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Abstract

The increasing population and the consequential demand for dwelling and recreation ar-

eas lead to more frequent conflicts between humans and natural hazards. In mountainous

regions snow avalanches are, therefore, still a major threat to humans and infrastructure, with

a significant impact on the economy and tourism. For the development of design criteria

for infrastructure it is crucial to obtain a thorough understanding on the pressure exerted by

avalanches, so that they can withstand avalanche impact.

Although the differences between avalanche flow regimes reportedly play a crucial role for the

avalanche–obstacle interaction, to date the impact pressure is often calculated similarly to the

dynamic pressure in inviscid fluids proportional to velocity square and using empirical drag

coefficients. Indeed, in the inertial flow regime, which is typical of powder avalanches, the

impact pressure is proportional to velocity square. However, in the gravitational regime, which

is typical of wet avalanches, the pressure is proportional to the flow depth. The empirical

proportionality factor in the gravitational regime is referred to as the amplification factor.

Field measurements indicate that the amplification factor and the drag coefficient may range

within considerable boundaries. Thus, in the absence of a physics-based framework to make

the crucial choice of the drag coefficient and the amplification factor for the impact pressure

calculation, engineers need vast knowledge and experience in constructing in avalanche

terrain and snow avalanche dynamics. Even for experienced experts it is often unclear how to

calculate the impact pressure adequately according to the expected avalanche flow regime or

how to consider the obstacle geometry in the calculation.

The aim of this project is to develop a physics-based framework for the calculation of avalanche

pressure on obstacles. In particular, we want to evaluate drag coefficients and amplification

factors as a function of snow properties and avalanche flow regimes. To reach this goal we de-

velop a numerical Discrete Element Method model to investigate the interaction of avalanche

flows and obstacles, using a cohesive bond contact law.

We test the relevance of the model by comparing simulated impact pressures with field mea-

surements from the “Vallée de la Sionne” experimental site. By varying avalanche flow velocity

and cohesion in the simulations, we show that the impact pressure can be interpreted as

the superposition of an inertial, a frictional and a cohesive contribution. Further, we find

a novel scaling law, reducing the problem of calculating the pressure induced by cohesive

flows, to the calculation of cohesionless flows. We provide evidence that in the cohesionless
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Chapter 0 Abstract

case the compression inside the influenced flow domain around the obstacle, the mobilized

domain, governs the impact pressure of granular flows in the gravitational regime. If the

cohesion is high, we find that the cohesive bonds further enhance the stress transmission in

the compressed mobilized domain, leading to an increase in impact pressure. Considering an

inertial and a gravitational contribution, we quantitatively link the properties of the mobilized

domain to the pressure. Finally, the knowledge from previous research and the findings of

this thesis allow us to propose a physics-based framework to estimate the impact pressure by

applying simple geometrical considerations and fundamental avalanche flow characteristics.

Key words:

- Calculation of impact pressure on obstacles

- DEM simulation of cohesive granular flows interacting with obstacles

- Snow avalanche engineering and structural design in avalanche prone terrain
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Zusammenfassung

Anhaltendes Bevölkerungswachstum und der damit verbundene Siedlungsdruck sowie die

vermehrte Nutzung alpiner Regionen als Erholungsgebiet erhöht die Verwundbarkeit des

Menschen durch Naturgefahren. In Bergregionen sind Lawinen daher stets eine Bedrohung

für Mensch und Infrastruktur und haben erheblichen Einfluss auf Wirtschaft und Tourismus.

Damit Infrastrukturbauten Lawineneinwirkungen standhalten können, ist ein gutes Verständ-

nis der Lawinenkräfte für die Erarbeitung von Bemessungsrichtlinien unerlässlich.

Obwohl bereits seit Jahrzehnten vermutet wird, dass die physikalischen Prozesse innerhalb

der Lawine stark mit dem jeweiligen Fliesstyp variieren, werden die Lawinendrücke gemäss

den gängigen Berechnungsmethoden meist unter Anwendung von empirischen Druckbei-

werten proportional zur Fliessgeschwindigkeit im Quadrat berechnet. Tatsächlich ist der

Lawinendruck in trägheitsdominierten Lawinen, typischerweise Staublawinen, proportio-

nal zum Quadrat der Fliessgeschwindigkeit. Der Aufpralldruck von gravitationsdominierten

Fliesslawinen, welcher mit Hilfe des empirischen Verstärkungsfaktors berechnet wird, ist

jedoch proportional zur Tiefe unter der Fliessoberfläche. Messungen zeigen auf, dass sich die

numerischen Werte der empirischen Druckbeiwerte und Verstärkungsfaktoren eine grosse

Streuung aufweisen. Mangels physikbasierter Kriterien für die Wahl der empirischen Faktoren,

brauchen Ingenieure umfangreiche Erfahrung, um Strukturen in lawinengefährdeten Zonen

zu planen. So ist es selbst für Experten nicht immer klar, wie der jeweilige Lawinen-Fliesstyp

und die Geometrie des Hindernisses für die Berechnung des Lawinendrucks im Einzelfall

adäquat berücksichtigt wird.

Das Ziel der vorliegenden Arbeit ist es, einen physikbasierten Rahmen für die Lawinendruck-

berechnung auf Hindernisse zu entwickeln. Im Detail wollen wir Druckbeiwerte und Verstär-

kungsfaktoren unter Berücksichtigung der vorherrschenden Schnee- und Fliesseigenschaf-

ten der Lawinen bestimmen können. Um die Interaktion von Lawinen und Hindernissen

numerisch untersuchen zu können, entwickeln wir ein Modell, das auf der Diskrete-Elemente-

Methode basiert.

In dem wir die simulierte Lawinengeschwindigkeit und Kohäsion des Lawinenschnees va-

riieren, gelingt es uns zu zeigen, dass der Lawinendruck als Überlagerung eines trägheits-,

reibungs- und kohäsionsabhängigen Druckanteils interpretiert werden kann. Weiter ent-

wickeln wir ein neuartiges Skalierungsgesetz, mit welchem sich die Problematik der Druckbe-

rechnung einer kohäsiven Lawine auf die Druckberechnung der entsprechenden kohäsionslo-
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Chapter 0 Zusammenfassung

sen Lawine reduzieren lässt. Wir präsentieren Evidenz, dass die Kompression des granularen

Mediums im Einflussbereich des Hindernisses in der Lawinenströmung den Lawinendruck

in kohäsionslosen gravitationsdominierten Fliesslawinen massgeblich beeinflusst. Im Falle

kohäsiver Lawinen verstärkt die Kohäsion die Kraftübertragung zwischen den Schneepar-

tikeln zusätzlich, was zu erhöhtem Aufpralldruck führt. Unter der Berücksichtigung eines

gravitations- und eines trägheitsabhängigen Druckanteils gelingt es uns einen Zusammenhang

zwischen den Schneeeigenschaften in der Einflusszone des Hindernisses und dem Aufprall-

druck herzustellen. Schlussendlich präsentieren wir unter Einbezug von früheren Studien

sowie eigener Resultate eine Methode zur physikbasierten Berechnung des Lawinenaufprall-

drucks, welche lediglich von der Hindernisgeometrie und fundamentalen Fliesseigenschaften

der Lawine abhängt.

Stichwörter:

- DEM Simulation der Interaktion von kohäsiven granularen Lawinen mit Hindernissen

- Berechnung vom Lawinenaufpralldruck auf Hindernisse

- Bauliche Gestaltung von Lawinen-gefährdeten Objekten
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1 Introduction

Mountainous areas face various hazards involving the rapid mass movement of a finite volume

of material. Typical examples include snow avalanches, debris flows, and rock avalanches.

Building structures in this environment involves ensuring that they are placed in a safe area

or, if this is not the case, reinforcing them. To that end, computational methods have been

developed for estimating runout distances and forces exerted by the flowing mass on fixed

obstacles (Perla, 1980; Hopfinger, 1983; Hutter, 1996; Ancey, 2012).

Faced with the thorny problem of estimating impact pressures exerted by complex natural

materials, engineers have used analogies between avalanches and related issues in hydrody-

namics or geotechnical engineering. Today, a routinely used definition of avalanche impact

pressure is copied from the definition of drag force in fluid dynamics when computing the

force exerted by a Newtonian fluid on an immersed body (e.g., Chap. 1 in White, 1991):

px = FD

A
=CD

ρ

2
v2 (1.1)

where FD is the drag force on the obstacle, A is the projected area facing upstream, CD is the

drag coefficient, ρ is the snow density, and v is the flow velocity (Mellor, 1978; Hopfinger, 1983;

Burkard et al., 1990; Mears, 1992; Jóhannesson et al., 2009). The main difficulty of the problem

lies in the determination of the drag coefficient CD if we assume that we can determine or

measure avalanche velocity and density independently. This problem has long seen only

partial answers, owing to the scarcity of relevant avalanche data and the complexity of the

avalanche behavior.

1.1 A preliminary note on flow regime

Avalanches involve a wide variety of flow features depending on snow, weather and topography,

which in turn generate a diversity of flow behavior (Quervain, 1981; McClung and Schaerer,

1993). Since the earliest developments in avalanche science (Coaz, 1881; Mougin, 1922; Allix,

1925; Paulcke, 1938), there has been tension between providing a comprehensive classification
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of avalanches and outlining the overall flow behavior. In engineering, it has been common to

distinguish between flow avalanches (dense flows of snow, which follows the ground’s contours

closely) and powder avalanches (dilute clouds of snow particles maintained in suspension by

air turbulence and moving at a velocity higher than 50 m/s) (Ancey, 2016).

Here we are concerned with flow avalanches. Let us provide key characteristics, which will

assist us later in quantifying the physical processes at hand: the flow depth h generally does

not exceed a few meters, and its mean velocity v ranges from 5 to 25 m/s, although velocities

as high as 50 m/s have been observed. On average, the density of snow mobilized by flow

avalanches ranges from 150 to 500 kg/m3. Dry snow tends to be light, whereas wet snow

has the highest density. Flow avalanches exhibit varied flow regimes depending on snow

consistency (cohesion, moisture and density), velocity and topography. A simple dichotomy

used in engineering distinguishes between the inertia- and gravity-dominated regimes (or

more concisely, inertial and gravitational regimes). Inertia-dominated avalanches reach high

velocities (v > 10 m/s) and may overrun low-terrain obstacles. Because of their high velocities,

they often entrain ambient air during their descent, and thus a density stratification exists

across their flow depth: a dilute layer covers a dense core. Gravity-driven avalanches have

low velocities (v ≤ 10 m/s) and closely follow ground contours. They take the appearance of a

granular or viscous flow.

Flow regime and snow consistency are often correlated: cold dry snow tends to form inertial

avalanches, whereas wet cohesive snow is more prone to forming gravitational flows. Recently,

field observations and laboratory experiments have suggested that snow temperature is the

key parameter that affects snow cohesion and thus controls flow dynamics (Steinkogler et al.,

2014; Steinkogler et al., 2015; Köhler et al., 2018b; Fischer et al., 2018): when snow temperature

in the flow is lower than −1◦C the regime is dominated by inertial effects, whereas gravitational

effects dominate at temperatures higher than this threshold. To highlight the influence of

snow temperature, we speak of cold or warm snow avalanches. Snow texture changes radically

as a function of snow temperature and moisture. Dry snow takes the form of a cohesionless

powder, whereas wet snow can take the form of pasty material (like mud) or granular matter.

This wealth of texture has marked consequences on bulk behavior, and we have taken this

point into account in our study. Figure 1.1 illustrates differences in snow texture, granulometry,

amount of deposits on the obstacle and the flow surface between the deposits of a warm and a

cold avalanche at the wall obstacle in Vallée de la Sionne (section 4.2.2).
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a b

Figure 1.1 – Avalanche deposits at the Vallée de la Sionne wall obstacle. Panel a shows a side
view of the wall with the deposits an avalanche with a warm tail (archive number # 20213009
in the VdlS database), which released naturally on January 15th 2021. Panel b shows a frontal
view of the wall with the deposits of a typical cold avalanche (archive number # 20193014 in
the VdlS database), which released naturally on December 16th 2018. Pictures: P. Huguenin,
SLF

1.2 Computing impact pressure: a brief state of the art

For a body immersed in a Newtonian fluid, the drag coefficient CD in equation (1.1) is usually

entirely determined by the body’s Reynolds number (White, 1991). For non-Newtonian fluids,

the mere existence of the drag coefficient is not ensured, and in many cases little is known

about its dependence on flow variables or dimensionless numbers. For snow (as a flowing

material), the approach has long been speculative and based on sparse observations and

measurements. Avalanche forces started to be measured as early as the 1930s in the former

Soviet Union (Roch, 1961; Brugnot and Vila, 1985; Sokratov, 2013) and from the 1950s on in

Western countries. At that time and in the subsequent decades until the 1990s, the measure-

ment techniques were rudimentary. The earliest avalanche-dynamics models were also crude

(Mougin, 1922; Zimmermann, 1936); among other things, they were unable to relate avalanche

force to flow variables. Just after the devastating winters that struck the Alps in 1951 and 1954,

the Swiss structural engineer Adolf Voellmy was commissioned to quantify avalanche forces.

Based on field observations of damage to constructions, he published a series of four papers,

in which he set out the first complete theory for computing avalanche velocities and forces

depending on the flow regime (Voellmy, 1955d; Voellmy, 1955c; Voellmy, 1955b; Voellmy,

1955a). He ended up with a pressure distribution in the form:

p = ρm

(
g h +CD

1

2
v2

)
, (1.2)

3



Chapter 1 Introduction

where ρm denotes the snow bulk density upon impact, g is the gravitation acceleration, h is the

avalanche flow depth, v its velocity, and CD = 1− (vu/v)2(1−sinβ) is the drag coefficient, vu is

the impact velocity, and β is the angle of incidence between the flow direction and impacted

surface. The impact pressure involves two contributions: a hydrostatic-like contribution

ρm g h, and Bernoulli-like contribution 1
2ρm v2 weighted by the drag coefficient CD . A decade

later, considering that snow behaves as a cohesionless granular material, whose critical states

can be described using Rankine’s theory, Salm (1967) obtained this expression for the mean

flow pressure far from any obstacle

p = κρ
(

g h cosθ+ h

R
v2

)
(1.3)

where ρ denotes snow density, R is the ground’s radius of curvature, θ is the ground slope, and

κ is the active/passive earth coefficient. In that case, the quadratic term in the pressure reflects

centrifugal effects. Comparing Eqs. (1.2) and (1.3) shows that, for a flow past an obstacle, the

pressure distribution is altered due to snow compaction and momentum transfer from the

flow to the obstacle.

For subsequent developments, it is instructive to rearrange equation (1.2) by using the Froude

number F r = v/
√

g h:

p =CD
ρm

2
v2

(
1+ 2

CD

1

F r 2

)
(1.4)

In analogy to hydraulics, where the Froude number is used to distinguish between supercritical

(F r > 1) and subcritical (F r < 1) flows, authors have suggested that this number can also be

used to partition the avalanche flow regimes (Voellmy, 1955b; Salm, 1966; Salm, 1967; Mellor,

1968; Bozhinskiy and Losev, 1998; Ancey and Bain, 2015): the inertia-dominated regime—

initially called shooting flow (schiessender Abfluss) by Voellmy (1955b)—refers to fast-moving

avalanches, while the gravity-dominated regime—also called streaming flow (strömender

Abfluss—refers to slow-moving avalanches. Whereas in hydraulics there is a neat separation

between supercritical and subcritical flows at F r = 1, the situation is less clear for avalanches.

Salm (1967) suggested that the transition between the inertia- and gravity-dominated regimes

occurs at a Froude number F r = √
κcosβ. Other authors have assumed that the critical

Froude number is unity.

For many scientists and practitioners, fast-moving avalanches were long perceived as the most

dangerous ones, and this is why emphasis was mainly placed on this flow regime in developing

guidelines for computing avalanche features (Burkard et al., 1990; Mears, 1992; Jóhannesson

et al., 2009; Rudolf-Miklau et al., 2014; Margreth et al., 2015). For high-speed flow avalanches,

we typically have v = O(10− 30) m/s and h = O(1− 5) m, which leads to Froude numbers

in the 1.5–10 range. Authors have thus considered that the Bernoulli-like contribution in

equation (1.2) is dominant. Field data have led to drag coefficients in the 1–10 range (Roch,

1980; Burkard et al., 1990; Norem, 1990; Gauer and Jóhannesson, 2009; Rudolf-Miklau et al.,

2014). On rarer occasions, guidelines provide empirical equations for computing avalanche
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pressure depending on flow regime (Ancey, 2006; Ancey and Bain, 2015). Since the studies

undertaken by Haefeli (1948) on snow plasticity, it has been observed that the snow pressure

on an obstacle depends on the obstacle’s size, a feature not predicted by equation (1.2) or

equation (1.3). For creeping snow on a cylindrical obstacle of diameter d , Haefeli (1939) and

Haefeli (1951) found that the hydrostatic-like pressure should be weighted by an empirical

factor he called the efficiency factor ηF = 1+ch/d , with c ∼ 0.6 (see Appendix D in (Ancey and

Bain, 2015)). The extension of Haefeli’s theory to flow avalanches has long been debated.

With the equipment at several field sites across Europe (Issler, 1999), high-accuracy pressure

data have been acquired and have shed new light on how avalanche impact pressure is related

to the flow variables v and h. From the Col du Lautaret Pass (France) data, Thibert et al. (2008)

deduced that the drag coefficient varied as a power law of the Froude number:

CD = 2(1−cosα)AF r−n (1.5)

for a wedge-shaped obstacle whose apex angle is 2α, A = 10.8 and n = 1.3. Later, Thibert et al.

(2013) used the analogy between snow avalanches and granular flows to propose an extended

version

CD =C +K F r−2 (1.6)

where C and K are functions of the obstacle geometry, as well as avalanche flow depth and

material properties that were calibrated from laboratory experiments (Faug, 2015). Analyzing

data from the Ryggfonn site (Norway), Gauer et al. (2008) suggested that the drag coefficient

could be written as

CD =Cd0 +
f

F r 2 (1.7)

where Cd0 is a constant and f ≈ 4.8
p

h/d (Gauer and Jóhannesson, 2009; Gauer and Kris-

tensen, 2016). At the Vallée de la Sionne field site (Switzerland), Sovilla et al. (2008a) observed

that the assumption of a constant drag coefficient was not realistic, especially for subcritical

avalanches for which the drag coefficient varies as CD ∝ F r−n and thus becomes much larger

than unity when F r → 0. Sovilla et al. (2010) observed a linear pressure distribution across

the flow depth p = ζρg (h − z), where z is the height relative to the ground and ζ is a fitted

coefficient in the 7.2–8.1 range, but further measurements showed a strong dependence of ζ

on the obstacle size and snow consistency (Baroudi et al., 2011; Sovilla et al., 2016).

In Figure 2.2 (chapter 2), we show two typical examples of the hydrostatic-like and the Bernoulli-

like pressure distributions together with the corresponding velocity profiles measured at the

pylon in Vallée de la Sionne.
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1.3 Insights from experiments and Discrete Element Method simu-

lations of flowing granular materials

Since Salm’s work in the 1960s, the analogy between avalanches and granular flows has

been used to gain insight in the bulk dynamics of dense avalanche flows (Scheiwiller and

Hutter, 1982; Salm and Gubler, 1985; Hutter, 1996). Thereafter the analogy was used e.g. to

derive equation (1.6) (Thibert et al., 2013), or to identify the flow-depth proportional pressure

contribution from field measurements (Wieghardt, 1975; Albert et al., 1999; Sovilla et al., 2010).

In addition to experimental investigations, the behavior of granular flows is often studied

by performing simulations using the Discrete Element Method (DEM), as this method is

particularly well suited to study granular materials (Andreotti et al., 2013). Figure 1.2 visualizes

the interaction of a real and a simulated supercritical avalanche interacting with the Vallée de

la Sionne pylon (section 4.2.2) in the upper and the lower half, respectively.

Figure 1.2 – Top view of a supercritical avalanche flowing around the Vallée de la Sionne pylon.
The upper half shows a picture taken by a camera mounted on the pylon. The lower half shows
a sample DEM simulation, where the particles are colored according to the velocity with red
corresponding to high velocities and blue corresponding to low velocities.

Because in DEM the contact model governs the behavior of interacting particles, a suitable

contact law is of prime importance to appropriately model a specific granular material. In our

case, we want to mimic the complex and cohesive material behavior of snow.

On a microstructural level, the load on a snow sample is carried by the force chains through

sintered joints connecting the individual ice grains (e.g., Ballard and McGaw, 1965; Gubler,

1978). These sintered joints are thus the origin of snow cohesion. However, most existing

contact laws for cohesive granular media (Tomas, 2003; Roy et al., 2016) focus on the industrial

handling of powders or wetted grains, where the cohesion originates typically from van der
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Waals forces or liquid menisci between the particles (Rognon et al., 2008b). Hence, these

models are not suitable for snow, because snow grains have no attractive force towards each

other and only sinter if the particles are in physical contact (Szabo and Schneebeli, 2007).

Although there exist cohesive contact law which captures elastic-plastic repulsion, dissipation,

friction, as well as rolling and torsional resistance (e.g. Luding, 2008), no contact law has

been developed specifically for snow so far. Steinkogler et al. (2015) were able to mimic the

sintering and granulation processes of real snow in a concrete tumbler using DEM with a

contact-bond model. In a similar contact model, the parallel-bond model originally developed

for rock modeling (Potyondy and Cundall, 2004), the cohesive particle contact is modeled as a

rigid joint sustaining compressive, tensile, bending and torsional loading. While this contact

model has proven to be suitable to simulate other cohesive geomaterials, such as wetted sand

(Butlanska et al., 2009) and debris (Kang and Chan, 2018), it was also successfully used to

model snow (Gaume et al., 2015b; Bobillier et al., 2020).

Although the mechanics of granular flowing material was already studied as early as 1852

(Hagen, 1852) (see Tighe and Sperl, 2007), it only became an active field of research in the late

20th century (GDR-MiDi, 2004). Initially research focused on cohesionless granular materials

(Forterre and Pouliquen, 2008; Moriguchi et al., 2009; Faug et al., 2009). Fundamental studies

led to the identification of a unique frictional constitutive law describing the rheology of

flowing cohesionless granular materials (GDR-MiDi, 2004; Cruz et al., 2005; Jop et al., 2006;

Forterre and Pouliquen, 2008). To characterize the dynamics of granular free surface flows

down inclined planes often the Froude Number F r is used similarly to hydraulics (section 1.2).

Later, many of the concepts for cohesionless flows could be extended for the more complex

behavior of cohesive granular materials (e.g., Rognon et al., 2008b; Roy et al., 2017).

Previous research shows that the force exerted by a granular flow on an obstacle originates

from force chains forming between jamming particles (Albert et al., 2000; Geng and Behringer,

2005). On the particle scale, the flow–obstacle interaction dynamics are therefore governed

by the coexisting formation and destruction of these force chains extending upstream of the

obstacle into the flow. Cohesion is known to increase the persistence of the force chains and

the contact network density (Rognon et al., 2008b; Favier et al., 2013). On the macroscopic

scale, the strong force chains originating from the obstacle form a region which is referred to

as the mobilized domain (MD) by some authors (e.g., Thibert et al., 2013; Faug, 2015; Sovilla

et al., 2016). Hence, the MD is the region in a granular flow encountering an obstacle, which

experiences a significant increase in the contact forces between particles. Presumably, the

macroscopic force experienced by the obstacle is therefore governed by the properties of the

MD (Faug, 2015).

To our knowledge, the MD has only been described in a few studies, and the authors provided

little information on the implications for the drag force on the obstacle (Chehata et al., 2003;

Favier et al., 2009b; Faug, 2015). Chehata et al. (2003) suspect that the drag exerted on an

obstacle is the result of compressive stresses acting on the MD. Revisiting a large number of

studies on the macroscopic force on obstacles, Faug (2015) proposes a phenomenological

model to calculate the force, considering a kinetic, a gravitational and an apparent weight

contribution.
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However, to the best of our knowledge, a detailed study about the MD properties and the

resulting impact pressure for different flow regimes and types of obstacles is still lacking.

1.4 Research question and chapter outline

In recent decades, growing evidence has accumulated that Voellmy’s physical intuition was

correct. Field measurements have confirmed that when an avalanche impacts a rigid structure,

it exerts a force that can be decomposed into hydrostatic-like and Bernoulli-like contributions,

similar to Voellmy’s equation (1.4). Although this overall pattern seems robust, there is no

consensus on the origin and correct choice of the empirical proportionality factors for the two

contributions to calculate the impact pressure depending on different the flow regime, snow

consistency, obstacle size and shape. To address these uncertainties and to advance towards

physics-based calculation of dense avalanche impact pressure on obstacles, we formulate the

following research questions for the present thesis:

• How can the snow avalanche–obstacle interaction be simulated with the Discrete Ele-

ment Method?

• What are the dominant physical avalanche–obstacle interaction processes?

• What role does the mobilized domain play in the build-up of avalanche impact pressure?

• What is the influence of varying flow regimes and snow properties, e.g. cohesion, on the

impact pressure?

• What is the influence of the obstacle geometry on the impact pressure?

• How can the proportionality coefficients of the hydrostatic-like and Bernoulli-like con-

tributions be estimated based on physical considerations?

In chapter 2, we describe the novel simulation setup, which we implement to tackle the

research questions using the Discrete Element Method to numerically simulate the interaction

of avalanches and obstacles. In the same chapter, we vary the velocity and cohesion of the

avalanche interacting with the measurement pylon in the Vallée de la Sionne experimental

site to identify the prevalent interaction processes for different avalanche scenarios.

In chapter 3, we focus on the interaction of gravitational flows and obstacles to investigate

on the physical processes governing the empirical factor ζ. To find the link between the MD

properties and the impact pressure, we perform 30 simulations with obstacles of different

cross-sections and widths, as well as cohesive and cohesionless gravitational avalanche flow

scenarios. In chapter 4, we expand the previous study from chapter 3 to also include inertial

flows and also investigate on how the pressure is distributed on the obstacle impact surface

(section 4.5).

Based on the results of chapters 2– 4 and previous research, we propose a physics based
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practical approach to estimate CD for varying avalanche flow regimes and obstacle geometries

(section 4.6). We test the relevance of the proposed calculation method by comparing the

calculated impact pressure to measured and simulated impact pressure values in different

flow regimes and for different obstacle geometries.

In chapter 5, we summarize the individual chapter’s results by highlighting the inference of the

identified pressure build-up processes from the conceptual level of a flowing granular medium

interacting with an obstacle, to the practical calculation of the impact pressure relevant for

practitioners.

Chapter 6 gives an outline of work that could be performed in the future to further improve

the physical understanding of avalanches interacting with obstacles and the impact pressure

calculation procedure.

9





2 The role of inertia, friction and co-
hesion in the pressure build-up on
the Vallée de la Sionne measurement
pylon

Authors

M. L. Kyburz1,2, B. Sovilla1, J. Gaume1,3, C. Ancey3

1 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2 Environmental Hydraulics Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland
3 Snow and Avalanche Simulation Laboratory SLAB, École Polytechnique Fédérale de Lau-

sanne, Lausanne, Switzerland

Publication

This chapter is a modified version of the publication:

Kyburz M.L., Sovilla B., Gaume J., Ancey C.: Decoupling the role of inertia, friction, and

cohesion in dense granular avalanche pressure build-up on obstacles. Journal of Geophysical

Research: Earth Surface 125(2), e2019JF005192 (2020). https://doi.org/10.1029/2019JF005192

Authors’ contributions

Michael L. Kyburz: Conceptualization, Methodology, Software, Formal Analysis, Investigation,

Visualization, Writing - Original Draft; Betty Sovilla: Funding Acquisition, Conceptualization,

Experimental Data Curation & Investigation, Writing - Review & Editing, Supervision; Johan

Gaume: Methodology, Writing - Review & Editing; Christophe Ancey: Writing - Review &

Editing, Supervision.

11



Chapter 2
The role of inertia, friction and cohesion in the pressure build-up on the Vallée de la

Sionne measurement pylon

2.1 Chapter summary

In this chapter, we aim to better understand how cohesion, friction, velocity and their interplay

affect avalanche pressure build-up on structures. This is achieved by simulating the avalanche–

obstacle interaction with a newly developed numerical model based on the Discrete Element

Method (DEM), using a cohesive bond contact law. We test the relevance of the model by

comparing simulated impact pressures with field measurements from the Vallée de la Sionne

experimental site. Our results show that at the macro-scale, impact pressure consists of

the inertial, frictional and cohesive contributions. The inertial and frictional contributions

arise due to the existence, shape and dimension of the mobilized domain. The cohesive

contribution increases the particle contact forces inside the domain, leading up to a doubling

of the pressure. Based on these physical processes, we propose a novel scaling law to reduce

the problem of calculating the pressure induced by cohesive flows, to the calculation of

cohesionless flows.

2.2 Materials and Methods

In this section we describe the recently developed DEM model we use to investigate the

processes involved in avalanche–obstacle interaction. This model allows us to reproduce the

flow of a granular medium, such as a snow avalanche, in the vicinity of the obstacle and to

analyze the resulting impact pressure and flow behavior around the obstacle.

In the first part, we define the test case and present experimental data which we use for

the comparison with the simulations. The second part outlines how we model snow with

DEM. In the third section, we present the model setup. The fourth section summarizes the

most important parameters used in the simulations. Finally, we describe how we compare

simulated impact pressures to field measurements. This chapter’s appendix A presents the

details of the implementation of the numerical Discrete Element Method, the contact model,

as well as the model setup and procedure.

2.2.1 Experimental data and test case

Over the past 20 years, a large set of field measurements has been collected at VdlS. Therefore,

we choose the measurement data from this site as the test case to model avalanche flow and

pressure in the present study. Among many other quantities, avalanche pressure and velocity

are measured on a 20 m high pylon-like steel structure (Sovilla et al., 2010). The pylon is located

on a flat slope beneath two couloirs, where avalanches releasing from a 1.5 km wide area con-

verge (Ammann, 1999). Here, we use the term pressure to refer to the measured or simulated

impact pressure on the obstacle, if not mentioned otherwise. At the pylon, the pressure is

measured at the front of six cylinders distributed with 1 m vertical spacing (Sovilla et al., 2014).

The velocity of the incoming flow is measured at the face of a wedge attached to the front of

the pylon (Kern et al., 2010). These point measurements at the pylon are complemented by

12



The role of inertia, friction and cohesion in the pressure build-up on the Vallée de la
Sionne measurement pylon Chapter 2

radar measurements, which provide information on the flow regime along the ∼ 2.5 km long

flow path (Köhler et al., 2018b).

Based on radar measurement data from VdlS, avalanche flows have been reclassified recently

into seven categories (Köhler et al., 2018b). This highlights the complexity of avalanche flows,

which also strongly depend on the specific terrain and the snow properties. In this study

however, we limit ourselves to two flow types, which are often observed at the VdlS test site,

namely, the inertial shear flow and the gravitational plug flow regimes.

Field experiments have demonstrated, that in the inertial flow regime, which is mostly typical

of fast and cold avalanches, the pressure is proportional to velocity squared. Throughout

this paper, we refer to cold or warm avalanches as avalanches with prevailing snow temper-

atures below or above −1◦C, respectively. Previous research suggests that snow undergoes

dramatic changes at this temperature, which consequently influences avalanche flow dynam-

ics (Steinkogler et al., 2015; Köhler et al., 2018b; Fischer et al., 2018). The dense flows of inertial

avalanches at VdlS rarely exceed a flow height of h = 2.5 m and often exhibit a sheared velocity

profile (Kern et al., 2009). Typical velocities of the inertial dense flow at VdlS range from 10 m/s

to 30 m/s (Sovilla et al., 2008a).

The gravitational regime is often observed for warm snow avalanches and features a linear

pressure variation with flow depth. A typical gravitational plug flow avalanche flows at very

low velocities up to a maximum of approximately 10 m/s, at the pylon location. At the VdlS

test site these avalanches can build up maximum flow heights of 5 − 7m and exert pressures

in the range of 100 − 500kPa (Sovilla et al., 2016). However, at VdlS, the peak flow heights are

rarely maintained over longer time spans, but decrease with time. Heights of h. 4m are more

common for this kind of flow.

2.2.2 Modeling snow using the Discrete Element Method

Our model is implemented within the framework of Itasca’s commercial PFC software. This

software implements the DEM method based on the soft-contact algorithm (Cundall and

Strack, 1979) for interacting discrete particles.

Because of limited computational power, the number of snow crystals involved in large

avalanches is prohibitive to be resolved as individual discrete elements in the model. There-

fore, we consider the discrete particles to correspond to small snow agglomerates rather

than individual ice crystals. Hence, the radius of the particles in the simulations are nor-

mally distributed within the interval 32 mm≤ rp ≤ 48 mm corresponding to a mean value of

rp = 40mm. According to field surveys, this corresponds to an intermediate granule size

(Bartelt and McArdell, 2009; Sovilla et al., 2008a; Steinkogler et al., 2015). Because snow par-

ticles are not resolved individually, the material properties of the discrete elements in the

model must correspond to the macroscopic properties of the snow granules rather than the

ice properties at the crystal level.
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In DEM, the material’s characteristics are not only influenced by the particles’ properties.

The dynamical behavior is primarily governed by the contact model, which comes into play

whenever two particles interact with each other. A suitable contact law is therefore of prime

importance to mimic the flowing snow in an avalanche. In the present work, a parallel bond

contact model (Potyondy and Cundall, 2004) is used to model the mechanical behavior of

snow. The model consists of two components: (1) a classical linear viscoelastic component

consisting of a spring and a dashpot in the normal direction and a spring and a coulomb

friction limit in the tangential direction, as well as (2) an elastic-brittle cohesive bond in

parallel to the linear component. The bond models the sintering and therefore cohesion of the

real snow. Mechanically it acts like a beam connecting the particles and can sustain normal

and shear forces as well as bending and torsional loads. Similar to the sintering in snow,

also in our simulations we allow for new bonds to form if a new contact occurs between two

unbonded particles. Because the bond is in parallel to the linear component, the cohesionless

behavior is conserved in any case, such as after bond breakage before a new bond forms.

2.2.3 Modeling the interaction of the avalanche flow and structures

In order to perform a systematic study of the influence of velocity and cohesion on impact

pressure, we aim to impose the flow of the granular material independently from the particle

and contact properties in the DEM model. Therefore, we propose a setup which enforces the

flowing granular material (e.g. snow) to match a specific vertical velocity profile.

To achieve this, we isolate a finite volume of particles around the obstacle. The computational

domain is 28m high (z direction) and is confined with a wall at the bottom. This bottom wall

mimics the gliding surface on which the avalanche flows. Transverse to the flow (y direction),

the domain is 7m wide and is limited by a periodic boundary condition. In the streamwise

direction (x direction), the domain is 10m long and is limited by boundary walls, segmented

in height (Figure 2.1 a, b). By moving the wall segments at different speeds at different heights,

we can impose the velocity magnitude and profile to the particle volume. In this way the

velocity past the obstacle can be controlled while also accounting for effects such as basal

friction and shear dilatancy.

For the simulations, we use idealized plug and shear velocity profiles. In the gravitational plug

flow, we impose a constant velocity over the whole flow height (Figure 2.1 a). In the inertial

shear flow, the velocity increases linearly from the bottom to the free surface of the granular

flow (Figure 2.1 b). Ranges for cohesion and velocity, velocity profiles and flow heights are

given in Table 2.1.

Gravity points in the negative z direction. While the average slope in the region of the VdlS

pylon is approximately 20◦, this approximation can be justified in the context of our test case

because the terrain up to 10m upstream of the pylon is nearly flat.
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Figure 2.1 – Panels a and b show the workflow for the DEM simulations of a plug flow and
a shear flow velocity profile, respectively. The inputs of the simulations are on the left. The
pictures in the middle show DEM simulations, where the boundary walls and the discrete
elements are colored according to the velocity in the streamwise direction. The boundary
walls and the static obstacle are shaded in gray. The outputs of the model are shown on the
right. Panel c shows the cross section of the pylon with the location of the pressure and velocity
sensors.

Figure 2.1 c shows a vertical cross section through the obstacle implemented in the simulation,

which is similar to the measurement pylon in VdlS. In the simulation the pressure and the

velocity are sampled at the same temporal frequency as in VdlS. The simulated impact pressure

and velocity at the obstacle are also sampled at the same locations as in VdlS. The locations

are highlighted in Figure 2.1 c in red and blue for the velocity and the pressure, respectively.
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The simulated impact pressure is determined by summing up the face-normal component

of all contact forces acting on the measurement surface and dividing it by the sensor surface

area.

With the exception of the comparison of simulations and measurements (sections 2.2.5

and 2.3.1), we always use the imposed velocity at the wall. To compare different simula-

tions, we always use a representative value of contact force, velocity at the pylon, imposed

velocity, confining pressure and impact pressure, which corresponds to the value at mid flow

depth.

2.2.4 Model parameters

While it is notoriously difficult to measure the mechanical properties of snow due to its het-

erogeneity (Gerling et al., 2017; Gaume et al., 2015a), even less is known about the mechanical

properties of flowing snow in avalanches. As mentioned earlier, this applies particularly for

cohesion, which is of central interest in the present study. Thus, most of the parameters

and material properties applied in the simulations of this study are estimated rather than

rigorously measured or calibrated with values within typical ranges as used and suggested by

other authors for snow.

As mentioned in section 2.2.1, gravitational and inertial avalanches have different snow and

flow properties. In the present article we want to focus on the influence of velocity and co-

hesion on the impact pressure. Hence, in our parametric study we only vary the cohesion as

well as the flow height and the velocity according to the two flow regimes given in Table 2.1.

Parameters such as the friction coefficient µ= 0.5 (Steinkogler et al., 2015; Gaume et al., 2015b;

Gaume et al., 2018a), Young’s modulus E, particle radius rp (section 2.2.2) and particle density

ρp = 500kg/m3 of a single discrete element are constant in all simulations. In contrast to ρp ,

the bulk density ρb is the volumetric average density including voids between particles in

a spherical control volume with a radius of 5.0 · rp . Hence, ρb varies as a result of cohesion

and shear rates, ranging from 370kg/m3 to 430kg/m3 in the gravitational plug flows and from

300kg/m3 to 365kg/m3 in the inertial shear flows. The ranges of these bulk densities agree

well with the values from field and experimental studies (Platzer et al., 2007; Steinkogler et al.,

2015; Bartelt and McArdell, 2009).

For the particles’ Young’s modulus, we use a value of E = 105 Pa in all simulations, which is in

the lower range of the values used by Gaume et al. (2015b) for modeling snow slabs and in the

range of reported values from the literature (Shapiro et al., 1997; Gerling et al., 2017; Scapozza,

2004). For Young’s modulus of the cohesive bond, we use the same value as for the particles.

The cohesive strength of the bond is set to σcoh.less = 0Pa for cohesionless simulations and

varied between 0kPa<σcoh ≤ 20kPa otherwise. The upper limit corresponds roughly to the

values reported by Shapiro et al. (1997) for snow with densities from 320kg/m3 to 420kg/m3

and is the same range as used by Gaume et al. (2015b). In the present study we use the local

Bond number (equation (2.1)) instead ofσcoh to analyze the influence of the cohesive strength.
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Bo =σcoh/pcon f (2.1)

This dimensionless number is the re-scaled cohesion, defined as the cohesive strength divided

by the confining pressure pcon f (Roy et al., 2017), where the confining pressure is the vertical

component of the local stress tensor pcon f ≡σzz .

The parameters discussed here are summarized in Table 2.1.

Table 2.1 – Parameters for the DEM simulations in the gravitational and inertial regime

Parameter Symbol Unit Gravitational plug flow Inertial shear flow

Particle density ρp kg/m3 500 500

Bulk density∗ ρb kg/m3 370−430 300−366

Young’s modulus E Pa 105 105

Cohesive strength σcoh Pa 0.0−2.0 ·104 0.0−2.0 ·104

Friction coefficient µ − 0.5 0.5

Particle radius rp mm 40±8 40±8

Depth-averaged velocity v m/s 2−8 15−40

Flow height h m 4.0 2.5
∗ The bulk density is not an input parameter, but is mentioned here for illustrative reasons.

2.2.5 Comparing simulated impact pressure profiles to field measurements

In this section we describe how we compare the simulated impact pressure and field mea-

surements to test the DEM model’s capacity to reproduce impact pressure measurements

in a selected flow scenario. To reproduce a flow scenario, we impose a velocity profile at the

boundary walls in the simulation, as depicted in Figure 2.1 a, b. The resulting velocity profile at

the pylon directly dependents on the imposed one, but is slightly altered due to the presence

of the obstacle influencing the flow.

On the condition that the simulated and the measured velocity profile at the pylon are similar,

we can compare the resulting impact pressure profiles for this scenario. Hence, we use the

velocity profile at the pylon as a boundary condition by matching the simulated and measured

velocity profile. We therefore impose an idealized plug or shear velocity profile (section 2.2.3)

such that the resulting velocity at the pylon closely matches the measured velocity. The only

free parameter is the cohesion, which to date can not be measured in experiments and can

only be estimated for the simulations (section 2.2.4). The other parameters in the simulations

are kept constant as described in Table 2.1.
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2.3 Results

The following section presents the results of our study on the influence of velocity and cohesion

on the avalanche pressure on the VdlS pylon. The results are divided into four parts. In

the first step, we compare the simulated impact pressure to field measurements of snow

avalanches from VdlS to test whether the model proposed in section 2.2 is able to reproduce

field measurements. Secondly, we show the results of the parametric study, where we vary

velocity and cohesion in our simulation. There we analyze how impact pressure is influenced

by changes in these two variables. In the third step, we analyse the flow around the obstacle at

the micro-scale to better interpret and understand the influence of velocity and cohesion on

the impact pressure. In the fourth step, we analyze the range of cohesion, the pressures and

pressure fluctuations in gravitational avalanches with regard to the results from the previous

sections.

2.3.1 Comparison of DEM simulations with field measurements

For the comparison of simulations with measurements, we select examples of field measure-

ments of a gravitational plug flow and an inertial shear flow from the VdlS archive, respectively.

In the case of the gravitational flow, we select measurements performed in a warm avalanche

(archive number # 20103003 in the VdlS database), which released naturally on 30 December

2009. From these measurements we extract a short time sequence in the order of 0.5s to

obtain the pressure and velocity profile. In Figure 2.2 a these measurements are compared to

a simulation with an imposed plug velocity profile of 10m/s, a flow height of 4m, resulting

in the red velocity profile of ∼ 8m/s at the pylon (Figure 2.2 a, left panel). For the cohesive

strength we choose a value ofσcoh = 15.6kPa which is high considering the range ofσcoh given

in Table 2.1, as expected from a typical warm plug flow avalanche.

The qualitative trend of the simulated pressure profile agrees with the measured pressure

profile, which increases linearly with the flow depth (Figure 2.2 a, right panel). However, the

simulated pressure increases at a slightly higher rate near the free surface of the flow, and at a

slightly lower rate below ∼ 3.5 m than in the real-scale experiment.

In the case of the inertial shear flow we choose the measurement of avalanche # 20173032,

which was released artificially on 08 March 2017. In Figure 2.2 b this measurement is compared

to a simulation with a flow height of 2.5m and an imposed shear velocity profile of 0−20m/s,

resulting in the red velocity profile at the pylon shown in Figure 2.2 b, left panel. Due to the

idealization of the shear velocity profile as a linear profile, the simulated velocity profile shows

small deviations with the measurements in the lower layers of the flow, at a flow height of

∼ 1.0 m. For this scenario we choose a cohesive strength of σcoh = 1.25kPa. As it would be

expected for an inertial shear flow, the selected cohesion is considerably lower than the one

of the gravitational plug flow. The small mismatch between the measured and simulated

velocity profiles does not seem to affect the pressure profiles in Figure 2.2 b, right panel. The

two impact pressure profiles show a very good agreement.
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a b 

Figure 2.2 – Panels a and b show the comparison of simulated (red squares) and measured
(blue diamonds) velocity and pressure profiles for an example of a plug flow and a shear
flow, respectively. The error bars indicate the standard deviation from the mean value of the
pressure or velocity. The interpolating lines between the data points are only a visual aid.

In order to test the relevance of our model in simulating the correct pressure for a larger range

of velocities and cohesions, we vary the cohesive strength and velocity in our simulations

according to the ranges given in Table 2.1.

In Figure 2.3, we compare the simulated impact pressures to field measurements of two

avalanches (# 7226, # 6236, published by Sovilla et al. (2008a)). We can see that the simulated

and measured impact pressure values in Figure 2.3 show good agreement over a wide range

of avalanche velocities. For low velocities up to 10 m/s, the scatter of the simulated data is in

the same range as the scatter of the measured data. The large scatter of the measurements for

velocities higher than 10 m/s is very likely to be caused by the variability of the snow properties

in the avalanches (Köhler et al., 2018a). The scatter in the simulations is smaller because many

snow properties are kept constant (Table 2.1). Specifically, the scatter of the simulated impact

pressure is caused only by the variation of cohesion, flow height or imposed velocity.

2.3.2 Influence of velocity and cohesion on impact pressure

In this section we analyze the influence of velocity and cohesion on impact pressure. For this

purpose, we vary both quantities systematically in the ranges given in Table 2.1.

Figure 2.4 a shows the simulated impact pressures p on the obstacle plotted over a range of

velocities. Here we plot the impact pressure of cohesionless simulations connected by the

dashed black line, and the simulations with the strongest cohesion σcoh = 20 kPa connected

by the dash-dotted black line. We observe that the dashed and the dash-dotted line only vary

little at slow velocities under 4m/s, as found earlier for cohesionless granular materials (Albert

et al., 1999; Wieghardt, 1975). For velocities higher than 8m/s, the pressure increases gradually,

for the cohesive and the cohesionless case.
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Figure 2.3 – Comparison of simulated (red triangles) and measured (black symbols) impact
pressure versus velocity.

In this plot we identify three pressure contributions at the macro-scale. The contributions are

separated by the black lines in Figure 2.4 a, and visualized by the colored areas in the inset.

We define the first impact pressure contribution as the inertial contribution, which is pro-

portional to velocity squared p ∝ v2 ·ρ/2 (Salm, 1966), similarly to the hydrodynamic impact

pressure of inviscid fluids. This contribution is visualized in Figure 2.4 a by the blue area in the

inset and the black solid line, which is calculated using a constant density ρ = 300kg/m3 as

suggested by Burkard et al. (1990). In the log-log plot in Figure 4 a the slope of the cohesionless

pressure curve (dashed line) reaches a maximum of 1.9 between 30m/s and 40m/s, very close

to the theoretical value 2.0 given by the v2 proportionality (solid line). Hence, Figure 2.4 a

shows that p ∝ v2 ·ρ/2 is only a good approximation for the pressure of fast flows in the

inertial regime (v & 20m/s).

For flows where v ≤ 15m/s, we observe that the lowest simulated pressures, which are con-

nected by the dashed black line and correspond to cohesionless simulations, are well above

the solid black line. Hence, we define the second contribution as the pressure difference be-

tween the dashed and the solid black line at a constant velocity, and refer to it as the frictional

pressure contribution. It is highlighted with the yellow area in the inset. The frictional contri-

bution arises due to the granular nature of the flow which we inherently simulate with DEM, in

contrast to the flow of an inviscid fluid. The pressure increase due to this contribution is ∼ 30%

(50kPa) of the maximum pressure for v < 8 m/s and decreases monotonically for v > 8 m/s.

Hence, the frictional contribution is mostly relevant for gravitational flows (2 ≤ v ≤ 8 m/s).

The third pressure contribution is the cohesive contribution, visualized with the red area in the

inset. We define it as the pressure difference between the dash-dotted and the dashed black

line at a constant velocity. Thus, the cohesive contribution is the difference between impact
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pressure of a cohesive and a cohesionless simulation. While frictional processes between par-

ticles might still occur in the red area, they are less relevant with increasing cohesion because

the cohesive bonds inhibit the relative movement between the particles. Hence, the increase

in impact pressure is caused by the presence of cohesion in the granular material. From

Figure 2.4 a we find that, for the maximum cohesion σcoh = 20 kPa, the maximum pressure

increase due to cohesion is 70% (127 kPa) at 3m/s and 14% (70 kPa) at 40m/s, respectively.

Hence, similarly to the frictional contribution also the cohesive contribution is more relevant

for gravitational flows than for inertial flows.
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Figure 2.4 – Panel a shows the simulated pressure as a function of velocity with an illustration
of the inertial (blue), frictional (yellow) and cohesive (red) pressure contributions in the inset.
Panel b shows the simulated pressure for different F r (colors) as a function of the Bond number.
Panel c shows the pressure normalized by the corresponding cohesionless pressure plotted
against the Bond to Froude number ratio qBo,F r . In panel b and c the dashed interpolating
lines between the data points are only a visual aid.

Figure 2.4 b shows the pressure plotted against the Bond number Bo to investigate the influ-

ence of cohesive strength on impact pressure. For all F r values, we observe that at small Bo

(equation (2.1)), pressure is a very weak function of Bo. In contrast, we find that for large Bo

values the pressure is affected significantly by cohesion (Bo). For increasing velocity, and thus

Froude number, the pressure curves are gradually shifted towards higher Bond numbers.
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In order to obtain a more universal description of the pressure curves, we compensate for

this shift by introducing a new dimensionless number, which is the ratio of the Bond and

the Froude number qBo,F r = Bo/F r . In Figure 2.4 c, we normalize the absolute pressure p by

the impact pressure of the cohesionless flow pcoh.l ess at the same speed and plot it against

qBo,F r . By normalizing the pressure in this way, we consider only the pressure increase, which

is caused by the presence of cohesion. As Figure 2.4 c demonstrates, the pressure data collapse

almost onto a single curve for the suggested choice of normalization. The curves show that

the pressure is amplified by cohesion predominantly for the flows with low velocities. The

largest amplifications are observed at 3m/s and 4m/s, where the pressure of the cohesive flow

is up to 3.5 and 3.2 times higher, respectively, than the pressure of the cohesionless flow.

2.3.3 Analysis of the mobilized domain and origin of the pressure amplification
at the micro-scale

In order to understand the origin of the pressure amplifications, we analyze the flow around

the pylon at the particle level (micro-scale) and compare selected simulations. First, we give a

general overview of three scenarios with different velocities and cohesions. In the following

subsections, we analyze the influence of velocity (F r ) and cohesion (Bo) separately.

We define the mobilized domain as the volume in the flow, where the contact forces between

particles adjacent to the obstacle coherently exceed a threshold. With respect to contact forces,

we consider only the force component normal to the contact plane. We define this threshold

as the median of the contact forces in a control volume around the pylon. In the present

analysis, the median of the contact forces is more representative of the undisturbed force level

than the mean value because the mean is increased by very high force values in the mobilized

domain.

Figure 2.5 shows the comparison of the mobilized domain for three sample simulations. The

first and second rows show simulations of gravitational flows (F r = 0.9) with no and strong

cohesion, respectively. The third row shows the simulation of an inertial flow (F r = 11.4) with

strong cohesion.
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Figure 2.5 – Analysis of the flow and contact forces around the pylon at the micro-scale. Panels
a–c show a gravitational flow (F r = 0.9) with no cohesion (σcoh = 0.0 kPa). Panels d–f show a
gravitational flow (F r = 0.9) with high cohesion (σcoh = 10.0 kPa). Panels g–i show an example
of an inertial flow (F r = 11.4) with high cohesion (σcoh = 10.0 kPa). Panels a, d and g show a
horizontal section view through the flow in the middle of the flow height as indicated by the
gray area in the other panels. The upper half in Panels a, d and g shows the velocity distribution.
The lower half shows inter-particle contact forces whose strength is visualized through the
line thickness and color. Panels b, e and h show the vertical section view in x-z plane located
in the middle of the pylon (red dash-dotted line in panels a, d and g). The extent of the pylon
is visualized by the black area. Panels c, f and i show the impact pressure profiles with the
standard deviation of the temporal pressure fluctuations from its mean value indicated by the
error bars.
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In panels a, d and g we find that force chains stronger than average are only observed in the

same region where the velocity of particles is reduced due to the presence of the obstacle.

Indeed, the mobilized domains in the velocity field and the contact forces agree well in terms

of size and shape.

For the two gravitational examples (first and second rows), the mobilized domain has an

almost circular shape and is located upstream of the obstacle. Qualitatively, the contact forces

in the mobilized domain away from the pylon increase from top to bottom in both panels b

and e in Figure 2.5. This increase is even more pronounced in the mobilized domain in the

vicinity of the obstacle. Not only do the contact forces increase with increasing depth below the

surface of the dense flow, but the mobilized domain also grows larger in size. In the simulation

with strong cohesion (panel d, σcoh = 10.0 kPa), the mobilized domain is considerably larger

and contact forces are stronger than in the cohesionless case (panel a, σcoh = 0.0 kPa).

In the inertial flow (panel g, σcoh = 10.0 kPa), we observe very strong contact forces only in the

vicinity of the obstacle. The shape of the mobilized domain is similar to a bow shock at the

leading edge of the pylon.

When comparing the pressure profiles in panels c and f to the panels b and e, we observe

higher pressure at the bottom or for high cohesion, where the mobilized domain and contact

forces are larger. Aside, the increase in the pressure itself, pressure fluctuations also increase in

the flow with high cohesion. In contrast, for the inertial flow regime (panels h–i), the strongest

contact forces and pressures are located at the top where the flow velocity is the highest.

Influence of the Froude number on the mobilized domain and impact pressure

In Figure 2.5, we show that the geometry of the mobilized domain varies in different scenarios.

Here we want to examine how the shape changes when varying Froude numbers. To exclude

the influence of cohesion we only consider cohesionless simulations.

Figure 2.6 a shows the mean contact forces as a function of distance from the obstacle (position

0) and for different F r (colored symbols). Each point in the plot represents the local contact

force averaged in volumes across the whole domain width at varying streamwise positions

(x direction). The dotted lines in Figure 2.6 a indicate the median of the contact forces in the

whole domain, which is used as the threshold for the mobilized domain as defined earlier.

Figure 2.6 a shows that the shape and location of the mobilized domain change as a function

of the Froude number. This is visualized in panels b and c, which display the contact forces for

the simulations corresponding to the Froude numbers F r = 0.5 and F r = 11.4, respectively.

Similarly to Figure 2.5, we find a circle-shaped mobilized domain for the lowest Froude number

F r = 0.5 (Figure 2.6 b). Figure 2.6 c reveals that the mobilized domain is pushed downstream if

the Froude number is increased. In this case strong contact forces concentrate just upstream

of the obstacle. This leads to the sharp increase in the mean contact force in Figure 2.6 a for

high F r compared to low F r .

To quantify the size of the mobilized domain in a single number, we use the standoff distance.

Similarly to Faug (2015), we define it as the furthest point in the mobilized domain upstream

of the obstacle’s leading edge. Hence, the standoff distance defined here depends on the
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choice of the threshold which is used to distinguish between the free flow and the mobilized

domain. However, even for a different thresholds, the definition of the mobilized domain with

the median force proves to be very robust, and the standoff distance alters only marginally.

Here, we use the standoff distance to compare the size of the mobilized domains across all

cohesionless simulations. Figure 2.6 d shows that the standoff distance decreases dramatically

from 1.84m to approximately 1.0m with increasing Froude numbers in the range of 0 ≤ F r ≤ 5.

For F r > 5, the values of the standoff distance level out at around 0.8m.
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Figure 2.6 – Influence of the Froude number on the mobilized domain and the standoff
distance. Panel a shows the mean contact force upstream of the obstacle in streamwise
direction for different Froude numbers and Bo = 0.0 . The dotted lines correspond to the
median contact force in simulations with the same color. Panels b and c show horizontal
section views at mid-height from the simulation with the lowest and the highest Froude
number from panel a, respectively. The lines indicate the force chains whose strength is
visualized through the line thickness and color. Panel d shows the standoff distances of the
mobilized domain as a function of F r for cohesionless flows.
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Influence of the Bond number on the mobilized domain and impact pressure

In this section we investigate the influence of cohesion on the mobilized domain and the

pressure on the obstacle. Similarly to the analysis in the previous subsection, we consider

contact forces to be an indicator of the disturbance of the structure on the flow. However,

here we only take contacts directly upstream of the structure into account, because these

are considered the most relevant for pressure build-up. If a larger region in the y direction

is considered, higher forces in the mobilized domain are averaged out and are therefore less

evident. Figure 2.7 a shows the mean contact forces as a function of streamwise location for

Bond numbers varying between Bo = 0.0 and Bo = 3.0. In panel a, the flow has a Froude

number of F r = 0.7. Again we consider the median of the contact forces as an indicator of the

overall force level (dotted lines in Figure 2.7 a).

In contrast to Figure 2.6 a all curves in Figure 2.7 a have a similar shape. In addition, the

standoff distance is almost constant around 1.5m for all cases, and the dotted lines show that

contact forces are enhanced by increasing cohesion. This is even more pronounced for local

forces in the mobilized domain just upstream from the obstacle. There, the peak contact

forces differ considerably more between low and strong cohesion than the median contact

force. For the example of F r = 0.7 given in Figure 2.7 a, the peak force (highest red triangle) is

approximately 3 times higher than the median of the contact forces (red dotted line) for the

highly cohesive case. In the cohesionless simulation, the peak value (highest dark blue circle)

is only 2.5 times higher than the median contact force (dark blue dotted line). A sectional view

of the flow around the pylon in the middle of the flow height illustrates this for the case with

no cohesion (panel b, Bo = 0.0) and strong cohesion (panel c, Bo = 3.0). In these two pictures

it is obvious that very strong cohesion heavily intensifies contact forces in the vicinity of the

obstacle, while the shape and size of the mobilized domain remain largely unchanged. In

panel c, the cohesion is so high that the granular material fails along clearly visible fracture

lines.

In Figure 2.7 d, we compare the median contact force of all simulations with varying velocity

and cohesion, and plot this as a function of the respective Bond number. Here we find that

similarly to the pressure in Figure 2.4 b, the median contact forces also increase with increasing

F r . Moreover, the median contact forces also exhibit a weak dependency on Bo for low Bo

values and a strong dependency for large Bo values.
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Figure 2.7 – Influence of cohesion on contact forces and the mobilized domain. Panel a
shows the mean contact force upstream of the obstacle in streamwise direction for different
Bond numbers (different colors and symbols) at F r = 0.7 . The dotted lines correspond to
the median contact force in simulations with the same color. Panels b and c show horizontal
section views at mid-height from the cohesionless case and the most cohesive simulation
from panel a, respectively. The lines indicate the force chains whose strength is visualized
through the line thickness and color. Panel d shows the median contact force as a function of
Bo, and for different F r (colors and symbols).

2.3.4 Pressure and range of cohesion in gravitational avalanches

As mentioned in section 2.2.4, we vary cohesion in simulations in the range of 0.0kPa−20.0kPa.

From Figures 2.4 c and 2.7 d we learn that pressure is only amplified by cohesion if a critical

threshold of the Bond-to-Froude ratio is exceeded. By comparing simulated to measured

pressures of gravitational avalanches, we aim to evaluate which range of cohesive strengths in

our simulations can be used to reproduce the pressure values observed in reality. In Figure 2.8,
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we show the measurement data of three gravitational avalanches published by Sovilla et al.

(2010) represented by the gray squares. In these measured warm dense avalanches, velocity

ranges from 1m/s to 8m/s. The simulated pressure is colored according to the cohesive

strength and has different markers for varying velocity. The temporal pressure fluctuations

are illustrated by the error bars in panel a, and are separately plotted as a function of the flow

height in Figure 2.8 b for all simulations of panel a.
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Figure 2.8 – Panel a shows the simulated (colored symbols) and measured (gray squares, from
Sovilla et al. (2010)) pressure of gravitational avalanches on the VdlS pylon. Panel b shows the
pressure fluctuations alone for the same avalanche and simulation data as in panel a.

We find in Figure 2.8 a that cohesive strengths in the range of 0.5 kPa−7.5kPa fit the measure-

ment data well for the velocity range 2−8m/s. The different symbols indicating velocity in

Figure 2.8 a show that avalanche speed has very little influence on the pressure. In contrast, it

is apparent from the colors, that flows with less cohesion exert lower pressures than flows with

elevated cohesion.

Already in Figure 2.5, we observed that pressure fluctuations are larger in flows with higher

cohesion. This trend is clearly confirmed by Figure 2.8 b. Similar to the measured fluctuations,

fluctuations in the simulations also increase with increasing flow depth as well. Although

Figure 2.8 b shows good overall agreement between measurements and simulations, the sim-

ulated fluctuations are greater than those from measurements at the flow free surface and

increase less deeper within the avalanche. Similarly to the pressure itself, fluctuations are

smaller and larger in simulations with little and high cohesion, respectively.
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2.4 Discussion

2.4.1 Modelling avalanche–obstacle interaction with DEM

In section 2.2, we describe our newly developed DEM model to study the interaction between

avalanches and structures. By comparing simulated pressure profiles and pressure profile

from field measurements, we show that by treating avalanches as granular flows and ap-

plying the Discrete Element Method, the numerical model is able to reproduce flow-depth

and velocity squared proportional pressure profiles as well as temporal pressure fluctuations.

Furthermore, the simulated pressure values are in the same order as measured values over a

wide range of avalanche velocity (Figure 2.3). Particularly at velocities lower than 5 m/s the

simulated impact pressure values agree well with measurements from avalanches # 6236 and

# 7226. Only at higher velocities we observe a significant difference between the scattering

of the simulated and measured impact pressure. This is probably because we only vary few

parameters (Table 2.1) in our parametric study.

Further limitations of the presented model become apparent due to the differences in pres-

sures and pressure fluctuations between simulations and measurements (Figure 2.2 a, b and

2.8). Firstly, the current parallel-bond contact model does not allow for plastic compaction

of the granular material. We assume that compaction influences not only pressure at the

bottom of the avalanche flow, due to the weight of the snow above, but also across the whole

flow height where the snow impacts the obstacle (Gauer and Jóhannesson, 2009). Secondly,

variation in the radii of particles is small, whereas in natural avalanches, particles are typically

larger at the surface of the flow due to particle segregation, which may affect the pressure

distribution (Kern, 2000).

To obtain a broad understanding of the influence of cohesion in various avalanche scenar-

ios we choose a large range of cohesion (0.0kPa≤σcoh ≤ 20.0kPa) values and apply it to the

whole range of velocities (Table 2.1). We put these cohesive values into perspective by back

calculating the cohesion range from four avalanche measurements. From the calculations and

comparisons in sections 2.3.1 and 2.3.4, the measurements of these slow avalanches are found

to correspond to cohesion values of 0.5kPa≤σcoh ≤ 15.6kPa in the simulations. Although the

back calculated cohesion values agree well with values of tensile strength of snow reported by

other authors (Mellor, 1974; Jamieson and Johnston, 1990; Shapiro et al., 1997; Yamanoi and

Endo, 2002), they are probably only valid for the same choice of the other parameters stated in

Table 2.1.

In this study, we used mechanical snow properties from the literature, which are mostly de-

rived from studies on the mechanics of undisturbed snow. In contrast, avalanche snow may

undergo large deformations and transitions (Steinkogler et al., 2015; Valero et al., 2015). There-

fore, the stated values must be considered with care in the context of this study. Hence, in the

future it would be important to collect data on the mechanical properties of snow granules

from avalanches.

The qualitative trend of all results shown in this study have, however, proven to be very robust

to changes in any of these parameters. For example, if ρp is increased, the absolute pressure
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value increases as well, but pressure proportionality with flow-depth and velocity squared and

the trends shown in sections 2.3.2, 2.3.3 and 2.3.4 remain qualitatively the same. Given this

qualitative robustness of the results to changes in the particle properties and because we use a

standard cohesive contact model as well as a generic model setup, we believe that the physical

understanding gained in this study may also be relevant for similar processes, where cohesive

granular flows interact with rigid structures.

2.4.2 Impact pressure contributions at the macro-scale

In the inset of Figure 2.4 a, we visualize and highlight the inertial, frictional and cohesive impact

pressure contributions. The complex interplay between these contributions in avalanche

dynamics are investigated for the first time in this study. It is important to note that all three

contributions are present for the whole range of F r , but with changing importance as a share

of the entire impact pressure.

The inertial contribution is known from other fields (e.g. fluid dynamics, granular flows) and is

proportional to density and velocity squared. This v2 proportionality is confirmed by the slope

of the dashed black line in Figure 2.4 a, which is ∼ 2 for high velocities (v & 20m/s). Hence, we

confirm that avalanche pressure is governed primarily by inertial impact for Froude numbers

close to or greater than 10 (Voellmy, 1955e; Thibert et al., 2008; Faug, 2015).

The frictional contribution is most pronounced at low F r and arises due to the granular nature

of the flow. It is, therefore, also present in cohesionless granular flows (Chehata et al., 2003;

Albert et al., 2001). Thus, even a hypothetical cohesionless avalanche would exert considerably

higher pressures on an obstacle at low F r , compared to the inertial contribution alone.

The cohesive contribution is also highest at low F r and constitutes up to 70% of the entire

impact pressure for the range of cohesion from Table 2.1. If we consider the range of back

calculated cohesion (0.5kPa≤σcoh ≤ 15.6kPa) the largest pressure amplification factor due to

cohesion is 2.1 with respect to the cohesionless case. Furthermore, we show that cohesion is

only relevant for a pressure increase above a certain threshold, where the slopes of the curves

in Figure 2.4 b increase dramatically. The idea of a critical cohesion threshold is also supported

by other studies (Favier et al., 2013; Steinkogler et al., 2015). Most likely, below this threshold

the flow behaves similarly to a cohesionless flow as long as collisional forces are strong enough

to break the cohesive bonds between particles. If the cohesive strength is above this threshold

value, the bonds cannot be broken anymore by the collisional forces. Thus, the flow exhibits a

cohesive behavior (section 2.3.3) and impact pressure is amplified.

Because the cohesion threshold is included in the range of the back calculated cohesion values

we assume that real avalanches are most likely subject to this transition between cohesive and

nearly cohesionless flow behavior. Similarly to the sharp transition of granulation behavior at

the threshold temperature −1◦C reported by Steinkogler et al. (2015), we demonstrate that

also here small changes in cohesion around the cohesion threshold, above which pressure is

amplified, may lead to substantial changes in pressure.

We also observe that the cohesion threshold varies with F r and assume that this is due to
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the competing effect of cohesive and inertial forces in the snow. We take this into account

by defining the Bond to Froude ratio qBo,F r . Moreover, we decouple the cohesive pressure

contribution from the frictional and inertial contribution by normalizing the impact pressure

of a cohesive flow with the cohesionless pressure. The collapse of the data from Figure 2.4 b

onto a single curve in Figure 2.4 c shows that we find a scaling for the impact pressure of

a cohesive granular as a function of the cohesionless pressure as well as Bo and F r . This

scaling allows us to estimate the impact pressure of a cohesive granular flow by calculating the

pressure of cohesionless flow and multiplying by the factor given in the curve in Figure 2.4 c.

This is expedient because the problem of cohesionless granular flow impacting an obstacle

has been studied in the past (e.g. Albert et al., 2001).

2.4.3 Micro-scale processes of impact pressure build-up

In this study, we confirm the existence of the mobilized domain postulated by Faug (2015),

even in cohesionless granular flows. Hence, the mobilized domain owes its presence to the

granular nature and the force chains in the granular flow, rather than the presence of cohesion.

Consequently, the mobilized domain in cohesionless flows is most likely the origin of the

frictional pressure contribution (yellow area in inset of Figure 2.4 a).

Our results show that the shape of the mobilized domain can be described using the Froude

number only. For low F r , the domain has an approximately circular shape and is located

mainly upstream of the obstacle (Figure 2.6 b). If the Froude number is increased, the mobi-

lized domain is “pushed” gradually downstream by the flow. For the highest Froude numbers,

the mobilized domain has the shape of a bow shock (Figure 2.6 c).

Here, we use the standoff distance (section 2.3.3) to characterize the extent of the mobilized

domain. Figure 2.6 d shows that for increasing F r , the standoff distance decreases dramatically

from a maximum of ∼ 2.0m in the range of F r < 5, and then levels out at around 1m for F r > 5.

This result agrees qualitatively with the findings of Cui and Gray (2013) and Faug et al. (2002)

on the standoff distance of granular bow shocks and size of mobilized domains, respectively.

Interestingly, a similar dependency is found experimentally between the drag coefficient of a

wall and F r in a mud flow by Tiberghien et al. (2007), as well as for the hydrodynamic impact

pressure of debris flows and F r by Proske et al. (2011). Quantitatively, however, the maximum

standoff distance in all simulations is considerably smaller than the 3.5m−7.0m estimated by

Sovilla et al. (2016) using the theory of Faug (2015) for the same structure. Furthermore, it is

important to bear in mind that the size of the mobilized domain and therefore the standoff

distance probably differs substantially for other geometries.

We also show that cohesion neither influences the size, nor shape of the mobilized domain,

but changes the level of the contact forces inside the domain. As a general rule, we observe

that the median contact forces increase with increasing cohesion. Our results confirm the

observations of Favier et al. (2013), who found that cohesion increase leads to a densification

of the contact network and to an increase in the temporal contact persistency. Figure 2.7 d

shows that the dependency of the median contact force and cohesion is not linear. Indeed,

the median of the contact forces are almost constant for low Bond numbers but increase
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sharply if a particular Bo is exceeded. The resemblance of Figure 2.4 b to Figure 2.7 d clearly

indicates that the pressure increase due to cohesion at the macro-scale is directly linked to the

intensified contact forces at the micro-scale.

While further proof is needed, we assume that the frictional and cohesive contributions ob-

served at the macro-scale can be linked to processes at the particle scale. The frictional

contribution arises due to frictional and collisional processes between particles, which causes

the mobilised domain to form around a structure due to jamming or building of force chains.

Thereby, the force of the incoming flow probably acts on the larger apparent surface of the

obstacle, which is the outline of the mobilized domain, and it is transmitted and concentrated

at the obstacle surface through the force chains. By increasing the cohesion between particles,

the force transmission from the apparent surface to the obstacle is enhanced, and results in

higher pressure on the obstacle surface.

2.5 Conclusions

In this study we present a newly developed DEM model to investigate the interaction between

dense snow avalanches and obstacles. We show that the model is able to reproduce the

pressure profiles and the range of temporal pressure fluctuations exerted by avalanches on

the VdlS pylon for a wide range of Froude numbers and cohesion values. This indicates that

approximating avalanches as granular flows and applying DEM allows us to capture the most

important physical processes involved in avalanche–obstacle interaction.

We also identify, however, some limitations of the model. Firstly, the contact model does not

allow for compaction of snow, and particle segregation cannot occur because the particles

are not flowing freely. Secondly, particle properties are estimated from values found in the

literature, which are based on the mechanical behaviour of undisturbed snow samples. Hence,

to obtain relevant results in future investigations on the mechanical properties and contact

behavior of snow avalanche granules will be needed.

In our study we identify three pressure contributions, which are of varying importance depend-

ing on avalanche speed. The inertial contribution, which is proportional to velocity squared

and density, is most important at high avalanche velocities. The frictional contribution arises

due to the granular nature of the flow and is therefore inherently present in cohesionless flows.

Hence, depending on the granulometry, the impact pressure of slow avalanches is increased by

this frictional contribution even without the presence of cohesion, such as in cold avalanches.

In agreement with previous studies, we find growing evidence that the formation of force

chains and the existence of a mobilized domain around the structure in cohesionless flows are

factors leading to elevated pressures at low F r compared to the impact pressure in Newtonian

fluids (Sovilla et al., 2010; Favier et al., 2013; Faug, 2015). The shape of this mobilized domain

smoothly changes from a nearly circular shape upstream of the obstacle for low F r , into a bow

shock-like shape for high F r .

The cohesive contribution increases the impact pressure of a cohesionless flow by a maximum

factor of 2.1 if a critical cohesion value is exceeded, such as in warm avalanches. We find that
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this increase of impact pressure is caused by the amplification of contact forces within the

entire cohesive flow, but especially within the boundaries of the mobilized domain. Surpris-

ingly, the shape and size of the domain are barely influenced by cohesion as assumed in other

studies (Faug, 2015; Rognon et al., 2008b).

Furthermore, we find a scaling relating the pressure of cohesive and cohesionless flows. This

allows us to reduce the problem of calculating the pressure of a cohesive granular flow, to

calculating the pressure of a cohesionless flow, which has been investigated in the past (Albert

et al., 2001; Calvetti et al., 2017; Albaba et al., 2015; Moriguchi et al., 2009; Chanut et al., 2009).

Thanks to the identification of the three pressure contributions at the macro-scale and the

underlying processes at the particle level, this study contributes to our understanding of the

build-up of impact pressure of cohesive granular flows on narrow structures. Finally, as we

use a standard cohesive bond contact model and the qualitative results are not affected by

changes of the properties of the granular material, we are convinced that this study may not

only be relevant for snow avalanches, but for the interaction of structures and flows of cohesive

granular materials in general.
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a cohesive granular avalanche on an obstacle

3.1 Chapter summary

In this chapter, we want to assess whether the findings of the previous chapter 2 for the VdlS

pylon, also hold for obstacles with other geometries and how the impact pressure depends on

the processes at the particle scale in the vicinity around the obstacles. Hence, we investigate

in more detail the origin of the force transmitted from the flow to the obstacle and what role

the mobilized domain (MD) plays in the processes of pressure building up on the obstacle

in subcritical avalanche flows. To achieve this, we simulate granular flows interacting with

static obstacles with rectangular, circular and triangular cross-sections of widths between

0.24m and 6.0m using DEM and analyze the properties of the granular material inside the MD.

Because in subcritical flows the impact pressure is independent of the velocity, we arbitrarily

select a flow velocity of v = 3m/s corresponding to F r = 0.61. In order to assess the influence

of the cohesion on the impact pressure, we simulate a cohesive and cohesionless scenario for

all combinations of obstacle widths and cross-sections. As compressive stresses may play an

important role for the impact pressure (Chehata et al., 2003), we perform axial compression

test with the same cohesionless and cohesive granular material to assess how the compressed

material state in the MD is linked to the stress inside the material and on the obstacle.

Our results show that the impact pressure decreases non-linearly with increasing width re-

gardless of the obstacle geometry. While the MD size is mostly proportional to the obstacle

width, the pressure decrease for increasing width originates from the jammed material inside

the MD. Thus, we provide evidence that the compression inside the MD governs the pressure

build-up for cohesionless subcritical granular flows. In the cohesive case, we show that the

enhanced stress transmission and increased compression of the material inside the MD causes

the pressure increase compared to the cohesionless case. Finally, considering an inertial and a

gravitational contribution, we are able to calculate the impact pressure based on the properties

of the MD.

3.2 Materials and Methods

In this section we describe the methods and parameters used to simulate the interaction of

granular flows and obstacles of various geometries and sizes. First, we present in detail the

numerical setup and the simulation procedure. Second, we present the obstacle geometries for

which we simulate the interaction with the granular flow. Third, we define the contact model,

as well as the material and flow properties of the granular material used in our study. Fourth,

we present axial compression tests showing how this material behaves under compressive

loading. Finally, we present how we can distinguish the domain where the granular material

flows freely from the domain where the flow is affected by the presence of the obstacle.
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3.2.1 Simulation setup and procedure

The present model is implemented in the PFC Discrete Element Method (DEM) software

from Itasca (Minneapolis, MN, USA), which is based on the soft-contact algorithm for the

interaction of discrete spherical particles (Cundall and Strack, 1979).

In this study, we simulate granular flows with and without cohesion (section 3.2.3) interacting

with obstacles of different geometries and sizes (section 3.2.2). As input for the simulation

we want to impose the same boundary velocity of the granular material independently of

the properties of the granular material and the obstacle geometry. Hence, we only simulate

an isolated volume of granular material around an obstacle and impose the motion of the

granular material at the up- and downstream boundaries. In the streamwise x direction the

granular material is confined between either fixed particles or boundary walls, as shown

in Figure 3.1. In the simulations with obstacle widths w ≤ 1.0 m, we use a domain length

of Dx = 11 m in the x direction. For wider obstacles we use Dx = 22 m. In the y direction

transverse to the flow, the domain is limited by a periodic boundary condition and has a width

of D y = 28 m. We check that these domain sizes are sufficient to avoid strong force chains, and

thus the MD originating from the obstacle, reaching the domain boundaries.

In the vertical, z direction the domain is Dz = 28 m tall. Because the granular material is

subjected to gravity acting in the −z direction, there is only a bottom boundary wall to confine

the particles in the vertical direction.

When the flow first impacts the obstacle at the beginning of a simulation, the flowing material

has yet to form the MD. Hence, to investigate how the impact pressure on an obstacle is

physically linked to the flow around it, we need to obtain a continuous flow with a MD around

the obstacle. In order to achieve this while minimizing the computational effort, we split the

simulation procedure into two phases which we describe below. The first and the second

phase are shown schematically in the upper and the lower half of Figure 3.1, respectively. While

the particles can flow around the obstacle in our 3D setup, Figure 3.1 shows in sectional a view

in the x-z plane in the middle of the flow domain.
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Figure 3.1 – Simulation procedure in two phases. First phase (top) with continuous particle
generation and deletion at the boundaries. Second phase (bottom) where the flow is imposed
by the boundary walls.

In the first phase we establish the flow of the granular material around the obstacle. In the be-

ginning all particles are assigned an initial or boundary velocity in the streamwise x direction

(particles with a red outline in Figure 3.1). During a simulation period ∆t1 the velocity of the

particles at the up- and downstream boundary (particles with a red outline and fill) is fixed

at the boundary velocity in the x direction, and at zero in the y and z directions. The rest of

the particles are free to move according to the interaction with other particles or the obstacle

(particles with blue fill). Hence, the boundary particles push the freely moving particles in the

flow direction past the obstacle.

After the simulation period ∆t1 the simulation is paused and the fixed velocity condition is

released for all particles. Particles beyond the downstream boundary are deleted (red outline).

At the upstream boundary the domain is filled with newly generated particles (green outline).

The newly generated particles are again assigned the initial velocity. Again, the velocities of the

particles at the up- and downstream boundaries are fixed (particles with red outline and fill),

while the particles further from the boundary move freely. Subsequently another period ∆t1

is simulated. To develop the MD around the obstacle, we repeat this procedure three times.

However, the generation of new particles in the first phase causes fluctuations in the system.

Because we want to obtain a continuous force on the obstacle, we simulate a second phase

where the granular material is moving continuously.

In the second phase we implement boundary walls up- and downstream of the granular

material to push it continuously past the obstacle. In this configuration the fixed boundary

velocity is only prescribed at the boundary walls (orange walls in Figure 3.1), while all particles

are moving completely freely (particles with blue outline and fill). To avoid a situation where
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the upstream boundary influences the mobilized domain around the obstacle, we stop the

simulation after ∆t2 when the boundary walls have travelled half the domain length Dx in the

streamwise direction.

While the impact pressures shown in Figure 3.5 are calculated as the mean value of the contin-

uous pressure on the obstacle during the second phase (Supplementary Material S.1), for the

results in Figure 3.7 we consider the instantaneous impact pressure values in this phase. In

Figures 3.8 and 3.9, we report the instantaneous impact pressure values of the last time step of

the simulations, as we relate the pressure to the MD properties extracted at this last time step

(section 3.2.5).

In chapter 2 we implemented a similar setup consisting only of the second simulation phase

described above. There we showed that the presented numerical procedure is able to repro-

duce impact pressure of snow avalanches measured in full-scale field experiments.

3.2.2 Obstacle geometries

To study the influence of the obstacle geometry on the MD and the impact pressure, we

implement prism shaped obstacles with rectangular, circular and triangular cross-sections,

as shown in Figure 3.2. In all simulations the obstacles are fixed in place and are rigid, conse-

quentially not deforming under the experienced forces. All of these prismatic obstacles have a

height of 5.7 m, which prevents the granular mass from overflowing the obstacle. We consider

obstacles with widths w of 0.24 m, 0.6 m, 1.0 m, 3.0 m and 6.0 m. We select these widths based

on the dimensions of already existing obstacles measuring the impact pressure of avalanches

in field experiments (Sovilla et al., 2008b), which are 0.24 m, 0.6 m and 1 m wide. In our setup

the obstacle widths are limited by our current computational resources, which do not allow

the simulation of larger domains needed to avoid boundary effects for obstacles w > 6 m.

For the rectangular cross-sections, two sides are normal and two sides are parallel to the flow

direction. The sides normal to the flow are of varying width w , while the sides parallel to the

flow are 1.6 m in all simulations. A comparison of two simulations with obstacle lengths of

0.1 m and 1.6 m in the streamwise direction shows that the pressure only deviates by 0.3 %

between the two cases. Hence, we expect that using a length of 1.6 m for all rectangular

obstacles does not affect the results considerably.

For the circular cross-sections the width w corresponds to the diameter. For the triangu-

lar cross-sections we define the angle of the wedge facing the flow as α = 60◦. Hence, the

width w of the triangular obstacles is given by the length of the downstream side of the triangle.
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Figure 3.2 – Prismatic obstacles with a rectangular (a), circular (b) or triangular cross-sections
(c). The top row shows obstacles with w = 1 m interacting with the granular flow. The bottom
row shows the cross-sections with the most important geometric measurements.

The force exerted by the granular flow on the obstacle is calculated by summing the contact

forces of all particles in contact with a surface. Because we simulate symmetrical obstacles

and flow conditions, the force Fy in the y direction on the obstacles is < 1% of the total force in

all simulations. The force Fz in the vertical direction is < 5% of the total force in all simulations.

We therefore neglect Fy and Fz for the analysis of this study and only consider the force Fx

exerted on the obstacle in the streamwise x direction.

To obtain a measure of the force exerted by the granular flow that is independent from the

surface area and the geometry, we define the projected impact pressure px . It is equal to

the impact force in flow direction Fx divided by the obstacle’s area Ay z = w h facing the flow

projected on the y − z plane normal to the flow direction px = Fx /Ay z .

3.2.3 Granular flow and material properties

The formulation of the Discrete Element Method and the model setup we use for this study

are generic. If suitable particle and contact properties are chosen, the model can be used

to simulate the interaction of any cohesive material and obstacle. However, in the context

of snow avalanches, we choose suitable material properties for avalanche modeling. The

most important contact and particle properties are summarized in Table 3.1. A more in-depth

description of the parameter choices and the contact model can be found in chapter 2 and its

supplementary material.

In our model all particles are subjected to a gravitational acceleration of g = 9.81 m/s2 in the

negative z direction. The mean diameter dp of the particles is 0.08 m with a polydispersity of
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20 % to avoid crystallization. The particles have a density of ρp = 500 kg/m3 and a restitution

coefficient of er = 0.05.

In DEM the material behavior is governed not only by the particle properties but also by the

contact model, which is applied whenever particles interact. To simulate a cohesive granular

material we use the parallel-bond model, originally developed for rock modeling (Potyondy

and Cundall, 2004). This contact model has also proven to be suitable to simulate other

cohesive geomaterials, such as sand (Butlanska et al., 2009), debris (Kang and Chan, 2018) and

snow (Gaume et al., 2015b; Steinkogler et al., 2015; Bobillier et al., 2020).

The contact model consists of a linear and a cohesive component in parallel. The linear

viscoelastic component consists of a spring and a dashpot in the normal direction and a spring

and a coulomb friction limit in the tangential direction. The cohesive component is a bond

connecting the particles in parallel to the linear component. The bond acts mechanically like

a beam and can sustain tensile, bending, shear and torsional forces. In our simulations a new

bond is formed whenever two unbonded particles make contact.

In order to assess the influence of cohesion in the pressure build-up processes, we perform

simulations of a cohesive and a cohesionless scenario. In the cohesionless and the cohesive

case we implement a cohesive strength of σcoh = 0.0 kN/m2 and σcoh = 10.0 kN/m2, respec-

tively. This value corresponds to the tensile and pure shear strength of the cohesive bond.

Table 3.1 – Granular material properties (a) and simulation setup parameters (b)

Parameter Symbol Unit Value

a) Particle and contact properties

Particle density ρp kg/m3 500

Particle diameter dp m 0.08±0.008

Young’s modulus E Pa 105

Friction coefficient µ − 0.5

Restitution coefficient er − 0.05

Cohesive strength σcoh N/m2 0.0,104

b) Simulation setup parameters

Domain length Dx m 11,22

Domain width D y m 28

Domain height Dz m 28

Flow velocity v m/s 3

Flow height h m 2.5

Obstacle width w m 0.24−6.0

3.2.4 Compression tests of the granular material

One of this study’s main objectives is to physically link the properties of the MD to the impact

pressure on the obstacle. Hence, we need to bridge the gap between the relevant processes at
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the micro scale of the particles, such as the force chains and particle densification (Geng and

Behringer, 2005; Favier et al., 2013), and the forces on the obstacle at the macroscopic scale in

which we are interested. To achieve this, in this section we characterize the behavior of the

granular material presented in the previous section under compressive loading by performing

displacement-controlled axial compression tests.

We visualize the setup of the compression tests in Figure 3.3 a. For the compression test we use

a material sample with a rectangular cross-section of equal side length of s0 = 6.0 m, which

corresponds to the maximum considered obstacle width w . A sensitivity analysis (Supple-

mentary Material S.2) on the sample size shows that the compression tests’ results converge

towards the results obtained with s0 = 6.0 m.

In the normal direction the granular material is compressed between a wall and a collection of

rigidly connected particles, referred to as a clump. In the lateral directions the tested material

sample is confined by periodic boundaries. We perform the compression tests in a zero gravity

environment.

On the macroscopic scale the compressive strain εn = (l0 − l )/l0 evokes a stress σn in the

compression direction on the boundary wall, on the boundary clump and inside the granular

material.

At the micro scale the rigid particles in contact typically interpenetrate each other due to

compressive loading. The particle interpenetration δ visualized in Figure 3.3 b evokes a force

at the contact according to the contact law. In the following we express the compression of the

granular material at the micro scale as the particle interpenetration normalized by the particle

radius ∆= δ/rp .

Figure 3.3 c shows the normal stress σn inside the granular material, on the clump and on the

wall as a function of the particle interpenetration in the cohesionless case. Figure 3.3 d shows a

comparison of σn as a function of ∆ in the cohesionless and the cohesive case. To distinguish

between the test with the cohesive and cohesionless granular material, we use an asterisk for

the quantities in the cohesive scenario, e.g. σ∗
n .
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Figure 3.3 – Panel a shows the setup of the compression test, where the material (blue particles
and contact network) is compressed between a wall (red) at the bottom and a clump (gray) at
the top. For better visibility the particles are not to scale with the sample size. Panel b shows
two spherical particles with radius rp and interpenetration δ. Panel c shows a comparison
between σn measured at the wall (red), at the clump (gray) and inside the granular material
(blue), as well as the resulting∆ (green, right y-axis) in the cohesionless case as a function of the
strain εn . Panel d shows the dependency between the normal stressσn in the granular material
and the relative interpenetration ∆ (bottom x-axis), as well as the macroscopic strain εn (top
x-axis) for the cohesionless (σcoh = 0.0 kN/m2, blue) and the cohesive (σcoh = 10.0 kN/m2,
red) case.

Panel c in Figure 3.3 shows that the normal stress inside the granular material increases mono-

tonically with increasing compression of the granular material. The concave shape of the

εn-σn curve indicates that the normal stress σn in the material increases at a higher rate than

the interpenetration ∆ for large compressive strains. The stresses inside the granular material,

on the wall and on the clump are almost identical. Hence, in the following sections we always

refer to the normal stress σn inside the granular material, which also acts on an obstacle wall

in the case where there is one.

Panel d in Figure 3.3 reveals that the cohesive granular material transmits a ∼ 1.5 times greater

normal stress σ∗
n than the cohesionless material σn for the same interpenetration ∆. We use

the results of these compression tests to relate the particle interpenetration ∆ to the internal

stress σn in the material. In the following sections we use the notation σn (∆) when relating

the two quantities on the basis of the graphs in Figure 3.3.

3.2.5 Definition of the mobilized domain

When a flow interacts with an obstacle we can generally distinguish between two domains.

One, at a distance to the obstacle where the flow is not influenced, and another, in the vicinity

of the obstacle where the flow is affected by the presence of the obstacle (Haefeli, 1948). For
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the latter we use the term mobilized domain (MD).

We systematically identify the MD by analyzing the normal contact forces Fn between the

particles. Because the contacts between the particles are at random locations in the flow field,

we discretize the flow domain with a regular grid to obtain a definition of the MD, which is con-

sistent for all simulations. We use the average of the normal contact forces Fn located inside

the grid cell as the representative value for the whole cell. A grid cell typically contains more

than 15 contacts and is 0.1 m, 0.1 m and 0.3 m in size in the x, y and z direction, respectively.

We choose the normal component of the contact force because the impact pressure on the

obstacle physically originates from the force chains (Albert et al., 1999). Thus, we consider the

normal component to be the most relevant for the transmission of the pressure to the obstacle.

Indeed, the analysis can also be performed using the shear component, leading to similar

results (Seguin et al., 2016). Finally, we obtain the threshold value by defining a fixed percentile

value of the averaged normal contact forces Fn in the discretized grid. More in-depth details

of how we define the threshold value are provided in Supplementary Material S.3.

Once the threshold value is obtained, we can define flow regions. The region where Fn is

greater than the threshold is considered to be within the MD. Anywhere that Fn is lower is out-

side of the MD. Therefore, for very low percentile values the whole flow domain is considered

the MD, while for very high percentile values the MD vanishes altogether. Hence, a physically

relevant threshold value must be in between the extreme values.

For the present study we choose the 80th percentile of the normal contact forces as the thresh-

old value. A sensitivity analysis is provided in Supplementary Material S.4 of this article. The

analysis reveals that our results only weakly depend on the choice of the threshold in the

range of the 70th to 90th percentile. Moreover, in Supplementary Material S.4 we visualize the

change in MD for a sample simulation for the 70th, 80th and 90th percentile threshold values.

In Figure 3.4 we show a horizontal section through the flow visualizing the definition of the

MD schematically (panel a) and for the example of a 3 m-wide rectangular obstacle (panel

b). For our analysis we use four quantities of the MD: (1) the mean streamwise velocity vMD

inside the MD, (2) the volume VMD of the MD, (3) the length LMD of the MD extent in the

streamwise direction, and (4) the averaged interpenetration ∆MD of the particles inside the

MD.
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Figure 3.4 – Panel a shows a schematic representation of particles (blue) interacting with an
obstacle (hatched black, not to scale) and the MD (red dashed outline and shading). The red
arrow shows the length LMD of the MD extent in the streamwise direction. Panel b shows
the MD (red dashed outline) extracted from a simulation of an obstacle with a rectangular
cross-section of w = 3 m. The coloring of the field scales with the normal contact force Fn ,
which we use to define the MD.

As mentioned in section 3.2.1, we only analyze MD properties at the last time step of the

simulation. This is necessary because the vast number of particles and contacts in the system

lead to large amounts of data, which cannot be stored for many time steps for all simulations.

In Figures 3.8 and 3.9, where we link the impact pressure to the MD properties, we consistently

report the impact pressure value of the last time step of the simulation.

3.3 Results

In the following section we first show how the impact pressure depends on the obstacle width

and geometry, as well as on the cohesion of the granular material. In the same section we also

compare the extent and the properties of the MD in cohesionless flows for different obstacle

geometries. Thereafter, we show how cohesion affects the granular material in the MD and

how this is linked to the change in impact pressure. Finally, we estimate the impact pressure

exerted by the cohesionless flow on the obstacles based on the physical properties of the MD

and compare the result with the simulated impact pressure.

3.3.1 Influence of the obstacle width and geometry on the impact pressure and
the MD

As described in section 3.2.2, we study the pressure px contributing to the impact force in the

flow direction. Figure 3.5 shows px as a function of the obstacle width w for the obstacles
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with a rectangular, circular or triangular cross-section. On the top x-axis we indicate the ratio

of obstacle width w to particle diameter dp . This ratio may be critical for the interaction

processes when the size of the particle is of the same order as the width of the obstacle (Takada

and Hayakawa, 2020; Kumar et al., 2017).
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Figure 3.5 – Panels a, b and c show the impact pressure on obstacles of varying widths w
with rectangular, circular and triangular cross-sections, respectively. The blue and red curves
show the impact pressure exerted by a cohesionless and a cohesive flow, respectively. The top
x-axis shows the width of the obstacle relative to the particle diameter w/dp . The error bars
indicate the standard deviation from the mean value of the pressure. Panels d, e and f show
the impact pressure ratio of cohesive and cohesionless flows on obstacles of varying widths w
with rectangular, circular and triangular cross-sections, respectively.

In Figure 3.5, we observe that the impact pressure px on all geometries decreases in a non-

linear fashion for increasing obstacle width w . The impact pressure is highest on the obstacles

with the rectangular and circular cross-sections, while it is significantly lower on the triangular

obstacle. In the cohesionless cases the maximum pressure on the rectangular and cylindrical

obstacles is ∼ 1.3 times higher than the pressure on the triangular obstacle. The average impact

pressure exerted by the v = 3 m/s and h = 2.5 m cohesionless flow on all considered obstacle

geometries lies between 15 kPa and 37 kPa. In the cohesive case the pressures on the narrowest

w = 0.24 m and the widest w = 6 m obstacle vary considerably: 61−137 kPa, 44−116 kPa and

26−47 kPa for the rectangular, circular and triangular cross-sections, respectively. Hence, as

visualized in Figure 3.5 d–f for our cohesive scenario where σcoh = 10.0 kN/m2, the impact

pressure is approximately 3.7, 3.1 and 1.7 times higher than in the cohesionless case for the

rectangular, circular and triangular cross-sections, respectively. Similarly, the maximum pres-
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sure on the rectangular and cylindrical obstacles is ∼ 2.5 times higher than the pressure on

the triangular obstacle, which is higher than the pressure differences between the different

geometries in the cohesionless case. It is important to note that these are approximate average

values which vary for the different widths, as Figure 3.5 clearly shows.

In Figure 3.6 a–f we visualize the mobilized domains in the cohesionless case for all geometries

by shadowing the region outside the MD with a semi-transparent overlay. The white area

trailing the black and white hatched obstacle cross-section is a particle-free region caused by

the detachment of the flow from the obstacle contour. The colored plots show the velocity

field (upper half of plots) and the contact forces (lower half) in the vicinity of the obstacle in

a horizontal section at mid-flow depth. Panels a–f therefore show that the MD has a distinct

shape for all three geometries. The size of the MD scales approximately proportionately to the

width of the obstacle. Moreover, in Figure 3.6 a–f we demonstrate that the extent of the zone

influenced by the obstacle is mostly consistent between the contact forces and the velocity

field.
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Figure 3.6 – Analysis of the velocity field, the contact forces and the MD in cohesionless flows
around the obstacle. The left, middle and right columns show the results for the rectangular,
circular and triangular cross-sections (hatched areas), respectively. Panels a–c and d–f show
obstacles with width w = 1 m and w = 3 m, respectively. Panels a–f show the velocity field in
the upper half and the contact forces in the lower half. The region outside the MD is shadowed
with a semi-transparent overlay. Panels g–i show the physical properties ∆MD (filled symbols,
left y-axis) and VMD /LMD (open symbols, right y-axis) of the MD for different obstacle widths
w .
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In the panels g–i of Figure 3.6, we show how the physical parameters ∆MD and VMD /LMD of

the MD depend on the obstacle width w . We use these quantities in section 3.3.3 to estimate

the impact pressure on the obstacle in the cohesionless case.

Figure 3.6 g–i shows that the average particle interpenetration ∆MD inside the MD decreases

with increasing obstacle width w , similarly to the impact pressure in Figure 3.5. Because ∆MD

reflects the interpenetration of the particles at the micro scale, we use it as an indicator of the

compression of the material inside the MD. ∆MD ranges from 0.15 to 0.26 for the rectangular

and cylindrical obstacles and from 0.15 to 0.21 for the triangular obstacle. Hence, similar to

px , ∆MD is mostly highest for the rectangular obstacles, followed by the cylindrical obstacles,

and is lowest for the triangular obstacles.

The volume-to-length ratio VMD /LMD is a measure of the size of the MD and how far upstream

the MD extends from the obstacle. VMD /LMD increases almost linearly with obstacle width

and levels off slightly for the obstacles with w ≥ 3 m. For the 6 m-wide cylindrical and

triangular obstacles VMD /LMD is considerably lower than the linear trend. The deviation from

the linear trend may be a consequence of the MD occupying a large portion of the simulation

domain for the widest obstacles with w = 6 m.

To assess whether the relationship between the MD properties and px observed in Figure 3.6 g–

i for the last simulation time step also holds on a temporal scale, in Figure 3.7 we compare the

temporal evolution of VMD /LMD and ∆MD with px . Figure 3.7 shows the data for the examples

of obstacles with w = 1 m impacted by cohesionless flows. For these plots we select the same

time window as used to average the impact pressure for the data shown in Figure 3.5.
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Figure 3.7 – Comparison between time series of VMD /LMD ,∆MD (panels a–c) and px (panels d–
f). The first, second and third columns show the data for the obstacles with rectangular,
circular and triangular cross-sections, respectively.
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While all quantities visualized in Figure 3.7 exhibit temporal fluctuations, we can identify a

striking similarity between the qualitative temporal evolution of ∆MD (blue curves) in the

upper plots and the black curves for px in the lower plots. VMD /LMD , which we interpret as a

measure of the spatial extent of the MD, also shows mostly good agreement with px , except in

Figure 3.7 c and f. There the qualitative behavior of ∆MD and VMD /LMD are almost inverted,

indicating—in agreement with Figure 3.6 g–i—that VMD /LMD probably plays a subordinate

role in the impact pressure compared with ∆MD .

3.3.2 Influence of cohesion on the impact pressure and the MD

In this section we investigate the difference between the MD in the cohesionless

(σcoh = 0.0 kN/m2) and the cohesive (σcoh = 10.0 kN/m2) case in order to understand the

pressure difference observed between the two cases. In order to investigate the origin of

the impact pressure increase due to cohesion, here we consider ∆MD to reflect the material

compression inside the MD.

Figure 3.8 a–c shows that the relative interpenetrations ∆MD in the cohesive case decrease for

obstacles of increasing width, similarly to the cohesionless case already shown in Figure 3.6 g–i.

The difference in ∆MD between the cohesionless and the cohesive case is ∼ 4 times larger for

the rectangular and cylindrical obstacles than for the triangular obstacles and is larger for

narrow obstacles w ≤ 1 m than for wider obstacles.

In order to estimate how much more stress is transmitted by the cohesive granular material

compared with the cohesionless flow, we convert the interpenetration in the MD to normal

stresses σ∗
n(∆∗

MD ) and σn(∆MD ) based on the results of the compression tests in Figure 3.3 d.

The panels d–f in Figure 3.8 show the ratio of the normal stresses σ∗
n(∆∗

MD )/σn(∆MD ). This

ratio reflects the stress level inside the MD in the cohesive material relative to the cohesionless

case. Whileσ∗
n(∆∗

MD )/σn(∆MD ) shows a decreasing tendency for obstacles of increasing width,

the mean values are 3.5, 3.2 and 2.1 for the rectangular, circular and triangular geometries,

respectively.

To test how the relative change in the normal stress in the MD between the cohesionless and

the cohesive case is related to the difference in impact pressure, we multiply the pressure of

the cohesionless case px by the normal stress ratio σ∗
n(∆∗

MD )/σn(∆MD ). Hence, we calculate

the estimated impact pressure p∗
x,calc of the cohesive scenario according to equation (3.1).

p∗
x,calc = px σ

∗
n(∆∗

MD )/σn(∆MD ) (3.1)

Figure 3.8 g–i shows the estimated impact pressures p∗
x,calc for all obstacle geometries. From

these panels we observe that the stress ratios σ∗
n(∆∗

MD )/σn(∆MD ) agree well with the impact

pressure increase due to cohesion.
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Figure 3.8 – Influence of cohesion on the contact network inside the MD. The open blue
symbols and red filled symbols represent data from the cohesionless and cohesive cases,
respectively. Data for the obstacles with rectangular, circular and triangular cross-sections are
shown in the left, middle and right columns, respectively. All panels show how the respective
quantities vary with the obstacle width w . Panels a–c show the relative particle interpenetra-
tions ∆. Panels d–f show the ratio of the normal stresses in the cohesive and cohesionless case
σ∗

n(∆∗
MD )/σn(∆MD ). Panels g–i show a comparison between the simulated impact pressure

exerted by the cohesive flow and the pressure estimation calculated from the impact pressure
in the cohesionless case multiplied by the normal stress ratio p∗

x,calc = px σ
∗
n(∆∗

MD )/σn(∆MD )
(open red symbols).

3.3.3 Analytical model to quantitatively link the MD properties to the impact pres-
sure

In this section we derive an expression from basic physical concepts to estimate the impact

pressure exerted by cohesionless flows. For this calculation we use properties of the MD from

the simulations to investigate the relevance of the MD for the resulting impact pressure on the

obstacle. Hence, the pressure calculation is not predictive but should highlight the physical

link between the properties of the MD and the impact pressure.

Similarly to in other studies (Faug, 2015; Sovilla et al., 2016), we divide the impact force into
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an inertial Fx,i and a gravitational Fx,g contribution. Hence, the calculated pressure px is the

sum of the two contributions divided by the frontal area Ay z :

px,calc = (Fx,i +Fx,g )/Ay z = px,i +px,g (3.2)

The individual contributions are calculated as follows:

1. Inertial contribution:

Fx,i = 1

2
(v2 − v2

MD )
mMD

LMD
= ρ

2
(v2 − v2

MD )
VMD

LMD
(3.3)

We calculate the inertial contribution based on the change in kinetic energy of the

granular mass mMD = ρVMD , initially travelling at the free flow velocity v , which is

decelerated to the mean velocity of the particles in the MD vMD within the streamwise

extent LMD of the MD, due to the obstacle’s resistance to the flow.

2. Gravitational contribution:

Fx,g = ζ1

2
ρg h2w (3.4)

The gravitational contribution is calculated as a hydrostatic-like force increasing with

the flow depth squared (Albert et al., 1999). The factor ζ=σn(∆MD )/σz reflects the stress

concentration inside the MD due to the densification of the contact network σn(∆MD )

with respect to the hydrostatic stress σz = ρg h.

Figure 3.9 a–c shows a comparison of the impact pressures calculated with equations (3.3) to

(3.4) and the simulated pressures in the cohesionless scenario for all obstacle geometries and

widths. The shaded areas represent the calculated contributions px,g (dark shade of blue) and

px,i (light shade of blue), respectively. The calculated pressure is the sum of the gravitational

and the inertial contribution and is shown by the filled blue symbols.
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Figure 3.9 – The blue symbols in panels a, b and c show the comparison of the calculated
impact pressure according to equations (3.2) to (3.4) with the simulated impact pressure
of a cohesionless flow on obstacles of varying widths w with a rectangular, circular and
triangular cross-sections, respectively. The top x-axis shows the width of the obstacle relative
to the particle diameter w/dp . The dark and light blue shaded areas represent the calculated
gravitational and inertial contributions, respectively.

The calculated impact pressure px,calc shown in Figure 3.9 decreases non-linearly for obstacles

of increasing width. Hence, it agrees well with the qualitative trend of the simulated impact

pressure px,DE M . For all cross-sections the calculation overestimates the simulated impact

pressure for the narrowest (w = 0.24 m) and widest obstacles (w = 6 m). The impact pressure

on the obstacles of intermediate width (0.6 m≤ w ≤ 3 m) is slightly underestimated. For the

rectangular and the cylindrical obstacles px,calc is lower than px,DE M for the narrow obstacles

(w ≤ 1 m), while it is larger for the wide obstacles (w ≥ 3 m). The average relative error between

the calculated and the simulated impact pressure is 7% for all cross-sections.

For all calculations px,g contributes 95% and px,i 5 % to the total impact pressure px,calc . This

highlights that, for the present case where F r = 0.61, both contributions are present and the

gravitational contribution is considerably larger than the inertial contribution. While px,i is

almost constant for all widths and geometries, px,g varies similarly to the simulated impact

pressure px,DE M .

3.4 Discussion

3.4.1 Physical processes governing the flow–obstacle interaction and impact pres-
sure for varying obstacle geometries

The simulated impact pressure shown in section 3.3.1 is in agreement with previous research

showing that the pressure on obstacles offering high resistance to the flow is higher than

for pointed obstacles (Favier et al., 2009b; Albert et al., 2001). In chapter 2, we performed a
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study on the avalanche pressure on a particular geometry of an existing instrumented steel

pylon (Sovilla et al., 2010), and we concluded that the size of the MD and the resulting impact

pressure build-up depends on the obstacle geometry. The evident variation in MD size in

Figure 3.6 and the impact pressure in Figure 3.5 for the differing obstacle geometries and

widths confirms this dependency. The linearly increasing trend of the MD size parameter

VMD /LMD for obstacles with increasing width for w < 6 m is consistent with the result in

Figure 8 a in Faug (2015). Faug reports that a linear increase of the MD’s typical length scale is

a robust feature appearing in a number of experimental and numerical studies on the impact

of granular flows on obstacles.

Interestingly, we find that the average pressure px on the obstacle decreases non-linearly for

obstacles of increasing width w . This phenomenon is known to occur with creeping snow and

granular snow avalanches (Haefeli, 1948; Margreth, 2007). Studies on the relative motion of

intruders in dense granular materials at low F r often report the drag force on the intruder. In

these cases the drag force increases with the size of the intruder (Hilton and Tordesillas, 2013;

Kumar et al., 2017; Panaitescu et al., 2017). However, if the data from these studies is analyzed

with respect to the pressure rather than the force, the trend of decreasing impact pressure for

increasing intruder size is confirmed (Supplementary Material S.5).

A tentative explanation for the decreasing pressure on obstacles of increasing width can be

given for the obstacles with rectangular cross-sections. Figure 3.4 b demonstrates shows that

an arch of strong contact forces forms upstream of the edge facing the flow, especially for wide

obstacles w & 1 m with rectangular cross-sections. Hence, the middle part of the obstacle

is largely sheltered from the impact of the incoming flow by the arch. However, this fails

to explain the decrease in impact pressure on the circular and triangular cross-sections of

increasing width, because the formation of the arch is not evident, e.g. in Figure 3.6 e–f.

More comprehensively, for varying obstacle widths of all cross-sections, the particle interpen-

etrations in MD (Figure 3.6 g–i) and the impact pressure (Figure 3.5) qualitatively show a high

degree of similarity. This suggests that the impact pressure is governed by the compression

state of the granular material inside the MD. In the MD of the narrow obstacles the particles

are jammed closer together than in the MD of the wider obstacles. From the compression test

in Figure 3.3 d we learn that increasing ∆MD leads to an increased stress level in the granular

material, resulting in a higher pressure on the obstacle. In the absence of rigorous evidence, we

speculate that ∆MD is lower for wide obstacles because of the higher shearing of the material,

which is necessary for the particles to travel around the obstacle. This causes higher shear

dilation and leads to a looser packing of the particles in the MD of wide obstacles. This is

consistent with the finding of Seguin et al. (2016), who show that although the material inside

the MD is almost stagnant, zones of high shear and dilation are located in the vicinity of the

upstream boundary of the obstacle.

As shown in Figure 3.6 g–i, we identify the varying degrees of material compression in the MD

∆MD as the predominant origin of the differing impact pressure on the three geometries. Ob-

stacles offering high resistance to the flow, such as the rectangular and circular cross-section

in Figure 3.6 g and h, cause the granular material to jam upstream, which leads to high ∆MD .

Pointed obstacles, such as the triangular cross-section in Figure 3.6 i, tend to deflect the flow-
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ing material without causing particle jamming. This leads to lower ∆MD and consequentially

to lower impact pressure.

Hence, in our results we can consistently correlate ∆MD to the impact pressure on obstacles of

varying geometry and width. This provides further evidence supporting the assumption of

Chehata et al. (2003) that the “granular drag must result from the compressive stresses acting

on the upstream stagnation region”.

As shown in Figures 3.6, 3.8 and 3.9, we are able to show that the instantaneous impact pressure

and MD properties correlate for various obstacle geometries, for cohesive and cohesionless

flows. Figure 3.7 confirms that the impact pressure and MD properties correlate on a temporal

scale as well. Hence, as the flow characteristics of real avalanches and other gravity-driven

granular flows evolve over time, we are confident that the link between the instantaneous MD

properties and impact pressure is still valid for subcritical granular dense flows interacting

with obstacles. When considering applications to structural engineering, note that real-world

scenarios may deviate substantially from the steady subcritical granular dense flow consid-

ered here. Among other things initial impact or large material accumulations upstream of the

obstacles may critically damage the obstacle.

3.4.2 Influence of cohesion on the flow–obstacle interaction processes

The results displayed in Figure 3.5 confirm previous research that a cohesive flowing granular

material exerts significantly more pressure than the same material without cohesion (Favier

et al. (2013) and chapter 2). Indeed, in a previous study we found a scaling (see Supplementary

Material S.6) for the pressure increase due to cohesion, relating the impact pressure increase

to the ratio of F r and the Bond number Bo, where Bo is the cohesive strengthσcoh normalized

by the vertical stress inside the granular material (chapter 2). When evaluating the scaling for

the Froude and Bond numbers in the present study, we calculate a pressure increase factor of

∼ 2.3. Considering that the impact pressure increase due to cohesion may vary as a result of

differing obstacle geometries, this is in the range of impact pressure increase factors of 1.7–3.7,

as observed in Figure 3.5.

In Figure 3.8 a–c, we observe that in the cohesive case the particle interpenetration ∆MD in the

MD is larger than in the cohesionless case. We assume that a higher ∆MD arises because the

cohesive granular material sustains more loading from the upstream flow before rearrange-

ments of the force chains within the granular material allow the particles to flow around the

obstacle. On the particle scale the force chain rearrangement is inhibited by the cohesive

bonds connecting the particles. Similarly to the increase in impact pressure (Figure 3.5) due to

cohesion, we also observe a greater increase in particle interpenetration ∆MD for the rectan-

gular and cylindrical obstacles than for the triangular obstacle.

Using ∆MD and the compression tests (Figure 3.3 d), we calculate the ratio of the stress inside

the granular material in the cohesive and cohesionless cases (Figure 3.8 d–f). Based on the

analysis of the cohesionless flows (section 3.4.1), we suspect that the pressure increase due to

cohesion also originates from the jammed material state inside the MD. Hence, multiplying

this ratio by the impact pressure of the cohesionless scenario according to equation (3.1)
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gives us an estimate of the impact pressure increase due to cohesion. A comparison be-

tween the simulated impact pressure p∗
x and p∗

x,calc in Figure 3.8 g–i shows that the factor

σ∗
n(∆∗

MD )/σn(∆MD ) mostly reproduces the pressure increase due to cohesion for most of the

obstacles of differing widths and geometries. The small deviations between the simulated

and the estimated cohesive impact pressure may be caused by secondary processes which

do not scale proportionally with the width of the obstacle, such as the arch formation for the

rectangular obstacles mentioned in section 3.4.

Nevertheless, the good agreement between p∗
x and p∗

x,calc indicates that the pressure increase

is a direct consequence of the enhanced stress transmission between cohesive particles com-

pared with cohesionless particles.

The fact that σ∗
n(∆∗

MD )/σn(∆MD ) varies for the different geometries highlights that the pres-

sure increase due to cohesion depends not only on cohesion itself, but also on the obstacle

geometry. We conclude that, the force transmission through the cohesive force chains is more

efficient if the cohesion increases and, similar to the cohesionless case, if the flow impacts the

obstacle surface at a right angle.

3.4.3 Analytical model to quantitatively link the MD properties to the impact pres-
sure

In order to establish a quantitative link between the MD and the impact pressure, we estimate

the pressure based on the MD properties using an analytical model. Because estimating the

MD properties is no less complex than determining the impact pressure itself, the model is

descriptive rather than predictive. We model the impact pressure in the cohesionless case

as the sum of an inertial and a gravitational contribution, as suggested by previous studies

(Faug, 2015; Sovilla et al., 2016). The results of section 3.3.3 show that the pressure estimated

with the two contributions (equations (3.2) to (3.4)) mostly reproduces the simulated impact

pressure of the cohesionless scenario. The average relative error of the calculated pressure is

7% compared with the simulated pressure px,DE M . Hence, the qualitative agreement of the

calculated and the simulated impact pressure highlights again that the geometrical properties

of the MD and the physical material properties within the domain govern the pressure on the

obstacle. Furthermore, the agreement also indicates that a model considering an inertial Fx,i

and a gravitational Fx,g contribution is able to capture the main physical processes involved

in the flow–obstacle interaction.

In literature the inertial contribution Fx,i of the drag force is often calculated using the empiri-

cal drag coefficient CD . Previous studies suggest that CD can be divided into a flow regime

and a part that is dependent on structure geometry (Favier et al., 2009b; Wassgren et al., 2003;

Thibert et al., 2008). In equation (3.3) it is the material’s deceleration v2 −v2
MD that accounts

for the influence of geometry. For example, due to its shape with the wedge facing the flow,

the flowing material is more deflected than decelerated in the case of the triangular obstacle

compared with e.g. the rectangular cross-sections. This leads to a smaller velocity difference

v2 − v2
MD for the triangular cross-section. This trend is analogous to the CD values usually
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reported in the literature, which are higher for the rectangular cross-section than for the

triangular cross-section (Favier et al., 2009a; Sauermoser et al., 2012).

The ratio of the MD volume and length, VMD /LMD , has the dimensions of an area and ac-

counts for the size and the shape of the MD. In chapter 2 we show that the shape and size of

the MD is mainly controlled by F r . Hence, we interpret the factor VMD /LMD as the part of the

drag coefficient that is dependent on the flow regime.

For the gravitational Fx,g contribution, in their seminal article Albert et al. (1999) introduce a

proportionality factor that accounts for the particle properties. In equation (3.4) we define an

analogous factor ζ. In our formulation, however, the factor is defined as the ratio of the nor-

mal contact stresses derived from the particle interpenetration σn(∆MD ) and the theoretical

hydrostatic stress σz . ζ therefore considers the compressive behavior of the material inside

the MD, which governs the impact pressure due to build-up of the MD.

In our flow scenario with F r = 0.61, we find that the calculated pressure is composed of 95 %

gravitational and 5 % inertial contributions. This agrees with the observation of Faug (2015)

that for a wide range of Froude numbers, 0.1. F r . 10, both the inertial and the gravita-

tional contribution of the impact pressure are present. At low velocities the dominance of

the gravitational pressure contribution is probably responsible for the fact that the pressure

is often observed to be independent of the velocity in this range of low F r (Wieghardt, 1975;

Albert et al., 1999). The inertial contribution increases quadratically with increasing speed and

consequentially outweighs the gravitational contribution only at higher velocities. When F r

becomes supercritical, the MD changes substantially from the rounded shapes in Figure 3.6 to

a bow shock (chapter 2, Hauksson et al. (2007) and Cui and Gray (2013)). Hence, it is not clear

whether the interaction processes and the analytical model presented in this study still hold

in the supercritical regime. Similar to in real experiments, the impact pressure contributions

in DEM simulations cannot be identified individually. Simulations with higher flow velocities,

where the inertial contribution is dominant, could help to determine whether the inertial

contribution is adequately formulated in our model.

Figure 3.9 shows that the calculated impact pressure px,calc overestimates the simulated

impact pressure of the obstacles with w = 0.24 m and w = 6 m, while the pressure on the

obstacles of intermediate width 0.6 m≤ w ≤ 3 m is underestimated. This difference probably

arises because of the varying proportion between the size of the whole simulation domain

and the area occupied by the obstacle. Although we only consider a fraction of the domain

for the MD threshold calculation, to keep the ratio between the considered domain size and

varying obstacle sizes constant (Supplementary Material S.3), the error persists. The error

could probably be reduced more efficiently by increasing the size of the simulation domain,

which is currently not possible with the computational resources available.

3.4.4 Limitations

Although we are able to find good agreement between the simulated and the estimated pres-

sure using the MD properties, we identify two main limitations of the present analysis.
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First, as described in section 3.2.5, we use a percentile threshold of the normal contact forces

to identify the MD, which is the basis for our results. We perform a sensitivity analysis (Sup-

plementary Material S.4) and show that our results do not crucially depend on the threshold

value within the range of the 70th to 90th percentile. Nevertheless, the deviations between

the simulated and calculated impact pressure, as well as the deviation from the linear trend

of VMD /LMD for w = 6 m in Figure 3.6 g–i show the limitations of our approach, as the MD

identification is delicate. Hence, in the future it would be preferable to establish a threshold

based on the physical properties of the material surrounding the MD to distinguish the MD

from the rest of the flow domain. In order to achieve this, various variables can be considered

potential candidates for identifying the MD or may be linked to the impact pressure, such as

shear force, shear rate, bulk density, coordination number, velocity (Chehata et al., 2003; Favier

et al., 2009b), and stress anisotropy (Chung et al., 2019). After testing a number of variables, we

conclude that, among these variables, ∆ allows us to make the most comprehensive analysis.

Second, the computational resources needed for the DEM simulations presented here are

considerable. While we aim to minimize the computational time, we also want to ensure that

our results are not affected by domain boundary influences. This results in large computa-

tional domains, while the simulated physical interaction times are only a few seconds. The

simulations show that the MD of wide obstacles in cohesive flows takes longer to establish

compared with the MD of narrow obstacles in cohesionless flows. Hence, in the case of narrow

obstacles with w ≤ 1 m, we are confident that a steady state impact force is reached within our

simulations. For the interaction of wide obstacles and cohesive flows, even longer simulations

are needed to confirm that the pressure does not change significantly anymore. Therefore, the

pressure difference between the narrow and wide obstacles may be slightly overestimated here.

However, the trend of decreasing average impact pressure on obstacles of increasing width has

also been found in other studies (Supplementary Material S.5) and is therefore not an artefact

of our numerical procedure. Moreover, in section 3.3.3 we estimate the impact pressure based

on the instantaneous MD properties and compare it to the impact pressure at the same time

step. Hence, even in cases where a steady state is not reached, this highlights once more how

crucially the impact pressure is linked to the instantaneous physical properties of the MD.

3.5 Conclusions

In this study, we demonstrate that the non-linear decrease in the impact pressure on obstacles

of increasing width is linked to the compression of the granular material in the MD, as the par-

ticle interpenetration ∆MD decreases in a similar fashion for increasing w . Furthermore, we

show that the stress ratio of the cohesive to the cohesionless case σ∗
n(∆MD )/σn(∆MD ) agrees

well with the increase in the average impact pressure due to cohesion for different obstacle

geometries. Hence, we identify two main mechanisms causing the pressure increase due to

cohesion. First, the particle interpenetration ∆MD and thus the material compression in the

MD is higher than in the cohesionless case, probably because the cohesive bonds inhibit the

rearrangement of force chains and thus the particle flow around the obstacle. Second, the
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force transmission between the particles is higher than in the cohesionless case because the

particles are connected more rigidly through the cohesive bond (Figure 3.3). The analysis also

shows that further processes might be present but play a subordinate role to the two processes

mentioned above.

Finally, we estimate the impact pressure in the cohesionless case based on the MD properties

and considering an inertial and a gravitational contribution. The agreement of the calculated

and the simulated impact pressure values provides a further indication that the MD funda-

mentally governs the pressure on the obstacle (Chehata et al., 2003; Faug, 2015).

By calculating the pressure of a cohesionless and cohesive granular flow impacting an obsta-

cle using the physical properties of the MD, we show that the impact pressure exerted by a

subcritical flow on an obstacle is quantitatively linked to the physical properties of the MD.

The calculations highlight that the jamming and compression of the material inside the MD

govern the pressure build-up on the obstacle.

We identify limitations of our model linked to the computational cost of the simulations and

the MD identification. Nonetheless, in the future the presented method could help to estimate

impact pressures on obstacles based on the jamming of the granular material predicted for

specific geometries and using compression tests.
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4.1 Chapter summary

In this chapter we aim to make a step towards physics-based and practice-oriented computa-

tion of impact avalanche forces. In order to achieve this, we reuse the DEM setup described

in the previous chapter 3 to simulate the interaction of avalanches and obstacles. We extract

pressure and velocity measurements from the Vallée de la Sionne database to test the DEM

code, calibrate the model parameters, and elaborate avalanche scenarios. The four selected

avalanche scenarios are related to distinct flow regimes of the avalanche’s dense core. Within

the range of tested values, we find good agreement between simulated impact pressure and

field data. Building on earlier research, we generalize an empirical equation for computing

the impact pressure as a function of snow cohesion, velocity, flow regime, and structure shape

and size. By defining and calibrating various coefficients from our DEM data and based on

physical considerations, we propose a physics-based practical method for estimating the

drag coefficient CD depending on flow regime and obstacle geometry. We test the calculation

method using data from three obstacles with different geometries from Vallée de la Sionne

and find that the impact pressure profiles calculated based on the CD estimates agree well

with the full-scale measurement data.

4.2 Simulation of avalanche impact pressure on obstacles with DEM

4.2.1 Avalanche modeling setup and parameters

Flow avalanches have often been considered to behave like dry granular flows (Scheiwiller

and Hutter, 1982; Salm and Gubler, 1985; Hutter, 1996), and this analogy has thus been used

to model them on the laboratory scale or numerically. In this study, we applied the Discrete

Element Method (DEM) to simulate avalanches moving past rigid obstacles using the PFC soft-

ware from Itasca (Minneapolis, MN, USA). This software is based on the soft-contact algorithm

(Cundall and Strack, 1979; Potyondy and Cundall, 2004) to model the interaction between

cohesive particles. In this numerical framework, no fluid–solid coupling is considered, and

thus the bulk dynamics is entirely ruled by particle contact. This means that in our study we

simulated only the avalanche’s dense flow part, assuming that the interaction between the

solid phase and the interstitial air is negligibly small.

To simulate how avalanches interact with fixed obstacles, we used the numerical setup im-

plemented in chapter 3. This setup extended the procedure in chapter 2 and made it possible

to study obstacles wider than 0.6 m, which corresponds to the Vallée de la Sionne’s pylon

considered initially (section 4.2.2). In chapter 2 we showed that our numerical code could

reproduce impact pressure measurements on the pylon.

In order to minimize the computational cost of simulations, we considered an isolated volume

of granular material flowing past the obstacle. The flowing granular material mimicked a snow

avalanche in an area of 11–22×28 m2 around the obstacle (the exact size depended on the

obstacle width). The particle flux was imposed at the up- and downstream boundary. We

chose the boundary velocity such that it matched the vertical velocity profile of the selected

62



Physics-based estimates of drag coefficients for the impact pressure calculation of dense
snow avalanches Chapter 4

avalanche scenario. In our setup, the x, y and z directions corresponded to the streamwise,

transverse and vertical directions, respectively.

Estimating the material properties of snow mobilized by avalanches is challenging because

most studies on the mechanical properties of snow are related to snow samples from an

undisturbed snowpack (e.g., Shapiro et al., 1997; Scapozza, 2004), and from small-scale chute

experiments (e.g., Salm, 1964; Rognon et al., 2008a). However, to the best of our knowledge,

the mechanical properties of snow inside avalanches, where snow may experience large shear

rates and thermo-mechanical transformations (Steinkogler et al., 2015; Kern et al., 2009), is

not available. This lack of information led us to use available data on undisturbed snow. For

this reason, our study’s model parameters must be considered with caution: they are plausible

values, not measured ones. In this paper, we use the material properties and contact law

parameters used in chapter 2. Table 4.1 is a list of the most important material parameters

used. Further information on how the contact forces were modeled and our code can be found

in chapters 2 and 3.

Table 4.1 – Material properties for the Discrete Element Method (DEM) simulations.

Parameter Symbol Value / Range

Particle radius rp 40±8 mm

Particle density ρp 500 kg/m3

Bulk density† ρb 338–379 kg/m3

Young’s modulus E 105 Pa

Friction coefficient µ 0.5
† ρb results from ρp and interstitial voids between the particles

and is not a controllable input parameter.

4.2.2 Obstacle geometries

Vallée de la Sionne measurement obstacles in DEM

In this study, we used measurements collected at the Vallée de la Sionne site to test whether our

DEM model was able to reproduce impact pressure measurements on obstacles and sensors

of different sizes and geometries. In Vallée de la Sionne, the test site’s release area covers 30 ha,

and it feeds two main corridors that converge just upstream of the zone where the obstacles

and sensors are located (near 1700 m a.s.l.) (Ammann, 1999). Since the late 1990s, more than

70 avalanches (involving artificial and natural releases) have reached the obstacles and have

been recorded. Figure 4.1 shows side views of the three obstacles in Vallée de la Sionne and

the positions of the pressure sensors. These obstacles include a steel pylon of rectangular

cross-section, a small concrete wall and a narrow steel wedge (Sovilla et al., 2010; Sovilla et al.,

2014). We implemented these geometries in our DEM to simulate avalanche pressure on the

Vallée de la Sionne obstacles.

The pylon is a 20 m tall steel cantilever with an elongated cross-section in the flow direction of
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1.6×0.6 m2. It is equipped with 6 cylindrical pressure sensors with a vertical spacing of 1 m

from 0.5 m to 5.5 m above the ground. The cylindrical sensors have a diameter of 0.1 m and

protrude upstream into the flow. The avalanche flow velocity is measured at the pylon using

46 optoelectronic sensor pairs vertically distributed from 0.25 m up to 6.0 m above the ground

(Kern et al., 2010). In the DEM simulations, we reproduced the exact cross-section of the pylon

but chose a smaller vertical spacing of 0.26 m instead of the 1 m between the pressure sensors

on the real measurement pylon in Vallée de la Sionne to enhance the resolution of the vertical

pressure profile. The spacing of 0.26 m corresponded to the vertical location of every second

velocity sensor on the pylon.

The second obstacle is a narrow wedge with a flat beam mounted at the leading edge with

a frontal width of 0.24 m and a height of 4.5 m. The beam accommodates four cylindrical

pressure sensors with a diameter of 0.25 m, which protrude upstream into the flow. The sensors

are located 1.3 m, 2.3 m, 3.3 m and 4.3 m above the ground. The sidewall of the wedge is at an

opening angle of 5◦ from the symmetry axis of the obstacle in the flow direction. Instead of

the flat beam at the front and the small wedge angle of 5◦, our DEM codes approximated the

wedge with a flat front and parallel side walls, similar to a rectangular cross-section. As for

the real measurement structure, we implemented the cylindrical pressure sensors of diameter

0.25 m protruding upstream from the beam at the same locations above the ground.

The third obstacle in Vallée de la Sionne is a concrete wall, 1.0 m in width and 4.5 m in height.

There, the impact pressure is measured using two types of sensors. The first probe consists

of a 1×1 m measurement plate centered at a height of 3 m above the ground. The second

type involves three cylindrical pressure sensors identical to the ones used on the pylon, which

are located in the middle of the wall at 1.5 m, 2.25 m and 3.75 m above the ground. These

cylindrical pressure sensors were mounted in 2015. The DEM code reproduced the exact

geometry and positions of the 1×1 m measurement plate and cylindrical sensors, although

the cylindrical sensors are not present in measurements older than 2015.
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a b c

x
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Figure 4.1 – Vallée de la Sionne measurement obstacles. Panels a, b and c show side views
of the pylon, wedge and wall obstacles, respectively. The positions of the cylindrical sensors
with a diameter of 0.1 m (red diamond), the cylindrical sensors with a diameter of 0.25 m (blue
five-pointed star) and the 1 m2 measurement plate (green six-pointed star) are highlighted
with arrows in the corresponding colors.

Generic obstacles in DEM

To obtain a broader understanding of how impact pressure is affected by obstacle shape and

size, we additionally simulated the interaction between avalanches and prismatic obstacles,

including rectangular, circular and triangular cross-sections. Varied widths were considered.

These geometries are commonplace in buildings, dams, cable car stations, protection struc-

tures and other infrastructures in avalanche-prone terrain. For all these obstacles, we chose a

height of 5.7 m, which corresponded to the height of the highest velocity probe on the pylon

(see section 4.2.2). This height was sufficient to prevent the granular mass from overflowing

the obstacle.

For the rectangular obstacles, the width w of the faces normal to the flow direction could

be varied. The faces parallel to the flow direction were 1.6 m long in all simulations, which

corresponded to the length of the pylon. For the triangular obstacles, we used wedges whose

apex angle was α = 60◦ and which faced the flow. The wedge base was normal to the flow

direction, and its width w could be altered.

Finally, for the cylindrical obstacles with circular cross sections, the width w was the diameter.

For all cross-sections we used the following array of values: w = [0.24,0.6,1.0,3.0,6.0] m. The

widths w ≤ 1 m matched the widths of the Vallée de la Sionne measurement obstacles.

In order to investigate how the impact pressure was distributed on the obstacles, the obstacles’

surface was discretized into smaller areas. In the vertical direction, we divided all rectangular,

triangular and cylindrical obstacles into 22 sections, each 0.26 m in height, which again corre-

sponded to the vertical location of every second velocity sensor on the pylon (see section 4.2.2).

In the horizontal direction, we further divided the obstacle surfaces facing the granular flow
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into segments of equal widths. For most simulations the segment width was approximately

0.1 m. Only for the very narrow obstacles with w = 0.24 m, the segments were approximately

0.05 m wide to obtain a higher resolution of the impact pressure distribution. From left to

right, Figure 4.2 shows a perspective view of a rectangular, cylindrical and triangular obstacle

with a width w = 1 m.

a b c

x

z

yx

z

yx

z

y

Figure 4.2 – Perspective views of the obstacles with a rectangular (a), circular (b) and triangular
(c) cross-section. The black grid visualizes the discretization of the impact surface (shown in
light gray). The obstacles are shown while interacting with an avalanche, which is cut vertically
in the middle of the flow domain. The particles are colored according to their streamwise
velocity, where red corresponds to 3 m/s and blue to 0 m/s.

4.2.3 Avalanche scenarios

Generic avalanche scenarios in DEM

In our study, we selected four typical scenarios of flow avalanches based on the data collected

over the last 20 years at the Vallée de la Sionne test site (Köhler et al., 2018b; Kern et al., 2009).

These include two scenarios of fast avalanches and two scenarios of slow avalanches. The

fast-avalanche scenarios are mostly relevant for avalanches in the fully developed flow regime,

whereas the slow-avalanche scenarios would better describe avalanches in the runout phase.

• Cold shear flow regime (also called cold dense flow regime in Köhler et al. (2018b)):

this regime is characterized by a nonuniform vertical velocity profile, with velocity

increasing substantially from the bottom (where it is close to zero) to the free surface of

the flow (where it can be as high as 30 m/s in Vallée de la Sionne). This velocity profile

implies that the flow experiences high frictional resistance at its base. Owing to high

velocities, cold shear flows are often supercritical (F r > 1) and are therefore considered

inertial flows. The cold shear flow regime is also typical of the dense core in powder

snow avalanches. The avalanche’s dense layer is usually shallow, with flow depths of less
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than 4 m (Köhler et al., 2018b). To model this scenario, we simulated a velocity profile

increasing linearly from 0 m/s at the bottom to 30 m/s at the flow’s free surface. We

considered a flow depth of 2.5 m for all runs. Cold snow below −1◦C usually exhibits low

cohesion (see section 1.1), and we thus simulated a cohesionless granular material with

the cohesive bond strength σcoh = 0.0 kPa for this scenario.

• Warm shear flow regime: this regime refers to cases for which the vertical velocity

profile may reach peak values of v ' 25 m/s. In contrast to cold snow, the snow in

warm avalanches is considered to be highly cohesive, which may lead to large snow

aggregation (clogging) within the avalanche (Köhler et al., 2018b; Rognon et al., 2008b;

Rognon et al., 2006). Snow clogging is, however, counterbalanced by fragmentation

induced by collisions and high velocities within the flow. The vertical velocity profile

is similar to that observed for the cold shear flow regime (Köhler et al., 2018b). We

simulated the warm shear flow regime with the same flow depth (2.5 m) and, despite

the small velocity deviation, with the same vertical velocity profile as in the cold shear

flow regime. To account for the high cohesion, we set the cohesive bond strength to

σcoh = 10.0 kPa. This cohesive strength value is higher than the back-calculated σcoh for

a range of typical warm avalanches documented by Sovilla et al. (2010), but lower than

for extremely cohesive avalanches (chapter 2).

• Cold plug flow regime: this regime is characterized by a low shear rate in the vertical

velocity profile above the sliding surface (Kern et al., 2009). Because the cold snow in

this type of avalanche has little or no cohesion, a uniform velocity profile (plug flow) is

observed when basal friction is low. On the contrary, a sheared velocity profile develops

when the basal friction is sufficiently high. Plug flows typically occur in the tail of large

cold snow avalanches, after the avalanche head has smoothed out the sliding surface, or

in the runout of a cold, dry dense avalanche. Indeed, in this flow regime, velocities are

usually lower than 10 m/s, which is often the case in the runout zone. Owing to the low

velocity, cold plug flows are mostly subcritical (F r < 1) and are, therefore, considered to

be gravitational avalanches. In this flow regime, impact pressure is proportional to flow

depth and independent of flow velocity (Sovilla et al., 2010). To model this regime, we

simulated a granular mass moving at an arbitrary velocity of 3 m/s uniformly across the

flow depth. The flow was assumed to be cohesionless (cohesive strength σcoh = 0.0 kPa).

The flow depth was 2.5 m.

• Warm plug flow regime: this regime, defined by Köhler et al. (2018b), is often observed

for avalanches with snow temperature close to 0◦C. This flow regime is typical of dense

wet snow avalanches. The snow in such avalanches is highly cohesive, and thus experi-

ences clogging. The avalanche takes the form of a slow displacement of blocks gliding

along the ground or snow cover (Köhler et al., 2018b; Issler, 2003). To model this regime,

we simulated a flow identical to the one in the cold plug flow regime, but with a cohesive

strength of σcoh = 10 kPa between the particles. Although the flow depth can reach

5−7 m (Sovilla et al., 2016), we still considered a flow depth of 2.5 m for the sake of

comparison with the other flow regimes and to reduce the computational effort.
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We summarize the properties of these four flow scenarios in Table 4.2 a.

Vallée de la Sionne avalanche scenarios in DEM

In order to test our DEM model, we compared simulated to measured impact pressure on the

obstacles in Vallée de la Sionne. Hence, we needed to select recordings from the Vallée de la

Sionne measurement archive, in which the three obstacles, located within an area of 16.5 m

in radius, were hit simultaneously by the flow. For these real-world avalanche scenarios, we

chose two typical examples including a warm plug flow regime avalanche and a cold shear

flow regime avalanche, which are described below. To be able to compare impact pressure

between real-world and simulated avalanche flows, we chose a vertical velocity profile in the

simulations that came closest to the velocity profiles measured at the pylon.

• The February 1st 2013 avalanche (naturally released) is a typical example of the warm

plug flow regime. Because the avalanche flow characteristics also evolve with time, we

selected a sequence of 3 s from the complete recording with a duration of 4 minutes

in the Vallée de la Sionne measurement database. In this selected time window, the

avalanche’s dense flow was moving at ∼ 2.5 m/s and had a flow height of approximately

2.7 m. The sliding surface was roughly 1.2 m above the ground. We compared these

measurements to simulations where a constant velocity of 2.5 m/s was imposed across

the entire flow depth of 3 m. The cohesive strength was set to σcoh = 5.0 kPa. This

value corresponds to a moderate cohesion and is in the middle of the cohesion-less

and highly cohesive scenarios defined in section 4.2.3. Moreover, it is in the range of

the back-calculated cohesion values for which we to obtain a good agreement between

computed and measured impact pressures for a number of warm plug flow avalanche

events in Vallée de la Sionne (Sovilla et al., 2010).

• For the experimental data related to the cold shear flow regime, we selected measure-

ments from an artificially released large powder snow avalanche on 8 March 2017. As

done previously, we extracted a sequence of 1 s, during which the flow depth of the

avalanche’s basal flow was ∼ 2.5 m. The velocity increased from 0 m/s at the ground to

∼ 40 m/s at 2.5 m above the ground. For the comparison, we simulated a flow with a

velocity profile increasing linearly from 0 m/s at the ground to 40 m/s at the free surface

2.5 m above the ground. For cold shear avalanches, we expected snow cohesion to be

low and thus selected a cohesive strength of σcoh = 0.0 kPa.

We summarize the two avalanche scenarios in Table 4.2 b.
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Table 4.2 – Simulated avalanche flow scenarios.

Flow regime† Typical application‡

Velocity
Cohesion

Flow

profile height

v σcoh h

a) Generic avalanche scenarios in DEM

gravitational

cold plug |

tail of dry
3 m/s

0.0 kPa 2.5 mflow avalanche
constant

runout

warm plug |

wet
3 m/s

10.0 kPa 2.5 mflow avalanche
constant

track, runout

inertial

cold shear /

dry dense core of
0–30 m/s

0.0 kPa 2.5 mpowder avalanche
shear

track

warm shear /

wet dense core of
0–30 m/s

10.0 kPa 2.5 mpowder avalanche
shear

track

b) Vallée de la Sionne avalanche scenarios in DEM

gravitational warm plug |*

wet ∼ 2.5 m/s
5.0 kPa 2.7 mflow avalanche

constant
track, runout

inertial cold shear / *

dry dense core of
0–40 m/s

0.0 kPa 2.5 mpowder avalanche
shear

track
† Distinction of flow regimes based on F r and (Steinkogler et al., 2015; Köhler et al., 2018b).
‡ Avalanche types according to (Quervain, 1981) and

avalanche zones according to (McClung and Schaerer, 2006).

4.3 Comparison of simulated and measured impact pressure on ob-

stacles of varied geometry

In this section, we show that our model was able to simulate the impact pressures on obstacles

of different geometries and in different flow regimes. To that end, we compared simulated

and recorded impact pressures by implementing pylon, wall and wedge obstacles—described

in section 4.2.2—in our DEM code and matched the simulated velocity profile to the velocity

measured at the pylon. The first and second rows of Figure 4.3 show the simulated and

measured impact pressures in the warm plug flow regime (|*) and the cold shear flow regime

(/ *), respectively, as described in section 4.2.3.
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Figure 4.3 – Comparison of simulated and measured impact pressure on the Vallée de la Sionne
obstacles. The plots in the first column show the measured (dark red) and simulated (light red)
velocity at the pylon. The plots in the second, third and fourth columns show the measured
and simulated pressure on the pylon, wedge and wall, respectively. The first and second rows
show the impact pressure exerted by an avalanche in the warm plug and cold shear flow
regime, respectively. The symbols represent the measured (dark colors) and simulated (light
colors) impact pressure on the cylindrical sensors with diameters of 0.1 m (red) and 0.25 m
(blue), as well as the 1 m2 (green) sensor plate. These colors and symbols correspond to the
illustration in Figure 4.1.

The comparison exercise in Figure 4.3 demonstrates a good general agreement between the

simulated and measured impact pressures in the warm plug flow regime (|*) and the cold

shear flow regime (/ *). We observe that the model is able to capture the pressure differences

measured by the different sensors at the three obstacles. This can be best seen by comparing

the pressure on the wall with the square sensor of 1.0 m2 area in the right column to the

pressure values obtained for the cylindrical sensors with a diameter of 0.1 m. For the wall

no measurements of the cylindrical sensors are available because these sensors were not yet

mounted when this avalanche occurred in 2013 (see section 4.2.2). However, the simulated

pressure on the cylindrical sensors with a diameter of 0.1 m sensors on the wall is in good

agreement with the pressure measured on the pylon with the same sensors and at the same

height. In the warm plug flow regime (wall,|*), the simulated and measured pressures on the

1.0 m2 sensor were considerably lower than the expected pressure for the smaller cylindrical

sensors given by the linear interpolation of the values of the sensors at 2.25 m and 3.75 m

above the ground.
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In the middle (wall,|*), the pressure on lowest cylindrical sensor was lower than on the sensor

at 2.2 m above the ground, which deviated from the proportionality of the pressure with the

flow depth in the gravitational regime (e.g., Sovilla et al., 2010; Wieghardt, 1975; Albert et al.,

1999). However, this could be explained by the fact that the sensor at 1.2 m above the ground

was already partially inside the avalanche deposit and therefore not impacted by the avalanche

at full thrust.

In the cold shear flow regime (wall,/ *), the simulated and measured impact pressures on the

larger sensor were higher than on the small sensors. This was the opposite of what we observed

in the warm plug flow regime (wall,|*). The qualitative agreement between simulations and

measurements for the two different sensor types and in both flow regimes shows that the

simulations were able to reproduce the measurements.

We did, however, observe differences between the simulated and the measured impact pres-

sures. In the warm plug flow regime (wall,|*), the simulated pressure on the wedge obstacle

increases at a moderately higher rate with flow depth and has a higher pressure peak compared

to the measured pressure.

For the cold shear flow impacting the wall (wall,/*), the pressure on the highest cylindrical

sensor at the wall 3.75 m above the ground was considerably higher in the simulation than

in the measurement. In this case, the uppermost cylindrical sensor in the simulation was

impacted by the dense flow. In the measurement of the powder snow avalanche, the sensor

might already have been inside the powder cloud or the more dilute flow surrounding the

dense layer, which would have exerted less pressure on the sensor.

4.4 Average impact pressure exerted on obstacles of different ge-

ometries

In Figure 4.4 a, we show the simulated impact pressures on obstacles of rectangular (�),

circular (©) or triangular (4) cross-section of varied width exerted by an avalanche in the cold

plug (|) and warm plug (|) flow regime scenarios defined in Table 4.2 a. In both flow regimes,

the impact pressure was highest on the rectangular cross-section. On average, the impact

pressure on the circular and triangular cross-sections was 17% and 43% lower, respectively,

than the pressure on the rectangular cross-sections.

We also observed that the impact pressure px decreased with increasing obstacle width for all

cross-sections. The impact pressure exerted by a cold plug flow decreased by only 2.7 kPa from

px,w=3m to px,w=6m, while the pressure decreased by 4.6 kPa from px,w=0.24m to px,w=0.6m

with a much smaller change in w . The decrease in the rate of change in px for increasing

w indicates that from a certain w value, px no longer decreased significantly with further

increases in w . As the impact pressure decrease rate with increasing w was already low for

w = 6 m, we assumed that the pressure decrease for w > 6 m was negligible. Hence, we

used the impact pressure on the widest obstacle px,w=6m as an approximation of the impact

pressure on wider obstacles. In order to quantify the pressure increase on a narrow obstacle
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compared with that on a wide obstacle in Figure 4.4 b, we divided the impact pressures of

varied widths px by the impact pressure on the widest obstacle px,w=6m of the same cross-

section type and flow regime.

Figure 4.4 b shows that the pressure decrease in the cold plug flow on obstacles of increasing

width was similar for all cross-sections. px,w=0.24m, px,w=0.6m, px,w=1m and px,w=3m were on

average 2.0, 1.7, 1.6 and 1.2 times higher, respectively, than px,w=6m. In the warm plug flow

regime we observed the highest ratio px,w=0.24m/px,w=6m = 2.6 for the circular cross-section

and the lowest value px,w=0.24m/px,w=6m = 1.8 for the triangular cross-section. Hence, the

differences between the pressure ratios of different cross-sections in the warm plug flow

regime (|) were slightly larger than the values in the cold plug flow regime (|).

Figure 4.4 c shows the simulated impact pressures on obstacles of varied width exerted by

an avalanche in the cold shear (/ ) and warm shear (/ ) flow regimes. Similar to in panel a, the

impact pressure was highest on the rectangular obstacles, while 22% and 45% less impact

pressure was exerted on the cylindrical and triangular obstacles, respectively. The impact

pressure increase from the cold shear (/ ) to the warm shear (/ ) flow regime due to cohesion

was of a factor 1.7 on average. This was considerably lower than the impact pressure increase

due to cohesion of a factor of 3.2 in the gravitational regime (|,|).

For all obstacles impacted by the cold shear (/ ) and warm shear (/ ) flow avalanche, the pressure

decreased for 0.24m ≤ w ≤ 1m. For w > 1 m the impact pressure either decreased further or

increased slightly, depending on the geometry and flow regime.

In Figure 4.4 d, we scaled px by px,w=6m of the same geometry and flow regime, similar to the

gravitational flows, although the qualitative trend in px was not consistent. Panel d shows

more clearly that in the inertial flows (/ ,/ ), the dependency of the impact pressure on the

obstacle width was generally lower than for the gravitational flows (|,|).
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Figure 4.4 – Dependence of impact pressure px on obstacle geometry and width w . Panel a
shows the impact pressure exerted by a cold plug (dashed, blue) and a warm plug (dashed,
red) avalanche flow. Panel c shows the impact pressure exerted by a cold shear (dash-dotted,
blue) and a warm shear (dash-dotted, red) avalanche flow. Panels b and d show the impact
pressure for obstacles of varying width w relative to the pressure on the 6 m wide obstacle of
the same geometry and flow regime in the gravitational and inertial flow regimes, respectively.

4.5 Pressure distribution on obstacles of different geometries

In this section, we present how the impact pressure was distributed on the obstacle surface.

For the tested obstacle of width w = 1 m, in Figure 4.5, we visualize the distribution of the

impact pressure exerted by avalanches of four flow regimes (see section 4.2.3) on obstacles

with different cross-sections.
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Figure 4.5 – Impact pressure distribution on the discretized impact surface of the prismatic
obstacles (w = 1 m) with a rectangular, circular or triangular cross-sections. From left to
right the columns show the pressure distribution in the cold plug, warm plug, cold shear and
warm shear flow regimes. The colors represent the average impact pressure magnitude on the
respective surface.

In the first two columns of Figure 4.5, we observe that the impact pressure was largest at the

bottom of the avalanche flow for the plug flow regimes (|,|). For the cold shear flow regime

(/ ) in the third column, the impact pressure was highest at the flow surface, 2.5 m above the

ground. In the warm shear flow regime (/ ), in the right column, the highest pressure was also

located near the flow surface, but the pressure peak was more spread out towards the ground

compared with in the cold shear regime (/ ).

In the horizontal direction, the pressure distribution was variable for the different geometries

and flow regimes. In order to analyze the horizontal pressure distribution more closely in

Figure 4.6, we plotted the impact pressure as a function of the y coordinate transverse to

the flow direction at different heights z. To improve the visibility of the horizontal pressure

variations, we scaled the local impact pressure px (y, z) by the average pressure px,mean(z) at

the respective height and the y coordinate with the width w of the obstacle.
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Figure 4.6 – Horizontal pressure distribution on obstacles with w = 1 m normalized by the
average pressure at the respective height. The first, second and third rows show the pressure
distribution on the obstacles with rectangular, circular and triangular cross-sections, respec-
tively. From left to right the columns show the pressure distribution in the cold plug, warm
plug, cold shear and warm shear flow regimes.

In the first row in Figure 4.6, we observe that the impact pressure on the rectangular obstacle

(�) exerted by the cold regimes (|,/ ) was evenly distributed in the y-direction. In contrast,

the impact pressure exerted by the warm regimes (|,/ ) was up to ∼ 1.5 times higher at the

outer edges than in the middle of the obstacle. In the warm shear regime (/ ), these pressure

concentrations at the edges were most pronounced at the bottom of the flow.

For the circular cross-sections (©) in the middle row, the pressure distribution showed no

significant differences for the four flow regimes tested. The impact pressure was highest in the

middle of the obstacle, where the flow impacted the obstacle at a right angle, and was lowest

at the sides where the obstacle surface was tangential to the flow.

Depending on the flow regime and flow depth, the horizontal pressure distribution on the

triangular obstacles (4) in Figure 4.6 shows pressure concentrations both at the obstacle outer

edges and at the leading edge. A pressure peak at the leading edge of ∼ 2 times the average

pressure was present in most cases (|,/ ,/ ), but not in the warm plug regime (|) or near the

ground for the warm shear regime (/ ). A pressure peak at the outer edges of the obstacle, where
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the pressure was up to ∼ 2.5 times higher than the average pressure, occurred across the whole

flow height in the warm plug regime (|) and was most pronounced near the ground in the cold

plug regime (|).

4.6 Impact pressure calculation

Here, we propose a physics-based and practice-oriented method for estimating CD values

depending on the obstacle geometry and the avalanche flow characteristics. In section 4.6.1,

we present a method for estimating CD for cohesionless avalanches (e.g., |,/ ), which are often

relevant in practice, as they are representative of dry fast avalanches in the avalanche track

and runout. In section 4.6.2, we show how the impact pressure increase caused by cohesion

(e.g., |,/ ) can be calculated.

4.6.1 Estimation of drag coefficients for cohesionless avalanches

Based on similar findings in previous studies (Thibert et al., 2008; Gauer and Kristensen, 2016;

Faug, 2013; Thibert et al., 2015), we propose a physics-based definition of the drag coefficient

CD , similar to equation (1.4), as follows:

CD =Cg eo Cr =Cg eo

(
1+ K

F r 2

)
(4.1)

where we first divide CD into two factors (Thibert et al., 2008): (1) Cg eo , which is solely related

to the geometry of the obstacle, and (2) Cr , which depends on the flow regime of the avalanche.

Furthermore, we rewrite the coefficient Cr according to equation (1.6) (Thibert et al., 2013;

Faug, 2013).

The average impact pressure of an avalanche with a flow depth h and velocity v can be

calculated according to equation (4.2):

px,calc =CD
ρ

2
v2 =Cg eo

ρ

2
v2 +ζρg

h

2
(4.2)

where we use the definition of F r = v/
√

g h and set ζ=Cg eoK to obtain a formulation similar

to that used by Sovilla et al. (2016).

For the gravitational plug flow regime (|) in Figure 4.4 a, we find that the impact pressure de-

creased for obstacles of increased width for all geometries. Hence, as shown by equation (4.3),

we further decompose the geometry factor Cg eo into a coefficient Co considering only the

obstacle’s geometrical shape and a coefficient Cw = px /px,w=6m depending on the obstacle

width, as presented in Figure 4.4.

For the impact of avalanches in the inertial shear flow regime (/ ) in Figure 4.4 c, the width
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influence was not monotonic or similar for all geometries. For lack of a better understanding

of the physical processes involved, and given the qualitative trend exhibited by the width

influence on the pressure in these regimes, we set Cw = 1 in the cold shear (/ ) flow regime for

all w :

Cg eo =Co Cw (4.3)

To estimate the geometrical part Co of the drag coefficient Cg eo of an obstacle, for which

Co is not known a priori, we propose the heuristic equation (4.4). This method is based on

the concept that the resistance to the flow offered by a flat body scales with the cosine of its

angle to the flow’s direction transverse (the y-direction in our setup). Hence, we discretize the

obstacle’s impact surface into n piecewise straight segments at an angle θn and of width dn

and calculate Co as the sum of the weighted contributions of the individual straight segments

as in equation (4.4). A prerequisite for applying equation (4.4) is that the obstacle’s impact

surface facing the upstream direction of the flow must be convex.

Co = 1+ 1

w

∑
n

cosθn dn (4.4)

From equation (4.4), we can identify two limiting cases: (1) Co = 1 for an infinitely narrow

object parallel to the flow, and (2) Co = 2 for an obstacle of finite width with a flat face at a right

angle to the flow direction. Figure 4.7 a illustrates equation (4.4). Figure 4.7 b shows examples

calculations of Co for the geometries considered in this study.

a b

q1

d1

d2

dn

Co=1+
1
w
σn cosθn ∙dn Co =2.0         Co =1.78       Co =1.5            Co =1.65

q2

qn

w

x

y

rectangular      circular       triangular        VdlS pylon

x

y

general cross section

::

Figure 4.7 – Co estimation based on equation 4.4 for a general cross-section in panel a and for
selected cross-sections in panel b. VdlS = Vallée de la Sionne.

The remaining factor to be determined in equation (4.1) is K , which is associated with the

depth-dependent impact pressure contribution of gravitational avalanches (Sovilla et al.,

2010). In the gravitational flow regime, the impact pressure on the structure predominantly
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originates from the material compression inside the flow region, which is influenced by the

presence of the obstacle ((Chehata et al., 2003) and chapters 2, 3). The compression of the

granular material is mainly caused by particle jamming due to the resistance to the flow offered

by the obstacle. Because flow resistance depends on the obstacle geometry, we use Co as

a proxy for how much the material is jamming upstream of the obstacle rather than being

deflected. Confined compression tests on a granular material with the same properties as in

this study have shown that the axial stress scales approximately with the square of the particle

compression (chapter 3). Hence, as an approximation, we set the factor K =Co such that the

second term of the regime-dependent coefficient Cr scales with C 2
o . Considering compression

tests of the granular material for calibrating K is in line with the original idea of Faug (2013),

where K corresponds to the pure earth pressure coefficient, as this accounts for the material’s

mechanical properties and stress state under compression. Finally, using K =Co , we obtain

equation (4.5) for estimating the drag coefficient CD , which can be used with equation (1.1) to

calculate the impact pressure.

CD =Cg eo Cr =Cg eo +
Cg eo K

F r 2 =Co Cw + C 2
o Cw

F r 2 (4.5)

4.6.2 Impact pressure exerted by cohesive avalanches

Snow cohesion in an avalanche is only relevant for the flow behavior and the impact pressure

above a certain cohesion threshold (Steinkogler et al., 2015; Favier et al., 2013). The threshold

is not a constant, but depends on the balance between the collisional forces, proportional

to the flow velocity, and the cohesive strength between the particles. Below the threshold

value, the flow exhibits a predominantly cohesionless behavior, because the collisional forces

break snow aggregations apart. Above the threshold value, the avalanche snow is cohesive

enough to aggregate more snow particles than the collisional forces can break. This interplay

between collisional and cohesive forces, which also governs the impact pressure increase due

to cohesion, can be captured by considering the Bond to Froude number ratio qBo,F r = Bo/F r

(chapter 2). The dimensionless Bond number Bo =σcoh/pcon f is the cohesive strength σcoh

divided by the confining pressure pcon f (Roy et al., 2017), which is the vertical component of

the local stress tensor.

As already demonstrated in chapter 2, the impact pressure exerted by a cohesive avalanche

p∗
x,calc can be simply calculated according to equation (4.6), by multiplying a factor fcoh(qBo,F r ),

based on the ratio of the Bond number, by the impact pressure exerted by a cohesionless flow

with the same flow height and velocity px,calc :

p∗
x,calc = px,calc fcoh(qBo,F r ) (4.6)

We assume that fcoh varies slightly depending on the obstacle geometry. However, many
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simulation runs with varying v and σcoh are needed to obtain fcoh as a function of qBo,F r for a

specific geometry, making it cumbersome to find fcoh for all geometries in this study. Hence,

as an approximation, we use the scaling available in chapter 2 using the Vallée de la Sionne

pylon, which we fit with equation (4.7):

fcoh = c1/(c2 +qBo,F r )+ c3 (4.7)

where c1 =−3.6, c2 = 1.5 and c3 = 3.4 are the fitting parameters.

4.7 Comparison of calculated impact pressure with simulations and

measurements

4.7.1 Cohesionless avalanches

Using the method for the estimation of Co , Cw and K described in the previous section, we

calculate the impact pressure px,calc of a cold plug flow (|) and a cold shear flow (/ ) on obsta-

cles of varied geometry. We compare the calculated and simulated impact pressure px,DE M , as

shown in Figure 4.8.

For the calculation, we choose Cw according to the pressure ratios px /px,w=6m of the cold

plug flow (|) in Figure 4.4 b and assume Cw = 1 in the cold shear regime (/ ) (see section 4.6.1).

Co is calculated using equation (4.4).
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Figure 4.8 – Comparison of simulated impact pressure (red symbols) and pressure calculations
(blue symbols) using equations (1.1) and (4.5) for varying obstacle widths w . The first, second
and third columns show the pressure comparison for the obstacles with rectangular, circular
and triangular cross-sections, respectively. The pressure exerted by an avalanche in the cold
plug (first row) and the cold shear (bottom row) flow regime are shown. The dark blue shaded
areas represent the calculated gravitational pressure contribution, where the impact pressure
is proportional to the flow depth, while the light blue shaded areas represent the calculated
inertial contribution, where the impact pressure is proportional to velocity squared.

In Figure 4.8, we observe that the calculated impact pressure agrees relatively well with the

simulated values. For the impact pressures exerted by the cold plug flow (|) in the first row,

the pressure on the rectangular obstacle is slightly overestimated, while the pressure on the

cylindrical and the triangular obstacles is slightly underestimated for all obstacles widths. In

the inertial cold shear flow regime (/ ), the influence of obstacle width on the pressure is not

captured because we assume Cw = 1 in this regime for all w . The mean relative error between

the simulated and the calculated pressure is 12% in the cold plug flow and 15% in the cold

shear flow.

In the cold plug flow regime (|), the flow depth-dependent gravitational pressure contribution

(dark blue area) is dominant, with a share of 85% of the total calculated impact pressure. Using

equation (4.2), we can calculate the proportionality factor ζ = C 2
o Cw is associated with the

gravitational pressure contribution from the data in Figure 4.8. The corresponding ζ values in

Figure 4.8 are 2.3 ≤ ζ≤ 7.9, where the highest value corresponds to the narrowest rectangular

obstacle and the lowest value corresponds to the widest triangular obstacle.

In the inertial cold shear flow (/ ) the pressure contribution proportional to velocity square

(light blue area) has a share of 80% of the total calculated impact pressure. Hence, in this

regime the geometry dependent coefficient Cg eo prevails.
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4.7.2 Real avalanche scenarios

To assess how realistic the drag coefficient is for a real-world avalanche, we calculate the

vertical impact pressure profile for the warm plug (|*) and cold shear (/*) avalanches on the

Vallée de la Sionne obstacles and compare it to the measured and simulated impact pressure

in the real avalanche scenarios (|*,/ *) described in section 4.2.3. Again, we estimate CD values

in the cohesionless flows, using the method proposed in section 4.6.1 to calculate the average

impact pressure. In the warm plug regime (|*), we consider the impact pressure increase due

to cohesion by calculating the pressure increase factor fcoh = 1.94 according to section 4.6.2,

using the scaling law from chapter 2 with Bo = 0.50 and F r = 0.49.

In order to calculate the vertical pressure profile, we calculate the gravitational and inertial

pressure contribution from equation (4.2) individually. Subsequently, we use the proportion-

ality of the pressure with the flow depth in the gravitational regime (e.g., Sovilla et al., 2010;

Wieghardt, 1975; Albert et al., 1999) and with velocity squared in the inertial regime (e.g.,

Voellmy, 1955d; Voellmy, 1955c; Voellmy, 1955b; Voellmy, 1955a; Salm and Gubler, 1985;

McClung and Schaerer, 1985) to determine the vertical distribution. Further information on

how we calculated the impact pressure profiles is provided in the Supplementary Material in

chapter C.

In Figure 4.9, we plot the simulated and measured impact pressures from Figure 4.3, and we

compare it to the pressure calculations.

Figure 4.9 shows that the calculated vertical impact pressure profiles qualitatively agree well

with the simulated and measured pressure profiles. For the cold shear flow regime (/*) im-

pacting the wedge obstacle, the comparison is made difficult by the fact that the measured

dense flow at this particular obstacle was probably below the sensor at 2.3 m above the ground,

leaving only the lowest sensor at 1.3 m measuring the impact pressure of the dense flow.
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Figure 4.9 – Comparison of calculated (colors) with simulated (light gray) and measured (dark
gray) impact pressure profiles on the Vallée de la Sionne measurement obstacles. From left to
right the columns show the comparison for the pylon, the wedge and the wall obstacle. The
first and second rows show the impact pressure exerted by an avalanche in the warm plug and
cold shear flow regime, respectively. The colors and symbols correspond to the illustration in
Figure 4.1.

Although we obtain fairly good qualitative agreement between most computed and measured

pressure calculations, we observe significant differences between calculations and measure-

ments for two scenarios. The calculated impact pressure is 34% lower than the measured

pressure for the pylon impacted by the warm plug flow avalanche (|*) and 42% lower for the

wedge impacted by the cold shear flow (/ *).

The reason for this difference for the pylon may originate from the choice of Cw based on

the assumption that the pylon’s overall width w = 0.6 m is relevant for the impact pressure

(Sovilla et al., 2016). Actually, the sensors at the pylon have a diameter of only 0.1 m and

protrude upstream into the flow. Hence, it is difficult to determine which w is relevant when

choosing Cw .

For the cold shear flow (/*) impacting the wedge, the error probably originates from our as-

sumption that Cw = 1 for all obstacles impacted by inertial flows. However, in Figure 4.4 we

observe that the impact pressure on the narrow obstacles with the same width as for the wedge

(w = 0.24 m) is greater than for the other obstacle widths.
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4.8 Discussion

4.8.1 Avalanche impact pressure on obstacles of varying geometry

When comparing the simulated and measured impact pressures in Figure 4.3, we find that

the DEM code performs well at computing the pressure differences between obstacles and

sensors of varied geometry for different flow regimes. The discrepancies observed in section 4.3

between simulations and measurements can be explained by the complex and time-dependent

nature of real-world snow avalanches when interacting with obstacles. Examples of this

complexity include deposition processes upstream of the obstacle and the coupling between

the avalanche’s dense and dilute flow phases.

Consistent with findings from earlier studies (e.g., (Favier et al., 2013), chapter 2), panels a and

c in Figure 4.4 show that snow cohesion can strongly amplify the impact pressure, particularly

in the gravitational regime. It is worth noting that the impact pressure is not limited to the

values simulated in our cohesionless or cohesive flow scenarios. The impact pressure varies

with σcoh from the blue curves (|,/ ) up to the red curves (|,/ ) for any given obstacle geometry

and width. If σcoh is higher than assumed in our scenarios, the pressure values may even

exceed the red curves.

As a consequence, computations of px are fraught with uncertainty for cohesive avalanches:

its value depends crucially on the choice of the cohesive strength σcoh . In the absence of hard

information on the link between snow temperature and cohesion, no upper limit of σcoh is

known. Values as high as σcoh = 15.6 kPa have been fitted for an avalanche from Vallée de la

Sionne (chapter 2), and even higher values are possible.

Figure 4.4 a and c also show that the simulated impact pressure depends heavily on the ob-

stacle geometry. The rectangular obstacles experience the highest impact pressure, and the

impact pressure on the triangular obstacles is on average ∼ 45% lower. The pressure on the

rectangular obstacles is not only higher than the impact pressure on the triangular obstacles,

but also shows more dependence on the flow regime, e.g., if the cohesion increases. Hence,

for construction in locations where little is known about the behavior of extreme avalanches,

the triangular cross-section has the advantage of experiencing lower absolute pressures and

smaller pressure variations in different avalanche scenarios compared with other geometries.

In Figure 4.4, we further observe that the impact pressure exerted by gravitational flows (|,|)
decreases similarly for all obstacle cross-sections with increasing w . This finding is consistent

with the qualitative behavior observed in many contexts where obstacles or intruders move

relative to a surrounding medium at subcritical speeds (e.g., (Haefeli, 1948; Huang and Lee,

2013), chapter 3). In chapter 3 we tentatively proposed that decreasing px is caused by increas-

ing shear dilation in the flow around obstacles of increasing w , but the physical origin of this

trend has yet to be established with certainty.

For gravitational avalanches, we observe that the impact pressure tends to decrease with

increasing w , a feature that is of particular relevance to understanding what may happen in

the runout of avalanches with a long return period, in which case dwellings would be the

obstacles. Special attention should be paid to the warm plug flow regime. In Vallée de la

83



Chapter 4
Physics-based estimates of drag coefficients for the impact pressure calculation of dense

snow avalanches

Sionne, avalanche flow depth can be as large as 5–7 m (Sovilla et al., 2016). Due to the greater

flow height, this would result in pressure px ∼ 2.5 times higher than the impact pressure

simulated for the warm plug flow regime (|) in this paper. Some extreme avalanches may ex-

hibit snow cohesion greater than σcoh = 10.0 kPa, which would lead to an even higher impact

pressure. In the gravitational regime the impact pressure is linearly distributed across the flow

depth (see Figure 4.5) (Sovilla et al., 2010; Wieghardt, 1975; Albert et al., 1999). As the highest

pressures are located at the flow base, reinforcing the foundation and lower part of buildings

is recommended, e.g. particularly for buildings at low altitudes, where gravitational avalanche

flows are most likely.

This behavior of gravitational avalanches contrasts with what is observed for the inertial flow

regime in Figure 4.4 c: the impact pressure decreases for all cross-sections and flow regimes

(/ ,/ ) for w ≤ 1 m. For w > 1 m the qualitative trend of px is somewhat unclear and probably

negligible. Figure 4.4 d indicates that overall the influence of w on px is weaker in the inertial

flow regime (/ ,/ ) than in the gravitational flow regime (|,|) in panel b. For narrow obstacles,

such as masts of chair lifts or power lines in the avalanche track, the influence of w on px is

admittedly lower, but the position of such obstacles in the avalanche flow zone makes the

probability of an inertial flow regime (/ ,/ ) very high. The scenario of inertial avalanches is more

problematic because in that regime, the impact pressure increases with increasing velocity

(Voellmy, 1955d; Voellmy, 1955c; Voellmy, 1955b; Voellmy, 1955a; Salm and Gubler, 1985)

and thus is highest near the flow-free surface. As a consequence, masts experience higher

bending moments in this regime than in the plug flow regimes, where the highest pressures

are observed at the flow base.

Computation of inertial flows is also fraught with higher uncertainty than for gravitation flows,

owing to the pressure dependency on the velocity squared. In our simulations, we generated

velocities as high as ∼ 40 m/s, which is consistent with the fastest velocities observed for

dense flows in Vallée de la Sionne. As for dense flows, the maximum velocity depends on the

avalanche track topography, and higher values are likely in other sites (Gubler et al. (1986)

cites values as high as 60 m/s).

Figure 4.6 shows that, depending on the flow regime, impact pressure is not distributed homo-

geneously on the obstacle surface: at the outer edges and at the leading edge in the middle of

an obstacle, it is up to ∼ 2.5 times higher than the average pressure. Local structure reinforce-

ment can be considered an appropriate countermeasure to this punching effect.

4.8.2 Estimation of the drag coefficient

As the drag coefficient CD varies smoothly between the subcritical and supercritical regimes,

equation (4.1) allows us to go beyond the classic dichotomy between gravitational and in-

ertial avalanches. This possibility is essential for a physics-based estimation of CD because

avalanches can undergo flow regime transitions and multiple flow regimes may coexist in

a single avalanche (Köhler et al., 2018b; Faug et al., 2018). With equation (4.1) the impact

pressure can be interpreted as the sum of a velocity squared and a flow depth-dependent con-

tribution, as suggested in a number of studies on snow avalanches and other gravity-driven
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flows (e.g., Faug, 2015; Sovilla et al., 2016; Armanini, 1997). In equation (4.1), the Froude

number determines the relative importance of the inertial and gravitational contributions to

impact pressure:

• For subcritical flows (F r < 1), the contribution weighted by K , which is related to the

gravitational contribution, is the dominant term;

• For supercritical flows (F r > 1), K /F r 2 becomes smaller whereas Cg eo becomes larger.

In addition to the Froude number F r , the parameters Co , Cw and K have to be determined to

calculate CD (see equation (4.5)). In chapter 3, we showed that for the gravitational regime,

impact pressure depends on material compression in the domain of influence around the

obstacle, and based on the present study, we can assume that K =Co (see section 4.6.1), which

reduces the number of variables to only two (Cw and Co).

For the width-dependent coefficient Cw , we use px,w /px,w=6m factors derived from our sim-

ulations in the gravitational regime (Figure 4.4 b), but this may be a source of error because

we neglect a further decrease in px for w > 6 m. In the absence of knowledge on the physical

processes underlying the dependency of px on w , we assume Cw = 1 in the inertial regime.

To calculate the coefficient Co , we propose the heuristic equation (4.4), which provides Co

estimates that are similar to the values available in the literature related to snow avalanches

and granular flows, where Co = 2, Co =1.5–1.7, Co = 1.5 are reported for rectangular, cylindrical

and triangular geometries, respectively (Favier et al., 2009a; Jóhannesson et al., 2009).

We can indirectly assess the accuracy of the estimates of Co , Cw and K by comparing the

estimated factor ζ = C 2
o Cw = Co Cw K in the gravitational regime to measured values from

avalanches with flow heights of up to 5.4 m and velocities of 1−8 m/s reported by Sovilla et al.

(2010). For the comparison, we assume, based on the Vallée de la Sionne pylon’s geometry (see

Figure 4.7), that the ζ values on the pylon must approximately correspond to the average of

the estimated values of the cylindrical and triangular obstacles. For the factor Cw , we consider

w = 0.6 m to be the relevant width, which corresponds to the width of the pylon (Sovilla et al.,

2016). In these configurations, we estimate ζ = 5.4 for the cylindrical obstacle and ζ = 3.8

for the triangular obstacle impacted by a cold plug flow (|). The lower bound of ζ= 4.6 from

the Vallée de la Sionne measurement data is consistent with the average of the estimated

values. This consistency confirms that the estimation procedure yields reasonable results for

the cold plug flow (|). Considering that the pressure increase induced by cohesion in these

specific avalanches from Sovilla et al. (2010) may be of a factor of 2.0 to 2.5 (chapter 2), we

estimate ζ= 7.6 for the cylindrical obstacle and ζ= 13.5 for the triangular obstacle. The upper

bound of ζ= 10.4 from measurements corresponds almost to mean value of the estimated

ones. Hence, considering the uncertainty of the choice of the cohesive strength σcoh and the

potential dependency of fcoh on the geometry, the estimated values are remarkably close to

the measured ones.

In order to assess the practical relevance of the proposed method to estimate CD in real

avalanche scenarios (|*,/*), we compare impact pressure calculations based on the CD esti-

mates to the pressure measured on the Vallée de la Sionne obstacles in Figure 4.9. Although px
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is underestimated in two cases, due to a uncertain choice of Cw (see section 4.7.2), considering

the simplicity of the proposed method we can assert that the calculated pressure profiles show

good agreement with the measured profiles. We show that by considering the gravitational

and inertial contributions with the proposed method, we can calculate the vertical pressure

distributions on the obstacle. As mentioned in section 4.8.1, this may be of interest for the

calculation of critical bending moments in inertial avalanches or high pressures at the flow

base of gravitational avalanches.

4.9 Conclusions

In the present study, we have shown that our DEM simulations were able to reproduce how

a snow avalanche impinges on obstacles of different geometries. Simulated and measured

pressures showed good agreement. We simulated impact pressures on obstacles with rectan-

gular, circular and triangular cross-sections in four typical avalanche flow scenarios, and we

quantified how the impact pressure varied as a function of the obstacle geometry, width and

avalanche flow regime. Furthermore, we documented how impact pressure was distributed

on the obstacle surface for different geometries and flow regimes.

Based on previous studies on avalanche impact pressure—through field measurements (Thib-

ert et al., 2013; Sovilla et al., 2010; Sovilla et al., 2016; Thibert et al., 2015) and DEM simulations

(chapters 2, 3)—and the new simulations presented in this paper, we have proposed a physics-

based method for estimating the drag coefficient CD involved in the definition of the impact

pressure. An innovative point of our study is that the proposed calculation method can be

applied to various obstacle geometries by using the specific geometry coefficient Co .

An important outcome is that CD varies continuously between the subcritical and supercriti-

cal regimes, and thus by using Eqs (1.1) and (4.5) one can compute impact pressure with no

assumption about the flow regime. When computing average impact pressures and vertical

pressure profiles using the new method for estimating CD , we obtained good qualitative

agreement between impact pressure measurements and simulations for all flow regimes. On

average, impact pressure can be predicted with a relative uncertainty lower than ∼ 20%.

Further work is needed to elucidate the physical processes underlying the dependence of

impact pressure on obstacle width (through the Cw factor). The assumption K =Co is a coarse

approximation based on an earlier study, where we showed that impact pressure depends

on material compression inside the domain of influence around the obstacle (chapter 3).

Further improvements of our method could be achieved by calibrating the dependence of

factor K on the flow regime, e.g., by conducting a study on the behavior of snow subject to

large compressive deformations.
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5 Conclusions

5.1 Context and goal of the thesis

While to date detailed physical knowledge on the avalanche flow and avalanche–obstacle

interaction processes is scarce, today’s impact pressure calculation procedures mostly rely on

empirical relationships. Therefore, even for experienced experts it is challenging to correctly

choose suitable empirical constants for the pressure calculation. Field measurements provide

essential information on the physics of avalanche flows. Yet the interpretation of the measure-

ments is complex, as they often include a superposition of a multitude of processes. Therefore,

in this thesis we use DEM simulations to gain a better understanding of the relevant physical

processes governing the avalanche–obstacle interaction and the impact pressure build-up

on obstacles. Ultimately, we want to progress from the empirical relationships towards a

physics-based framework for the avalanche impact pressure calculation. This framework

should enable engineers to better consider the influence of the avalanche flow regime and the

obstacle geometry in the calculation of impact pressure.

5.2 DEM model for avalanche–obstacle interaction

In order to achieve the aforementioned goals, we implement a DEM model, which allows us

to simulate the interaction of cohesive granular flows and obstacles. Our results show that

the DEM model correctly reproduces the flow depth and velocity square proportional impact

pressure profiles for subcritical (F r < 1) and supercritical (F r > 1) avalanches, respectively.

This indicates that the model captures the most important avalanche–obstacle interaction

processes. The model results also shows good quantitative agreement between simulated and

measured impact pressures on obstacles of varying geometry and in multiple flow regimes

in sections 2.3.1 and 4.3. The good quantitative agreement is notable considering that little

information on mechanical snow properties in avalanches is available and the material prop-

erties for the simulations are therefore rough estimates, as discussed in sections 2.2.4 and 2.5.
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Further limitations of the model are associated with the modelling of the complex mechanical

behavior of snow as mentioned in sections 2.4.1 and 2.5, as well as the limited computational

resources restricting the size of the simulation domain and particle count as discussed in

detail in section 3.4.4.

5.3 Impact pressure — from the physical origin to impact pressure

calculations

One of the chief objectives of this thesis is to identify relevant avalanche–obstacle interaction

processes to improve the physical understanding of the impact pressure build-up.

In the study on the interaction of cohesive avalanches with the VdlS pylon in chapter 2, we

find that the impact pressure can be interpreted as the superposition of the inertial, the

frictional and the cohesive pressure contribution. Except for the cohesive contribution in

cohesionless flows, all three impact pressure contributions are present in all avalanche flow

regimes, but with changing importance for the overall impact pressure depending on the

Froude number F r .

Based on our investigations on the avalanche–obstacle interaction processes and knowledge

from the literature, in section 4.6 we propose an impact pressure calculation method, which

accounts for all three pressure contributions for avalanche flows in a wide range of Froude

numbers.

Below, we discuss each pressure contribution, its physical origin and how it can practically be

calculated with the method proposed in chapter 4.

• The inertial contribution, which is proportional to velocity square, is predominant at

high avalanche velocities where F r & 10 and occurs due to the inertial impact of the

granular mass on the obstacle. In chapter 3, we show that the inertial contribution

can be quantitatively linked to the change in kinetic energy of the granular material

inside the MD, which is slowed down by the obstacle. In the inertial regime the MD’s

shape, which is mostly controlled by F r (chapter 2), is similar to a bow shock. This

shape is observed in many studies on supercritical granular flows around obstacles

(e.g., Cui and Gray, 2013; Hauksson et al., 2007). Because the inertial pressure contri-

bution is proportional to velocity squared, it corresponds to the Bernoulli-like term in

equation (4.2). The proportionality factor Cg eo associated with the inertial contribution

depends only on the obstacle geometry. We split Cg eo in two individual factors Co and

Cw . Co accounts for the influence of the obstacle’s cross-section on the impact pressure.

Based on the idea that obstacle surfaces at a right angle to the flow direction create

more resistance to the flow than surfaces which are more oriented in the flow direction,

we propose equation (4.4) to calculate Co for any convex obstacle surface facing the

flow. By applying equation (4.4) to rectangular, circular and triangular cross-section,

we find Co = 2.0, Co = 1.8 and Co = 1.5, respectively. These Co values agree well with
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values reported in the literature (e.g., Favier et al., 2009a; Jóhannesson et al., 2009). Cw

accounts for the influence of the obstacle’s width on the impact pressure. We calibrate

this coefficient using the simulated impact pressure in Figure 4.4 for obstacles with

widths between 0.24m and 6.0m. In this range, Cw is as high as ∼ 2 for obstacles with

widths of 0.24m in subcritical avalanche flows and is lower for obstacles of increasing

width or in supercritical flows.

• The frictional contribution is mostly significant in the gravitational regime. In order to

flow around the obstacle, the particles in a granular flow rearrange continuously leading

to the perpetual formation and destruction of force chains (Geng and Behringer, 2005).

The MD is formed by force chains originating from the impact surface of the obstacle

extending upstream into the flow, leading to a rounded shape of the MD in subcritical

flows where the frictional contribution is of importance. Compared to the surrounding

flow, which is not affected by the obstacle’s presence, the force chains in the MD are

markedly stronger. The strong force chains are a consequence of the particles jamming

around the obstacle, which causes the granular material to compress inside the MD.

Simulating axial compression tests (chapter 3), we show that the material compression

inside the MD can be linked quantitatively to the impact pressure on the obstacle in the

gravitational regime, confirming the findings of Chehata et al. (2003).

Because the frictional contribution is most relevant for avalanches with low F r (sec-

tion 2.3.2), this contribution is related to the regime-dependent term in equation (4.2),

which is weighted by 1/F r 2. Consequently, this term is dependent on the flow depth

and is proportional to C 2
o Cw /F r 2. Similarly to the inertial contribution Co Cw accounts

for the influence of the obstacle geometry on the impact pressure. The additional factor

Co in the regime-dependent term of equation (4.5) reflects the effect of the particle

jamming in the MD in subcritical flows. The proportionality with C 2
o is also consistent

with the results from compression tests (section 3.2.4), where we find that the stress in

the granular material scales approximately with the particle interpenetration squared,

which is related to the particle jamming.

• The cohesive contribution, which is mostly significant in the gravitational regime, orig-

inates from the non-zero tensile and shear strength between neighbouring particles,

increasing the persistence of force chains and densifying the contact network (Favier et

al., 2013; Rognon et al., 2008b). Cohesion therefore reduces the material’s ability to flow

around the obstacle, causing more particle jamming and greater material compression

inside the MD compared to the cohesionless case. The impact pressure is even further

increased by the enhanced force transmission in cohesive contacts due to the presence

of the cohesive bond. Compared to the cohesionless case the increased particle jam-

ming and enhanced force transmission in cohesive flows lead to an increase in impact

pressure by factors up to 3.7 depending on the obstacle geometry (section 3.3.1) and

cohesive strength (section 2.3.2).
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In chapter 2, we find a scaling, which allows us to quantify the influence of cohesion

on the impact pressure and thus to calculate the impact pressure of a cohesive flow

on the VdlS pylon for a large range of Bo and F r . The scaling is based on the concept

of the competition of collisional forces, which depend on the flow velocity and thus

F r , and the cohesive forces between the particles expressed by the Bond number Bo.

In order to obtain the impact pressure exerted by a cohesive flow, the impact pressure

exerted by a corresponding cohesionless flow can be multiplied with a factor based

on the ratio of the Bond number and the Froude number. Hence, the calculation of

the impact pressure exerted by a cohesive flow includes considering the inertial and

frictional contributions as mentioned above, as well as calculating the pressure increase

factor fcoh based on the Froude and the Bond number, e.g. by using equation (4.7).

Qualitatively, the scaling is in agreement with previous studies reporting that the effect

of cohesion mostly becomes apparent above a threshold cohesion value and is similar

to the cohesionless case otherwise (e.g., Favier et al., 2013; Macaulay and Rognon, 2021;

Rognon et al., 2006).

Although, we assume that the scaling may depend on the obstacle geometry, we also

apply it to other obstacles with different geometries. In the tested cases in chapters 3 and

4, the impact pressure increase estimated with the scaling agrees well with simulated

and measured impact pressure exerted by cohesive flows. We therefore assume that

also for other geometries the pressure amplifications due to cohesion are in the same

order of magnitude as for the VdlS pylon. Hence, while there may be deviations from the

amplification estimated with the scaling for the VdlS pylon due to differing geometries,

we assume this error is small compared to the uncertainty of the estimated cohesive

strength. Moreover, if a specific geometry is of particular interest the study in chapter 2

could be conducted for different geometries.

5.4 Influence of the flow regime and the obstacle geometry on the

impact pressure

As our numerical setup allows us to independently control the granular flow characteristics

and the obstacle geometry, we are able to methodically asses the influence of various parame-

ters, such as the cohesion, the flow velocity and height, as well as the obstacle geometry, on

the impact pressure.

In agreement with the literature, we observe that impact pressure is proportional to velocity

squared in supercritical flows with Froude numbers close to or greater than 10 (e.g., Voellmy,

1955d; Voellmy, 1955c; Voellmy, 1955b; Voellmy, 1955a; Thibert et al., 2008; Faug, 2015). Physi-

cally this proportionality can be explained by the dominance of the inertial impact pressure

contribution in this regime, in which the impact pressure originates from the deceleration of

the impacting granular mass mobilized by the obstacle (section 3.4.3).

In subcritical avalanches (F r < 1), we confirm that the impact pressure is proportional to
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the depth below the free flow surface similar to in granular flows (e.g., Sovilla et al., 2010;

Wieghardt, 1975; Albert et al., 1999). In this regime the impact pressure is dominated by the

frictional and the cohesive pressure contributions. As described in the previous section 5.3,

these contributions originate from particle jamming in the MD, which increases with increas-

ing depth below the surface because of the weight of the material above and with increasing

cohesion. In intermediate flows with F r close to unity, all three pressure contributions may be

relevant for the impact pressure. Therefore, in these regimes the impact pressure may consist

of a superposition of the hydrostatic-like and Bernoulli-like pressure distributions.

By analyzing the pressure distribution in the horizontal direction in section 4.5, we find that

local impact pressure concentrations may be as high as ∼ 2 times the average pressure. While

the pressure concentrations on the rectangular obstacles are mostly located at the outer edges,

the pressure concentrations on the cylindrical obstacles are in the middle, where the flow hits

the obstacle at a right angle. For the triangular obstacles, concentrations on the outer edges

or the leading edge may be observed depending on the flow regime and the snow properties

of the avalanche. In order to counteract damages caused by pressure concentrations, the

obstacles’ structure may be reinforced locally.

The simulation outcomes also confirm previous studies, that out of three typical obstacle

geometries the drag force on a rectangular obstacle is highest followed by drag on a cylindrical

and a triangular obstacle (e.g., Favier et al., 2009a; Jóhannesson et al., 2009). We find that it is

the particle jamming inside the MD, which is higher for obstacles offering more resistance to

the flow e.g. the rectangular obstacles, causing a higher impact pressure than e.g. on triangular

obstacles offering less resistance (section 3.4.1).

Furthermore, we quantify the influence of obstacle width on the impact pressure (section 4.4).

In subcritical flows we find that the impact pressure decreases on obstacles of increasing

width regardless of the cross-section. While this trend has first been qualitatively observed

and documented decades ago (e.g., Haefeli, 1948; Margreth, 2007), to our knowledge there is

no comprehensive study elucidating the physical origin or giving quantitative estimates of

this size effect. Although strong evidence is still lacking, we find indications that in subcritical

flows the particle interpenetration in the MD is lower for wide obstacles because of the higher

shearing of the material (section 3.4.1). In supercritical flows, however, the impact pressure

decrease is not monotonic for all obstacle widths and cohesion values. This indicates that

further research is needed to gain a comprehensive understanding of the dependency of the

pressure on the obstacle width.

In summary, in the present thesis we successfully identify the most relevant avalanche–

obstacle interaction processes (chapters 2 and 3), quantify the link between the MD and

the impact pressure (chapter 3) and finally bridge the gap to the physics-based calculation of

impact pressures on obstacles (chapter 4). Hence, while further research is needed to over-

come our model’s shortcomings and limitations (chapter 6), we are convinced that with the

present thesis we make a considerable step forward in progressing from empirical towards

physics-based impact pressure calculation.
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6 Outlook

6.1 Modelling avalanche-obstacle interaction with DEM

The DEM model presented in this thesis allows us to conduct an in-depth investigation on the

interaction of granular flows and obstacles. Below, we identify limitations of the model, which

could be addressed in the future to improve the model’s accuracy and performance for further

studies:

• Contact model: The contact model used in our studies is a standard contact model

implemented in the Itasca PFC3D software (Itasca Consulting Group, Inc., 2014) for

cohesive geomaterials. Although our results show that the model is able to reproduce

the fundamental behavior of snow in avalanches, we identify two deficiencies, which

are not well represented in our model compared to real snow behavior.

First, the compressive behavior of the material, which is highly plastic in real snow,

is not well calibrated in our contact model (see e.g. section 2.4.1). Second, while our

contact model allows for instantaneous cohesive bonding whenever two particles be-

come in contact, the sintering process in snow usually depends on the contact time and

force (e.g., Gubler, 1978; Szabo and Schneebeli, 2007). These two deficiencies could

be addressed in the future by improving the parallel-bond model to account for the

compressive behavior and the time dependence of the bond strength, as well as by

calibrating the model with measurement data of mechanical snow properties.

• Fluid coupling: An important limitation of the model is the restriction to dense flows.

This limitation could be overcome by implementing a fluid coupling between the solid

particles and the interstitial air. As the suspended particles in the dilute phase of the

avalanche are usually smaller than the snow aggregations in the dense flow, this also

entails to reduce the size of the discrete elements and thus increasing the particle count

as well as the computational effort.
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• Computational effort: Despite several measures to reduce the computational effort of

our simulations, with the current DEM setup we operate at the limit of our computa-

tional resources. Already the simulations of the isolated volume around the obstacle are

very time consuming. A simulation of a large scale flow on an inclined plane would not

be feasible.

Indeed, a more efficient numerical method should be used in the future to simulate

the avalanche from release to runout, including the avalanche track and the interac-

tion with obstacles. In this case the challenge will be to correctly capture the granular

nature of dense avalanches with a numerical method other than DEM. One promising

numerical framework to overcome the issue of the computational effort is the material

point method (MPM). This method was already successfully used for modelling snow

avalanches (e.g., Gaume et al., 2018b; Li et al., 2020) and is able to reproduce the impact

dynamics on obstacles similarly to DEM (Ceccato et al., 2018).

An alternative could also be to use a coupling between a 3D continuum solver for the

slope scale dynamics and DEM simulations in the vicinity of the obstacle. With this

approach, however, one must still consider the DEM’s limitation for large obstacles

which require large simulation domains.

6.2 Determining and calibrating the crucial parameter of cohesion

In our study cohesion is one of the most important quantities influencing the simulated

impact pressure. In avalanche scenarios with cold snow, where we expect the snow cohesion

to be very low, the impact pressure simulated using σcoh = 0.0kPa agrees well with measured

pressures (e.g., Figure 4.3). In warm avalanches, where cohesion heavily influences the flow

behavior and impact pressure, it is important to accurately calibrate and estimate the cohesion

in the DEM model. Thus, an important question for the dimensioning of structures is the

maximum cohesive strength of snow in extreme avalanche scenarios. It would therefore be

important to explore the physical range of mechanical snow properties in the avalanche e.g. on

a laboratory scale similarly to Steinkogler et al. (2015) or Fischer et al. (2018), and to accurately

calibrate the cohesion in the DEM model.

6.3 Existence and properties of the mobilized domain

In chapter 3 we highlight the importance of the concept of the MD by quantitatively linking

the material properties inside the domain to the impact pressure in the gravitational regime.

First, it would be enlightening to confirm the MD’s existence in the field. To verify the domain’s

existence, in 2017 we installed a high-speed camera at the VdlS measurement pylon capturing

the dense flow surface at a frequency of 140Hz with a field of view of ∼ 12× 12m on the

ground around the pylon. As part of ongoing research, we aim to identify the MD based on

the velocity field at the flow surface recorded by the camera using a velocimetry technique.
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Moreover, in the event of a field experiment with an artificially released avalanche, in-situ

shear strength and density measurements of the avalanche deposit could be performed in

the vicinity of obstacles. However, such manual field measurements can only give indications

of the mechanical snow properties inside the MD and it’s extent in the instant when the

avalanche stops.

Second, the DEM simulations indicate that the material compression inside the MD is closely

related to the impact pressure. In the future it would therefore be of importance to better

quantify the link between large compressive snow deformation and the material stress state in

a relevant range of temperatures, e.g. -10−0◦C. As mentioned in section 4.9, these tests would

also assist the practical pressure calculation, as the parameter K could be calibrated using the

results of the compression tests.

6.4 Relevance of the thesis results for practical avalanche

engineering

In the present thesis, we propose a new method to calculate the impact pressure distributions

on obstacles of different shape and dimension and for different avalanche flow regimes. The

inputs for the pressure calculation, which include the snow properties, the flow velocity and

the flow depth of the avalanche impacting an obstacle, have to be known or estimated. Hence,

the presented calculation method may well be applied when the avalanche characteristics

are known or can be estimated, e.g. in the case of back-calculations. For avalanche tracks

close to historic settlements and important traffic routes, estimates of the dynamic avalanche

characteristics may be available from observations. In remote areas numerical simulations

are often the only way to obtain estimates of the avalanche characteristics. However, to date

simulating the avalanche flow dynamics on the slope scale is still a challenge, as this includes

the modeling of highly complex processes on large scales. Moreover, the prediction of the

release area and volume of the avalanche, which is usually based on statistical analyses of the

return periods, may be fraught with considerable uncertainties in scarcely monitored areas

and due to changing snow conditions as a consequence of climate change (Lazar and Williams,

2008; Castebrunet et al., 2014). While the presented calculation method is independent

from how the avalanche characteristics are obtained, to make predictive impact pressure

calculations further advances need to be made in quantitatively predicting the avalanche

release and flow dynamics.
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A.1 Formulation of the Discrete Element Method

To study the interaction of a cohesive granular flow, such as snow avalanches, and structures

we developed a new model based on the Discrete Element Method (DEM). For this we use

the Itasca PFC 3D software, which implements the soft-contact algorithm, first described by

Cundall and Strack (1979). In the Discrete Element Method the material and flow properties

of the simulated matter are governed by the properties of the elements and the contact law. In

our model we have two types of elements: the discrete elements are spheres called balls, and

the walls. In contrast to the balls, the walls do not react to external forces. The walls are either

static or move at a user-defined speed.

At each time step the displacements of the balls are calculated from their current state and the

sum of the contact forces Fc and moments Mc according to Newton’s second law of motion

(equation A.1 and A.2):

m ·a =∑
Fc (A.1)

J · ω̇=∑
Mc (A.2)

where a is the translatory acceleration, m is the ball mass, J is the moment of inertia and ω̇ is

the angular acceleration.

After the displacement is applied, the new position of each element is evaluated. The resulting

relative positions of the elements are the basis to calculate the contact forces Fc from the con-

tact law. In our study we use the parallel bond contact model, which is used in previous studies

for modelling snow (e.g. by Gaume et al. (2015b)). In this contact law a linear component acts
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in parallel to a solid bond connecting two balls. The linear component consists of a linear

elastic spring and a dashpot for the normal force. The tangential force is modelled with of a

linear elastic spring and a Coulombian friction limit. The bond, which mimics the cohesive

sintering of snow, is modelled as a solid connection between the balls. Hence, the bond can

sustain not only normal and tangential forces but also bending and torsional moments. The

cross-section of the bond is constant and is equal to the cross-section area A of the balls:

A = r 2
p ·π (A.3)

where rp is the ball radius.

In our implementation, the bond forms whenever a new physical contact between two el-

ements, balls or walls, occurs. Figure A.1 a shows two elements and the components of the

contact model. Figure A.1 b shows a typical life cycle of a contact between two balls.
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Figure A.1 – Panel a shows a schematic view of the parallel bond model between two elements.
Panel b shows a typical life cycle of two colliding elements.

The elastic behavior of the discrete elements is characterized by the Young’s modulus El i near .

The code calculates the normal (kn) and shear (ks) stiffness according to equations A.4 and

A.5.

kn = A ·El i near /L (A.4)

ks = kn/kl i near (A.5)
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where L is distance between centroids of the elements.

Similarly, also for the bond the Young’s modulus Ebond is converted to a normal and shear

stiffness kn,b and ks,b , respectively.

The detailed parameters used for the particle properties and the contact law are summarized

in Table A.1.

Table A.1 – Parameters for the DEM simulations in the gravitational and inertial regime

Parameter Symbol Unit Value

Ball attributes

Density ρp kg/m3 500

Normal restitution coefficient e − 0.05

Ball radius rp mm 40±8

Ball-ball contact properties

Young’s modulus linear part El i near Pa 105

Linear normal-to-shear stiffness ratio kl i near − 2.0

Friction coefficient µ − 0.5

Normal critical damping ratio βn − 0.0

Shear critical damping ratio βs − 0.0

Young’s modulus parallel bond Ebond Pa Ebond = El i near

Bond normal-to-shear stiffness ratio kbond − kbond = kl i near

Bond cohesive strength σcoh Pa 0.0−2.0 ·104

Bond tensile strength σten Pa σten =σcoh

Ball-facet contact properties

Young’s modulus linear part El i near Pa 106

Linear normal-to-shear stiffness ratio kl i near − 2.0

Friction coefficient µ − 0.1

Normal critical damping ratio βn − 0.0

Shear critical damping ratio βs − 0.0

Young’s modulus parallel bond Ebond Pa Ebond = El i near

Bond normal-to-shear stiffness ratio kbond − kbond = kl i near

Bond cohesive strength σcoh Pa 0.0

Bond tensile strength σten Pa σten =σcoh
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In the parallel bond model, the contact force Fc is the sum of the linear (F l ), the dashpot (F d )

and the bond (F b) contribution (equation A.6).

Fc = F l +F d +F b (A.6)

Because we set βn =βs = 0 at all times (Table A.1), the dashpot force is also zero (F d = 0). The

linear force F l can be divided into a normal (F l
n) and a shear (F l

s ) contribution (equation A.7).

The same is done for the bond force F b , where F b
n is the normal and F b

s is the shear contribution

(equation A.8).

F l = F l
n +F l

s (A.7)

F b =−F b
n n̂c +F b

s (A.8)

where n̂c is the direction normal to the contact-plane.

The normal force of the linear part F l
n is calculated using the normal stiffness kn and the gap

gn between two elements (equation A.9). For the linear shear contribution F l
s , the Coulombian

friction is implemented according to equations A.10 and A.11.

F l
n =

gn ·kn gn < 0(wi th over l ap)

0 other wi se
(A.9)

F l
s =

F∗
s ‖F∗

s ‖ ≤−µF l
n

−µF l
n · (F∗

s /‖F∗
s ‖) other wi se

(A.10)

F∗
s = (F l

s )0 −ks ·∆δs (A.11)

where ‖·‖ denotes the vector magnitude, (·)0 the value of a quantity of the last time step and

∆δs the relative shear-displacement increment of a time step.

Starting from the formation of the bond, the normal F b
n and shear F b

s bond force contribu-

tions are computed incrementally using the bond normal kn,b and bond shear kn,s stiffness

(equations A.12 and A.13), respectively.

F b
n = (F b

n )0 +kn,b A∆δn (A.12)
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F b
s = (F b

s )0 −ks,b A∆δs (A.13)

where ∆δn the relative normal-displacement increment of a time step.

The only moment Mc acting at the contact is the moment emerging from the parallel bond M b

(equation A.14). M b is the sum of a torsional (M b
t ) and a bending moment (M b

b ) contribution

(equation A.15) (Crandall et al., 1978).

Mc = M b (A.14)

M b = M b
t n̂c +M b

b (A.15)

For more precise information on the implementation refer to the Itasca PFC 3D documentation

(Itasca Consulting Group, Inc., 2014).

A.2 Model setup

Our simulation setup consists of the following elements visualized also in Figure A.2:

1. Balls (blue circles in Figure A.2), mimicking the avalanche granules.

2. Horizontal wall (orange line in Figure A.2), acting as a ground or sliding surface of the

avalanche.

3. Pushing walls (red boxes in Figure A.2), used to enforce the velocity profile of the flow.

4. Obstacle (green structure in Figure A.2).
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a b 

Figure A.2 – Initial (panel a) and final state (panel b) of a simulation imposing a shear velocity
profile. The arrows (red) indicate the imposed velocity of the pushing walls. The obstacle
(green), where the pressure is evaluated, is partially immersed in the discrete elements (blue)
mimicking the avalanche.

In streamwise direction the balls are confined within the pushing walls. In the transverse

direction we define a periodic boundary condition.

The obstacle in the simulation has the same cross-section and sensor geometry as the steel

pylon in VdlS. The only significant difference between the real pylon and the modeled structure

is that the pressure gauges in the model are distributed with smaller vertical gaps than in

reality in order to achieve a higher spatial resolution of the pressure profile. The simulated

(panel a) and the real (panel b) structure are compared in Figure A.3.

a b 

photograph: P. Huguenin 

Figure A.3 – Simulated obstacle (panel a) and pylon at the VdlS test site (panel b).

A.3 Simulation procedure

The simulation starts by imposing a given velocity to the pushing walls and the balls. This

velocity is chosen according to the velocity profile we want to reproduce (e.g. shear flow profile,

Figure A.2 a). During the course of the simulation the walls maintain their fixed velocity. The

balls, however, are free to move according to the laws of motion and the forces at the contact

points with other elements (see section A.1). Hence, the velocity, flow direction and contact
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forces of the balls may alter due to the presence of the obstacle. Initially the balls are not in

contact with the obstacle. The contact is established shortly after the start of the simulation,

when the balls are pushed past the obstacle. Hence, the flow around the obstacle evolves

during the course of the simulation and finally reaches a steady state. In order to avoid a

distortion of the result due to the pushing walls, the simulation is stopped before the walls are

too close to the obstacle or the influenced zone in the flow. Hence, in the current configuration

we stop the simulation when the closest wall is half way of the domain length in streamwise

direction from the obstacle (Figure A.2 b). This limits the simulated time of the particles

flowing and interacting with the obstacle. Depending on the maximum velocity of the pushing

walls, the simulated time is between 0.025 s and 1.0 s. In this period we obtain time resolved

impact pressures and velocities at the pylon from our simulations. We find that in most cases

the flow around the pylon reaches a steady state after about 25 % of the simulated time. Hence,

to obtain the impact pressure values used in Figures 2 - 4 and 8, we average the impact pressure

values of the latter 75 % of the simulations. This is depicted for sample simulations of a plug

flow at 4 m/s and a shear flow at 15 m/s in Figure A.4 panel a and b, respectively.

a b 

Figure A.4 – Temporal evolution of the impact pressure and velocity at the pylon during a
simulation at different heights in the flow. Panel a shows a plug flow moving at 4 m/s and
panel b a shear flow moving at 15 m/s. The colored part of each line visualizes the part of the
time series averaged to obtain the impact pressure value used in the results.

A sensitivity analysis on this threshold shows that changing the averaging range from 10 %

to 100% of the time resolved signal results in a relative change of 6 % of the absolute impact

pressure values. Figure A.5 depicts the impact pressure values obtained by averaging the last

10 % and the entire time series in panel a and b, respectively. Thus, the results of our analysis

do not change as a function of the averaging time.

A.4 Clarification of the quantities used for the analyses

In this section we want to clarify how the quantities used for the analyses are exactly obtained

from the model.
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a b 

Figure A.5 – Resulting impact pressures (graph similar to Figure 4 a) from averaging the last
10 % and 100 % of the simulated pressure time series in panel a and b, respectively.

A.4.1 Vertical location

To compare simulations, we always use a representative value of contact force, velocity at the

pylon, imposed velocity, confining pressure and impact pressure, which corresponds to the

value at mid flow depth. Because the imposed shear velocity profile is linearly increasing and

the imposed plug flow is constant, the velocities in the middle correspond also to the depth

averaged velocities. The full vertical profiles of impact pressure and velocity at the pylon are

only used for the comparisons of simulations and measurements in Figures 2, 5 and 8.

A.4.2 Velocity

In the scope of this article we distinguish between the imposed velocity far from the obstacle

and the velocity measured at the obstacle (Figure 1 c). The flow regime far away governs the

impact pressure at the obstacle. This is also true in fluid dynamics, where drag forces and

boundary layer calculations are performed using the freestream velocity (e.g. calculation

of the Reynolds number). Hence, we also consider the freestream velocity rather than the

velocity at the pylon to relate to the load on the structure. The velocity at the structure in the

simulation is solely used to be matched to the velocity measured in the real experiments at the

VdlS pylon (Figure 2 and 3). This serves as a boundary condition to compare the corresponding

impact pressure values from measurements and simulations. The velocity is measured in

practice as reported by Kern et al. (2009). In the numerical model we evaluate the velocity at

the same location on the structure as in the field experiments (Figure 1 c). For this we average

the velocity of the balls, whose centroids are at most one particle diameter away from the

surface.
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A.4.3 Impact pressure

If not mentioned otherwise, in the present study we use the term pressure to refer to the impact

pressure exerted by the granular flow on the obstacle. The impact pressure p on the structure

is determined according to equation A.16. We sum up the face normal contribution of the

contact forces of all discrete elements in contact with the sensor measurement surface and

divide this force value by the area of this surface Asensor :

p = 1

Asensor

∑
Nc

~Fc n̂c (A.16)

where Nc is the number of contacts.

The pressure sensing surface is at the tip of cylindrical pressure gauges protruding into the

flow (Figure 1 c, Figure A.3, or Sovilla et al. (2016)). The sampling of the force values in the

simulation is done at 7.5 kHz. This is the same frequency as the sampling rate of the real

pressure sensors in VdlS.

A.4.4 Confining pressure

In order to use the dimensionless Bond number Bo, we also calculate the confining pressure.

As described in section 2.2.4 we use the vertical component of the local stress tensor as the

confining pressure pcon f ≡σzz . In contrast to the impact pressure, the confining pressure is

a quantity measured in the flow. In order to determine the stress value we use an average of

the contact stresses of all contacts within a sphere of radius of 10 times the ball radius. The

average stress in the volume V of the sphere is computed as (Christoffersen et al., 1981):

~σ=− 1

V

∑
Nc

~Fc ⊗ ~Lc (A.17)

where~σ is the stress tensor, V the measurement sphere volume, ⊗ the outer product and ~Lc

the branch vector joining the centroids of two elements in contact.

A.4.5 Contact forces and mobilized domain

With a ball count of more than 800’000 and 3.5 million contacts in one simulation, the analysis

of the contact forces and hence, the mobilized domain, is far more elaborate than determining

the impact pressure. Therefore, we perform the analysis of the whole flow field only at the

last time step of every simulation. Hence, the analyses in Figures 5 - 7 (except panels c, f, i in
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Figure 5, which contain time averaged impact pressure values as described in section A.4.3)

are snapshots of the flow around the obstacle in the last time step. However, as we mentioned

earlier, we are convinced, that at this point the flow around the obstacle, and hence the

mobilized domain, has sufficiently evolved and reached a quasi steady state.
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B.1 Temporal evolution of the impact pressure during simulations

In section 2.1 of the main article we state that the reported impact pressure values are the tem-

poral average of the pressure on the obstacle during the second simulation phase. Figure B.1

shows the temporal evolution of the impact pressure during simulations of a cohesionless

flow (a–c) and a cohesive flow (d–f) for the examples with width w = 1 m for all cross-sections.
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Figure B.1 – Time series of the simulated pressure in various positions on the obstacle (no
distinction made) in the cohesionless (top row) and the cohesive (bottom row) scenario for an
obstacle with a rectangular (left), circular (middle) or triangular (right) cross-section.
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In the impact pressure graphs in Figure B.1 above, we can identify the fluctuations due to the

generation of new particles in the first simulation phase (marked with red dashed lines). The

colored parts of the graphs in the second simulation phase (see main article section 2.1) are

averaged to obtain the impact pressure values presented in the article. More specifically, we

average only the last 30% of the whole time series, including the first and the second phase,

because we expect this time segment to be the closest to the steady state impact pressure.

B.2 Sensitivity analysis of axial compression tests

A large portion of the main article’s results depend on the relationship between the relative par-

ticle interpenetration∆ and the normal stressσn obtained from compression tests (section 2.4).

To assess the robustness of the compression tests’ results, we run a number of compression

tests varying the sample size s0, the compression speed and restitution coefficient er .

• Sample size: We vary the size of the compression sample in the range of our obstacle

widths 0.24 m≤ w ≤ 6 m. Figure B.2 a shows that, relative to the largest sample with

s0 = 6 m in the cohesionless case, the normal stress σn deviates by 25.3 %, 8.2 %, 7.3 %

and 2.9 % for the samples with s0 of 0.24 m, 0.6 m, 1.0 m and 3.0 m, respectively. Similarly,

the results of the compression tests with the cohesive material also converge towards

the results obtained with s0 = 6 m.

• Compression speed: The compression test reported in the main manuscript corre-

sponds to a quasi-static compression test. In these tests we compress the sample by a

small increment and run the simulation until the material reaches a mechanical equi-

librium criterion. This process is repeated until the target strain is reached. In the

dynamic test we compress the sample by moving the upper clump (see Figure 3 in the

main manuscript) at a constant speed of 3 m/s. This corresponds to the approach speed

v = 3 m/s of the flow used in our simulations.

Hence, to assess the influence of the strain rate, in Figure B.2 b we compare the stresses

of a quasi-static and a dynamic compression test. The results of the quasi-static and dy-

namic compression tests differ by 3.4 % and 0.5 % in the cohesionless and the cohesive

case, respectively.

• Restitution coefficient: In this study we choose er in accordance with our earlier study

Kyburz et al., 2020, where we choose a low damping er = 0.05 (section 2.3). In order

to estimate the influence of this choice on the resulting impact pressure, we perform

compression tests of the granular material, as described in the article and varying er of

the cohesionless material, where we expect a stronger influence of er . Figure B.2 c below

shows that we do not expect significant differences in the impact pressure even if we

greatly increase er to er = 0.5, as the stresses within the material, on the wall and on the

clump, are practically identical. The differences between the two cases are < 0.5 % and

are therefore negligible.
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Figure B.2 – Sensitivity analysis for the axial compression tests with varying sample size (a),
compression speed (b) and restitution coefficient (c).

B.3 Definition of the mobilized domain (MD)

As described in the main article, we use a percentile threshold of the contact forces between

the particles to systematically identify the mobilized domain (MD). Even in an undisturbed

granular bed the contact forces increase analogous to a hydrostatic pressure for increasing

depth from the free surface. Hence, we calculate the threshold for every height increment of

the discretized flow field in the vertical direction individually.

The percentile threshold we use for the MD identification is only consistent if the ratio of par-

ticles inside and outside the MD is similar for all simulations. However, in our simulations we

vary the obstacle size (0.24 m≤ w ≤ 6 m) and use two different flow domain widths (D y = 11 m,

D y = 22 m). This leads to different proportions of particles inside and outside of the MD. In

order to improve the consistency of the MD threshold values between all simulations, we

must keep the ratio between particles inside and outside of the MD approximately constant.

Therefore, for the MD threshold calculation in simulations where w < 6 m we consider only a

smaller part of the flow domain proportional to w , which scales with MD size. We visualize

the flow domain and the domain considered for the MD threshold calculation schematically

in a horizontal section in Figure B.3. The considered domain is limited by the simulation of

the 6 m-wide cylindrical obstacle, where the simulation domain around the obstacle is the

smallest compared with the extent of the obstacle itself. For the identification of the MD itself,

the threshold value is applied to the whole flow domain.

Moreover, we use a Gaussian filter to smooth the contours of the MD.
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a b

particle    structure   region of MD threshold calculation

x

y

Figure B.3 – Schematic drawing of a horizontal cross-section through the flow domain for
a wide (a) obstacle (black and white hatched area) and a narrow (b) obstacle. The domain
considered for the MD threshold calculation is shaded in red and outlined with a red dashed
line. The flow domain, the particles and the obstacle are not to scale.

B.4 Sensitivity of the results on the MD threshold value

In this study the definition of the MD is crucial. Hence, we perform a sensitivity analysis on the

percentile threshold we use to identify the MD. There are the two extreme cases. For the 0th

percentile the whole flow domain is considered as the MD. For the case of the 100th percentile

the MD vanishes altogether. Hence, a physically relevant threshold value has to be chosen in

between these two values.

In order to evaluate how much our results vary if we change the threshold for the MD calcula-

tion, we perform a sensitivity analysis. Figure B.4 a and b show the streamwise and transverse

extent of the identified MD normalized by the respective flow domain size as a function of

the threshold. Figure B.4 c shows the relative error between the simulated impact pressure

values, which are independent of the MD definition, and the estimated impact pressure values

(sections 3.2 and 3.3 of the main article), which are based on the properties of the identified

domain.
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Figure B.4 – Sensitivity of the results on the MD threshold value. The MD length LMD (a), the
MD width WMD (b) and the relative errors of the calculated pressures px,calc , p∗

x,calc (c) are
shown for different MD thresholds. The color in the left and the middle panel corresponds to
the obstacle width.

Figure B.4 a and b show, that for thresholds below the 30th percentile in most simulations,

the whole flow domain is considered the MD. For thresholds above 95th percentile the MD

is almost vanishing in most simulations. Figure B.4 c confirms that the relative errors are

highest for extremely low and extremely high threshold values. For the values higher than

95th percentile we cannot calculate the error because the MD vanishes in most simulations

altogether. Both curves of relative error for the estimation of the cohesionless px,calc and the

cohesive pressure p∗
x,calc have a robust minimum around a threshold value of 80th percentile.

Hence, varying the threshold value between the 70th percentile and the 90th percentile does

not influence the outcome of our results considerably. The change in the extent of the MD in

these bounds of the threshold is visualized in Figure B.5, analogous to Figure 4 b in the main

article.
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Figure B.5 – Sensitivity of the MD extent on the MD threshold value. Panels a, b and c show the
MD extent for threshold values of 70th, 80th and 90th percentile, respectively.
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B.5 Impact pressure calculated from reported drag forces in the lit-

erature

Existing literature on the interaction of granular materials and immersed intruders moving

relative to each other often report the drag force exerted on the intruder by the granular

material. In our main article we are mostly concerned with the average impact pressure on

an obstacle exerted by the granular flow. We find that the average impact pressure decreases

non-linearly for increasing obstacle widths. Although it seems counterintuitive at first, this

trend is known to be true for granular snow avalanches Margreth, 2007. In order to find out

whether this behavior is common for various configurations of granular materials interacting

with intruders, we recalculate the reported drag force in the existing literature Kumar et al.,

2017; Hilton and Tordesillas, 2013; Panaitescu et al., 2017 as the average impact pressure

and plot them as a function of the intruder’s characteristic size in Figure B.6. The results in

Figure B.6 clearly confirm the trend of decreasing impact pressure for intruders of increasing

width.
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Figure B.6 – Impact pressure calculated from reported drag forces from the literature. Panels a,
b and c show the data from Kumar et al., 2017, Hilton and Tordesillas, 2013 and Panaitescu
et al., 2017, respectively.

B.5.1 Impact pressure scaling law for cohesive avalanches

In an earlier paper Kyburz et al., 2020, we found that the impact pressure increase due to

cohesion depends on the competition of cohesive and inertial forces of the impacting granular

flow. Hence, according to Eq. (B.1) the pressure exerted by a cohesionless flow with the

same flow height and velocity px,calc can be multiplied by a factor fcoh(qBo,F r ) to obtain the

impact pressure p∗
x,calc of an equivalent but cohesive flow. For a specific obstacle geometry

the factor fcoh(qBo,F r ) is a unique function of the ratio of the Bond and the Froude number

qBo,F r = Bo/F r Kyburz et al., 2020. The dimensionless Bond number Bo =σcoh/pcon f is the

cohesive strength σcoh divided by the confining pressure pcon f Roy et al., 2017, which is the

vertical component of the local stress tensor.
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p∗
x,calc = px,calc fcoh(qBo,F r ) (B.1)

The results from Kyburz et al., 2020 are specific for the geometry of an existing measurement

structure at the “Vallée de la Sionne” avalanche test site in Valais, Switzerland. While we

assume that fcoh varies depending on the obstacle geometry, fcoh could be obtained for

other structure geometries by performing a number of simulations in which the granular flow

velocity and cohesion are varied. Because this is a computationally intensive undertaking, we

use the values found in Kyburz et al., 2020 as an approximation.
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C.1 Simulation procedure

In this section we provide a detailed description of the simulation procedure used to obtain

the simulation results presented in the main article. The procedure is identical to the one used

in our earlier paper (Kyburz et al., submitted), although here we use it not only for constant

velocity over the whole flow height, but also for sheared vertical velocity profiles.

The DEM simulation setup and procedure described in the following is visualized in Figure C.1.

To minimize the computational effort for the simulations, we only consider an isolated volume

of granular material flowing around the obstacle, instead of simulating an entire avalanche

flowing down a slope. Furthermore, we split the simulation procedure into two phases. For

more details on the simulation procedure, refer to (Kyburz et al., submitted; Kyburz et al.,

2020) and the corresponding supporting information.

The flow of the granular material, which mimics the flowing snow avalanche, is imposed by

fixing the streamwise velocity at the up- and down-stream boundaries enclosing the isolated

volume in the streamwise x direction. The streamwise length of the simulation domain in

the x direction is Dx = 11 m in simulations with obstacle widths w ≤ 1.0 m and Dx = 22 m

for wider obstacles to avoid the boundary influencing the flow around the obstacle. In the

y direction, transverse to the flow, the granular material is confined by a periodic boundary

condition. The domain width of D y = 28 m is sufficient to avoid boundary influence for all

obstacle widths. In the vertical z direction the domain height is Dz = 28 m. The particles are

bound to a wall at the bottom by gravity acting in the vertical direction.

In the preparatory phase I, we establish the particle flow around the obstacle. At the beginning

of a simulation the obstacle is placed inside the volume of granular material. To avoid large

interpenetrations of the obstacle walls and particles, the particles in the volume occupied by

the obstacle and it’s vicinity are removed. Hence, the obstacle is initially partially immersed

in the granular material, but not yet in physical contact with it. We initialize all particles

starting with an initial velocity in the streamwise direction, which corresponds to the boundary

velocity. We launch the simulation from the initial state until a target period ∆t1 is simulated.

In this phase I, the boundary velocity is implemented by fixing the streamwise velocity of
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the particles at the up- and downstream boundaries of the granular volume. Meanwhile

the particles between the boundaries can interact freely with each other and the obstacle.

After ∆t1 is simulated, we generate new particles at the upstream boundary of the system

and delete existing particles at the downstream boundary. We repeat phase I three times

until the particles are flowing around the obstacle rather than impacting it directly and thus

have formed a mobilized domain. However, due to the periodic generation of particles at the

upstream boundary, we observe impact pressure fluctuations on the obstacle.

Because in phase II we start to register the impact pressure on the obstacle, which is the main

result of the simulations, we want to avoid these fluctuations from phase I and therefore let

the particles flow continuously. Hence, in phase II we use a larger simulation period ∆t2 >∆t1

during which the granular mass is flowing continuously. To impose the desired velocity of

the avalanche scenario on the freely moving particles, we use rigid walls moving at the speed

of the boundary velocity. As a consequence of the long simulation period ∆t2, the upstream

walls approach the obstacle as the simulation progresses. We therefore limit ∆t2 to avoid any

influence of the upstream boundary on the flow field around the obstacle.

The simulated impact pressure values reported in the main article are the time average of the

impact pressure during phase II.

Dt2

Phase 1

Phase 2

Dt1

3x Dt1

static wall        wall with fixed velocity particles to be deleted newly created particles

free particle free particle with initial velocity particle with fixed velocity

x

z

x

z

Figure C.1 – Simulation procedure in two phases for the example of a vertical shear velocity pro-
file. Phase I (top) with continuous particle generation and deletion at the system boundaries.
Phase II (bottom) with steady flow imposed by the boundary walls.

C.2 DEM parameters

In our DEM simulations individual snow flakes are not resolved as discrete elements, as

this would result in prohibitive calculation times. Hence, the discrete elements correspond

118



Supplementary material for chapter 4 Chapter C

to aggregated snow particles with a particle radius of 32 mm ≤ rp ≤ 48 mm. Therefore, the

physical properties of the elements also correspond to properties of snow granules.

We define the density of the spherical discrete particles as ρp = 500kg/m3. This results in

a mean bulk density ρb of the undisturbed flowing material, which ranges from 361kg/m3

to 379kg/m3 in the plug flow scenarios and from 338kg/m3 to 340kg/m3 in the shear flow

scenarios. For the particles’ Young’s modulus, we use a value of E = 105 Pa.

Aside from the particle properties, in DEM the material behavior also heavily depends on

the contact law, which specifies how particles interact with each other. Here, we use the

parallel-bond model, which has been used in other studies to simulate avalanches and snow

on various scales (Steinkogler et al., 2015; Bobillier et al., 2020; Gaume et al., 2015b; Kyburz

et al., 2020).

The contact model consists of two parallel components, whose individual force contributions

are summed to obtain the contact force between two particles. The first is a linear viscoelastic

component consisting of a spring and a dashpot in the normal direction, as well as a spring

and a coulomb friction limit in the tangential direction. The contact stiffness of the spring is

calculated via the particle’s Young’s modulus and the friction force using a friction coefficient

of µ= 0.5. The second, cohesive component is a bond connecting the particles. The bond acts

mechanically like a beam and can sustain tensile, bending, shear and torsional forces. Hence,

the cohesion of the granular material is controlled by the strength σcoh of the cohesive bond,

which we vary according to the selected avalanche scenario (see main article). For the bond’s

Young’s modulus, we use the same value as for the particles. In our simulations, a cohesive

bond is formed whenever two unbonded particles become in contact.

For more in-depth information on the particle and contact law properties, please refer to the

supplementary material of our earlier paper (Kyburz et al., 2020).

C.3 Pressure calculation for real avalanche scenarios: parameter

choice

In order to calculate the impact pressure profiles shown in Fig. 9 of the main article, we use

the following values and assumptions:

• Co : We set Co = 2.0 for the wall and the wedge, who’s frontal surfaces facing the

avalanche are flat, as well as Co = 1.65 for the pylon obstacle.

• Cw : We set Cw = 1.7 for the pylon, Cw = 2.0 for the wedge and Cw = 1.6 for the wall in

the warm plug regime. Although the sensor on the pylon is smaller than the structure

width, we consider the whole structure width to be representative of the pressure in the

warm plug regime (Sovilla et al., 2016). In the cold dense regime we set Cw = 1 for all

obstacles.
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• Density: We choose densities of 375kg/m3 and 340kg/m3 in the warm plug and cold

dense regime, respectively. These values correspond to the mean of the ρb ranges in the

respective regime (see Table 1 in the main article).

• Velocity: For the velocity v , we consider the approach velocity far from the obstacle,

where the avalanche flow is not influenced by the presence of the obstacle. In the simu-

lation this corresponds to the imposed boundary velocity, which is slightly higher than

the velocity measured directly at the pylon obstacle.

• Cohesion: In the warm plug flow, we take the effect of cohesion into account by using

the scaling law from Kyburz et al. (2020). For the warm plug flow we obtain fcoh = 1.94

and for the cold shear flow fcoh = 1.0.

• Vertical velocity and pressure profiles: In the gravitational regime, we assume that the

impact pressure increases linearly from 0 kPa at the free surface of the flow to 2 px at

the bottom of the flow (Wieghardt, 1975; Sovilla et al., 2010; Sovilla et al., 2016). In the

inertial regime, the pressure is proportional to velocity squared. Hence, we calculate the

pressure profile proportional to the imposed boundary velocity profile, which increases

linearly from 0 m/s at the bottom to the maximum velocity at the free surface of the

flow.
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