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Abstract

The emergence of digital technology is changing education in many ways. A particularly

interesting aspect of this transformation is the development of learning environments that

can automatically adapt to individual students and can collect data in order to automatically

improve themselves. How a learning environment should adapt to students is dependent

on the pedagogical approach. In this thesis, we contribute to adaptive and self-improving

learning environments that support students during inductive reasoning activities. Inductive

teaching is a pedagogical approach that yields very beneficial outcomes for students, but

has not received sufficient technological support. Using inductive reasoning, students infer

general rules or concepts from observations. This pedagogical approach is motivated by

the idea that learning outcomes will increase when students construct the knowledge by

themselves.

First, we contribute to student modeling and self-improvement for learning environments. We

share the results of a study that we conducted using data collected in several large classrooms.

We develop a mechanism that collects data, estimates the progress of students and predicts

in real-time their future progress. The goal of our approach is to aggregate the predictions

to support adaptive decisions by teachers in classrooms. Moreover, we share the results of

a second study with MOOC students. We use a generative model, based on a Semi-Markov

Chain, to model and simulate sequences of actions taken by students on the MOOC platform.

Additionally, based on observations of students from arbitrary Bayesian models, we propose

and analyse a self-improving algorithm relying on Thompson Sampling optimisation that

maximises students learning outcomes over time.

Second, we contribute to the analysis of inductive teaching and individual differences in

inductive reasoning. We report results on an experiment with 222 students solving tasks of

categorisation of images. Our study revealed that students individually differ in how they

choose to classify examples based on feature differences between the examples. We define the

individual differences of students as their inductive bias. This result motivates the importance

of adaptivity in the selection of examples during inductive learning activities. Additionally, we

analyse how much students change their inductive bias when confronted to negative feedback.

We find that students are influenced by the feedback, but that this influence decays after a

short period of time.
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Abstract

Third, we contribute multiple algorithms that constitute together the necessary components

of an adaptive and self-improving learning environment for inductive teaching. Notably, we

designed algorithms for a learning environment to extract representations of students’ biases

from data, estimate and trace individual students’ biases, and to optimally select personalised

examples for an inductive learning activity.

Finally, we conclude by describing the concept of probabilistic testing as a promising assess-

ment mechanism for inductive learning environments. We provide preliminary observations

and theoretical results for the use of probabilistic testing in the context of adaptive inductive

teaching. In particular, by using probabilistic tests, a learning environment can estimate more

quickly students’ inductive biases.

This thesis includes multiple computational methods in learning analytics, student modeling,

adaptive teaching, and self-improvement. We apply these methods to different aspects of

learning environments for inductive teaching. When looked at closely, the process of inductive

reasoning reveals an incredible epistemological depth. Undoubtedly, inductive teaching has

the potential to improve educational technology and deeply benefit students.

Key words: Learning Environment, Learning Analytics, Adaptive Teaching, Self-Improvement,

Bayesian Student Models, Bayesian Inference, Inductive Teaching
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Résumé

L’émergence des technologies digitales change les méthodes d’éducation de nombreuses

façons. Un aspect particulièrement intéressant de cette transformation est le développement

d’environnements d’apprentissage qui peuvent automatiquement s’adapter à chaque étu-

diant et recueillir des données afin de s’auto-améliorer. La manière dont un environnement

d’apprentissage doit s’adapter aux étudiants dépend de l’approche pédagogique. Dans cette

thèse, nous contribuons au développement d’environnements d’apprentissage adaptatifs et

auto-améliorants qui soutiennent les étudiants lors d’activités de raisonnement inductif. L’en-

seignement inductif est une approche pédagogique qui produit des résultats très bénéfiques

pour les étudiants, mais qui n’a pas reçu à ce jour un soutien technologique suffisant. En

utilisant le raisonnement inductif, les étudiants déduisent des règles ou des concepts généraux

à partir d’observations. Cette approche pédagogique est motivée par l’idée que la qualité de

l’apprentissage augmente lorsque les étudiants construisent eux-mêmes leurs connaissances.

Dans un premier temps, nous contribuons à la modélisation des étudiants et à l’amélioration

automatique des environnements d’apprentissage. Nous partageons les résultats d’une étude

que nous avons menée à partir de données recueillies pendant plusieurs cours universitaires.

Nous développons un mécanisme qui permet de collecter des données, d’estimer le progrès

des étudiants et de prédire en temps réel leur futur progrès. L’objectif de notre approche est

d’agréger les prédictions afin de soutenir les décisions d’adaptation des enseignants dans

les salles de classe. De plus, nous partageons également les résultats d’une deuxième étude

avec des étudiants de MOOC. Nous utilisons un modèle génératif, basé sur une chaîne semi-

markovienne, pour modéliser et simuler des séquences d’actions adoptées par les étudiants

sur la plateforme de cours en ligne. En outre, sur la base d’observations d’étudiants à partir

de modèles bayésiens quelconques, nous proposons et analysons un algorithme d’auto-

amélioration reposant sur l’algorithme d’optimisation, Thompson Sampling, qui maximise

les résultats d’apprentissage des étudiants dans le temps.

Dans un second temps, nous analysons l’enseignement inductif et les différences individuelles

dans le raisonnement inductif. Nous rapportons les résultats d’une expérience impliquant

222 élèves résolvant des tâches de catégorisation d’images. Notre étude a révélé que les

élèves diffèrent individuellement dans la façon dont ils choisissent de classer les exemples en

fonction de leurs différences de caractéristiques. Nous définissons les différences individuelles

des élèves comme le biais inductif propre aux élèves. Ce résultat souligne l’importance de

v
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l’adaptabilité dans la sélection des exemples lors des activités d’apprentissage inductif. Afin

de mieux connaître ce qui influence les étudiants, nous analysons dans quelle mesure les

étudiants modifient leur biais inductif lorsqu’ils sont confrontés à un retour d’information

négatif. Nous constatons que les étudiants sont influencés par le feedback, mais que cette

influence diminue après une courte période de temps.

Dans un troisième temps, nous proposons plusieurs algorithmes qui constituent ensemble les

composantes nécessaires d’un environnement d’apprentissage adaptatif et auto-améliorant

pour l’enseignement inductif. Nous avons notamment conçu des algorithmes pour un en-

vironnement d’apprentissage permettant d’extraire des représentations des biais des élèves

à partir de données, d’estimer et de retracer les biais de chaque élève et de sélectionner de

manière optimale des exemples personnalisés pour une activité d’apprentissage inductif.

Enfin, nous concluons en décrivant le concept de test probabiliste comme un mécanisme

d’évaluation prometteur pour les environnements d’apprentissage inductif. Nous fournissons

des observations préliminaires et des résultats théoriques pour l’utilisation des tests probabi-

listes dans le contexte de l’enseignement inductif adaptatif. En particulier, grâce à l’utilisation

de tests probabilistes, un environnement d’apprentissage peut estimer plus rapidement les

biais inductifs des étudiants.

Cette thèse propose de multiples méthodes algorithmiques dans des domaines tels que

l’analyse de données, la modélisation de l’étudiant, l’enseignement adaptatif et l’améliora-

tion personnelle. Nous appliquons ces méthodes à différents aspects des environnements

d’apprentissage pour l’enseignement inductif. Lorsqu’on examine de près le processus de rai-

sonnement inductif, il révèle une incroyable profondeur épistémologique. Il ne fait pour nous

aucun doute que l’enseignement inductif a le potentiel d’améliorer la technologie éducative

et d’être profondément bénéfique pour les étudiants.

Mots clefs : Environnement d’apprentissage, Analyse de données, Enseignement personnalisé,

Auto-amélioration, Modélistation d’étudiants, Inférence Bayésienne, Enseignement inductif
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1 Introduction

The rise of digital technology has transformed education in an irreversible way. Changes

are continuously occurring, and there is an incredible opportunity to continue to improve

education by investigating how we can leverage digital technology. A recent example of the

importance of digital technology for education is the still ongoing Coronavirus disease (Covid-

19) pandemic, which has forced all the universities in multiple countries around the world

to transition to online teaching and, as a consequence, to rely nearly exclusively on digital

technologies. Another example of this transformation is the growing number of Massive Online

Open Courses (MOOCs). MOOCs have quickly become an important topic in education by

attracting several millions of learners from around the world. Additionally, they have attracted

the attention of the educational research community, because researchers seek to improve the

learning experience of the numerous students in MOOCs and because of the large amounts of

learning data that can be collected and analysed. It is fair to say that digital technology has

both transformed educational practices and research.

A particular aspect of the digital transformation is the availability of computational methods

that are a central theme of the thesis. The MOOC hype coincided with the emergence of

Big Data and the broad use of applications of Machine Learning (ML) within educational

technology. Many researchers employ novel computational methods to build models of

high predictive performance to discover new insights for the learning sciences [14, 106, 221].

This thesis results from this wave of change and seizes the opportunity brought by novel

computational methods.

Throughout the thesis, we will classify a learning environment as any system that participates

in the interaction with students with a teaching objective. For example, a classroom with

a professor is a learning environment as is a private tutor, a MOOC, an Intelligent Tutoring

System (ITS), or a notebook with a pen. If digital technology is used in a classroom, then the

combination of the technology and the classroom is the learning environment. The focus

of this thesis is on learning environments that are at least partly digital. In this introduction

we will define multiple tasks that an adaptive and self-improving learning environment must

perform in order to teach well. Throughout the thesis, we aim to provide technological

1



Chapter 1. Introduction

solutions to build digital systems that perform these tasks automatically.

A learning environment is adaptive if it interacts differently with the students based on their

individual differences, such as knowledge, reasoning ability, or learning style. The goal of

an adaptive learning environment is to improve teaching by providing personalisation. A

challenge in this domain, which has been known for several decades, is Bloom’s two sigma

problem [24]. Bloom observed that students who receive individual tutoring perform on

average better than 98% (two standard deviations) than students who do not. Thus, the

challenge is to build automated systems that are able to teach individual students at least as

well as a tutor without the high cost and small scale of human tutoring. Digital technology has

brought multiple opportunities to achieve this goal in many areas of education, notably using

ITSs [54, 171, 182, 243].

A second goal of the thesis is the concept of self-improving learning environment. Once a

learning environment is built and used by students and teachers, there are often possibil-

ities for improving it. A learning environment is self-improving when the mechanisms for

improvement are automatic and embedded into it. Self-improvement can take many forms.

In the thesis, we focus on the improvement of the adaptivity mechanism in the learning

environment.

Different approaches to teaching have benefited differently from the opportunities of digital

technology. For example, adaptive teaching has been implemented within ITS with a focus

on mastery learning [56]. An interesting distinction can be made between deductive and

inductive teaching approaches. Both with or without digital technology, the majority of

teaching is done deductively. Yet, there have been examples of ITS that improved students’

learning by using inductive methods [65, 219, 218]. However, these examples only aimed

to adapt whether or not to use inductive activities and not to adapt the inductive activities

themselves. More research in this area will benefit the study and practice of inductive teaching.

As the focus of the thesis, we chose to study adaptive and self-improving mechanisms for

learning environments using inductive teaching. We hope that our contributions will motivate

the development and use of such technology and benefit students.

In this introductory chapter, we define the concepts of the thesis and point towards the

different chapters. In Section 1.1, we describe the landscape of opportunities enabled by digital

technologies. In Section 1.2, we define the key problems that adaptive learning environments

have to solve. In Section 1.3, we define the notion of a self-improving learning environment. In

Section 1.4, we focus on inductive teaching. Finally, in Section 1.5, we summarize the outline

of the thesis.

1.1 Opportunities from Digital Technology

Countless fields of research are being revolutionised by digital technology including biol-

ogy, chemistry, and theoretical physics. Research in education is not an exception to this
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phenomenon. This section focuses on five particular aspects of this transformation that are

relevant for the different works presented in this thesis. These five aspects are the development

of new user interfaces, the connectedness between learners and the learning environments,

the increased scale, the possibility to analyse the learning processes through learning analytics

and the possibility to automate high quality teaching through artificial intelligence.

Although the thesis focuses primarily on the aspects of learning analytics and artificial intel-

ligence, the three other aspects are nevertheless important to take into consideration. The

opportunities in all five areas that we discuss below are not independent from one another.

For examples: the user interfaces are important to consider for a learning environment that

seeks to connect students; the scale of a learning environment is important to collect large

quantity of learning data, which enables to benefit more from artificial intelligence methods;

artificial intelligence allows us to optimise user interfaces.

1.1.1 User Interfaces

With the advancements in digital technology, novel user interfaces have been developed in

order to enable a wide range of new learning experiences that benefit students’ learning.

These interfaces include virtual reality [60], robotics [170, 105], and tangible interfaces [250].

Another type of interface is real-world computer-simulations [121, 224] that have been used

in physics [202] to teach concepts such as velocity and acceleration [111] or in chemistry [118].

MOOCs are also a new type of user interface enabled by digital technology. Never before would

students have imagined that the classroom teacher would have three buttons to pause, slow

down, or backtrack. Finally, simple paper tests such as Multiple Choice Question can now be

automatically distributed online and automatically graded with a lot less effort from teachers

and teaching assistants.

This thesis does not focus on the design of improved user interfaces for education, yet it is

a line of work complementary and equally important. Additionally, the author participated

in the design of the educational platform FROG [92], which is used to teach live classrooms.

FROG has the concept of interface at the core of its implementation. Using FROG, the teacher

plans a lecture by sequencing several activities, which correspond to different interfaces for

the students, such as chats, quizzes, programming interface, or simulations.

In Chapter 8 we also describe a different user interface for MCQs which changes the answering

mechanism in order to collect more detailed information from students and to be able to

better adapt to their knowledge states.

1.1.2 Connectedness

A second benefit of computational technologies is the increased connectedness between

students to all parts of the learning environment. We define connectedness as any exchange of

information. For examples, two students must be connected in some way to do a collaborative
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activity, or a learning environment must connect data from students to the teacher to show a

dashboard describing students’ performance. Notably, the work that we detail in Chapter 2

relies on being able to connect data from the whole classroom in real-time in order to analyse

more precisely the data from individual students.

Digital technology led to the emergence of the field of Computer-Supported Collaborative

Learning [68] thanks to the new possibility for connecting students during learning activities.

Notably, one of the FROG platform’s main focuses is collaboration between students [93]. This

is achieved through multiple mechanisms. Firstly, automatically forming small groups of

students and connecting them through a collaborative activity such as a chat, a synchronised

text editor, or a brainstorming interface. Secondly, students are connected through the output

of their work, which can be used in subsequent activities during the lecture (for example,

through peer reviewing). Finally, when using the FROG platform, all the students are connected

to the teacher through real-time dashboards that allow the learning environment to provide

information to support the teacher’s decisions.

With digital technology, separated parts of the learning environment are now connected

in ways that were impossible before. These connections can make tasks, which required

previously large efforts, instantaneous using automation. Examples of such connection

between multiple parts of a learning environment can be found in the GLUE!-PS research

project [184] or the orchestration workbench developed by Phiri, Meinel, and Suleman [179].

Connectedness through digital technologies also means that students do not need to be

physically present to receive instruction. The field of distance learning strongly relies on

digital technology to provide high quality instruction. Notably, FROG, through the use of digital

technology, allows one to enhance both students’ cognitive activities and social presence in

online classrooms [167].

1.1.3 Scale

A third impressive transformation of learning environments is that they have allowed for

education to be provided at scale. Platforms for Massive Open Online Courses (MOOCs) such

as Coursera1 or EdX2 were motivated by the widespread access to the Internet. As of today,

hundreds of universities have partnered with such platforms and have accumulated tens of

millions of course registrations. One of the main motivations for developing MOOCs is the

incredible number of students that can be reached. With courses counting several tens of

thousands of participants, MOOCs bring the opportunity to multiply the teaching output

of teachers. Beyond MOOCs, an increasing number of online learning platforms such as

Khan Academy3, Brilliant4, or Duolingo5 have reached millions of learners around the world.

1https://www.coursera.org/
2https://www.edx.org/
3https://www.khanacademy.org/
4https://brilliant.org/
5https://www.duolingo.com/
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Social Networks also attract pedagogical content that reaches millions of learners every day.

For example, the Youtube channel 3Blue1Brown6, which published hundreds of videos on

advanced mathematical concepts, has millions of views on each video on average.

These new possibilities led to the emergence of the research field of Learning at Scale, which

specifically studies learning environments with a high ratio of learners to facilitators, such

as MOOCs or ITSs [199]. The scale and reduced number of facilitators per student is made

possible by the technological automation of multiple tasks necessary to the learning environ-

ments. We analyse, in Section 1.2, what some of these tasks are and contribute, in the rest of

the thesis, methods to automate them.

1.1.4 Learning Analytics

An additional advantage of digital technology for education is the possibility to automatically

collect and analyse data from learners. These practices are studied within the research field of

Learning Analytics [14] and the closely related field of Educational Data Mining [15], which are

a central theme of this thesis. Examples of data collection enabled by digital technology range

from click-streams in MOOC videos [133], interactions with robots [164], eye-tracking [213],

and measuring head-motion [188]. Combining these data streams led to the sub-field of multi-

modal learning analytics, which aims to analyse data combined from multiple sources to better

understand the learning processes [23]. As a consequence, digital learning environments can

rely on data from two sources. The first is data from the usual learning activities of students

as they transitioned from being done on paper to the computer. The second is data from

new measurement tools. These are not required by the learning activities, but can bring an

additional level of measurement, which can be beneficial to analyse and optimise the students’

learning process.

Moreover, our ability to analyse the data and leverage it has been transformed. Computational

methods have raised an unprecedented opportunity to improve our understanding of learning

and students [106]. The prediction of students’ behaviour and outcomes has become a very

popular research subject. Indeed, looking into the method and results of these prediction

algorithms often gives insights on the dynamics of students’ learning processes [57, 247, 251].

We discuss this further in Chapter 3. Additionally, learning analytics methods can be used to

improve learning environments. For example, teacher dashboards help teachers make more

informed decisions in their teaching process (See Chapter 2), but also help teachers with the

assessment of students [152, 197].

1.1.5 Artificial Intelligence

A last benefit from digital technology that is the most relevant to the scope of this thesis is the

opportunities to improve learning environments using Artificial Intelligence (AI). We men-

6https://www.youtube.com/c/3blue1brown/videos
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tioned previously that individual tutors can help students perform two standard deviations

above the level of students who do not receive tutoring [24]. That is because the tutor very

efficiently adapts to the student and is able to provide personalised teaching that maximises

the student’s learning gains. AI in many domains imitates human intelligence for numerous

tasks. In the context of education is the research field of Artificial Intelligence in Education7

(AIED), which includes a large corpus of research on ITSs [210].

There is no reason for an adaptive and self-improving learning environment to be limited

to the capabilities of individual tutoring with a human tutor. Computational methods have

shown capabilities beyond humans at games such as Chess, Go [220], or Atari [12], and experts

tasks such as medical imaging [107] and mental health diagnosis [74]. This thesis aims at

designing systems with the ability to adapt to students’ knowledge and reasoning and teach

potentially better than a personal tutor. This goal has, within the research community, not

yet been fully achieved. Yet, we believe the work of this thesis is one step on this fabulous

endeavour for improved educational systems.

In this introduction, we will not discuss in precise details the use of AI in education, because

that is a topic that we address in the following chapters of the thesis. In particular, we design

and analyse mechanisms using ML methods to provide high quality personalised teaching.

Indeed, AI is a key component for adaptive and self-improving learning environments.

1.2 Adaptive Learning Environments

Adaptive learning environments, although they can be easily defined as providing personalised

teaching to individual students involve a number of complex mechanisms. In this section,

we decompose adaptive teaching in multiple parts: modeling students’ states, providing

learning activities, observing students’ performance and behaviour, tracing students’ state

transitions and optimising the teaching strategies. Our decomposition is displayed on Figure

1.1. In this section, we explain the importance of each part and how they are connected. The

decomposition helps us better understand the problem of adaptive teaching and is used as a

framework to guide our contributions in the following chapters of this thesis.

The decomposition can be used to explain how a teacher adapts to the students. First, before

the beginning of a lecture, the teacher will have an idea of what the students already know of

the course material. Then, the teacher will provide learning activities such as listening to the

lecture, working through exercises, or answering a multiple-choice test. During and after the

activities the teacher will observe students behaviour and performance. For example, the level

of noise in the classroom or the number of correct answers to a multiple-choice test. Based on

these observations, the teacher will trace the evolution of students’ knowledge and will seek to

optimise the rest of the lecture accordingly.

7https://iaied.org/
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Figure 1.1 – Division of the problem of adaptivity into sub-problems

1.2.1 Modeling Students’ States

Self [210], in the context of ITSs, mentioned that student models are necessary for a learning

environment to care about the students. Student models are algorithmic representations of the

states of students [211]. Generally, a student state observable behaviour or performance of the

student and how the student can transition to different states when interacting with a learning

environment. The goal of teaching is, ultimately, to change students, and student models

can be used to measure how students change. Typically a student starts interacting with the

learning environment in a given initial state, and after a sufficient amount of time, the student

should be in a different state. When using a student model, the learning environment will have

certain expectations of what it will observe from the student given the student’s current state.

For example, before learning a skill, the student is expected to not be able to solve exercises,

but, if learning is successful, the learning environment would expect the student to be able to

solve exercises.

Student models are, in general, simplifications and not necessarily very detailed descriptions

of students. A model is considered useful, not because of its complexity, but because it predicts

and explains students’ behaviours or performances well. In Bayesian Knowledge Tracing (BKT)

[55], which has been implemented in multiple ITSs, the state of the student for a given skill is

one of two possibilities: either the skill is mastered or it is not. In other models such as Item

Response Theory [238], Learning Factor Analysis [38], or Performance Factor Analysis [176],

the state of a student is described by a continuous value corresponding to the student’s level of

ability and learning for a given skill. The state of the student does not necessarily correspond

to the students’ knowledge.

Student models are not necessarily restricted to describe students’ knowledge or ability. It

is useful in multiple contexts to model other aspects of the state of the students, such as

their level of effort and motivation [214], their progress through a task (see Chapter2), or their
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behaviour (see Chapter 3).

1.2.2 Providing Learning Activities

The learning activities are the means through which the learning environment interacts with

the students. In MOOCs, the primary activities are watching videos, in-video quizzes, several

kinds of assignments (multiple-choice tests, numerical values or programming exercises)

and forum interactions for seeking help, providing help or discussing interesting aspects of

the course. In a classroom, learning activities can be of multiple types. A few examples are

lecturing, solving problems, practicing exercises, and having interactive discussions. Both

instructors and researchers have worked to push the boundaries of activities that can be done

in classrooms. Digital technology allows for even more possibilities as discussed in Section

1.1.1. FROG is an example of digital platform that seeks to bring richer types of activities

and pedagogical scenarios into the classroom, such as arguing, brainstorming or experiential

activities [92]. The learning activities that a learning environment is able to use are, of course,

a very strong factor in the quality of the teaching it provides.

1.2.3 Observing Students’ Performance and Behaviour

Observing students is a necessary condition to being able to personalise education because

personalisation requires knowing the individual characteristics of a student. The learning

environment could observe only the performance of students (for example, correct or incorrect

answers to questions), or it could observe other aspects of the student behaviour as they are

relevant to adapt the instruction [6]. We mentioned in Section 1.1.4 the multiple sources of

data that can be collected from students that are enabled by digital technology. It is important

to note that collecting data from students in itself does not imply optimal teaching. In the

context of an adaptive learning environment, observations are used to enable adaptivity. In

particular, the design of learning activities must not exclude data collection mechanisms

(Figure 1.1a). It is difficult to imagine a tutoring lesson where the tutor does not ask questions

(data collection mechanism) to assess the student’s knowledge and understanding.

Throughout the thesis, as we design algorithms to model student behaviour and optimise

teaching strategies, we pay a particular interest in the data that the learning environment

observes from students. Additionally, in Chapter 8, we will focus on a particular data collection

mechanism tailored for inductive reasoning (see Section 1.4).

1.2.4 Tracing Students’ State Transitions

Another task that adaptive learning environments must solve is the tracing of students’ state

transitions. As we previously mentioned, student learning is characterised by a change of state.

Tracing state transitions implies that the system must evaluate how learning activities change

students’ states and then infer the new state of the students by potentially using additional
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observations. This is a central aspect of an adaptive learning environment. Tracing happens

in accordance to two mechanisms: the description of the student model (Figure 1.1d) and the

available observations (Figure 1.1b).

One of the most used models for tracing students’ knowledge is BKT [55]. At every step the

student has a chance to transition from non-mastery to mastery and the model estimates

the probability that the student has changed state based on the observation of correct or

incorrect answers. Several models proposed in this thesis approach knowledge tracing in a

similar manner. In particular, in Chapter 3, we provide a model that estimates the individual

behaviour of students in a MOOC, and in Chapter 6, we provide a Bayesian Model for tracing

students’ inductive reasoning approaches.

1.2.5 Optimising the Teaching Strategy

The optimisation of a teaching strategy can be considered to rely on two mechanisms. The first

one is the tracing. To be able to make optimal choices for an individual student the learning

environment will greatly benefit from high quality estimates of the state of the student (Figure

1.1c). The second aspect of the optimisation is more challenging. The learning environment

must choose learning activities that will balance between two different goals: collecting

information about the student’s state and influencing the transition of the student towards

more desired states (Figure 1.1f). Some activities only collect information about the student

(for example, filling a form at the beginning of an online course) and other learning activities

only influence the state of the student (for example, reading a book in the library). Interestingly,

some activities can help both goals simultaneously. This has been the case for example with

in-classroom quizzes for test-enhanced learning [198].

This type of optimisation is well explained with the concept of Partially Observable Markov

Decision Processes (POMDP) that have been shown to compute efficient teaching strategies in

an educational context [190]. Finally, optimisation requires an objective. We will thus assume

that the learning environment has preferences about the possible states of the students (Figure

1.1e).

1.3 Self-Improving Learning Environment

Improving learning environments over time can be a great gain for education in general.

Although we measure improvement of a learning environment in terms of learning outcomes

of students (including the time it takes to achieve these learning outcomes), improvement can

occur in many ways. Several possibilities could be to improve the pedagogical content, the

learning activities, or the parameters of an adaptive teaching strategy.

Outside of digital technology, one can think of multiple examples of pedagogical systems that

improve themselves. For example, a professor accumulating higher quality learning material

9



Chapter 1. Introduction

Figure 1.2 – Example of self-improving problem

every year, or a university that makes use of student feedback to enhance the curricula.

For a digital learning environment to be self-improving, it needs to contain mechanisms

that evaluate different teaching strategies and over time improve the quality of the teaching

strategies that it uses.

Self-improvement differs from adaptivity. While interacting with a student, Alice, an adaptive

learning environment learns about Alice and becomes better at teaching Alice. On the other

hand, while interacting with Alice, a self-improving learning environment slightly improves

its teaching strategy (this is done by analysing the impact of its own teaching on Alice) and

becomes better at teaching the next students Bob and Charlie.

Figure 1.2 provides an illustrative example. An adaptive learning environment might de-

cide that after activity A, students should do either activity B1 or B2, depending on their

performance on activity A. For example, using the comparison of the score with a threshold

X , a previous test with 24 students gave some evidence that X = 33% was a better choice

than X = 66%. At that point an adaptive learning environment will only use the threshold of

X = 33%, while a self-improving learning environment will continue to test different values of

the parameter X and aim to converge to an optimal value after sufficient exploration.

The Exploration-Exploitation Trade-off

Self-improving systems often rely on the ML concept of the exploration-exploitation trade-

off [32]. Exploration consists of the system making decisions that allows it to acquire more

useful information, and exploitation consists of it using the collected information to maximise
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the expected rewards. In the context of education, the goal of a self-improving learning

environment is to select good pedagogical choices while measuring the efficiency of these

choices and exploring enough different possibilities to not miss on the opportunity to discover

better teaching strategies. Always selecting the choice that seems optimal according to the

data collected so far removes the opportunity to discover better choices. Self-improvement

and how it applies in an educational context is discussed in more details in Chapter 4 and

Chapter 7 of this thesis.

1.4 Inductive Teaching

Adaptive teaching is already a thoroughly researched topic. However, countless teaching prac-

tices have been developed and some have benefited less than others from the opportunities of

personalised instruction. In this short section and in several chapters of the thesis, we define

inductive teaching and discuss several interesting aspects of it. As we found that this practice

did not receive much attention in the research on adaptive teaching while it indisputably

deserves it, we chose inductive teaching as the main focus of this thesis.

Induction is the practice of inferring a general rule based on the observation of examples.

Induction is often opposed to deduction. Using deduction, one starts from general rules

and draws conclusions about the examples. These different types of reasoning are both

important and lead to different teaching approaches. When teaching deductively the teacher

will first teach the general rules and theories, then will guide students to apply them on specific

examples. With the inductive teaching approach, students are first presented with examples

and the conclusions and must guess what general rule would explain the given conclusions.

An example of induction consists of showing the 16 shapes on Figure 1.3 and telling a student

that the five highlighted examples are all the squares. The students are then given the task of

finding explanations for this categorisation. Here the explanation "Squares have 4 right angles"

is insufficient because some of the shapes fit that rule but are not highlighted. Hopefully,

students would be able to guess the correct rule: "Squares have 4 right angles and 4 sides

of equal length". The deductive approach to this exercise would be to first tell students that

"Squares have 4 right angles and 4 sides of equal length" and then to highlight all the squares

among the 16 shapes.

Inductive teaching is motivated by the idea that students will more deeply understand and

remember the knowledge they construct by themselves [95]. Additionally, with inductive

reasoning, students not only learn the topic of interest but also practice discovering new

information by themselves [102]. These reasons have made induction an interesting topic of

study for the learning sciences and motivated the focus it is given in this thesis.

Studying how humans reason inductively has been a challenge for ML. The ability of children

to learn new concepts from a very small number of examples is still unchallenged by today’s AI

algorithms [61]. For example, a 12-year-old child who sees two horses for the first time and is
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Figure 1.3 – Example of inductive exercise. Out of 16 geometrical shapes 5 squares have been
highlighted in green.

told the name of these animals would be able immediately to easily recognise other horses. In

ML, the concept of learning from a small number of examples is called Few-Shots or One-Shot

learning and has been a compelling field of research [203]. As most ML algorithms fail to learn

with so few examples, researchers are studying how humans perform such inferences.

Bayesian Inference is one of the most promising approaches for explaining human inductive

capabilities [232]. To justify this modeling step, it is interesting to note that most induction

is probabilistic. Indeed, in general, multiple rules will be satisfactory explanations for the

examples observed. The multiplicity of explanations of observed examples makes inductive

reasoning uncertain. Although there is uncertainty, the confidence in the induced conclusions

can very well be very high. To illustrate this point, we can observe that the explanation to

the categorisation on Figure 1.3 could have been "squares have 4 right angles and 4 sides of

equal length and must be green, red, or blue". A student inferring this rule will later be wrong

when encountering a yellow square, yet nothing in the examples allows one to conclude with

certainty that this second proposition is incorrect. The examples provided might be sufficient

to be quite confident that the color does not matter in the definition of a square, yet, they are

insufficient to be absolutely certain of that conclusion.

We thoroughly define and analyse the mechanisms of inductive teaching and inductive rea-

soning in Chapters 5, 6, and 7 of this thesis. Although several ITS for inductive teaching have

been developed [65, 218, 217], they only personalise the decision of using or not an inductive
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approach, not the inductive learning activity itself. In this thesis, our goal is to design algo-

rithms that would allow one to build learning environments that would adapt the inductive

activities to individual students. Additionally, we seek to make these learning environments

self-improving as they will improve the adaptive mechanism after multiple interactions with

students. Such adaptivity for inductive teaching was missing before our contribution.

1.5 Thesis Outline

The thesis is structured as follows. In Chapter 2 we describe a learning analytics method

for predicting student progress in real-time during activities in classrooms. In Chapter 3 we

analyse ML models for predicting and simulating students’ behaviour. We apply such models

in the case of simulating MOOC students’ behaviours and compare our simulations with a

dataset of 500,000 students. In Chapter 4, we further define the concept of self-improvement

for a learning environment and contribute algorithmic foundations. In Chapter 5, we focus

on inductive teaching, specifically generalisation from examples. We report multiple results

concerning how students generalise depending on different features of examples and how

their reasoning is influenced by feedback. In Chapter 6, we contribute a Bayesian Model for

tracing students’ individual differences and flexibility during inductive reasoning tasks. In

Chapter 7, we further define the model of inductive reasoning and contribute algorithms

for optimal teaching, adaptivity and self-improvement. Finally, in Chapter 8 we analyse an

assessment mechanism specifically tailored to our model of inductive reasoning.

The thesis contains work previously published by the author. Chapter 2 of the thesis contains

work published under [79]. Chapter 3 contains work published under [77]. Chapter 4 contains

work published under [76]. Chapter 5 and Chapter 6 contain work published under [78]. We

duly note that the author of the thesis is the main author in all the work directly reused in this

thesis.
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2 Learning Analytics

One central aspect of this thesis is the concept of learning analytics, which consists of collecting

and analysing data from students. This practice can lead to the development of data-driven

educational technology or improve our understanding of the learning process [15, 14]. In this

chapter, we report on a study that we carried out and led to the development of a learning

analytics tool for lectures in classrooms, which include learning activities on digital devices.

Specifically, our tool estimates and predicts in real-time the progress and completion rates of

students during learning activities in classrooms [79].

Let us consider a simple sequence of two learning activities. First, learners individually solve

a problem. Second, the teacher forms pairs of learners who produced different solutions in

the first activity and asks them to solve a new problem. This scenario is a typical collaborative

script [67]. Now, what happens if the teacher gives the students 10 minutes to complete the

individual activity, but after 10 minutes, only 90% of the students have produced a solution?

This is a frequent problem. The teacher is then confronted with a difficult decision: extend

the time allocated for the first activity or force the transition to the next activity with some

students being paired randomly. This decision constitutes a dilemma: have 90% of the

learners wait (knowing that idle learners will often engage in distracting off-task activities) or

continue without the 10% of learners who do not have a solution. The teacher could make

a more informed decision if a system could provide information such as “the completion

rate of the first activity will be around 96% in two more minutes and 100% in nine more

minutes." This example illustrates the goal of this chapter: predicting completion time to

optimise the timing of transitions between activities. Two key concepts of our contribution

are: classroom orchestration, the management and adaptation of learning activities in real

time to account for events as they occur in the classroom [66, 127, 183], and orchestration

dependency between two activities, A and B, if A sets up logistical conditions for B (e.g., A

produces data used by B, or if A is an individual activity and B involves the whole classroom

simultaneously).

We aim to contribute to classroom orchestration by investigating how we can predict student

progress in real time during an activity to support teachers’ decision-making in their classroom.
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Specifically, we are interested in predicting the progress that students will make over a period of

time and the time of completion of the activity based solely on the actions that have been taken

in the activity, without any previous information. In this way, our model does not have to be

calibrated on a new activity or group of students. Our models were tested on the data gathered

across 12 activities run in four large lectures. By using 12 datasets, we can test the algorithms

across a range of groups and activities to make stronger claims on the generalisability of our

results. Moreover, because we are using data collected during class activities as opposed to in

the lab, our data will follow more authentic completion patterns. The range and authenticity

of the data allow us to investigate the impact that different classroom features have on the

progress and completion predictions.

To resonate with the framework that we presented in the introduction (Section 1.2), we model

the state of students as their progress and completion rate during a learning activity. The

digital platform provides learning activities and also automatically collects progress data from

students, and we predict the evolution of students’ progress over time (the main focus of this

chapter). These predictions are used by the teacher to better optimise the use of time during

the lecture.

The sections of the chapter are organised as follows. In Section 2.1, we discuss related work

supporting and modeling classroom timing. In Section 2.2, we present the formulation of the

problem with the datasets and context presented in Section 2.3. In Sections 2.3.3 and 2.4, we

present our proposed estimators and results, respectively.

2.1 Related Work

2.1.1 Timing Instruction

As our simple example in the introduction illustrated, within formal education settings, the

amount of time for instruction on a certain topic is limited [66, 115], so teachers must con-

tinuously consider how to balance the time spent on any activity so it is most productive for

the class as a whole. However, in the classroom, it can be difficult for teachers to monitor

and track the state of all students. It is important to balance giving students enough time to

work on an activity so that it is useful for their learning with other activities that need to be

accomplished. Normal classroom cues, such as the noise level, may not be appropriate indica-

tors of classroom completion because some students may be discussing the task while others

are engaging in off-task behaviour. These factors make it difficult for teachers to estimate

the appropriate time to switch to the next activity. Learning analytics could be used to help

teachers make these timing decisions.

Within classrooms, there are different classifications of academic learning time at which

different interventions can have different effects [87, 115]. At the highest level is the allocated

(planned for) time that the teacher has provided for the activity. In the classroom, external

constraints can lead to not all of the allocated time being used for instruction [66]. The actual
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time used for an activity in the classroom is the instructional time. Different individual factors

of the students, such as their motivation [148] or prior knowledge, can change how students

interact with the activity, as well as the use of instructional time, which is measured through

the engaged time. Finally, although a student may still be engaged with a task, given the nature

of the task, the student may no longer be productive, leading to a reduction in the successful

and productive learning time. When considering activity transitions in the classroom, the

teacher is working to maximise the engaged and productive learning times of the students.

Across these different levels of classroom timing, researchers have found that an increase

in instructional time has a positive effect on learning [84]. When the instructional time

is limited, students have a reduced ability to develop knowledge integration of complex

topics [46]. Because teachers do not necessarily have control over the amount of time they

have with students during the day, it is important to optimise the instructional time that

they do have. This can be done by decreasing non-instructional time, such as transitions

between classes or activities, which, through support, has been shown to increase time on task

[36, 101, 256]. Learning in the classroom can also be supported by influencing the engaged

time and successful and productive learning time. For example, when the time limits for an

activity are explicitly announced, students increase the number of tasks completed without

reducing their accuracy [194, 238, 239]. However, students still do not all work at the same

pace and may become disengaged when they complete a task.

Within the literature, the primary way that student pacing is addressed is through individual

personalised learning [229, 255]. In personalised learning, students work at their own pace

and on topics that benefit their learning. Although time is still limited in the classroom,

each student can potentially use this time optimally. However, within personalised learning,

students often work individually, but once dependencies are introduced with other students

in the class, timing matters again. For example, when students are working collaboratively

or as a whole class, they depend on group members or classmates to be ready for the activity.

Even on an individual level, such as with peer grading, there may be dependencies where

students rely on other students to be ready before they can continue to the next activity. These

dependencies can lead to off-task time, where some students finish early and have to wait

for other students to be ready. Even giving students a productive task to work on during this

time may still have a negative impact [69]. To reduce this wait time, teachers need to be able

to make informed decisions about when to move to the next task that are optimised for the

entire class.

2.1.2 Progress Awareness Tools

To support teachers in optimally deciding when to move to the next task, there needs to be

support for classroom orchestration. The definition of classroom orchestration includes the

management and adaptation of learning activities in real time to account for events as they

occur in the classroom [127, 183]. Although learning activities are often planned in advance,
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variability occurs in the classroom that must be accounted for in real time. Two examples of

this variability are groups needing to be changed because a student is absent and students

taking more or less time on an activity than planned. In these cases, the teacher plays a central

role in assessing the current state of the classroom and adapting the learning activity to fit the

current needs of the students, given the external constraints of the learning environment (e.g.,

limited time, physical classroom environment) [66, 70].

When helping teachers make decisions about when to have an activity transition, current

orchestration systems and teacher dashboards account for activity progress in one of two

ways: tracking student progress and tracking the passage of time. One metric that teachers can

use to understand when students should switch to the next activity is students’ progress in the

current activity. Only when a student has completed the current task can they move on to the

next. The progress that students are making is not always visible to teachers. Visualisations

can be used to increase teachers’ awareness of student progress [222, 248]. One method of

visualising progress is to use mastery grids or heat maps [141]. Mastery grids and heat maps

display a grid of students and different activities. Each square represents the progress that a

specific student has made on a specific activity. This visualisation allows the teacher to quickly

assess how far students or a class have progressed through a set of activities and where they

may be struggling. These visualisations are often used after the fact for reflection [41, 244] but

have also been used in real time for teachers to track student progress to better understand

which students may need more teacher support [162].

Although both student progress and the passage of time provide different types of information

to the teacher, they have not often been combined into one visualisation. In some tools, the

teacher can track student progress and time through separate visualisations [151]. However, in

these systems, the teacher is still responsible for interpreting the visualisations separately and

then combining the information. Additionally, these visualisations do not provide a prediction,

meaning that the teacher can only make decisions based on the current state of students,

which is often too late. In this chapter, we aim to develop models that combine the aspects

of time, progress, and prediction. In other words, through the information provided by the

model, the teacher could determine the expected progress that the class will have made in

three minutes (or any given amount of time) or how long until the class has reached 95%

progress (or any given progress), which is not possible with current methods.

2.1.3 Modeling Student Behaviours

In terms of analysing time, the focus has primarily been on finding patterns in student habits

or in predicting completion. When students are working in a self-paced environment, such as

when learning in a MOOC, they can determine their own schedules and when to work. What

time during the day, during the week, and across the whole course students choose to work

has been found to be related to learning outcomes and performance [27, 82]. However, these

models primarily attempt to find patterns in how students use their time rather than predicting
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timing. Other research has focused on the overall goal of whether students will complete a

course [57, 62]. Using features of student activity while learning, such as clickstream data

or prior test scores, we can predict student completion of a class or program. Although this

research relates to completion, it relates more to the concept of whether a student will reach

completion rather than when they will reach completion.

Real-Time Predictions

Prediction algorithms are one of the most popular methods in learning analytics and edu-

cational data mining. Prediction methods allow us to infer a predicted variable based on

other variables in the data. They have been used to predict future events, such as student

completion/dropout [57, 62] or knowledge tracing and formative assessment [81, 160, 176],

or to predict variables that may not be feasible to collect in an educational setting, such as

engagement [18] or affective states [73].

Using prediction methods in real time, interventions can be put in place before it is too late

to have an impact on the student’s learning. A well-known application of predictions in real

time is Bayesian Knowledge Tracing [55] to track student knowledge while using an intelligent

tutoring system. Based on this knowledge tracing, new problems for the student can be chosen

to match their skill level [242]. Making predictions in real time has unique challenges in that

the data used for the prediction has to be easily accessible. In many systems, log data is used

even when predicting more complex phenomena. For example, response times can be used to

predict engagement [18], student actions can be used to detect student misuse of software

[13], and affective state can be inferred from conversational cues [73]. Using log data allows

models to be developed in a non-intrusive way while still being able to be used in real time.

Real-time predictions require appropriate data processing and restrictions to support the

algorithms and students’ models. For example, predicting next week’s dropout in MOOCs can

only be done with the data collected for the current week and the previous weeks, but never

with the data from future weeks [230]. A solution to this problem has been to use transfer

learning [29, 251]. Transfer learning allows us to train models using data from the final weeks

of previously finished MOOCs and use this acquired knowledge to correctly predict students’

behaviour for the final weeks of the currently running MOOC. Another proposed solution uses

proxy labels in real time from already collected data to train algorithms to predict future data

[251]. Our approach in this chapter faces the same difficulty in its real-time predictions. The

estimators we propose cannot compute optimal parameters due to unknown future data. We

apply methods similar to proxy labelling by training our algorithms solely on data collected

during the current activity in the classroom (see Section 2.2.3 for a more detailed description of

our method of handling the real-time aspect of our data collection and prediction mechanism).
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Aggregating Classroom Information

Before a visualisation can be developed to be displayed to a teacher, we first need to be able to

accurately model classroom behaviours. In the areas of research on educational data mining

and learning analytics, models of students have a predominant place. Many of the methods

focus on finding different patterns in the data that can be used to provide teachers with

more information and to inform their decisions in their classroom [14]. When used to make

visualisations, the outputs can be interpreted by humans to make decisions. The majority

of models that are developed target modeling individuals, which can be limited for making

classroom-level decisions. When information is aggregated, it may be to show the collective

student knowledge to get a more complete picture of what the class knows as a whole [222].

Additionally, aggregated data can be used to see overall class patterns, such as average activity

and actions when video watching [247] or the behaviours that students engage in across a

course [112]. Although these methods can provide useful information about student behaviour

and actions over time, they cannot make predictions based on students’ previous and current

actions.

2.2 Formulation of the Problem

The problem addressed in this chapter consists of designing estimators to predict the future

progress of students during activities in the classroom. Specifically, we focus on tasks that

can be divided into discrete steps, such as quizzes, as opposed to open-ended tasks, such

as essays or code writing. The estimators described in Section 2.3.3 below can be used in

any learning environment that automatically extracts estimates of students’ progress in real

time. In technology-enhanced classrooms, this extraction can easily be integrated into most

learning software.

Before describing the estimators of students’ progress in Section 2.3, we first discuss the key

aspects of the problem. In Section 2.2.1, we define the concepts of progress, progress rate, and

completion and explain the context in which our estimators will be implemented and used. In

Section 2.2.2, we point to the main factors and challenges influencing the design, in Section

2.2.3 we discuss the specificity of real-time predictions, and in Section 2.2.3 we explain how

data from the whole class can improve estimations of individual students’ progress.

2.2.1 Definition of Progress and Completion

We define the notion of progress using a value between zero and one that estimates how far

through the task students have advanced. A value of zero corresponds to the student not

having started the activity, while a value of one corresponds to the student having completed

the activity. Reaching completion in an activity means that the student has completed all

required subtasks and, thus, will wait until the teacher transitions to the next activity. In this

sense, we can think of the progress as the percentage of the activity that has been completed if
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completion is binary, being either done or not. Progress as a percentage can be interpreted in

two different ways. It can be evaluated according to the percentage of the subtasks completed

or the percentage of the time already passed out of the total time required. Counting the

number of subtasks completed is easily implemented within a learning environment. On

the other hand, we must predict the amount of time students will need so we can measure

their progress in terms of time. Progress in terms of time needed can be a more interesting

measure for the teacher but unfortunately cannot be directly known. For this reason, we

prefer a definition in terms of percentage of subtasks completed. In line with this definition of

progress, we define progress rate as the speed at which a student’s progress is increasing over

time. We assume that a student cannot make backward progress; that is, once a student has

completed a subtask, it remains completed.

We also assume that student progress cannot be actively and precisely measured at all times.

Instead, progress is reported based on milestones reached. When students are working on an

activity, progress may be made both inside and outside the orchestration system. For example,

on a multiple-choice quiz for mathematics, students may use paper to work out the problem

before selecting the solution in the system. As they work on the problem on paper, they are

making progress on the problem that cannot be precisely measured by the system. With our

estimators we restrict ourselves to working with discrete measurements of student progress

that the system is able to provide. As a consequence, we focus on learning activities that

can easily be divided into subtasks. Whenever a student completes a subtask, the system

collects their student ID, time, and progress. For every student with ID s, we then have a set

of tuples (ts,0, ps,0), (ts,1, ps,1), . . . , (ts,n , ps,n). We define the progress at any time t as the linear

interpolation from equation (2.1), where ts,0 is the time when the first log is received, which

corresponds in our case to a progress ps,0 of 0; t is any time during the activity; and ts,k and

ts,k+1 are two consecutive times at which logs are received with the respective progress of ps,k

and ps,k+1:

ps(t ) =


0 if t0 ≥ t ,

ps,k + (ps,k+1 −ps,k )∗ (t − ts,k )/(ts,k+1 − ts,k ) if tk+1 ≥ t > tk ,

pn if t > tn .

(2.1)

2.2.2 Primary Challenges

In an ideal world, all students would complete the activity at the same time and work at a

steady pace. In classrooms, this does not happen because both endogenous and exogenous

pitfalls influence when individual students complete an activity. Challenges in predicting

student progress arise due to these individual differences between students. In this section,

we present some of the primary challenges to predicting progress, including different start

times and varied progress rates between subtasks.
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Variability in Students’ Start Times

A first challenge for predicting student progress is that students do not all start the activity at

the same time for a number of reasons, such as being distracted or taking longer to start their

computer or sign in. For example, Figure 2.1 shows two distributions of the delays of students

for starting an activity. The right distribution shows a majority of students starting the activity

within 20 seconds of the teacher making the activity available. On the other hand, the left

distribution shows a significant proportion of the students starting the activity one or even two

minutes after the activity is made available. These examples demonstrate the range of starting

situations that can occur depending on different parameters in the classroom. Variability in

start times is more of a challenge for teachers, leading to more variability in completion times

and a larger variance in student progress.

0 50 100 150 200
activity time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

pr
op

or
tio

n 
of

 st
ud

en
ts

 p
er

 se
co

nd

Stroop (2018) (120 students)

0 50 100 150 200
activity time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Histogram (c) (171 students)

Figure 2.1 – Examples of distribution of students’ starting delays for two activities in different
classrooms.

Variability in Student Progress Rates

A second challenge is accounting for differences in student progress rates, which are often

a consequence of individual differences. For a wide range of possible reasons, different

students will require different amounts of time to complete a given activity. Knowing this time

distribution of the classroom is a challenge for teachers. A good way to quickly evaluate the

spread of the distribution of individual progress rates is to measure how much more time

the slower students need as a percentage of how much time the faster students use. For this

we can choose, for example, to use the 25% and 75% quartiles of the time distribution to

correspond respectively to our estimate of the time needed by faster and slower students.

Using this measurement, our data from twelve courses (described in more detail in Section

2.3.2) has three courses where the slower students needed more than 50% more time than the

faster students, four courses where the slower students needed between 30% and 50% more
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time than the faster students, and five courses where the slower students needed between

20% and 30% more time than the faster students. The two histograms in Figure 2.2 show two

examples of activities that have different spreads. The distribution on the left corresponds to

one of the courses with a spread of more than 50% according to our proposed measure, and

the activity on the right has a spread of less than 25%. These individual differences in progress

rate again pose a challenge for the teacher to decide how much time to allocate to an activity

when students do not all need the same amount of time.

0 50 100 150 200 250
activity time (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

pr
op

or
tio

n 
of

 st
ud

en
ts

 p
er

 se
co

nd

Dot Plot (c) (143 students)

0 50 100 150 200 250
activity time (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Stroop (2018) (114 students)

Figure 2.2 – Examples of distribution of the time students take to complete two activities in
different classrooms.

Imprecision in Expectations of Time Distribution Between Subtasks

A third challenge comes from the lack of knowledge about the proportion of time that each

subtask will consume out of the total time. In the simplest situation, each subtask has an

equal proportion of the progress if there is no prior knowledge about the tasks, but, in most

cases, each subtask does not take the same amount of time to complete. For example, Figure

2.3 shows the distribution of the proportion of time each student used for each question of

a six-question quiz. We can see on this graph that the average time spent on each question

varies significantly between the students and between the questions. This quiz is an example

of a default progress assignment, with each question receiving an equal amount of progress,

that fails to correctly capture the time students really spend on each subtask. In this example,

the naive assignment would assume approximately 17% of progress for each question, while

we can see from the figure that question 1 had an average time proportion above 25% and the

sixth question of less than 10%.

From our experience in classrooms, we identified several factors that can make students’

progress rate vary during the activity. One factor could be the skills and preferences of students,

which will modify their progress rates accordingly. Additionally, it is not uncommon to design

a quiz where questions become harder over time and, thus, require more time to be solved.
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Figure 2.3 – Distribution of proportion of the time used for a six-question quiz for an activity
that lasted approximately 260 seconds.

Another factor is that students are getting used to the task they are doing, which will increase

their progress rate (in Figure 2.3, we see a general downward trend in the proportion of

time required by students for each subtask). Finally, in class the teacher will also interact

with students either to explain a difficulty or to make them aware of time passing. These

interventions are not often recorded but can affect students’ progress rates. In general, it is not

surprising if not all the subtasks of an activity require the same amount of time to complete.

This poses a challenge for estimating and predicting student progress because it makes it

difficult to extrapolate the time required by future subtasks from the time used on the previous

subtasks.

2.2.3 Real-Time Predictions of Future Progress

To predict students’ future progress, estimators make predictions in real time, implying that

at any given time, the estimators must be able to make predictions based solely on the data

collected until this particular time. Thus, the estimators have to work with a varying amount

of data throughout an activity. At an early stage of an activity, students will have produced

only a limited number of logs, but at a later stage, a number of students will have already

finished and others will have produced a larger number of log messages. The problem of the

prediction for an individual student is illustrated in Figure 2.4. The figure shows five black dots

representing five pairs of time and progress (ts,i , ps,i ), as defined previously. This example

shows an activity with 10 subtasks, so the expected log messages received from the students

will be 0,0.1,0.2, . . . ,0.9, and 1. In this example, so far, the student has only completed 40% of

the activity so has generated logs only up to ps,n = 0.4. Another input used by the predictions

is the current time, represented on the figure as a vertical black line. We call this the time of

prediction and use the notation tpr ed in the rest of the chapter. The estimators must predict
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students’ progress from the latest received log message to the current time tpr ed and from the

current time to completion, which may be several minutes. Figure 2.4 (left) shows as dashed

lines possible predictions using interpolations of the student’s progress curve.

The predictions of current and future progress cannot be based solely on the student’s logs

as input. Figure 2.4 (right) illustrates this point. The blue dashed line shows a situation in

which interpolation from only the sequence of logs completely fails to realistically predict

the progress made between the time of the last received log, ts,n , and the current time of

prediction, tpr ed , thus also rendering the prediction of future progress incorrect. Indeed, both

the current time of prediction tpr ed and the progress steps expected from the student matter

to the prediction of future progress. The green dashed line shows a prediction that also uses

the current time and the expected progress step (0.1 for the example). The information from

the five log messages collected is not enough to correctly estimate the student’s progress. An

equally important piece of information is that no log message has been received between the

time of the latest log, ts,n , and the time of prediction, tpr ed .

Figure 2.4 – Examples of prediction of a student’s future progress using linear interpolation
(green, left) and logistic curve fitting (blue, left) and prediction of a student’s future progress
after a delay without observing any progress from the student (right).

As part of the real-time aspect of the problem, we also introduce the notion of range of

prediction, which is the amount of time in the future for which the estimators compute

predictions. In practice, the range of prediction can be arbitrarily long, but predictions should

be expected to be less accurate further in the future. In Section 2.4, we use fixed prediction

ranges because they are necessary for evaluating our proposed estimators. Furthermore, the

limited prediction range is also forced for the evaluation of the estimators because no data was

collected beyond the moment when the teacher decided in class to interrupt the activities.

Interpolation Method

The small number of messages received for each individual student can be interpolated using

several models. Figure 2.4 (left) shows, for example, a possible interpolation using a linear

(constant) progress rate (green) or using a logistic curve fitted to the student’s progress logs
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(blue). From the data collected on 12 courses described in Section 2.3.2, we could observe

that the curves of individual students’ progress are well approximated by linear curves. As we

have seen from the example in Figure 2.3, the subtasks do not usually take exactly the same

amount of time. However, no pattern, such as the increasing speed followed by decreasing

speed of a logistic curve, could be found. Thus, it was natural to make no prior assumptions

on students’ progress rates and distribution of time among subtasks. This is why we decided

to use linear models. Furthermore, we also investigate in this work other estimators that will

learn the evolution of students’ progress rate and the distribution of time among subtasks

from the classroom data collected in real time without prior assumptions.

Using Whole-Class Data

Given the variance in students’ start times and progress rates, it is likely that they will progress

through a task in a very asynchronous manner. However, information from students who are

further ahead in the activity can be used for students that have not yet reached the same point.

In addition to a student’s past performance being used to predict their progress, the progress

from the rest of the class can be used to improve the prediction in some circumstances. For

example, for a student who just started, no informed prediction can be made because we

do not have any information on their progress rate. However, using the progress that other

students have made through the activity, we can make an informed prediction for this student

if we assume some sort of similarity with earlier students.

2.3 Methods

2.3.1 Educational Context

The data we used in our analyses was from active-learning activities conducted using the

FROG platform [92]. FROG is a web-based platform for designing and executing orchestration

graphs, which range from simple sequences of activities to rich integrative collaboration

scripts in classrooms. With FROG, students can engage in learning activities across whole-

class, collaborative, and individual activities with the ability to share data between activities

and use the data to adapt learning activities and make collaborative groupings. The teacher

can orchestrate the learning activities in real time using dashboards and orchestration controls

to advance students through the lesson. On the student side, each planned activity is displayed

on students’ personal devices only when that activity is active. All interactions that students

or teachers have within FROG are logged and can be used for the real-time dashboards. We

focused on activities conducted using the FROG platform because it collected data at the

interaction level with recorded timestamps and progress through an activity (discussed in

more detail below), giving us the information needed to track progress.

Because FROG supports a wide range of learning activities, not all activities produce the same

types of data, and the information that is logged for a student depends on the activity in
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which they are engaged. To log progress, we restricted the activities to types that had natural

divisions into subtasks, as mentioned above. For example, a quiz can be divided into multiple

questions, or a problem set can be divided into the individual problems. Each time a student

completed a subtask within the activity, we logged this progress in addition to when the

student started the activity (i.e., progress value of zero). The prediction methods presented

in this chapter are not restricted to the FROG platform but do require data of this nature to

be collected, where the progress of each student is logged with a timestamp throughout the

learning activity. Using this individual data for each student, we can then aggregate individual

progress and completion rates (i.e., progress value of one) to provide an overall class progress

and completion rate along with the predicted future trajectory of both measures (see Figure

2.5 for an example of how this could be displayed).

Figure 2.5 – Real-time dashboard of aggregated student progress and completion rates on
the FROG platform. The vertical line is the current time; the blue line indicates the average
progress of the students and the red line the proportion of the class that has completed the
activity; the dashed lines are predictions of future progress and completion rates.

2.3.2 Datasets

All of our datasets come from two different courses in 2018 and 2019 in which teachers used

FROG to support learning activities. The first course was a statistics course for bachelor’s

students. The course had about 600 students divided into three sections. We used progress

logs for two activities, each given once to each section. The activities consisted of two quizzes

concerning different data representations (dot plot, boxplot, and histogram). While answering

the quiz, the students were also interacting with a data visualisation tool that aimed to help

them explore and understand the different representations (see Figure 2.6). The two quizzes
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were taken by each section during their two-hour lecture. These activities are referred to as A1

to A6 in Table 2.1, and the three groups are referred to as (a), (b), and (c).

The second course was given in both 2018 and 2019 for bachelor’s students in computer

science. The classes had about 120 students, but attendance was often low. Both years,

during three different lectures, the students did three experiential activities that aimed to

teach concepts of cognition and user interfaces. The three activities were Genealogy Puzzle,

Stroop Effect, and Train Ticket Simulator. Genealogy Puzzle is an activity for experiencing

the effects of cognitive load. Students had to solve logic problems based on family trees of

increasing difficulty, necessitating more effort and working memory. In the Stroop Effect

activity, students had to answer a series of very quick questions identifying a word (of a colour)

as the text changed colour. Finally, in the activity Train Ticket Simulator, students used four

different user interfaces to order three train tickets. These six activities are referred to as A7 to

A12 in Table 2.1.

The datasets from these classes were selected because they provide a range of activities

and include students from different institutions and disciplines. For each activity, we had

a dataset from more than one class, allowing us to consider variability between students.

Moreover, for each class, we had data from more than one activity so we could account for

the variability between activities. Because the datasets came from a class activity and not a

designed experiment, no personal information was gathered from the students. All of the

students were informed before participating that their data may be used for research purposes

and were asked for consent. If consent was not provided, the data was deleted after that

activity for that participant.

Table 2.1 shows the number of students who participated, the number of progress log messages

received, the number of subtasks for each learning activity, and the length of each activity.

Note that three questions were removed from the activity Dot Plot following the lecture given

to the first group. This does not affect our analysis because the 12 activities are considered

separately and no analysis is made between the repeated activities. Furthermore, for some

activities, the number of log messages exceeds the product of the number of students and

the number of subtasks. This is because extra log messages are triggered when the activity is

activated by the teacher and changing an answer to a previously completed subtask triggers a

repeated log message. This does not interfere with the mechanics of the predictions that we

describe in Section 2.3.3.

2.3.3 Estimators

In this section, we describe several different estimators we have implemented to predict

student progress in real time. The different estimators address the specific challenges of

the problem that we presented above. The first models, constant progress rate (CPR) and

average progress rate (APR), address the challenge of different start times and progress rates of

students, while the models local progress rate (LPR) and weighted progress rate (WPR) aim to
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Table 2.1 – Datasets of Progress Logs Collected. For twelve activities, numbers of students, log
messages, subtasks and total time.

Activity Students Logs Subtasks Total Time (s)
A1 Dot Plot (a) 241 2891 8 664
A2 Histogram (a) 227 2538 6 355
A3 Dot Plot (b) 137 1181 5 255
A4 Histogram (b) 149 1485 6 227
A5 Dot Plot (c) 163 1490 5 266
A6 Histogram (c) 171 1756 6 264
A7 Genealogy (2018) 78 704 8 386
A8 Stroop (2018) 120 2459 20 217
A9 Train (2018) 64 782 12 562

A10 Genealogy (2019) 70 667 8 425
A11 Stroop (2019) 85 1853 20 141
A12 Train (2019) 84 1060 12 636

solve the weight challenge. Finally, the models APR and WPR also use the whole class’s data to

inform predictions made for individuals.

CPR Model

Our first model assumes that students are making progress at a constant rate through the

subtasks of a particular activity. The rate of progress can, however, be different for each

student. This assumption leads us to use a linear interpolation to predict the progress of

the students after estimating their progress rate. At the time tpr ed when we are making a

prediction, we estimate both the current progress and the APR for each student to compute

the linear interpolation. From a student’s logs, (ts,0, ps,0), . . . , (ts,k , ps,k ), with ts,k < tpr ed , we

compute the progress rate to be the amount of progress made by the student divided by the

time the student has been working. This computation is shown in equation (2.2), where

r̂s(tpr ed ) is the estimated progress rate of student s, (ts,0, ps,0) is the first log entry received, and

(ts,k , ps,k ) is the latest log entry received before the current time at which we are making the

prediction. Second, we compute the current estimate of the student’s progress at the current

time tpr ed following the formula in equation (2.3). It is important to note that the true value

of the student’s progress at time tpr ed is not known because the system only measures the

discretised progress from the latest log of the student, (ts,k , ps,k ). From this, equation (2.3)

estimates the current progress, p̂s(tpr ed ), by adding to the latest progress received, ps,k , the

minimum of the full quantity of the progress assigned to the next subtask and the quantity of

progress we expect the student to have made assuming the estimated progress rate given by

r̂s :

r̂s(tpr ed ) = (ps,k −ps,0)/(ts,k − ts,0), (2.2)
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Figure 2.6 – Screenshot of the statistics quiz activities (on the right) with the data visualisation
tools (on the left).

p̂s(tpr ed ) = mi n(ps,k + (tpr ed − ts,k )∗ r̂s(tpr ed ), ps,k + step). (2.3)

Using both the prediction of the progress at time tpr ed and the estimated progress rate, we

predict the progress for all time t > tpr ed with the linear function described in equation (2.4).

This linear function has a slope of r̂s and a value of p̂s(tpr ed ) at t = tpr ed :

p̂s(t ) = p̂s(tpr ed )+ r̂s ∗ (t − tpr ed ). (2.4)

The above formulas require collection of at least two logs to be able to make predictions for a

student. In the particular case of students who have not yet completed a subtask (only one

data point has been collected), the estimated default progress rate is always zero, which leads

to a prediction of p̂s(t ) = 0 for all t ≥ tpr ed .

LPR Model

The assumption that students maintain a constant progress rate is certainly too optimistic,

which motivates us to consider this model of non-constant progress rates. The LPR model

makes predictions based only on a fixed number κ of the latest progress logs for each student.

This method supports a change of progress rate over time, where the most recent progress logs

are better indicators of future progress than older progress logs. In the model, κ is a parameter

for which we can choose any value 2 ≤ κ≤ m, with m being the number of subtasks. Large
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values correspond to a model very similar to the CPR model, while smaller values only account

for the student’s current progress rate but are also more subject to noise in the estimation

because the model uses fewer data points. We compare values of κ from κ= 2 to κ= 5.

APR Model

The APR model is a variation of the CPR model. This model uses the average progress rate

measured over the data collected from the whole class (see equation (2.5)) to improve estimates

for students’ progress rates, especially for students who have only completed a small number

of subtasks. Indeed, the CPR model has several limitations, such as assigning a progress rate

of zero to students who have not yet completed a subtask or being sensitive to noise in the

estimate of the progress rate for students with a small number of subtasks completed:

r̄ = 1

n
∗∑

s
(r̂s). (2.5)

For this purpose, the APR model computes a new estimate of the progress rate for each student.

It does so using the formula described in equation (2.6), where r̂ ′
s is the new progress rate of

the student. In this formula, the parameter λ is the number of log messages already received

from the student. The progress rate of a student with only one log message, for whom we

cannot estimate the progress rate, is estimated as r̂ ′
s = r̄ . The weight of the APR then decreases

for students with more log messages:

r̂ ′
s = (r̄ + (λ−1)∗ r̂s)/λ. (2.6)

WPR Model

As mentioned in previous sections, one challenge for the predictions is that the estimated

progress steps for each subtask of an activity do not correctly estimate the proportion of time

students need. Such discrepancies could lead to imprecision in the progress prediction. The

WPR model proposes to solve this challenge by using data collected over time from the whole

class to measure the proportion of time that students allocated on average to each subtask.

This data allows us to transform the progress curves of students to account for the uneven time

needed by each subtask. An advantage that the WPR model has over the LPR model is that it

can account for more uneven progress changes instead of assuming that a student’s progress

rate will remain similar to that in their previous subtasks, as is assumed in the LPR model. The

WPR model also assumes that the progress rate changes of the students are correlated, which

is likely to be the case.
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The first step for the WPR predictions is to compute a weight profile that represents the

weight of each subtask of an activity. Given the constraints of the problem, the weight profile

has to be dynamically estimated from incomplete data during the learning activity in the

classroom. In other words, until a student finishes all subtasks, the complete weight profile

cannot be known. However, the dynamic estimation cannot be accurate with too little data

and, in particular, benefits the most from collecting log data for students who have fully

completed the activity. For a student s who has generated the sequence of log messages

(ts,0, ps,0), (ts,1, ps,1), . . . , (ts,n , ps,n), the proportion of time spent on each subtask is computed

using equation (2.7). From the equation, we see that the proportion of time used cannot be

computed for subtasks that the student has not yet completed (k > n), so these subtasks are

assumed to require a proportion 1/m of the student’s time, where m is the number of subtasks.

For the subtasks that have already been completed, the proportion of time needed for each

subtask can be directly computed from the student’s progress logs:

ŵs,k =


ts,k−ts,k−1

ts,n−ts,0
× n

m if 1 ≤ k ≤ n,
1
m if n < k ≤ m.

(2.7)

To compute the weight profile using data from students who have not yet completed the

activity, we assume that the proportion of time spent on the subtasks that have not been

completed yet will be as assigned by the original weighting (this corresponds to a value of

1/m as in equation (2.7)). Furthermore, because students who have fully completed the

activity give us more information about the true weight profile, we give more importance in

the computation to the students who have completed more subtasks. This is controlled by a

parameter p, which balances the amount of importance that is given. Equation (2.8) shows

how the proportion of time used by each student is aggregated to estimate the true weight

profile. In the equation, ŵk is the aggregated weight given to subtask number k. αs is the

importance in the aggregation given to student s. αs is computed as an increasing function of

the student’s progress and controlled by a parameter p. In Section 2.4, we analyse the quality

of the weight profile estimation over time based on the parameter p used to average the data

from students:

ŵk = ∑
s∈S

αs ŵs,k = ∑
s∈S

pp
s,n ŵs,k . (2.8)

Figure 2.7 is an example of an evolution of the estimated weight profile at different times

during an activity (we chose to display every interval of 30 seconds). We see in the figure that

the approximated weight profile estimates (blue) change over time to more precisely align

with the final whole-class weight profile (orange). The final weight profile is the weight profile

computed from the whole class after the end of the activity. How quickly the weight profile is
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Figure 2.7 – Computation of the weight profile over time. The blue line shows the estimated
weight profiles at different times by steps of 30 seconds. The orange line is the actual target.

correctly approximated is crucial for the WPR estimator because progress predictions will be

inaccurate if the estimated weight profile is not similar to actual student behaviour.

The WPR model itself consists of several steps. First, based on the collected data at a given

time, an approximation of the weight model is computed as outlined above. This model is

used to adjust the proportion of progress assigned to each subtask of the activity from the

initial teacher estimation during planning. Then the CPR or APR model is applied to the

transformed data. Finally, the progress predictions are turned back to the original scale to

be compared to the actual logs collected and to be shown to teachers in the scale that they

choose.

2.3.4 Analysis

To analyse the different estimators, we specify a time of prediction (tpr ed ) and a range of

prediction (∆t ) for each of the 12 courses. The value of tpr ed corresponds to a time in the class

when the estimators have to make a prediction. The value of ∆t corresponds to how far in the

future the estimators are predicting students’ progress. In this work, we evaluate and compare

our estimators at different times tpr ed and ranges of time ∆t . For each prediction point, the

estimators receive only the data collected before tpr ed and must predict student progress at

every future time between tpr ed and tpr ed +∆t .

For a fixed time tpr ed and range of prediction ∆t , we compute predictions with each of the

above-mentioned estimators of the interpolated progress curves for every student based only

on measurements received before the time tpr ed . To evaluate the quality of the predictions,
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Figure 2.8 – State of each of the 12 classrooms in terms of the delay of students joining the
activity (green), the average progress (blue), and the proportion of completion (orange) over
time. Each graph has three vertical lines representing the times at 25%, 50%, and 75% of the
full time of the activity.

we measure the root mean square error (RMSE) for each student by averaging the squared

difference between the interpolated progress of the student and the predicted progress at every

second. RMSE was chosen because it is a widely adopted error measure for algorithms such

as linear regressions [177], which are quite similar to the estimators we are presenting in this

chapter. Equation (2.9) shows the formula we used to compute the prediction error for each

individual student. The sum includes the squared difference between the predicted progress

and the real progress estimated for every second of time between t = tpr ed and t = tpr ed +∆t :

RMSEtpr ed ,∆t (p̂s , ps) =
√√√√ 1

∆t

tpr ed+∆t∑
t=tpr ed

(p̂s(t )−ps(t ))2. (2.9)

Because the accuracy of the prediction is different based on the amount of data collected, we

evaluate and report on the predictions of the different estimators after 25%, 50%, and 75% of
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the time of the activity has passed. At 25%, a majority of students have not yet completed the

activity and only a limited amount of data has been collected. On the other hand, at 75%, a

majority of students have already completed the activity and others have made significant

progress. Figure 2.8 shows for each of the 12 activities the aggregated progress and proportion

of completion of the class over time, but also the proportion of students who have started the

activity. These are important to consider when analysing the prediction results of our different

estimators. For example, at the 25% prediction time for all 12 of the activities, only a very small

number of students have completed the activity, so we should not expect the weight profiles

estimation to be sufficiently accurate.

For the individual prediction errors measured and reported in Section 2.4, students who

had already completed the activity were not included because they had already reached

completion, so prediction of their future progress is trivial. Furthermore, we also did not

expect the estimators to make predictions for students who join the activity after the specific

time of the prediction. These two factors explain why the number of students varies depending

on the time in the activity (25%, 50%, or 75%), as can be seen in Tables 2.2 and 2.3 in Section

2.4.

We compare the four previously described estimators: CPR, APR, LPR, and WPR. For LPR we

used several values of the parameter κ. Again, the number κ corresponds to the number of

most recent log messages that are considered in evaluating the progress rate. We tested all

values of κ from two to four, which was decided based on our average number of subtasks in

an activity because values larger than four would become equivalent to the CPR model. The

LPR models with the different parameters are referred to as LPR2, LPR3, and LPR4 in Table 2.2

in Section 2.4.

For each activity and each time (25%, 50%, and 75%), we performed a repeated measure

ANOVA to compare the prediction error of our estimators. When the repeated measure ANOVA

was significant, we additionally performed a post hoc analysis using paired t-tests comparing

the CPR model to each of the other models in terms of the RMSE error for each student. At

each time of prediction we also performed the same statistical tests on the data from the 12

activities concatenated to give an idea of the overall performance of the estimators. However,

more variance in the error measure is due to the differences between the activities rather

than the differences between the predictions, as can be seen from Table 2.2 in Section 2.4.

Finally, we also compare the estimates of the weight profile for different values of the estimator

parameter.

So far, we have only explained how several estimators can be implemented to predict the

progress of individual students. Some of these estimators use data from the whole class.

Another interesting and possibly useful task is to predict the average progress of the class.

This prediction allows us to build dashboards displaying aggregated information about the

classroom, such as the one in Figure 2.5. This prediction could be made directly, but in our

situation, because we developed several estimators to predict individual students’ progress,
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another approach is available. In the following section, we evaluate how averaging indi-

vidual predictions can be a good estimate of the future average progress of the classroom.

These estimates are particularly useful for communicating information to teachers in large

classrooms.

2.4 Results

The results we describe in this section are threefold. First, we analyse the optimal parameter

for the weight estimation algorithm to balance the estimate between fast and slow students.

Second, we compare the estimators on individual predictions. Finally, we compare the estima-

tors for prediction of the average progress of the whole class. Section 2.4 contains our results

on the dynamic estimation of the weight profiles. Section 2.4 compares the four estimators we

described in Section 2.3. We report results of statistical tests for predictions made at different

times during the activity, and we compare the different estimators and analyse the prediction

errors.

The results of all of the comparisons are displayed in Table 2.2. For the aggregated data, we

report on the fit of the data when considering aggregated progress and completion rate over

the whole class in contrast to individual students. The average error rate of the estimators is

shown in Table 2.3. Even though our work has been focused on individual students, the error

of the aggregated predictions is a good indicator of the usefulness of our estimators in the

classroom.

Evaluation of Dynamic Estimations of Weight Profiles

As mentioned in Section 2.3.3, the estimate of the weight profile used by the WPR model can

be controlled by a parameter p that balances how much of the data of the first students who

finish the activity influences the estimate of the subtask weights. We compared the quality

of the estimate of the weight profile over time during an activity for different values of p.

The main difficulty in estimating the weight profile comes from differences between the first

students completing the activity and the rest of the students because the first estimates of

the weight profile will be based on the data of the first students who complete the activity.

Figure 2.9 shows the quality of the estimates over time for all 12 activities, depending on the

choice of p. We can see that using too high a value for p leads to overfitting to the behaviour

of the fastest students because data is collected about later steps of the activity only for the

fast students at first, which is not completely similar to the rest of the class. This is shown in

particular for the activities Histogram (a, b, and c) and Genealogy (2018). Otherwise, we see

that higher values of the parameter usually lead to a faster estimation of the weight profile. For

example, this can be seen for the activities Dot Plot (a and b) and Stroop (2018). Based on the

overall performance for the different parameters, we decided to use p = 2 in our predictions.
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Figure 2.9 – Evolution of the error rate for estimating the weight profile over time for a range
of parameters for all 12 activities. The parameter p controls the importance given to faster
students in the estimates of the weight profile.

Evaluation of Individual Predictions

The results displayed in Table 2.2 show that for the predictions at 25% of the time, the repeated

measure ANOVA shows a significant difference (p-value < 0.05) for 8 of the 12 activities (A1,

A2, A4, A6, A7, A8, A11, A12). Additionally, the repeated measure ANOVA shows a significant

difference between the estimators when aggregating the error measure from all 12 activities.

The post hoc analysis using a paired t-test comparison between each estimator and CPR shows

that APR, LPR3, LPR4, and WPR are all significantly different from CPR overall (p-value < 0.01),

with lower RMSEs. We note that LPR3, LPR4, and WPR only improved the error rate by a few

percent, while APR reduced the error by nearly 30%. Post hoc analysis on each of the eight

activities shows that APR was significantly different from CPR, with APR performing better.

Also, all of the models were significantly different from CPR for A8, again with lower RMSEs

than CPR. Additionally, we also observe that LPR2 was significantly different for four activities

from CPR, with a better performance for A8 and A12 and a worse performance for A1 and A6.

Finally, the results show that WPR was significantly different from CPR for six activities, four

better and two worse.
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At the 50% time point, the repeated measure ANOVA is significant overall and for six of the

individual activities (A3, A6, A7, A8, A9, and A11, p-value < 0.05). For the overall measure, the

estimators LPR3, LPR4, and WPR differ significantly from the CPR estimator (using paired

t-tests, p-value < 0.01), with the CPR estimator having a lower performance. WPR has the

lowest average error of all six estimators at this time for the overall measure. As with the

25% time, we again observe that the estimators APR, LPR2, LPR3, LPR4, and WPR perform

significantly differently than CPR for predicting the progress on A8 (p-value < 0.01), again with

CPR performing worse. LPR2 also has a significantly different error rate on activities A7, A3,

and A6, with a lower error rate for A7 and a higher rate for A3 and A6 than for CPR. WPR has a

significantly different error rate than CPR on A11, with WPR having a lower error rate, but APR

has a significantly different error rate than CPR on A3, with the error rate being higher for APR.

At the 75% time point, the repeated measure ANOVA is significant on the set of all the activities

and also for activities A1, A2, A3, A9, and A10. The paired t-test over all the activities shows

that APR performed significantly differently than CPR on average, with APR performing worse,

and APR is the estimator with the highest average error rate. LPR2 and LPR4 also performed

significantly differently than CPR, with LPR2 performing worse, while LPR4 performed better.

The post hoc analysis shows that the APR estimator has higher prediction errors than the CPR

estimator, with this difference being significant (p-value < 0.05) for activities A1, A2, and A3.

LPR2 and LPR3 also have significantly different prediction errors than CPR on activity A1, with

the CPR errors being lower. The t-tests comparing CPR to the other models for activities A9

and A10 were not significant.

For our analysis, we compared the baseline CPR model to our APR model, which uses the

average progress of the whole class to estimate the progress rate for students with few data

points. We found that 25% of the way through the activity, the APR model outperforms the

CPR model on most of the activities, but the opposite is true after 75% of the time has passed,

in which case the APR model performs worse on three of the activities. This result indicates

that at the beginning of the activity, the APR is a good predictor for the progress rate of other

students, while it is not a good predictor for students who start later in the activity. Students

who start the activity after 50% or 75% of the time has already passed are likely to be very

different from students who began the activity right away. Thus, the APR for other students of

the class is not a good predictor for their progress rate.

Second, we compared models that addressed the variability in subtask time, the LPR and

WPR models, to the baseline CPR model. The LPR model is based on the assumption that

the rate at which students make progress on an activity will evolve over time. From this

assumption, the model we proposed computes progress rate based only on recent logs. For

this model, we compared three different variations that used a progressively larger number of

previous log messages for each student. One activity that performed consistently better for

the LPR models was Stroop (2018), which performed better for all three types of LPR models

for the 25% and 50% time points. The Stroop (2018) activity was uniquely different from the

other activities, where the main point of the activity was to complete each task as quickly as
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Table 2.2 – Mean Prediction Error for Predictions at 25%, 50%, and 75% of the Time for Each
Activity and Averaged over All the Activities

25% time
CPR APR LPR2 LPR3 LPR4 WPR n

All* 0.273 0.197** 0.271 0.270** 0.271** 0.267** 1395
A1* Dot Plot (a) 0.322 0.272* 0.331** 0.323 0.322 0.331** 190
A2* Histogram (a) 0.355 0.210** 0.357 0.356 0.355 0.352** 214
A3 Dot Plot (b) 0.281 0.277 0.285 0.281 0.281 0.282 129
A4* Histogram (b) 0.313 0.195** 0.317 0.314 0.313 0.310 145
A5 Dot Plot (c) 0.232 0.239 0.233 0.232 0.232 0.231 150
A6* Histogram (c) 0.270 0.146** 0.285** 0.273** 0.270 0.268 165
A7* Genealogy (2018) 0.151 0.071** 0.155 0.152 0.150 0.169** 66
A8* Stroop (2018) 0.446 0.229** 0.344** 0.363** 0.384** 0.353** 54
A9 Train (2018) 0.196 0.160 0.168 0.187 0.196 0.176 59
A10 Genealogy (2019) 0.142 0.134 0.135 0.136 0.142 0.131 66
A11* Stroop (2019) 0.105 0.058** 0.112 0.107 0.104 0.102* 75
A12* Train (2019) 0.244 0.176** 0.219* 0.247 0.246 0.204** 82

50% time
CPR APR LPR2 LPR3 LPR4 WPR n

All* 0.136 0.131 0.139 0.132** 0.131** 0.128** 1307
A1 Dot Plot (a) 0.208 0.190 0.217 0.213 0.209 0.211 211
A2 Histogram (a) 0.158 0.156 0.179 0.168 0.159 0.156 177
A3* Dot Plot (b) 0.147 0.189* 0.167** 0.148 0.147 0.147 115
A4 Histogram (b) 0.155 0.136 0.163 0.152 0.156 0.148 118
A5 Dot Plot (c) 0.151 0.159 0.158 0.150 0.151 0.147 131
A6* Histogram (c) 0.102 0.104 0.118** 0.106 0.102 0.099 136
A7* Genealogy (2018) 0.031 0.028 0.022* 0.029 0.029 0.033 66
A8* Stroop (2018) 0.239 0.141** 0.146** 0.142** 0.174** 0.142** 67
A9* Train (2018) 0.074 0.094 0.065 0.064 0.066 0.063 60
A10 Genealogy (2019) 0.065 0.070 0.053 0.054 0.059 0.056 65
A11* Stroop (2019) 0.044 0.027 0.040 0.042 0.041 0.036** 77
A12 Train (2019) 0.083 0.091 0.087 0.081 0.070 0.077 84

75% time
CPR APR LPR2 LPR3 LPR4 WPR n

All* 0.103 0.123** 0.110* 0.104 0.101* 0.103 646
A1* Dot Plot (a) 0.131 0.158* 0.149** 0.142* 0.134 0.138 157
A2* Histogram (a) 0.110 0.142* 0.114 0.108 0.106 0.109 92
A3* Dot Plot (b) 0.137 0.184* 0.150 0.135 0.137 0.141 60
A4 Histogram (b) 0.108 0.123 0.107 0.104 0.103 0.097 51
A5 Dot Plot (c) 0.120 0.122 0.134 0.124 0.121 0.127 79
A6 Histogram (c) 0.082 0.090 0.082 0.084 0.083 0.083 59
A7 Genealogy (2018) 0.018 0.016 0.015 0.017 0.016 0.019 17
A8 Stroop (2018) 0.137 0.122 0.089 0.082 0.100 0.059 16
A9* Train (2018) 0.042 0.076 0.044 0.038 0.038 0.050 28
A10* Genealogy (2019) 0.053 0.079 0.047 0.051 0.051 0.048 26
A11 Stroop (2019) 0.028 0.026 0.024 0.018 0.013 0.018 16
A12 Train (2019) 0.046 0.059 0.056 0.056 0.044 0.049 45

In the first column, * shows activities for which significant differences between the models
were found using a repeated measure ANOVA (p-value < 0.05). In the fourth to eighth
columns, * and ** show the significance of a paired t-test between the particular estimator and
the CPR estimator (*: p-value < 0.05, **: p-value < 0.01).
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possible. However, after the teacher started the activity, all of the students took time to read

the instructions, which added time to their first subtask and made their starting slope quite

different from that of the rest of the activity. This part of the activity was changed the following

year, so we do not observe a similar discrepancy for Stroop (2019) (see Figure 2.10). For Stroop

(2018), where there was a predictable change in time between subtasks, assuming that the

progress rate could vary over time was a good choice. This result also indicates that the model

performance depends on the type of activity or on the classroom. Our results do not clearly

indicate which parameter for the LPR model performed best. It seems to be highly dependent

on the activity and the students. The choice of the parameter is a trade-off between the noise

of the measurements and the flexibility to adapt quickly to changes in progress rate.

Figure 2.10 – Weight profile of the 12 activities. Because of a large divergence, the vertical scale
of the weight profile for Stroop (2018) is different from that for the other activities.

Moreover, near the end of the activity at the 75% time point, there are fewer statistically

significant results for the LPR models even though we often see the same trends as at earlier

time points. This is most likely due to many students having finished the activity by that time

point and thus being excluded from the analysis, lowering our statistical power. For example,

Stroop (2018) goes from having n = 67 at the 50% time point to n = 16 at the 75% time point,

which is a 76% reduction in the number of students. It may also mean that any information

added from the different model variations does not apply to the last students finishing, who

may perform differently than the other students.
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Finally, the WPR model showed similar results to the LPR model. Like the LPR model, WPR

is an adaptation of the CPR model based on the assumption that the progress proportion

varies between subtasks. This model becomes very interesting in situations where the progress

proportion of each subtask varies strongly from the chosen assignment. Unlike the LPR

models, the WPR model takes into account varied change, where there may not be a pattern

in the weights. For example, if a quiz gets steadily harder as it progresses, then there is a

uniform change. However, if the difficult questions are randomly placed throughout the

quiz, then the change is varied and performance on a previous question cannot be used to

predict current performance. Although the weight data is still sparse at the 25% time point

because few students, if any, have completed the task, it is still beneficial for predicting 9

of the 12 activities (with statistical significance for 4 activities). The WPR model may not

have had a better prediction on all activities for several reasons. The first is that most of the

prediction error comes from individual noise, which cannot be more accurately predicted

from aggregated information about the whole class. Second, the weight profile for 11 of the

activities is not as divergent from the original equal-weight assignment as for the Stroop (2018)

activity (see Figure 2.10), which means that the benefits of the WPR model are not as large.

Additionally, the divergence in the weight profile of Stroop (2018) is exactly at the beginning of

the activity, so the WPR estimator can quickly estimate it well, but other estimators are actually

more affected by this divergence. Finally, for some activities, the faster students are not similar

to the rest of the class. This leads to lower prediction performance for the estimators that use

aggregated data of the class (APR and WPR) because the APR and the weight model estimation

will be biased toward the behaviour of the faster students.

Evaluation of Aggregated Predictions

In Section 2.4, we compared the quality of our proposed estimators for predicting individual

progress. The error rate aggregated over the whole class also matters to justify the usefulness

of the method for displaying class-level data. Table 2.3 shows the same error measurement as

reported in the previous sections using equation (2.9), with the difference that the progress

predictions are first averaged over the whole class. This leads, as expected, to lower error rates

for two reasons. First, the cases where the future progress of a student is overestimated are

now being compensated for by cases where the future progress has been underestimated,

thus reducing the error in the aggregated prediction. The prediction error will stay high for

an estimator if it mostly overestimates or mostly underestimates the future progress in a

systematic way. For example, this is what happens for the APR model, which even though it

has lower prediction error for each individual student at the 25% time point, it has a higher

aggregated prediction error for the activities Genealogy and Histogram (a), (b), and (c). Second,

lower errors occur in the aggregated data because students with progress value one, for whom

predictions are trivial, were not included in the predictions in the individual case but had to

be included in the aggregated case. In this case, because the students have already finished

the activity, they do not have any error.
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Table 2.3 – Mean Prediction Error for Aggregated Predictions at 25%, 50%, and 75% of the Time
for Each Activity

25% time
CPR APR LPR2 LPR3 LPR4 WPR n

A1 Dot Plot (a) 0.140 0.213 0.146 0.141 0.140 0.126 192
A2 Histogram (a) 0.249 0.143 0.248 0.249 0.249 0.244 216
A3 Dot Plot (b) 0.152 0.242 0.153 0.152 0.152 0.151 129
A4 Histogram (b) 0.198 0.127 0.198 0.198 0.198 0.184 145
A5 Dot Plot (c) 0.096 0.210 0.093 0.096 0.096 0.094 150
A6 Histogram (c) 0.160 0.096 0.158 0.160 0.160 0.139 166
A7 Genealogy (2018) 0.085 0.047 0.086 0.086 0.085 0.086 67
A8 Stroop (2018) 0.404 0.172 0.319 0.343 0.363 0.308 54
A9 Train (2018) 0.125 0.051 0.065 0.097 0.124 0.100 59

A10 Genealogy (2019) 0.058 0.108 0.047 0.052 0.057 0.046 66
A11 Stroop (2019) 0.068 0.014 0.066 0.066 0.065 0.061 75
A12 Train (2019) 0.196 0.111 0.113 0.167 0.193 0.139 82

50% time
CPR APR LPR2 LPR3 LPR4 WPR n

A1 Dot Plot (a) 0.061 0.091 0.059 0.058 0.061 0.039 230
A2 Histogram (a) 0.032 0.053 0.037 0.034 0.032 0.026 224
A3 Dot Plot (b) 0.023 0.122 0.028 0.022 0.023 0.027 133
A4 Histogram (b) 0.042 0.024 0.037 0.040 0.042 0.026 146
A5 Dot Plot (c) 0.065 0.108 0.055 0.061 0.065 0.049 154
A6 Histogram (c) 0.008 0.027 0.036 0.021 0.011 0.023 169
A7 Genealogy (2018) 0.008 0.009 0.005 0.005 0.006 0.009 76
A8 Stroop (2018) 0.133 0.065 0.077 0.078 0.101 0.072 106
A9 Train (2018) 0.026 0.013 0.011 0.010 0.011 0.006 62

A10 Genealogy (2019) 0.030 0.047 0.013 0.018 0.022 0.012 68
A11 Stroop (2019) 0.029 0.011 0.025 0.028 0.027 0.023 84
A12 Train (2019) 0.034 0.021 0.012 0.011 0.006 0.011 84

75% time
CPR APR LPR2 LPR3 LPR4 WPR n

A1 Dot Plot (a) 0.014 0.051 0.038 0.027 0.020 0.039 240
A2 Histogram (a) 0.002 0.026 0.009 0.007 0.004 0.015 226
A3 Dot Plot (b) 0.007 0.053 0.015 0.006 0.007 0.009 133
A4 Histogram (b) 0.015 0.005 0.005 0.010 0.012 0.004 146
A5 Dot Plot (c) 0.013 0.021 0.021 0.014 0.013 0.023 157
A6 Histogram (c) 0.004 0.011 0.012 0.008 0.005 0.010 170
A7 Genealogy (2018) 0.002 0.002 0.001 0.002 0.002 0.002 78
A8 Stroop (2018) 0.017 0.007 0.010 0.010 0.013 0.004 116
A9 Train (2018) 0.002 0.019 0.007 0.004 0.004 0.004 64

A10 Genealogy (2019) 0.018 0.028 0.015 0.015 0.016 0.011 69
A11 Stroop (2019) 0.004 0.003 0.001 0.001 0.001 0.002 84
A12 Train (2019) 0.005 0.012 0.013 0.013 0.006 0.010 84

42



2.5. Discussion

From Table 2.3, we see that the aggregated prediction errors range from 0.001 for several

activities and models at the 75% time point to 0.404 for the CPR model for the Stroop (2018)

activity at the 25% time point. The results seem satisfactory to be used by teachers. For

example, for the 75% time mark, which is when the teacher is closer to deciding to transition

to the next activity, for the baseline estimator the error is the highest for activities A8 and A10

at 1.7% and 1.8%. An error of this scale means that the prediction is off by usually less than

the progress of two or three students for a classroom of about 150 students. For these two

activities, we see that the WPR model has an even lower prediction error, with a decrease of

39% for A10 and 76% for A8.

2.5 Discussion

In this chapter, we aimed to address the problem of dynamically predicting students’ future

progress during activities in the classroom. We presented a basic model for making predictions

in real time and proposed three variations of this model that accounted for different challenges

of predicting the overall progress of a class through an activity. For each of our model variations,

we found that we could better predict students’ progress compared to the baseline model for a

subset of our datasets. By analysing the differences in performance between these datasets

and the time of the predictions, we can form a better understanding of completion patterns

for different activity types, as well as of how students engage with these activities.

When we evaluate the patterns of the model successes as a whole, the first one that emerges is

that aggregated information about the whole class can be used to improve the performance

of progress predictions for individual students. It is important to note that the models using

whole-class data (APR) and automated weighting of progress assignment to subtask (WPR)

each increased the prediction performance for over half the activities at the beginning of

an activity. Still, there are cases remaining where our results show that students’ individual

variability is more important than the average behaviour of the class. Thus, the prediction did

not improve compared to the CPR model. However, it was uncommon for a model that used

aggregated performance to perform significantly worse than the baseline model, indicating

that these models could be a good starting point, independent of the activity type. Additionally,

our results show us when during the in-class activity the different estimators perform best,

which indicates how we could design a combined estimator by appropriately selecting the

different modeling approaches that we proposed.

A second pattern that emerges is that there is less of a difference between models as time

increases. As mentioned earlier, this difference could be explained by the decrease in the

number of students who have not finished the activity, which leads to a decrease in statistical

power for our analysis. However, it may also be due to the types of students who complete

the activity later. There can be multiple reasons for students to take longer on an activity:

they started later, they solve subtasks at a slower pace, or they have off-task behaviour. With

the later start and the slower pace, we could expect a relationship with the way the students
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perform and how earlier students perform. In the case of starting later, it may just be a shift

in time, while with the slower pace, it may just be extending the time frame. On the other

hand, when the difference is not a simple transformation, as would be the case with off-task

behaviour, the enhanced models may not improve the prediction. In future research, it may be

beneficial to assess the relationship between earlier and later students’ progress to investigate

where these differences may arise.

Finally, we see that within any given time point, there is no clear pattern when assessing the

results within an activity or class. For example, the Stroop (2018) activity performed better for

all three of the LPR models, while the Stroop (2019) model did not. These results indicate that

there was not a common pattern of time taken on activities across these two classes. This can

be confirmed by looking at the progress curves in Figure 2.8, in which we can see that although

the curves are similar, there is more of a lag at the beginning of the activity in Stroop (2018).

This results in differences in the weight profiles of these two activities (see Figure 2.10). This

lag illustrates how external classroom events such as an orchestration action of the teacher

can affect the timing of an activity. This lag is not present in any of the other activities for the

same students, so it is not a property of the students but may have been due to something that

happened in the class that day. These results illustrate the importance of the timing model

being able to take into account unexpected events that may happen in the classroom in real

time. The proposed estimators account for these real-time events through different methods.

Additionally, such events could be integrated in our estimators if they were implemented as

part of the digital technology used in the classroom. How to combine our different techniques

to obtain the optimal predictions will require future research.

To test our models, we used 12 datasets to see how they performed in a range of situations.

Across the 12 datasets, there were 5 different activities and five different sets of students.

Having an overlap of activities and students allowed us to analyse patterns that may have

emerged associated with activity or student traits. As mentioned above, we found many

discrepancies between the same activities and the same students when applied to different

situations. These findings provide more strength to our approach, in which we do not rely on

a trained model, which then may overgeneralise, and do not make any assumptions at the

beginning of the activity. We are then able to apply our models to any new activity, student

group, or situation without affecting the accuracy of our predictions. However, all of our

datasets were collected from a higher-education setting. In this case, our results may have

limited generalisability to K–12 education if students follow drastically different progression

patterns.

In practice, over all the estimators we presented, the error rates for the prediction are quite

satisfactory. For example, looking at the 75% time of the activities, the prediction errors in

terms of RMSE are nearly never above 0.15 and are on average 0.103 for the CPR model. An

error means that the prediction estimator on average wrongly predicts one more or one less

subtask completed for an activity with ten subtasks. Given the unpredictability of student

behaviour in general, we found this to be a very satisfactory result. Figure 2.3 illustrates well
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the very high variance in the time students take to complete subtasks of an activity, and Section

2.2 details the difficulty of predicting students’ progress.

In addition to the error rates for the individual predictions, we also evaluated the error rate

for predicting the average progress of the classroom. In this case, the errors are much lower.

For example, at the time 75% (which is the most relevant time because it is closer to the

moment that the teacher actually decides to transition to the next task), the error rate of the

averaged prediction is always below 0.02. This could be the result of the estimator making

perfectly accurate predictions for 98 students of a class of 100 students and completely wrong

predictions for the remaining 2 students. This range of error rate seems likely to be beneficial

for a tool aimed at supporting teachers’ decisions.

The estimators described in this chapter are based solely on discrete measurements of student

progress during activities that can be naturally divided into a sequence of subtasks. The

estimators we presented are limited to this particular case and would not directly generalise

to other contexts. This limitation could be extended in three ways. First, progress could be

measured continuously and be generalised to activities that are not naturally divisible into

subtasks, such as writing essays or brainstorming. A second improvement worth investigating

is to extend our use of current whole-class data to improve the prediction to study how data

collected previously from the same class or data collected previously from the same activity

can be used in the predictions [29]. Additionally, the estimators are limited to using only data

from the current activity and do not use other sources of data. This has the advantage of

making the estimators easily usable without preparation but misses opportunities to increase

the quality of predictions. Learning from other sources of data would also allow the use of

more data-intensive algorithms for prediction, such as deep neural networks. Finally, a third

extension is to use other sources of data not directly related to students’ progress. For example,

evaluating in real time the state of the student (idle/active) during the activity could inform

the predictions to know when the student is not likely to make progress. This could be done

using eye tracking or video recording [108].

Because our models allow us to predict the progress of students at a given point in time

or to predict the time at which students will reach a given point of progress, they can be

used in the classroom to support activity transitions. In the classroom, it can be difficult for

teachers to monitor all students at the same time, particularly when students are working on

individual or small-group tasks. Using teacher dashboards, teachers should be able to easily

monitor and process the data and actions of students in a consolidated form [123, 206]. Our

models can be used as the back end to the dashboard to provide this information to teachers.

How this information is provided is still an open question, with research only beginning to

investigate the different levels of orchestration support that can be provided [240]. In the

case of timing, the information could be shown as a graph, as in Figure 2.5, or as a set of

recommendations based on the prediction. How best to use these models to provide teachers

with timely information is a direction for future research.
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2.6 Conclusion

In this chapter, we presented estimators to predict the future progress of students as they work

on individual activities in the classroom. Our techniques principally address the challenges

arising from individual differences in students. Furthermore, two of our estimators also use

data collected from the whole class to improve individual predictions. By predicting the

future progress of students, we address a practical issue in the classroom of teachers not

being able to fully monitor their students and not knowing when to transition to the next

activity. Specifically, in large lectures, the teacher cannot move around the classroom, and

common indicators of completeness, such as the noise level in the classroom, can often be

misleading. By having an accurate prediction of when students may complete an activity,

teachers can make informed orchestration moves, such as giving time warnings instead of

suddenly switching to a new activity. Teachers being able to make more informed decisions

about activity time can prevent students who have already completed the activity from waiting

too long as well as preventing those who are still working on a task from getting cut off too

early.

By analysing the strengths of different variations of our estimators, we gained further insight

into students’ behaviour during classroom activities. Our work showed how different strategies

for predicting students’ progress would perform based on individual differences and similarity

to the average of the whole class. Overall, our work contributes to the field of learning analytics

by introducing a novel approach to evaluating students’ progress and progress rates during

activities in classrooms. Moreover, our work has direct implications for supporting teachers’

orchestration by addressing their need for time management support.

Within the context of the thesis, the work we presented in this chapter motivates the decom-

position that we described in Section 1.2. Learning analytics, in particular the collection and

real-time analysis of data, is a key aspect of adaptive and self-improving learning environ-

ments. The tool built for this project encompassed multiple aspects of and adaptive learning

environment: data collection, prediction of students’ future states, and support for optimising

the learning process. Additionally, the models that we described in this chapter are relevant to

Chapter 3 which focuses on simulation of students’ behaviour and student models.
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3 Student Models and Simulations

Observing the learning processes of students is undoubtedly an important practice to improve

our understanding of learning and to design efficient learning environments. Carrying out

pedagogical experiments in controlled environments is a practice that researchers use to

observe students. Although such experiments can advance the learning sciences, they can be

difficult to conduct because they may involve a large number of students, who are not always

readily accessible. In this chapter, we specifically focus on the concept of student models and

how they can be used for simulating students’ behaviour or learning processes. We show that

simulating students allows us to estimate statistical properties of large cohorts of students,

which can inform the design of experiments on real students.

The development of Machine Learning (ML) brought valuable insights into the science of

learning. Today, countless algorithms are looking at data and learning from it. Because of

researchers’ interest in studying the learning processes of such algorithms, the concept of

Machine Teaching (MT)1 emerged. In general, the aim of MT is to select an optimal training

set of input data (or sequence of inputs) to teach a given ML algorithm a desired target set of

parameters [260, 261]. Such a training set is optimal if it minimises a chosen metric, such as the

number of examples or the cost of generating examples. In the case of simulated classrooms,

MT can be used to optimally select a single input to teach multiple learners simultaneously

[257]. That is similar to the case of a teacher that, in general, must provide a single lecture that

is adapted simultaneously to all the students in the classroom.

MT has multiple goals although most are outside the scope of education. Nevertheless,

part of the research on MT is motivated by optimising education. This goal relies on the

similarities between the algorithms that are analysed through the MT framework and the

students’ learning processes [260, 261]. Thus, it is beneficial to look for algorithms that are

good approximations of how students learn.

Optimising teaching necessitates being able to anticipate how students will respond to learn-

ing activities and how their knowledge will evolve throughout the teaching process. This can

1Not to be mistaken with Skinner’s teaching machine (https://en.wikipedia.org/wiki/Teaching_machine)
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be achieved using straightforward predictions but also through simulating students behaviour

and performance. This distinction between the prediction and the simulation of students’

behaviour is a concept of ML, which differentiates between discriminative and generative

models [165].

In Section 3.1, we review uses of student simulations within education. In Section 3.2 we

focus on the distinction between discriminative and generative models. In particular, we look

closely at Bayesian Models and the example of Bayesian Knowledge Tracing (BKT) because

they are the most straightforward application of the framework that we described in the

introductory chapter. In Section 3.3, we report on our study using Semi-Markov models (SMM)

for simulated MOOC students. This study proposes a general method for the simulation

of users’ activity that can be used in a wide range of applications. Finally, we argue that

simulations can also be used to prepare for large scale experimentation on learners. This is

further justified by our discussions in Chapter 4 on algorithms for self-improving learning

environments.

3.1 Student Simulations

Simulating students’ behaviour lies at the intersection of cognitive science, artificial intel-

ligence, and education. Researchers have studied methods for the simulation of human

behaviour outside the field of education [26] and notably in a web context [42]. An example of

the usage of simulating humans (not students) for education deals with simulations of patient

behaviour for training medical students [91].

Educational researchers have uses simulations of students with multiple goals. One goal

is to help teachers practice instructional skills. An example of this goal is to simulate stu-

dents’ errors in order to train teachers to recognise students’ misconceptions [246]. Student

simulations have also been used to help author tutoring systems by having the teacher demon-

strate the desired tutoring strategies to the simulated students [147]. The tutor is, in that

context, automatically built from the demonstrations of the teacher and, thus, does not re-

quire programming expertise. Simulated students can also support the automatic evaluation

of Intelligent Tutoring Systems (ITS) because statistical inference can be performed efficiently

on the output of a simulation while other methods for evaluating ITS can be computationally

intractable [90]. Additionally, doctoral programs have been simulated as a way to analyse

different designs without requiring tests with learners, which would require a much longer

time [131]. Finally, another encouraging use of simulated students is the possibility of using

such simulations of students for the pedagogical practice of learning by teaching [21, 22]. For

example, by using a robot that simulates bad handwriting and asking a child to help the robot

improve its handwriting, the child can learn to write better by him or herself [105].

Because student simulations can have multiple goals, several methods can be used for the

evaluation of simulation models [124]. For example, in the case of simulations used for

learning by teaching or authoring ITS, the simulation can be evaluated from the resulting
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outcome. In other cases, a simulation could be evaluated, either by analysing the properties of

the underlying cognitive architecture or by testing whether optimal teaching for the simulated

learners is also optimal for human learners. In this chapter, we design a simulation model that

seeks to describe and reproduce MOOC students’ behaviour. To evaluate the quality of our

simulations we compare statistical properties of the simulated and real data.

3.2 Algorithms for Student Simulations

Modeling students is a key concept in learning analytics and educational research in general

[211]. It is also a required component of building students’ simulations. The vast amounts of

data that can be gathered and analysed in modern learning environments allow us to build

models of unprecedented scale and accuracy. For example, researchers have built such models

for predicting motivation and cognition [254], or for predicting student’s goals [75]. Large

datasets allow researchers to find predictive power of seemingly slightly related signals or

potentially noisy signals. For example, the length of pauses in a MOOC video estimates the

difficulty perceived by students [132] and the head movement of students estimates the level

of attention during lectures [188]. All the aforementioned models are focused on prediction

and belong to the class of so-called discriminative models. Although these models can be used

to simulate students by generating predictions, they are less suited to the task of simulation as

generative models.

3.2.1 Generative models

A common area of ML is the problem of supervised learning [201]. Supervised learning consists

of learning a mapping between inputs (x) and outputs (y) based on the observation of several

of these (x, y)-pairs. The task to be solved is to find the new value of y given a new value for x.

In the case of education, an example could be that the input x is a vector containing several

features describing the behaviour of a MOOC student, Alice, in the first week of the course

and y is the final score at the end of the MOOC [110].

A discriminative model is a model that will focus solely on the prediction of the output y

by learning the probability distribution P (y |x) (probability of y given x). This probability

distribution allows us to answer the question in our example: "Alice had behaviour x during

the first week, what final score y will she have at the end of the MOOC?". On the other hand, a

generative model will learn the joint probability distribution P (x, y). From this joint probability

distribution it is possible to compute the distribution P (y |x) used by discriminative models,

but it is also possible to compute the distribution P (x|y) (probability of x given y). This second

distribution allows us to answer the question: "Alice had a final score of y , what behaviour

x did she have during the first week?". A generative model, not only contains information

about the relation between x and y , but also about the marginal distributions of x and y . Thus,

unlike discriminative models, generative models are able to describe what typical students are

like.
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Generative models allow one to simulate students by generating samples from the P (x, y) distri-

bution, which in our example tells us how likely each type of behaviour and final performance

is and how they are dependent on one another. In particular, using a purely discriminative

model for predicting performance in a MOOC would not allow one to give estimates for the

types of behaviour expected from students during the first week of the course. That is a strong

limitation if the model is to be used to simulate students’ behaviours and learning processes.

Generative models, however, capture explicitly the underlying process.

In the study detailed in the following Section 3.3, instead of focusing on prediction, we model

behaviour itself in a probabilistic manner. This approach can not only significantly improve

already established techniques but also provides a basis for simulating students’ behaviour. We

use a generative model, which allows us not only to predict, but to generate observations from

the estimated distribution of students in a MOOC. These models capture both the probability

structure of input variables and the flow of the processes.

Generative models in education serve mainly for understanding, visualising and predicting

students’ behaviour. For example, analysing MOOC forum’s messages using a generative model

allowed to classify discussion thread efficiently and to rank threads by relevance [30]. Among

the many generative models, Markov models are used for visualisation [49], for modeling

engagement [193] and for modeling students retention [16]. Apart from Markov models, we

encounter models such as mixture models and Bayesian models [212] and BKT in the context

of MOOCs [145, 173].

3.2.2 Bayesian Knowledge Tracing

BKT [55] is one of the most popular models for real-time knowledge tracing. The general goal

of Knowledge Tracing algorithms is to provide estimates of students’ knowledge over time as

students are interacting with pedagogical material (most likely in an ITS). In the case of BKT,

this estimation is a probability of skill mastery. It is to date still one of the simplest and most

used Bayesian models.

Figure 3.1 gives a graphical representation of the BKT model. It reveals several underlying

assumptions:

• Binary representation of student’s Knowledge States: For a particular skill (sometimes

called a Knowledge Component), the student can either master it or not.

• Probabilities of observations: A student who masters a given skill is expected to answer

questions and problems about that skill correctly, but it can happen with probability PS

that the student makes a mistake ("slip"). Similarly a student who does not master a

skill could still answer a question correctly out of luck ("guess") with probability PG .

• Probability of initial mastery: Some proportion P0 of the students will have already

mastered the skill before their first interaction with it in this session.
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Figure 3.1 – Graphical Representation of the BKT model

• Probability of transition: With a fixed probability PL , students transition from non-

mastery to mastery. Once a skill is mastered it is never forgotten.

Although some of these assumptions might seem too simplistic to be accurate, they are

nevertheless useful due to their high predictive power [89].

Variations of BKT

Bayesian models can be very expressive, but BKT has limiting assumptions of BKT, researchers

have developed several variations of the model. These variations of the BKT model which

discard one or several of these assumptions have been developed. Typically, the lack of

forgetting could be considered one of the main drawbacks of BKT. The multiple variations of

BKT show the wide range of behaviours that can be expressed with Bayesian models.

A first variation improved the models’ predictions by using individualised parameters for the

probability of initial mastery and the learning rates [174, 258]. A second variation models the

relationships between skills as a Bayesian network, which outperformed BKT in prediction

accuracy [117]. The assumption of binary correctness has been removed with a model that

allows for continuous scores [249]. The assumption of constant guessing and slipping rates

have been removed by considering the difficulty of different exercises [175]. Additionally,
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another approach introduced the possibility of forgetting a mastered skill [187].

3.2.3 Bayesian Models

Many of the variations and improvements made on BKT remain in the general category of

Bayesian Models. Bayesian Models are a more general framework to model how a system

evolves over a sequence of steps, while possibly generating observations and being acted upon.

This type of models has been used extensively in multiple educational contexts [116, 157]. For

example, they have been used for adaptive testing and diagnostics [158], generating hints in

ITS [86] and inferring students’ goals and attitude during problem-solving activities [9, 52].

Another aspect which makes Bayesian Models particularly useful is their ability to evaluate

the uncertainty about the state of the students [51]. Additionally, Bayesian Models (other

than BKT) have been used to compute fast and adaptive teaching strategies [190] and to

optimise ITS using decision theory [153]. Millán, Loboda, & Pérez-de-la-Cruz [156] consider

Bayesian Models "one of the best options for building student models." We fully concur with

this statement because Bayesian models are one of the most straightforward applications of

the framework described in Section 1.2. A Bayesian Model consists of several components

that reflect on our proposed framework:

• A set of the possible states of the student: s ∈S

• A distribution of probability of observations: o ∈O , and P (o|s)

• Transition probabilities between states P (s′|s), the probability for the student to be in

state s′ after being in state s

To be useful in adaptive learning environments, the model should also include a set of actions

a ∈A . In the case of a learning environment, the actions can be different learning activities to

give to students, different exercises, or different pedagogical interventions such as giving a hint

or feedback. In the general case, the actions taken by an adaptive learning environment will

influence the probabilities of observations and the probabilities of transitions. For example,

we can consider an adaptive learning environment that can choose between providing either

a quiz or a video. If a quiz is given, the observations will be the student’s answer to the quiz. If

a video is given, the system will be able to observe the students’ interactions with the video

player, such as pausing or speeding up the video [133]. It is also expected that the two types

of learning activities will affect the state of the student differently. How actions taken by the

learning environment influence the learning process and how to correctly select actions have

been studied using Partially Observable Markov Decision Processes [190] (which are identical

to the above definition).

Using Bayesian Models, the state of the student is estimated again after every observation

using Bayesian inference. At time step t , the model has uncertainty about the state of the

student. This uncertainty is characterised by a probability distribution P (s) for s ∈S . Then
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after choosing action a and making the observation o, the new probability distribution about

the new states s′ can be computed following the rule in equation 3.1. It is important to

note that for very complex student models involving a large number of states, actions and

observations and without simplifying assumption, this estimation will be computationally

intractable in the general case.

P (s′|s, a,o) = P (o|s′, s, a)P (s′|s, a)

P (o|s, a)
(3.1)

3.2.4 Other Knowledge Tracing Models

Other Knowledge tracing methods are based on different modeling approaches, such as

Learning Factor Analysis [38] or Performance Factor Analysis [176]. These two models rely

on logistic models based on the difficulty of exercises, the ability of the students and the

sequences of successes and failures in previous exercises. A more recent and very promising

modeling approach is to use Deep Learning methods such as Long Short Term Memory (LSTM)

[150, 180] or Transformers [186].

3.3 Study: Semi-Markov Models for Simulating MOOC Students

This section contains the methods and results of a study that aimed to develop a practical

algorithm for simulating students behaviour in MOOCs [77]. We analysed sequences of

activities from 61 courses using SMM and the Expectation-Maximisation algorithm (see

Section 3.3.2 for detailed descriptions of the algorithms). The simulations consider four types

of learning activities: watching a video, submitting an assignment, visiting the forum, and

posting a message on it. We used SMM because we found them to be more efficient to not

only simulate the transitions between events but also the number of repetitions of each event.

This efficiency is because it models different probability distributions for the repetition and

the transitions between events. We used Expectation-Maximisation (EM) to compute the

parameters of the Bayesian models as well as to cluster the students according to their different

types of behaviour and to compute the transition probabilities for each cluster. We balanced

the complexity of the model’s structure and the number of parameters by cross-validating

its parameters. Finally, we used the computed models to simulate students activities and

examine how well the simulation reflects student’s behaviour, which allowed us to predict

events of other courses compared to straightforward techniques.

The study aims to answer three research questions: RQ1: To what extent can Semi-Markov

chains be used to describe behavioural patterns of students? RQ2: How interpretable are

clusters of students based on statistical differences in the students’ behaviour? RQ3: How can

these models be used to infer distributions of events?
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Abbreviation Description Proportion
VideoPlay watching a video 51%
Submission submitting an assignment 33%
ForumView visiting the forum 15%
ForumPost posting on the forum 1%

Table 3.1 – Distribution of events in the dataset.

3.3.1 Methodology

Dataset

From our internal MOOC database, aggregating data from Coursera and edX, we extracted

events for 61 EPFL courses. The raw data contained approximately 23 million events for

500,000 students, arranged in tuples: <StudentID, CourseID, EventType, Timestamp>.

The EventType describes the type of activity and takes one of four possible values presented in

Table 3.1. Note that our modeling technique can be easily extended to cover other types of

events.

Analysis

For the analysis we developed our own Python implementation of the algorithm fitting the

model2. Below we explain the algorithm in detail. Since 23 million events can still fit in

memory of a single computer, we did not require a specific computing architecture to perform

the analysis. However, given the considerable size of the dataset, the algorithm takes several

minutes to run.

Probabilistic Model

We start with a general model in which students’ activity in any MOOC can be very precisely

described. Next, we elevate abstraction of the model by adding assumptions simplifying the

analysis. Our goal is to introduce a model whose complexity can be adapted to a particular

course and the amount of available data. We consider a model in which students’ behaviour

is described in a sequential manner by the type of activity they perform and the time they

wait between two sessions. Furthermore, as most of the students perform at most one MOOC

session per day, we choose a daily granularity of actions.

A sequence of student’s daily activity is described as a list of ’active events’ (VideoPlay,

Submission, ForumView and ForumPost) followed by a ’end of the day event’ (EndOfDay)

or only a EndOfDay in the case the student did not perform any activity the given day. For

example, if a student plays two videos on Monday and then posts a message on the forum on

Thursday, his sequence of events for these days takes form:

2Our implementation is available under https://github.com/lfaucon/edm2016-mooc-simulator
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Mon. VideoPlay/VideoPlay/EndOfDay
Tue. EndOfDay
Wed. EndOfDay
Thu. ForumPost/EndOfDay

The formal definition of the model is:

• The set of all students S: We use the symbol s ∈S to designate an individual student.

• The set A of all types of activities: For this study we chose a set of four types of events

presented in Table 3.1 as well as the special event, EndOfDay. We use the symbol a ∈ A

to designate any type of activity. One can extend the set of activities to other events if

needed for a certain application of our model.

• The random sequential variable: X (s)
1 , X (s)

2 , . . . , X (s)
n represents the sequence of activities

of one student s. Each X (s)
i ∈ A and the sequence stops after an EndOfDay when the

student reaches the end of the course. We denote the length of the sequence for a student

s as n(s). The observation of one student activity along one MOOC is a realisation of the

random sequence X .

• The probability distribution P : In general, for each student s ∈ S we can model the i -th

event X (s)
i with a probability distribution

P (s)(X (s)
i = a | X (s)

i−1, , X (s)
i−2, . . . , X (s)

1 ,Cs),

where a ∈ A, X (s)
1 , . . . , X (s)

i−1 are the previous events of that student and Cs are individual

characteristics of the student.

This distribution represents the student’s behaviour profile and allows us to generate typical

sequences of activities. Our main objective is to model this distribution as accurately as

possible, given the limited information. The accurate distribution would allow us to draw

samples of simulated student data. These probabilities correspond to the requirements for

classifying and simulating student behaviours.

At this point, one student interaction with a MOOC can always be represented as a sequence

of activities taken from the set A. Note that we do not specify the regular ’end of a course’

event, since we only model the behaviour within the limited time-frame of a course and we

treat the last day of the course as the last day of the process. Therefore, each student who went

through the whole course without dropping out has just a EndOfDay event on the last day of

the course. Therefore, the number of EndOfDay events is equal to the number of days of the

course. Ideally, we are able to simulate a student’s sequence of learning activities from the

probability distribution of the student. However, even in a large MOOC dataset we cannot

afford estimation of the probability depending on the whole sequence, since even with just 20
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steps we have 420 ∼ 1012 possible sequences of activities which makes estimation infeasible in

practice. Moreover, we do not have any individual characteristics Cs of a student.

Simplifying Assumptions

In order to fit a probabilistic model we need to relax the dependencies on too many events in

the past and on individual characteristics of students. We introduce the following assumptions:

• A1: Students’ behaviours fit into a small number of natural categories of behaviour.

• A2: The type of activity depends only on the previous activity and not on old past

activities.

Assumption A1 maps the space of all possible students’ characteristics into a limited number

of categories. Allowing only a small number of possible categories of students, simplifies a lot

the estimation of students characteristics that the algorithm must work with. Many studies

on MOOCs explicitly classify students into a small number of categories [122]. Students are

divided between "Viewers" who only watch videos, "Forum Actives" who share with their

peers in the MOOC discussion forum and "Completers" who succeed in the assignments. As

we present in the next section, our method is based on unsupervised clustering, where groups

emerge in the way optimal in terms of maximum likelihood of the model.

Assumption A2 imposes that only the last activity has an impact on the current activity. This

assumption is more constraining, but since the complexity of history grows exponentially with

the number of steps, and, in order to be able to estimate parameters, we have to reduce the

search space. This simplification is usually called the Markov assumption and greatly reduces

the search space of parameters, which makes the computation of the model feasible. Even

though the behaviour and learning process of students could have long term dependencies

as explained in the previous subsection, in our case the simplifying assumption is necessary

to reduce the complexity of the model and make it tractable. Additionally, this simplification

enables interpretations of the models as we explain in Section 3.3.3.

Apart from technical assumptions required for Markov Models, we impose other assumptions

for convenience. First, we consider only the five types of events mentioned previously although

other sources of data about students would be available in most MOOCs (for example, the

click-stream interaction with the lecture videos, or the text of messages posted on the forum).

Second, we do not consider the duration of events, so the VideoPlay event is only the moment

when a student starts watching a video. Third, if the series of events happens during midnight,

we still add an EndOfDay event to the sequence.
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3.3.2 Algorithm

Soft clustering

In Section 3.3.1, we proposed a simplified model in which we assume that there are only a few

different possible classes of students (A1). We enumerate clusters 1,2, . . . ,K . For each student

s ∈ S we introduce a probability distribution µ(s)
k that describes probability that the student

belongs to the behaviour classes k, for k ∈ {1,2, . . . ,K }. Furthermore, every student of the same

profile behaves according to the same probabilities.

This technique is often referred to as soft clustering, weighted clustering or fuzzy clustering

[166]. Instead of discrete cluster assignment, as in K -means, we obtain for each student a

probability distribution among the clusters. These probabilities can be intuitively seen as our

certainty that the student belongs to a given cluster.

Semi-Markov Chain

Assumption (A2) (i.e. dependence only on the last state) allows us to model the process Markov

Chains. Formally, in the definition of distribution of the next event we can drop dependence

of the events that occurred before the current one. This results in the simplification given in

Equation 3.2.

P (s)(X (s)
i | X (s)

1 , . . . , X (s)
i−1) = P (s)(X (s)

i | X (s)
i−1) (3.2)

A preliminary analysis revealed an important weakness of using classic Markov Models in our

context. A traditional Markov model considers that a student is equally likely to stop watching

videos when they have watched one, as when they have already watched ten videos. In practice,

students watch videos sequentially and a Markov Model does not capture appropriately the

number of events in the sequence. To remedy this issue we employed Semi-Markov Models

(also called Markov Renewal Processes). The key feature of this model is that it allows one

to replace the self-loops (transitions from one event type to itself) in the Markov Chain, by a

probability distribution of the number of repetition of a given state.

In Semi-Markov Models, we still need to choose a parametric distribution, but we have more

freedom than in a traditional Markov Chain. A Markov Chain implicitly assumes that the

number of repetitions of a given state follows a geometric distribution. As a consequence, the

probability of staying in the same state is the largest for 1 step and decreases with the number

of steps. However, we would expect that 1 is not the most probable number of repetitions, at

least for a particular group of students. Suppose we expect that some students connect to a

MOOC twice a week, with an approximately three-day interval between connections. In that

case, the average number of repetitions of the EndOfDay event is 3. A traditional Markov Chain
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accurately models the average to be 3 but implicitly assumes that the most likely number

of repetitions is 1. A SMM with a Poisson distribution also gives the average equal to 3, but

the distribution is concentrated around 3. Using a Poisson distribution proved to be more

accurate in our preliminary analysis. Thus, for an event a ∈ A and a class k, we model the

number of repeated events Rk
a by Equation 3.3 where r is the number of repetitions and λk

a is

the average number of repetitions that needs to be estimated from the data for each k and a.

P (Rk
a = r ) = e−λ

k
a (λk

a)r

r !
(3.3)

Expectation-Maximisation

The Expectation-Maximisation (EM) algorithm is an iterative technique used to compute the

parameters that maximise the likelihood of a given probabilistic model [63]. The EM algorithm

has been proven to converge at least to a local minimum. This minimum depends on the

initialisation point. Thus, multiple runs with different random initialisations are often used in

practice in order to increase the chances of finding the global minimum.

In this study, we use the EM algorithm for unsupervised learning. Neither the parameters of the

latent classes nor the repartition of the students are known at the beginning and the algorithm

has to estimate both quantities at once. In our settings, we define for each k ∈ {1,2, . . . ,K } and

states a and b:

• p(k)
b−>a , the probability that a student with the behaviour profile k performs the activity

a after the activity b: p(k)
b−>a = P (Xi = a | Xi−1 = b)

• λ(k)
a , the average number of repetitions of an event a from a student of profile k.

• µ(s)
k , the probability that a student s belongs to the profile k.

Using these parameters, we can compute the likelihood of the observed sequence as a function

of cluster repartition and parameters of Markov Chains. For this process we use the following

Equation 3.4.

l i kel i hood = ∏
s∈S

[
K∑

k=1
µ(s)

k

∏
(a,b,r )∈Ts

p(k)
b−>aP

λ(k)
a

(r )], (3.4)

where Ts is the set of tuples (a,b,r ) ∈ A× A×N corresponding to transitions from activity b to

activity a with r repetitions of activity a. The goal of the algorithm is to find the parameters

that maximise the likelihood.
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In the first stage, the algorithm initialises randomly K profiles. Next, it iteratively improves the

likelihood, by alternating two steps as described below. In each step it modifies the repartition

of the Markov chain parameters.

Initialisation: The initialisation consists of choosing randomly either the p(k)
b−>a and λ(k)

a or

the µ(s)
k . In our algorithm, we start with the µ(s)

k . This can be done by generating a random

number k∗ from 1 to K for each student s and by setting

µ(s)
k =

{
1 if k = k∗

0 otherwise.
(3.5)

Iterations: The iteration phase has two steps. First, we compute the optimal values for p(k)
b−>a

and λ(k)
a given that µ(s)

k are fixed (equations (3.6) and (3.7)).

p(k)
b−>a =

∑
s∈S

∑
(a,b,_)∈Ts

µ(s)
k∑

s∈S
∑

(_,b,_)∈Ts
µ(s)

k

(3.6)

λ(k)
a =

∑
s∈S

∑
(a,_,r )∈Ts

rµ(s)
k∑

s∈S
∑

(a,_,_)∈Ts
µ(s)

k

(3.7)

Next, we compute the new values of µ(s)
k according to the new p(k)

b−>a and λ(k)
a (equations (3.8)).

µ(s)
k =

∏
(a,b,r )∈Ts

p(k)
b−>aP

λ(k)
a

(r )∑K
c=1

∏
(a,b,r )∈Ts

p(c)
b−>aPλ(c)

a
(r )

(3.8)

Intuitively in the first step, we compute the parameters of the latent classes given the repar-

tition of the students, and in the second step, we recompute the repartition from the new

classes parameters.

The algorithm takes as input the dataset of the students’ sequences of activities and a desired

number of clusters K and outputs K Semi-Markov models. Each Semi-Markov model is

described by transition probabilities and the average number of repetitions that represent K

categories of behavioural patterns. Along with these models, for each student the algorithm

returns the posterior probability distribution of the student among the clusters.
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3.3.3 Results

Studying these behavioural patterns provides insights on the types of behaviour that MOOC

students can have. In order to present the process of the analysis and explain the results, we

first execute the algorithm with K = 3 clusters. As an example of output result, Figure 3.2

shows the graphical representations of 3 Semi-Markov models that correspond to one run of

the algorithm. The thickness of the arrows corresponds to transition probabilities and the

color of states corresponds to the average number of occurrences. We provide this example to

illustrate the function of the model and to use it as a basis for interpretation.

The parameter K , the number of clusters, can be set to different values depending on the

objective. For higher interpretability, smaller values of K are preferred, since a greater number

may result in classes having only subtle, indistinguishable differences. On the other hand,

a greater number of clusters can be used for more advanced analyses when we study the

generative models by comparing the results of a given algorithm using them. The common

method to decide the right parameter K is cross-validation. Note that the parameter controls

the complexity of the model, and high numbers can lead to overfitting if not enough data is

provided.

Example: Interpretation of clusters (K=3)

Our second research question relates to the interpretability of the cluster of students that we

infer from statistical patterns of sequences of events. We demonstrate the interpretability of

our simulation model by showing how easily it can be interpreted. To that end, we illustrate

the behaviour of the algorithm and the model when the number of clusters is small (K = 3).

Although we may lose important variability among groups of students in this case, a small

number of clusters allows us to visualise the Semi-Markov models and interpret each of the

clusters.

The visualisations of the Semi-Markov models on Figure 3.2 reveals general characteristics of

students’ behaviours. For example, Profiles 1 and 3 are less active as they have higher transition

probabilities and a higher expected number of repetitions for the EndOfDay events. Profile

2 has a high number of repetitions for the ForumView events and very balanced probability

transitions between all types of events. Students adopting Profile 2 are students who use all

the different learning activities of the MOOC. On the contrary, Profile 3 has a very high average

number of repetitions on VideoPlay and considerable probability to go back to EndOfDay
events. This means that students of this cluster are not fully engaged in all MOOC activities

and mostly log in to only watch the videos.

As mentioned in Section 3.2 of this chapter, the model we used is in the family of generative

models. It allows us to sample sequences of simulated student data. An insightful way to

analyse and interpret the differences between the extracted clusters is to generate sequences

of events and compare statistical properties of the outcomes. For example, we can compute
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Figure 3.2 – Three graphical representations of behaviour profiles extracted by the EM al-
gorithm. The three Semi-Markov models are referred below as Profile 1 (top-left), Profile 2
(top-right), and Profile 3 (bottom). The thickness of arrows shows the transition probability
and the color shows average number of repetitions (from 1 repetition [white], to 9 repetitions
[darkest brown])
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Figure 3.3 – Evolution of the log of the likelihood for different number of classes

the expected number of videos watched or the expected number of posts on the forum directly

from simulated sequences. Table 2 shows the average number of several types of events for

100 simulated students (averaged from 10000 simulations) over four weeks generated with the

three Semi-Markov models from Figure 3.2. For example, we can see that students of Profile

1 participate in the discussion forum more rarely but complete the assignments more than

they watch the videos. This might indicate that they already have a good understanding of the

content of the course and do not need to spend more time studying.

Profiles 1 2 3
Watched Videos 1060 3133 2363
Submissions 1535 2423 442
Forum Visits 68 1711 255
Forum posts 3 96 15

Table 3.2 – Average number of events for 100 students over the first four weeks of the MOOC

Choice of the parameter K

A common challenge of unsupervised learning and fitting a probabilistic model is finding the

correct number of classes. In our case, the similarity of the algorithm with other clustering

techniques, such as the K-means algorithm, leads to the "elbow heuristic", often used in

practice. The idea is to choose the number of clusters large enough to explain a large part of

the variability but such that a greater number of clusters would not explain substantially more.

Figure 3.3 shows the evolution of the log-likelihood computed by the algorithm after conver-

gence with the equation (3.4). We can see an elbow shape for a number of clusters between 10
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Figure 3.4 – Average distance of students from their model for different number of classes

and 15.

In order to confirm the result of this first measure of quality, we designed another measure

described in the equation (3.9). The goal is to quantify how the student sequences diverge from

their attributed cluster. In the equation, |A| is the cardinality of the set of possible activities.

ps(a) is the probability of finding the activity a if we take uniformly at random an activity of

student s. pk (a) is the probability of finding the activity a if we take uniformly at random an

activity from a sequence generated by the class k.

d 2(s,k) = 1

|A|
∑

a∈A
(ps(a)−pk (a))2 (3.9)

This distance measure shows an elbow shape for the same values of K between 10 and 15

as can be seen on Figure 3.4. We conclude that MOOC students from our dataset can be

meaningfully clustered into 10−15 different classes.

Simulations

One of our motivations for designing generative models was their ability to simulate sequences

of events. This relates to our third research question about the estimation of distributions

of events and behaviours. These estimations can benefit the design of an experiment by

decreasing the risk of having too large or too small samples because the simulation of students

behavior will allow us to estimate in advance the sample sizes necessary to obtain the desired
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statistical power on particular conditions such as forum use or videos watched. In this section,

we show how to use the generative models to simulate students’ event sequences, and we

compare the simulations to real students activities.

With a model fitted with the EM algorithm at hand, the algorithm partitioned students and

chose parameters of a Semi-Markov Chain for each of the clusters. Since both the repartition

and the Semi-Markov Chains are generative, we can draw samples from the fitted distribution.

In other words, we can simulate the students. To validate the quality of the simulations, we

first propose a simple accuracy measure. We use the Mean Square Error (MSE) as defined in

Equation 3.10 because it is a useful metric for estimating the errors of probabilistic predictions.

Pr eal (|a| > n) represents the probability that a student performs more than n events of type

a during the time of the MOOC. |a| is the count of events of type a. Psi m(|a| > n) represents

the same probability but for a simulated student. In the measure, we chose the value N = 50

because it covers most of the variability in the students activity sequences and is not too large

as still 19% of the students have an activity with more than 50 repetitions.

MSE = 1

(|A|−1)∗N

∑
a∈A

∑
n<N

(Pr eal (|a| > n)−Psi m(|a| > n))2 (3.10)

In order to prove the correctness of the modeling method, we divided our dataset into a

training set and a test set for validating the results. The first step is to run the algorithm on the

training set with several values of the parameter K and then, use the computed parameters to

simulate a new population of students and finally compare this population with the students

from the testing set. In Figure 3.5 we can see that the fit does not improve much after K = 15

because a too high number of clusters makes the algorithm learn mostly the noise from

the random actions of the students instead of their real intrinsic behavioural patterns. It

appears that we have an elbow shape for K between 10 and 15, which confirms the previous

conclusions.

The small error proves that the distribution obtained from simulations is close to the original

distribution. This implies that the model, when properly trained, can be extrapolated by

simulation to further events or larger samples. In an experimental setup, simulations with

varying initial conditions of the model (e.g. probabilities of transitions) can give us distri-

butions of events at the later state. Given multiple experimental conditions, knowing the

probability distributions of the results of the different conditions allows us to estimate sample

sizes needed for finding statistical evidence of an investigated effect. For further technical

details on how to choose the sample size for experiments based on distributions, we refer to

[142].
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Figure 3.5 – Measure of accuracy of a simulation for different number of classes

Prediction of the cluster

Once we run our algorithm with a desired number of clusters K , we obtain the desired repar-

tition and K corresponding Markov models, representing the extracted behaviour profiles.

A natural question arises, whether we can predict the behaviour cluster for a new student.

This question could be significant for the MOOC platform, as detecting the type of student

that is taking a course allows the teacher to adapt the interaction that the platform offers. For

example, if we are sure that a student is only going to watch videos, we could stop interrupting

the videos with quizzes and sending email about the discussions on the forum. Alternatively,

we could trigger an action that would aim to motivate the student to engage in quizzes and

discussions. On the other hand, a student that shows the behaviour of strong involvement

in completing the full course and collaborating on the forum may appreciate more external

news and challenges from the course.

To investigate how well we can predict the behaviour cluster of users, we divided our dataset

into a training set of 40 randomly chosen courses and a testing set of 10 courses. First, we use

the selected training set to learn 3 different types of behaviours. Then we try to predict for

each student of the testing set to which cluster he belongs, using only a limited number of his

activities. This allows us to justify that the method can be applied to new or currently running

courses.

To compute the behavioural pattern of a student, we first estimate the probability that he

belongs to any cluster k using equation 3.8, and predict the most likely cluster. Figure 3.6

shows the performance of our prediction when it has data from a limited number of weeks as

input. We measure the performance using the average of the F1-measure for each cluster.
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Figure 3.6 – Accuracy of the prediction against the number of weeks of observation

We found that the performance is satisfactory, even when predicting with only the events for

the first week (F1-score of 0.7). Furthermore, the prediction accuracy increases sharply as we

increase the number of weeks of data available. For example, 0.89 at the end of the third week

and 0.94 after 5 weeks. This shows that the algorithm adapts to the course fairly quickly. The

fact that the cluster can be inferred efficiently indicates that Semi-Markov Models describe

well the behavioural patterns of students (RQ1).

3.4 Conclusion

In Section 3.3 we presented a probabilistic generative model that can be used to simu-

late activities of MOOC students. Our model is based on a set of four possible activities

for the students:{VideoPlay, Submission, ForumView, ForumPost} to which we added an

EndOfDay event. We used the Expectation-Maximisation algorithm that allows us to compute

parameters of a probabilistic model and perform clustering of the students depending on

their behaviour characteristics. The algorithm is built in a general manner and can be applied

to models of varying complexity.

Firstly, we showed that Semi-Markov chains can be successfully applied to describe be-

havioural patterns of students (RQ1). Semi-Markov chains are the direct consequence of

a fully general probabilistic modeling of students’ behaviour and the assumption the student

behaviour at the next step can be depends only on the current step. Additionally, students are

efficiently classified into clusters of behaviours described by Semi-Markov chains. Secondly, a

simple analysis of three clusters that we extracted proved their potential interpretability (RQ2).

Finally, we used our model to infer distributions of events, provided a metric for comparing
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the event distributions to student data, and evaluated our simulation method (RQ3). We

found that our model reaches very low error rates which shows that it captures the underlying

processes of students behavioural patterns.

The Homogeneity of the Markov process: The Markov assumption was introduced for re-

ducing the number of parameters of our model. It is a strong simplification, which entails

some drawbacks. This assumption implicitly requires that students behave with exactly the

same transition matrix during the whole course. The motivation to keep learning should

increase when getting closer to the end of the course, and, thus, the dropout rate decreases,

which cannot be captured by our method. A good way to overcome this weakness is to use

inhomogeneous Markov models with transitions probabilities that are functions of time.

Differences between courses: The quality of the videos, the level of difficulty of the assign-

ments or the discussion topics in the forums are all factors that can greatly influence the

behaviour of a student. None of these were included in our model. We hypothesise that adding

external annotations that would impact the transition probabilities of our Markov models

could help solve this problem. These do not necessarily need to be manually annotated, but

could be estimated automatically. As for now, our model can be used to compare courses. For

example, if we run the algorithm on two MOOCs and realise that the Video Watchers of one

course have a lower engagement, that shows a lower quality of video content while differences

for the Forum Follower may reveal differences on the quality of the Forum discussions.

Student simulations for experiments: Large-scale experiments are often expensive and time

consuming. Although Massive Online Open Courses (MOOCs) provide a solid and consistent

framework for learning analytics, MOOC practitioners are still reluctant to risk resources in

experiments. In this study, we suggested a methodology for simulating MOOC students, which

allows for the estimation of distributions, before implementing a large-scale experiment. To

this end, we employ generative models to draw independent samples of artificial students.

We use Semi-Markov Chains for modeling student’s activities and Expectation-Maximisation

algorithm for fitting the model. From the fitted model, we generate simulated students whose

processes of weekly activities are similar to those of the real students. To our knowledge, this

study was the first to propose a method to model a MOOC as a set of Semi-Markov chains.

Our methodology provides a model of behaviour of students which allows us to draw samples

from a distribution. Simulated students can give insights on the potential requirements of an

experiment and, as a consequence, they can decrease the cost of an experiment.

The concepts of generative models in ML, and in particular Bayesian Models such as BKT

are a cornerstone to the work of this thesis. In the next Chapter 4 we tackle the problem of

Self-Improving learning environments and test our design using student simulations based

on Bayesian student models.
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How are learning environments becoming better over time? We discussed in the previous

chapter techniques for student modeling, particularly Bayesian models. These models are used

in Intelligent Tutoring System (ITS) for personalising the pedagogical content or the learning

activities. It is clear that adaptivity increases the students’ learning outcomes compared to

non-adaptive systems [54]. In the previous chapter, we did not answer two questions: How are

these adaptive systems built and how can they be made more efficient at personalising learning

over time? These two questions relate to the second goal of this thesis: self-improvement. After

teaching each student, a self-improving learning environment would learn from its interaction

with the student and will seek to improve how it teaches the next students.

Adaptive learning environments are usually built with a combination of knowledge from

expert educators and student models trained on collected data. For example, for an ITS using

Bayesian Knowledge Tracing (BKT), experts have to decompose the exercises into skills, and

the model parameters are estimated from student data (using tools such as BNT-SM [39]).

Yet, expert knowledge and student data do not necessarily need to be combined to achieve

personalised teaching. A human tutor adapts quite well to students even without explicitly

collecting a dataset of learner data. In contrast, several approaches also try to be purely based

on student data and models with no expert inputs. For example, automatically extracting

skill decomposition [135] or using Deep Learning [180, 150]. Similarly, Mayo and Mitrovic

compare "expert-centric" and "data-centric" approaches and propose a method that relies

solely on observable variables without the assumption of hidden student states [153]. For

improving such systems over time, one way would be to refine the computation of the model

parameters as the system is collecting more data. In this chapter we provide algorithms which

select actions for Bayesian Models and over time refine the estimation of the parameters of

the models thus maximising learning outcomes for students.

Self-improvement occurs naturally in a wide variety of learning environments. For example,

one can think of a professor seeking to improve their course each successive year, becoming

better at teaching it, and accumulating higher quality learning material for the students. A sec-

ond example could be a university which makes use of student feedback to enhance courses or
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the curricula. A more general practice that improves education is research and experimental

studies. Such studies usually take the form of testing different pedagogical approaches in

order to know which works best in which context. Instructors who run pedagogical exper-

iments are able to reflect on their own pedagogy and enhance their teaching material for

future students [252]. The research conclusions can be used by instructors or technologists

to improve learning environments. These occurrences of improvement of learning environ-

ments are valuable examples to guide the design of self-improving learning environments. A

learning environment is considered self-improving if it automatically improves itself, without

external interventions. It is noteworthy that these three examples have as a common fac-

tor, the observation of students, which serves as the basis for improvement of the learning

environment.

The field of machine learning has brought new opportunities for building self-improving

systems relying on automatic data collection and data analysis. Reinforcement Learning (RL)

specifically studies agents evolving in an unknown environment and seeking to improve a

given reward over time. The RL-agent can use a limited number of actions sequentially, which

influences its rewards and its observations of the environment. In this context, the agent

must seek to better understand the environment and to maximise its rewards. This framework

can also be useful to think about learning environments. The learning environment is the

RL-agent, which can select among a range of activities or teaching material (RL-actions),

and students are the unknown RL-environment. The learning environment must learn how

students learn (understand the environment) in order to teach more optimally (optimise its

reward).

The interesting particularity of RL is that the agent must balance between learning about

the environment and maximising its immediate reward. This challenge is commonly called

exploration-exploitation trade-off. We illustrate it with the Multi-Armed Bandit (MAB) problem

[88] in Section 4.1. Exploration consists in making decisions that allow one to learn more

about the environment, and exploitation consists in using knowledge of the environment

to maximise the expected rewards. In the context of education, the goal of a self-improving

learning environment is to select good pedagogical choices while measuring the efficiency

of these choices and while testing enough different possibilities. Indeed exploring unknown

possibilities is necessary to not miss on the opportunity to discover better teaching strategies.

Indeed, always selecting the choice that seems optimal according to the data collected so far

removes the opportunity to discover better choices.

This chapter focuses on the design of self-improving learning environments using algorithms

for MAB optimisation. First, we define the MAB framework and its heuristic algorithms in

Section 4.1. We then define how it has been applied to the field of education in Section 4.2.

Finally, we give theoretical results on the use of MAB algorithms for Bayesian Models in Section

4.3.
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4.1 The Multi-Armed Bandit Problem

The Multi-Armed Bandit is a classic problem of probability theory often used to illustrate the

trade-off of exploration and exploitation. It is a special case of the more general framework

of RL. The name "multi-armed bandit" (MAB) is derived from casino’s slot machines called

"one-armed bandit". Imagine the following situation: Alice owns ten thousand tokens that

she can decide to play in sequence in any of two slot machines A and B. She also knows that

the two machines have possibly different expected rewards. So far she has played three token

in machine A and earned 10$ and one token in machine B and earned nothing. Should Alice

decide to play all the remaining 9996 tokens in machine A from now on?

If Alice seeks to maximise her expected gains this would not be an optimal strategy because

she cannot be sufficiently sure that the machine A is better than the machine B yet. In her few

first trials she might have been lucky when using A or unlucky when using B. On the other

hand, playing half of the tokens in A and half of the tokens in B would also, in general, not

be an optimal strategy because it does not make any use of the information obtained from

playing both machines.

The MAB bandit problem gives the choice between several arms numbered 1 to k that have

probabilistic rewards with unknown means µ1, . . . ,µk . The quality of an explore-exploit strat-

egy S for the multi-armed bandit problem is usually evaluated using the regret as defined by

Equation 4.1. The regret measures the difference between the expected reward of a strategy

and the gains of the optimal arm. In Equation 4.1, R(N ) is the regret after N steps, µ∗ = maxi µi

is the average reward optimal arm and E[rS,t ] is the expected reward at step t when using

strategy S. In particular, we are interested in strategies with negligible regret, which means

that R(N )/N decreases to 0 with a large number of steps N . Such selection strategies would,

after a large number of steps, be approximately as good as always choosing the optimal arm.

R(N ) = Nµ∗−
N∑

t=1
E[rS,t ] (4.1)

4.1.1 Heuristics for the MAB Problem

Although very simple to describe, the MAB problem is very hard to solve and motivates a lot of

research. Gittins proposed a solution for maximising the discounted expected future reward

using dynamic allocation indexes [88]. However, the solution is computationally expensive

and other heuristics perform well in practice [40]. In this section, we will only detail the

ε-greedy algorithm, the Upper Confidence Bounds algorithm and Thompson Sampling as

they seem to have been the three methods most applied in the context of education.
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ε-greedy strategy

The ε-greedy approach is the simplest proposed solution for MAB. The strategy consists

in exploiting the arm with the highest empirical expected reward most of the time (with

probability 1− ε) and exploring uniformly at random with probability ε. This strategy does

not achieve negligible regret, and the regret after a large number of steps will always be

proportional to N ×ε. This motivates the use of lower values of ε, yet such low value would

also mean less exploration and thus interesting arms might not be sufficiently selected until

many steps. A small variation of this strategy would consist in a first phase of full exploration

followed by a second phase of full exploitation. This practice would also be called ε-first or

A/B testing [126].

Upper Confidence Bounds

The Upper Confidence Bounds (UCB) algorithm proposes an elegant solution to the MAB

problem [10]. The idea of the algorithm is to consider optimistic evaluations of the different

arms by adding a term that takes the measurement uncertainty into account. Equation 4.2

gives the score evaluated by the UCB algorithm. The scores are updated at each step and the

arm with the highest score is then selected. In Equation 4.2, the variable t is the number of

steps made by the algorithm, Tt ,k is the number of times the arm k has been selected until

step t , and µ̂t ,k is the empirically evaluated mean reward of arm k at step t . This scoring

mechanism ensures that an arm that has not been tried a lot compared to other arms might be

selected because it has a high value on the upper confidence bound. This algorithm achieves

negligible regret over a large number of steps.

s(t ,k) = µ̂t ,k +
√

log (t )

Tt ,k
(4.2)

Thompson Sampling

Another heuristic for MAB optimisation is the Thompson Sampling (TS) algorithm. It has been

widely recommended because it is easy to implement and performs very well in practice [40, 3].

Unlike UCB, TS is not deterministic. The algorithm consists of selecting an arm according to

the probability that this arm is optimal [233, 207]. This is done by sampling from the posterior

distribution of the reward for each arm and selecting the arm with the largest sampled reward.

In general the rewards are modeled using Beta distributions (see example on Figure 4.1) or

Dirichlet distributions (see Section 4.3). Similar to UCB, Thompson Sampling is a strategy

which achieves negligible regret over a large number of steps.
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4.1.2 Practical Use of MAB Optimisation

Although the problem statement appears very simplistic, solutions to the multi-armed bandit

problem are not limited to a small range of use. In their book Algorithm To Live By [44], Brian

Christian and Tom Griffiths explain how the exploration-exploitation trade-off should be

used to choose which restaurant to go to for dinner, whether to spend more time with your

best friend or when trying to meet new people. Within academic research, a lot of diverse

fields have published on the merits of MAB algorithms. For example in the context of online

advertisement [1], recommendations in e-commerce [31], user interface designs [144], or for

clinical trials [233, 245].

Using high quality optimisation in educational technology can be an ethical concern. The

case of clinical trials is particularly important. In this case, using a better optimisation strategy

will, in expectation, select better treatments and save more lives. The same case can be made

for Education. It seems desirable to make experiments to explore several teaching strategies,

but not at the expense of students’ learning.

4.2 Self-Improvement in Education

In this section and the following, we focus on the use of MAB optimisation in the context of

learning environments. Previous research and our work in the following section motivate

the use of MAB algorithms as one of the best available options for designing self-improving

learning environments.

4.2.1 MAB for Adaptive Teaching

One of the uses of MAB optimisation in the context of education is for implementing adaptivity

in tutoring systems. As we discussed in the thesis introduction, adaptivity requires collecting

data from students in order to personalise the pedagogical content. MAB optimisation can

be used to balance between giving an activity because it will reveal important information

about the student or giving an activity because it is supposed to best help the student learn.

For example, MAB optimisation has been used for sequencing pedagogical content based on

difficulty and uncertainty about the students level of ability [209] and notably to handle the

concept of the Zone of Proximal Development [47, 48]. Interestingly, another version of the

MAB problem called contextual bandits allows to improve the personalisation of pedagogical

activity selection [149].

4.2.2 Improving Trade-offs in Pedagogical Experiments

Outside of personalisation, using MAB optimisation for educational systems has been pro-

posed many times [139, 138, 191, 189, 252]. The main interest is that it allows one to carry out

experiments in learning environments. Running experiments is incontestably a key part of
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Figure 4.1 – Comparison of posterior estimates between Thompson Sampling optimisation
(left) and Uniformly Random arm selection (right) with two arms of true success rates of
respectively 0.4 and 0.5 after 200 throws

improving pedagogical systems. Yet, when experimenting through randomised control trials,

a proportion of the study participants will always be assigned to the sub-optimal condition.

Using MAB optimisation benefits participants by assigning more students to the better condi-

tions, but unfortunately reduces statistical power of experiments [191]. Work by Liu provides a

particular algorithm that can be parameterised to balance scientific knowledge and teaching

quality in an educational game [139]. Additionally, it was shown that assigning optimistic

priors to the MAB choices leads to increased statistical power [191].

Figure 4.1 shows the difference between using TS optimisation or splitting participants equally

between two experimental conditions. The figure shows the posterior expectations of reward

after 200 throws and comparing two conditions with true expected reward of 0.4 and 0.5.

We can see that the Thompson Sampling optimisation has selected the best arm more often

because it has lower uncertainty on the arm success rate. This is in itself a good thing if the

success rate of students during the optimisation procedure matters. However, this unbalance

leads to still having a high uncertainty on the estimation of the success rate of the other arm.

This often would mean insufficient power for drawing statistical conclusions on this data. On

the other hand, the uniform split between the two arms leads to less overall successes but a

better statistical estimation of the difference between the two conditions.

In some large scale learning environments, like MOOC platforms, it seems impossible to

run multiple experiments for every MOOC created because it would require too much man

power to set up and analyse the results of such experiments. Beyond improving trade-offs

in experiments, MAB optimisation can be used to efficiently automatise the experimental

process. In general, when a learning environment contains a large quantity of pedagogical

content, it becomes necessary to automatically carry out the desired experimentation for self-

improvement. Using MAB optimisation would lead to several advantages, such as requiring

less time from experts and improving students’ learning outcomes.
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4.2.3 The Cold-start Problem

MAB optimisation is relevant to support decisions in a learning environment with insufficient

information. The cold-start problem in machine learning occurs when a system must make

a decision without enough contextual information. It is often discussed in the context of

recommender systems when a new user starts using a platform and must be recommended

items [134, 80]. Learning environments face the same sort of challenge. If a new student starts

interacting with a learning environment, it is likely that no information about this student

has been collected so far, yet the learning environment must select pedagogical content to be

delivered.

Solutions to the cold start problem usually consist of seeking different sources of data in order

to build a prior about unknown students. An expert instructor who knows the pedagogical

activities or teaching materials well could recommend such a prior. This expert recommenda-

tion would take the form of an estimation of the different learning outcomes of the different

activities and an estimation of the expert’s own certainty about the first estimation. If the

expert is fully confident in his or her estimation and is reliable, then MAB optimisation would

not be necessary. In the other cases, the MAB optimisation could be started from the expert’s

prior. Starting the MAB optimisation on different priors has been previously studied and

shows that more optimistic priors lead to increased exploration in the MAB process [191].

A second possibility for designing such a prior is to use high quality simulations of student

behaviour and learning processes. This can be done using student simulations, for example

based on cognitive models. The simulated student would generate data allowing the system

to learn a good prior on unknown students.

Even without exterior sources of data, MAB optimisation has been shown to help imple-

ment solutions to the problem of cold-start [80]. Indeed, MAB optimisation algorithms will

efficiently learn from the unknown student while maximising their learning outcomes.

4.3 Applying Multi-Armed Bandits to Bayesian Models

In the several examples discussed in the previous section, MAB optimisation has been used

to maximise a directly observable metric. Yet, the goal of a learning environment is the

learning outcomes of students, which cannot be measured directly but have to be inferred from

observations. This task, as we detailed in Chapter 3, can be done by Bayesian student models.

For example, BKT infers the mastery of students from observations of their performance [55].

In the case of BKT, maximising the performance is equivalent to maximising the outcome on

students’ knowledge states. However, this equivalence cannot be generalised for all learning

tasks and all student models. In particular, we will analyse the process of inductive reasoning

in Chapters 5, 6, and 7 for which observations of students are used to infer their states but

are not desirable to be maximised directly. Moreover, we illustrate this aspect with a simple

example below.
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Figure 4.2 – Example of student states (A, B, and C) and probabilities of observations (correct
and incorrect)

This motivates the work presented in this section. First, we show a simple example where max-

imisation of a given observation fails to guide students to desired knowledge states. Then, we

show in the case of Bayesian Models how to sequentially estimate the transition probabilities

from observations. Finally, we show how to use these estimations to select different learning

activities while handling the exploration/exploitation trade-off using Thompson Sampling.

We finally confirm our theoretical result with a numerical simulation.

Illustrative example: A teacher wants the students to learn how to multiply two 1-digit num-

bers and gives, as a test, the computation of 3×7? with the choices 20, 21, 22, 23, 24, 25,

26. Now consider two activities: 1 and 2. Activity 1 has a small chance ( 30%) to correctly

teach students how to do multiplication. Activity 2 teaches students that multiples of 3 must

have digits that sum to 3, 6 or 9. By applying the rules learnt in activity 2, students would be

able to eliminate most of the choices and answer correctly half of the time. Maximising the

probability of a correct answer leads to preferring activity 2 to activity 1. Yet, the teacher does

not much value the state in which students are after activity 2 and would care more about

the 30% chance of correctly teaching multiplication procedures. This example is depicted in

the graphical model in Figure 4.2. If the teacher does not value the state B, but there exists an

activity that is very efficient at making students transition from C to B, then maximising the

expectation of a correct answer can be counter productive.

4.3.1 Problem Definition

We use the same definition and notation for Bayesian Models as presented in Chapter 3.
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• A set of the possible states of the student: s ∈S .

• A set of possible observations: o ∈O .

• A set of learning activities: a ∈A .

• Probabilities of observations depending on the students’ states: P (o|s)

• Probabilities of transitions between students’ states depending on the chosen activity

P (s′|s, a), the probability for the student to be in state s′ after being in state s and doing

learning activity a.

• A function of preferences of the teacher about the states of the students characterised

by a utility function u(s).

The optimisation process should find the activity a∗ that maximises the expected utility U (a)

as described in Equation 4.3.

a∗ = max
a

∑
s∈S

u(s)∗P (s|a) (4.3)

4.3.2 Estimating Transition Probabilities from Observations

In this section, we focus on the problem of estimating the transition probabilities of several

unknown learning activities when the states and observation probabilities of the Bayesian

Model are known. Because the transition probabilities from a given state is a multinomial dis-

tribution, the uncertainty about the parameters can be described using Dirichlet distribution,

which is the conjugate prior of the multinomial distribution [192]. The Dirichlet distributions

are a natural choice for modeling uncertainty about the model parameters, because it is the

conjugate prior of categorical probability distributions that are used by Bayesian student

model for the transition probabilities [19, 17].

The estimation relies on modeling the probabilities of observations. The observation prob-

abilities of a given activity P (o|a) can be obtained from the transition probabilities and the

observation probabilities from states (see Equation 4.4). This equation can be written as a

matrix product. Oa is the vector of values of P (o|a) for all observations, Os is the matrix of

value P (o|s) for all observations and states, and Ta is the vector of transition probabilities.

Oa =OsTa (4.4)

Equation 4.4 gives us the first necessary condition for being able to estimate probabilities of

transitions, which is that the matrix Os is full rank. In this case, Oa is uniquely determined by
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the transition probabilities. On the other hand, if Os is not full rank, different sets of transition

probabilities could lead to the same probabilities of observations and, thus, would not be

distinguishable. This problem has been called identifiability in previous work [19].

A simple example of non-identifiability is given with the graphical model of Figure 4.2. In

that example, it is not possible from the observations to differentiate the difference between

a probability 1 of transition to state B and a probability 1/2 of transition to both A and C.

In this case, the system should be improved by enhancing the mechanism for observing

students. Analysing more precisely what type of incorrect answers are given could help solve

the problem on identifiability (see illustrative example at the beginning of the section).

If we assume a uniform prior on all possible transition probabilities, after observing the out-

puts n1, . . . ,nk times each of the observations o1, . . . ,ok ∈O , the posterior on the probabilities

P (o|a) is equal to a renormalised Dirichlet distribution as in Equation 4.5. A renormalised

Dirichlet distribution is necessary because only the distribution of observations that result

from transition probabilities in the Bayesian Model are possible. For example, in the sim-

ple case of BKT, it is not possible to have a probability of exactly 100% of correct answers,

because the probability of a correct answer will always be clipped between PG and 1−PS

(PG ≤ P (cor r ect ) ≤ 1−PS) by the structure of the Bayesian model. The posterior on observa-

tion probabilities then allows us to compute the posterior on the transition probabilities by

inverting Equation 4.4 in the condition of identifiability.

P (o|a,n1, . . . ,nk ) = Di r i chlet (r enor mali sed)(n1, . . . ,nk ) (4.5)

4.3.3 Optimising Activity Selection with Thompson Sampling

According to the optimisation criteria of TS, a learning activity should be chosen with proba-

bility equal to the probability that this activity is optimal (see Equation 4.6). This can be done

by sampling from the posterior distribution of observations and inferring the corresponding

transition probabilities and average utility of the chosen activity. This requires one to sample

from a renormalised Dirichlet distribution, which has been shown to be computationally

expensive [85]. Instead, we propose an approximation of our model using a usual Dirichlet

distribution. After a sufficient number of observations, the Dirichlet and renormalised Dirich-

let distributions will be arbitrarily similar. Thus, we expect this approximation to not impact

the optimisation performance. We compare both methods with numerical simulations in the

next subsection.

P (ai ) = P (E[U (ai )] =U (a∗)) (4.6)
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Figure 4.3 – Average regret of 5 strategies for optimising the selection of learning activities with
a Bayesian student model. The regret is averaged from 200 repetitions of the simulation of
20000 students.

4.3.4 Numerical Simulation

Our optimiser uses TS based on Equation 4.6. The optimisation procedure is only aware of

the observation probabilities from the different states and the utility value of each state. The

optimisation process then only has access to the sequence of observations resulting from its

choices. The transition probabilities must be estimated in order to compare the utility of the

different possible learning activities.

To test our proposed method, we generated simulations of students using the Bayesian models

depicted in Figure 4.2 and several MAB optimisation strategies. Simulations were repeated

200 times and ran through 20000 steps. We compared TS using the exact posterior distribution

and our proposed approximation with the ε-greedy optimisation strategy using three different

parameters (1%, 5% and 10%). Figure 4.3 shows the evolution in time of regret. We found

that exact TS and the approximation had very similar regrets and were both superior to all

versions of the ε-greedy strategies both in terms of quickly reaching lower regrets in the first

optimisation steps but also in terms of continuously decreasing the average regret with more

optimisation steps. As a consequence, we have shown that our proposed optimization strategy

is superior to non-adaptive exploration-exploitation methods. Thus, implementing such

optimisation in a learning environment will beneficial to students’ learning outcomes.
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4.4 Conclusion

In this chapter we have described the probabilistic problem of Multi-Armed Bandits for which

heuristics are very useful solutions to the Exploration-Exploitation trade-off. We discussed

how MAB optimisation is used in education, notably for improving outcomes for students

during pedagogical experiments, but also to automatise experimentation of teaching content,

which is a core need of self-improving systems. MAB optimisation can also be used to alleviate

the cold-start problem or to implement adaptivity in tutoring systems.

In Section 4.3, we showed a simple example where maximising the probability of an obser-

vation is detrimental to teaching. Instead, we recommended to maximise the probability of

transitions to desirable states. We extended the usage of MAB to Bayesian Models by using

Dirichlet distributions to model the uncertainty about the observation and transition prob-

abilities of different learning activities. Finally, we validated our proposed implementation

with an experiment with simulated students. Our proposed algorithm can be directly used

in any learning environment using Bayesian models and trying to estimate the transition

probabilities of unknown pedagogical content. In particular it is relevant to be combined

with the type of student models that we described in chapters 3, 6, and 7, in order to design a

self-improving learning environment.

In conclusion, this chapter laid the theoretical foundations and algorithmic tools necessary

to the design of a self-improving learning environment. The main challenges of such a

learning environment is to not rely purely on an adaptive student model but also to assume

that the student model would be improved by collecting useful student data. Yet, pure data

collection of the type done in randomised trials can be detrimental to students’ learning and

MAB optimisation offers a more nuanced and subtle strategy. Additionally, our contribution

includes a generalisation of the MAB framework to adapt to the case of Bayesian student

models, which are a widely used tool in adaptive learning environments.
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5 Inductive Teaching

In the previous chapters, we have provided contributions on student models and self-improving

algorithms. The computational methods we used are not specifically targeted to any specific

domain of education. As explained in Chapter 1, we wish to contribute to the educational

practice of inductive teaching. In this chapter we report on a study analysing several aspects

of inductive reasoning. In the following chapters, we provide computational methods for

adaptive and self-improving learning environments for inductive teaching.

Induction is a form of reasoning that consists of drawing conclusions from observations. A

simple example of inductive inference is to conclude that "all crows are black" after seeing

many black crows and no crow of another color. Induction is usually defined in opposition

to deduction, which starts from premises and applies logical rules of reasoning to reach

new conclusions. A deductive approach to the previous example would take the form of

deducing from the premises "all crows are black" and "this bird is a crow" that "this bird is

black". Deduction and induction are opposed in several ways. Induction is subjective and

its conclusions are in general probable and not certain [227]. On the other hand, outside of

reasoning errors and inaccuracies, deduction is objective and the truth of its conclusions is

ensured given the truth of the premises.

These differences in reasoning interestingly lead to the practice of inductive teaching, which

diverges from the more common deductive teaching. With a deductive approach a teacher

would usually start by teaching about abstract concepts and rules before guiding students to

analyse examples and solve problems. The inductive teaching approach, on the other hand,

consists of firstly showing examples to students and to let them think without having been

taught the theories beforehand. Inductive teaching is part of a large family of pedagogical

approaches that aim to support the students in constructing or acquiring knowledge by

themselves [95]. These approaches take many forms such as inquiry learning, discovery

learning, problem-based teaching, or case-based teaching [102, 185]. With deductive teaching,

the teacher is at the center and must transmit the knowledge directly to students while in

inductive teaching, the teacher acts as a facilitator to the learning process and the knowledge

creation originates from the students [223].
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Inductive teaching is often superior to deductive teaching in terms of students’ learning

outcomes [204, 215], but it can be difficult for teachers for two main reasons. It requires a high

level of preparation to choose the teaching materials, and it needs more classroom time to

support students throughout the inductive process. Adaptive learning environments such as

intelligent tutoring systems can potentially facilitate this work for teachers by supporting the

automatic adaptation of examples based on a student’s knowledge and inductive reasoning

ability.

In this chapter, we will first detail aspects of inductive teaching practices in Section 5.1. Then,

in Section 5.2, we focus particularly on analysing students’ inductive reasoning and approaches

to model it. In Section 5.3, we present a study with 222 students on a categorisation task where

participants must guess a classification rule by observing examples. In this task students’ prior

biases can impact their learning and behaviour. The study specifically analyses how students

differ on the criteria they use to classify examples into categories and on their flexibility in

their choice of criteria. In Chapter 6 we will use the data collected in this study in order to

design a knowledge tracing algorithm for inductive reasoning.

5.1 Inductive Teaching

Inductive teaching is motivated by the idea that learning comes from exploration and discovery

[5]. Students reach better learning outcomes (for examples, in terms of conceptual under-

standing or memory retention) when they discover the knowledge by themselves. Quoting

Seymour Papert and Idit Harel [95]: "Instead, I must confine myself to engage you in experiences

(including verbal ones) liable to encourage your own personal construction of something in

some sense like it. Only in this way will there be something rich enough in your mind to be worth

talking about." This quote boils down to the idea that students will understand and remember

more in depth the knowledge that they were able to construct through experiences. Beyond

letting students discover theories by themselves, inductive teaching also helps to motivate

why the general theory or knowledge is needed [208] and also to prepare students to learn

[204].

Inductive teaching is part of a larger family of pedagogical approaches that aim to support

the students in constructing or acquiring knowledge by themselves. Such teaching practices

have taken many forms [185]. Inquiry learning: the students are given questions to answer or

observations to explain before receiving instruction; Problem-based learning: the students

must try to solve open-ended problem (often done in groups); Case-based teaching: the

students must analyse a situation given to them; Just-in-time teaching: the students complete

assignments just before the class which the teacher uses to adapt the course; Discovery

learning: the students discover the conceptual knowledge by themselves in the process

of solving an assigned task. Researchers have developed scaffolding for activities such as

problem-based learning and productive failure [64, 104].

Additionally, through inductive learning, students not only learn about the topic of interest but
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also practice methods for discovering information by themselves [102]. Practicing inductive

reasoning gives students a very valuable skill that they will be able to transfer to other domains,

which require to balance evidence and generalisation. It was argued for example that inductive

teaching is superior to deductive teaching for preparing students to become software engineers

[208, 120]. A software engineer has to face a problem, analyse it, and only then seek the

knowledge required to solve it. It seems unrealistic to teach software engineering theories

without motivating the instruction with examples. The importance of inductive reasoning

has also been promoted in the context of teaching statistics and data science, which are

exploratory in nature [96].

During inductive activities, students need to activate their prior knowledge to figure out

new solutions to the task they are given [204, 205, 143], and they need to be able to make

comparisons and identify the key features of the problem [114]. Additionally, students learn

more when they are confronted by impasses in which they need to change and update their

mental model [143]. Students do not naturally engage in these learning processes and the

support that is needed can depend upon the current state of the student. For example, in a

classification task, if students only ever receive feedback that supports their mental model,

they will not change their point of view. However, how much students change their point of

view from feedback may depend upon the student. In this case, learning analytics can be used

to better understand the current state of the student so that feedback can be provided that

may be most useful to help the student transition to a new state. In Section 5.3, we analyse the

biases that students may bring to inductive example categorisation tasks.

5.2 Inductive Reasoning

Human ability to infer rich knowledge from a very small number of examples has fascinated

researchers in the fields of education, cognitive science, statistics and machine learning

[231, 130]. In machine learning, the task of inferring categories from a few examples has been

called one-shot learning and is strongly guided by the analysis of human inductive reasoning

mechanisms [203]. We describe in this section several of these models.

5.2.1 Reasoning About Examples and Categories

Approaches to model student inductive reasoning consider students’ identification of similari-

ties and dissimilarities between concepts [45]. Tversky’s Contrast Model of Similarity [235]

relies on sets of features attributed to two objects being compared and explains several effects

in inductive reasoning [98]. Equation 5.1 describes how the similarity between two objects a

and b is computed, according to Tversky’s model, based on their sets of features A and B . The

similarity contains a positive term for A ∩B which counts the common features of a and b

and two negative terms for A−B and B − A, which are respectively the features that a has and

b does not and the features that b has and a does not. Interestingly, the similarity between a

and b, according to Tversky, is not necessarily symmetrical. For example, one would make the
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distinction between reasoning about how features of birds apply to crows and how features of

crows apply to birds.

s(a,b) = θ f (A∩B)−α f (A−B)−β f (B − A) (5.1)

Another approach to model inductive reasoning is the Similarity Coverage Model [168]. This

model describes how convincing are generalisation arguments from examples to category. For

example, the argument, "Elephants and rhinos are grey; therefore, all mammals are grey." is

less convincing than, "Elephants and mice are grey; therefore, all mammals are grey." because

"elephants and mice" covers the category of mammals better than "elephants and rhinos".

The notion of relevance of features is also a key concept to model induction. The relevance

framework defines the relevance of a feature for some category [155]. In simple terms, a

feature is relevant if the category has it but the majority of other categories do not have it. The

relevance of a set of features can be defined similarly, if a category has all the features from the

set, but different categories do not have all the features simultaneously. Different individuals

exhibit differences in their reasoning about feature salience either based on culture [43] or

expertise [50]. Additionally, it was shown also that when given the task to learn the names of

categories of objects based on features like color or shape, children were not only able to learn

the categories but also to learn which features are more important than others for naming

objects which allows for faster learning in following tasks [225]. This last example shows the

ability of learning to learn, which is also one of the main techniques used for one-shot learning

in ML [130].

Bayesian Inference

Within modeling of human inductive reasoning mechanisms, a particular type of model stands

out, which consists of modeling induction as a form of Bayesian reasoning [231]. Bayesian

reasoning assigns probabilities to hypotheses according to two mechanisms [178]: the prior

probability P (h) of an hypothesis and the likelihood of observations P (o|h). These two terms

are then combined to compute a posterior probability P (h|o), which defines how the level

of belief in the hypotheses hi has changed after observing o. The posterior is computed

according to Bayes rule as given by Equation 5.2.

P (hi |o) = P (o|hi )P (hi )∑
j P (o|h j )P (h j )

(5.2)

Several studies have revealed many similarities between human inductive reasoning and

Bayesian inference. For example, Bayesian inference can explain how one can learn a concept
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from a small number of examples [231] or learn categories from only positive examples in

the case of hierarchical categories [232]. Modeling inductive reasoning in terms of Bayesian

probabilities can also explain several aspects of induction about categories and properties in a

similar fashion as the Contrast Model of Similarity and the Similarity Coverage model [99].

Such models create an inductive bias (prior) that they use to make inference about categories,

as is required for Bayesian inference [130]. For example, Lake used Bayesian Program Learning

and reached learning capabilities similar to human induction on recognising new alphabet

letters from a few examples [130].

5.2.2 Reasoning About Uncertainty

In deduction, the truth of the premises ensures the truth of the conclusion. This is not the case

for inductive reasoning, which tries to draw conclusions when the observations are evidence

for the truth but not sufficient for absolute certainty. If three fruits taken at random out of a

bag of fruit happen to be apples, is it sufficient information to conclude that all the fruits from

the bag are apples? A purely deductive approach would require one to make sure every single

fruit in the bag is an apple before reaching that conclusion. The inductive approach would be

to conclude with a reasonable amount of uncertainty that it seems that the bag contains only

apples, but there is a small chance that it might not be the case.

Uncertainty in the context of inductive reasoning is another reason why models using Bayesian

inference explain the process of induction well [231]. As described by the likelihood term in

Bayesian inference, observations during the inductive process are used to update the prior

belief into the posterior. Certainty is only reached when the likelihood term changes the

posterior into a probability of 1 or 0. These examples tell us that it is meaningful to consider

that students make probabilistic decisions in the context of inductive learning. However,

researchers have shown that people often deviate from exact Bayesian inference [113]. For

example, people may reason about the single most likely category and fail to account correctly

for the uncertainty of several categories [97].

5.3 Experiment: Individual Differences and Flexibility in Inductive

Reasoning for Categorisation of Examples

These models of inductive reasoning motivate our analyses of several more aspects of the pro-

cess of categorisation of examples. Notably, our goal is to enable the design of models, similar

to the models used for knowledge tracing, for the context of inductive teaching activities. Our

experiment seeks to reveal which features students are able to perceive and use to categorise

objects, how these features generalise from a topic to another, and, most importantly, how

feedback influences students. In this section, we describe an experiment with 222 participants,

and give a statistical analysis of the data collected. The data from this experiment also serves

as the basis for designing a Bayesian Model of student inductive biases in Chapter 6. More
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Figure 5.1 – The three subsections of the inductive activity: feature recognition (Single-Feature
questions), feature preference (Double-Feature questions), and feature preference flexibility
(Adversarial Feedback questions).

precisely, we analyse the following research questions:

• RQ1: What features impact students’ decisions when students are asked to classify an

object into a category? Our hypothesis is that students will have an inherent bias that

drives how they choose the features with which to answer classification questions and

that these biases will vary for individual students.

• RQ2: Are students’ feature biases topic independent or topic specific (for example,

categories based on the geometrical shape color and categories based on animal color)?

Our hypothesis is that students’ choices on one topic will be predictive of students’

choices on another topic for similar features.

• RQ3: How do students change their biases when receiving feedback? Our hypothesis

is that students will show some resistance to change and that this resistance will vary

between individual students.

5.3.1 Methodology

In this section, we describe our learning activity. This activity has been designed with the

purpose of testing all three research questions previously mentioned. In particular, the activity

is divisible into three parts that we describe here (see Figure 5.1). The first part provides

the students with a brief introduction to the task and allows them to become familiar with

the concepts. The second part aims at answering RQ1 and RQ2, and the third part aims at

answering RQ3. Additionally, we describe the study set-up that we used for data collection.

Learning Context

For the inductive activity, the students were asked to engage in a computer-based categori-

sation activity. The activity consisted of a series of 63 independent questions, which can be

answered rather quickly. The questions took on average six seconds to be answered with a
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Figure 5.2 – Examples of questions from the introduction section. The topics are from left to
right: Geometry, Animals, and Cards.

standard deviation of six seconds. Only a small proportion of the students needed more than

10 minutes in total to complete the activity. Each question contained four images divided into

two categories and a fifth image that had to be classified into one of the two categories (see

Figure 5.2). The goal of the exercise was for the students to identify common properties within

each category of examples and inductively guess a rule that explains the separation and use

this rule to classify the fifth image.

The 63 questions were evenly divided into three topics: Geometry (G), Cards (C) and Animals

(A). For each topic, three features were identified and systematically applied to the topics.

Additionally, the questions were divided into three distinct sections: feature recognition,

feature preference, and feature preference flexibility. Each of these sections is described in

more detail below.

For each of the three topics, the activity questions were designed around three common types

of features. The three types of features that we selected covered the orientation, the type and

the color of the examples. Table 5.1 describes the categories based on the general features for

each of the three topics.

Structure of the Activity

The 63 questions of the activity consisted of three distinct parts, feature recognition, feature

preference, and feature preference flexibility, although this differentiation was not displayed

to the students. For all of the students, the order of the sections and subsections, described

in more detail below, remained the same. However, within any given subsection, students

received the same questions in a randomised order.

The first section, feature recognition, consisted of 18 questions, which were divided into

two blocks of nine questions. Each of the blocks consisted of one question for each combi-
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Geometry (G)
Color (C) Type (T) Orientation (O)

Green, blue or red shapes
(see Fig. 5.2)

Squares and rectangles or
parallelograms with no
right angle

Shapes are either horizon-
tal and vertical or rotated
by π

4 rad
Animals (A)

Color (C) Type (T) Orientation (O)
Colorful animals and grey
or black and white animals

Birds, fish, or feline (see Fig.
5.2)

Animals moving to the left
or to the right

Cards (C)
Color (C) Type (T) Orientation (O)

Red and black cards Figures or numbers cards
(see Fig. 5.2)

Vertical or horizontal cards

Table 5.1 – Description of the features used for the examples in the application

Figure 5.3 – Examples of questions with mixed features
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Figure 5.4 – Examples of ambiguous questions testing students’ feature preference. From left
to right: Color or Orientation; Orientation or Type; Color or Type;

nation of topic and feature (see Table 5.1). Each of the questions had a correct answer for

the categorisation of the fifth card. This section allowed us to assess the students’ feature

recognition.

For both blocks, the students received correctness feedback as either a green check or a red

cross, informing them if they put the item into the correct group (see Figure 5.5). In the first

block, they also received a text explanation of what the correct feature was for the grouping.

We gave this feedback in both instances so that if students had the correct category based on

guessing or an incorrect feature, they would still have the same information as the students

who had the incorrect category. The second block also provided feedback but limited to the

green check and red cross without textual explanation. Furthermore, in the second block the

questions were made harder by not keeping the other two features fixed even though only

one feature correctly separated the two categories (see Figure 5.3). In this case we believe it

is more difficult for the student to identify the correct property because varying features can

distract from the feature which is correctly explaining the categories.

The second section of the activity is the feature preference, which consisted of 18 questions

that were also divided into two blocks of nine questions. Unlike the first section in which

the students had to recognise a given feature, in this section, the fifth example could fit into

either group based upon which feature was being used to classify the item. In other words, for

these 18 questions, the possible answer was not unique but instead reasoning about a specific

feature was made to produce a different answer than reasoning about another feature (see

example of a question in Figure 5.4). In this way, we expected students to select the group the

item belonged to based on which feature they found more relevant. Again, within each block

there was one question for each pair of topic and feature comparison. For this section, all

student answers received a green check as positive feedback. Similar to the feature recognition

section, the questions of the second block were made harder by not keeping features unrelated

89



Chapter 5. Inductive Teaching

Figure 5.5 – Examples of feedback given to students. From left to right: correct feedback in the
introduction section; incorrect feedback in the introduction section; adversarial feedback in
the preference flexibility section.

to the current question constant.

The questions from this second section were designed to evaluate students’ feature biases.

Furthermore, the use of similar features across different topics was designed to detect whether

a bias for a specific feature in one domain would correlate to the same bias for another topic.

The final section of the activity is the feature preference flexibility section consisting of 27

questions. This section follows a structure that uses three types of questions to gauge how

flexible a student’s preference is for a given feature. First, the students were given a comparison

question similar to the questions they received in the feature preference section. However, the

students were given negative feedback for their answer independent of the answer selected. We

call this feedback "adversarial feedback". The adversarial feedback was shown as a red cross

indicating that the student answered incorrectly even though all answers can be explained by

reasoning about a particular feature. Additionally, the students received a prompt asking them

to think about another explanation for answering the classification question (see Figure 5.5).

This question is directly followed by a question on the same topic and feature comparison

in which the student can again place the item in either group. For this second question,

the feedback given is always positive. Finally, after the student receives a combination of

each topic and pair of features for both question types, they receive a delayed comparison

question for each topic and feature combination with positive feedback. This pattern followed

the structure shown in Figure 5.6, which was repeated three times in order to cover all nine

possible combinations of topic and feature comparisons.

The adversarial feedback questions were designed to make the students change their feature

biases. As a student answers a question based on a specific feature and receives negative

feedback, we expect the student to either answer the following question on the same feature

comparison differently or possibly resist change. Furthermore, we used delayed questions
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Figure 5.6 – Structure of the feature preference flexibility section. (ADV stands for questions
with adversarial feedback, FLEX for questions directly following adversarial feedback, and
DELAY for questions delayed after the adversarial feedback)

on the same feature comparison in order to measure whether the adversarial feedback will

diminish over time.

Data Collection

Our dataset consists of data from 222 students who engaged in the application described above.

The participating students were from three different schools and engaged with the activity

during their regular class time. The age of the students ranged from 8-13 (M = 10.9,SD =
1.6), which we split into two groups: the younger students were expected to be less familiar

with the concepts being taught (ages 8-10 years old, N = 84) and the older students were

expected to have more familiarity with the topics and concepts (ages 11-13 years old, N = 138).

Each session with the activity ranged from 10 to 15 minutes in which all but three students

completed the full activity.

The activity was distributed through a web application that the students engaged in individu-

ally using their school-provided tablet or laptop. The activity started with two questions asking

the students for their preferred language (English or French) and their age. At the beginning of

the activity, the students were instructed to think about a rule explaining the separation of

the two categories then use this rule to decide in which category to assign the fifth image. All

data was anonymously collected through a write-only database using randomly generated

IDs for each student, which did not require any logging in mechanism to be implemented.

A total of 13968 data points were collected across the 222 students. Each data log consisted

of an anonymous student ID, the description of the current question (topic and feature or

feature comparison), step in the activity (necessary due to some randomisation of the order

of questions), the student selected answer (correct or incorrect for the first section and the

name of the selected feature for the other two sections), and the timestamp of the transaction

log. The web-application source code, and collected dataset can be found on the GitHub

repository1.

1https://github.com/chili-epfl/induce
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Figure 5.7 – Number of answers for each feature during the preference test section per topic.

5.3.2 Results

In this section, we will first present results related to the research questions RQ1 and RQ2

concerning which features impact students’ decisions and whether these features generalise

across topics.

Feature Preference Across Topics

A surprising result we observed was that students made very different categorisation choices

depending on the topic. This finding reveals completely different feature biases for the

three topics. Figure 5.7 shows the number of times each feature has been selected over all

the questions asked to all the students. We can see that the ’type’ feature was more often

chosen for animal questions, less often for geometry questions and equally for the card topic

compared to the other features. A Chi-Square statistical test on the categorical variables of

topics and features shows a very significant difference (χ2(4) = 322, p < 0.01).

To analyse whether the feature biases are predictive from one topic to another, we also com-
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Figure 5.8 – Correlations between answers of the questions from the feature preference section
(light-blue: non-significant p-value > 0.01; medium-blue: p-value < 0.01; dark-blue: p-value <
0.01 with correction). The questions are labelled as Cards (C), Geometry (G) and Animals (A)
with a comparison between two of Orientation (O), Color (C) or Type (T) for block one (1) or
two (2)

puted the correlations displayed on Figure 5.8. The figure shows Chi-Square correlations

computed between each of the 18 questions of the feature preference section. The graph

displays both significant p-values at 0.01 when adjusted for the number of tests using the

conservative Bonferroni method and significant p-values at 0.01 without adjustments. We

observe that for most feature comparisons, the answers given to the questions of block 1 are

strongly correlated to the answers given on block 2 (7 out of 9 with adjusted p-value < 0.01).

This indicates that students choose features based on their individual biases.

Only 8 of the 108 correlations tested across topics were found to be significant but only without

adjusting for the number of tests. This indicates that we should not completely reject the

possibility of such correlations existing. Nevertheless, we must conclude that in our context

the effect size of such difference was much smaller than for the correlation within topics. An

interesting note is that all but one of the across topic significant correlations are between the

topics of Cards and Geometry which are more similar by their logical features than with the

topic Animals. This hints at investigating further what similarity between topics would allow
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to transfer inductive preferences of students.

Flexibility of Students’ Biases

The last point of interest of our experiment was to analyse how feedback changes students

choices in answering the ambiguous categorisation questions. For this analysis we measure

the percentage of students who keep their preferred feature when they answer a second

question about the same comparison of features on the same topic at three moments during

the activity. First, during the second part of the activity, then, right after the adversarial

feedback, and finally, after the delay. We found a significant (p-value < 0.0001) decrease in the

percentage of students who answered again with the same feature between no feedback (M

= 76%, SE = 1%) and adversarial feedback (M = 56%, SE = 1%). This means that the feedback

indeed influenced students to change their biases according to the feedback. Secondly we

found a significant (p-value < 0.001) increase in the percentage of students who answered

again with the same feature between no delay (M = 56%, SE = 1%) and after the delay (M = 60%,

SE = 1%). This means that the effect of the feedback indeed decreased over time and students

naturally went back to their initial bias, but without completely forgetting the feedback.

5.4 Conclusion

In this chapter, we first discussed the educational practice of inductive teaching which is in

many contexts very beneficial to the students. We then analysed how the process of inductive

reasoning is usually modeled. In Section 5.3, we described an experiment carried out with 222

students on a task of example classification. This experiment was motivated by understanding

some aspects of induction, which are relevant to the design of adaptive learning environments

for inductive teaching. Our results indicate that students have individual biases that drive

how they choose to classify examples according to specific features and that students differ

in these biases. This finding justify the importance of adaptivity in inductive teaching. We

found a lack of correlations between students’ biases on different topics, which means that

inductive models trained on data from one topic will not generalise well to examples of another

topic. Finally, we showed that students can be influenced by feedback, but still a majority are

resistant to change their biases when given negative feedback.

Inductive teaching, in general, requires more effort from teachers both for preparing the lesson

and for supporting students in classrooms. Building adaptive learning environments in which

students are able to learn with inductive methods is valuable in this context. Such learning

environments would benefit from student models allowing to trace students’ biases in order to

adapt the examples based on a student’s knowledge and inductive reasoning ability. Chapter 6

and Chapter 7 aim to provide such algorithms.
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Decades of research have shown the impact that learner models and adaptivity can have on

the learning process across a range of learning scenarios. For example, Intelligent Tutoring

Systems (ITS) use student models to support students’ learning processes using real-time

adaptations [7] with multiple improvements occurring to these models over the years. More

recently within learning analytics, models have been used for the task of process mining which

seeks to describe and analyse learning processes [25]. However, the design of these models

address a limited subset of learning scenarios. Specifically, many of the models developed have

been targeted towards mastery learning and skill practice but less towards purely inductive

approaches, such as the one we described in Chapter 5. Yet, there is a growing interest in

inductive scenarios [143] as teaching with inductive methods has been shown to outperform

traditional teaching across contexts [94]. Although it is still uncommon, recently, there have

been a few examples of adaptive learning environments that support students in induction

processes rather than supporting deduction or practice. Two examples of such systems have

been used for teaching logical fallacies [65] and geography [159].

Models of inductive reasoning rarely consider differences between students that are necessary

to provide adaptivity. Instead, most models aim at establishing a general description of the

induction process without including individual differences. Including individual parameters

has been shown to enhance student models for example in the case of BKT [258]. We should

expect that individual parameters would also enhance models of inductive reasoning. Fur-

thermore, models of inductive reasoning rarely analyse changes of the inductive reasoning

approaches when students receive feedback nudging them to modify their strategy. When the

goal of a model is to support a more effective learning process, how students change over time

is of primary interest.

In this chapter, we intend to fill this gap. We propose a Bayesian student model of inductive

reasoning that predicts students’ choices for the example categorisation task described in

Chapter 5. We model three aspects of induction: students’ individual biases, generalisation of

biases across topics and changes of inductive biases. We evaluate our proposed model on the

data collected from the experiment described in Chapter 5. Our model can be used in several
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Figure 6.1 – Examples of ambiguous questions from

ways. First, the model fit can provide insights into the inductive reasoning process. Second,

the model can be used to simulate students in order to help teachers design sequences of

examples for an inductive learning task. Finally, our model can also be used to track students’

reasoning approaches and personalise the learning environment in the context of an inductive

learning activity.

In Section 6.1 we define the structure of our model and its parameters. In particular, we

describe how the model is used to predict students’ choices in the categorisation task (Section

6.1.3) and we describe the algorithm we use to estimate the parameters of the model (Section

6.1.2). In Section 6.2 we analyse the quality of the predictions of this model on the data from

the experiment described in Chapter 5.

6.1 Definition of the Model

Within inductive learning, it is not just a matter of whether a student knows a fact or not.

Indeed, in the context of induction, when making decisions there may not always be a correct

answer. An example of such ambiguous questions are the questions from our experiment in

Chapter 5 where several features can be used to classify the objects into categories (see Figure

6.1). In this case, to correctly model student behavior in order to provide learning support, it is

important to take into account a student’s bias, which may have been formed by their prior

experiences. Our approach uses a Bayesian model with the hidden states representing the

student biases.

6.1.1 Bias Profile Model

We used Bayesian models as we aimed to design a model that will rely on hidden states of the

students about their inductive bias while only being able to observe their answers to questions.
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Figure 6.2 – Bayesian model of students’ bias profiles.

Similar to BKT, the model for a student does not exclude possibilities of answers but instead

assigns to each student the probability that the student answers A rather than B to a given

question. We model a bias profile as a set of probabilities describing a student’s bias towards

perceiving different features. In our case, each profile contains up to nine probabilities.

Figure 6.2 shows how the bias profiles explain observations of different types of answers from

the students. Given an ambiguous categorisation question on two features, a specific profile

gives a probability of answering with the first or the second feature. The graph on Figure 6.2

represents our model with three types of nodes. The round nodes represent the hidden states

of the students. The diamond nodes represent the actions that can be taken by the learning

environment, such as selecting a specific question or giving a particular kind of feedback.

Finally, the rectangular nodes are the observations that the system can collect. In the case of

our activity, these observations are the features that the students use to answer the ambiguous

categorisation questions.

Our model contains only one arbitrary parameter K , which is the number of distinct bias

profiles to be extracted from student data. This parameter should be set to a meaningful

value. The model contains several bias profiles (Bk )k∈1:K . Each Bk is associated with the nine
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parameters pk,t ,c where t is one of the three topics and c one of the three possible feature

comparisons. The parameter pk,t ,c is the probability for a student who exhibits the bias Bk to

select the first feature when given a question from the topic t and comparison c.

Bias Profile Changes

Another important aspect of our model is the possibility that students modify their bias

profile while interacting with the questions and, in particular, while receiving feedback. This

possibility reflects that students make progress toward learning the features that align with

the learning goals. We model the possibility of bias change for the questions following each

adversarial feedback and another bias change for the delayed feedback. This is done by

computing a new probability distribution that more accurately explains the student’s answer

for each bias profile after the feedback. The amount a student changes can indicate their

level of bias flexibility. Additionally, we also compute a second Bias profile change to account

for the delay after the feedback. For the flexibility and delayed questions, two other sets of

parameters are computed for each bias profile Bk , respectively p ′
k,t ,c and p ′′

k,t ,c , which are

used in the same way as pk,t ,c .

Feature Perception

We do not include in our model the ability for students to perceive a given feature in simple

categorisation questions. The first section of the activity was developed to teach the students

about each of the possible features. For this section the answers of students are correct or

incorrect and we can easily decompose the questions into a set of skills. In this case, BKT

[55] is a good modeling approach as the student either knows the feature or not, which can

be predicted based on their behavior in the learning activity. As the use of BKT is a simple

application of an existing model, it is not the focus of our model. Instead, we focus on

the second section of the activity where the questions are ambiguous and can be answered

differently depending on students’ biases. Nevertheless, our model does include the possibility

that a student would never answer the categorisation questions using a particular feature.

This would be characterised by the probability parameter of the student’s Bias profile for this

feature to be equal to 0.

Choice of the Parameter K

For the choice of the parameter K , the trade-off is that lower parameters K will capture less

complexity in the behaviours of the students while a higher K will generalise less well to new

students and be more sensitive to noise in the data. This is a common machine learning trade-

off of model complexity versus overfitting. Additionally, given our dataset containing data

from 222 students, trying to extract more than 50 bias profiles would render the estimation of

the parameters very inaccurate because only a small number of students would be assigned
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to each profile. The choice of the optimal parameter can be done with methods such as the

elbow method that we used in Chapter 3. In this chapter, we present our results using the

parameter K = 10. The value K = 10 was chosen because higher values did not lead to any

improvements in the predictive accuracy of the model.

6.1.2 Estimation of the Model Parameter

A very useful algorithm to estimate the parameters of the model such as our is Expectation-

Maximisation (EM) [163]. The EM algorithm is specifically designed to compute high likeli-

hood parameters with unknown latent states. For example, it has been used in the context

of BKT, which also relies on partially observable hidden states of students [172]. The EM

algorithm functions by iterating through two phases multiple times. First, given a set of pa-

rameters of the model, it computes the most likely distribution of the students into each of the

K hidden states. Secondly, given the distribution of students, it computes the state parameters

that maximise the likelihood of the sequences of observations.

The first phase consists of assigning to a student s the most likely Bias profile for that student.

Equation 6.1 shows how to compute the likelihood, based on the observations of the student

answers os,m ∈Os (os,m is 0 or 1 depending on whether the first or second feature has been

selected). The second phase consists of re-estimating the values of the parameters pi ,t ,c based

on the assignment of students obtained in the first phase. This is done using Equation 6.2,

where n(1)
i ,t ,c and n(2)

i ,t ,c are the number of times students, who have been assigned to Bias Profile

i , have answered with the first and second feature for questions on topic t and comparison c.

P (s ∈ Bi |Os) =∏
m

P (os,m |Bi ) =∏
m

(pi ,t ,c )os,m ∗ (1−pi ,t ,c )1−os,m (6.1)

pi ,t ,c =
n(1)

i ,t ,c

n(1)
i ,t ,c +n(2)

i ,t ,c

(6.2)

6.1.3 Model Predictions

Once we have computed the model parameters pk,t ,c for each of the profiles Bk , in order

to make a prediction we still need to be able to estimate to which profile each individual

student belongs. For this estimation, we first compute a prior distribution of the bias profiles.

Using this distribution the model can compute the expected answer of the student. Equation

6.3 shows how the probabilities of the different profiles are aggregated for an individual

student s using the probability P (s ∈ Bk ) of belonging to the profile Bk in order to compute a
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personalised prediction ps,t ,c .

ps,t ,c =
∑
k

pk,t ,c ∗P (s ∈ Bk ) (6.3)

Tracing Student’s Bias profiles

The prior distribution is updated based on the sequence of observations of a given student.

The probabilities P (s ∈ Bk ) are updated using Bayes Rule. Equation 6.4 shows how the model

updates the expected distribution over the K bias profiles (Bk for k from 1 to K ) based on

observations (Oi ) using Bayes rule. The Bayesian update from the observations allows subse-

quent predictions to be more precise because more observations for the student’s profile are

available.

P (s ∈ Bk |os,m ,os,m−1, . . . ) ∼ P (os,m |s ∈ Bk )∗P (s ∈ Bk |os,m−1, . . . ) (6.4)

6.1.4 Generalisation of Bias Profiles

We consider several versions of the Bayesian student model of inductive reasoning defined

previously based on subsets of the student data. Given several independent subsets of the

training dataset, the model can either assume that students exhibit a unique Bias profile over

the whole dataset or exhibit different Bias profiles over the different subsets. By splitting

the dataset in this way, the model cannot use correlations between parts of the data that are

separated by the subsets. This will lead to lower performance in the case such correlations

exist, but higher performance if such correlations do not generalise well. Without splitting the

dataset, observing a student’s answers to a given topic and comparison informs the model

about expected answers on other topics and comparisons. Specifically, we use four conditions:

not splitting (NONE), splitting by topics (TOPICS), by comparison (COMPARISON) and by

topic and comparison (ALL).

6.2 Performance of the Model

We applied our model in the four different conditions described in Section 6.1. We compare

the predictive capabilities of all versions and of a baseline model for the prediction of students’

inductive reasoning. For the baseline, we estimate directly the expected proportion of each

answer for a given question from the training data and make predictions on new data using

this estimation as the expected probability. This baseline makes the optimal prediction for

each question taken separately from the rest of the dataset but does not consider correlations

between different questions in the students’ sequences of answers.
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Figure 6.3 – Comparison of the model performance in terms of percentage of prediction errors
(top) and mean square error (bottom) based on 10-fold cross validation.
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Section Core Flex Delay
Model ACC MSE ACC MSE ACC MSE

Baseline .654 .212 .566 .241 .580 .243
None .721 .193 .610 .237 .597 .238
Topic .753 .178 .626 .227 .639 .222

Comparison .722 .189 .617 .234 .609 .233
All .735 .188 .641 .224 .681 .211

Table 6.1 – Model performance in terms of Accuracy (ACC) and Mean Square Error (MSE)
for the three types of questions: Core, questions the bias test section; Flex, questions follow-
ing directly after adversarial feedback questions; Delay, questions delayed after adversarial
feedback;

We evaluated the performance of our models both in terms of mean square error and accuracy.

Figure 6.3 shows the distribution of the error rates for each of the models on a 10-fold Cross

Validation and Table 6.1 reports the average. In each of the conditions, our model performed

above the baseline model with approximately a 10% improvement on both accuracy error

and mean square error. The model using the division in Topics performed best on the core

questions as we could have expected given the correlations given in Chapter 5.

6.2.1 Modeling as a Tool to Analyse Student Behaviour

We have seen in the previous chapter that many correlations arise between the different

feature comparisons for each topic. In particular, it is not directly obvious why some feature

comparisons are correlated while others are not. For example, we can note that for the topic

Geometry, the two questions of the bias test section on the comparison between the features

color and type are correlated, which is an expected result as both questions are built on the

same feature comparison. However, a more surprising result is that for the same topic, the

answers to the comparison on the feature color and type is correlated with the answer to the

comparison on the feature color and orientation but not correlated with the comparison on

the features orientation and type (see Table 6.2).

Looking more closely at the data which generated these correlations, we are able to explain

that this result comes from the fact that the feature color plays an asymmetrical role among

the features and most students either use this feature as the most important or as the least

important, but rarely do student place the feature color as the second most important between

orientation and type. This explains why knowing the comparison between Color and Type

tells a lot about the comparison between Color and Orientation.

A strength of our modeling technique is that the analysis can be read on the probability param-

eters of the extracted profiles Bk . For example, Table 6.3 shows the probability distributions

for the comparisons C/O, C/T and O/T of four bias profiles extracted on the topic of geom-

etry (with parameter K = 4). We can see in the profiles that high values of probability in the
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Features C T
C 122 27
O 18 55

Features C T
T 100 64
O 40 18

Table 6.2 – Crosstables of answers selected for the questions on the topic of geometry. Counts
of students on feature comparison C/T and C/O (left) and feature comparison C/T and T/O
(right)

Comparison C/O C/T O/T
Profile 1 0.74 0.76 0.94
Profile 2 0.85 0.76 0.48
Profile 3 0.18 0.27 0.91
Profile 4 0.50 0.29 0.16

Table 6.3 – Probability of observations for the three feature comparisons of topic Geometry for
four Bias Profile automatically extracted by our model training algorithm.

comparison C/O (student is biased for color against orientation) are paired with high values

in the comparison C/T (student is biased for color against type) and low values in the com-

parison C/O are paired with low value in the column C/T. But the column O/T contains high

and low probabilities independently of the probabilities in the columns C/O and C/T. As we

have shown with this example, we believe that analysing and interpreting a small number of

extracted biases can give insight into the different profiles of students in a class. This analysis

could be more efficient than looking through the data without specific preprocessing.

6.2.2 Flexibility of Students’ Biases

In Chapter 5, we briefly analysed students’ changes in biases caused by feedback. We found

that our proposed student model allows us to have better insights into the students’ changes

in inductive biases.

Our model extracts a fixed number of bias profiles that cluster the students into several

groups. Additionally, the model computes updated probability distributions of students’

biases for questions following directly the adversarial feedback and for questions delayed

after the adversarial feedback. These updated feature biases allow us to estimate how much

each cluster of students changed. To analyse the flexibility of the different student profiles a

common measure for changes in probability distributions is the Kullback-Leibler divergence

(KL). The higher the KL estimate is, the more students have changed based on the adversarial

feedback. Our hypothesis was that we would observe different levels of flexibility in the group

of students. Figure 6.4 shows an example with K = 10 extracted bias profiles. We can observe

that the profiles cover a large range of average KL divergence with more than 300% difference

between the least and most divergent profiles. This confirms our hypotheses and shows that

indeed some groups of students seem more susceptible to change feature biases based on

negative feedback.
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Figure 6.4 – Example of KL divergence for 10 extracted bias profiles

Furthermore, we hypothesised that changes would be stronger immediately after adversarial

feedback and that some students will return to their original bias after a time delay. This is

also confirmed by the evaluation of KL divergence displayed on Figure 6.4. We found that

the majority of extracted profiles (70% in average with a standard deviation of 10%) have a

lower KL divergence for the biases of the delayed question than for the biases for the flexibility

question. This indicates that after the delay, the students partially go back to their initial bias.

6.3 Conclusion

In this chapter, we proposed a modeling approach for predicting and tracing students’ biases

during an example categorisation task. Our models are based on estimating biases as a

probability measure and can further estimate how students change their behaviour based on

receiving negative feedback. This work was motivated by the lack of inductive learning models

able to describe individual differences of students and their change over time.

Our model performed well with an improvement of accuracy from 65% for the baseline to 75%

for our model. This indicates that students indeed reason inductively using individual feature

biases. Our model also revealed that students react to feedback differently and that they

partially go back to their original biases after a delay. Both the lack of significant correlations

on similar features across topics and the fact that splitting the dataset by topic led to higher

predictive accuracy for our model showed that feature biases do not generalize well across

topics. The lack of correlation in the students’ inductive biases across the topics means that

training the model on a given dataset will not generalize well to another dataset on a different

topic. This lack of correlations could have been expected if we, for example, think about

domains of expertise. It is natural to expect no clear correlations between understanding

104



6.3. Conclusion

of theoretical physics, painting art, and running marathons. Different approaches to find

generalizable features would be beneficial for using the kind of model that we described in

practice.

Implications for Practice

The first advantage of a model such as the one we describe in this work is to be used in ITS.

In this context models are used to predict and evaluate student mastery for skills and their

learning process. This can then allow for adaptivity in the ITS [7]. Our model allows for ITS to

use inductive teaching methods such as example categorisation tasks.

A second interest of our model is to be used to simulate students. Student simulations can

be used to support the learning process in several ways. Firstly, this can help teachers design

content and inductive teaching policies for learning environments [146, 147]. Simulations of

students can also be used to develop an environment where teachers have to select examples

to teach simulated students. Such an environment will allow teachers to analyse different

teaching strategies, to extract optimal sets of teaching examples for inductive example cate-

gorisation tasks, or to practice teaching using inductive methods. For working in this direction

we have already started to implement an application in which teachers choose examples in

order to teach simulated students.

An additional interest in the model we proposed is that the model can give advanced insights

about the students beyond what can be known from a direct statistical approach. Using this

model teachers will be able to know for each student an assessment of their inductive bias and

their flexibility. For example, this model could be used as a real-time learning analytics tool in

the classroom during inductive teaching activities. Based on such information the teacher

will be more able to decide which teaching interventions to use with each student. Our model

allows for these advanced insights to be estimated in real time during activities and can for

example be displayed on a dashboard for the teacher.

In conclusion, we contributed a probabilistic Bayesian model of students’ reasoning processes

for categorisation of examples in the context of an inductive learning activity. Our modeling

approach is novel in two ways. First, it includes individual differences between students. We

showed that students exhibit inductive biases and that the model we propose learns and

predicts these biases using several bias profiles to describe students’ behaviour. Second,

the model accounts for changes in students’ reasoning due to feedback. Using data from

an inductive example categorisation task given to 222 students we showed that students

have different biases which determine how they choose to answer ambiguous categorisation

questions. These biases depend on the student preferred choice of features. Furthermore,

giving the students negative feedback changes their bias but different groups of students have

different levels of flexibility in that context. Additionally, we showed that students tend to go

back to their original biases after a short delay. These aspects are part of the Bayesian model

we proposed in this work and are a novel contribution from previous modeling approaches.
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We believe that these two aspects are highly beneficial for using models of inductive reasoning

in educational contexts.
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7 Self-Improvement and Adaptivity for
Inductive Teaching

In chapters 5 and 6 we motivated the use of student models of inductive reasoning. Yet,

our model allows us only to trace the student biases and predict their answers but does not

provide algorithms to directly compute optimal teaching strategies. Such algorithms are

necessary for building adaptive and self-improving learning environments. In this chapter, we

fill this gap and complete our theoretical foundations for learning environments supporting

inductive teaching. In particular, we focus on providing algorithmic solutions to answer

three research questions. RQ1: Given a set of examples, a target concept, and a student, how

can examples be selected optimally to support the student’s inductive reasoning process?

RQ2: How does a learning environment adapt to students’ individual differences during

inductive reasoning tasks? RQ3: What are long term teaching strategies that allow an inductive

learning environment to self-improve? These three research questions reveal challenges at

three different levels of the capabilities of a learning environment. The first question assumes

that the bias of the student is known. In this case, the learning environment must only aim

to provide optimal teaching. For the second question, the student bias is not known. The

learning environment must gain information about the student while trying to provide optimal

teaching. Finally, the third question relates to the concept of self-improvement, which, as

explained in Chapter 4, consists in gaining information from each interaction with successive

students in order to improve over time. In this chapter, we provide formal definitions of the

three research questions and their algorithmic solutions.

The student model used in this chapter is the one described previously by Tenenbaum to

explain induction capabilities of human learners [231]. Students rely on their prior knowledge

and biases to infer categories from examples using Bayesian inference. We mentioned this

modeling approach in Chapter 5 and we define it mathematically in Section 7.1. This model

can seem restricted to the narrow task of generalising from a set of examples to a category, but

the task of using one’s prior knowledge with observations to infer unknown information can be

applied to many different contexts (notably, for most constructivist approaches to teaching).

Given a mathematical description of a learner, computing optimal teaching strategies is the

task of interest in the field of Machine Teaching (MT). MT is an inverse problem from Machine
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Learning (ML). In ML, the goal is to estimate the parameters θ̂ of a model as close as possible

to the true parameters θ∗ given an observed dataset D. Instead, MT is the task of building a

dataset D that would allow a model to estimate parameters θ̂ as close as possible to the true

parameters θ∗. MT has been recommended multiple times as a way to improve education

[260, 261]. However, a large part of the work done in this field makes unrealistic assumptions

about the interaction between the teacher and the learner. In particular, the assumption is

often made that the teacher has perfect knowledge of the student. Citing Zhu [259]: "[The

teacher] is almost omnipotent: it knows the world θ∗, the learner’s hypothesis space Θ, and

importantly how the learner learns given any training data". In practice, these assumptions

do not hold. Students have different prior knowledge and exhibit different learning and

reasoning mechanisms. Approaches try to alleviate this assumption and consider black-box

models of students [137, 58]. In these models the teacher does not have perfect knowledge

of the students, but can assess the students’ knowledge through interactions. The black-box

framework is more realistic in practice. This is why a lot of effort in understanding students’

learning has been focused on inferring students’ knowledge based on observation of their

behavior and performance, often using Bayesian models (see Chapter 3).

In Section 7.1, we start by defining the learner model. Specifically, we provide a more detailed

definition as to how students’ reasoning about categories is influenced by observing examples.

In Section 7.2, we apply the framework of MT and give an algorithm to select teaching examples.

Additionally, we analyse several aspects of the optimal teaching strategies. In Section 7.3,

we explore how the inductive learning environment can adapt to students, using several

algorithmic methods. In Section 7.4, we describe how the algorithm proposed in Chapter 4

can be used in the inductive learning environment in order to self-improve.

7.1 Model of Inductive Reasoning

7.1.1 Context

A particular task in inductive reasoning consists of generalising categories from examples.

Typically, a student would be given a set of objects among which some have been labelled as

belonging to an unknown category (examples) or not belonging to the category (counterexam-

ples). The students are then tasked to find a good explanation for the unknown category and

generalise it to unlabelled objects. This sort of task will require the student to identify specific

features of the presented examples and to discover new concepts or simple logical rules. How

students are able to do this type of inductive reasoning is a challenging question and has been

a topic of research for many years. One of the main approaches to solving this question has

been to compare student’s induction with some form of Bayesian inference [231].

The example on Figure 7.1 illustrates well the context of inductive reasoning. The figure shows

16 animals and three of them have been highlighted as being part of a category. Can you

tell which of the other thirteen animals belong to the same category as the three highlighted
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Figure 7.1 – Example of inductive reasoning about categories. Three examples of a category
have been shown.

examples? From a purely information theoretic point of view, this question is impossible

to answer. Multiple categories are compatible with the three highlighted examples, such as:

"animals with fur", "mammals", or "felines". Thus, a purely deductive reasoning method

cannot provide an indisputable answer. However, using an inductive reasoning approach,

it seems very likely that the intended category is "cats". The Bayesian models of induction

explain how this induction is done based on two main key concepts: Prior Knowledge: before

seeing the highlighted examples, the student already has prior knowledge about categories.

Categories such as "animal with fur", "mammals", or "felines" would, in general, be considered

likely categories for the student. On the other hand, categories such as "animals that are either

grey or can fly", or "cats and fishes" are unnatural categories and will be considered much more

unlikely for most students. Likelihood: The examples given represent well some categories

and are incompatible with other categories. Observing three cats as examples allows the

student to be sure that the unknown category is not "elephants". These are also very likely

examples for the category "cats" and somehow unlikely (but not impossible) for the category

of "mammals".

Both prior knowledge and likelihood of the observed examples guide the students’ answers

in categorisations tasks. In this model, it is expected that students will guess categories
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that are both likely and well represented by the examples. These two aspects are the two

probabilities on the right side of Equation 7.1. In the equation, P (C ateg or y) is the prior

knowledge about categories. The conditional probability P (E xamples | C ateg or y) is the

estimation of how likely are some examples given a particular category. The posterior proba-

bility P (C ateg or y | E xamples) is how likely a given category is to be the correct answer after

seeing the examples according to the student’s reasoning.

P (C ateg or y | E xamples) ∼ P (C ateg or y)×P (E xamples | C ateg or y) (7.1)

7.1.2 Mathematical Definition

The students are able to observe a collection of objects O . Based on these objects we consider

a set of categories C that can either contain all logically possible categories or a subset of the

most likely categories. For a specific category c ∈C , each object x ∈O is either classified as an

example for this category or a counterexample if it does not belong to the category. A category

c associates a label y = c(x), which can take the values +1 (example) and −1 (counterexample),

with every object x. During the task, some objects are labelled and some are not. (For example,

on Figure 7.1 three examples are labelled and no counterexample is labelled). We will use

the notation d = (x, y) for a labelled object and the set D for the set of all examples and

counterexamples shown to the student.

The student s has a prior Ps(c) about each category, which corresponds to what we defined

as the inductive bias in the Chapter 6. This prior can be thought of as what the student is

likely to answer if the task is to pick a category before being given any labelled examples.

Some categories such as "cats" or "elephants" will have a non-negligible probability, but most

categories will be assigned a negligible probability, simply due to the exponential number of

possible categories. Additionally, the student’s prior is in general not arbitrary but originates

from feature similarities between the objects as analysed in Chapter 5. When guessing the

unknown category, the student assumes that the examples (respectively, counterexamples)

are drawn uniformly from the set of examples (respectively, counterexamples) [231] and that

whether they are shown an example or a counterexample is independent of the unknown

category. This leads to computing the probabilities of observing a particular datapoint d =
(x, y) for a given category c according to Equation 7.2. In the equation N−

c is the number of

counterexamples and N+
c the number of examples. This probability is 0 if the example or

counterexample given is incompatible with the category (for example if a cat is given as a
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counterexample then the unknown category cannot be the category of mammals).

P (d |c, y) = P ((x, y)|c, y) =


1

N+
c

if c(x) = y and y =+1
1

N−
c

if c(x) = y and y =−1

0 if c(x) 6= y

(7.2)

Finally, students’ bias about the different categories is influenced by the examples following

Equation 7.1. With our new notation, the equation becomes: Ps(c | D) ∼ Ps(c)
∏

d∈D Ps(d |c).

7.2 Optimal Inductive Teaching with Knowledge of Students’ Biases

In this section, we analyse the optimal inductive teaching strategy in the context where the

learning environment knows the category c∗ and the inductive bias of the student Ps(c). The

goal of the learning environment is to build the set of examples and counterexamples D such

that the category c∗ becomes more likely than every other category for the student. This

condition is expressed by Equation 7.3.

For this type of optimisation, the MT framework also includes a measure of the cost of teaching.

This cost can originate from the difficulty of generating examples or from the time required by

students to analyse and compare multiple examples. Most commonly, the teaching cost is

proportional to the size of the training dataset [259, 257]. In our case, we define cost (D) = |D|.
Without limiting the number of examples, the optimal teaching strategy would be trivial and

would consist only in selecting all objects in O as the teaching set D. The task of the learning

environment is to reach the teaching goal (Equation 7.3) while minimising the number of

labelled examples.

∀c ∈C ,Ps(c∗|D) ≥ Ps(c|D) (7.3)

7.2.1 Formulation as an Integer Programming Problem

Below, we show that computing a set of examples and counterexamples satisfying the condi-

tion expressed in Equation 7.3 and minimising the cost |D| can be formulated as an Integer

Programming (IP) problem. IP is a particular type of optimisation problem that is often used

for practical optimisation problems such as scheduling or resource allocation or in the con-

texts of graph theory and number theory [53]. IP problems are, in general, difficult to solve.

Yet, several exact and heuristic solvers are available and can prove useful in practice [109]. For

example, within an educational context, IP has been used for optimising course timetables

[161], allocating students to projects [8], or for college admissions [2]. All these applications
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used available solvers, justifying our IP formulation for optimal inductive teaching.


minx

∑
i xi

∀ j ,
∑

i xi Di , j ≥ L j

x ∈ {0,1}|D|
(7.4)

The IP formulation (Equation 7.4) is derived as shown below. We use the following notations:

xi = 1 if the i -th example is selected in the teaching dataset D, xi = 0 otherwise; Di , j =
log ( Ps ((xi ,c∗(xi ))|c∗)

Ps ((xi ,c∗(xi ))|c j ) ) corresponds to the influence of example i on the likelihood between the

category c j and c∗ and L j = log (
Ps (c j )
Ps (c∗) ) corresponds to the prior ratio of probability between

the category c j and c∗. Some of the terms Di , j can take infinite values when the example

c∗(xi ) 6= c j (xi ). This occurs when the example or counterexample provided directly contradicts

a possible category (for example, an example of "cat" contradicts the category "elephants").

In that case, it is equivalent to replace this parameter with a value sufficiently large, such

that Di , j > L j −nδ, where δ is the most negative value among the other parameters in the

inequality.

Ps(c∗|D) ≥ Ps(c j |D)

⇔ Ps(c∗)
∏

d∈D

Ps(d |c∗) ≥ Ps(c j )
∏

d∈D

Ps(d |c j )

⇔ ∏
d∈D

Ps(d |c∗)

Ps(d |c j )
≥ Ps(c j )

Ps(c∗)

⇔ ∑
i ,xi=1

log (
Ps[(xi ,c∗(xi ))|c∗]

Ps[(xi ,c∗(xi ))|c j ]
) ≥ log (

Ps(c j )

Ps(c∗)
)

⇔ ∑
i

xi Di , j ≥ L j

7.2.2 Computational intractability

The IP formulation above has theoretical limits. The first limit comes from the exponential

number of logically possible categories that could be considered. If we only restrict the

problem to categories that are not identical on the set of objects O (for any two categories c1

and c2 there exist at least one object o ∈O such that c1(o) 6= c2(o)), the number of categories

to consider is still in the order of 2|O |, which will render the optimisation computationally

intractable. Additionally, when considering all logically possible categories, the majority

of the categories will require more than half of the examples in D to be labelled. That is

counter-productive as we chose to minimise the number of examples used for teaching.
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A second limitation comes from the NP-hardness of the problem. Even if we consider examples

with a smaller number of categories (not exponential, but polynomial in the number of

objects), we can prove that the optimal inductive teaching problem is in the class of NP-hard

problems. This implies that there is no known efficient algorithm to compute its solution [28].

The proof unfolds as follows. First, consider an instance of the Boolean satisfiability problem

(SAT1). It consists of n Boolean variables y1, . . . , yn which form 2n literals (positive and negative)

and a conjunction of k clauses on these literals. To prove the NP-hardness of the optimal

inductive teaching problem, we build an instance of this problem that allows us to solve

the NP-hard SAT problem. Consider the inductive teaching optimisation problem with 2n

objects corresponding to the 2n literals; n categories, one for each variable, which have

for only examples the two objects associated to the literals of this variable; k categories,

one for each clause, which have for examples the objects associated to the literals of that

clause; c∗ to be the empty category which has only counterexamples; Ps(·) chosen such that

∀c 6= c∗,Ps(c∗) < ( 1
2n )nPs(c). It can be verified that the optimal inductive teaching problem

will have a solution with exactly |D| = n if and only if the SAT problem is solvable. Furthermore,

an optimal inductive teaching dataset directly determines an assignment of literals to solve

the SAT problem. We have thus shown that the optimal inductive teaching problem is at least

as hard as SAT in the general case, thus proving the NP-hardness.

We have proven that, in the general case, there is no known efficient algorithm to select an

optimal set of examples and counterexamples for inductive teaching. Given this limitation,

there remain three options: using inefficient exact optimisation, but restricting the use cases

to small cases (with about 5-10 categories and objects), using approximate optimisation for

which more efficient heuristic are available, or making additional assumption on the structure

of the considered categories and of students’ reasoning to allow for more efficient computation

of an optimal teaching set. If such an additional assumption does accurately describe students’

reasoning, then, this third option would lead to both efficient and optimal inductive teaching.

7.2.3 Optimal Teaching for Categories Built on Objects’ Features

The intractability in the general case leads us to consider more practical cases where only

a limited number of categories can be imagined by students. Following our analysis from

Chapter 5, the students’ inductive biases can be attributed to the objects’ features. Given a

small number of features f1, . . . , fk , we consider that the students construct categories from

each of the features, and from conjunctions of the features and their negations. For example, if

"white" and "flying" are two features, a student would consider a number of categories: "white

animals", "flying animals", "non-white animals", "non-flying animals", "flying animals that

are not white", "white animals that fly", "white animals that do not fly", and "animals that

do not fly and are not white". In this context, for a category c, each feature fi either must be

positive, or must be negative, or is unimportant.

1https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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Figure 7.2 – Venn Diagram illustrating the structure of students’ inductive bias, when being
restricted to categories built on conjunction of features.

An efficient teaching set can easily be computed in this case. Considering the target category

c∗ that is constructed as a conjunction of the m features fi1 , . . . , fim , an efficient set of examples

and counterexamples can be computed as follows.

First, all categories defined on other features than fi1 , . . . , fim can be rejected by using only two

examples. It is enough to set the two examples to have the proper fixed values for the features

fi1 , . . . , fim and have opposite values on all other features. These two examples would be added

to the training only if they are required. It is the case when categories using other features are

more likely than c∗ according to the student’s inductive bias.

Second, the only remaining categories are categories that are constructed from a subset of

the features fi1 , . . . , fim . Each of these categories c, can be eliminated with one of two ways:

either providing additional examples inside of c∗ (a category defined using a subset of the

features defining c∗ is necessarily larger because it has fewer constraints) or providing one of

the m counterexamples that have exactly one missing feature. The optimal set of examples in

that case can easily be computed using a computationally tractable algorithm. The teaching

dataset obtained in this way will be at most two examples more than the optimal dataset. An

additional assumption could be that students consider equally all the categories formed as

described above. In that case only the two examples from the first step will be necessary.

An illustration of the structure of students’ inductive bias under the simplifying assumption is
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Figure 7.3 – Example of cards from the card game Set

shown on Figure 7.2. The target category is the category f1 ∧ f2 ∧ f3 represented in green. The

first step of the teaching strategy that we propose consists of eliminating the many categories

that are defined using features other than the features of the target category (two examples are

represented in black color on the figure). The other categories all contain the target category

c∗ (three examples are shown in red, blue and yellow on the figure). We propose to use an

optimised combination of examples and counterexamples. With three features to define c∗

only three counterexamples are enough to eliminate all other categories than c∗.

Example of Complex Category

The examples mentioned above are limited to conjunctions of a subset of the features or

their negations. Other logical formulas could be used to combine the features and form

arbitrarily complex categories. For example the category "white or fly animals, but not white

flying animals" is logically constructed from the two features. This category contains white

animals that do not fly and non-white animals that fly. It could be written with the logical

symbol for the exclusive disjunction "white ⊕ flying". A similar example in geometry could be

the categories of "rectangles and rhombuses, but excluding squares". This sort of category

appears only in uncommon circumstances and it is natural that students will assign very low

prior probabilities to them. If it is expected that students will not construct such complex

categories, we recommend applying the example selection defined above. Otherwise, the

learning environment should rely on the formulation given by Equation 7.4.

An example of such complex categories comes from the card game, Set2. Examples of cards

from the game are shown on Figure 7.3. The cards can be described with four features, which

can each take three values: the color C (red, green, or blue), the number of symbols N (1, 2, or

3), the shape S (round, rhombus, or squiggle), and the filling F (empty, stripes, or full). In this

2https://en.wikipedia.org/wiki/Set_(card_game)
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game, the rules rely on a disjunctive logical formula, which, as argued previously, is a priori

less likely than simpler conjunctions of features. The goal of the game is to find triplets of

cards that are called Set and follow the rule, "If two cards have it and the third does not, then

it is not a Set"3. To state the rules using a logical formula, we can first define I (X ) and D(X )

for triplets where the value of the feature X is respectively identical or all different among the

three cards. With this notation, the rule of the game Set is to find triplets of card that verify the

logical formula: (I (C )∨D(C ))∧ (I (N )∨D(N ))∧ (I (S)∨D(S))∧ (I (F )∨D(F )). It could also be

written in a slightly simpler form: ∀X ∈ {C , N ,S,F }, I (X )∨D(X ).

The web interface shown in Figure 7.4 was used in a preliminary experiment on inductive

reasoning (similar to the experiment described in Chapter 5). The goal was for the participants

to induce the rule of Set from examples of correct and incorrect triplets. The interaction with

the induction interface happened in a sequence of steps as follows. First, one correct triplet

and one incorrect triplet are shown and the student must write any explanation of why the

triplets are categorised in this way. At that stage, multiple explanations are possible and it is

not expected that the students will find the correct explanation. At every following step, one

correct triplet and one incorrect triplet are added to the list of examples, the student is then

prompted to verify if the previously chosen explanation is still accurate, if not, the student

must submit a new explanation. The sequence of steps finished after 10 examples and 10

counterexamples.

Our preliminary experiment indicated that different sets of examples influenced the ability

of students to guess or not the correct categorisation rule. Additionally, we observed that

some students who had a computer science background naturally used logical operators in

their answers while others did not. This confirmed that students use their prior knowledge,

which influences how they analyse and reason about examples and categories. Additionally,

it confirmed that such complex logical rules will be given very unlikely probabilities in most

students’ inductive biases unless they are familiar with such types of categories.

7.2.4 Insight from the inductive teaching strategy

In the inductive reasoning model defined at the beginning of the chapter, given an example

or a counterexample d , a student updates his belief using Bayes rule (see equation 7.1).

P (c∗|d) = Ps (d |c∗)Ps (c∗)
Ps (d) is maximal for an example that maximises the ratio Ps (d |c∗)

Ps (d) . This already

gives several insights concerning the optimal selection of examples.

Firstly, if the category c∗ has a large number of examples and few counterexamples, then it is,

according to the learner model, more efficient to support the induction using counterexamples

than examples. Indeed, the likelihood term P (d |c∗) is lower for examples than for counterex-

3Personal note from the author: From my experience explaining the rule of this game to many friends and
family members, stating the rule this way (although it is perfectly accurate) leads nearly always to complete
incomprehension. So far, I have only been able to explain the rules by showing multiple examples and repeating
the rules in different ways
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Figure 7.4 – Interface for learning the rules of Set inductively
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amples in that case. Inversely, if the category c∗ has few examples, it is better to use examples

to support the inductive reasoning process. To illustrate this aspect, we can consider the

example from Figure 7.1 for teaching the category of "cats". It can be very efficiently guessed

from a few examples of cats. On the other hand, in order to make a student guess the category

"mammals", it would seem more appropriate to explain it by showing counterexamples of

"birds" and "fish", because twelve out of the sixteen animals are mammals.

A second insight comes from the term Ps(d). The example or counterexample selected will be

more effective if it is unexpected for the student. This is because data points that are more

surprising influence the posterior probability more (see Equation 7.1). Another way to explain

this is that an example is surprising if it contradicts a number of likely categories c that are not

the target category c∗. Because Ps(d) =∑
c Ps(d |c)Ps(c), an example or counterexample has a

lower probability Ps(d) if it is incompatible (Ps(d |c) = 0) with some of the categories that the

student considers likely (high Ps(c)). To teach optimally the learning environment should use

examples that exclude the incorrect categories that the student would otherwise find most

likely.

A third insight is that this probabilistic model of student inductive reasoning also explains

near-miss examples. A near-miss is an example or counterexample that is very similar to the

opposite category and usually differs in only one way. Such examples have been shown to be

important to consider for learning concepts and categories [154, 253]. For example, a student

might not know that dolphins are mammals. This student’s inductive bias would thus give

more weights to the categories "fish and dolphins" and "mammals without dolphins" than to

the categories "fish" and "mammals". It should be noted that the student does not realise that

the categories he or she thinks of as "fish" is the "fish and dolphins" category. This miscon-

ception of the student can be compensated within inductive teaching by selecting examples

of dolphins along with examples of mammals and counterexamples of fish. Additionally, the

efficient teaching strategy for the case of categories built on conjunctions of features uses

counterexamples with exactly one missing feature, which confirms the previous results on

near-miss examples.

7.3 Adaptivity

We have shown in Chapter 5 that students differ in their inductive biases. For this reason, the

case described in the previous section, where the learning environment knows the bias of the

student, is not directly usable in practice without a mechanism for estimating the biases of

students. Following the same principle as the model we described in Chapter 6, the learning

environment will start with a prior about the student biases, then, will better estimate the

student biases over time by observing the student’s answers and interaction with the learning

activities. In this section, we first provide a strategy for teaching efficiently under uncertainty,

then we analyse how the strategy can be changed to be adaptive by making use of observations

of the students.
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7.3.1 Batch Teaching Strategy with Uncertainty

The teaching strategy discussed in the previous section is called batch teaching, because the

set of examples and counterexamples is shown all at once to the learner. A batch teaching

approach is still possible with uncertainty about the student’s inductive bias. If, for example,

we consider any number K of inductive biases Pk (c) for k = 1, . . . ,K . With Lk
j = log (

Pk (c j )
Pk (c∗) ),

we obtain the updated IP problem from Equation 7.5. The direct consequence of this new

formulation is that all the constraints on the teaching goal are, in general, more restrictive

than in the case of a singular inductive bias.


minx

∑
i xi

∀ j ,
∑

i xi Di , j ≥ maxk Lk
j

x ∈ {0,1}|D|
(7.5)

This problem is equivalent to considering a single aggregated bias Pa(c j ) = exp(maxk Lk
j )

1+∑
m exp(maxk Lk

m )

and Pa(c∗) = 1
1+∑

l exp(maxk Lk
l )

. A dataset that reaches the teaching goal from Equation 7.3 for

this aggregated bias will necessarily use at least as many examples and counterexamples as

each of the inductive biases Pk (c) for k = 1, . . . ,K . In particular, we observe that ∀k, Pa(c∗) ≤
Pk (c∗), which means that the category c∗ is less likely according to the aggregated than

according to every other student bias.

The batch teaching with uncertainty is useful when a system must find a unique set of examples

that would be satisfactory to multiple students with individual differences in their inductive

biases. This scenario is also similar to the case of selecting examples to show simultaneously

to all the students in a classroom. For this case, the teacher would do best to select examples

by solving the IP problem on Equation 7.5. The case of optimising the selection of examples to

teach a large group of students simultaneously has been studied in the context of MT for a

linear classifier learner [257]. In that work, the authors also show the importance of adaptivity.

In particular, they proposed to divide the classroom into homogeneous groups in order to

optimise the teaching sets for each group. Estimating the inductive bias of a student and

adapting the teaching examples is our focus in the following subsection.

7.3.2 Optimal Adaptive Teaching Strategy

Observations of Student Answers

When a learning environment has uncertainty about the state or individual characteristics

of the student, the only possibility to reduce this uncertainty is to observe the student. This

observation can take the form of data collected before the student interacts with the learning

environment (for example, a registration form) or data that the learning environment col-
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lects from the student interaction with the system (for example, answers to multiple-choice

questions, or behaviour when solving problems).

Within MT, one of the frameworks for realistic interactions between a teacher and a student is

Iterative Machine Teaching (IMT) [136, 257]. In this framework, the teacher does not interact

with the student in one-shot but instead iteratively. Each iteration consists of two steps.

First the learning environment provides teaching. Second, the learning environment queries

information from the student. The information received about the learners varies between

different IMT approaches. Often this information is unrealistic given a pedagogical scenario

with real students. Yet, some approaches assume limited information about the student state

and learning processes and rely on actively querying the student for assessing its knowledge

[137]. We will adopt this angle throughout the rest of this chapter.

In the case of the inductive teaching scenario that we analyse in this chapter, we specifically

focus on the answers given by students to categorisations questions. Additionally, as we

indicated previously, we model that the students answer probabilistically according to their

posterior as defined by Equation 7.1. This modeling step is justified by our results given in

Chapter 6.

Estimating Student’s Prior

One of the main tasks for an adaptive system is to refine estimations about the state of the

student as new data becomes available. Consider the case where the learning environment

has uncertainty about the student’s inductive bias and has discretised the possibilities into K

possible biases. We use the notations Bi for i = 1, . . . ,K , Si for the fact that the student s has

the prior Bi , P (Si ) for the uncertainty of the learning environment about student s, and i∗ the

unknown index of the true student’s inductive bias.

∀i 6= i∗, E[log (
P (Si∗ | c1, . . . ,cm)

P (Si | c1, . . . ,cm)
)] = log (

P (Si∗)

P (Si )
)+m ∗DK L(Bi∗‖Bi ) (7.6)

When the student is queried to answer with a chosen category, the student’s answer is an

indication of the student’s inductive bias. In particular, observing the answer c happens

with probability P (c | Bi∗). The observation allows the learning environment to update the

estimation of the student’s bias. Equation 7.6 gives the learning environment’s expected

uncertainty about the state of the student after making m observations. In the equation,

DK L(·‖·) is the Kullback-Leibler divergence. We observe that the learning environment can get

an arbitrarily good precision P (Si ) < δ for i 6= i∗ with a number of queries m, which will be

in the order given by Equation 7.7. The number of queries grows only logarithmically in the

desired precision, which means that only a few queries will be sufficient to reach satisfactory

certainty about the student’s inductive bias. Additionally, even if the learning environment at
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first assigns a very small probability to the correct bias P (Si∗), this will also be compensated

efficiently.

m ∼ 1

DK L(Bi∗‖Bi )
l og (

P (Si )

δ P (Si∗)
) (7.7)

Equation 7.7 also has a term that is the inverse of the KL divergence. This means that, if the KL

divergence between two inductive biases is small, the learning environment will distinguish

between the two biases less quickly. In that case, it is also expected that the two biases would

have very similar optimal teaching strategies. To solve this problem, when clustering the

students between biases, it is beneficial to ensure that these biases are sufficiently different to

be used meaningfully by adaptive teaching strategies.

Partially Observable Markov Decision Processes

We have shown that the students’ inductive biases can be efficiently estimated. From that

point, a strategy could be as follows. First, query a student multiple times. Then, apply the

optimal teaching strategy described in Section 7.2 once the uncertainty about the student’s

bias is sufficiently small. It is, however, possible to find even more efficient methods by

allowing for the possibility to alternate or not the actions of showing examples and querying

information about the students’ inductive biases. The commonly used framework for this type

of optimisation is Partially Observable Markov Decision Processes (POMDP). POMDP are a

very common framework for optimisation and decision making under uncertainty, which has

been used successfully in robotics [128], health-care [103], and education [190]. When applied

to education technology, the POMDP framework is similar to the framework that we defined in

Section 3.2.3. In this framework, students have a current state and can transition to different

states, the learning environment can select pedagogical actions and students states cannot

be observed directly but instead describe probability distribution of observation. POMDP

have been used on learner models of the same kind as the one we analyse in this chapter to

compute efficient teaching policies [190]. An algorithm to solve a POMDP would provide a

policy that describes the optimised decision making mechanism. In this chapter, we often use

the term teaching strategy to refer to the policy.

One of the main advantages of POMDP optimisation is that they allow balancing between

actions that collect information about the student and actions targeted to teach. For the

inductive teaching scenario, two actions can be considered. The first consists in showing a

labelled example or counterexample to the student, d = (x, y). The second consists in querying

the student for guessing a category. An efficient strategy would balance between these two

actions. The first one is necessary to guide the induction of the student, and the second one

is important to learn the bias profile of the student in order to better optimise the choice of

examples in the first action. In practice, these actions will have an associated cost, such as
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the time required by students to analyse a new example or to answer a query. For example,

it could require students one minute to perform the first action and only 20 seconds for the

second. These costs will determine the optimal teaching strategy.

Because optimal policies for POMDP are, in general, computationally intractable, it is nec-

essary to use online methods that produce an approximation of the optimal policies. In

particular, we prove the intractability for the optimisation without uncertainty about the stu-

dent’s inductive bias, which is only a special case of the optimisation with uncertainty. Online

approximations for POMDP with limited look-ahead have been shown to handle large POMDP

efficiently [200]. We show below how to perform such optimisation. First, Equation 7.8 shows

how to compute the probability that the student will guess the correct category P (c∗|d) in

order to select an example or counterexample d that maximises this probability. The second

Equation 7.9, allows the learning environment to estimate the probability that the student will

give the correct answer if it chooses to first gain information about the student before showing

an example. In the equation, P (c) =∑
i P (Bi )P (c|Bi ) is the probability of observing the answer

c when querying the student for a category.

P (c∗|d) =∑
i

P (Bi )P (c∗|Bi ,d) (7.8)

P (c∗|Observation First) =∑
c

P (c)max
d

∑
i

P (Bi |c)P (c∗|Bi ,d) (7.9)

7.4 Self-Improvement

In the two previous sections, we provided algorithms to select an optimal set of teaching

examples and counterexamples when the learning environment knows the inductive bias of

each individual student. Furthermore, we showed how to adapt to students when the learning

environment does not know with certainty the inductive bias of the student but is able to

quantify its uncertainty about the students’ inductive bias. In this section, we focus on the task

of quantifying an initial uncertainty about the students’ biases and optimising the selection of

teaching examples when lacking information about the students’ prior. To this end, we show

how the algorithms defined in chapters 3, 4 and 6 can be adapted.

7.4.1 Multi-Armed Bandit Optimisation

The methods described in Section 7.3 rely on knowledge about the distribution of inductive

biases within the population of students. As long as the learning environment does not have

access to sufficient quantity of student data, the adaptive teaching strategy would face a sort
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Figure 7.5 – Example of models for the inductive reasoning task

of cold start problem. For example, this can occur if a new topic is introduced in the learning

environment. A solution to that problem is the optimisation algorithm based on Thompson

Sampling that we described in Chapter 4. We remind the reader that MAB optimisation can be

successfully used in the context of a cold start. The method can be applied directly to the case

of initial data collection for the inductive teaching learning environment.

Figure 7.5 illustrates how the learning environment could apply MAB optimisation. The first

step would consist of showing one of several inductive teaching datasets, then querying the

students for guessing the category. The initial datasets can be chosen by expert educators or

optimised using student models and simulations that do not require student data. Additionally,

the MAB optimisation requires that the learning environment defines the utility function,

which, in this case, consists in evaluating desired and undesired posterior beliefs.

The six posteriors depicted on Figure 7.5 do not necessarily need to be distinct. If we consider,

for example, two students, Alice and Bob, such that Alice cares equally about cats and dogs, but

Bob only cares about dogs. After being shown a counterexample that eliminates the category

of cats, Alice and Bob will have the same posterior.

A difference with the algorithm we proposed in Chapter 4 is that here, we do not estimate the

transition probabilities of the different teaching datasets. These transition probabilities from

prior states to posterior states are known and given by our model in Section 7.1. Instead, the

optimisation process maximises the probability for the students to reach desired posterior

states and the collected data over time will allow us to estimate the distribution of prior states

(inductive biases).
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7.4.2 Extracting Students Inductive Biases

The adaptive teaching strategy provided in the previous section relies on the knowledge of

a discrete set of student biases and how students are distributed among these biases. This

allows the learning environment to adapt to students by estimating which of these biases

students can be assigned.

Extracting such inductive biases can be done with the Expectation-Maximisation algorithm

used in Chapter 3 and Chapter 6. Additionally, the algorithm forms clusters of students with

similar inductive biases. In practice, the algorithm assumes a fixed number of latent inductive

biases. Then, the algorithm estimates parameters for both the biases and the distribution of

the students within the clusters.

The learning environment, after having collected a sufficient quantity of student data, can

use the adaptive teaching strategy defined in Section 7.3. In order to ensure the quality of the

adaptive strategy, the learning environment can integrate this adaptive strategy within the

MAB optimisation process. The result of this would be that as long as the adaptive strategy

does not perform better than the initial datasets, due to low amounts of data, it will not be

selected as often.

7.5 Conclusion

In this chapter we contributed several algorithmic solutions to different aspects of the im-

plementation of learning environments for inductive teaching. Although our solutions have

not been tested empirically, they are optimal according to the model that we defined in the

beginning of the chapter. This model has been tested empirically, and is also supported by our

study reported in Chapter 6. The lack of empirical evidence is a limitation of our contribution.

First, we have analysed the case of the selection of optimal teaching examples when the

student’s inductive bias is known. We showed that this problem is equivalent to an IP problem.

IP problems are in theory computationally intractable, but multiple solvers and heuristics

are available and have been used successfully in an educational context. Additionally, simpli-

fying assumptions about students’ reasoning leads to the possibility to efficiently compute

efficient teaching strategy. In particular, we analysed the case of categories constructed from

conjunctions of features of the objects and their negations.

Secondly, we have analysed the optimal teaching when the learning environment has uncer-

tainty about the inductive bias of the student. In that case we have shown that batch teaching

is still possible and is equivalent to teaching a student with an inductive bias, which assigns

less probability to the goal category c∗. Yet the algorithmic solution is the same as in the first

case. Another more interesting approach for adaptivity is to consider the frameworks of IMT

or POMDP. The learning environment makes observations about the student’s knowledge at

each step of the learning process. We have shown how this framework can be used for the

124



7.5. Conclusion

inductive teaching scenario and provided the necessary steps to apply such optimisation.

Additionally, we found that the students’ biases can be efficiently estimated from asking the

students to guess the correct category.

Finally, our third contribution is the algorithms for self-improvement. We showed two possibil-

ities. First, the necessity to compute and refine a model of students’ inductive biases as more

student data is collected. This can be done with the Expectation-Maximisation algorithm that

we already used in Chapter 6 to compute the unobserved parameters of students latent states.

Second, we showed how to apply the self-improving Thompson Sampling methods described

in Chapter 4.

This chapter completes the main contribution of the thesis by providing the necessary al-

gorithms for students modeling and for computing efficient teaching strategies. Our contri-

butions allow us to develop learning environments for inductive teaching that will be both

adaptive and self-improving.
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8 Assessment of Students’ Uncertainty

Student assessment is necessary to be able to measure the effect of pedagogical interventions

[17]. Whether it is for adaptivity or for self-improvement a learning environment necessarily

requires making some observations of students in order to infer their current states and state

transitions. Assessment consists in observations of students that are focused on estimating

their state of knowledge or ability level. Assessment can be improved at two levels: first, the

modeling and analysis of observations, which we have previously discussed in Chapter 3

and second, the data collection mechanism. In this chapter, which is the last of the thesis,

we want to focus on this second possibility. Improving the data collection mechanism is

complementary to our contributions from previous chapters. It is another key element of

adaptive and self-improving learning environments that has the potential to greatly improve

educational technology.

Assessment of students is at the core of student modeling in adaptive learning environments.

Within the framework of this thesis given in the introduction, assessment is the mechanism to

collect data from students and to infer students’ states on which adaptive decisions will be

based. Assessment can take many forms, such as quizzes, homework exercises, projects, essays,

or in-class examinations. Additionally, we distinguish two types of assessments. Teachers use

formative assessments in order to adapt the teaching to students and summative assessments

in order to evaluate students after a learning sequence [71].

Research on student models improves the inference of students’ knowledge states based on

currently existing data. On the other hand, including improved mechanisms for collecting

data from students is also a key aspect that deserves attention in the design of automated

learning environments. It is useful to consider the case of a human tutor to better understand

this idea. A human tutor, when asking a question to a student, does not only rely on the

received answer. From the student’s attitude, tone of voice, facial expression, or body gestures,

the tutor can perceive whether the student is guessing the correct answer and how confident

the student is. These are all important cues helping the tutor to better adapt to the student.

ITS relying on BKT lack access to such cues and must handle the uncertainty about students’

true knowledge states. As a consequence, the system regularly gives unnecessary exercises to
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a student because it was not able to be sure that the student had the correct level of mastery.

Additionally, BKT has been used with a threshold of 95% probability of mastery [55]. It means

that the ITS will wrongly validate the mastery of a skill for about 5% of the students while

they have only been lucky in answering the tutor’s questions. These errors can be tuned at

the level of the student model but will also be reduced with more useful observations of the

students. There is a lot of work within the Learning Analytics community aimed at enabling

automated systems to capture more data from students by using numerous digital sensors

[23]. This range of methods, however, loses in efficiency and scalability because they usually

rely on additional hardware such as cameras, eye trackers or wearable devices.

In this chapter, we focus on probabilistic testing [195] and in particular, on the advantages

it has as an alternative answering mechanism for Multiple-Choice Questions (MCQs). A

probabilistic test, similarly to a MCQ, consists of a question and a list of possible answers

among which is one correct answer. Probabilistic testing differs from MCQs, because students

must assign a probability to each choice corresponding to how likely they think the choice

may be the correct answer, instead of only selecting a unique answer. This mechanism still

supports the scalability and efficiency of development and administration of MCQs while

also supporting the estimation of the uncertainty of student answers. Estimating students’

uncertainty may support more accurate predictions of student knowledge. In particular,

this answering mechanism is complementary with the inductive teaching strategies that we

defined and analysed in Chapter 7. When a student is guessing categories based on a set of

examples, this new answering mechanism will allow the student to not only pick one answer

but to provide multiple answers with probabilistic weights.

In Section 8.1, we discuss multiple alternative answering mechanisms for Multiple Choice

Questions (MCQs) and focus on the advantages of reducing students’ guessing and estimating

students’ confidence. In Section 8.2, we describe in detail the concepts of probabilistic testing

and proper scoring rules and report some preliminary observation from a web application for

probabilistic MCQs. In Section 8.3, we analyse the advantages that this type of assessment

could bring to the optimisation of inductive teaching that is the central concern of the thesis.

8.1 Alternative Answering Mechanisms for MCQs

Within educational systems, student assessments play a major role in evaluating students’

current knowledge. To support efficiency and scalability, often MCQs are used as an assess-

ment tool. They consist of a question, a correct answer and one or several incorrect choices

(distractors). Most often the student is shown the question and all of the choices (among

which is the correct answer) and has to select the choice that he or she thinks is the most likely

to be correct.

One of the many advantages of digital technology is that it enables the development of online

assessment systems [11]. MCQs are particularly well suited for such online learning environ-

ments because of the ease in which questions can be distributed and graded automatically
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Figure 8.1 – Comparison of two cases: (left) Two thirds of the class know the correct answer A
and one third wrongly thinks B is the correct answer; (right) One third of the class knows that
A is the correct answer and two thirds of the class answer randomly between A and B.

[4, 33]. Furthermore, automated online assessment systems using MCQs are perceived posi-

tively both by students and by teachers [11, 35]. Although they are efficient in many aspects,

MCQs have several limitations. In this section we discuss how alternative answering mecha-

nisms for MCQs can reduce students’ guessing, measure partial knowledge, and allow us to

estimate students’ confidence.

8.1.1 Reducing Guessing

MCQs can mask a student’s true understanding since the questions rely on guessing between

the likely answers if a student is unsure of an answer. Thus, it can be difficult to know if

the student has learnt the required knowledge or if their answer was due to a random guess.

For example, consider the two situations shown in Figure 8.1. In a classroom, if the teacher

observes two thirds correct answers and one third wrong answers, the teacher cannot know

whether this observation comes from two thirds of the class answering randomly between

A and B or comes from one third of the class wrongly answering B with high confidence or

another possibility. The issue arising is that the teacher will observe the same data (answers

to the MCQ) based on very different student knowledge in these two very different scenarios.

In order to support teachers, it is very desirable to identify such differences in students’

knowledge states. This example illustrates one of the main limitations of MCQs, which is that

the data collected using a regular MCQ does not distinguish between a student who knew the

answer and one who guessed it, which is undesirable in a good assessment system.

Student models are usually used to infer students’ knowledge states from learning data. For

example, models, such as BKT [55] or Item Response Theory (IRT) [237], use observations of

correct and incorrect answers to assess students’ mastery of skills. BKT handles the possibility

of students guessing the right answer by using a probability of guessing as a parameter of the
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Level of confidence Score if correct Score if incorrect
High 3 -3

Medium 2 -1
Low 1 0

Table 8.1 – Example of scores attributed for multiple-choice answers depending of confidence
levels

model. These different methods focus on improving statistical or Bayesian inference methods

to deduce students’ knowledge states or predict future performance. However, unless the

problem of improving the data collection mechanism is addressed, the problem illustrated in

the example mentioned above cannot be properly solved by better inference.

To counteract student guessing, a wide range of alternative scoring mechanisms have been

proposed, such as normalising scores to remove the expected number of points earned by

chance [33], giving negative points to wrong answers, allowing students to select multiple

answers and penalising wrong selections [34], and allowing students to select multiple true-

false items and scoring based on the number of correct assignments [129, 119]. It can be

argued that most of these alternative marking schemes are improvements upon the common

marking scheme [33].

Partial Knowledge

When facing a MCQ, it is not uncommon that students are able to eliminate some of the options

but not all. Alternative scoring mechanisms that allow one to measure partial knowledge

lead to less guessing from students because students, who would otherwise guess, are now

able to receive credit for their partial knowledge [181, 241]. Another approach to measure

partial knowledge has been to use IRT to estimate differences between incorrect answers [226].

Additionally, partial credit has been shown to bring potential improvements for Knowledge

Tracing algorithms by going beyond binary prediction of students’ knowledge or performance

[169].

8.1.2 Estimating Confidence

Another particular type of alternative scoring mechanism for MCQs is to use students’ reported

level of confidence [33, 59, 119, 236]. The idea behind confidence levels is that when answering

with high confidence, students will receive higher positive points if they are correct but also a

higher penalty if they are incorrect. On the other hand, low confidence answers lead to low

potential gain when correct and low penalty when incorrect, thus yielding less risk.

Table 8.1 shows an example of scoring that can be used for MCQs with confidence levels.

Interestingly in this example, students will never leave the question blank because the lowest

confidence level can only give positive points. The common practice is to let the student
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select both an answer and the level of confidence directly. However other methods have been

also successful, such as asking the level of confidence after showing the question, but before

showing the multiple choices [59]. Collecting confidence levels reduces guessing because

students who would guess instead decide to select the low risk option and answer with low

confidence. In practice, we would like students to answer with high confidence when they are

truly confident and with low confidence when they are not. This is a particular property of

Proper Scoring Rules that we discuss in the next section.

8.1.3 Changing Students’ Input

As we focus on mechanisms to collect data from students, it is important to point out that

some of these scoring schemes influence the data that is collected. We identify two main

sources of such changes. The first is the scoring rule. How points are attributed changes

how students decide to answer the questions. An example of scoring influencing students’

answering strategies is the use of negative marks (+1 for a correct answer and −1 for an

incorrect answer). This has been shown to reduce guessing but also leads to students deciding

to leave questions blank [34]. If we assume that students answer in such a way as to try to

maximise their expected score to the best of their knowledge, their answering strategy would

be to select an answer if and only if they consider it more likely to be the correct answer than

not.

The second source of change is the input of the answering mechanism. For example, the

system could allow students to select more than one choice or to select both an answer and a

confidence level. Thus, the data collected is not only one choice per student per question. In

the following section we focus on probabilistic tests where students answer MCQs by selecting

a probability for every choice. Changing the students’ input can be beneficial if the new

collected data proves to be useful. This kind of change is of particular interest for any data

analysis that will be done. For analysing such data and extracting students’ knowledge states,

it is important to understand how the answering and scoring mechanism influence students.

8.2 Probabilistic Multiple-Choice Questions

In this section, we describe and analyse the concept of probabilistic testing [181, 195]. Proba-

bilistic tests are very similar to MCQs. The difference is that instead of selecting one choice

that the student thinks is the most likely to be true, the goal of a probabilistic test is that

students report how likely they think each answer is to be the correct answer. This is done by

letting the student assign a probability to every possible answer (see Figure 8.2 for an example

of probabilistic test interface). First, we describe the multiple advantages of probabilistic

testing. Then, we focus on the concept of proper scoring rule, which is central to probabilistic

tests. Finally, we share preliminary observations obtained from an online web application for

probabilistic quizzes.
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8.2.1 Advantages of Probabilistic Tests

Because of their similarity with MCQs, probabilistic tests share the same advantages of ef-

ficiency and scalability and require the same preparation. Interestingly, probabilistic tests

are more time consuming to grade by hand but can also be automatically graded if using

computerised testing [181].

Compared to a MCQ with the same number of questions, probabilistic testing increases assess-

ment reliability although students need more time to answer the questions [195]. However,

these results may strongly depend on the students’ mastery of probabilistic tests. Probabilistic

testing may be unreliable for younger students with low or no understanding of probabili-

ties, but more advantageous if the students can be taught the mechanics of the probabilistic

answers beforehand [181].

Probabilistic testing allows one to estimate students’ confidence. Students highly confident

will answer with a probability close to 100% and the whole range of probabilities can measure

all levels of confidence of the students. It should be noted that answering 0% means that

the student is very confident that this choice is not the correct answer. For a question with 4

choices, the probability assignment for the lowest level of confidence would be 25%.

When answering a MCQ, the students may not know the answer, but are able to know that

one answer is more likely than the others or to eliminate one or several wrong answers.

Probabilistic MCQs allow one to express such partial knowledge. Some example of students’

knowledge states could be:

• The student has sufficient knowledge and assigns a large probability to the correct

answer.

• The student has not fully acquired the learning goals and answers 70% to the correct

answer and 10% to every other choice.

• The student has partial knowledge and is able to eliminate two choices but hesitates

between the two remaining choices.

• The student has incorrect knowledge and assigns a large probability to a wrong choice.

• The student has no knowledge and assigns equal probability to every choice.

8.2.2 Proper Scoring Rules

Proper Scoring Rules are scoring mechanisms for probabilistic judgments that attribute partial

scores to partial knowledge in such a way that students are encouraged to honestly report

their partial knowledge and not to guess. Proper scoring rules are mostly used for evaluating

forecasting in prediction markets [37, 72]. They have also been used for assessments within

the context of education to score probabilistic tests [20, 125, 216].
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How the students’ answers are scored is a critical part of an assessment mechanism. In

particular, it influences what answers students input in the learning environment [216]. For

probabilistic testing, the students must input a probability for every available choice. For

a MCQ with m possible answers, the student submits a vector a1, . . . , am of probabilities.

In general, the system would also enforce that
∑

i ai = 1. A scoring rule would simply be a

function S that takes the index correct answer i and the vector of probabilistic answers a and

computes a score S(i ,a). Consider the simple scoring rule S(i ,a) = ai . If a student assigned

70% probability to the correct answer, the student would receive 70% of the mark. Now, if a

student hesitates between two choices A and B and thinks that the correct answer has 70%

chance to be A and 30% to be B. If the student seeks to maximise the expected score, then the

student will choose to answer (a1, a2) that maximises the 0.7S(1,a)+0.3S(2,a) = 0.7a1 +0.3a2.

The answer that maximises the student’s expected score is (a1, a2) = (1,0). It is unfortunate

that in the scenario described above, the student who rationally tries to maximise the expected

score does not answer honestly with a representation of his or her partial knowledge. We

would like the scoring rule to reward students for answering with their exact partial knowledge.

Proper scoring rules have such a property [37, 72].

Unlike the example mentioned above, some scoring rules have the property given on Equation

8.1 where p is a probability distribution over the possible answers to the question. This

property enforces that a student who believes that the choices are likely to be correct with

probability p and seeks to maximise the expected score will submit the answer a = p. Scoring

rules with this property have been called Reproducing Scoring System [216] or proper scoring

rules [20, 72]. The term Reproducing Scoring System was chosen because the aim of such a

scoring system is that students will reproduce in their answer their exact state of knowledge,

assuming they have the ability to do it accurately.

max
a

∑
i

pi S(i ,a) =∑
i

pi S(i ,p) (8.1)

Proper Scoring Rules have sparked some interest and have been used for probabilistic testing

[83, 181] and in a course on decision making under uncertainty [20]. Another particularity

of Proper Scoring Rules is also their sensitivity to students’ knowledge compared to regular

scoring mechanisms (e.g., giving full-mark for a correct answer and zero for an incorrect

answer) [20]. For example, imagine three students (Alice, Bob and Charlie) answering a True-

False question. They respectively think that the question statement is true with probability

100%, 51% and 49%. The regular scoring mechanism will lead them to answer respectively

true, true, and false. Alice and Bob give the same answer, so, according to the regular scoring

mechanism, they will receive the same score despite having very different knowledge states.

On the other hand, Bob and Charlie have very similar knowledge states because they are

both very close to completely guessing. The regular scoring mechanism in that situation does

not correctly reflect the similar knowledge states of Bob and Charlie. This problem reveals
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a weakness of MCQs, which can fail to collect satisfactory information to efficiently assess

students’ knowledge states. However, a mechanism relying on a proper scoring rule and

probabilistic answers would give Bob and Charlie a similar score very different from the score

that Alice would receive.

Quadratic Scoring Rule

Several scoring rules have the property defined in Equation 8.1. The most used are the Log-

arithmic, Spherical and Quadratic scoring rules [195, 216]. Although the choice of proper

scoring rule has sparked interest among researchers [20, 196], we will not discuss these nu-

ances. We believe that the advantages of probabilistic testing have far more impact than

the nuances in the choice of a proper scoring rule. Below, we provide the definition of the

Quadratic Scoring rule because it is implemented in the quiz answering application that we

describe in the following section. Additionally, we prove that it has the property of proper

scoring rules.

The quadratic scoring rule is defined by the formula given in Equation 8.2. We can observe

that the probability assigned to the correct answer contributes (2ai −a2
i ) to the score of the

student, while every probability assigned to wrong choices contributes a negative score of

−a2
j .

S(i ,a) = 2ai −
∑

j
a2

j (8.2)

If the student believes with probability pi that the choice i is the correct answer, the student

will expect to receive the score pi (2ai−a2
i )+(1−pi )(−a2

i ). This can be simplified into 2ai pi−a2
i

for which one can easily verify that the maximum expected score is obtained for ai = pi . This

shows that the Quadratic rule is indeed a proper scoring rule. Interestingly, this rule also allows

us to give a score to answers for which the sum of the probabilities is not equal to 1. However

such answers would always be sub-optimal and students will maximise their expected score if

they answer honestly with their exact level of confidence.

8.2.3 Preliminary Observations

As a first step to analyse the potential of probabilistic testing, we developed an online applica-

tion for answering probabilistic quizzes. Using this application, users can either create quizzes

and share them online using a randomly generated URL or simply open such a quiz and

answer the questions in sequence. The interface to answer questions is shown on Figure 8.2.

The interface consists of a question at the top and a list of choices in randomised order below,

as is usual in MCQs. For each choice, a slider allows a participant to select any probability

between 0% and 100% by steps of 5%. Users must submit probabilities that sum to 100%. For
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Figure 8.2 – Screen capture from the probabilistic question answering interface

each choice, the number of points that will be earned or lost are shown on the sides.

The online application contains a large number of quizzes on a wide range of topics including

mathematics, physics, general knowledge and computer science. Because the application

was shared on social networks, such as Twitter and YouTube, several of the quizzes received

answers from more than 100 participants, which allowed us to run preliminary analysis that

we report in this section.

We focus on two different aspects. Firstly, we observe that the probabilistic tests have the

potential to solve the issue described by Figure 8.1. Secondly, we observe that the proba-

bilistic answering mechanism allows the learning environment to extract meaningful partial

knowledge states of students.

Comparison of Probabilistic and Traditional MCQ

We mentioned previously that traditional MCQs can lead to situations where the teacher would

not be able to distinguish between different knowledge states of the students in a classroom

because these different states would generate the same observations. This concept is also

similar to the concept of identifiability that occurs when different values of the parameters of

a student model generates the same predictions of performance [19]. Probabilistic tests have

the potential to produce additional information about the students’ knowledge states. Thus,

different states of the student knowledge would not generate similar observations.

This can be observed in the example of the question given on Figure 8.3. The figure shows

the distribution of students’ answers on two questions (blue and orange). On the left is the

distribution of answers that would be observed using a traditional MCQ answering mechanism.
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Figure 8.3 – Comparison of the measure between two questions. The question gives very
similar results in terms of traditional MCQ statistics and very different results in terms of
students probabilistic answers.

For this, we simulated the answers that participants would have given by assuming that

students seek to maximise their expected score. Thus, in a traditional MCQ test, students

would have answered the choice to which they gave the highest probability of being the correct

answer. If two choices received equally high probabilities their answer is split randomly. On

the right is the distribution of probabilities assigned to the correct answer.

The two questions have a very similar distribution of answers for the normal MCQ but not

for the probabilistic answers. The number of answers with 30% and 50% probability from

students on the correct choice are very different between the two questions. The first question

(blue) had many students answering with low confidence while the second question (orange)

had most students answering with probabilities concentrated on either 0% or 100%. As a

consequence, teachers using normal MCQs would not be able to observe any difference

between the two questions (similarly as the problem illustrated by Figure 8.1), but teachers

using probabilistic MCQs would. Overall, we found 157 out of 903 pairs of questions for which

the differences observed with the probabilistic MCQ concerned at least 10% more students as

the differences observed using traditional MCQs.

Extracting Students’ Partial Knowledge States

As students’ answers to probabilistic MCQs are a vector of probabilities, Researchers can use

mathematical tools to analyse families of vectors, such as clustering or dimension reduction.

In the case of probabilistic testing, extracting knowledge states is similar to performing a

clustering of the students’ answers into groups with similar knowledge states. This can be

performed using K-means algorithm [140]. Figure 8.4 shows an example of clusters extracted

by the K-means algorithm on one question with three distractors. When observing the an-
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Figure 8.4 – Example of cluster extraction for a question with 4 choices; (top): average proba-
bility answered for each choice by participants of each cluster; (bottom): distribution of the
participants within the four clusters

swers of students in each of the three clusters, we find specific clusters representing different

knowledge states of the students.

Cluster 1 (blue) includes the students who assigned a very high probability to the correct

answer. Cluster 2 (orange) includes the students who were very confident that the second

distractor was the correct answer. Cluster 3 (green) includes mostly the students that did

not know the answer at all and answered approximately 25% to each of the four choices.

Cluster 4 (red) includes the student who hesitated between the correct answer and the second

distractor and answered approximately 50% for the two choices. Clusters 3 and 4 represent

knowledge states of students that would not be perceived using the traditional MCQ answering

mechanism. For example, if the students from cluster 4 were given a regular MCQ, they would

either answer correctly by luck when they were unsure or answer wrongly. In both cases, if

a feedback mechanism relies on traditional MCQs, they would likely not receive feedback

adapted to their exact knowledge.

8.3 Improving Learning Environments for Inductive Teaching

In this section we bring our focus back to inductive teaching and, in particular, the reasoning

model that we defined in Chapter 7. In this model, students reason probabilistically about

the categorisation tasks. We have shown that a particular mechanism in an adaptive learning

environment for inductive teaching is to estimate the students’ inductive biases in order to

optimise the selection of teaching examples. In this section, we explore how the adaptive

teaching strategy can benefit from probabilistic testing.

If we assume that students have the ability to perfectly relate their knowledge through the

probability estimates of a probabilistic test, we can conclude that the observation of students
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in the adaptive strategy presented in Chapter 7 could be replaced by a single step that would

be a direct estimation of students’ inductive bias. This step would be followed by the optimal

teaching strategy when the learning environment has no uncertainty about the student.

Unfortunately, students in general do not master the mechanism of probabilistic testing

sufficiently for this assumption to be true [181]. Probabilistic tests are difficult if students

have never experienced answering such tests, especially for younger students [195]. However,

students are able to improve in answering such tests [83].

Even though the scoring rule in Equation 8.2 gives students the incentive to answer honestly

and to the best of their knowledge (Property 8.1), it was shown that students, due to a lack

of experience with the probabilistic answering mechanism, diverge from the most rational

answering behaviour. In this section, we analyse the consequences of different assumptions

describing how students answer probabilistic tests.

Noisy Dirichlet Answers

Our first approach to analyse the effect of probabilistic testing for inductive teaching is to

assume that students’ answers would randomly deviate from their exact state of knowledge p.

For this, we model the observations as a random variable. Because the students’ answers a are

distributions of probabilities, it is natural to model the randomness as a Dirichlet distribution.

Additionally, the parameters of the Dirichlet distribution should be chosen in order to repre-

sent that the noisy observations are deviations from the student’s knowledge state p. Such

parameters must be proportional to p. We define a ∼ Di r i chlet (M p), where M is a positive

real number.

Larger values of the parameter M will consist of very small deviations while the smaller values

will generate more noisy answers. We discuss at the end of this subsection how different values

for M influence students’ noisy answers and which values are best suited to correctly model

students’ probabilistic answers.

In order to simplify the notations, we will not use the notations Bi∗ and Bi as in Chapter 7 for

the unknown inductive bias of the student and an incorrect other inductive bias but p and q

instead. The result obtained in the previous chapter can be re-written as Equation 8.3.

E[log(
P (Sp | c)

P (Sq | c)
)] = log(

P (Sp)

P (Sq)
)+DK L(p‖q) (8.3)

In the case of probabilistic testing, the observed student answer is not a category c anymore,

but the observed probability vector a ∼ Di r i chlet (M p). In this section, we compare the pos-

terior expected information about the students’ inductive bias E[log(
P (Sp | a)
P (Sq | a) )] after observing

a probabilistic answer with the one obtained after observing the choice of a single category

given in Equation 8.3.
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The probability density of the noisy observations a can be computed using the Gamma

function Γ(·) as given by Equation 8.4.

p(a|Sp) = Γ(M)∏
i Γ(M pi )

∏
i

a(M pi−1)
i (8.4)

Using the expression in Equation 8.4 and applying Bayes rule for conditional probabilities, we

can derive the expectation given in Equation 8.5.

E[log(
P (Sp|a)

P (Sq|a)
)] = log(

P (Sp)

P (Sq)
)+ log(

∏
i Γ(M qi )∏
i Γ(M pi )

)+M
∑

i
(pi −qi )E[log(ai )] (8.5)

In the case of sufficiently large values of M , the expression above can be simplified in two ways.

Using the approximation log(Γ(z)) ' z log(z)− z, the term log(
∏

i Γ(M qi )∏
i Γ(M pi ) ) can be simplified to

M
∑

i [qi log(qi )−pi log(pi )]. Additionally, using the approximation of the Digamma function

ψ(z) ' log(z), we obtain the second term E[log(ai )] =ψ(M pi )−ψ(M) ' log(pi ). Finally, we

obtain the simplified result in Equation 8.6.

E[log(
P (Sp | a)

P (Sq | a)
)] ' log(

P (Sp)

P (Sq)
)+M DK L(q‖p) (8.6)

The approximations we have used are not valid for small values M . This is not important

because, as we explain later, small values of M correspond to students who do not have the

ability to answer probabilistic tests. In the case of large M , Equation 8.6 gives an estimation of

the uncertainty in a similar form as in Equation 8.3. However, the KL divergence in Equation 8.6

is multiplied by the parameter M which means that, if this parameter is large, the estimation

of the student’s inductive bias will be faster by a factor of M .

Figure 8.5 shows the distribution of answers expected from the noisy answering behaviour

that we defined above. The four histograms give the distribution of the answer of a student

with partial knowledge p = (0.75,0.2,0.05) obtained with four different values of the noise

parameter M . We aim to give an idea of what values for the parameter M models students

best given their level of mastery of the probabilistic answering mechanism. On the figure, we

can observe that for the parameter value M = 0.1, the answering behaviour consists of nearly

always assigning 100% to one category that is chosen randomly following the probability

distribution p. This behaviour is identical to the expected answers that we analysed in Chapter

7. For M = 1, the student very often answers 0% for both the choices to which the partial

knowledge assigns 20% and 5% probability. For M = 10, we observe that the student still
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Figure 8.5 – Examples of student answering behaviour depending on different values of the
parameter M
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provides very noisy answers, but is closer to the partial knowledge than for the smaller values

of M . The spread of answers for the 75% confidence ranges from 50% to 100% and the answers

for the 5% confidence choice are very often 0%. For M = 100, we find that the student is much

better at reporting the knowledge state p as the distribution of answers are well centered

around the correct values of the student’s partial knowledge.

It seems realistic to assume that students will provide an answering behaviour similar to

the noise level for M = 10. In that case, the learning environment can expect to estimate

the students’ inductive biases ten times faster than using traditional questions. However,

as previous studies on probabilistic testing indicated, the answers given to probabilistic

tests strongly depend on the students’ ability. Behaviour such as the one described by the

parameters M = 0.1 and M = 1 cannot be neglected. Finally, answers of the type described

by the parameter M = 100 will only be obtained from students who have experience with the

answering mechanism and a good understanding of probabilities. In this case, the probabilistic

test is as informative for the adaptive learning environment as querying the student 100 times.

Overconfidence and Underconfidence

Previous research has revealed specific types of deviation from the perfect reporting of partial

knowledge in probabilistic testing. Depending on the context, probabilistic answers have been

shown to be underconfident (for example in risk auditing [234]) or overconfident (for example,

in learning vocabulary [125] or in medical diagnosis [100]). In this subsection, we analyse how

the students’ inductive biases can be inferred from either overconfident or underconfident

answers.

For binary questions, overconfidence pushes the answered probability away from 50% towards

100% or 0%. On the other hand, underconfidence pulls the students’ answers towards 50%.

Overconfident and underconfident answers can be modelled probabilistically. This can be

done by using the identity p = (1 + eθp )−1. For values of θ with large absolute value, the

probability is close to 0% or 100%, and for values of θ with low absolute values, the probability

p is close to 50%. In other words, overconfidence will consist of answering with higher

absolute values for the parameter θ than the students’ exact partial knowledge state while

underconfidence will be the opposite.

We can assume random noise from a normal distribution ε ∼ N (µ,σ) and the observed

answers are ap = (1+eθp+ε)−1. For the learning environment to correctly estimate the students’

inductive biases, we must compare two distributions ap and aq obtained in this way from two

different possibilities for the student’s partial knowledge. We obtain the KL-divergence given

in Equation 8.7.

DK L(ap‖aq ) = 1

σ2 [log(
1−p

1−q
)− log(

p

q
)]2 (8.7)
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We find that the KL-divergence is larger than in the case of querying for a choice of category,

except for large values of the noise variance σ2. Thus, the probabilistic test would, in this case,

allow for faster estimations of the students’ inductive biases. However, if the overconfidence

or underconfidence deviations have an impact too large on students’ answers, it is preferable

to ask the student to pick a category rather than to provide a probabilistic answer.

Discussion

We have shown in this section that probabilistic testing can bring large benefits for the estima-

tion of students’ inductive biases. These benefits, however, depend on the students ability to

correctly use the probabilistic answering mechanism. If students submit very noisy answers,

or if students are very overconfident, it is preferable not to use probabilistic tests. These

aspects could be included within the adaptive learning environment.

The adaptive strategy described in Section 7.3.2 in the previous chapter could be modified

to allow for the possibility of using probabilistic tests. Because probabilistic questions take a

longer time to answer [195], the optimal adaptive policy could decide to either use normal or

probabilistic questions depending on the amount of information that is expected to be gained

from each mechanism and the time available. Additionally, the decision to use probabilistic

testing for a given student could depend on the learning environment’s expectation of the

student’s ability to answer probabilistic tests.

8.4 Conclusion

In this chapter, we described an answering mechanism and scoring rule for MCQs based

on collecting probabilistic answers from students. Previous work showed the importance of

alternative scoring mechanisms to alleviate the issue of students guessing the correct answers

in a MCQ [33, 34]. We have shown that the advantages of alternative mechanisms for MCQs

can go beyond reducing guessing. Probabilistic tests yield better prospects for the assessment

of partial knowledge and for estimating students’ confidence. Additionally, probabilistic

testing keeps most of the advantages of usual MCQs such as automated grading, simplicity of

design and scalability.

Probabilistic testing could have several other advantages that would be interesting to evaluate.

First, students will possibly develop the habit of correctly estimating their confidence or at

least reducing their overconfidence, which we expect will help them develop metacognitive

skills. Additionally, probabilistic answers could be used to provide automated feedback. Using

normal MCQs, the learning environment (or teacher) can only adapt the feedback based on the

selected choice, which, as we have shown, carries less meaningful information about students’

knowledge than probabilistic answers. An adaptive feedback system based on regular MCQ

answers will necessarily give the same feedback to a student who knows the answer and one

who guessed it because they provide the same input to the system. Using the clusters such as
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the one we showed on Figure 8.4, feedback could be provided to each cluster of students in

a fully automated way. Furthermore, it may be interesting to explore how different types of

feedback should be given to students who are very confident in a wrong answer, students who

hesitate between several choices and students who do not know the answer at all.

Although we reported only preliminary observations using the probabilistic answering mecha-

nism, we also contributed theoretical results. We have shown in Section 8.3, under different

assumptions about students’ answering ability, that probabilistic testing is beneficial to the

adaptive teaching algorithms that we proposed in Chapter 7. The supplementary informa-

tion obtained from the probabilistic answers allows us to more efficiently estimate students’

inductive biases.
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This thesis started from the observation that data-driven digital technology is transforming

education in many areas. A very positive impact of this transformation is the numerous

opportunities to improve education through bodies of research emerging from this change.

These bodies of research include Learning Analytics, Educational Data Mining, Learning at

Scale, Technology-Enhanced Learning, and Computer-Supported Collaborative Learning. All

these fields have indisputably brought new practices and technology that have benefited

teachers and students in multiple ways. Yet, the current state of educational technology is

nowhere near an optimal point and improvements can still be made in many domains.

For this thesis, we chose to use the opportunities given by data-driven digital technology

to contribute to adaptive and self-improving learning environments. Moreover, our efforts

were guided towards supporting inductive teaching methods. Specifically, we focused on

how a learning environment for inductive teaching can model students’ states and provide

personalised instruction while improving itself over time. Inductive teaching has been proven

to be an educational practice very beneficial to students, however, within adaptive teaching,

less research has focused on investigating and supporting inductive methods than deductive

methods.

9.1 Contributions

Our contributions in the first part of the thesis relate to student modeling, adaptive teaching

and self-improvement of learning environments. In Chapter 2, we contributed to student

modeling and adaptive teaching. We reported our study on predicting progress rate and time

completion in several classrooms. This study evaluated methods for modeling the state of

students and anticipating how this state changes over time, which is a required aspect in

any adaptive learning environment. The system we implemented for this study combined

multiple aspects of learning analytics, including the data collection, data analysis, and use

of the data in real time through a teacher dashboard. In Chapter 3, we focused on student

models and, in particular, generative models that allow us to simulate students’ performance
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or behaviour. We reported our study on the simulation of MOOC students’ behaviour. Our

main contributions are the design and the evaluation of a student model using Semi-Markov

chains. We showed that the Expectation-Maximisation algorithm can be efficiently used to

estimate latent parameters of probability distributions for such generative student models. In

Chapter 4, we focused on the concept of self-improvement. Our contribution is the adaptation

of Multi-Armed Bandit (MAB) optimisation to arbitrary Bayesian student models in order

to improve the process of selection of pedagogical content or learning activities in learning

environments over time.

In the second part of the thesis, we brought our focus on inductive teaching. In Chapter

5, we reported our study on inductive reasoning. In this study, we assigned students to

solve categorisation questions where unlabelled examples had to be assigned to different

categories of labelled examples. Our study revealed that students exhibit a bias towards

classifying the examples according to some particular feature. Most importantly, we found

that students exhibit individual differences in their inductive biases. This finding is central

to our contributions, because it shows that a learning environment using inductive teaching

must adapt to the individual biases of the students to teach optimally. Additionally, we studied

how receiving feedback changed the students’ inductive biases and found that students also

differed individually on this aspect. In Chapter 6, our contribution is a Bayesian student model

that predicts students’ answers during categorisation tasks, traces over time the inductive

biases of students, and accounts for changes in their biases. The model achieved a large

improvement over a baseline prediction. In Chapter 7, our contributions are computational

methods for optimal inductive teaching, optimal inductive teaching with uncertainty about

the students’ biases, and self-improving teaching strategies. The contributions from Chapter 6

and Chapter 7 are the first adaptive and self-improving computational methods targeted at

personalising inductive learning activities. These contributions can be integrated within an

Intelligent Tutoring System to support inductive teaching practices.

Finally, in Chapter 8, we focused on probabilistic testing. It is a particular data collection

mechanism for Multiple-Choice Questions. Several advantages of probabilistic testing include

reducing students’ guessing, estimating students’ confidence and rewarding partial knowledge.

Probabilistic testing is of interest for the thesis for two main reasons. First, improving the

collection of student data is complementary to improving inference mechanisms in adaptive

and self-improving learning environments. Second, as we modeled the students states in

inductive learning activities using probability distributions, directly asking for probability

estimates from students is a particularly good fit to our modeling approach. Our contribution

was to show that, assuming some level of mastery of the probabilistic answering mechanism,

probabilistic testing would indeed allow a learning environment to more efficiently adapt to

students’ individual differences in inductive reasoning.

146



9.2. Limitations

9.2 Limitations

This thesis set the goal of developing adaptive and self-improving learning environments

for inductive teaching. It is fair to say that our contributions have been mostly theoretical.

Although we implemented inductive learning activities, these aimed only at evaluating aspects

of inductive reasoning and testing our student model. The complete development of such a

learning environment is a challenging endeavour for which we only contributed algorithmic

foundations for student models, adaptivity and self-improvement.

Our main contributions correspond to the steps 1, 4, and 5 of the framework that we describe

in the introduction (see Figure 1.1) and are not sufficient for the development of a functional

learning environment. Instead, our contribution should be understood as an external opti-

misation engine. One of the most important missing steps is to provide learning activities.

Providing learning activities would require two additional efforts. First, we must choose the

concepts to be taught inductively and the examples to support the induction process. Sec-

ond, we must design efficient user interfaces for inductive reasoning. The thesis contained

examples of concepts (Chapter 5) and an example of user interface (see Figure 7.4), but these

were designed only for the purpose of experiments. More research about these two aspects is

needed to complete the thesis contributions.

We have described some possibilities for self-improvement using MAB optimisation. This

contribution is limited in two ways. First, other approaches in reinforcement learning could

be considered. MAB optimisation is mostly useful in the case of a task that is repeated over

a number of independent and identical steps. This will cover the majority of cases for a

learning environment that interacts with a large number of students over a long period of

time (for example, a MOOC platform or an online learning web application). Yet, more

general approaches from the field of Reinforcement Learning could be used to increase the

number of possibilities for self-improvement. Second, we only considered some ways in

which the learning environment can self-improve. In Chapter 4, our contribution allows us

to apply MAB optimisation to the particular case of Bayesian student models for estimating

transition probabilities of different learning activities. In Chapter 7, we have shown that

similar optimisation can be used to increase learning outcomes of students while a learning

environment still needs to collect data about students in order to optimise an adaptive teaching

strategy. Arguably, many more aspects of the learning environment could be subject to self-

improvement using similar methods as the one we have proposed.

Another limitation of our contributions is that the optimal teaching strategies that we defined

in Chapter 7 will in practice only be as good as the student model they are optimising for.

Although it is supported by previous research and partially by the accuracy gains of our

Bayesian student model in Chapter 6, the inductive reasoning model is certainly not a perfect

representation of students’ reasoning. Instead, we expect that the model will be refined

and improved as more data becomes available. Similarly, improvements of BKT have been

developed over the years.
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Throughout the thesis, we focused mostly on short-term changes in the students’ inductive

biases, but long-term effects are indisputably worthwhile to investigate too. We studied

changes, either due to negative feedback on their choice of classification (Chapter 5) or by

showing examples and counterexamples during a learning activity (Chapter 7). Additionally,

we have shown that changes due to feedback decay over a short period of time. Both how

students’ inductive biases and their reasoning ability evolve over long periods of time would

be interesting research areas that would complete the contributions of this thesis.

Finally, our analysis of probabilistic testing in Chapter 8 included multiple limitations. First,

our observations did not come from an educational context. Second, the observations did

not result from an experimental condition. Third, our conclusions on the superiority of

probabilistic testing for personalised inductive teaching rely on assumptions about students’

mastery of the answering mechanism that we should evaluate. We included such preliminary

work in the thesis for two reasons. First, it completed our contributions because the data

collection mechanism corresponds to the step 3 of the framework that we describe in the

introduction (see Figure 1.1). Second, it is exceptionally fitted to our student model and

teaching strategies from Chapter 7.

9.3 Next Steps

We envision two main research projects to push the contributions of the thesis further. The

first project is the development of an inductive learning environment that uses the adaptive

and self-improving algorithms and would be deployed in classrooms. The second project is to

pursue the analysis of probabilistic testing, notably in the context of inductive reasoning.

Implementing the contributions of the thesis in a learning environment that would be used by

instructors and students would bring multiple benefits as a research project:

• Evaluating inductive teaching over a wide range of different concepts. In a learning

environment that allows teachers to use the optimised teaching strategies for teaching

multiple concepts to their students and assessing their learning outcomes, researchers

can evaluate which concepts are best taught with inductive teaching approaches. More-

over, in this context, our proposed adaptive teaching strategies would be able to evaluate

for which concepts students exhibit the most individual differences.

• Developing interfaces to support students’ inductive reasoning. A second compelling

research direction would be to develop and analyse support for students’ inductive

reasoning in the form of user interfaces. This project would answer several interesting

questions such as: How should the learning environment present examples? How

should the learning environment support students to think about multiple hypotheses?

How should the learning environment support students to update their belief when

observing examples?
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• Improving the contributions of the thesis. As we have stated previously, our contribu-

tions rely on a model of students’ inductive reasoning that necessarily makes simplifying

assumptions about students’ reasoning process. To evaluate the quality of our student

model, we collected data in classrooms, but using experimental activities that can be

considered very different than usual inductive activities. The implementation of an

inductive learning environment will allow researchers to collect student data outside of

an experimental setting. This data can then be used to improve the student model, the

adaptive teaching strategy and the self-improving mechanism that we proposed in this

thesis.

The second compelling next step is to study in depth the probabilistic assessment mechanism

that we described in Chapter 8. We believe this project could be beneficial to research and

to the design of adaptive learning environments for inductive teaching. We identify several

interesting research directions:

• How do students deviate from optimal rational answers? It is not clear that students

will correctly reproduce the exact state of their partial knowledge when answering

probabilistic tests. We discussed in the thesis a few types of possible deviations, but

these depend on the context and further understanding would be beneficial.

• How can students improve at answering probabilistic tests? Probabilistic tests have

been shown to be difficult to answer for students without prior experience with proba-

bilities and scoring mechanisms. Investigating how to help students best master this

type of question answering would remove one of its main limitations.

• Are students able to make calibrated probabilistic answers? If a student answers 20

times with the probability 70%, it is expected that the selected choice is the right answer

14 times, and a wrong answer six times. If the student is right less than 14 times, we can

infer that the answers were likely overconfident. The calibration of probabilistic answers

measures whether the frequency of correctness matches closely with the probabilities

answered. It is an important metric for measuring the quality of probabilistic answers.

• How much do adaptive strategies relying on probabilistic answers improve students’

learning outcomes? Based on assumptions about students answering behaviour, we

have shown that probabilistic answers would allow an inductive learning environment to

more quickly estimate students’ biases. It would be interesting to verify in which contexts

the assumptions hold and if adaptive strategies that rely on probabilistic questions truly

perform better.

• In the context of inductive reasoning activities, how do students update their an-

swers when observing new data? The model studied in the thesis assumes that students

perform a Bayesian update when observing new examples. Once again, this model is
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a simplification of the complex reasoning mechanisms of students. Using probabilis-

tic tests, one could observe students’ answers both before and after seeing a piece of

evidence and analyse how the answers changed.

• Does practicing answering with uncertainty have other positive side effects on stu-

dents? Unlike traditional MCQ which arguably give to students the habit of guessing

when they don’t know the answer to a question, probabilistic tests motivate honest

answers. To answer probabilistic questions, students are invited to reflect on their own

knowledge and confidence before selecting an answer. It is interesting to evaluate if

this reflection leads students to develop better metacognitive skills and lower their

overconfidence. Other side effects of probabilistic tests could be expected and would be

very interesting to investigate.

9.4 Conclusion

In this thesis we have provided the theoretical foundations required to build adaptive and

self-improving learning environments for inductive teaching. Through three main studies

we have shown and evaluated different approaches and algorithms to model students’ states

and their evolution through time and interactions with a learning environment. We have

found individual differences in students’ inductive reasoning that show the importance of

personalisation for inductive teaching learning environments. Finally, we showed how to

optimise inductive teaching strategies and how probabilistic testing can benefit inductive

teaching.

Although inductive teaching has been shown to be a very beneficial pedagogical approach, no

student model allowed for tracing students’ inductive reasoning as well as BKT traces students’

skill mastery in ITS. This thesis filled this gap and advanced student modeling methods for

inductive teaching. BKT improved adaptivity in many intelligent tutoring systems, which

have now been used by millions of students. Similarly, we hope that our contributions will

motivate further research in adaptive instruction using inductive methods and will lead to the

development of adaptive and self-improving learning environments for inductive teaching.

Induction, defined in the most general manner, consists of generalising from observations.

It describes a fundamental process of learning, which is not restricted to children learning

about geometrical shapes or categories of animals. Induction is used in our everyday life to

understand our environment and adapt our behaviour. Induction is used by scientists from all

domains whether it is to infer which general theories of physics are correct or which medical

treatments are more efficient [228]. Induction is the main goal of machine learning algorithms,

which generalise statistical patterns and can predict new unseen data.

This thesis was motivated by the epistemological depth of the process of induction and

the potential for students to benefit from such teaching practices. We built the multiple

components of adaptive and self-improving learning environments for inductive teaching.
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We believe that our proposed models and optimisation algorithms have the potential to

generalise to a wide range of uses within several types of learning environments. In particular,

the modeling of students’ knowledge states with probability distributions describing their

uncertainty has interests beyond simple inductive learning tasks. Tracing how students’

uncertainty is influenced by new information is a core aspect of teaching that has the potential

to improve educational technology in many domains.
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