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ABSTRACT Predictive control is a flexible control methodology that can optimize performance while sat-
isfying current and voltage constraints. Its application in the power electronics domain is however hampered
by the high computational demands associated with it. In this paper, piecewise-affine neural networks are
explored to greatly simplify these controllers and allow for an inexpensive implementation in commercial
hardware. More specifically, we tackle the problem of enhancing the start-up transient response of a
step-down dc-dc converter while also satisfying inductor current constraints. We analyze the neural network
architecture, and detail its training and validation procedures. The learned controller is then embedded on an
inexpensive 80-MHz microcontroller, and experimental results are provided showing that the whole control

algorithm can be executed in under 30 microseconds.

INDEX TERMS Model predictive control, embedded deployment, neural networks, dc-dc converters.

I. INTRODUCTION

Well designed compensators are at the heart of high-
performance power electronic devices. In this context, linear
control techniques are undoubtedly the most popular method-
ologies used by practitioners [1]-[3], usually exploiting
problem-specific architectures and relying on proportional-
integral-derivative (PID) blocks [4]-[6]. These are generally
reliable and robust solutions capable of accomplishing volt-
age/current reference tracking with, most of the time, zero
steady-state error. Another rather positive aspect of such tech-
niques that cannot be overlooked is their simplicity in terms of
implementation, leading to simple firmware that can be easily
debugged and tuned by users.

In contrast to linear methodologies, model predictive con-
trol (MPC) is a model-based approach that can systematically
handle state and input constraints. As a result, performance
can be pushed to its limits while still respecting physical
limitations of the electronic components [7]. Arguably one
of the main issues that prevents the wide applicability of

MPC is its computational complexity: at each sampling period
an optimization problem has to be solved on-line, requiring
the execution of intricate numerical routines [8], [9]. In a
recent study [10], researchers have shown that at times clever
variable transformations can unveil the hidden convexity of
certain difficult (non-linear and non-convex) problems, thus
alleviating the on-line computational burden. Nevertheless,
even embedding convex solvers can be infeasible when high
control frequencies are needed or the computing platform
has low processing power [11]. Another popular branch of
predictive control in power electronics is the so called ‘fi-
nite control-set’ approach [12], where the switching elements
are directly considered as controllable without the need of
PWM modulating blocks. Although more flexibility is gained,
this comes at the price of having to tackle a mixed-integer
optimization problem, which often forces users to select ex-
tremely short prediction horizons—oftentimes equal to one.
See [13] for a detailed study on the matter. From a stabil-
ity point of view, such limitation is severe as short-sighted
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FIGURE 1. Pre-processing of the control law: The MPC controller is designed, and the problem is then solved off-line (@), yielding a (potentially
complex) PWA function. Samples are collected from this function (@), creating a dataset composed of state-control pairs {x,, u,}"_, . The Neural Network
is trained on the examples given in the dataset and the NN parameters are learned. Finally, the pQP layer is converted into a PWA function (3®) whose

complexity can be adjusted by choosing the size of the NN.

controllers are known to lead to unstable closed-loop dynam-
ics among other problems [14].

In this context, explicit MPC (EMPC) comes as an alter-
native implementation scheme for predictive control whereby
the whole optimization problem is solved off-line, producing a
look-up table of gains to be used during operation [15]. EMPC
has been applied in the context of power electronics to sys-
tems such as inverters with LCL filters [16], dc-dc boost con-
verters [17] and permanent-magnet synchronous motors [18].
Unfortunately, when the number of states and inputs is large
or the prediction horizon is long—which is usually desirable
since it promotes stability—EMPC becomes computationally
very demanding. In more specific terms, the number of re-
gions over which the piecewise control law is defined can
grow exponentially with the number of constraints [15]. This
in turn leads to two problems: firstly, the memory footprint
required to store the entire control law greatly increases;
secondly, the on-line task of identifying the current region
becomes highly time-consuming. The latter is known as the
point-location problem.

During the past years, researchers in the control field have
produced a large body of work on scaling down the com-
plexity of EMPC with many ingenious ideas. These include
exploiting information regarding the initial condition of the
system to ‘delete’ certain regions [19], approximating the op-
timal solution with specific sets of basis functions [20], find-
ing efficient data structures to store and evaluate the piecewise
control law [21], etc. For a reference in the power electronics
and power systems field, the reader is referred to the the-
sis [22]. More recently, there has been an increasing interest
in importing tools from the domain of machine learning to
controls. The hope is that of exploiting data to, for exam-
ple, refine performance iteratively [23] and build surrogate
dynamical models with non-parametric techniques [24], [25].
Neural networks (NN) have also been used to scale down
the computational demands of MPC by learning simplified
representations of the original controller [26]-[28]. See [29],
[30] for recommendations on how to gather the necessary
data-points and properly train such models.

In this paper, we build on our previous work [31] where
a novel piecewise-affine neural network (PWA-NN) architec-
ture was presented to simplify EMPC controllers. Herein a
practical investigation of such technique is carried out in the
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context of fast dc-dc converters, where we cover controller
design, the steps required to train the network off-line, and
the ones needed to accomplish embedded implementation on
an inexpensive device. As opposed to the NN-based con-
trol techniques studied in [26]-[28], [32], [33], the PWA-
NN preserves the MPC structure after training, yielding a
simplified PWA map. A diagram of the proposed approach
is shown in Figure 1. Moreover, the final complexity can
be adjusted by the user through selecting the network size.
In contrast with finite control-set MPC, in this work we as-
sume the use of PWM modulation and the switching signal
duty cycle is controlled. The following points summarize this
paper:
® The dynamic model of a buck Dc-Dc converter is derived
in details considering various parasitic elements;
® An MPC controller is designed to attain a fast and
smooth transient response while respecting constraints,
and the controller is converted into its explicit form;
® A PWA neural network architecture is employed to learn
the predictive controller, resulting in a precise descrip-
tion of it with only a small fraction of the original pro-
cessor and memory demands;
® The resulting controller is then deployed on an
STM32L476 80 MHz microcontroller—a considerably
cheaper and simpler target device when compared to the
previous works that carried out embedded implementa-
tions e.g. [17], [18], [28]. Finally, we provide experimen-
tal results in closed-loop and show that the computations
are executed in under 30 ps.!

Il. MATHEMATICAL MODEL

A schematic representation of the buck converter considered
in this work is shown in Figure 2 and its parameters are
found in Table 1. Vjy, Vp, L, and C refer respectively to the
input voltage, the diode forward drop, the inductance and the
capacitance; whereas Roy, Ry, Rc and Ry refer to the switch
on-resistance, the inductor parasitic resistance, the capacitor
parasitic resistance, and the output load.

Al Python and MATLAB scripts, the embedded firmware and the PCB
files are available at github.com/emilioMaddalena/MPCfit
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FIGURE 2. A circuit diagram of the buck converter including its parasitic
resistances and the diode forward voltage drop. The feedback loop is
closed by the MCU, which implements our proposed PWA-NN controller.

TABLE 1. Parameters of the DC-DC Converter

Vin  Vour Vb L C
15V 5V 0.1V 10mH 56 uF
RON RL RC RO fsw
5m 20 330 m§2 100 Q2 20kHz

We choose as state variables the inductor current and the

output voltage
o |:X1:| B |:ZL:| v
X2 Vo

The power switch is operated at a constant frequency fiw
and variable duty cycle, which is taken to be the control vari-
able u = §. Following the classical time-averaging technique,
Kircchoff’s circuit laws are used to derive differential equa-
tions for both when the switch is open, and when it is closed.
The expressions can be found in Appendix A. Averaging these
equations with § as a weight yields

. Ry, 1 Vin +Vp Ron \Y
X] = ——X] — =X u— XU — — (2a)
L L L L L
. RcRoR;C + RoL RcRoC + L
Xy = — — X
? (Rc + Ro)LC (Rc + Ro)LC™>
RcRo(Vin +Vp) ~ RcRoRon .
(Rc +Ro)L (Rc +Ro)L
RcRpV)
__RcRoVp (2b)
(Rc +Ro)L

The expressions above are not linear since the inductor
current and the duty cycle multiply each other. As the goal
is to design a linear MPC controller, linearization is needed.
We first fix the output voltage to the desired value x,., and
solve for the current and duty cycle steady-state values

X2eq
Ro

3)

Xleqg =

. RoVp 4+ (RL + Ro)x2¢q @
“ Ro(Vin + V) — Ronxaeq

Finally, (2a) and (2b) are expanded around (x1.4, #.4) and
the linear terms are kept, leading to the familiar state-space
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equations X = Axx + B u where

_ RiLtRoNueq _1
L L
Aa = | R Ro(RLC—RonC )
_ RcRo(RL onNCueg)+RoL  RcRoC+HL
(Rc+Ro)LC Rc+Ro)LC

VIN+VD—RoONX1¢q

L
B, = 6
o RcRo(ViN+VD—RoNX1eq) ©)

(Rc+Ro)L

As a last step, a discrete-time model x;+1 = Ax; + Bu; is
obtained by integrating the continuous-time dynamics using
the standard zero-order hold method. The chosen discretiza-
tion frequency was fsump = 10kHz, which is also the predic-
tive controller frequency.

IIl. CONTROL GOALS AND CONTROLLER DESIGN

The goal is to attain a fast start-up response with as lit-
tle overshoot as possible and regulate the output voltage vp
t0 veq = 5'V. Furthermore, an inductor current constraint of
200 mA and voltage constraint of 7V must be respected at all
times. The prediction horizon has to be long enough to yield a
large feasible set [14] and we chose N = 10 steps. A standard
quadratic objective was employed,® penalizing the deviation
of the states and control variable from the reference values
Xeq = [0.05 517, Ueq = 0.3379. The final optimal-control for-
mulation was

N—1

D (I — Xeqllgy + llur — teqlIz) + on — xeqllp (72)
1=0

s.t. Vi=0,...,N—1

min
X

X1 = Ax, + By (7b)
iznin iznax
Umin =X = pmax (70)
o o
umin <u < max (7d)
xy € Xy (7e)
xp = x(0) (71)

with state and control constraints

. ‘min 0mA
vy ov
jax 200 mA
vy 7V

umin =0, umax — (10)

The matrix weights were Q = diag(90, 1), R = 1, and P was
the solution of the associated discrete-time algebraic Ricatti
equation. Xy was chosen to be the the system’s maximal

’In the MPC objective function, the squared weighted norms read as in
[l _xrel'HZQ = (x _xref)TQ(xt — Xref)-
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invariant set under the corresponding LQR policy. Both the
terminal ingredients (P and X)) can be easily calculated with
the aid of the Multi-Parametric Toolbox (MPT) [34] for MAT-
LAB, and are employed to ensure recursive feasibility and
closed-loop stability [14].

As a final step, the MPC controller (7) was solved off-line
using MPT, which yielded a piecewise-affine (PWA) function
7 (x) that maps states directly to optimal control inputs. As
well known in the area of explicit model predictive con-
trol [15], this function partitions the space of feasible states
X into regions described by sets of linear inequalities. Then,
applying the predictive controller on-line boils down to imple-
menting the look-up table of feedback gains

Fix+ g, if x € region 1

(1)

u=mx)=

Fyx + gy, ifx € region M

As provided by MPT, the computed control policy m(x)
had M = 70 regions, a number too large to be embedded into
the target MCU due to the large storage and computational
demands (more details are given in Section IV). These imple-
mentation issues motivate the use of our PWA-NN complexity
reduction scheme.

IV. LEARNING A FAITHFUL STILL SIMPLER
REPRESENTATION OF THE CONTROLLER

Explicit MPC controllers are the exact parametric solution
of their optimization counterparts. The geometric landscape
depicted by the PWA function 7 (x) is composed of numerous
linear pieces patched together. At times, neighboring regions
share the same control law and, depending on their arrange-
ment, they could be merged into an equivalent single one.
Moreover, the overall surface usually presents two scales of
complexity: a general shape and, inspecting it more closely,
intricate small details. Based on these observations, it is rea-
sonable to try to reproduce the rough shape of 7 (x) without
necessarily replicating its small wiggles.

A. THE GENERAL ARCHITECTURE
The architecture of the piecewise-affine neural network used
to learn 7 (x) is shown in Figure 3. It has two affine layers (L1
and L3), an optimization problem as the activation layer [35]
(L2) and one projection layer (L4) that in this specific case
is simply a saturation function. The latter is needed to ensure
that the final control values produced by the NN are within
the control bounds 0 < u < 1. As discussed in [31], the moti-
vation behind the structure is that of learning the dual MPC
problem: L1 maps the state x to the dual space, where L2
represents the dual optimization problem that is solved, L3
then maps the solution back to the primal space, and finally
L4 guarantees it respect the control constraints.

As opposed to other approaches to learning MPC con-
trollers with NN [27], [28], the one explored here can be
translated to a closed-form piecewise-affine function. More
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FIGURE 3. The PWA-NN architecture. A dataset composed of states x and
control actions u is collected from the EMPC controller off-line, and used
to train the PWA-NN parameters (highlighted in orange). After the training

and validation phases, the L2 layer is then converted into its
piecewise-affine form to ease implementation.

specifically, the parametric quadratic program in layer L2 can
be solved off-line after training (e.g. by using MPT), yielding
a PWA map of the same form as (11). The complexity of such
function in terms of the number of regions can be adjusted
by choosing the size of matrix H € R"™*" inside L2. Fixing
n, also defines the sizes of all remaining trainable parameters
highlighted in orange in Figure 3. The result presented next
assures the designer that this PWA-NN structure is suitable
for any possible predictive controller.

Theorem 1 [31] (Given an appropriate size, the piecewise-
affine Neural Network can learn any MPC controller of the
form (7)). Let # : X — U be the map defined by the compo-
sition of all four layers, i.e., 7 (x) := y4 0 y3 0 y2 0 y1(x). Set
€ =0, then 3F, f, L, G and g with appropriate dimensions
such that 77 (x) = w(x), Vx € X.

The optimization problem associated with training this
NN—in fact, almost any NN architecture—is non-convex. As
a consequence, even though there might exist a combination
of parameters and weights capable of exactly representing the
desired function, reaching them is not an easy task. Since
local minima exist, the training process has to be performed
multiple times with different initializations. Nevertheless, it is
reasonably accepted in the machine learning community that
these loss functions possess many high quality local minima,
and pursuing a global optimum is irrelevant in this context
(see for instance the influential work [36]).

Theorem 1 establishes that the size of the NN could be
chosen to exactly replicate 7 (x), but that would defeat its
purpose since the goal is to learn a faithful but simpler version
of the MPC controller. For this reason, we gradually increased
the size n, during the training process until a desirable ap-
proximation quality was attained. From a machine learning
perspective, the problem could be interpreted as an approxi-
mation one, where the ground-truth is known.
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B. THE TRAINING PHASE AND OBTAINED RESULTS
The explicit control law 7 (x) was sampled in order to collect
a set of state-control pairs
{(xg,ug)|d=1,...,D} (12)
where x; can be regarded as features and u, as labels. A total
of D = 5000 points were gathered randomly using a uniform
distribution over the set of feasible states. We highlight that
the samples could have been acquired directly from (7) as
well. Next, the data-points were used to train the internal
parameters of the layers shown in Figure 3.

A standard backpropagation approach can be used to it-
eratively update the NN parameters since, as shown in [35],
optimization layers of this type are differentiable (except on
sets of measure zero, where subgradients can be used). The
PyTorch and OptNet packages for Python were employed
to code the NN and mini-batch stochastic gradient descent was
used to train it. The batch size was chosen to be 50, and the
whole dataset was presented to the algorithm a total of 150
times, i.e., 150 epochs. In order to achieve a balanced learning
throughout the domain, the currents and voltages values that
formed the input locations x; were normalized to a range
of [0,1]. Furthermore, all trainable weights were initialized
randomly. The code was run on a 3.1 GHz Intel Core i7 laptop
with 16 GB 2133 MHz of memory. As previously explained,
we gradually increased the size n, of the PWA-NN. Training
the network once took approximately 35 mins without any
GPU acceleration. With n, = 3, after only 5 initializations,
the network presented a very low mean squared error training
loss: 1.66 x 1077, As for the testing phase, we calculated the
true outputs # = 7 (x) and the predicted values i = 77 (x) on a
grid of points; the latter were capable of closely reproducing
the original controller as shown in the top plots of Figure 4.

In order to assess the complexity of the learned controller,
its L2 layer was converted into a PWA function using the MPT
toolbox. As can be seen from lower plots in Figure 4, the
number of region was greatly reduced: from 70 in the original
partition to 6 in the simplified one, a reduction of 91%. The
total memory required to store the control law parameters was
reduced from 9.25 kB to 528 B. The latter quantities were
calculated by counting the total number of constants needed
to describe all the inequalities that compose the polytopes
and the remaining NN layers, and assuming that each of them
occupies 1 word of space.

A final validation phase was carried out through simulating
the system under the original MPC controller 7 (x) and the
learned controller 7 (x), starting from different initial condi-
tions. The results are shown in Figure 5. As can be seen from
the top and bottom plots, the closed-loop evolution was nearly
identical with both controllers. This indicates that the learning
procedure was able not only to learn the given dataset, but also
generalize the function to other areas of the space. A small
mismatch can be seen is the area close to iy = 0, vp = 6. This
is however not a major concern since that region of the space
is not visited during start-up, and the discrepancy causes the
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FIGURE 4. Original PWA domain partition and MPC control surface (left).
PWA partition of the NN second layer and simplified control surface (right).
With just a small fraction of the original number of regions, the final
simplified controller can closely reproduce the original control surface.
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FIGURE 5. Simulation results: Current and output voltage time evolution
(top plots), and phase portrait (bottom plot). The dashed lines represent
the system evolution with the original EMPC controller, and the solid lines,
with the simplified EMPC controller. In the bottom plot, the solid circles
are the initial conditions, and the star depicts the target steady-state.

system to stay inside the feasible region rather than violat-
ing the constraints. An additional numerical investigation is
reported in Appendix B.

V. EXPERIMENTAL VALIDATION

A prototype of the buck converter is presented in Figure 6.
The target embedded hardware was an STM32L.476 platform:
the MCU runs at 80 MHz, it has a 32-bit RISC architecture
and two independent 12-bit ADC channels. The controller
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A picture of the switched-mode electronic converter prototype.

firmware was written in an interrupt-driven, bare metal, fash-
ion and was triggered at 10 kHz. To avoid using raw measure-
ments and also to filter noise, the ADCs were operated at a
faster pace and 5 consecutive readings were averaged before
being sent to the EMPC controller. Only integers were used
to encode all control law parameters (polytopes and feedback
gains) and the direct memory access peripheral was employed
to link the ADC blocks directly to memory. All these steps
were needed to ensure that all instructions could be executed
within the 100 us time window.

Even though both vy and i; were being measured, a state
observer was used to estimate the two variables. The pro-
duced estimates were only used during the first two sampling
instants after the control task was initiated, and the sensors
readings were employed afterwards. This approach was cru-
cial to counteract the high non-linearity caused by the diode
barrier during the first time instants, which would lead other-
wise to current constraint violations. Later in time, this effect
caused by the diode was neglected because i;, was already
high enough to quickly overcome the barrier.

For comparison purposes, the open-loop and closed-loop
start-up responses of the power converter are shown in Fig-
ure 7. Whereas the open-loop behavior shows high output
voltage and current overshoot, the closed-loop EMPC re-
sponse was faster and satisfied the imposed constraints. More
specifically, the settling time was reduced from approximately
6.73 ms to 2.33 ms; the voltage peak from 7.97V to 5.16'V;
and the current peak of the average signal from 333 mA to
202 mA. In Figure 8 (top) we see the same closed-loop curves,
but without the use of the state observer. Due to the current
‘delay’ caused by the diode, the controller causes the inductor
to accumulate enough energy to violate the constraints. Fi-
nally, a flag was risen to indicate the time needed to execute
the EMPC interrupt service routine (ISR) that was respon-
sible for: averaging the ADC samples, estimating the states
when needed, solving the point location problem, calculating
control input, and updating the PWM peripheral duty cycle.
The execution period varied according to the current EMPC
region, but lasted between 22.0 us and 27.5 us. As shown in
Figure 8 (bottom), the MCU processor core was not always
busy, but had time available to execute other tasks if requested
by a particular application.
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2.000ms/

constraint
satisfaction

Open-loop start-up response (top) and closed-loop EMPC
start-up response (bottom). The output voltage settling-time was reduced
from 6.73 ms to 2.33 ms, and the inductor current respected the imposed
constraints.

constraint
violation

100.0us/

“~“controller ISR

Closed-loop start-up response with no state-observer (top) and
the controller interrupt service routine taking approximately
27 us (bottom).
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VI. CONCLUSION

The practical investigation reported here shows the PWA-NN
potential in reducing the computational demand of MPC. This
allows for predictive control to be embedded in inexpen-
sive microcontrollers and enhance the dynamics of electronic
power converters. Our experiments show that the current con-
straints were satisfied by the closed-loop system even after
the controller simplification phase, which indicates that high-
quality approximation results were attained. Future works
could explore alternative neural network architectures that
incorporate memory to learn MPC controllers, as well as ap-
plying these techniques to more complex converter topologies
at higher current-voltage scales.

APPENDIX A: EQUATIONS FOR THE ON AND OFF SWITCH
STATES

Note that the algebraic complexity of our model stems mainly
from including many parasitic elements, which are normally
neglected. When the switch is open, the following equations
describe the buck converter dynamics

Ry 1 Vb

X = _fxl - sz A (13)
. RcRoR;C + RoL RcRoC + L
Xy = — X1 — X2
(Rc + Ro)LC (Rc + Ro)LC
RpVp
_ e’ 14
T (14)

where Rp = (RcRp)/(Rc + Rp) is the parallel equivalent of
the capacitor and load resistances. When the switch is closed
one has

Ron + R 1 Vin
_ Lo 15
X1 7 a- Rt (15)
o — _ RcRo(Rov +RL)C+R0LX
2 (Rc + Ro)LC !
RcRoC + L RpV,
_ RcRoC + rVD (16)

(Re + Ro)LC? T L

making the dynamics affine (linear with a constant bias).

APPENDIX B: ADDITIONAL SIMPLIFICATION RESULTS
Here we present additional results that illustrate the potential
of the proposed technique. Firstly, the MPC controller param-
eters described in Section III were modified to Q = diag(1, 1),
R = 100 and a horizon of N = 100. The predictive controller
explicit form 7 (x) had M = 189 regions. Next, all simplifi-
cation techniques available on MPT were applied to 7 (x)—
these can be accessed through the simplify () command.
The results are shown in Table 2, where the validation error
indicates the mean squared error calculated on a grid of 6561
points. As can be seen, most of the MPT techniques failed in
simplifying 7 (x) and essentially preserved the original num-
ber of regions. The ‘fitting” approach however drastically re-
duced the number of regions with a reasonably low validation
error.
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TABLE 2. Additional Complexity Reduction Results for an Optimal Control
Law =(x) With 189 Regions

MPT method Num. regions  Validation error
‘orm’ [37] 182 < 10730
‘clipping” [38] 187 6.3110~8
‘greedy’ 183 < 10730
‘separation’ [39] 187 < 10730
“fitting” [40] 5 3.7110~4

PWA-NN size Num. regions  Validation error
n.=1 2 1.301073
n. =2 2 2.9010~%
n:=3 5 1.7510~%

We then collected D = 5000 samples from the MPC con-
troller and trained several PWA-NNs with increasing size. For
every size, the training process was reinitialized only 10 times
and the best results are reported in Table 2. As n, was in-
creased, the resulting number of regions also increased. With
n; = 3, this extra flexibility was already enough to reduce the
validation error to less than half of the ‘fitting’ method error
with exactly the same number of regions.
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