early evaluation is

illustrated in Figure 8.4: the token produced by the ALU (annotated as a in the figure) is discarded

by an anti-token as it reaches the multiplexer, which has already propagated the token from the

other multiplexer input (i.e., token b) further, as determined by the condition value. However,

these techniques are applicable only for standard if-conversion, which static HLS can handle—

we also support it with our strategy from Section 3.4.4—but it does not cover the more general

cases of speculation that we discuss in Chapter 7.

8.6 Computer Architecture

Out-of-order execution and speculation are typically employed in dynamically scheduled su-

perscalar processors. The processor architecture community has studied LSQs for out-of-order

processors for decades and has reported some innovations even in this millennium [96, 104, 97].

Although these previous designs have informed our implementation, they have not been spe-

cialized for spatial computing. Dynamically scheduled processors achieve generic forms of

144

8.6. Computer Architecture

Figure 8.5 – Actor primitives of a dataflow processor. In contrast to standard processors, dataflow
processors employ primitives similar to our dataflow units to steer data directly from one operation to
another. This figure is reprinted from the publication by Dennis et al. [41].

speculation through register renaming, reordering buffers, and commit units [64]; our squash-

and-replay technique for speculation in dataflow circuits, presented in Chapter 7, mirrors these

mechanisms.

In contrast to standard processor architectures, dataflow processors [114, 41, 6] allow for direct

exchange of data between instructions (i.e., data is sent from instruction to instruction without

writing it back into a register file); instructions execute based on the availability of their input

arguments and communicate using similar primitives as the ones employed in our work, as

illustrated in Figure 8.5. More recently, EDGE architectures [14] have introduced control flow

and more complex memory semantics to such processors, making them more compatible with

imperative languages. Desikan et al. [43] describe a mechanism for load-store dependence

speculation in the context of dataflow processors, but faced challenges in building a suitable

speculation resolution network: their approach is based on sending the commit/discard deci-

sions through the dataflow graph, so the traversal of these decisions delays the commits and

therefore impedes performance. In contrast, we use a dedicated, fast network which enables

speculative units to communicate directly and efficiently. Moreover, their speculation scheme

requires version numbering and token tagging to handle out-of-order speculative bits—our

circuit design strategy ensures that tokens traverse the graph in order, which simplifies our

speculation mechanism.

145

9 A Complete Flow

In the previous chapters, we have shown how an arbitrary program described in a high-level

language can be transformed into a dynamically scheduled, dataflow circuit. We described meth-

ods to implement pipelining and resource sharing; furthermore, we introduced mechanisms to

handle out-of-order memory accesses and speculation. Each individual chapter has presented a

number of results to demonstrate the effectiveness of the proposed technique; in this chapter,

we describe our complete and automated compiler flow which supports the features presented

in this thesis. We then summarize our most important results: a comparison of our HLS strategy

with statically scheduled HLS.

9.1 Dynamatic HLS Compiler

Our dynamically scheduled HLS methodology is implemented in Dynamatic, our open-source

HLS compiler [75]. The basic flow of Dynamatic is depicted in Figure 9.1.

Dynamatic takes as input C or C++ code and produces a synthesizable hardware description

of the corresponding dataflow circuit. The first two steps of the flow, analysis and elaboration,

preprocess the C files by prechecking code correctness, adding metainformation, and formatting

it for the rest of the flow. The synthesis step relies on the LLVM compiler framework [86]: the

clang frontend parses the C/C++ program and produces a static single assignment intermediate

representation (LLVM IR), which is then optimized using standard LLVM transformation and

analysis passes. The optimized IR is then given as input to a set of our custom passes.

The main pass adds dataflow units following the transformations described in Chapter 2 to

produce a functionally correct dataflow circuit; other passes perform additional analysis and

optimizations (e.g., memory access analysis to create the memory interfaces described in

Chapter 6). The output is a dataflow graph in the form of a DOT netlist. The DOT netlist is

then given as input to the optimizer which contains the buffer placement and resource sharing

This chapter is based on the work published at the 28th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, [75], 2020 and to appear in the Circuits and Systems Magazine, 2021 [76].

147

Chapter 9. A Complete Flow

Figure 9.1 – Dynamatic HLS compiler: software-to-hardware flow.

tool—it uses a MILP solver [24] to find the optimal buffer placement and sizes for a user-defined

clock period constraint, as indicated in Chapter 3, and decides on the functional units to share,

as described in Chapter 4. This step produces an optimized DOT netlist. Finally, the DOT

describing the dataflow circuit is converted into a VHDL netlist of dataflow units. This netlist,

in conjunction with a predefined library of dataflow units and custom-generated memory

interfaces (i.e., the LSQs described in Chapter 5), can be synthesized into an FPGA bitstream.

The entire Dynamatic toolchain, preinstalled in a virtual machine, is available on the Dynamatic

website, together with tutorials and documentation about the tool: dynamatic.epfl.ch.

9.1.1 DOT Intermediate Representation

Dynamatic employs an intermediate representation for describing the synthesized dataflow

circuits—the specification is based on the DOT language from Graphviz [55]. A dataflow circuit

is represented by a digraph where each node corresponds to a unit and each edge corresponds

to a channel. Units have input and output ports; channels are unidirectional and connect an

output port from one unit to an input port of another unit. The units and channels can be

annotated with attributes, which convey the information for different optimization steps (e.g.,

buffer placement) and VHDL generation. The DOT netlist can be converted into a graphical rep-

resentation of the control/dataflow graph, with units grouped into basic blocks and connected

via channels. A snippet of the DOT netlist of the histogram kernel and the control/dataflow

graph corresponding to the netlist are shown in Figures 9.2 and 9.3.

9.1.2 VHDL Output

The VHDL netlist obtained in the final compilation step is a direct translation of the DOT

netlist into an HDL description: all units are translated into VHDL unit instantiations and all

channels are translated into VHDL signal connections. Every channel is represented with three

signals: a data signal and a handshake pair. Apart from the VHDL netlist, the compiler generates

application-specific memory components (e.g., LSQs).

The Dynamatic flow is device-independent—the produced VHDL netlist, as well as our HDL

implementations of the dataflow units, are usable with any FPGA or for ASIC design. All dataflow

units are fully parameterizable to arbitrary bitwidths and, as far as unit functionality permits, the

148

dynamatic.epfl.ch

9.1. Dynamatic HLS Compiler

Figure 9.2 – Intermediate representation of a dataflow circuit in Dynamatic. The IR is organized as a
CDFG of dataflow units grouped into BBs. The circuit corresponds to the histogram example.

149

Chapter 9. A Complete Flow

"phi_2" [type = "Mux", bbID = 2, in = "in1?:1 in2:32 in3:32 ", out = "out1:32", delay=0.366];

"load_11" [type = "Operator", bbID = 2, op = "lsq_load_op", bbID= 2, portId= 0, in = "in1:32

in2:32", out = "out1:32 out2:32 ", delay=0.000, latency=2, II=1];

"fadd_12" [type = "Operator", bbID = 2, op = "fadd_op", in = "in1:32 in2:32 ", out = "out1:32 ",

delay=0.966, latency=10, II=1];

"store_0" [type = "Operator", bbID = 2, op = "lsq_store_op", bbID= 2, portId= 0, in = "in1:32

in2:32 ", out = "out1:32 out2:32", delay=0.000, latency=0, II=1];

"cst_2" [type = "Constant", bbID = 2, in = "in1:32", out = "out1:32", value = "0x00000001"];

"fork_0" [type = "Fork", bbID = 1, in = "in1:32", out = "out1:32 out2:32 "];

"branch_0" [type = "Branch", bbID = 1, in = "in1:32 in2?:1", out = "out1+:32 out2-:32"];

"phi_2" -> "fork_1" [color = "red", from = "out1", to = "in1"];

"load_8" -> "fadd_12" [color = "red", from = "out1", to = "in2"];

"load_11" -> "fadd_12" [color = "red", from = "out1", to = "in1"];

"fadd_12" -> "store_0" [color = "red", from = "out1", to = "in1"];

"cst_2" -> "add_15" [color = "red", from = "out1", to = "in2"];

"add_15" -> "fork_3" [color = "red", from = "out1", to = "in1"];

Figure 9.3 – Snippet of the intermediate representation of the dataflow circuit in DOT format. The netlist
contains a list of all dataflow units present in the design and specifies the channels (i.e., connections)
between them. Units and channels are described with additional attributes.

number of inputs and outputs. The LSQ, implemented in Chisel, is parameterizable in depth,

port count, as well as number and organization of connected BBs; Dynamatic automatically

produces a configuration file used to generate custom LSQ instances for each application.

The arithmetic units employed by Dynamatic currently target the Kintex-7 family of Xilinx FPGAs;

we extract them from the Vivado environment [119] and instantiate using Xilinx component

libraries. All components employ a custom wrapper with handshake signals to be compatible

with the rest of our dataflow units. Future releases of Dynamatic will extend the component

library to target other device families and vendors as well.

9.1.3 Functional Verification

Dynamatic contains a verification framework which enables efficient software/hardware cosim-

ulation, exactly like that supported by Vivado HLS [118]. The user can specify a testbench and

a set of test vectors in C and the framework automatically produces the corresponding RTL

testbench; it simulates the input C code and the output circuit and verifies that their outputs are

identical. The RTL simulation is performed in ModelSim.

9.2 Evaluation

In this section, we compare the dynamically scheduled circuits produced by Dynamatic with stat-

ically scheduled circuits obtained from Vivado HLS. We give and overview of our methodology

and benchmarks before presenting our results.

150

9.2. Evaluation

9.2.1 Methodology

To provide a fair comparison of our designs with those generated by Vivado HLS, we employ the

same arithmetic units and we use the same RAMs for our designs. When our compiler cannot

disambiguate memory accesses, we employ the LSQ in our designs and connect it to the RAM

interface; otherwise, we connect the dataflow read/write ports to the RAM through a simple

memory arbiter. In all Vivado designs, we apply the pipelining optimization directive.

The current release of Dynamatic supports all the features described in this thesis; the only

exception is the insertion of speculative components into the dataflow circuit, described in

Chapter 7. Hence, for the purpose of our experiments, we manually add the components for

speculation to dataflow circuits which can benefit from this feature and resize the buffers to

account for the increase in II caused by this modification. In addition, Dynamatic does not yet

employ bitwidth analysis, a standard HLS optimization; we manually adapt the bitwidths of

critical operations to match those employed by Vivado HLS. Furthermore, we manually specify

the depth of the LSQ in benchmarks which require it (the need to use an LSQ is determined

automatically by our memory analysis from Chapter 6).

We use the framework described in Section 9.1.3 for functional verification. We obtain the

average loop initiation interval (II) from the simulation and the clock period (CP) from the post-

routing timing analysis to calculate the total execution time. Placing and routing the designs

using Vivado gives us the resource usage (i.e., the number of CLB slices, with the corresponding

LUT and FF count, as well as the number of DSP units).

9.2.2 Benchmarks

The designs that we discuss in this section are simple kernels which represent typical cases where

static scheduling is known to run into its fundamental limits, while dynamic scheduling should

make a significant difference. We also consider two simple kernels where static scheduling

is fully successful, to show that dynamic scheduling achieves virtually the same result with

acceptable overheads. We already explored these benchmarks in the previous chapters to

evaluate particular dataflow features; we here selectively include representative cases and

provide a complete comparison with Vivado HLS.

• Histogram and Matrix power have memory access patterns that cannot be determined at

compile time—there may be RAW dependences between the stores and the loads from

the following iterations. We investigated these kernels in Chapters 3, 5, and 6.

• If loop add and If loop mul have a potential dependence across iterations which depends

on the runtime-determined condition (i.e., the condition is determined based on data

fetched from memory which is unknown during compilation). We introduced If loop

add in Chapter 2; If loop mul is a variation of the previous kernel where we replace

the conditional addition with a multiplication of the same variables, as mentioned in

Chapter 3.

151

Chapter 9. A Complete Flow

Table 9.1 – Timing comparison of dynamically scheduled circuits
(our dataflow circuits) and statically scheduled circuits (Vivado
HLS).

Benchmark
IIavg CP (ns) Exec. time (us)

STAT DYN STAT DYN STAT DYN

Histogram 13.0 2.1 3.5 4.9 45.5 10.1

Matrix power 13.0 2.7 3.4 4.9 16.8 5.0

If loop add 10.0 1.1 3.2 5.0 32.0 5.5

If loop mul 7.0 1.1 3.2 5.2 22.4 5.5

FIR 1.0 1.0 2.9 3.6 2.9 3.6

MatVec 1.0 1.0 3.2 4.0 2.9 3.6

Backtrack 21.0 1.0 3.7 5.1 76.2 5.1

Newton-Raphson 8.0 1.0 5.4 5.5 4.3 0.6

• Backtrack and Newton-Raphson have long-latency, data-dependent conditions for starting

a new loop iteration and could benefit from branch prediction; we looked into these

kernels in Chapter 7.

• FIR filter and MatVec are regular kernels which do not have any memory or control

dependences; we explored these kernels in Chapter 3.

9.2.3 Comparison with Static HLS

Tables 9.1 and 9.2 summarize the timing and resource results for all kernels and Figure 9.4 shows

our results relative to those from Vivado HLS (results to the left or below the red square, which

represents all Vivado designs, are better).

Timing. Avoiding conservative assumptions on memory and control dependences results in

a significant improvement of the throughput and, consequently, execution time in all of the

corresponding benchmarks. Note that the dynamic results are data-dependent: the best possible

II is achieved when there are no dependences and the worst possible II when all neighboring

iterations are dependent, as we explored in Section 3.6.6 and Table 3.4. It is interesting to note

that even the worst-case dynamic II, reported in Table 3.4, is by 1 lower than the static II (i.e.,

equal to 12 instead of 13): when a load targets the same address as its preceding store, our

LSQ directly forwards the store data to the load; in contrast, the static design is unaware of the

accessed addresses, so it first stores the data and then reads it from memory.

The additional dataflow control logic (i.e., the merge, branch, fork, and join units which we

insert into the design) and the LSQ (which is extremely sensitive to the number of queue entries,

as we discussed in Chapter 5) impact the CP of the dataflow designs; the CP is typically higher

than in the corresponding statically scheduled circuits. Although this timing overhead is quite

tangible, it is still conspicuously small when compared to the potential improvement in II and,

consequently, the net performance. In the FIR and MatVec benchmarks, static HLS techniques

produce highly optimized pipelines because memory accesses can be disambiguated at compile

152

9.2. Evaluation

Table 9.2 – Resource comparison of dynamically scheduled circuits (our dataflow
circuits) and statically scheduled circuits (Vivado HLS). The slice count for the
kernels with the LSQ is shown as kernel slices + LSQ slices.

Benchmark
Slices LUTs FFs DSPs

STAT DYN STAT DYN STAT DYN STAT DYN

Histogram 129 220 + 1073 254 4294 510 2033 2 2

Matrix power 200 295 + 1020 340 4463 735 2055 5 5

If loop add 141 393 315 960 525 1318 2 4

If loop mul 177 348 334 892 655 1127 5 5

FIR 47 178 83 463 176 526 3 3

MatVec 63 298 129 843 221 631 3 3

Backtrack 175 320 353 774 625 956 5 7

Newton-Raphson 201 348 585 1181 636 603 9 9

time; although both the static and dynamic design achieve the ideal II of 1, these are the only

cases where our results are Pareto-dominated by the static results due to the increase in CP.

Resource utilization. Table 9.2 contrasts the resource utilization of statically and dynamically

scheduled circuits. The overhead in slices of the dynamic designs, notable across all benchmarks,

is partially due to the control logic that the dataflow circuits contain and which allows them to

achieve the latency-insensitivity that we desire. The overhead of the FIFOs that we introduced

to increase throughput, as discussed in Chapter 3, is probably overblown by the simplicity of the

examples with only a few functional units.

Vivado employs allocation and binding algorithms to share functional units among operators;

sharing is possible without a performance penalty due to the low throughput which the static

designs achieve. Since all the dynamic designs achieve high-throughput pipelines, sharing

units is not possible without compromising throughput; we therefore allocate a new unit per

operator in all the benchmarks we here explore, which contributes to the resource difference

between the static and dynamic design. Consider, for instance, If loop add: in this example,

our design requires two functional units to perform the addition and the subtraction whereas

Vivado HLS time-multiplexes the same one (as evident from the DSP usage). By replacing one

of the operations with a multiplication (i.e., If loop mul), we verified that the DSP count is now

equal and the overall resource difference is smaller.

It is immediately visible from Figure 9.4 that the circuits requiring an out-of-order memory

interface demand significant additional resources. It should be emphasized that the resource

and timing overhead could be minimized by implementing the LSQs as hard-macros on FPGAs,

in the same way as other memory hierarchy components might be in the future (e.g., caches

and TLBs). In contrast to the expensive memory interface, our speculation mechanism does

not introduce a significant area overhead, yet successfully accelerates all of the corresponding

benchmarks by speculating on critical control decisions.

153

Chapter 9. A Complete Flow

Pareto-
dominated by

the static design

Histogram

Matrix power

If loop add

If loop mul

FIR

MatVec

Newton-Raphson

Backtrack

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Sl
ic

e
s,

 n
o

rm
al

iz
e

d

Execution time, normalized

Dynamic, memory dependences Dynamic, control dependences

Dynamic, no dependences Dynamic, speculative

Static (all points)

Figure 9.4 – Resource utilization and execution time of the dynamically scheduled designs, normalized
to the corresponding static designs produced by Vivado HLS.

9.2.4 Conclusions

The results from Figure 9.4 show a clear tradeoff between statically and dynamically sched-

uled HLS: In regular applications, static HLS exploits all the available parallelism; dynamically

scheduled HLS achieves the same, yet with additional CP and resource costs. On the other

hand, in the presence of irregular program features, such as the ones outlined in Chapter 1

(i.e., unpredictable memory, control, or long-latency decisions), dynamically scheduled circuits

exploit completely new optimization opportunities and achieve significant performance im-

provements at a resource investment. This tradeoff is completely in line with the experiences

from computer architecture: the ability to make scheduling decisions dynamically requires

complex mechanisms which inevitably cost resources and time. Although, due to this overhead,

static scheduling is likely to remain the preferred solution for accelerating regular code, our

dynamic approach opens doors to new, irregular applications and broader markets. In addition,

the techniques described in this thesis are applicable outside of the scope of classic C-based

HLS as well—we outline some possibilities in the following chapter.

154

10 New Avenues for Dynamic Scheduling

In this chapter, we discuss the possible future developments of our HLS approach. In Sec-

tion 10.1, we outline relevant classes of applications which we have not yet extensively explored

and where dynamic scheduling may bring significant benefits. In Section 10.2, we describe

direct improvements of our HLS strategy. In addition to its contributions to HLS, this work

opens doors to new research avenues and applications; we outline some of the most promising

opportunities in Section 10.3. We then conclude this thesis in Section 10.4.

10.1 Application Domains for Dynamically Scheduled HLS

Our compilation process is generally applicable to any C/C++ program. In Chapter 9, we

explored benchmarks that illustrate different representative cases and features discussed in

this thesis: applications with irregular memory, irregular control flow, and long-latency control

decisions. Benchmarks with these properties are not commonly present in standard HLS suites,

which showcase primarily regular code that standard HLS can handle well. Thus, we primarily

investigated kernels which are beyond the scope of these suites, yet representative of realistic

software code and applications from different domains (e.g., signal processing, numerical

analysis).

Although not evaluated in this thesis, dynamic scheduling is also beneficial for handling appli-

cations with variable loop bounds, such as sparse matrix computations. Sparsity is extensively

exploited in various domains, from signal processing to AI (where sparse and irregular-shaped

tensors are used to effectively implement large-scale applications such as object detection,

recommendation systems, and language learning [107]). While standard HLS tools suffer in the

presence of irregular loop bounds and memory access patterns (and, typically, require com-

plex compilation techniques to efficiently pipeline applications which exhibit these properties),

sparse kernels can be effortlessly compiled into a dataflow circuit without any additional analysis

or transformation and pipelined directly with the strategy we presented in Chapter 3. Similarly,

dataflow circuits are perfectly suited to tolerate variable memory latencies, an aspect that static

HLS can handle only through complex code transformations (e.g., prefetching and access/exe-

155

Chapter 10. New Avenues for Dynamic Scheduling

cute decoupling to separate data access and address calculations from value computations for

performance benefits [26, 61]). Dataflow circuits are latency-insensitive by construction and

are able to adapt the schedule dynamically to variabilities in memory and operation latency

without any additional effort from the programmer or the compiler.

Apart from further exploring the benefits of dynamic scheduling in the cases outlined above,

the next step is to evaluate more complex applications (e.g., EEMBC [46] and CHStone [63]

benchmarks) and to investigate the implications of the dataflow logic overheads on the resulting

design quality (i.e., area, frequency, FPGA routability). Intuitively, our buffer placement strategy

would ensure that even such benchmarks meet the frequency target; the heuristic presented in

Chapter 3 would keep the compile times acceptably low even in complex applications by solving

the buffering problem independently on sufficiently small application parts. As the applications

(and, consequently, the resulting circuits) grow in size, place-and-route times and complexity

may prevent an efficient FPGA implementation; these trends may be exaggerated in comparison

to those observed in static HLS due to the additional complexity and area overheads of our

circuit implementations. Yet, there are several optimization opportunities to explore which can

minimize these overheads while still reaping the acceleration benefits of dynamic scheduling;

we discuss them in the following sections.

10.2 Reducing the Costs of Dynamically Scheduled HLS

As discussed in Chapter 9, implementing dynamic scheduling typically comes at a notable

resource and frequency penalty, especially in applications which require an LSQ. Although this

cost is probably acceptable for irregular applications where performance significantly benefits

from the dynamic properties of dataflow circuits, it is a clear overhead in regular DSP-like code

that standard HLS targets, as our experimental results in Section 9.2 indicate. While it is expected

that dynamic scheduling comes at a cost, it is also fair to note that statically scheduled HLS

benefits from decades of research and optimizations which are yet to be explored in the dataflow

context. We here evoke some of the most important areas which could directly improve our

dynamically scheduled HLS.

10.2.1 Dataflow Graph Optimizations

Our compilation technique inserts dataflow units between operators; while some units only add

control logic to the handshake network (e.g., a fork simply propagates the data from its input to

its multiple outputs), other units impact the datapath as well (e.g., a merge has multiplexing

logic to steer the appropriate input into a BB). Furthermore, in some units, data interacts with

the handshake logic: for instance, the branch condition and the mux selection signal connect

to both the forward- and to the backward-propagating handshake signals of these units, as

their readiness and validity depend on the actual conditional outcomes. These situations may

contribute to the increased critical path in comparison to the corresponding statically scheduled

156

10.2. Reducing the Costs of Dynamically Scheduled HLS

BB1

BB2 BB3

BB4

for (i=0; i<N; i++)
if (cond)

x = func_f;
else

x = func_g;
a[i]=x;

i++

cond

Mux

+

Branch

Branch

i0

Mux

i

Figure 10.1 – Dataflow circuit optimizations. The dataflow circuit in the figure suffers in area and
performance due to our circuit generation strategy, which forces all tokens to propagate through the BBs
strictly following the control flow. The circuit could be simplified by sending the iterator directly from
BB1 to BB4 and replacing the mux in BB1 with a merge.

circuit. Clearly, simplifying the dataflow network whenever possible would benefit circuit area

and performance.

Bypassing BBs. Our circuit generation strategy propagates all tokens through the dataflow circuit

strictly following the control flow. Although this approach guarantees correctness, as discussed

in Section 2.3.2, it also adds complexity to the dataflow network by introducing dataflow units

and buffers which statically scheduled circuits do not require. In addition, in certain cases, this

approach may prevent throughput-critical tokens (e.g., a loop iterator) from propagating quickly

through the loop. An example is shown in Figure 10.1: although the loop iterator is not used in

BB2 and BB3, it is propagated into one of these blocks, as determined by condition cond in BB1,

and only then sent to BB4 where it increments to start a new loop iteration. The start of a new

iteration is not dependent on the value of cond; yet, if this condition takes multiple cycles to

compute, the iterator will be stalled in BB1 and the start of a new iteration will be delayed—the

loop II will increase, even though a perfect pipeline with an II of 1 is, in this example, possible.

Determining systematically when data can bypass certain BBs or CFG subgraphs would simplify

the dataflow network and improve throughput, area, and critical path. In the example of

Figure 10.1, sending the iterator directly from BB1 to BB4 would allow a new iteration to start on

every consecutive cycle. The challenge in performing this optimization is to ensure that it does

not compromise determinism nor the correctness of the circuit (by violating the correctness

157

Chapter 10. New Avenues for Dynamic Scheduling

d = 2 ns

d = 2 ns
d = 2 ns

for (i=0; i≤512, i++)
…

512+

≤

i 1

branch cond.

10 +

i 1

branch cond.

10

1
1

Figure 10.2 – Limitation of our static timing analysis. Our performance optimization technique is not
aware of the transformations and optimizations that happen during synthesis, placement, and routing.
In this example, our optimizer accounts for a delay of 4 ns between the adder and the comparator of the
loop iterator (left), whereas these components are actually simplified during synthesis (right).

properties introduced in Chapter 2). Additionally, it should not interfere with the ability of the

in-order control network to supply information on the correct BB ordering to the components

that require it (e.g., the sharing logic from Chapter 4 and the LSQ from Chapter 5).

Replacing muxes with merges. Our current strategy employs a mux for every SSA phi node to

guarantee that its inputs never reorder (see Section 2.3.3). However, not all phi nodes actually

require them—there may be places where the inputs are guaranteed by circuit construction

to arrive in order and the muxes could be replaced with simpler and cheaper merges. This is

the case for the mux in BB1 of Figure 10.1: its left input is the initial iterator value, i0; any other

value of i is data-dependent on i0 and is, therefore, guaranteed to arrive to the mux input later

(i.e., only after i0 has been sent into BB1). We could identify such situations using dataflow

graph analysis to further simplify our circuits; the problem is similar to our memory analysis in

Chapter 6 as it requires analyzing data dependences and producer-consumer relations across

different paths of the control-flow graph.

10.2.2 Backend-Aware Transformations

Standard HLS techniques exploit a series of intermediate-level graph transformations to adapt

the code to particular characteristics of the underlying hardware and to remove any unnecessary

logic and constructs. A current disadvantage of our HLS flow is that it does not consider many

particularities of FPGA synthesis, placement, and routing—we translate the generic LLVM IR

directly into a dataflow circuit, while Vivado HLS uses custom passes to restructure this IR before

translating it into hardware. Furthermore, our optimizations sometimes lack the necessary back-

end information to achieve the best possible result. For instance, our performance optimizer

relies on static timing information; if two independent operators have a delay greater than the

clock period constraint, a buffer will be placed between them. However, in certain cases, these

two operations may actually be simplified using logic synthesis and the resulting delays may

158

10.2. Reducing the Costs of Dynamically Scheduled HLS

for (i=100; i≤N, i++)
a[i] = const*a[i-100];

i=100: ld a[0]; st a[100];

i=200: ld a[100]; st a[200];

RAW…

(a)

for (i=3; i≤N, i++)
a[i] = const*a[i-3];

i=0: ld a[0]; st a[3];
i=1: ld a[1]; st a[4];
i=2: ld a[2]; st a[5];
i=3: ld a[3]; st a[6];
i=4: ld a[4]; st a[7];
i=5: ld a[5]; st a[8];

RAW

(b)

for (i=1; i≤N, i++) {
for (j=1; j≤N, j++)

a[j] = x;
a[i] = y;

}

store a[i]

Store a[j]

Branch
Inner loop

repeats
(discard signal)

Inner loop
done

(c)

Figure 10.3 – Memory optimization opportunities. These examples illustrate cases where our LSQ could
be simplified or removed to reduce the resource requirements of our circuits.

be substantially different than the ones we assume. Consider the example of the loop iterator

in Figure 10.2: we account for the delays of the adder and the comparator unit, but the logic

synthesizer in Vivado will simplify them into a single component: the highest bit of the addition

is used directly as the branch condition (i.e., the condition to exit the loop is met as soon as the

highest bit becomes equal to 1). In addition to the conservative delay calculation (i.e., based on

the individual operator delays), our buffer placement may even prevent such optimizations by

inserting buffers between these two operators; in contrast, Vivado HLS typically accounts for

such optimization opportunities. These issues are not fundamental for dataflow design and our

HLS flow could be further refined to account for such backend particularities.

10.2.3 Memory Interface Simplifications

As discussed earlier, the LSQs we employ usually cause a notable resource overhead. We have

already explored techniques to simplify the memory interface in Chapter 6; it could be further

optimized and customized for particular applications and memory access patterns.

Excluding the presence of hazards. As described in Chapter 6, our strategy places an LSQ when-

ever there is a RAW dependence between two instructions—if one could statically determine

159

Chapter 10. New Avenues for Dynamic Scheduling

that a hazard cannot occur due to a guaranteed cycle distance between the executions of the

dependent accesses, an LSQ would not be needed. An example is shown in Figure 10.3a: due to

the large iteration distance between the dependent accesses, one can easily determine that a

hazard can never occur. Performing such optimizations may be more challenging in the pres-

ence of unpredictable events (e.g., control flow and variable latencies), which make it difficult to

reason about timing relations between instructions.

LSQ simplifications. Our current LSQ implementation has generic comparison logic which

checks all accesses for conflicts; this implementation could be replaced with simpler, application-

specific logic which accounts for a particular memory access pattern. Consider, for instance,

the example in Figure 10.3b: assuming that the load and the store in the figure are the only

instructions connected to the LSQ, one could remove all address checks and use custom logic to

synchronize the executions of dependent accesses (i.e., fixed LSQ entries); in this case, a load

would be allowed to proceed only if the store from three iterations ago (i.e., with a dependence

distance [11] of three, hence placed three entries ‘ahead’ in the LSQ) has already executed (or,

similarly, the data from this store could be directly forwarded to the appropriate load).

Sequentializing accesses. In certain cases, forcing a particular ordering of accesses in the circuit

may be possible without a significant performance penalty—serializing such accesses (e.g., by

inserting additional token edges) instead of employing an LSQ could significantly reduce the

resource requirements. For instance, the two stores in the nested loop in Figure 10.3c have WAW

dependences between them and we, therefore, connect them to an LSQ. A favorable solution

would be to delay the store of the outer loop until all stores from the inner loop have completed—

sending a confirmation signal from the inner loop to this store would appropriately synchronize

the accesses and remove the need to use an LSQ, without compromising the throughput of the

innermost loop. These confirmation signals would need to be appropriately issued through the

control flow graph, as the figure suggests: the branch sends to the store in the outer loop only

the completion confirmation from the last store access of the inner loop.

LSQ sizing. Finally, as we have noted before, we have not done anything yet to automatically

determine the optimal LSQ depth (i.e., the optimal number of LSQ entries). As suggested in

Section 5.6, this parameter significantly impacts area, throughput, and critical path of the circuit;

one could explore trade-offs between throughput and CP or look for a minimal queue depth

which sustains the highest possible throughput. The complex problem of finding such a minimal

depth depends on factors like circuit throughput (i.e., how often does the LSQ receive memory

requests from the circuit), memory congestion (i.e., how long do the entries stay in the LSQ

before they are issued to memory), and memory dependences (i.e., how long does it take to send

data back into the circuit or to memory).

10.2.4 Partial Schedule Rigidification

One optimization aspect which is immediately manifest when looking at the circuits we generate

is that we allow latency insensitivity through any unit and on any path. Although, in some cases,

160

10.2. Reducing the Costs of Dynamically Scheduled HLS

+

*

Fork

+

*
__

Rigid
region

Data
Control

Buff

Buff

Fork

Buff

Fork

Reg

Custom
control

Figure 10.4 – Dataflow circuit rigidification. To simplify the dataflow circuit, the distributed handshake
control logic could be replaced with customized control structures whenever dynamism is not required.

this is exactly the strength of our methodology and the reason for its superiority over standard

HLS techniques, in many cases it is an expensive overkill: many computational paths may be

constructed with fixed-latency units (ALUs, floating-point operators, etc.) and never really profit

from the flexibility of dataflow computation. We already demonstrated the benefits of manually

replacing functions or dataflow subgraphs with their static counterparts [27]; the next step is to

develop optimizations which automatically rip off, under certain conditions, complex control

paths of a dataflow circuit and replace them with simpler, customized control structures. One

could see this as a selective rigidification of the schedule where dynamism is not really needed.

The challenge in performing rigidification is to automatically identify which units and paths

may be rigid, without compromising performance or circuit correctness. We already exploited

Petri net theory to obtain information on the flow of tokens through the dataflow graph—this

information may be critical to identify units through which data always flows at a constant

rate. These units do not require handshake logic—instead, they could be triggered using a local,

predetermined scheduler which ensures that data is received and dispatched at appropriate

time intervals. For instance, if it is certain that a buffer always holds a token for exactly two

cycles, this buffer does not need to consider the handshake signal from its successor—it can

simply be programmed to accept and output data on every second cycle. Multiple independent

schedulers could eventually be merged into a single finite-state machine which would control

the entire rigid portion of the circuit, as illustrated in Figure 10.4; this concept is similar to

relative scheduling [81], where some operations (i.e., those in the rigid region) are statically

scheduled relative to certain unknown delays (i.e., dynamic dataflow operations). The result

would be a hybrid statically and dynamically scheduled circuit which enables the programmer

to exploit the ‘best of both worlds’ [27], depending on the properties of the code: in regular

applications, the final result would qualitatively correspond to a statically scheduled circuit;

161

Chapter 10. New Avenues for Dynamic Scheduling

Merge

Branch

*

c

+

Buff

1
Cache
miss

Datapath
unused

Stalled
tokens

1

2

3

Cache
miss

Subsequent
tokens

computing

2

3

Merge

Branch

*

c

+

Buff

Load Load

Figure 10.5 – Multithreaded execution. Instead of a single thread which always issues tokens in order
into noncyclic paths, one could devise a system where tagged tokens execute out of order to increase
performance and hardware utilization.

dynamism would remain only in places where it is actually required for performance benefits

and at a significantly reduced area overhead.

10.3 Perspectives

Apart from enriching the capabilities of classic C-based HLS, our dynamic scheduling techniques

can be useful for other avenues of research and applications—we here detail some promising

directions and potential developments.

10.3.1 Multithreaded Execution

Our current approach targets standard sequential C-based synthesis: there is a single execution

thread, i.e., a single token enters through the starting point, propagates through the BBs following

the control flow, and exits through the final BB; pipelining is achieved by repeatedly issuing

tokens in order into noncyclic paths. Yet, this type of circuit construction may result in limited

parallelism and datapath usage in cases where pipelining is not possible (e.g., loop-carried

dependences) or when multiple tokens on a noncyclic path are stalled waiting for a long-latency

event related to some preceding token (e.g., a cache miss); an example of such situation is shown

on the left of Figure 10.5.

Many standard HLS approaches support kernel replication to enable multiple parallel executions

on independent copies of the datapath [30], hence fully exploiting the spatial parallelism of the

device—the same is perfectly possible with dataflow circuits and could be achieved by high-

level transformations (i.e., different input language or intermediate-level kernel replication) in

dynamically scheduled HLS. In addition, some authors have looked into pipelining multiple

162

10.3. Perspectives

Tile of dataflow
primitives

Reconfigurable
interconnect

Figure 10.6 – A reconfigurable dataflow array, with tiles composed out of fixed interconnects of dataflow
primitives. All connections carry data bundled with its control signals.

threads on a single kernel (i.e., allowing one thread to execute on the datapath before the previous

thread has completed) [108]. Such multithreading, analogous to simultaneous multithreading

in superscalar processors [113, 112], allows for maximal hardware reuse as resources can be

shared among multiple threads. Just like superscalars, dataflow circuits are naturally suited

to accommodate such behavior; it could be implemented by inserting multiple tagged tokens

into the circuit and allowing them to reorder on both cyclic and noncyclic paths, as shown

on the right of Figure 10.5. Enabling such multithreaded pipelines requires the creation of an

efficient tagging mechanism which allows out-of-order execution wherever it is beneficial and

reorders tokens appropriately when needed; similar mechanisms have been explored in dataflow

architectures [43] and could be leveraged in this context as well. Furthermore, such a system

would require additional guarantees on the absence of deadlock and appropriate buffering to

accommodate the desired number of tokens on each dataflow path. Enabling dataflow kernel

replication as well as multithreaded execution on a single kernel has the potential to significantly

improve parallelism and resource utilization, hence bringing a completely new optimization

dimension to dataflow design.

10.3.2 Reconfigurable Dataflow Architectures

So far, we have only attempted to map our dataflow circuits to standard FPGAs—a natural

alternative to explore are coarser reconfigurable arrays, whose limited flexibility as well as word-

oriented nature promise efficiency in area, timing, and energy [67]. The absence of a centralized

controller and the systematic pairing of data with handshake signals makes dataflow circuits

163

Chapter 10. New Avenues for Dynamic Scheduling

particularly well-suited for such architectures: each array tile would be composed out of one or

more dataflow primitives and the interconnect between tiles would carry data bundled with its

control signals, as suggested in Figure 10.6.

One of the major challenges is to design an array which is structurally adequate for the computa-

tional patterns and interconnects which typically appear in dataflow circuits. Intuitively, circuits

obtained from high-level code share some representative properties (e.g., BB organization with

merges and branches at the inputs and outputs, respectively) which can be exploited to cus-

tomize the array tiles. Our existing compilation flow can be used to translate a program into a

functional netlist of hardware primitives; we would need to develop custom place-and-route

techniques which exploit array-specific transformations and optimizations (e.g., breaking forks

into sizes which the architecture supports, using physical components as wires to issue data

efficiently from one component to another, array-specific buffering) to map these netlists onto

the underlying architecture and to enable efficient architectural exploration.

10.3.3 Hardware Compilers and Dataflow Representations

Hardware accelerators are gaining popularity in different application domains; most rely on one

or more domain-specific languages and the related HLS compilers use their own representations

and transformations to obtain a hardware design. Although some compilation aspects are

domain-specific (e.g., high-level transformations which convey domain-specific constructs to

the tool), most compilers eventually rely on similar techniques (e.g., standard intermediate-

level compiler transformations or low-level hardware constructs). Yet, different domains and

frameworks offer only limited opportunities for reuse of transformations between them, which

hinders the development of the tools and the quality of the resulting hardware.

Hence, developing core abstractions for hardware design that can be reused across compilation

flows or unified into a single modular framework [89] would benefit the advancement and

usability of HLS compilers. Such abstractions could then be appropriately manipulated and

interchanged based on the application, high-level starting point, and the underlying hardware.

Dataflow representations are extremely important in this context: they are suitable for modeling

various processes of different granularities (i.e., from fine-grained dataflow to coarse-grain

modules connected with handshake signals) and usable in different compilation stages (e.g.,

describing an application in software as an interconnect of dataflow modules or mapping

dataflow graphs onto the corresponding hardware primitives). We therefore believe that the

work described in this thesis is useful for developing a broader scope of HLS techniques which

are beyond standard C-based HLS flows.

10.3.4 Formal Verification

HLS tools typically rely on functional verification of a particular circuit through hardware simu-

lation and software/hardware cosimulation [118]. However, performing exhaustive hardware

164

10.4. Final Remarks

simulations may become unfeasible or extremely time-consuming as designs increase in com-

plexity. Furthermore, this approach provides no formal proof on the correctness of particular

HLS compilation steps nor the general correctness of the resulting hardware modules—while

this might not be a critical problem for FPGA designs, it prevents the adoption of HLS tools in

domains where design iterations are significantly more expensive (e.g., ASICs) [33].

We have used SMV-based model checking to formally verify the correctness of each dataflow unit

as well as some simple dataflow circuits. However, these tools are not efficient for verifying more

complex circuits: as any data transfer in a dataflow circuit can occur at any point in time, the

number of possible states is largely dependent on the number of dataflow units, buffering, and

particular data and control outcomes. To further benefit from such tools, we should investigate

methods to limit the state space and ensure their scalability; these techniques would allow us

to verify critical properties and behaviors (e.g., does the circuit execution always terminate,

for any input data?). In addition, a completely unexplored avenue is the formal verification of

our HLS transformations, i.e., formally proving that our circuit generation strategy is always

correct for any semantically correct C code. The ability to formally verify particular low-level

compilation stages would benefit not only C-to-dataflow conversion, but hardware compilers

and their transformations in general.

10.4 Final Remarks

Specialized hardware will profoundly impact computing in the next decades, as large-scale

applications disrupt the market and their computational demands rapidly grow. HLS tools are

set to play a key role in this computing shift, as they make hardware devices accessible to diverse

users. However, these tools are relying on a paradigm which is conceptually identical to the

problem of compilation for VLIW processors: generating good static circuits from high-level

languages requires peculiar code restructuring algorithms (e.g., modulo scheduling), demands

expert user interaction (e.g., pragmas and code refactoring), forces worst-case assumptions

on important issues (e.g., memory and control dependences), and precludes key performance

optimizations (e.g., general forms of speculative execution). Therefore, HLS tools today are

limited only to particular market segments and are not able to satisfy the needs of broader

application domains.

In this thesis, we described a dynamically scheduled form of HLS which produces dataflow

circuits. Compared to a commercial HLS tool, the result is a different trade-off between perfor-

mance and circuit complexity, much as superscalar processors represent a different trade-off

compared to VLIW processors: When static HLS is able to exploit the maximum parallelism

available, our technique achieves similar results with some degradation in both cycle time and

resources. When static HLS misses some key performance optimization opportunities, our

circuits seize them by reordering memory accesses, dynamically resolving control dependences,

and speculating on critical control decisions; dynamic HLS achieves significant performance

improvements with the investment of more resources.

165

Chapter 10. New Avenues for Dynamic Scheduling

Apart from extending the usability of HLS to new application domains (i.e., irregular and general-

purpose software applications), our HLS approach also leads way to building new classes of

architectures (i.e., coarser reconfigurable arrays) which may be able to overcome some of the

limitations of traditional FPGAs. In addition to its role in reconfigurable computing, this work

promises to impact completely new markets: HLS tools today are largely restricted only to the

FPGA domain because of their unreliability and unpredictability in obtaining good results; the

ability of our approach to achieve acceptable performance without extensive experimentation

and trial-and-error may contribute to the acceptance of HLS in other domains as well, such as

ASIC design. Therefore, this avenue of HLS has the potential to open new doors for specialized

computing and hardware compilers, to advance the usability of various hardware platforms,

and to have a real-world impact on critical applications.

166

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley Longman Publishing Company, first edition, 1986.

[2] Mythri Alle, Antoine Morvan, and Steven Derrien. Runtime dependency analysis for

loop pipelining in high-level synthesis. In Proceedings of the 50th Design Automation

Conference, pages 1–10, Austin, Tex., June 2013.

[3] Amazon.com, Inc. Amazon EC2 F1 Instances, 2017.

[4] Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in C. Cambridge

University Press, first edition, 1998.

[5] J. R. Appel and K. Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-

Based Approach. Morgan Kaufmann, first edition, 2001.

[6] Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token dataflow architec-

ture. IEEE Transactions on Computers, 39(3):300–318, March 1990.

[7] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave. High-level synthesis:

an essential ingredient for designing complex ASICs. In Proceedings of the International

Conference on Computer-Aided Design, pages 775–82, San Jose, Calif., November 2004.

[8] David F. Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the masses.

Communications of the ACM, 54(4):56–63, April 2013.

[9] Mihai Budiu, Pedro V. Artigas, and Seth Copen Goldstein. Dataflow: A complement to

superscalar. In Proceedings of the IEEE International Symposium on Performance Analysis

of Systems and Software, pages 177–86, Austin, Tex., March 2005.

[10] Mihai Budiu and Seth Copen Goldstein. Pegasus: An efficient intermediate representation.

Technical Report CMU-CS-02-107, Carnegie Mellon University, May 2002.

[11] Mihai Budiu and Seth Copen Goldstein. Optimizing memory accesses for spatial compu-

tation. In Proceedings of the 1st International ACM/IEEE Symposium on Code Generation

and Optimization, pages 216–27, San Francisco, Calif., March 2003.

167

Bibliography

[12] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein. Spatial

computation. In Proceedings of the 11th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 14–26, Boston, MA, October

2004.

[13] Dmitry Bufistov, Jordi Cortadella, Mike Kishinevsky, and Sachin Sapatnekar. A general

model for performance optimization of sequential systems. In Proceedings of the Interna-

tional Conference on Computer-Aided Design, pages 362–69, San Jose, Calif., November

2007.

[14] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John, Calvin

Lin, Charles R. Moore, James Burrill, Robert G. McDonald, and William Yoder. Scaling to

the end of silicon with EDGE architectures. IEEE Computer, 37(7):44–55, July 2004.

[15] Peter J. Cameron. Combinatorics: topics, techniques, algorithms. Cambridge University

Press, first edition, 1994.

[16] J. Campos, G. Chiola, J. M. Colom, and M. Silva. Properties and performance bounds for

timed marked graphs. "IEEE Transactions on Circuits and Systems I: Fundamental Theory

and Applications", 39(5):386–401, May 1992.

[17] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. Modulo SDC scheduling with

recurrence minimization in high-level synthesis. In Proceedings of the 23rd International

Conference on Field-Programmable Logic and Applications, pages 1–8, Munich, September

2014.

[18] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Tomasz

Czajkowski, Stephen D. Brown, and Jason H. Anderson. LegUp: An open-source high-

level synthesis tool for FPGA-based processor/accelerator systems. ACM Transactions on

Embedded Computing Systems, 13(2):24:1–24:27, September 2013.

[19] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. Theory of

latency-insensitive design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, CAD-20(9):1059–76, September 2001.

[20] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Performance analysis and opti-

mization of latency insensitive systems. In Proceedings of the 37th Design Automation

Conference, pages 361–67, Los Angeles, Calif., June 2000.

[21] Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli. Combining retiming and recycling

to optimize the performance of synchronous circuits. In 16th Symposium on Integrated

Circuits and System Design, pages 47–52, Sao Paolo, September 2003.

[22] Mario R. Casu and Luca Macchiarulo. Adaptive latency insensitive protocols and elastic

circuits with early evaluation: A comparative analysis. Electronic Notes in Theoretical

Computer Science, 245:35–50, August 2009.

168

Bibliography

[23] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers, Michael

Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd

Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek

Chiou, and Doug Burger. A cloud-scale acceleration architecture. In Proceedings of the

49th International Symposium on Microarchitecture, pages 1–13, Taipei, Taiwan, October

2016.

[24] CBC mixed-integer linear programming solver. https://github.com/coin-or/Cbc.

[25] Satrajit Chatterjee, Michael Kishinevsky, and Umit Y. Ogras. xMAS: Quick formal modeling

of communication fabrics to enable verification. IEEE Design & Test of Computers, 29(3):80–

88, June 2012.

[26] Tao Chen and G. Edward Suh. Efficient data supply for hardware accelerators with prefetch-

ing and access/execute decoupling. In Proceedings of the 49th International Symposium

on Microarchitecture, pages 1–12, Taipei, October 2016.

[27] Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and John Wickerson.

Combining dynamic & static scheduling in high-level synthesis. In Proceedings of the 28th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 288–98,

Seaside, Calif., February 2020.

[28] Shaoyi Cheng and John Wawrzynek. Synthesis of statically analyzable accelerator networks

from sequential programs. In Proceedings of the International Conference on Computer-

Aided Design, pages 126–33, Austin, Tex., November 2016.

[29] Derek Chiou. Intel acquires Altera: How will the world of FPGAs be affected? In Proceedings

of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

page 148, Monterey, Calif., February 2016.

[30] Jongsok Choi, Stephen Brown, and Jason Anderson. From software threads to parallel

hardware in high-level synthesis for FPGAs. In Proceedings of the IEEE International

Conference on Field Programmable Technology, pages 270–77, Kyoto, December 2013.

[31] Young-kyu Choi and Jason Cong. HLS-based optimization and design space exploration

for applications with variable loop bounds. In Proceedings of the 37th International

Conference on Computer-Aided Design, pages 1–8, San Diego, Calif., November 2018.

[32] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. Automatic memory partitioning and scheduling

for throughput and power optimization. In Proceedings of the International Conference on

Computer-Aided Design, pages 697–704, San Jose, Calif., November 2009.

[33] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang.

High-level synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(4):473–91, April 2011.

169

Bibliography

[34] Jason Cong and Zhiru Zhang. An efficient and versatile scheduling algorithm based on

SDC formulation. In Proceedings of the 43rd Design Automation Conference, pages 433–38,

San Francisco, Calif., July 2006.

[35] Jordi Cortadella, Marc Galceran-Oms, and Mike Kishinevsky. Elastic systems. In Proceed-

ings of the 10th ACM/IEEE International Conference on Formal Methods and Models for

Codesign, pages 149–58, July 2010.

[36] Jordi Cortadella and Mike Kishinevsky. Synchronous elastic circuits with early evaluation

and token counterflow. In Proceedings of the 44th Design Automation Conference, pages

416–19, San Diego, Calif., June 2007.

[37] Jordi Cortadella, Mike Kishinevsky, and Bill Grundmann. Synthesis of synchronous elastic

architectures. In Proceedings of the 43rd Design Automation Conference, pages 657–62,

San Francisco, Calif., July 2006.

[38] Jordi Cortadella, Marc Galceran Oms, Michael Kishinevsky, and Sachin S. Sapatnekar.

RTL synthesis: From logic synthesis to automatic pipelining. Proceedings of the IEEE,

103(11):2061–75, November 2015.

[39] Steve Dai, Mingxing Tan, Kecheng Hao, and Zhiru Zhang. Flushing-enabled loop pipelin-

ing for high-level synthesis. In Proceedings of the 51st Design Automation Conference,

pages 1–6, San Francisco, Calif., June 2014.

[40] Steve Dai, Ritchie Zhao, Gai Liu, Shreesha Srinath, Udit Gupta, Christopher Batten, and

Zhiru Zhang. Dynamic hazard resolution for pipelining irregular loops in high-level

synthesis. In Proceedings of the 25th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 189–94, Monterey, Calif., February 2017.

[41] Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic data-flow

processor. ACM Computer Architecture News, 3(4):126–32, December 1974.

[42] Steven Derrien, Thibaut Marty, Simon Rokicki, and Tomofumi Yuki. Toward speculative

loop pipelining for high-level synthesis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 2020. To appear.

[43] Rajagopalan Desikan, Simha Sethumadhavan, Doug Burger, and Stephen W. Keckler. Scal-

able selective re-execution for EDGE architectures. In Proceedings of the 11th International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 120–32, Boston, MA, October 2004.

[44] Doug Edwards and Andrew Bardsley. Balsa: An asynchronous hardware synthesis lan-

guage. The Computer Journal, 45(1):12–18, January 2002.

[45] Stephen A. Edwards, Richard Townsend, and Martha A. Kim. Compositional dataflow

circuits. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods

and Models for System Design, pages 175–84, Vienna, September 2017.

170

Bibliography

[46] Embedded Microprocessor Benchmark Consortium. https://www.eembc.org/, 2020.

[47] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris Corporation, first edition, 2010.

[48] Hagen Gädke and Andreas Koch. Accelerating speculative execution in high-level synthe-

sis with cancel tokens. In International Workshop on Applied Reconfigurable Computing,

pages 185–95, Berlin, March 2008.

[49] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. Xilinx adaptive

compute acceleration platform: Versal architecture. In Proceedings of the 27th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, pages 84–93, Seaside, Calif.,

February 2019.

[50] Marc Galceran-Oms, Jordi Cortadella, and Mike Kishinevsky. Speculation in elastic sys-

tems. In Proceedings of the 46th Design Automation Conference, pages 292–95, San Fran-

cisco, Calif., July 2009.

[51] Marc Geilen, Twan Basten, and Sander Stuijk. Minimising buffer requirements of syn-

chronous dataflow graphs with model checking. In Proceedings of the 42nd Design Au-

tomation Conference, pages 819–24, Anaheim, Calif., June 2005.

[52] Nithin George, Hyoukjoong Lee, David Novo, Tiark Rompf, Kevin Brown, Arvind Sujeeth,

Martin Odersky, Kunle Olukotun, and Paolo Ienne. Hardware system synthesis from

domain-specific languages. In Proceedings of the 23rd International Conference on Field-

Programmable Logic and Applications, pages 1–8, Munich, September 2014.

[53] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson, forth edition,

2017.

[54] Ramaswamy Govindarajan, Guang R. Gao, and Palash Desai. Minimizing buffer require-

ments under rate-optimal schedule in regular dataflow networks. Journal of VLSI Signal

Processing Systems for Signal, Image and Video Technology, 31(3):207–29, July 2002.

[55] Graphviz graph visualization software. https://www.graphviz.org/.

[56] Mark R. Greenstreet and Kenneth Steiglitz. Bubbles can make self-timed pipelines fast.

Journal of VLSI Signal Processing, 2(3):139–48, November 1990.

[57] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Größlinger,

and Louis-Noël Pouchet. Polly - polyhedral optimization in LLVM. In Proceedings of the

First International Workshop on Polyhedral Compilation Techniques, pages 1–6, Chamonix,

April 2011.

[58] Tobias Christian Grosser. Enabling polyhedral optimizations in LLVM. PhD thesis, Univer-

sity of Passau, 2011.

171

Bibliography

[59] Sumit Gupta, Nick Savoiu, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Conditional specu-

lation and its effects on performance and area for high-level synthesis. In Proceedings of

the 14th International Symposium on Systems Synthesis, pages 171–76, October 2001.

[60] Sumit Gupta, Nick Savoiu, Sunwoo Kim, Nikil Dutt, Rajesh Gupta, and Alex Nicolau.

Speculation techniques for high level synthesis of control intensive designs. In Proceedings

of the 38th Design Automation Conference, pages 269–72, June 2001.

[61] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. Decoupling data supply from

computation for latency-tolerant communication in heterogeneous architectures. ACM

Transactions on Architecture and Code Optimization, 14(2):1–27, June 2017.

[62] John Hansen and Montek Singh. Multi-token resource sharing for pipelined asynchronous

systems. In Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition, pages 1191–96, Dresden, March 2012.

[63] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. Proposal and quanti-

tative analysis of the CHStone benchmark program suite for practical C-based high-level

synthesis. Journal of Information Processing, 17:242–54, October 2009.

[64] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, fifth edition, 2011.

[65] Greg Hoover and Forrest Brewer. Synthesizing synchronous elastic flow networks. In

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,

pages 306–11, Munich, March 2008.

[66] Jing Huang, Yuanjie Huang, Yunji Chen, Paolo Ienne, Olivier Temam, and Chengyong

Wu. A low-cost memory interface for high-throughput accelerators. In Proceedings of the

International Conference on Compilers, Architectures, and Synthesis for Embedded Systems,

pages 1–10, New Delhi, October 2014.

[67] Yuanjie Huang, Paolo Ienne, Olivier Temam, Yunji Chen, and Chengyong Wu. Elastic

CGRAs. In Proceedings of the 21st ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, pages 171–80, Monterey, Calif., February 2013.

[68] Donald B Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal

on Computing, 4(1):77–84, March 1975.

[69] Lana Josipović, Atri Bhattacharyya, Andrea Guerrieri, and Paolo Ienne. Shrink it or shed it!

Minimize the use of LSQs in dataflow designs. In Proceedings of the IEEE International

Conference on Field Programmable Technology, pages 197–205, Tianjin, December 2019.

[70] Lana Josipović, Philip Brisk, and Paolo Ienne. From C to elastic circuits. In Proceedings of

the 51st Annual Asilomar Conference on Signals, Systems, and Computers, pages 121–25,

Pacific Grove, Calif., November 2017.

172

Bibliography

[71] Lana Josipović, Philip Brisk, and Paolo Ienne. An out-of-order load-store queue for spatial

computing. ACM Transactions on Embedded Computing Systems, 16(5s):125:1–125:19,

September 2017.

[72] Lana Josipović, Nithin George, and Paolo Ienne. Enriching C-based high-level synthesis

with parallel pattern templates. In Proceedings of the 26th IEEE International Conference

on Field Programmable Technology, pages 177–80, Xian, December 2016.

[73] Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically scheduled high-level

synthesis. In Proceedings of the 26th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 127–36, Monterey, Calif., February 2018.

[74] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Speculative dataflow circuits. In

Proceedings of the 27th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays, pages 162–71, Seaside, Calif., February 2019.

[75] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Dynamatic: From C/C++ to dynami-

cally scheduled circuits. In Proceedings of the 28th ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, pages 1–10, Seaside, Calif., February 2020.

[76] Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Synthesizing general-purpose code

into dynamically scheduled circuits. IEEE Circuits and Systems Magazine, 2021. To appear.

[77] Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella.

Buffer placement and sizing for high-performance dataflow circuits. In Proceedings of

the 28th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages

186–96, Seaside, Calif., February 2020.

[78] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-

der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter

performance analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, pages 1–12, Toronto, June 2017.

[79] Timothy Kam, Michael Kishinevsky, Jordi Cortadella, and Marc Galceran-Oms. Correct-

by-construction microarchitectural pipelining. Proceedings of the 27th International

Conference on Computer-Aided Design, pages 434–41, November 2008.

[80] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. Parallel programming for

FPGAs. ArXiv e-prints, arXiv:1805.03648, May 2018.

[81] David C. Ku and G. De Mitcheli. Relative scheduling under timing constraints: Algorithms

for high-level synthesis of digital circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 11(6):696–718, June 1992.

[82] Monica S. Lam. Software pipelining: An effective scheduling technique for VLIW ma-

chines. In Proceedings of the 1988 ACM Conference on Programming Language Design and

Implementation, pages 318–28, Atlanta, Ga., June 1988.

173

Bibliography

[83] Vianney Lapotre, Philippe Coussy, Cyrille Chavet, Hugues Wouafo, and Robin Danilo. Dy-

namic branch prediction for high-level synthesis. In Proceedings of the 23rd International

Conference on Field-Programmable Logic and Applications, pages 1–6, Porto, September

2013.

[84] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorithmica,

6(1-6):5–35, June 1991.

[85] Junyi Liu, Samuel Bayliss, and George A. Constantinides. Offline synthesis of online

dependence testing: Parametric loop pipelining for HLS. In Proceedings of the 23rd

IEEE Symposium on Field-Programmable Custom Computing Machines, pages 159–62,

Vancouver, May 2015.

[86] The LLVM Compiler Infrastructure. http://www.llvm.org, 2018.

[87] Rajit Manohar and Alain J. Martin. Slack elasticity in concurrent computing. In Proceedings

of the 4th International Conference on the Mathematics of Program Construction, pages

272–85, London, June 1998.

[88] Mentor Graphics. ModelSim, 2016.

[89] Multi-Level IR Compiler Framework. https://mlir.llvm.org/, 2020.

[90] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–80, April 1989.

[91] Mehrdad Najibi and Peter A Beerel. Slack matching mode-based asynchronous circuits

for average-case performance. In Proceedings of the 32nd International Conference on

Computer-Aided Design, pages 219–25, San Jose, Calif., November 2013.

[92] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,

Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen

Bertels. A survey and evaluation of FPGA high-level synthesis tools. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 35(10):1591–1604, October

2016.

[93] Sune Fallgaard Nielsen, Jens Sparsø, Jonas Braband Jensen, and Johan Sebas-

tian Rosenkilde Nielsen. A behavioral synthesis frontend to the Haste/TiDE design flow.

In Proceedings of the 15th International Symposium on Asynchronous Circuits and Systems,

pages 185–94, Chapel Hill, N.C., May 2009.

[94] Sune Fallgaard Nielsen, Jens Sparsø, and Jan Madsen. Behavioral synthesis of asyn-

chronous circuits using syntax directed translation as backend. IEEE Transactions on Very

Large Scale Integration Systems, 17(2):248–61, February 2009.

[95] Eriko Nurvitadhi, James C. Hoe, Timothy Kam, and Shih-Lien L. Lu. Automatic pipelining

from transactional datapath specifications. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 30(3):441–54, March 2011.

174

Bibliography

[96] Il Park, Chong Liang Ooi, and T.N. Vijaykumar. Reducing design complexity of the load/-

store queue. In Proceedings of the 36th International Symposium on Microarchitecture,

pages 411–22, San Diego, Calif., December 2003.

[97] Miquel Pericàs, Adrián Cristal, Francisco J. Cazorla, Rubén González, Alexander V. Vei-

denbaum, Daniel A. Jiménez, and Mateo Valero. A two-level load/store queue based

on execution locality. In Proceedings of the 35th International Symposium on Computer

Architecture, pages 25–36, Beijing, June 2008.

[98] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite, 2012.

[99] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical

Recipes: The Art of Scientific Computing. Cambridge University Press, third edition, 2007.

[100] Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, and Prasanna Sundararajan.

CHiMPS: A high-level compilation flow for hybrid CPU-FPGA architectures. In Proceedings

of the 16th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 173–78, Monterey, Calif., February 2017.

[101] C. V. Ramamoorthy and Gary S. Ho. Performance evaluation of asynchronous concur-

rent systems using Petri nets. IEEE Transactions on Software Engineering, 6(5):440–49,

September 1980.

[102] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets. Tech-

nical Report Project MAC Technical Report 120, Massachusetts Institute of Technology,

February 1974.

[103] B. Ramakrishna Rau. Iterative modulo scheduling. International Journal of Parallel

Programming, 24(1):3–64, February 1996.

[104] Simha Sethumadhavan, Franziska Roesner, Joel S. Emer, Doug Burger, and Stephen W.

Keckler. Late-binding: Enabling unordered load-store queues. In Proceedings of the 34th

International Symposium on Computer Architecture, pages 347–57, San Diego, Calif., June

2007.

[105] John Shalf. The future of computing beyond Moore’s law. Philosophical Transactions of

the Royal Society A, 378(2166):20190061, January 2020.

[106] Jens Sparsø. Current trends in high-level synthesis of asynchronous circuits. In Proceedings

of the 16th IEEE International Conference on Electronics, Circuits, and Systems, pages 347–

50, Yasmine Hammamet, December 2009.

[107] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and Zhiru

Zhang. Tensaurus: A versatile accelerator for mixed sparse-dense tensor computations.

In International Symposium on High Performance Computer Architecture, pages 689–702,

San Diego, Calif., February 2020.

175

Bibliography

[108] Mingxing Tan, Bin Liu, Steve Dai, and Zhiru Zhang. Multithreaded pipeline synthesis for

data-parallel kernels. In Proceedings of the International Conference on Computer-Aided

Design, pages 718–25, San Jose, Ca., November 2014.

[109] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. ElasticFlow: A

complexity-effective approach for pipelining irregular loop nests. In Proceedings of

the 34th International Conference on Computer-Aided Design, pages 78–85, Austin, Tex.,

November 2015.

[110] Linda Torczon and Keith Cooper. Engineering a Compiler. Morgan Kaufmann, second

edition, 2011.

[111] Richard Townsend, Martha A. Kim, and Stephen A. Edwards. From functional programs

to pipelined dataflow circuits. In Proceedings of the 26th International Conference on

Compiler Construction, pages 76–86, Austin, TX, February 2017.

[112] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L.

Stamm. Exploiting choice: Instruction fetch and issue on an implementable simultaneous

multithreading processor. In Proceedings of the 23rd Annual International Symposium on

Computer Architecture, pages 191–202, Philadelphia, PA, May 1996.

[113] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithreading: Maxi-

mizing on-chip parallelism. In Proceedings of the 22nd Annual International Symposium

on Computer Architecture, pages 392–403, Santa Margherita Ligure, May 1995.

[114] Arthur H. Veen. Dataflow machine architecture. ACM Computing Surveys, 18(4):365–96,

December 1986.

[115] Girish Venkataramani and Seth C. Goldstein. Leveraging protocol knowledge in slack

matching. In Proceedings of the 25th International Conference on Computer-Aided Design,

pages 724–29, San Jose, Calif., November 2006.

[116] Muralidaran Vijayaraghavan and Arvind. Bounded dataflow networks and latency-

insensitive circuits. In Proceedings of the 9th International Conference on Formal Methods

and Models for Codesign, pages 171–80, Cambridge, MA, July 2009.

[117] Henry Wong, Vaughn Betz, and Jonathan Rose. Efficient methods for out-of-order load/-

store execution for high-performance soft processors. In Proceedings of the IEEE Inter-

national Conference on Field Programmable Technology, pages 442–45, Kyoto, December

2013.

[118] Xilinx Inc. Vivado Design Suite User Guide: High-Level Synthesis, 2018.

[119] Xilinx Inc. Vivado High-Level Synthesis, 2018.

[120] Zhiru Zhang and Bin Liu. SDC-based modulo scheduling for pipeline synthesis. In

Proceedings of the 32nd International Conference on Computer-Aided Design, pages 211–

18, San Jose, Calif., November 2013.

176

Lana Josipović
lana.josipovic@epfl.ch

Education

2015 - 2020 École Polytechnique Fédérale de Lausanne, School of Computer and Communication Sciences

PhD in Computer and Communication Sciences.

2014 - 2015 Technische Universität München, Department of Electrical, Electronic and Computer Engineering

Master of Science in Electrical Engineering and Information Technology (Erasmus+ exchange program).

2013 - 2015 University of Zagreb, Faculty of Electrical Engineering and Computing

Master of Science in Electrical Engineering and Information Technology.

2010 - 2013 University of Zagreb, Faculty of Electrical Engineering and Computing

Bachelor of Science in Electrical Engineering and Information Technology.

Awards and Honors

2020 Best Paper Award at the 28th Intl. Symposium on Field Programmable Gate Arrays.

2018 Google PhD Fellowship for Systems and Networking for exceptional PhD research in Computer Science.

2018 Best Paper Award Nominee at the 26th Intl. Symposium on Field Programmable Gate Arrays.

2017 Best Paper Award Nominee at the Intl. Conf. on Compilers, Architectures, and Synthesis for Embedded Systems.

2015 EDIC doctoral fellowship, IC School, EPFL, for new PhD students with exceptional academic record.

2015 Google Anita Borg Memorial (Women Techmakers) Scholarship, for excellent academic achievements,
leadership abilities, and community engagement.

2010 - 2015 Dean’s awards, Univ. of Zagreb, for outstanding achievements in the BSc (‘11, ‘12, ‘13) and MSc (‘15) studies.

2013 - 2015 Scholarship for gifted students, Univ. of Zagreb, for the top 1% most successful students (’14, ’15).

Experience

2015 - 2020 Researcher/PhD Candidate at Processor Architecture Laboratory, EPFL. Developed new high-level synthesis
(HLS) techniques to create efficient accelerators from high-level programming languages. Built an HLS tool which
generates dynamically scheduled dataflow circuits out of C/C++ code and overcomes some of the limitations of
existing HLS solutions. My HLS compiler and all related documentation are available at http://dynamatic.epfl.ch/.

2019 Research Intern at Xilinx, San Jose, CA. Built an MLIR-based compiler for translating high-level languages into
hardware designs which target dataflow-oriented programmable chips. I developed a transformation of a standard
compiler intermediate representation into a dataflow dialect which is based on my PhD work; it is now available as
part of a new hardware compiler suite at https://github.com/llvm/circt.

2018 Research Intern at Microsoft Research, Redmond, WA. Performed research associated with project Catapult,
focused on tools for creating FPGA solutions and deploying them at scale in Microsoft's cloud servers.

2014 - 2015 Electrical Engineer at Max Planck Institute for Biochemistry, Munich. Developed technical solutions for mass
spectrometry-based proteomics, applied for analysis of protein structures that cause cancer and diabetes.

2014 Intern at Processor Architecture Laboratory, EPFL. Developed a tool for automatic transistor sizing for
commercial and non-standard FPGA architectures.

Languages

Croatian (native), English (proficient), German (proficient), French (beginner), Spanish (beginner).

Publications

2020 Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Synthesizing general-purpose code into dynamically scheduled
circuits. IEEE Circuits and Systems Magazine (CASM). To appear.

2020 Lana Josipović, Shabnam Sheikhha, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella. Buffer placement and
sizing for high-performance dataflow circuits. In Proceedings of the 28th ACM/SIGDA Intl. Symposium on Field
Programmable Gate Arrays (FPGA’20), pages 186–96, Seaside, Calif., February 2020. Best Paper Award.

2020 Jianyi Cheng, Lana Josipović, George A. Constantinides, Paolo Ienne, and John Wickerson. Combining dynamic &
static scheduling in high-level synthesis. In Proceedings of the 28th ACM/SIGDA Intl. Symposium on Field
Programmable Gate Arrays (FPGA’20), pages 288–98, Seaside, Calif., February 2020.

2020 Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Dynamatic: From C/C++ to dynamically scheduled circuits.

In Proceedings of the 28th ACM/SIGDA Intl. Symposium on Field Programmable Gate Arrays (FPGA’20), pages 1–
10, Seaside, Calif., February 2020.

2019 Lana Josipović, Atri Bhattacharyya, Andrea Guerrieri, and Paolo Ienne. Shrink it or shed it! Minimize the use of
LSQs in dataflow designs. In Proceedings of the IEEE Intl. Conference on Field Programmable Technology (FPT’19),
pages 197–205, Tianjin, China, December 2019.

2019 Lana Josipović, Andrea Guerrieri, Paolo Ienne, and Jordi Cortadella. Performance optimization of dataflow circuits.
In Proceedings of the Intl. Workshop on Logic Synthesis (IWLS’19), pages 146–53, Lausanne, June 2019.

2019 Lana Josipović, Andrea Guerrieri, and Paolo Ienne. Speculative dataflow circuits. In Proceedings of the 27th
ACM/SIGDA Intl. Symposium on Field Programmable Gate Arrays (FPGA’19), pages 162–71, Monterey, Calif.,
February 2019.

2018 Lana Josipović, Radhika Ghosal, and Paolo Ienne. Dynamically scheduled high-level synthesis. In Proceedings of
the 26th ACM/SIGDA Intl. Symposium on Field Programmable Gate Arrays (FPGA’18), pages 127-36, Monterey,
Calif., February 2018. Best Paper Award Nominee.

2017 Lana Josipović, Philip Brisk, and Paolo Ienne. From C to elastic circuits. In Proceedings of the 51st Annual Asilomar
Conference on Signals, Systems, and Computers, pages 121-25, Pacific Grove, Calif., October 2017.

2017 Lana Josipović, Philip Brisk, and Paolo Ienne. An out-of-order load-store queue for spatial computing.
In Proceedings of the Intl. Conference on Compilers, Architectures, and Synthesis for Embedded Systems
(CASES’17), Seoul, Korea, October 2017. See ACM TECS paper below. Best Paper Award Nominee.

2017 Lana Josipović, Philip Brisk, and Paolo Ienne. An out-of-order load-store queue for spatial computing. ACM
Transactions on Embedded Computing Systems (TECS’17), 16(5s):125:1–125:19, September 2017.

2017 Lana Josipović, Philip Brisk, and Paolo Ienne. An out-of-order load-store queue for spatial computing.
In Proceedings of the 25th IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’17), page
134, Napa, Calif., April 2017.

2016 Lana Josipović, Nithin George, and Paolo Ienne. Enriching C-based high-level synthesis with parallel pattern
templates. In Proceedings of the 26th IEEE Intl. Conference on Field Programmable Technology (FPT’16), pages
177–80, Xi'an, China, December 2016.

	Acknowledgments
	Abstract (English/Français)
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Limitations of Today's HLS
	A Completely Different Way to Do HLS
	Computer Architects Have Been There Already
	Thesis Contribution

	Dynamically Scheduled High-Level Synthesis
	How Does Classic HLS Work?
	Scheduling in HLS

	Why Dynamic Scheduling?
	Dataflow Circuits

	Synthesizing Dataflow Circuits
	Dataflow Units
	Implementing Control Flow
	Ensuring Determinism
	Constructing the Datapath

	The Challenges of Dynamic Scheduling
	Achieving High-Performance Pipelines
	Saving Resources through Sharing
	Introducing Out-of-Order Memory to HLS
	Minimizing the Complexity of the Memory Interface
	Enabling General Speculative Execution
	A Complete HLS Methodology

	Buffer Placement and Sizing for High-Performance Dataflow Circuits
	Buffers in Dataflow Circuits
	Buffer Properties
	Buffers and Circuit Functionality
	Buffers and Avoiding Deadlock
	Buffers and Performance

	Modeling Dataflow Circuits as Marked Graphs
	Marked Graphs
	Key Intuition

	Optimizing Performance
	Extracting Choice-Free Dataflow Circuits
	Optimizing Choice-Free Circuits
	MILP Model for Performance Optimization
	Optimizing Multiple CFDFCs

	Modeling Computational Units and If-Conversion
	Modeling Pipelined Units
	Modeling Variable Initiation Interval
	Modeling Variable Latency
	Modeling If-Conversion

	Scalability
	Evaluation
	Methodology
	Benchmarks
	Comparison with Naive Buffer Placement
	MILP Runtime Analysis
	Comparison of MILP Solutions
	Variable Latency, II, and If-Conversion
	Effectiveness of the CP Constraint

	Conclusions

	Resource Sharing in Dataflow Circuits
	Motivation
	Deciding What to Share in a Dataflow Circuit
	Resource Sharing in Dataflow Circuits
	Sharing in Straight Datapaths
	Sharing in General Datapaths
	Sharing and Performance
	Extending the Ordering Scheme

	Ordering Implementation and Model
	Implementation
	Sharing Model for Performance Analysis
	Optimized Implementation

	Putting It All Together
	Evaluation
	Methodology and Benchmarks
	Results: Effectiveness of the Sharing Strategy
	Results: Comparison with Static HLS

	Conclusions

	An Out-of-Order Load-Store Queue for Spatial Computing
	Inadequacy of Processor Load-Store Queues
	Supplying a Sequential Order to the LSQ
	Our Allocation Strategy
	LSQ Implementation
	The Queues and the Overall Structure
	Group Allocator
	Access Port Enable and Dispatchers
	Checking Dependences and Executing

	Connecting the Dataflow Circuit to the LSQ
	Evaluation
	Resource Utilization and Timing Analysis
	Benchmark Evaluation

	Conclusions

	Minimizing the Use of LSQs in Dataflow Designs
	Motivation
	Background
	Alias Analysis
	Polyhedral Analysis

	Memory Interface Optimizations
	The Ordering Problem
	Exploiting Data Dependences
	Global Instruction Dependence
	From Two Memory Instructions to Many
	Why Not CFG Dominance?
	Another Ordering Guarantee
	How Long a Walk Does One Need?

	Evaluation
	Memory Analysis Implementation
	Experimental Methodology
	Benchmarks
	Results

	Conclusions

	Speculative Dataflow Circuits
	Why HLS Needs Speculative Behavior
	Speculation in Dataflow Circuits
	Units for Speculation
	Speculator
	Commit Unit
	Save Unit

	Placing the Units
	Connecting the Units
	Connecting the Speculator to the Commit Unit
	Connecting the Speculator to the Save Unit

	Multiple Speculations from a Single Speculator
	Merging the Save and Commit Unit
	Connecting the Speculator to the Save-Commit Unit

	Speculations from Multiple Speculators
	Evaluation
	Benchmarks
	Results
	Analysis

	Conclusions

	Related Work
	High-Level Synthesis
	Dynamic Scheduling in HLS
	Performance Optimizations of Dataflow Circuits
	Resource Optimizations of Dataflow Circuits
	Speculation in Dataflow Circuits
	Computer Architecture

	A Complete Flow
	Dynamatic HLS Compiler
	DOT Intermediate Representation
	VHDL Output
	Functional Verification

	Evaluation
	Methodology
	Benchmarks
	Comparison with Static HLS
	Conclusions

	New Avenues for Dynamic Scheduling
	Application Domains for Dynamically Scheduled HLS
	Reducing the Costs of Dynamically Scheduled HLS
	Dataflow Graph Optimizations
	Backend-Aware Transformations
	Memory Interface Simplifications
	Partial Schedule Rigidification

	Perspectives
	Multithreaded Execution
	Reconfigurable Dataflow Architectures
	Hardware Compilers and Dataflow Representations
	Formal Verification

	Final Remarks

	Bibliography
	Curriculum Vitae

