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Abstract
Artificial intelligence has been an ultimate design goal since the inception of computers decades
ago. Among the many attempts towards general artificial intelligence, modern machine learning
successfully tackles many complex problems thanks to the progress in deep learning, and in
particular in convolutional neural networks (CNN). To design a CNN for a specific task, one
common approach consists of adapting the heuristics from the pre-deep-learning era to the CNN
domain. In the first part of this thesis, we introduce two methods that follow this approach: i) We
build a covariance descriptor, i.e., a local descriptor that is suitable for texture recognition, to
replace the first-order fully connected layers in an ordinary CNN, showing that such a descriptor
yields state-of-the-art performance on many fine-grained image classification tasks with orders of
magnitude fewer feature dimensions; ii) we develop a light-weight recurrent U-Net for image
semantic segmentation, inspired by the biological eye saccadic movements, that yields real-time
predictions on devices with limited computational resources.
As most methods pre-dating automatic machine learning (AutoML), the two above-mentioned
CNNs were human-designed. In the past few years, however, neural architecture search (NAS),
which aims to facilitate the design of deep networks for new tasks, has drawn an increasing
attention. In this context, the weight-sharing approach, which consists of utilizing a super-net to
encompass all possible architectures within a search space, has become a de facto standard in
NAS because it enables the search to be done on commodity hardware. In the second part of this
thesis, we then provide an in-depth study of recent weight-sharing NAS algorithms. First, we
discover a phenomenon in the weight-sharing NAS training pipeline, which we dub multi-model
forgetting, that negatively impacts the super-net quality, and propose a statistically motivated
approach to address it. Subsequently, we find that (i) on average, many popular weight-sharing
NAS algorithms perform similarly to a random architecture sampling policy; (ii) the widely-
adopted weight sharing strategy degrades the ranking of the NAS candidates to the point of not
reflecting their true performance, thus reducing the effectiveness of the search process. We then
further decouple weight sharing from the NAS sampling policy, and isolate 14 factors that play a
key role in the success of super-net training. Finally, to improve the super-net quality, we propose
a regularization term that aims to maximize the correlation between the performance rankings of
the super-net and of the stand-alone architectures using a small set of landmark architectures.
Keywords: Convolutional neural network, AutoML, Neural architecture search, Weight-sharing,
Super-net, Image Classification, Semantic Segmentation.
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Résumé
L’intelligence artificielle a été un objectif ultime depuis la création des ordinateurs il y a des
décennies. Parmi les nombreuses tentatives d’intelligence artificielle générale, le machine learning
moderne s’attaque avec succès à de nombreux problèmes complexes grâce aux progrès de
l’apprentissage profond, et en particulier dans les réseaux de neurones convolutifs (CNN). Pour
concevoir un CNN pour une tâche spécifique, une approche courante consiste à adapter les
heuristiques de l’ère pré-deep learning au domaine des CNN. Dans la première partie de cette
thèse, nous introduisons deux méthodes qui suivent cette approche : i) Nous construisons un
descripteur sour forme de covariance, c’est-à-dire un descripteur local adapté à la reconnaissance
de texture, pour remplacer les couches linéaires de premier ordre dans un CNN ordinaire, montrant
qu’un tel descripteur donne des performances de pointe sur de nombreuses tâches de classification
“fine-grained" d’images malgré son utilisation de repésentations de bien plus petite dimension ; ii)
nous développons un U-Net récurrent léger pour la segmentation sémantique d’image, inspiré
des mouvements saccadiques de l’oeil, qui produit des prédictions en temps réel sur des appareils
aux ressources de calcul limitées.
Comme la plupart des méthodes antérieures au machine learning automatique (AutoML), les deux
CNN mentionnés ci-dessus ont été conçus manuellement. Cependant, ces dernières années, la
recherche d’architecture neuronale (NAS), qui vise à faciliter la conception de réseaux profonds
pour de nouvelles tâches, a attiré une attention croissante. Dans ce contexte, l’approche de partage
de poids, qui consiste à utiliser un super-net pour englober toutes les architectures possibles dans
un espace de recherche, est devenue un standard de facto dans le NAS car elle permet de faire
la recherche sur du matériel de base. Dans la deuxième partie de cette thèse, nous proposons
une étude approfondie des récents algorithmes de NAS avec partage de poids. Tout d’abord,
nous découvrons un phénomène dans le pipeline d’entraînement de NAS avec partage de poids,
que nous appelons l’oubli multimodèle, qui a un impact négatif sur la qualité du super-net, et
proposons une approche statistiquement motivée pour y remédier. Par la suite, nous constatons que
(i) en moyenne, de nombreux algorithmes de NAS populaires fonctionnent de manière similaire á
un échantillonnage d’architecture aléatoire ; (ii) la stratégie de partage de poids largement adoptée
dégrade le classement des candidats NAS au point de ne pas refléter leur véritable performance,
réduisant ainsi l’efficacité du processus de recherche. Nous découplons ensuite davantage le
partage de poids de la stratégie d’échantillonnage de NAS et isolons 14 facteurs qui jouent un
rôle clé dans le succès de l’entraînement d’un super-net. Enfin, pour améliorer la qualité du
super-net, nous proposons un terme de régularisation qui vise à maximiser la corrélation entre
les classements de performance du super-net et des architectures autonomes en utilisant un petit
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Résumé

ensemble d’architectures de référence.
Keywords : Réseau de neurones convolutifs, AutoML, recherche d’architecture neuronale,
partage de poids, Super-net, classification d’images, segmentation sémantique.
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3.1 Search space. We present an example of cell-based graphical search space that
is widely used in many previous works (Zoph & Le, 2017a; Pham et al., 2018b)
when NAS is initially proposed. Here, we search for a ‘cell’ that composes of
multiple basic operations, e.g. convolutional operations or pooling operations.
We then formulate the network by repeating the searched cell. In (a) , each node
represents the searchable operation, and each edge represents the data flow. (b)
If we select the red edge in (a), we can remove the unused nodes and extract one
cell architecture, which mimics the ResNet cell in He et al. (2015). . . . . . . . 50

3.2 Search space illustration. Here, we show three examples to map a cell-based
structure to a final neural architecture. (a) The simplest architecture is search for
one cell architecture, and then repeatedly stacking the same cell to construct the
architecture. This approach is commonly seen in RNN construction. (b) Zoph
& Le (2017a) proposed a simple variation that searches for two different cells,
normal cell that do not reduce the feature dimension, while the reduced cell will
always reduce the size by half. (c) represents the most general approach that each
cell can be different than others. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Reinforce learning based NAS (taken from Zoph & Le (2017a)). Child network
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3.4 Weight sharing example. (a) The search space contains four nodes, where each
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super-net can be easily constructed as is. (b) Two architectures can easily inherit
the weights from the super-net, and thus shares the parameters during training
and evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Comparison of full NAS approach and weight sharing one. (a) we presents
the full NAS approach, where each sampled architecture needs to be trained until
convergence to obtain the metrics in order to update the policy. (b) depicts the
weight sharing approach, where it contains a super-net that encompass all the
parameters to initialize any child network within the search space. Each time we
sample a new architecture, we inherit the parameters from the super-net and only
trains for n iterations. The parameters update is regarding the super-net after the
training is done. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Multimodel forgetting. (Left) Two models to be trained (A, B), where A’s
parameters are in green and B’s in purple, and B shares some parameters with
A (indicated in green during phase 2). We first train A to convergence and then
train B. (Right) Accuracy of model A as the training of B progresses. The
different colors correspond to different numbers of shared layers. The accuracy
of A decreases dramatically, especially when more layers are shared, and we
refer to the drop (the red arrow) as multi-model forgetting. This experiment was
performed on MNIST (LeCun & Cortes, 2010). . . . . . . . . . . . . . . . . . . 60
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4.2 Comparison between EWC and WPL. The ellipses in each subplot represent
parameter regions corresponding to low error. (Top left) Both methods start
with a single model, with parameters θA = {θs ,θ1}, trained on a single dataset D1.
(Bottom left) EWC regularizes all parameters based on p(θA|D1) to train the
same initial model on a new dataset D2. (Top right) By contrast, WPL makes
use of the initial dataset D1 and regularizes only the shared parameters θs based
on both p(θA|D1) and v>Ωv , while the parameters θ2 can vary freely. . . . . . 66

4.3 From strict to loose convergence. We conduct experiments on MNIST with
models A and B with shared parameters, and report the accuracy of Model A
before training Model B (baseline, green) and the accuracy of Models A and B
while training Model B with (orange) or without (blue) WPL. In (a) we show
the results for strict convergence: A is initially trained to convergence. We then
relax this assumption and train A to around 55% (b), 43% (c), and 38% (d) of its
optimal accuracy. We see that WPL is highly effective when A is trained to at
least 40% of optimality; below, the Fisher information becomes too inaccurate
to provide reliable importance weights. Thus WPL helps to reduce multi-model
forgetting, even when the weights are not optimal. WPL reduced forgetting by
up to 99.99% for (a) and (b), and by up to 2% for (c). . . . . . . . . . . . . . . . 67

4.4 Error difference during neural architecture search. For each architecture, we
compute the RNN error differences er r2−er r1, where er r1 is the error right after
training this architecture and er r2 the error after all architectures are trained in the
current epoch. We plot (a) the mean difference over all sampled models, (b) the
mean difference over the 5 models with lowest er r1, and (c) the max difference
over all models. The plots show that WPL reduces multi-model forgetting; the
error differences are much closer to 0. Quantitatively, the forgetting reduction
can be up to 95% for (a), 59% for (b) and 51% for (c). In (d), we plot the average
reward of the sampled architectures as a function of training iterations. Although
WPL initially leads to lower rewards, due to a large weight α in equation (4.8), by
reducing the forgetting it later allows the controller to sample better architectures,
as indicated by the higher reward in the second half. . . . . . . . . . . . . . . . 69

4.5 Comparison of different output dropout rates for NAO. We plot the mean
validation perplexity while searching for the best architecture (top) and the best
5 model’s error differences (bottom) for four different dropout rates. Note that
path dropping in NAO prevents learning shortly after model initialization with
all different dropout rates. At all the dropout rates, our WPL achieves lower error
differences, i.e., it reduces multi-model forgetting, as well as speeds up training. 71
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5.1 Evaluating NAS. Existing frameworks consist of two phases: (a) The search
phase, where a sampler is trained to convergence or a pre-defined stopping
criterion; (b) The evaluation phase that trains the best model from scratch and
evaluates it on the test data. Here, we argue that one should evaluate the search
itself. To this end, as shown in (c), we compare the best architecture found by
the NAS policy with a single uniformly randomly sampled architecture. For this
comparison to be meaningful, we repeat it with different random seeds for both
training the NAS sampler and our random search policy. We then report the mean
and standard deviations over the different seeds. . . . . . . . . . . . . . . . . . . 75
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by each node. (c) An alternatively representation is a list of vectors α of size
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only show the top 10 architectures. (c) For example, in the average scenario, the
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5.7 Rank changes while training. Each line represents the evolution of the rank of
a single architecture. The models are sorted based on their test performance after
1000 epochs, with the best-performing one at the top. The curves were averaged
over 10 runs. They correspond to the experiment in Section 4.2. The vertical
dashed lines indicate the epoch number where random sampling was performed,
either by the random policy in Liu et al. (2019b), or by ours. . . . . . . . . . . . 87
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6.7 Comparing sparse Kendall-Tau and final search accuracy. Here, we provide
a toy example to illustrate why one cannot rely on the final search accuracy to
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7.1 Landmark regularization. Traditional super-net training leads to poor correla-
tion between relative stand-alone performance and super-net performance (top).
We sample landmark architectures and use their relative performance to guide
training towards an improved ranking and show that this improves the search
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7.8 Soft One-hot encoding results. (Left) Validation accuracy during super-net
training for one-hot encoding and our proposed soft one-hot with different D.
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4.1 Results of the best models found. We take the best model obtained during
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et al. (2018a) obtained after extensive hyper-parameter search, while ENAS
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Introduction

Artificial intelligence has been one of the goals of the Computer Science community since the
inception of computers. A popular approach consists of treating the computer like a digital brain,
which handles input data, solves problems and draws conclusions as a human being. Similarly to
us, computers should have the capability to understand the surrounding world captured in digital
formats, such as images and audio signals. In particular, in this thesis, we focus on the process
of tackling image-based problems, commonly referred to as visual recognition, which includes
image classification, object detection, and semantic segmentation.

As illustrated in Figure 1, image classification aims to identify the object category depicted in
one input image. In essence, this is achieved by constructing a feature extractor Φ that takes
the image I as input and outputs a feature representation h, which is usually a tensor or stacked
matrices. These features are then passed to a classification algorithm g that outputs a class label c.
With digital cameras, the image is usually treated as a tensor in three dimension, one for the color
channels, one for the height and one for the width. However, using the raw image as a feature is
typically ineffective, because images differ widely from each other in terms of raw distance. As
such, an important focus of visual recognition has been to finding an effective mapping Φ for the
task of interest.

In this thesis, we study several approaches to extracting effective feature representations for
different visual recognition problems via deep neural networks. Our work ranges from manually
designing deep networks by drawing inspiration from traditional, handcrafted feature extraction

(a) Human perceptible image (b) Computer perceptible image (c) Image classification pipeline
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(a) Sliding window to select the region

Image patches

(b) Predicting the patches
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(c) Output of the algorithm

Sliding the detectors with strides

Figure 2: Pedestrian detection pipeline. (a) The sliding window will crop the original input
image into various patches, and translate of detection into binary image classification problem.
(b) As shown earlier, the algorithm need to first translate the image into a feature format, then
classify the patches. (c) The output of the algorithm is a concatenation of positive patches.

that has been the common approach in computer vision for decades, to automatically learning the
architecture of the deep network. To illustrate this, in this chapter, we first introduce a traditional
approach as an example to demonstrate how to solve the task of pedestrian recognition. We
then present the basic ideas behind neural networks, deep learning, and the design process of a
neural network. Finally, we introduce the concept of automatic machine learning, which aims to
automatically design an effective neural network for the task at hand.

Handcrafted Local Descriptors

Detecting pedestrians is a traditional computer vision task with two major challenges: i) pedestri-
ans can be small and present at a high density in an image; ii) their appearance is highly diverse
because of the articulated structure of the human body, the different poses taken and clothings
worn by people, and the diversity of the environment they evolve in. As shown in Figure 2, a
classical approach to pedestrian detection consists of sliding a window across the image, thus
transforming the detection problem into a binary classification one.

To classify each patch of the original image, referred to as detection window, one needs to define
appropriate Φ, g functions. A widely adopted approach consists of representing the image with
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Image patch 8-dimensional vector Covariance matrix 
as descriptor (8x8)

(a) Mapping the image patch into a covariance descriptor 

(b) Cascaded classification algorithm of one detection window

Figure 3: Pedestrian detection algorithm (Tuzel et al., 2007). (a) It shows a sketch how to map
a input image patch into a covariance matrix as feature. (b) A cascaded classification algorithm g
of one detection window. At each iteration, it randomly sample a few pre-defined patches of the
input image crop (in red box) and compute the covariance descriptor. It then input the descriptors
to a well-known Logit-Boost classifier (Friedman et al., 2000). If the majority of patches are
predicted as pedestrian, it classify the window as pedestrian.
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first order statistics, such as a histogram of features, typically related to image gradients along
the x-y direction. One famous example is the Scale Invariant Feature Transform (Lowe, 2004),
which computes the orientation histogram of keypoints across the entire image. Leveraging the
observation that covariance-based representations have proven to be effective for texture recogni-
tion and that detecting body parts and texture bear similarities, Tuzel et al. (2007) introduced a
second-order detector to replace the previous ones based on first-order representations. As shown
in Figure 3, such a detector first extends the 1-dimensional greyscale image, I ∈R(1,H ,W ) to an
8-dimensional representation R ∈R(8,H ,W ), including the pixel location, first and second order
derivatives of the intensity along the x and y axes. It then merges the height and width dimension
to compute an 8×8 covariance matrix as representation of this image patch. By combining such
representations with the well-known LogitBoost (Friedman et al., 2000) classification algorithm,
Tuzel et al. (2007) formulate a cascaded weak classifier that identifies if a detection window
contains a pedestrian. This method achieved the state-of-the-art pedestrian detection performance
before the deep learning era.

Handcrafted descriptors such as the one discussed above have been the de-facto standard in
computer vision until the emergence of deep learning. While they have many advantages, they
suffer from one major drawback: the difficulty to generalize to a new task, even though it is
highly similar to the one they were designed for. In other words, generalizing to a similar task is
virtually as complex as designing a new descriptor. For example, the covariance-based method
discussed above works well when the image is taken at human height, but may fail completely
for images take from a drone. Deep learning has therefore emerged as an alternative, aiming to
learn a general feature descriptor for visual recognition from training data.

Deep Learning - Convolutional Neural Networks

Artificial neural networks have drawn drastic attention throughout the entire computer science
history. One potential reason for this overwhelming hope is the elegant universal approximation
theory. Pinkus (1999) proves that the multilayer feedforward perceptron (MLP), a common
artificial neural network, has the capability to be a universal approximator for any continuous
functions f .

In Figure 4, we show a simple example of MLP. It first serializes the image tensor into a 1-
dimensional vector x. Each layer consists of two sets of parameters, W and b, that can be updated
by a gradient-based algorithm, and outputs σ(W T x +b), where σ is the activation function.
One can leverage the backward propagation algorithm to compute the gradients to update the
parameters. To effectively handle an image as input, LeCun et al. (1989) proposed the first
convolutional neural network, LeNet, to classify handwritten digits. As shown in Figure 5 (a),
instead of applying a weight matrix to the entire image, the convolutional operation relies on a
small kernel matrix that is convolved with the image in a sliding window manner, so that local in
formation can be effectively preserved.
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Figure 4: Example of two layer multi-layer perception (a) Each of the layer consists of mapping
f (x) =σ(W T x +b), where W,b are the parameters that can be updated, and si g ma is usually
called the activation function to introduce non-linearity of MLP. (b) shows the backprop algorithm
to compute gradients of each parameter, to perform gradient based algorithms. Note that each
layer only need the output of previous layers. These two steps essentially capture the fundamental
operation of the modern deep networks.

However, due to the limitation of computer resources, the power of neural networks was not fully
revealed until AlexNet was proposed in 2012 (Krizhevsky et al., 2012). With the help of GPU
for parallel computing, AlexNet achieves a top-5 classification error of 15.3% on the large scale
ImageNet benchmark, containing 1000 object classes. This was more than 10.8 percentage points
lower than its SVM competitor. Since then, CNNs have spread to virtually all computer vision
problems.

Automatic Machine Learning - Neural Architecture Search

Considering that the development of deep learning led to improved generalization ability, the
research community thus wondered if the network design task could further be automated. This
resulted in the problem of neural architecture search, introduced by Zoph & Le (2017a), who
proposed to construct a search space containing a variety of fundamental network elements, and
to deploy a reinforcement learning agent to search for a promising architecture within this space.
Since this pioneering work, NAS has received increasing attention, particularly because it has the
potential to truly automate the feature extraction process, thus constituting a solid step towards
real artificial intelligence.

However, the time complexity of the search remains impractical. Specifically, in the original
paper, searching for a good model on CIFAR-10, which only contains 50,000 training images,
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(a) 2D convolution to simplify the MLP for image-based inputs 

(b) Modern human crafted convolutional neural networks

AlexNet VGG-16 ResNet-50
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Conv
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Figure 5: Convolutional neural networks. (a) (Goodfellow et al., 2016b) Unlike the previous
multi-layer perceptron, which serializes the entire image into a vector and apply a weight matrix
W , 2D convolution is an efficient replacement that consists a small kernel matrix (size usually
smaller than 5 in most cases), that applies to the entire image in a sliding window manner. (b)
It shows the sketch of modern handcrafted CNN which won the recent ImageNet challenge in
the past few years, from the five layers AlexNet (Krizhevsky et al., 2012) to a deep 50 layers
ResNet-50 (He et al., 2015). Nowadays, CNN based the ImageNet classifier achieves the top-1
accuracy over 78%, that surpass the human perception level by a significant margin.
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took around 4000 GPU days. Pham et al. (2018b) then proposed a weight sharing regime that
could effectively reduce the search cost by sharing the weights of all architectures, claiming
similar accuracy as the original work while only requiring 4 GPU days. This marked a new
era in automatic machine learning. However, as will be shown in the second part of this thesis,
weight-sharing NAS suffers from many unsolved problems. In Chapters 4,5,6,7, we will present
a systematic analysis of weight sharing NAS, and two solutions to improve its weaknesses.

Thesis Organization

In this deep learning regime, the first part of this thesis tackles two such problems. In Chapter 1,
we merged the previous covariance-based descriptors into the deep learning paradigm in an
efficient manner, which drastically reduce the computational cost by order of magnitude com-
paring to the previous methods. In Chapter 2, we introduce a novel neural architecture targeting
resource-constrained semantic segmentation. While, as will be discussed in Chapters 1, 2, the
resulting methods have proven to be highly effective, designing neural networks for different tasks
remains a challenging problem. In particular, achieving high performance and accuracy requires
tedious architecture modifications and hyper-parameter tuning, both of which are tremendously
time-consuming, and importantly, require previous experience.

In the second part of this thesis, we broadly focus on the topic of neural architecture search. In
Chapter 4, we discover a novel phenomenon, multi-model forgetting, which negatively impact
the training of shared networks under current NAS regime, and propose a statistically-justified
solution to improve the performance. However, even we overcomes the multi-model forgetting in
WS-NAS, the notorious reproducibility issue remains unsolved. In Chapter 5, we, for the first
time with Li & Talwalkar (2019), points out the WS-NAS performance cannot surpass the basic
random search algorithm. Furthermore, we reveal an hidden assumption of using weight sharing
is violated in reality and causes such counter intuitive state. In Chapter 6, we further isolate
fourteen factors of the super-net, that are agnostic to a specific search algorithm, and shows that
tuning these can significantly improve the random search performance. In Chapter 7, we propose
a novel landmark regularization that leverage the ground-truth ranking information of a small
subset of landmark architectures, that can alleviate the ranking disorder issue of weight sharing
NAS algorithms.

In Chapter 8, we will provide a conclusion of this thesis, and discuss the potential research
directions in the future.
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Part IHuman Designed Convolutional
Neural Networks

In this part, we present two novel convolutional neural network archi-
tectures that tackle different computer vision problems.
First, in Chapter 1, we incorporate the covariance-based representa-
tion discussed in the introduction into a CNN. Such covariance-based
representations, a.k.a. second-order pooling, or bilinear pooling, have
proven effective for deep learning based visual recognition. However,
the resulting second-order networks yield a final representation that
is orders of magnitude larger than that of standard, first-order ones,
making them memory-intensive and cumbersome to deploy. We intro-
duce a general, parametric compression strategy that produces more
compact representations than existing compression techniques, yet
outperform both compressed and uncompressed second-order models.
Our approach is motivated by a statistical analysis of the network’s
activations, relying on operations that lead to a Gaussian-distributed
final representation, as inherently used by first-order deep networks.
Second, in Chapter 2, we observe that the state-of-the-art segmentation
methods rely on very deep networks and are not always easy to train
and tend to be relatively slow to run on standard GPUs. We there-
fore introduce a novel recurrent U-Net architecture that preserves the
compactness of the original U-Net Ronneberger et al. (2015), while sub-
stantially increasing its performance to the point where it outperforms
the baseline methods on several benchmarks.
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1 Statistically-Motivated Second-Order
Pooling

1.1 Introduction

As discussed in the Introduction, visual recognition is one of the fundamental goals of com-
puter vision. Over the years, second-order representations, i.e., region covariance matrices
as descriptors, have proven more effective than their first-order counterparts (Arandjelovic &
Zisserman, 2013; Dalal & Triggs, 2005; Lazebnik et al., 2006; Perronnin et al., 2010) for many
tasks, such as pedestrian detection (Tuzel et al., 2007), material recognition (Cimpoi et al., 2014)
and semantic segmentation (Carreira et al., 2012). More recently, convolutional neural net-
works (CNNs) have achieved unprecedented performance in a wide range of image classification
problems (Krizhevsky et al., 2012; He et al., 2016; Huang et al., 2017). Inspired by the past
developments in handcrafted features, several works have proposed to replace the fully-connected
layers with second-order pooling strategies, essentially utilizing covariance descriptors within
CNNs (Lin et al., 2015; Ionescu et al., 2015; Li et al., 2017; Lin & Maji, 2017). This has led to
second-order or bilinear CNNs whose representation power surpasses that of standard, first-order
ones.

One drawback of these second-order pooling CNNs is that vectorizing the covariance descriptor
to pass it to the classification layer, as done in (Lin et al., 2015; Ionescu et al., 2015; Li et al.,
2017; Lin & Maji, 2017), yields a vector representation that is orders of magnitude larger than
that of first-order CNNs, thus making these networks memory-intensive and subject to overfitting.
While compression strategies have been proposed (Gao et al., 2016; Kong & Fowlkes, 2017), they
are either nonparametric (Gao et al., 2016), thus limiting the representation power of the network,
or designed for a specific classification formalism (Kong & Fowlkes, 2017), thus restricting their
applicability.

In this chapter, we introduce a general, parametric compression strategy for second-order CNNs.
As evidenced by our results, our strategy can produce more compact representations than (Gao
et al., 2016; Kong & Fowlkes, 2017), with as little as 10% of their parameters, yet significantly
outperforming these methods, as well as the state-of-the-art first-order (He et al., 2016; Simonyan
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Figure 1.1: Statistically-Motivated Second-Order (SMSO) pooling. Top: Our parametric
compression strategy vectorizes a covariance matrix and normalizes the resulting vector. Bottom:
Each of these operations yields a well-defined distribution of the data, thus resulting in a consistent
framework, whose final representation follows a Gaussian distribution, as state-of-the-art first-
order deep networks.

& Zisserman, 2015) and uncompressed second-order pooling strategies (Lin et al., 2015; Ionescu
et al., 2015; Li et al., 2017; Lin & Maji, 2017).

Unlike most deep learning architectures, our approach is motivated by a statistical analysis of
the network’s activations. In particular, we build upon the observation that first-order networks
inherently exploit Gaussian distributions for their feature representations. This is due to the fact
that, as discussed in (Goodfellow et al., 2016a; Ioffe & Szegedy, 2015) and explained by the
Central Limit Theorem, the outputs of linear layers, and thus of operations such as global average
pooling, follow a multivariate Gaussian distribution. The empirical success of such Gaussian
distributions of feature representations in first-order deep networks motivated us to design a
compression strategy such that the final representation also satisfies this property.

To this end, as illustrated by Figure 1.1, we exploit the fact that the covariance matrices resulting
from second-order pooling follow a Wishart distribution (Johnson et al., 2014). We then introduce
a parametric vectorization (PV) layer, which compresses the second-order information while
increasing the model capacity by relying on trainable parameters. We show that our PV layer
outputs a vector whose elements follow χ2 distributions, which motivates the use of a square-
root normalization that makes the distribution of the resulting representation converge to a
Gaussian, as verified empirically in Section 1.3.4. These operations rely on basic algebraic
transformations, and can thus be easily integrated into any deep architecture and optimized with
standard backpropagation.

We demonstrate the benefits of our statistically-motivated second-order (SMSO) pooling strategy
on standard benchmark datasets for second-order models, including the Describing Texture
Dataset (DTD) (Cimpoi et al., 2014), the Material in Context (MINC) dataset (Bell et al., 2015)
and the scene recognition MIT-Indoor dataset (Quattoni & Torralba, 2009). Our approach
consistently outperforms the state-of-the-art second-order pooling strategies, independently of
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the base network used (i.e., VGG-D (Simonyan & Zisserman, 2015) or ResNet-50 (He et al.,
2016)), as well as these base networks themselves.

1.2 Related Work

Visual recognition has a long history in computer vision. Here, we focus on the methods that,
like us, make use of representations based on second-order information to tackle this task. In
this context, the region covariance descriptors (RCDs) of (Tuzel et al., 2007) constitute the
first attempt at leveraging second-order information. Similarly, Fisher Vectors (Arandjelovic &
Zisserman, 2013) also effectively exploit second-order statistics. Following this success, several
metrics have been proposed to compare RCDs (Arsigny et al., 2006; Pennec et al., 2006; Quang
et al., 2014; Sra, 2012), and they have been used in various classification frameworks, such as
boosting (Freund & Schapire, 1997), kernel Support Vector Machines (Vapnik, 1998), sparse
coding (Cherian & Sra, 2014; Guo et al., 2010; Wang et al., 2016) and dictionary learning (Sra
& Cherian, 2011; Harandi et al., 2012; Li et al., 2013; Harandi & Salzmann, 2015). In all these
works, however, while the classifier was trained, no learning was involved in the computation of
the RCDs.

To the best of our knowledge, (Harandi et al., 2014), and its extension to the log-Euclidean
metric (Huang et al., 2015), can be thought of as the first attempts to learn RCDs. This, however,
was achieved by reducing the dimensionality of input RCDs via a single transformation, which
has limited learning capacity. In (Huang et al., 2017), the framework of (Harandi et al., 2014) was
extended to learning multiple transformations of input RCDs. Nevertheless, this approach still
relied on RCDs as input. The idea of incorporating second-order descriptors in a deep, end-to-end
learning paradigm was introduced concurrently in (Ionescu et al., 2015) and (Lin et al., 2015).
The former introduced the DeepO2P operation, consisting of computing the covariance matrix of
convolutional features. The latter proposed the slightly more general idea of bilinear pooling,
which, in principle, can exploit inner products between the features of corresponding spatial
locations from different layers in the network. In practice, however, the use of cross-layer bilinear
features does not bring a significant boost in representation power (Gao et al., 2016; Lin & Maji,
2017), and bilinear pooling is therefore typically achieved by computing the inner products of the
features within a single layer, thus becoming essentially equivalent to second-order pooling.

A key to the success of second-order pooling is the normalization, or transformation, of the
second-order representation. In Ionescu et al. (2015), the matrix logarithm was employed,
motivated by the fact that covariance matrices lie on a Riemannian manifold, and that this
operation maps a matrix to its tangent space, thus producing a Euclidean representation. By
contrast, Lin et al. (2015) was rather inspired by previous normalization strategies for handcrafted
features (Arandjelovic & Zisserman, 2013; Perronnin et al., 2010), and proposed to perform an
element-wise square-root and `2 normalization after vectorization of the matrix representation.
More recently, (Li et al., 2017; Lin & Maji, 2017) introduced a matrix square-root normalization
strategy that was shown to outperform the other transformation techniques.
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Chapter 1. Statistically-Motivated Second-Order Pooling

All the above-mentioned methods simply vectorize the second-order representation, i.e., co-
variance matrix. As such, they produce a final representation whose size scales quadratically
with the number of channels in the last convolutional feature map, thus being typically orders
of magnitude larger than the final representation of first-order CNNs. To reduce the resulting
memory cost and parameter explosion, several approaches have been proposed to compress
second-order representations while preserving their discriminative power. The first attempt at
compression was achieved by (Gao et al., 2016), which introduced two strategies, based on the
idea of random projection, to map the covariance matrices to vectors. These projections, however,
were not learned, thus not increasing the capacity of the network and producing at best the same
accuracy as the bilinear CNN of (Lin et al., 2015). In (Kong & Fowlkes, 2017), a parametric
strategy was employed to reduce the dimensionality of the bilinear features. While effective, this
strategy was specifically designed to be incorporated in a relatively complex bilinear Support
Vector Machine formalism.

By contrast, here, we introduce a parametric compression approach that can be incorporated into
any standard deep learning framework. Furthermore, our strategy is statistically motivated so
as to yield a final representation whose distribution is of the same type as that inherently used
by first-order deep networks. As evidenced by our experiments, our method can produce more
compact representations than existing compression techniques, yet outperforms the state-of-the-
art first-order and second-order models.

Note that higher-order information has also been exploited in the past (Cui et al., 2017; Koniusz
et al., 2017). While promising, we believe that developing statistically-motivated pooling
strategies for such higher-order information goes beyond the scope of this chapter.

1.3 Methodology

In this section, we first introduce our second-order pooling strategy while explaining the statistical
motivation behind it. We then provide an alternative interpretation of our approach yielding a
lower complexity, study and display the empirical distributions of our network’s representations,
and finally discuss the relation of our model to the recent second-order pooling techniques.

1.3.1 SMSO Pooling

Our goal is to design a general, parametric compression strategy for second-order deep networks.
Furthermore, inspired by the fact that first-order deep networks inherently make use of Gaussian
distributions for their feature representations, we reason about the statistical distribution of the
network’s intermediate representations so as to produce a final representation that is also Gaussian.
Note that, while we introduce our SMSO pooling strategy within a CNN formalism, it applies to
any method relying on second-order representations.

Formally, let X ∈ Rn×c be a data matrix, consisting of n sample vectors of dimension c. For
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1.3 Methodology

example, in the context of CNNs, X contains the activations of the last convolutional layer, with
n = w ×h corresponding to the spatial resolution of the corresponding feature map. Here, we
assume xi ∈Rc to follow a multivariate Gaussian distribution Nc (µ,Σ). In practice, as discussed
in (Goodfellow et al., 2016a; Ioffe & Szegedy, 2015) and explained by the Central Limit Theorem,
this can be achieved by using a linear activation after the last convolutional layer, potentially
followed by batch normalization (Ioffe & Szegedy, 2015).

Covariance Computation. Given the data matrix X, traditional second-order pooling consists
of computing a covariance matrix Y ∈Rc×c as

Y = 1

n −1

n∑
i=1

(xi −µ)(xi −µ)T = 1

n −1
X̃T X̃ , (1.1)

where X̃ denotes the mean-subtracted data matrix.

The following definition, see, e.g.,Johnson et al. (2014), determines the distribution of Y.

Definition 1. If the elements xi ∈Rc of a data matrix X ∈Rn×c follow a zero mean multivariate
Gaussian distribution xi ∼Nc (0,Σ), then the covariance matrix Y of X is said to follow a Wishart
distribution, denoted by

Y = XT X ∼Wc (Σ,n) . (1.2)

Note that, in the bilinear CNN (Lin et al., 2015), the mean is typically not subtracted from
the data. As such, the corresponding bilinear matrix follows a form of non-central Wishart
distribution (James, 1955).

Second-order Feature Compression. The standard way to use a second-order representation
is to simply vectorize it (Lin et al., 2015; Ionescu et al., 2015), potentially after some form of
normalization (Lin & Maji, 2017; Li et al., 2017). This, however, can yield very high-dimensional
vectors that are cumbersome to deal with in practice. To avoid this, motivated by Gao et al.
(2016); Kong & Fowlkes (2017), we propose to compress the second-order representation during
vectorization. Here, we introduce a simple, yet effective, compression technique that, in contrast
with (Gao et al., 2016), is parametric, and, as opposed to Kong & Fowlkes (2017), amenable to
general classifiers.

Specifically, we develop a parametric vectorization (PV) layer, which relies on trainable weights
W ∈Rc×p , with p the dimension of the resulting vector. Each dimension j of the vector z output
by this PV layer can be expressed as

z j = wT
j Yw j , (1.3)

where w j is a column of W.

The distribution of each dimension z j is defined by the following theorem.
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Chapter 1. Statistically-Motivated Second-Order Pooling

Theorem 1 (Theorem 5.6 in Johnson et al. (2014)). If Y ∈Rc×c follows a Wishart distribution
Wc (Σ,n), and w ∈Rc and w 6= 0, then

z = wT Yw

wTΣw
(1.4)

follows a χ2 distribution with degree of freedom n, i.e., z ∼χ2
n .

From this theorem, we can see that each output dimension of our PV layer follows a scaled χ2

distribution γχ2
n , where γ= wT

j Σw j , with Σ the covariance matrix of the original multivariate
Gaussian distribution.

Transformation and normalization. As shown above, each dimension of our current vector
representation follows a χ2 distribution. However, as discussed above, first-order deep networks
inherently exploit Gaussian distributions for their feature representations. To make our final
representation also satisfy this property, we rely on the following theorem.

Theorem 2 ((Wilson & Hilferty, 1931)). If z ∼χ2
n with degree freedom n, then

z ′ =p
2z (1.5)

converges to a Gaussian distribution with mean
p

2n −1 and standard deviation σ= 1 when n is
large, i.e., z ′ ∼N (

p
2n −1,1).

Following this theorem, we therefore define our normalization as the transformation

z′j =
√
αz j −

p
2n −1 , (1.6)

for each dimension j , where we set α= 2/(wT
j Σw j ) to correspond to Theorem 2, while accounting

for the factor γ arising from our parametric vectorization above. Note that other transforma-
tions, such as log(z) and (z/n)1/3, are known to also converge to Gaussian distributions as n

increases (Bartlett & Kendall, 1946; Wilson & Hilferty, 1931). We show that these operations
yield similar results to the one above in Section 1.4.4.

Note that, according to Theorem 2, the mean and variance of the resulting Gaussian distribution
are determined by the degree of freedom n, which, in our case, corresponds to the number of
samples used to compute the covariance matrix in Eq. 1.1. Such pre-determined values, however,
might limit the discriminative power of the resulting representation. To tackle this, we further
rely on trainable scale and bias parameters, yielding a final representation

z′′j =β j +γ j z′j , (1.7)

where γ j > 0,β j ∈ R. Note that this transformation is also exploited by batch normalization.
However, here, we do not need to compute the batch statistics during training, since Theorem 2
tells us that the batches follow a consistent distribution.
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Altogether, our SMSO pooling strategy, defined by the operations discussed above, yields a
p-dimensional vector. This representation can then be passed to a classifier. It can easily be
verified that the above-mentioned operations are differentiable, and the resulting deep network
can thus be trained end-to-end.

1.3.2 Alternative Computation

Here, we derive an equivalent way to perform our SMSO pooling, with a lower complexity when
p is small, as shown in the Section 1.3.3. Note, however, that our statistical reasoning is much
clearer for the derivation of Section 1.3.1 and was what motivated our approach.

To derive the alternative, we note that

1p
α

z′j =
√

wT
j Yw j (1.8)

=
√√√√wT

j

(
n∑

i=1
(xi −µ)(xi −µ)T

)
w j (1.9)

=
√

n∑
i=1

(
wT

j (xi −µ)
)(

(xi −µ)T w j
)

(1.10)

=
√

n∑
i=1

(wT
j x̃i )2 , (1.11)

where x̃i = xi −µ.

So, in essence, given X, z′ can be computed by performing a 1×1 convolution, with weights
shaped as (1,1,c, p) and without bias, followed by a global `2 pooling operation, and a scaling by
the constant

p
α. Note that `2 pooling was introduced several years ago (Sermanet et al., 2012),

but has been mostly ignored in the recent deep learning advances. By contrast, feature reduction
with 1×1 convolutions is widely utilized in first-order network designs (Szegedy et al., 2015; He
et al., 2016). In essence, this mathematically equivalent formulation shows that our second-order
compression strategy can be achieved without explicitly computing covariance matrices. Yet, our
statistical analysis based on these covariance matrices remains valid.

1.3.3 Relation to Other Methods

In this section, we discuss the connections between our method and the other recent second-order
pooling strategies in CNNs. Here, we also compare the computational complexity of different
second-order methods with that of ours.

Normalization. Bilinear pooling (BP) (Lin et al., 2015) also proposed to make use of a square-
root as normalization operation. An important difference with our approach, however, is that
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BP directly vectorizes the matrix representation Y. It is easy to see that the diagonal elements
of Y follow a χ2 distribution, e.g., by taking w in Theorem 1 to be a vector with a single value
1 and the other values 0. Therefore, after normalization, some of the dimensions of the BP
representation also follow a Gaussian distribution. However, the off-diagonal elements follow a
variance-gamma distribution, and, after square-root normalization, will not be Gaussian, thus
making the different dimensions of the final representation follow inconsistent distributions.

Ionescu et al. (2015) and Li et al. (2017) proposed that normalization was performed on the
matrix Y directly, via a matrix logarithm and a matrix power normalization, respectively. As such,
it is difficult to understand what distribution the elements of the final representation, obtained by
standard vectorization, follow.

Compression. The compact bilinear pooling (CBP) of (Gao et al., 2016) exploits a compression
scheme that has a form similar to ours in Eq. 1.3. However, the projection vectors w j are random
but fixed (Gao et al., 2016). Making them trainable, as in our PV layer, increases the capacity of
our model, and, as shown in Section 1.4, allows us to significantly outperform CBP.

Kong & Fowlkes (2017) proposed a model developed specifically for a max-margin bilinear
classifier. The parameter matrix of this classifier is approximated by a low-rank factorization,
which translates to projecting the initial features to a lower-dimensional representation. As with
our alternative formulation of Section 1.3.2, the resulting bilinear classifier can be obtained
without having to explicitly compute Y. This classifier is formulated in terms of quantities of
the form ‖UT Xi‖2

F , where U is a trainable low-rank weight matrix. In essence, this corresponds
to removing the square-root operation from Eq. 1.11 and summing over all dimensions j . By
contrast, our representation, ignoring the scale and bias of Eq. 1.7, is passed to a separate
classification layer that computes a linear combination of the different dimensions with trainable
weights, thus increasing the capacity of our model.

Complexity analysis. We compare the theoretical and empirical parameter numbers and
computational complexity of the baselines and our SMSO pooling strategy. We show that we
achieve a 90% reduction in parameter number and a speed-up of around 20% with our alternative
operations.

Parameter Analysis We now compare the computational complexity of the different state-of-
the-art second-order methods discussed in the main paper. For CBP, we focus on the Tensor
Sketch variant (CBP-TS), which has proven more effective than the Random MacLaurin one. For
LRBP, we focus on the second version (LRBP-II), which has typically a lower complexity than
LRBP-I (Kong & Fowlkes, 2017), and was the version used the main paper. The comparison of
different aspects of the methods is provided in Table 1.1.

In terms of feature dimension, BP and MPN, which vectorize the whole matrix Y, lead to the
highest values. They are followed by LRBP and CBP-TS, assuming the standard parameters
d = 8,192 for CBP-TS and m = 100 for LRBP. Our model yields the smallest feature dimension,
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Model Feature Dim. Feature Param. Classifier Param. Total Param.
VGG-D d f c [4K] 2d 2

f c +hwcd f c [478MB] K d f c [K · 16KB] [478MB]
BP c2 [262K] 0 K c2 [K MB] K c2 [23MB]
MPN c2 [262K] 0 K c2 [K MB] K c2 [23MB]
CBP-TS d[10K] 2c [4KB] K d [K · 32KB] 2c +K d [0.74MB]
LRBP-II m2 [10K] cm [200KB] K r m [K · 3KB] cm +K r m [239KB]
SMSO (ours) p [0.06K] cp [131KB] K p [K · 0.24KB] cp +K p [136KB]
SMSO (ours) p [2K] cp [4MB] K p [K · 6KB] cp +K p [4.3MB]

Table 1.1: Parameters of the state-of-the-art first and second-order methods. We compare
original VGG-D (Simonyan & Zisserman, 2015), Bilinear Pooling (BP) (Lin et al., 2015), Matrix
Power Normalization Covariance (MPN) (Li et al., 2017), Compact Bilinear Pooling with Tensor
Sketch (CBP-TS) (Gao et al., 2016), Low Rank Bilinear Pooling (LRBP) (Kong & Fowlkes,
2017) and our SMSO strategy. The complexity is computed for initial features coming from
the conv5_3 layer of VGG-D, with spatial resolution h = w = 14 for an input image of size
224×224, and with c = 512 as feature dimension. For VGG-D, d f c = 4,096 as in (Simonyan &
Zisserman, 2015). For CBP-TS, we used d = 8,192 as in (Gao et al., 2016). For LRBP, we set
m = 100 and r = 8 as the projection matrix dimension and rank, respectively. For our approach,
we used either p = 64 or p = 2,048 as the projection dimension. The number of classes K is set
to 23, corresponding to the MINC-2500 dataset. Feature dim. refers to the dimension of the final
feature representation. Feature param. and classifier param. refer to the total number of training
parameters for the pooling and classification layers, respectively. Total param. is the sum of
feature and classifier param.

whether using p = 64 or 2,048. Despite this, as evidenced by our experiments, we outperform
these baselines, which indicates the strong discriminative power of our SMSO strategy.

For the number of parameters, even though BP and MPN-COV have parameter-free normalization,
their use of vanilla vectorization results in a large number of classifier parameters, thus making
these methods parameter-intensive. By performing compression, but not training its projection,
CPB-TS significantly reduces the total number of parameters. While this comes at no loss
in accuracy over BP, it doesn’t allow this model to reach the performance of LRBP or of our
approach. By projecting the data to a much lower dimensionality, LRBP has the smallest total
number of parameters among the baselines. Note however that our model is even more compact
and significantly outperforms all the baselines.

Runtime Analysis In Table 1.2, we analyze the computational complexity and runtimes of the
different models. In terms of computational complexity, MPN is the slowest because of its use of
eigenvalue decomposition for normalization. Altogether, CBP-TS has the smallest computational
complexity, with LRBP having smaller complexity in feature computation but larger in classifier
computation. While our method has higher complexity than BP in feature computation, it has
a much lower one in classifier computation, making it overall faster than this baseline. Note
that, with our alternate formulation of Section 3.3, our feature computation reduces to O(hwcp)

because we avoid explicitly computing the covariance matrix.

We also profiled the training and inference times in milli-seconds (ms) per image of the baseline
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Model Feature comp. Classification comp. Ttr ai n Ti n f

VGG-D O(hwcn +n2) O(K n) 2.30 0.82
BP O(hwc2) O(K c2) 1.0 0.91
MPN O(hwc2 + c3) O(K c2) 47.9 42.7
CBP-TS O(hw(c +d logd)) O(K d) 1.2 1.0
LRBP-II O(hwm(c +m)) O(K r m2) 1.3 0.91
SMSO (ours) O(hwc(c +p)) O(K p) 1.2 0.68
SMSO-alt (ours) O(hwcp) O(K p) 0.87 0.58

Table 1.2: Computational complexity of the state-of-the-art first- and second-order methods.
The symbols are defined as in Table 1.1. Feature and classifier comp. refer to the complexity
of computing the features and the final class scores, respectively. Ttr ai n and Ti n f refer to the
training and inference time (ms) per image. Our alternative computation yields the fastest training
and inference speed.

(a) Input: BN feature (b) PV feature (d) VGG-D FC2 representation(c) Output: transformed PV Feature

SMSO Pooling

Figure 1.2: Histograms of SMSO intermediate feature vectors. We plot the distribution of
(a) the initial features X, (b) the features after our PV layer z, (c) the final representation z′′ and,
for comparison, (d) first-order features after the last fully-connected layer in VGG-D (Simonyan
& Zisserman, 2015). Note that, as discussed in the text, these empirical distributions match the
theoretical ones derived in Section 1.3.1, and our final representation does exploit the same type
of distribution as first-order networks.

models and of our SMSO pooling strategy with p = 2,048. For the comparison to focus on the
differences between the models, we do not include feature extraction up to, and including, the
conv5_3 layer, but rather compute the runtimes from these features to the final k-way classification
softmax layer. The results are shown in the last two columns of Table 1.2. Due to the dense
fully-connected layers of VGG-D, processing one image requires 2.3ms during training, which
is slower than most second-order models. However, the inference speed is faster than most of
them, since no gradient computation is involved anymore. Nevertheless, inference in our model
remains faster. For most second-order baselines, training time ranges from 1.0ms to 1.3ms,
whereas inference time ranges from 0.6ms to 1.0ms. MPN requires significantly higher training
(47.9ms) and inference (42.7ms) times, because it computes the matrix-logarithm via eigenvalue
decomposition. Our original SMSO pooling takes 1.2ms for training and 0.68ms for inference
on average. The alternative implementation of Section 3.3 reduces these timings to 0.87ms and
0.58ms, respectively, since it avoids explicitly computing the covariance matrix.
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1.3.4 Empirical distributions of SMSO pooling

Our SMSO pooling strategy was motivated by considering the distribution of the representation
at various stages in the network. Here, we study the empirical distributions of these features using
the MINC dataset, discussed in Section 1.4, and with a model based on VGG-D. To this end, in
Figure 1.2, we provide a visualization of the distributions after the initial batch normalization
(i.e., before computing the covariance matrix, see Section 1.4.1 for details), after our PV layer,
and after square-root transformation with trainable scaling and bias. Specifically, for the initial
features, because visualizing a Gaussian distribution in hundreds of dimensions is not feasible,
we plot the distribution along the first 2 principal components. For our representations, where
each dimension follows an independent Gaussian, we randomly select four dimensions and plot
stacked histograms. As expected from the theory, the initial features are close to Gaussian, and
the features after our PV layer therefore follow a long-tailed χ2 distribution. The final features,
after square-root normalization, scaling and bias, are much less skewed, and thus much closer
to a Gaussian distribution, thus matching the type of distribution that the final representations
of state-of-the-art deep networks follow, as shown in Figure 1.2(d). To further verify this, we
conducted a Shapiro-Wilk test on the final representation. This resulted in a p-value of 0.19 > 0.05,
which means that the Gaussian assumption is not rejected, sustaining our claim.

1.4 Experiments

Here, we first provide implementation details and introduce the baseline models. We then
compare our approach to these baselines on four standard benchmark datasets, and provide an
ablation study of our framework.

1.4.1 Implementation Details

We evaluate our method on two popular network architectures: the VGG-D network of (Simonyan
& Zisserman, 2015) (a.k.a. VGG-16) and the ResNet-50 of (He et al., 2016). For all second-order
models discussed below, i.e., ours and the baselines, we remove all the fully-connected layers and
the last max pooling layer from VGG-D, that is, we truncate the model after the ReLU activation
following conv5-3. For ResNet-50, we remove the last global average pooling layer and take
our initial features as those from the last residual block. As in Li et al. (2017), we add a 1×1

convolutional layer to project the initial features to c = 256 for all the experiments. Note that this
is a linear layer, and thus makes the resulting features satisfy our Gaussian assumption.

Following common practice (Gao et al., 2016; Kong & Fowlkes, 2017; Lin et al., 2015; Li
et al., 2017), we rely on weights pre-trained on ImageNet and use stochastic gradient descent
with an initial learning rate 10 times smaller than the one used to learn from scratch, i.e., 0.001
for VGG-D and 0.01 for ResNet-50. We then divide this weight by 10 when the validation
loss has stopped decreasing for 8 epochs. We initialize the weights of the new layers, i.e., the
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Chapter 1. Statistically-Motivated Second-Order Pooling

1×1 convolution, the PV layer and the classifier, with the strategy of (Glorot & Bengio, 2010),
i.e., random values drawn from a Gaussian distribution. We implemented our approach using
Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 2015) as backend.

1.4.2 Baseline Models

We now describe the different baseline models that we compare our approach with. Note that
the classifier is defined as a k-way softmax layer for all these models, as for ours, except for
low-rank bilinear pooling, which was specifically designed to make use of a low-rank hinge loss.

Original model: This refers to the original, first-order, models, i.e., either VGG-D or ResNet-50,
pre-trained on ImageNet and fine-tuned on the new data. Other than replacing the 1000-way
ImageNet classification layer with a k-way one, we keep the original model settings described
in (Simonyan & Zisserman, 2015) and (He et al., 2016), respectively.

Bilinear Pooling (BP) (Lin et al., 2015): This corresponds to the original, uncompressed
bilinear pooling strategy, with signed square-root and `2 normalization after vanilla vectorization.
In this case, we set c = 512, as in the original paper, as the feature dimension before computing
the second-order representation. If the original feature dimension does not match this value, i.e.,
with ResNet-50, we make use of an additional 1×1 convolutional layer. Note that we observed
that using either 512 or 256 as feature dimension made virtually no difference on the results. We
therefore used c = 512, which matches the original paper.

DeepO2P (Ionescu et al., 2015): This refers to the original, uncompressed covariance-based
model, with matrix logarithm and vanilla vectorization. Again, as in the original paper, we set
c = 512 as the feature dimension before computing the covariance matrix, by using an additional
1×1 convolutional layer when necessary.

Matrix Power Normalization (MPN) (Li et al., 2017): This model relies on a matrix square-
root operation acting on the second-order representation. Following the original paper, we set
c = 256 by making use of an additional 1×1 convolutional layer before second-order pooling.
Note that the improved bilinear pooling of (Lin & Maji, 2017) has the same structure as MPN,
and we do not report it as a separate baseline.

Compact bilinear pooling (CBP) (Gao et al., 2016): We report the results of both versions of
CBP: the Random Maclaurin (RM) one and the Tensor Sketch (TS) one. For both versions, we
set the projection dimension to d = 8,192, which was shown to achieve the same accuracy as BP,
i.e., the best accuracy reported in (Gao et al., 2016). As in the original paper, we apply the same
normalization as BP (Lin et al., 2015).

Low rank bilinear pooling (LRBP) (Kong & Fowlkes, 2017): This corresponds to the
compression method dedicated to the bilinear SVM classifier. Following Kong & Fowlkes (2017),
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Figure 1.3: Sample images from DTD, MINC-2500, MIT-Indoor and CUB.

we set the projection dimension to m = 100 and its rank to r = 8, and initialize the dimensionality
reduction layer using the SVD of the Gram matrix computed from the entire validation set.
Following the authors’ implementation, we apply a scaled square-root with factor 2×105 after
the conv5-3 ReLU, which seems to prevent the model from diverging. Furthermore, we found
that training LRBP from the weights of BP fine-tuned on each dataset also helped convergence.

1.4.3 Comparison to the Baselines

Let us now compare the results of our model with those of the baselines described in Sec-
tion 1.4.2. To this end, we make use of four diverse benchmark image classification datasets,
thus showing the versatility of our approach. These datasets are the Describing Texture Dataset
(DTD) (Cimpoi et al., 2014) for texture recognition, the challenging Material In Context (MINC-
2500) dataset (Bell et al., 2015) for large-scale material recognition in the wild, the MIT-Indoor
dataset (Quattoni & Torralba, 2009) for indoor scene understanding and the Caltech-UCSD Bird
(CUB) dataset (Wah et al., 2011) for fine-grained classification. DTD contains 47 classes for a
total of 5,640 images, mostly capturing the texture itself, with limited surrounding background.
By contrast, MINC-2500, consisting of 57,500 images of 23 classes, depicts materials in their
real-world environment, thus containing strong background information and making it more
challenging. MIT-Indoor contains 15,620 images of 67 different indoor scenes, and, with DTD,
has often been used to demonstrate the discriminative power of second-order representations.
The CUB dataset contains 11,788 images of 200 different bird species. In Figure 1.3, we provide
a few samples from each dataset. For our experiments, we make use of the standard train-test
splits released with these datasets. For DTD, MIT-Indoor and CUB, we define the input size
as 448×448 for all the experiments. For the large-scale MINC-2500 dataset, we use 224×224

images for all models to speed up training. Note that a larger input size could potentially result
in higher accuracies (Bell et al., 2015). For all datasets and all models, we use the same data
augmentation strategy as in (Lin et al., 2015; Lin & Maji, 2017).

Experiments with VGG-D. We first discuss the results obtained with the VGG-D architecture
as base model. These results are reported in Table 1.3 for all models and all datasets. In short, our
SMSO framework with PV dimension p = 2,048 outperforms all the baselines by a significant
margin on all three datasets. In particular, our accuracy is 7% to 19% higher than the original VGG-
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Model name Feature dim. # param. DTD MIT MINC CUB

VGG-D (Simonyan & Zisserman, 2015) 4,096 119.64M 60.11 64.51 73.01 66.12
BP (Lin et al., 2015) 2.6×105 3.015M 67.50 77.55 74.50 81.02
MPN (Li et al., 2017) 32,896 0.752M 68.01 76.49 76.24 84.10
DeepO2P (Ionescu et al., 2015) 2.6×105 3.015M 66.07 72.35 69.29 -

CBP-TS (Gao et al., 2016) 8,192 0.189M 67.71 76.83 73.28 84.00
CBP-RM (Gao et al., 2016) 8,192 0.189M 63.24 73.89 73.54 83.86
LRBP (Kong & Fowlkes, 2017) 100 0.068M 65.80 73.59 69.10 84.21

SMSO (Ours) 64 0.013M 68.18 75.37 74.18 82.66
SMSO (Ours) 2,048 0.057M 69.26 79.45 78.00 85.01

Table 1.3: Comparison of VGG-D based models. We report the top 1 classification accu-
racy (in %) of the original VGG-D model, uncompressed second-order models with different
normalization strategies (BP, DeepO2P, MPN), second-order compression methods (CBP-TS,
CBP-RM, LRBP), and our approach (SMSO) with different PV dimensions. Note that our
approach significantly outperforms all the baselines despite a more compact final representation
(Feature dim.) and much fewer parameters (# param is the number of trainable parameters after
the last convolutional layer).

D, with much fewer parameters, thus showing the benefits of exploiting second-order features.
MPN is the best-performing baseline, but, besides the fact that we consistently outperform it,
has a much higher computational complexity and run time, discussed in Section 1.3.3. The
second-order compression methods (CBP and LRBP) underperform the uncompressed models
on average. By contrast, even with p = 64, we outperform most baselines, with a model that
corresponds to 10% of the parameters of the most compact baseline.

In Figure 1.4, we compare the training and validation loss curves of our approach with those of
the best-performing baselines, BP and MPN, on DTD and MINC. Note that our model converges
much faster than BP and tends to be more stable than MPN, particularly on DTD. This, we
believe, is due to the fact that we rely on basic algebraic operations, instead of the eigenvalue
decomposition involved in MPN whose gradient can be difficult to compute, particularly in the
presence of small or equal eigenvalues (Ionescu et al., 2015).

During these VGG-D based experiments, we have observed that, in practice, LRBP was difficult
to train, being very sensitive to the learning rate, which we had to manually adapt throughout
training. Because of this, and the fact that LRBP yields lower accuracy than uncompressed
models, we do not include this baseline in the remaining experiments. We also exclude DeepO2P
from the next experiments, because of its consistently lower accuracy.

Experiments with ResNet-50. To further show the generality of our approach, we make use of
the more recent, very deep ResNet-50 (He et al., 2016) architecture as base network. Table 1.4
provides the results of our SMSO framework with p = 64 and p = 2,048, and of the baselines.
In essence, the conclusions remain unchanged; we outperform all the baselines for p = 2,048.
Note that, here, however, the second-order baselines typically do not even outperform the original
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DTD MINC-2500

Figure 1.4: Training and validation loss curves. We plot the training (dashed) and validation
(solid) loss values as a function of the number of training epochs for our SMSO pooling strat-
egy (orange), BP (green) and MPN (blue) on DTD (a) and MINC-2500 (b). Our models clearly
converge faster than BP, and tend to be more stable than MPN, particularly on the smaller-scale
DTD dataset.
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Figure 1.5: Influence of the PV dimension p. We plot the top 1 accuracy as a function of the
value p in logarithmic scale on MIT (left), MINC (middle) and DTD (right). Note that accuracy
is quite stable over large ranges of p values, yielding as good results as the best-performing
compression baseline (CBP-TS) with as few as p = 64 dimensions, corresponding to only 10% of
the parameters of CBP-TS.

ResNet-50, whose results are significantly higher than the VGG-D ones. By contrast, our model
is able to leverage this improvement of the base model and to further increase its accuracy by
appropriately exploiting second-order features.

1.4.4 Ablation Study

We evaluate the influence of different components of our model on our results.

Influence of the PV dimension. In our experiments, we proposed to set p = 2,048 or p = 64. We
now investigate the influence of this parameter on our results. To this end, we vary p in the range
[24,213] by steps corresponding to a factor 2. The curves for this experiment on the validation
data of the three datasets with VGG-D based models are provided in Figure 1.5. Note that our
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Model name Feature dim. # param. DTD MIT MINC CUB

ResNet-50 (He et al., 2016) 2,048 4K 71.45 76.45 79.12 74.51
BP (Lin et al., 2015) 32,896 752K 69.37 68.35 79.05 82.70
MPN (Li et al., 2017) 32,896 752K 71.10 72.12 79.83 85.43

CBP-TS (Gao et al., 2016) 8,192 189K 65.30 72.60 75.91 77.35
CBP-RM (Gao et al., 2016) 8,192 189K 62.35 67.81 74.15 -

SMSO (Ours) 64 13K 71.03 76.31 79.17 81.98
SMSO (Ours) 2,048 57K 72.51 79.68 81.33 85.77

Table 1.4: Comparison of ResNet-50 based models. We report the top 1 classification accuracy
(in %) of the original ResNet-50 model, uncompressed second-order models with different
normalization strategies (BP, MPN), second-order compression methods (CBP-TS, CBP-RM),
and our approach (SMSO). Note that, as in the VGG-D case, our model outperforms all the
baselines, including the original ResNet-50, which is not the case of most second-order baselines.
It also yields much more compact models than the second-order baselines. (# params. refers to
the same quantity as in Table 1.3.)

model is quite robust to the exact value of this parameter, with stable accuracies outperforming
the best compression baseline for each dataset over large ranges. More importantly, even with
p = 64, our model yields as good results as the best compression method, CBP-TS, with only
10% of its parameters.

Comparison of different distributions and transformations. We conduct experiments to
compare different final feature distributions on MINC-2500 with a VGG-D based model. The
results are provided in Table 1.5. Without our PV compression and without transformation
or normalization, the resulting features follow a Wishart distribution, yielding an accuracy of
75.97%, which is comparable to BP (Lin et al., 2015). Adding our PV layer p = 2,048, but not
using any transformation or normalization, yields χ2-distributed features and an accuracy similar
to the previous one. This suggests that our parametric compression is effective, since we obtain
similar accuracy with much fewer parameters. Including the square-root transformation, but
without the additional scale and bias of Eq. 1.7, increases the accuracy to 76.32%. Additionally
learning the scale and bias boosts the accuracy to 78.00%, thus showing empirically the benefits
of Gaussian-distributed features over other distributions.

In the last two columns of Table 1.5, we report the results of different transformations that bring
the χ2-distributed features to a Gaussian distribution, i.e., the cubic-root and the element-wise
logarithm. Note that these two transformations yield accuracies similar to those obtained with the
square-root. More importantly, all transformations yield higher accuracies than not using any
(76.14%), which further evidences the benefits of Gaussian-distributed features.

Effect of the 1× 1 Convolutional Layer For the baselines described in Section 1.4.1, we
followed the setup described in the respective paper to define the dimensionality of the final
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Vec. Flatten PV PV

Trans. - - Sqrt Sqrt Sqrt - Sqrt Log 3
p

Norm. - - - β γ β,γ β,γ

Dist. Wn(Σ) χ2
n N (µ,1) N (β,1) N (µ,γ2) γχ2

n +β N (β,γ2)
Acc. 75.97 75.32 76.32 77.12 76.47 76.14 78.00 77.86 77.17

Table 1.5: Comparison of different final feature distributions. We report the results of different
combinations of vectorization (vec.), transformation (trans.) and normalization (norm.) strategies,
yielding different final feature distributions. Here, µ =p

2n −1 from Theorem 2. Ultimately,
these results show that bringing the data back to a Gaussian distribution with a trainable scale
and bias yields higher accuracies.

convolutional feature representation, before computing the second-order descriptor. For example,
Bilinear Pooling (BP) (Lin et al., 2015) relies on 512D features, whereas MPN (Li et al., 2017)
makes use of 256D features, obtained after an additional 1×1 convolutional layer. Here, we
evaluate the influence of the dimensionality of these features and the importance of this additional
1×1 convolutional layer on our results and on those of the best-performing baselines, BP and
MPN. In Table 1.6, we report recognition accuracies on DTD without (w/o 1x1) and with (w
1x1) 1×1 convolutions, and in the latter case, for a final dimension of either 512 or 256. Note
that these different setups result in relatively small variations in accuracy. More importantly,
our approach still yields the overall best result, with 256D features, which, as discussed above,
corresponds to a much lower computational complexity than the best-performing baseline MPN
with 512D features.

Setup BP MPN SMSO
w/o 1x1 67.50 63.50 69.15
w 1x1(256) 67.46 68.01 69.26
w 1x1(512) 67.65 68.72 68.34

Table 1.6: Influence of the 1× 1 convolutional layer before computing the second-order
features. We compare the results of our approach with the best-performing baselines BP and
MPN without (w/o 1x1) and with (w 1x1) the use of an additional 1×1 convolutional layer. In
the latter case, we also evaluate the effect of using either 256D features, as recommended for
MPN in Li et al. (2017), or 512D ones. These experiments were conducted on DTD with VGG-D
based models. Note that the performance of all models is quite stable, with ours achieving the
overall best accuracy.

Impact of Batch Normalization.

We study the impact of using a batch normalization layer before computing the second-order
representation, which was motivated by the intuition that it reduces the variance shift of the
previous convolutional layer, and yields a more stable data distribution since our operations
depend on its statistical properties. In particular, we also investigate the impact of such a layer
on the best-performing baseline models. The results of this experiment on MINC-2500 using
VGG-D based models are provided in Table 1.7. Note that our method strongly benefits from

27



Chapter 1. Statistically-Motivated Second-Order Pooling

Setup MPN BP SMSO
w/o BN 76.24 74.50 69.76
w BN 70.04 72.63 78.00

Table 1.7: Influence of batch normalization before computing the second-order features.
These experiments were conducted on MINC-2500 with VGG-D based models. Note that, as
opposed to the baselines, our method benefits from an initial batch normalization, which makes
the data better satisfy our initial assumption of stable Gaussian distribution.

this additional layer, which is reasonable, since it helps satisfy our initial assumption, i.e., stable
Gaussian distribution across the mini-batches. By contrast, such an additional layer harms the
baselines’ accuracy. As such, our method still yields the highest accuracy on this dataset.

1.5 Conclusion

We have introduced a general and parametric compression strategy for second-order deep net-
works, motivated by a statistical analysis of the distribution of the network’s intermediate
representations. Our SMSO pooling strategy outperforms the state-of-the-art first-order and
second-order models, with higher accuracies than other compression techniques for up to 90%
parameter reduction. With a ResNet-50 base architecture, it is the only second-order model to
consistently outperform the original one. While Gaussian distributions have proven effective here
and for first-order models, there is no guarantee that they are truly optimal.
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2 Recurrent U-Net

In the context of manually-designed deep networks, we now turn our focus to another critical
computer vision task, semantic segmentation. The current state-of-the-art solutions to this
problem tend to perform well on large datasets but can only process a few frames per second on
expensive GPUs. To address this, we introduce a novel architecture, dubbed recurrent U-Net, that
recurrently process a single input image to improve the prediction, targets application domains
with limited amounts of data and achieves real-time performance on commodity hardware.

2.1 Introduction

Similarly to image classification, semantic segmentation is another critical computer vision task.
The common approach to tackling it consists of formulating the segmentation problem as a pixel
classification one. In this chapter, we continue on the topic of manually-designed deep networks
and develop a CNN dedicated to the image segmentation task, drawing inspiration from human
perception.

While recent semantic segmentation methods achieve impressive results (Chen et al., 2018a; Lin
et al., 2017; Long et al., 2015; Zhao et al., 2017), they require very deep networks and their
architectures tend to focus on high-resolution and large-scale datasets and to rely on pre-trained
backbones. For instance, state-of-the-art models, such as Deeplab (Chen et al., 2017; 2018a),
PSPnet (Zhao et al., 2017) and RefineNet (Lin et al., 2017), use a ResNet101 (He et al., 2016)
as their backbone. This results in high GPU memory usage and inference time, and makes
them less than ideal for operation in power-limited environments where real-time performance
is nevertheless required, such as when segmenting hands using the onboard resources of an
Augmented Reality headset. This has been addressed by architectures such as the ICNet (Zhao
et al., 2018) at the cost of a substantial performance drop. Perhaps even more importantly,
training very deep networks usually requires either massive amounts of training data or image
statistics close to that of ImageNet (Deng et al., 2009), which may not be appropriate in fields
such as biomedical image segmentation where the more compact U-Net architecture remains
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Figure 2.1: Speed vs accuracy. Each circle represents the performance of a model in terms
frames-per-second and mIoU accuracy on our Keyboard Hand Dataset using a Titan X (Pascal)
GPU. The radius of each circle denotes the models’ number of parameters. For our recurrent
approach, we plot these numbers after 1, 2, and 3 iterations, and we show the corresponding
segmentations in the bottom row. The performance of our approach is plotted in red and the other
acronyms are defined in Section 2.4.2. ICNet (Zhao et al., 2018) is slightly faster than us but at
the cost of a significant accuracy drop, whereas RefineNet (Lin et al., 2017) and DeepLab (Chen
et al., 2018a) are both slower and less accurate on this dataset, presumably because there are not
enough training samples to learn their many parameters.

prevalent (Ronneberger et al., 2015).

In this chapter, we argue that these state-of-the-art methods do not naturally generalize to
resource-constrained situations and introduce a novel recurrent U-Net architecture that preserves
the compactness of the original U-Net (Ronneberger et al., 2015), while substantially increasing its
performance to the point where it outperforms the current state of the art on 5 hand-segmentation
datasets, one of which is showcased in Figure 2.1, and a retina vessel segmentation one. With only
0.3 million parameters, our model is much smaller than the ResNet101-based DeepLabv3+ (Chen
et al., 2018a) and RefineNet (Lin et al., 2017), with 40 and 118 million weights. Respectively,
our model are around 15% and 50% faster in terms of inference frame per seconds on commodity
hardware. This helps explain why we can outperform state-of-the-art networks on specialized
tasks: The pre-trained ImageNet features are not necessarily the best and training sets are not
quite as large as CityScapes (Cordts et al., 2016). As a result, the large networks tend to overfit
and do not perform as well as compact models trained from scratch.
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(c) U-Net

Figure 2.2: Recurrent segmentation. (a) The simple strategy (Mosinska et al., 2018; Pinheiro &
Collobert, 2014) consists of concatenating the segmentation mask from the previous recurrence,
st−1, to the image x, and recurrently feeding this to the network. (b) For sequence segmentation,
to account for the network’s internal state, one can instead combine the CNN with a standard
recurrent unit (Valipour et al., 2017). Here, we build upon the U-Net architecture (Ronneberger
et al., 2015) (c), and propose to build a recurrent unit over several of its layers, as shown in (d).
This allows us to propagate higher-level information through the recurrence, and, in conjunction
with a recurrence on the segmentation mask, outperforms the two simpler recurrent architectures
(a) and (b).

The standard U-Net takes the image as input, processes it, and directly returns an output. By con-
trast, our recurrent architecture iteratively refines both the segmentation mask and the network’s
internal state. This mimics human perception as in the influential AutoContext paper (Tu & Bai,
2009): When we observe a scene, our eyes undergo saccadic movements, and we accumulate
knowledge about the scene and continuously refine our perception (Purves et al., 2011). To
this end we retain the overall structure of the U-Net, but build a recurrent unit over some of its
inner layers for internal state update. Note that our recurrence works on the same input image.
By contrast with the simple CNN+RNN architecture of Figure 2.2(b), often used for video or
volumetric segmentation (Valipour et al., 2017; Poudel et al., 2016; Ballas et al., 2016), this
enables the network to keep track of and to iteratively update more than just a single-layer internal
state. This gives us the flexibility to choose the portion of the internal state that we exploit for
recursion purposes and to explore variations of our scheme.

We demonstrate the benefits of our recurrent U-Net on several tasks, including hand segmentation,
retina vessel segmentation and road segmentation. Our approach consistently outperforms earlier
and simpler approaches to recursive segmentation (Mosinska et al., 2018; Poudel et al., 2016;
Valipour et al., 2017). For retina vessel segmentation, it also outperforms the state-of-the-
art method of (Maninis et al., 2016) on the DRIVE (Staal et al., 2004) dataset, and for hand
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segmentation, the state-of-the-art RefinetNet-based method of (Urooj & Borji, 2018) on several
modern benchmarks (Fathi et al., 2011; Bambach et al., 2015; Urooj & Borji, 2018). As these
publicly available hand segmentation datasets are relatively small, with at most 4.8K annotated
images, we demonstrate the scalability of our approach, along with its applicability in a keyboard
typing scenario, by introducing a larger dataset containing 12.5K annotated images. It is the one
we used to produce the results shown in Figure 2.1.

Our contribution is therefore an effective recurrent approach to semantic segmentation that can
operate in environments where the amount of training data and computational power are limited.
It does not require more memory than the standard U-Net thanks to parameter sharing and does
not require training datasets as large as other state-of-the-art networks do. It is practical for
real-time application, reaching 55 frames-per-second (fps) to segment 230×306 images on an
NVIDIA TITAN X with 12G memory. Furthermore, as shown in Figure 2.1, we can trade some
accuracy for speed by reducing the number of iterations. Finally, while we focus on resource-
constrained applications, our model can easily be made competitive on standard benchmarks such
as Cityscapes by modifying its backbone architecture. We will show that replacing the U-Net
encoder by a VGG16 backbone yields performance numbers comparable to the state of the art on
this dataset.

2.2 Related Work

Compact Semantic Segmentation Models. State-of-the-art semantic segmentation tech-
niques (Chen et al., 2018a; Lin et al., 2017; Long et al., 2015; Zhao et al., 2017) rely on very
deep networks, which makes them ill-suited in resource-constrained scenarios, such as real-time
applications and when there are only limited amounts of training data. In such cases, more
compact networks are preferable. Such networks fall under two main categories.

The first group features encoder-decoder architectures (Ronneberger et al., 2015; Poudel et al.,
2019; Badrinarayanan et al., 2015; Romera et al., 2018; Pohlen et al., 2017; Saxena & Verbeek,
2016; Fourure et al., 2017). Among those, U-Net (Ronneberger et al., 2015) has demonstrated its
effectiveness and versatility on many tasks, in particular for biomedical image analysis where it
remains a favorite. For example, a U-net like architecture was recently used to implement the
flood-filling networks of Januszewski et al. (2018) and to segment densely interwoven neurons
and neurites in teravoxel-scale 3D electron-microscopy image stacks. This work took advantage
of the immense amount of computing power that Google can muster but, even then, it is unlikely
that this could have been accomplished with much heavier architectures.

The second type involves multi-branch structures (Poudel et al., 2018; Yu et al., 2018; Zhao et al.,
2018) to fuse low-level and high-level features at different resolutions. These require careful
design to balance speed against performance. By contrast, the U-Net relies on simpler skip
connections and, thus, does not require a specific design, which has greatly contributed to its
popularity.
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2.3 Method

Recurrent Networks for Segmentation. The idea of recurrent segmentation predates the deep
learning era and was first proposed in AutoContext (Tu & Bai, 2009), and recurrent random
forest (Shotton et al., 2008). It has inspired many recent approaches, including several that rely on
deep networks. For example, Mosinska et al. (2018) proposes the segmentation mask produced
by a modified U-Net was passed back as input to it along with the original image, which resulted
in a progressive refinement of the segmentation mask. Figure 2.2(a) illustrates this approach. A
similar one was followed in the earlier work of Pinheiro & Collobert (2014), where the resolution
of the input image patch varied across the iterations of the refinement process.

Instead of including the entire network in the recursive procedure, a standard recurrent unit can
be added at the output of the segmentation network, as shown in Figure 2.2(b). This was done
in Romera-Paredes & Torr (2016) to iteratively produce individual segmentation masks for scene
objects. In principle, such a convolutional recurrent unit (Ballas et al., 2016; Poudel et al., 2016;
Valipour et al., 2017) could also be applied for iterative segmentation of a single object and we
will evaluate this approach in our experiments. We depart from this strategy by introducing gated
recurrent units that encompass several U-Net layers. Furthermore, we leverage the previous
segmentation results as input, not just the same image at every iteration.

Iterative refinement has also been used for pose estimation (Ramakrishna et al., 2014; Wei et al.,
2016; Newell et al., 2016). The resulting methods all involve consecutive modules to refine the
predictions with a loss function evaluated on the output of each module, which makes them
similar in spirit to the model depicted by Figure 2.2(a). Unlike in our approach, these methods
do not share the parameters across the consecutive modules, thus requiring more parameters
and moving away from our aim to obtain a compact network. Furthermore, they do not involve
RNN-inspired memory units to track the internal hidden state.

2.3 Method

We now introduce our novel recurrent semantic segmentation architecture. To this end, we first
discuss the overall structure of our framework, and then provide the details of the recurrent unit it
relies on. Finally, we briefly discuss the training strategy for our approach.

2.3.1 Recurrent U-Net

We rely on the U-Net architecture (Ronneberger et al., 2015) as backbone to our approach.
As shown in Figure 2.3(a), the U-Net has an encoder-decoder structure, with skip connections
between the corresponding encoding and decoding layers that allow the network to retain low-level
features for the final prediction. Our goal being to operate in resource-constrained environments,
we want to keep the model relatively simple. We therefore rely on a U-Net design where the first
convolutional unit has 8 feature channels, and, following the original U-Net strategy, the channel
number doubles after every pooling layer in the encoder. The decoder relies on transposed
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(a) Options Sketch
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Figure 2.3: Recurrent UNet (R-UNet). (a) As illustrated in Fig. 2.2(d), our model incorporates
several encoding and decoding layers in a recurrent unit. The choice of which layers to englobe
is defined by the parameter `. (b) For `= 3, the recurrence occurs after the third pooling layer
in the U-Net encoder. The output of the recurrent unit is then passed through three decoding
up-convolution blocks. We design two different recurrent units, the Dual-gated Recurrent Unit
(DRU) (c) and the Single-gated Recurrent Unit (SRU) (d). They differ by the fact that the first
one has an additional reset gate acting on its input. See the main text for more detail.

convolutions to increase the model’s representation power compared to bilinear interpolation. We
use group-normalization (Wu & He, 2018) in all convolutional layers since we usually rely on
very small batch sizes.

Our contributions are to integrate recursions on 1) the predicted segmentation mask s and 2)
multiple internal states of the network. which is inspired from the hidden state of recurrent neural
network. In short, our recurrent U-Net group the mask s from previous time-step, with the input
image as an input to the next time-step. The former can be achieved by simply concatenating, at
each recurrent iteration t , the previous segmentation mask st−1 to the input image, and passing
the resulting concatenated tensor through the network. For the latter, we propose to replace a
subset of the encoding and decoding layers of the U-Net with a recurrent unit. Below, we first
formalize this unit, and then discuss two variants of its internal mechanism.

To formalize our recurrent unit, let us consider the process at iteration t of the recurrence. At
this point, the network takes as input an image x concatenated with the previously-predicted
segmentation mask st−1. Let us then denote by e`t the activations of the `th encoding layer, and
by d`

t those of the corresponding decoding layer. Our recurrent unit takes as input e`t , together
with its own previous hidden tensor ht−1, and outputs the corresponding activations d`

t , along
with the new hidden tensor ht . Note that, to mimic the computation of the U-Net, we use multiple
encoding and decoding layers within the recurrent unit.

In practice, one can choose the specific level ` at which the recurrent unit kicks in. In Fig-
ure 2.3 (b), we illustrate the whole process for `= 3. When `= 0, the entire U-Net is included in
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the recurrent unit, which then takes the concatenation of the segmentation mask and the image
as input. Note that, for `= 4, the recurrent unit still contains several layers because the central
portion of the U-Net in Figure 2.3(a) corresponds to a convolutional block. In our experiments,
we evaluate two different structures for the recurrent units, which we discuss below.

2.3.2 Dual-gated Recurrent Unit

As a first recurrent architecture, we draw inspiration from the Gated Recurrent Unit (GRU) (Cho
et al., 2014). As noted above, however, our recurrent unit replaces multiple encoding and decoding
layers of the segmentation network. We therefore modify the equations accordingly, but preserve
the underlying motivation of GRUs. Our architecture is shown in Figure 2.3(c).

Specifically, at iteration t , given the activations e`t and the previous hidden state ht−1, we aim to
produce a candidate update ĥ for the hidden state and combine it with the previous one according
to how reliable the different elements of this previous hidden state tensor are. To determine this
reliability, we use an update gate defined by a tensor

z =σ( fz (e`t )) , (2.1)

where fz (·) denotes an encoder-decoder network with the same architecture as the portion of the
U-Net that we replace with our recurrent unit.

Similarly, we obtain the candidate update as

ĥ = tanh( fh(r ¯e`t )) , (2.2)

where fh(·) is a network with the same architecture as fz (·), but a separate set of parameters, ¯
denotes the element-wise product, and r is a reset tensor allowing us to mask parts of the input
used to compute ĥ. It is computed as

r =σ( fr (e`t )) , (2.3)

where fr (·) is again a network with the same encoder-decoder architecture as before.

Given these different tensors, the new hidden state is computed as

ht = z ¯ht−1 + (1− z)¯ ĥ . (2.4)

Finally, we predict the output of the recurrent unit, which corresponds to the activations of the
`th decoding layer as

d`
t = fs(ht ) , (2.5)

where, as shown in Figure 2.3(c), fs(·) is a simple convolutional block. Since it relies on two
gates, r and z, we dub this recurrent architecture Dual-gated Recurrent Unit (DRU). One main
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difference with GRUs is the fact that we use multi-layer encoder-decoder networks in the inner
operations instead of simple linear layers. Furthermore, in contrast to GRUs, we do not directly
make use of the hidden state ht−1 in these inner computations. This allows us not to have to
increase the number of channels in the encoding and decoding layers compared to the original
U-Net. Nevertheless, the hidden state is indirectly employed, since, via the recursion, e`t depends
on d`

t−1, which is computed from ht−1.

2.3.3 Single-Gated Recurrent Unit

As evidenced by our experiments, the DRU described above is effective at iteratively refining a
segmentation. However, it suffers from the drawback that it incorporates three encoder-decoder
networks, which may become memory-intensive depending on the choice of `. To decrease this
cost, we therefore introduce a simplified recurrent unit, which relies on a single gate, thus dubbed
Single-gated Recurrent Unit (SRU).

Specifically, as illustrated in Figure 2.3(d), our SRU has a structure similar to that of the DRU,
but without the reset tensor r . As such, the equations remain mostly the same as above, with the
exception of the candidate hidden state, which we now express as

ĥ = tanh( fh(e`t )) . (2.6)

This simple modification allows us to remove one of the encoder-decoder networks from the
recurrent unit, which, as shown by our results, comes at very little loss in segmentation accuracy.

2.3.4 Training

To train our recurrent U-Net, we use the cross-entropy loss. More specifically, we introduce
supervision at each iteration of the recurrence. To this end, we write our overall loss as

L =
N∑

t=1
wt Lt , (2.7)

where N represents the number of recursions, set to 3 in this paper, and Lt denotes the cross-
entropy loss at iteration t , which is weighted by wt .

wt =αN−t . (2.8)

The weight, by setting α≤ 1, increases monotonically with the iterations. In our experiments,
we either set α= 1, so that all iterations have equal importance, or α= 0.4, thus encoding the
intuition that we seek to put more emphasis on the final prediction.
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Figure 2.4: Keyboard Hand (KBH) dataset. Sample images featuring diverse environmental
and lighting conditions, along with associated ground-truth segmentations.

2.4 Experiments

We compare the two versions of our Recurrent U-Net against the state of the art on several
tasks including hand segmentation, retina vessel segmentation and road delineation. We further
demonstrate that the core idea behind our idea also applies to non-resource-constrained scenarios,
such as Cityscapes, by increasing the size of the U-Net encoder.

2.4.1 Datasets

Hands. We report the performance of our approach on standard hand-segmentation benchmarks,
such as GTEA (Fathi et al., 2011), EYTH (Urooj & Borji, 2018), EgoHand (Bambach et al.,
2015), and HOF (Urooj & Borji, 2018). These, however, are relatively small, with at most 4,800
images in total, as can be seen in Table 2.1. To evaluate our approach on a larger dataset, we
therefore acquired our own. Because this work was initially motivated by an augmented virtuality
project whose goal is to allow someone to type on a keyboard while wearing a head-mounted
display, we asked 50 people to type on 9 keyboards while wearing an HTC Vive (HTC). To make
this easier, we created a mixed-reality application to allow the users to see both the camera view
and a virtual browser showing the text being typed. To ensure diversity, we varied the keyboard
types, lighting conditions, desk colors, and objects lying on them, as can be seen in Figure 2.4.
We provide additional details in Table 2.2.

We then recorded 161 hand sequences with the device’s camera. We split them as 20/ 20/
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Resolution # Images

Dataset Width Height Train Val. Test Total

KBH (Ours) 230 306 2300 2300 7936 12536

EYTH (Urooj & Borji, 2018) 216 384 774 258 258 1290
HOF (Urooj & Borji, 2018) 216 384 198 40 62 300
EgoHand (Bambach et al., 2015) 720 1280 3600 400 800 4800
GTEA(Fathi et al., 2011) 405 720 367 92 204 663

Table 2.1: Hand-segmentation benchmark datasets.

(a) Environment setup

Parameters Amount Details

Desk 3 White, Brown, Black
Desk position 3 -

Keyboard 9 -
Lighting 8 3 sources on/off

Objects on desk 3 3 different objects

(b) Attributes

Attribute #IDs

Bracelet 10
Watch 14

Brown-skin 2
Tatoo 1

Nail-polish 1
Ring(s) 6

Table 2.2: Properties of our new KBH dataset.

60% for train/ validation/ test to set up a challenging scenario in which the training data is not
overabundant and to test the scalability and generalizability of the trained models. We guaranteed
that the same person never appears in more than one of these splits by using people’s IDs during
partitioning. In other words, our splits resulted in three groups of 30, 30, and 101 separate videos,
respectively. We annotated about the same number of frames in each one of the videos, resulting
in a total of 12,536 annotated frames.

Retina Vessels. We used the popular DRIVE dataset (Staal et al., 2004). It contains 40 retina
images used for making clinical diagnoses, among which 33 do not show any sign of diabetic
retinopathy and 7 show signs of mild early diabetic retinopathy. The images have been divided
into a training and a test set with 20 images for each set.

Roads. We used the Massachusetts Roads dataset (Mnih, 2013). It is one of the largest publicly
available collections of aerial road images, containing both urban and rural neighborhoods, with
many different kinds of roads ranging from small paths to highways. The data is split into 1108
training and 49 test images, one of which is shown in Figure 2.6.

Urban landscapes. We employed the recent Cityscapes dataset. It is a very challenging dataset
with high-resolution 1024×2048 images. It has 5,000 finely annotated images which are split into
training/validation/test sets with 2975/500/1525 images. 30 classes are annotated, and 19 of them
are used in training and testing.
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Image U-Net-G Rec-Middle Rec-Last Rec-Simple Ours Ground Truth
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Figure 2.5: Example predictions on hand segmentation datasets. Note that our method yields
accurate segmentations in diverse conditions, such as with hands close to the camera, multiple
hands, hands over other skin regions, and low contrast images in our KBH dataset. By contrast,
the baselines all fail in at least one of these scenarios. Interestingly, our method sometimes yields
a seemingly a more accurate segmentation than the ground-truth ones. For example, in our EYTH
result at the top, the gap between the thumb and index finger is correctly found whereas it is
missing from the ground truth. Likewise, for KBH at the bottom, the watch band is correctly
identified as not being part of the arm even though it is labeled as such in the ground truth.
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2.4.2 Experimental Setup

Baselines

We refer to the versions of our approach that rely on the dual gated unit of Section 2.3.2 and the
single gated unit of Section 2.3.3 as Ours-SRU and Ours-DRU, respectively, with, e.g., Ours-
SRU(3) denoting the case where `= 3 in Figure 2.3. We compare them against the state-of-the-art
model for each task, i.e., RefineNet (Urooj & Borji, 2018) for hand segmentation, (Maninis et al.,
2016) for retina vessel segmentation and (Mosinska et al., 2018) for road delineation, the general
purpose DeepLab V3+ (Chen et al., 2018a), the real-time ICNet (Zhao et al., 2018), and the
following baselines.

• U-Net-B and U-Net-G (Ronneberger et al., 2015). We treat our U-Net backbone by itself
as a baseline. U-Net-B uses batch-normalization and U-Net-G group-normalization. For a
fair comparison, they, Ours-SRU, Ours-DRU, and the recurrent baselines introduced below
all use the same parameter settings.

• Rec-Last. It has been proposed to add a recurrent unit after a convolutional segmentation
network to process sequential data, such as video (Poudel et al., 2016). The corresponding
U-Net-based architecture can be directly applied to segmentation by inputing the same
image at all time steps, as shown in Figure 2.2(b). The output then evolves as the hidden
state is updated.

• Rec-Middle. Similarly, the recurrent unit can replace the bottleneck between the U-
Net encoder and decoder, instead of being added at the end of the network. This has
been demonstrated to handle volumetric data (Valipour et al., 2017). Here we test it for
segmentation. The hidden state then is of the same size as the inner feature backbone, that
is, 128 in our experimental setup.

• Rec-Simple (Mosinska et al., 2018). We perform a recursive refinement process, that is,
we concatenate the segmentation mask with the input image and feed it into the network.
Note that the original method of (Mosinska et al., 2018) relies on a VGG-19 pre-trained on
ImageNet (Simonyan & Zisserman, 2015), which is far larger than our U-Net. To make the
comparison fair, we therefore implement this baseline with the same U-Net backbone as in
our approach.

Scaling Up using Pretrained Deep Networks as Encoder

While our goal is resource-constrained segmentation, our method extends to the general setting.
In this case, to further boost its performance, we replace the U-Net encoder with a pretrained
VGG-16 backbone. We refer to the corresponding models as U-Net-VGG16 and DRU-VGG16.

Metrics. We report the mean intersection over union (mIoU), mean recall (mRec) and mean
precision (mPrec).

40



2.4 Experiments

Model EYTH GTEA EgoHand HOF KBH

mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec

No pre-train

L
ig

ht

ICNet 0.731 0.915 0.764 0.898 0.971 0.922 0.872 0.925 0.931 0.580 0.801 0.628 0.829 0.925 0.876
U-Net-B 0.803 0.912 0.830 0.950 0.973 0.975 0.815 0.869 0.876 0.694 0.867 0.778 0.870 0.943 0.911
U-Net-G 0.837 0.928 0.883 0.952 0.977 0.980 0.837 0.895 0.899 0.621 0.741 0.712 0.905 0.949 0.948
Rec-Middle 0.827 0.920 0.877 0.924 0.979 0.976 0.828 0.894 0.905 0.654 0.733 0.796 0.845 0.924 0.898
Rec-Last 0.838 0.920 0.894 0.957 0.975 0.980 0.831 0.906 0.897 0.674 0.807 0.752 0.870 0.930 0.924
Rec-Simple 0.827 0.918 0.864 0.952 0.975 0.976 0.858 0.909 0.931 0.693 0.833 0.704 0.905 0.951 0.944

Ours at layer (`)
Ours-SRU(0) 0.844 0.924 0.890 0.960 0.976 0.981 0.862 0.913 0.932 0.712 0.844 0.764 0.930 0.968 0.957
Ours-SRU(3) 0.845 0.931 0.891 0.956 0.977 0.982 0.864 0.913 0.933 0.699 0.864 0.773 0.921 0.964 0.951
Ours-DRU(4) 0.849 0.926 0.900 0.958 0.978 0.977 0.873 0.924 0.935 0.709 0.866 0.774 0.935 0.980 0.970

With pretrain

H
ea

vy

RefineNet 0.688 0.776 0.853 0.821 0.869 0.928 0.814 0.919 0.879 0.766 0.882 0.859 0.865 0.954 0.921
Deeplab V3+ 0.757 0.819 0.875 0.907 0.928 0.976 0.870 0.909 0.958 0.722 0.822 0.816 0.856 0.901 0.935
U-Net-VGG16 0.879 0.945 0.921 0.961 0.978 0.981 0.879 0.916 0.951 0.849 0.937 0.893 0.946 0.971 0.972

DRU-VGG16 0.897 0.946 0.940 0.964 0.981 0.982 0.892 0.925 0.958 0.863 0.948 0.901 0.954 0.973 0.979

Table 2.3: Comparing against the state of the art. According to the mIOU, Ours-DRU(4)
performs best on average, with Ours-SRU(0) a close second. Generally speaking all recurrent
methods do better than RefineNet, which represents the state of the art, on all datasets except
HOF. We attribute this to HOF being too small for optimal performance without pre-training, as
in RefineNet. This is confirmed by looking at DRU-VGG16, which yields the overall best results
by relying on a pretrained deep backbone.

2.4.3 Comparison to the State of the Art

We now compare the two versions of our approach to the state of the art and to the baselines
introduced above on the tasks of hand segmentation, retina vessel segmentation and road delin-
eation. We split the methods into the light ones and the heavy ones. The light models contain
fewer parameters and are trained from scratch, whereas the heavy ones use a pretrained deep
model as backbone. Furthermore, we provide a qualitative assessment of our model for recurrent
refinement in Figure 2.6.

Hands. As discussed in Section 2.4.1, we tested our approach using 4 publicly available datasets
and our own large-scale one. We compare it against the baselines in Table 2.3 quantitatively and
in Figure 2.5 qualitatively.

Overall, among the light models, the recurrent methods usually outperform the one-shot ones,
i.e, ICNet (Zhao et al., 2018) and U-Net. Besides, among the recurrent ones, Ours-DRU(4) and
Ours-SRU(0) clearly dominate with Ours-DRU(4) usually outperforming Ours-SRU(0) by a small
margin. Note that, even though Ours-DRU(4) as depicted by Figure 2.3(a) looks superficially
similar to Rec-Middle, they are quite different because Ours-DRU takes the segmentation mask as
input and relies on our new DRU gate, as discussed at the end of Section 2.3.1 and in Section 2.3.2.
To confirm this, we evaluated a simplified version of Ours-DRU(4) in which we removed the
segmentation mask from the input. The validation mIOU on EYTH decreased from 0.836 to
0.826 but remained better than that of Rec-Middle which is 0.814.
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Image Ground TruthT = 1 T = 2 T = 3

Figure 2.6: Recursive refinement. Retina, hand and road images; segmentation results after 1, 2,
and 3 iterations; ground truth. Note the progressive refinement and the holes of the vessels, hands
and roads being filled recursively. It is worth pointing out that even the tiny vessel branches in the
retina which are ignored by the human annotators could be correctly segmented by our algorithm.
Better viewed in color and zoom in.

Note that Ours-DRU(4) is better than the heavy RefineNet model on 4 out of the 5 datasets,
despite RefineNet representing the current state of the art. The exception is HOF, and we believe
that this can be attributed to HOF being the smallest dataset, with only 198 training images.
Under such conditions, RefineNet strongly benefits from exploiting a ResNet-101 backbone that
was pre-trained on PASCAL person parts (Chen et al., 2014), instead of training from scratch as
we do. This intuition is confirmed by looking at the results of our DRU-VGG16 model, which,
by using a pretrained deep backbone, yields the overall best performance.

Model Performance, Size and Speed. Table 2.3 shows that DRU-VGG16 outperforms
Ours-DRU, e.g., by 0.02 mIoU points on KBH. This, however, comes at a cost. To be precise,
DRU-VGG16 has 41.38M parameters. This is 100 times larger than Ours-DRU(4), which has
only 0.36M parameters. Moreover, DRU-VGG16 runs only at 18 fps, while Ours-DRU(4) reaches
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Models mIOU mRec mPrec mF1

L
ig

ht

ICNet (Zhao et al., 2018) 0.618 0.796 0.690 0.739
U-Net-G (Ronneberger et al., 2015) 0.800 0.897 0.868 0.882
Rec-Middle (Poudel et al., 2016) 0.818 0.903 0.886 0.894
Rec-Simple (Mosinska et al., 2018) 0.814 0.898 0.885 0.892
Rec-Last (Valipour et al., 2017) 0.819 0.900 0.890 0.895

Ours-DRU(4) 0.821 0.902 0.891 0.896

H
ea

vy DeepLab V3+ (Chen et al., 2018a) 0.756 0.875 0.828 0.851
U-Net-VGG16 0.804 0.910 0.862 0.886
DRU-VGG16 0.817 0.905 0.883 0.894

Table 2.4: Retina vessel segmentation results.

61 fps. This makes DRU-VGG16, and the other heavy models, ill-suited to embedded systems,
such as a VR camera, while Ours-DRU can more easily be exploited in resource-constrained
environments.

Retina Vessels.

We report our results in Table 2.4. Our DRU yields the best mIOU, mPrec and mF1 scores.
Interestingly, on this dataset, it even outperforms the larger DRU-VGG16 and DeepLab V3+,
which performs comparatively poorly on this task. This, we believe, is due to the availability
of only limited data, which leads to overfitting for such a very deep network. Note also that
retina images significantly differ from the ImageNet ones, thus reducing the impact of relying
on pretrained backbones. On this dataset, (Maninis et al., 2016) constitutes the state of the art,
reporting an F1 score on the vessel class only of 0.822. According to this metric, Ours-DRU(4)
achieves 0.92, thus significantly outperforming the state of the art.

Roads. Our results on road segmentation are provided in Table 2.5. We also outperform all the
baselines by a clear margin on this task, with or without ImageNet pre-training. In particular,
Ours-DRU(4) yields an mIoU 8 percentage point (pp) higher than U-Net-G, and DRU-VGG16
5pp higher than U-Net-VGG16. This verifies that our recurrent strategy helps. Furthermore,
Ours-DRU(4) also achieves a better performance than DeepLab V3+ and U-Net-VGG16. Note
that, here, we also report two additional metrics: Precision-recall breaking point (P/R) and
F1-score. The cutting threshold for all metrics is set to 0.5 except for P/R. For this experiment,
we did not report the results of U-Net-B because U-Net-G is consistently better.

Note that a P/R value of 0.778 has been reported on this dataset in (Mosinska et al., 2018).
However, this required using an additional topology-aware loss and a U-Net much larger than
ours, that is, based on 3 layers of a VGG19 pre-trained on ImageNet. Rec-Simple duplicates the
approach of (Mosinska et al., 2018) without the topology-aware loss and with the same U-Net as
Ours-DRU. Their mIoU of 0.723, inferior to ours of 0.757, shows our approach to recursion to be
beneficial.
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Models mIOU mRec mPrec P/R mF1

L
ig

ht
ICNet (Zhao et al., 2018) 0.476 0.626 0.500 0.513 0.656
U-Net-G (Ronneberger et al., 2015) 0.479 0.639 0.502 0.642 0.563
Rec-Middle (Poudel et al., 2016) 0.494 0.767 0.518 0.660 0.574
Rec-Simple (Mosinska et al., 2018) 0.534 0.802 0.559 0.723 0.659
Rec-Last (Valipour et al., 2017) 0.526 0.786 0.551 0.730 0.648

Ours-DRU(4) 0.560 0.865 0.583 0.757 0.691

H
ea

vy Deeplab V3+ (Chen et al., 2018a) 0.529 0.763 0.555 0.710 0.643
U-Net-VGG16 0.521 0.836 0.544 0.745 0.659
DRU-VGG16 0.571 0.862 0.595 0.761 0.704

Table 2.5: Road segmentation results.

Model mIoU Model mIoU

ICNet(Zhao et al., 2018) 0.695 DeepLab V3 (Chen et al., 2017) 0.778
U-Net-G 0.429 U-Net-G ×2 0.476
Rec-Last 0.502 Rec-Last ×2 0.521
DRU(4) 0.532 DRU(4) ×2 0.627

DRU-VGG16 0.761

Table 2.6: Cityscapes Validation Set with Resolution 1024×2048. ×2 indicates that we doubled the
number of channels in the U-Net backbone. Note that, for our method, we do not use multi-scaling or
horizontal flips during inference.

Urban landscapes.

The segmentation results on the Cityscapes validation set are shown in Table 2.6. Note that
Ours-DRU is consistently better than U-Net-G and than the best recurrent baseline, i.e., Rec-Last.
Furthermore, doubling the number of channels of the U-Net backbone increases accuracy, and
so does using a pretrained VGG-16 as encoder. Ultimately, our DRU-VGG16 model yields
comparable accuracy with the state-of-the-art DeepLab V3 one, despite its use of a ResNet101
backbone.

2.5 Conclusion

We have introduced a novel recurrent U-Net architecture that preserves the compactness of the
original one, while substantially increasing its performance. At its heart is the fact that the
recurrent units encompass several encoding and decoding layers of the segmentation network.
We also introduced a new hand segmentation dataset that is larger than existing ones.

In the first part of this thesis, we have presented two approaches focusing on different tasks but
relying on the manual design of convolutional neural network architectures. While our methods
have shown promising results on those two tasks, we have discovered during our research that
such design process can be separated into two parts: i) Designing the network operations or
overall architecture based on some task-dependent knowledge, such as covariance descriptors for
fine-grained image classification; ii) finetuning the architecture little by little based on empirical
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results. While the first part is not easily automated, the recent advances in automatic machine
learning (AutoML) provide a revolutionary solution for the second part of this process. In the
next part of this thesis, we introduce our contributions in neural architecture search, a promising
AutoML direction.
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Part IITowards Robust Neural Architecture
Search with Parameter Sharing

Neural architecture search (NAS), aims to facilitate the design of deep
networks for new tasks, and has drawn an increasing attention recently.
Its essential idea is to pick a candidate neural architecture from a
pre-defined search space, train the architecture and obtain the metrics
of interest. The weight sharing approach, which utilizes a super-net
to encompass all possible architectures within the search space, has
become a de facto standard in NAS because it enables the search to be
done on commodity hardware. In general, the super-net is defined as
a composition of all weights within the search space. In this part, in
Chapter 3, we will introduce the concept of NAS and weight sharing
in detail. We then identify several weaknesses of weight-sharing NAS.
In Chapter 5, we observe that, (i) on average, many popular NAS
algorithms perform similarly to a random architecture sampling policy;
(ii) this widely-adopted weight sharing strategy degrades the ranking of
the NAS candidates to the point of not reflecting their true performance,
thus reducing the effectiveness of the search process. In Chapter 6,
we further decouple weight sharing from the NAS sampling policy,
and isolate 14 factors of super-net training. To further improve the
super-net quality, in Chapter 7, we propose a regularization term that
aims to maximize the correlation between the performance rankings
of the super-net of the stand-alone architectures using a small set of
landmark architectures.
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3 Neural Architecture Search – Prelimi-
naries

3.1 Problem Definition

As discussed in the previous chapters, when we design a novel architecture for a specific computer
vision task, we typically rely on our previous experience and try to translate successful designs to
the task of interest, further exploiting some domain knowledge or requirements. For example,
our recurrent model was motivated by the saccadic movements of the human eye and constructed
manually. Nevertheless, the final architecture was obtained via multiple rounds of fine-tuning the
design and its hyper-parameters, each one consisting of training the architecture from scratch,
checking the results and modifying the network accordingly.

By contrast, neural architecture search aims to automate this process. It first encodes design
choices and heuristics into a search space, such that many human-designed architectures constitute
sub-models within the space. It then defines an architecture sampling policy that can be trained
to select the best architecture in the search space based on certain metrics of interest, e.g. top-1
accuracy for image classification task. Below, we discuss each component of NAS in more detail.

3.1.1 Search Space

In general, the search space is a set of neural architectures, and plays a critical role in the success
of neural architecture search. One typical example is the ‘cell-based’ graph structure search space
shown in Figure 3.1. This is the most widely used approach in the current NAS field because of
its flexibility, e.g., one can search for a novel architecture with arbitrary connections by treating
one cell as an entire network.

Since the cell-based space will only yield a construction block but not a complete architecture,
we summarize three common approaches to assemble cells into a network. These approaches
are depicted in Figure 3.2. The first is the most restrictive one; we search for only one cell and
stack replicates of this cell to form the final architecture. This is widely adopted in RNN search
spaces (Pham et al., 2018a; Zoph & Le, 2017a). However, for CNNs that take an image as input,
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(a) Illustration of the search space (b) A ResNet cell extracted from the space

Figure 3.1: Search space. We present an example of cell-based graphical search space that is
widely used in many previous works (Zoph & Le, 2017a; Pham et al., 2018b) when NAS is
initially proposed. Here, we search for a ‘cell’ that composes of multiple basic operations, e.g.
convolutional operations or pooling operations. We then formulate the network by repeating the
searched cell. In (a) , each node represents the searchable operation, and each edge represents the
data flow. (b) If we select the red edge in (a), we can remove the unused nodes and extract one
cell architecture, which mimics the ResNet cell in He et al. (2015).

the feature dimensions (width and height) in the beginning is usually relatively large, and this
first approach requires to trade off between the number of cells and the dimension reduction
ratio; if the final searched cell contains reduction operations, such as pooling, we can only stack a
few cells before the height and width drops to one, and stacking more will make no sense. On
the other hand, if the cell does not reduce the feature dimension, the architecture may contain
too many cells, which reduces its convergence ability. Zoph & Le (2017b) thus proposed an
alternative approach, shown in Figure 3.2 (b), where the space contains two types of cells, the
normal one that does not modify the image dimension, and the reduced one that always decreases
the dimension by 2. This allows one to repeat as many normal cells as necessary, and use reduced
cells according to the original image resolution. For example, we use four reduced cells for
ImageNet-like input dimension. Recently, however, researchers have argued that restricting the
normal cell might further limit the performance, and have proposed to search individual cells for
the entire network (Cai et al., 2018b), as depicted in Figure 3.2 (c).

A variation of this last approach is now emerging as a highly successful one; it consists of
simplifying the cell-space to the minimal level, where each cell only contains one node (Yu et al.,
2020a; Cai et al., 2018a; 2020). This effectively limits the topology difference while maintaining
a large search space by allowing for a large number of nodes. Furthermore, multiple recent works
have modified this search space to support multi-input and multi-output, allowing one to perform
NAS for more complicated tasks than image classification, such as semantic segmentation (Liu
et al., 2019a), action recognition (Ryoo et al., 2020) and object detection (Chen et al., 2019b).

3.1.2 Search policy

Once the search space is designed, one should develop an algorithm to select effective archi-
tectures from it. This algorithm is usually referred to as a search policy. Since its introduction
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Figure 3.2: Search space illustration. Here, we show three examples to map a cell-based
structure to a final neural architecture. (a) The simplest architecture is search for one cell
architecture, and then repeatedly stacking the same cell to construct the architecture. This
approach is commonly seen in RNN construction. (b) Zoph & Le (2017a) proposed a simple
variation that searches for two different cells, normal cell that do not reduce the feature dimension,
while the reduced cell will always reduce the size by half. (c) represents the most general approach
that each cell can be different than others.

in (Zoph & Le, 2017a), NAS has demonstrated great potential to surpass the human design of
deep networks for both visual recognition (Liu et al., 2018c; Ahmed & Torresani, 2018; Chen
et al., 2018b; Pérez-Rúa et al., 2018; Liu et al., 2019a) and natural language processing (Zoph &
Le, 2017a; Pham et al., 2018b; Luo et al., 2018a; Zoph et al., 2018; Liu et al., 2018c; Cai et al.,
2018a). Existing search strategies include reinforcement learning (RL) samplers (Zoph & Le,
2017a; Zoph et al., 2018; Pham et al., 2018b), evolutionary algorithms (Xie & Yuille, 2017; Real
et al., 2017a; Miikkulainen et al., 2019; Liu et al., 2018c; Lu et al., 2018), gradient-descent (Liu
et al., 2019b), bayesian optimization (Kandasamy et al., 2018; Jin et al., 2019; Zhou et al., 2019)
and performance predictors (Liu et al., 2018a; Luo et al., 2018a).

Here, we categorize the search policies into two groups: i) Full NAS policies that need to train
a set of sampled architecture until convergence; ii) weight sharing NAS methods that share the
parameters of all the architectures within the search space to accelerate training.

Full NAS policy. Considering the search space formulation, one important challenge is to
translate the discrete architecture encoding so as to exploit it within the modern differentiable
machine learning paradigm. One natural approach consists of relying on reinforcement learning
(RL). As shown in Figure 3.3, Zoph & Le (2017a) first formulated the search space as a traditional
action space in the RL domain, and encoded architecture sampling as one action within the space.
This effectively translates the NAS problem to a reinforcement learning one, which can be solved
using the policy gradient.

While other approaches, such as Bayesian optimization (Zhou et al., 2019), or evolutionary
algorithm (So et al., 2019), have been proposed to replace the RL policy in Figure 3.3, they all
rely on one common component: One needs to train the sampled architecture until convergence to
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Figure 3.3: Reinforce learning based NAS (taken from Zoph & Le (2017a)). Child network is
one stand-alone neural architecture within the search space.

obtain the classification accuracy, or other metrics for different tasks, as depicted in Figure 3.5(a).
This typically entails a tremendous computational burden of the NAS algorithm, e.g., taking
over four thousand GPU days to search for a good model for the CIFAR-10 dataset. In the
remainder of this thesis, we refer to this approach, that requires to train each sampled architecture
individually, as the full NAS policy.

The potential of full NAS comes with the drawback of requiring thousands of GPU hours even
for small datasets, such as PTB and CIFAR-10. Furthermore, even when using such heavy
computational resources, vanilla NAS has to restrict the number of trained architectures from a
total of 109 to 104, and increasing the sampler accuracy can only be achieved by increasing the
resources.

Weight sharing NAS. To accelerate the NAS training process, Pham et al. (2018b) proposed to
share the parameters of children networks within the search space, such that one can reuse the
previously trained models, as depicted in Figure 3.5(b). Specifically, the weights are initialized
randomly in the beginning, and are trained while the search progresses.

One illustrative example of this is shown in Figure 3.4. With the help of such a simple technique,
the NAS training process decreases from thousands of GPU days to a single, while maintaining a
similar final performance. As such, weight sharing has quickly become the de facto standard in
NAS training. We discuss the related literature in detail in Section 3.2.1.

3.2 Related Work
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Figure 3.4: Weight sharing example. (a) The search space contains four nodes, where each
node contains the parametric operations, and edges represents the data flow. The super-net can be
easily constructed as is. (b) Two architectures can easily inherit the weights from the super-net,
and thus shares the parameters during training and evaluation.

3.2.1 NAS with Parameter Sharing

Initial search solutions required hundreds of GPUs due to the huge search space, but recent
efforts have made the search more tractable, for example via the use of neural blocks (Negrinho &
Gordon, 2017; Bennani-Smires et al., 2018). Similarly, and directly related to this work, weight
sharing between the candidates has allowed researchers to greatly decrease the computational cost
of neural architecture search. For neuro-evolution methods, sharing is implicit. For example, Real
et al. (2017b) define weight inheritance as allowing the children to inherit their parents’ weights
whenever possible. For RL-base techniques, weight sharing is modeled explicitly and has been
shown to lead to significant gains. In particular, ENAS (Pham et al., 2018b) was the first to
propose a training scheme with shared parameters, reducing the resources from thousands of GPU
days to one. Instead of being trained from scratch each sampled model inherits the parameters
from previously-trained ones. Since then, NAS research has mainly focused on two directions: 1)
Replacing the RL sampler with a better search algorithm, such as gradient descent (Liu et al.,
2019b), bayesian optimiziation (Zhou et al., 2019) and performance predictors (Luo et al., 2018a);
2) Exploiting NAS for other applications, e.g., object detection (Ghiasi et al., 2019; Chen et al.,
2019b), semantic segmentation (Liu et al., 2019a), and finding compact networks (Cai et al.,
2018b; Wu et al., 2018; Chu et al., 2019; Guo et al., 2019). While weight sharing has proven
effective, its downsides have never truly been studied. In Chapter 4, we will evidence one such
drawback, which we dub multi-model forgetting, and introduce a solution to overcome it.

3.2.2 Understanding NAS algorithms

While successfully surpassing the state-of-the-art human designed architectures, NAS on the
other hand is notoriously hard to reproduce (Yang et al., 2020). Understanding NAS algorithms
has therefore recently emerged as another important research direction.
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Figure 3.5: Comparison of full NAS approach and weight sharing one. (a) we presents the
full NAS approach, where each sampled architecture needs to be trained until convergence to
obtain the metrics in order to update the policy. (b) depicts the weight sharing approach, where
it contains a super-net that encompass all the parameters to initialize any child network within
the search space. Each time we sample a new architecture, we inherit the parameters from the
super-net and only trains for n iterations. The parameters update is regarding the super-net after
the training is done.

(Ying et al., 2019; Dong & Yang, 2020) introduced a dataset that contains the ground-truth
performance of CNN cells, and (Wang et al., 2019) evaluated some traditional search algorithms
on it. Similarly, Radosavovic et al. (2019) characterizes many CNN search spaces by computing
the statistics of a set of sampled architectures, revealing that, for datasets such as CIFAR-10 or
ImageNet, these statistics are similar. While these works support our claim that evaluation of
NAS algorithms is crucial, they do not directly evaluate the state-of-the-arts NAS algorithms as
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we will do in this thesis.

Evaluation of NAS algorithms. Typically, the quality of NAS algorithms is judged based on the
results of the final architecture they produce on the downstream task. In other words, the search
and robustness of these algorithms are generally not studied, with (Liu et al., 2019b; So et al.,
2019) the only exception for robustness, where results obtained with different random seeds were
reported.

In Chapter 5, we will aim to improve the understanding of the mechanisms behind the search
phase of NAS algorithms. Specifically, we propose doing so by comparing them with a simple
random search policy, which uniformly randomly samples one architecture per run in the same
search space as the NAS techniques.

While some works have provided partial comparisons to random search, these comparisons
unfortunately did not give a fair chance to the random policy. Specifically, (Pham et al., 2018b)
reports the results of only a single random architecture, and (Liu et al., 2018c) those of an
architecture selected among 8 randomly sampled ones as the most promising one after training for
300 epochs only. Here, we show that a fair comparison to the random policy, obtained by training
all architectures, i.e., random and NAS ones, for 1000 epochs and averaging over multiple random
seeds for robustness, yields a different picture; the state-of-the-art search policies are no better
than the random one.

The motivation behind this comparison was our observation of only a weak correlation between
the performance of the searched architectures and the ones trained from scratch during the
evaluation phase. This phenomenon was already noticed by (Zela et al., 2018), and concurrently
to our work by (Li & Talwalkar, 2019; Xie et al., 2019; Ying et al., 2019), but the analysis of
its impact or its causes went no further. In this thesis, by contrast, we link this difference in
performance between the search and evaluation phases to the use of weight sharing.

While this may seem to contradict the findings of (Bender et al., 2018b), which, on CIFAR-10,
observed a strong correlation between architectures trained with and without weight sharing
when searching a CNN cell, our analysis differs from (Bender et al., 2018b) in two fundamental
ways: 1) The training scheme in (Bender et al., 2018b), in which the entire model with shared
parameters is trained via random path dropping, is fundamentally different from those used
by state-of-the-arts weight sharing NAS strategies (Pham et al., 2018b; Liu et al., 2019b; Luo
et al., 2018a); 2) While the correlation in (Bender et al., 2018b) was approximated using a small
subset of sampled architectures, we make use of a reduced search space where we can perform
a complete evaluation of all architectures, thus providing an exact correlation measure in this
space.

Holistic review of super-net design. In Chapter 6, we decouple the weight sharing NAS into
four components, a mapping function fpr ox y construction of a stand-alone model from the search
space and its training protocol Ppr ox y , and its counterpart for the weight sharing super-net fw s
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Pw s
1.

Many strategies have been proposed to implement the search algorithm, such as reinforcement
learning (Zoph & Le, 2017a; Zoph et al., 2018), evolutionary algorithms (Real et al., 2017a;
Miikkulainen et al., 2019; So et al., 2019; Liu et al., 2018a; Lu et al., 2018), gradient-based opti-
mization (Liu et al., 2019b; Xu et al., 2020; Li et al., 2020a), Bayesian optimization (Kandasamy
et al., 2018; Jin et al., 2019; Zhou et al., 2019; Wang et al., 2020), and separate performance
predictors (Liu et al., 2018a; Luo et al., 2018a). Until very recently, the common trend to evaluate
NAS consisted of reporting the searched architecture’s performance on the proxy task (Xie et al.,
2018; Real et al., 2018; Ryoo et al., 2020). This, however, hardly provides real insights about the
NAS algorithms themselves, because of the many components involved in them. Many factors
that differ from one algorithm to another can influence the performance. In practice, the literature
even commonly compares NAS methods that employ different protocols to train the final model.

Concurrently, Li & Talwalkar (2019) and us were the first to systematically compare different
algorithms with the same settings for the proxy task and using several random initializations.
Their surprising results revealed that many NAS algorithms produce architectures that do not
significantly outperform a randomly-sampled architecture. In Chapter 5, we will highlight the
importance of the training protocol Ppr ox y . They showed that optimizing the training protocol can
improve the final architecture performance on the proxy task by three percent on CIFAR-10. This
non-trivial improvement can be achieved regardless of the chosen sampler, which provides clear
evidence for the importance of unifying the protocol to build a solid foundation for comparing
NAS algorithms.

While recent advances for systematic evaluation are promising, no work has yet thoroughly
studied the influence of the super-net training protocol Pw s and the mapping function fw s .
Previous works (Zela et al., 2020a) performed hyper-parameter tuning to evaluate their own
algorithms, and focused only on a few parameters. In Chapter 6, we fill this gap by benchmarking
different choices of Pw s and fw s and by proposing novel variations to improve the super-net
quality.

Recent works have shown that sub-nets of super-net training can surpass some human designed
models without retraining (Yu et al., 2020a; Cai et al., 2020) and that reinforcement learning can
surpass the performance of random search (Bender et al., 2020). However, these findings are still
only shown on MobileNet-like search spaces where we only search for the size of convolution
kernels and the channel ratio for each layer. This is an effective approach to discover a compact
network, but it does not change the fact that on cell-based search space super-net quality remains
low.

1Details in Section 6.2
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3.2.3 Improving the ranking correlation of WS-NAS

Neural architecture search (NAS) methods can be categorized into conventional approaches, that
obtain architecture performance via stand-alone training (Zoph & Le, 2017a; Zoph et al., 2018;
Tan et al., 2018; Wang et al., 2019; Real et al., 2018; 2017a; Wang et al., 2020), and weight
sharing NAS, where the performance is obtained from one or a few super-nets that encompass all
architectures within the search space (Pham et al., 2018b; Luo et al., 2018a; Cai et al., 2018b; Zhao
et al., 2020; Peng et al., 2020; You et al., 2020). Motivated by the success of early NAS works,
the literature has now branched into several research directions, such as using multi-objective
optimization to discover architectures under resource constraints for mobile devices (Tan & Le,
2019; Tan et al., 2018; Wu et al., 2018; Cai et al., 2018b; Guo et al., 2019; Bender et al., 2020),
applying NAS to other computer vision tasks than image recognition (Liu et al., 2019a; Chen
et al., 2019b; Li et al., 2020b; Ryoo et al., 2020), and using knowledge distillation to eliminate
the performance gap between super-net and stand-alone training for linear search spaces based
on MobileNet (Cai et al., 2020; Yu et al., 2020a).

In contrast to the diversity of these research directions, super-net training in weight-sharing
NAS has remained virtually unchanged since its first appearance in (Li & Talwalkar, 2019; Guo
et al., 2019; Bender et al., 2018b). At its core, it consists of sampling one or few architectures at
each training step, and updating the parameters encompassed by these architectures with a small
batch of data. This approach has been challenged in many ways (Li & Talwalkar, 2019; Yang
et al., 2020), particular thanks to the introduction of the NASBench series (Radosavovic et al.,
2019; Ying et al., 2019; Dong & Yang, 2019b; Siems et al., 2020; Zela et al., 2020b) of NAS
benchmarks, which provide stand-alone performance of a substantial number or architectures
and thus facilitate the analysis of the behavior of NAS algorithms. A critical issue that has
been identified recently is the inability of most modern NAS algorithms to surpass simple
random search under a fair comparison. In Chapter 5, this was traced back to to the low ranking
correlation between stand-alone performance and the corresponding super-net estimates. While
recent works (Guo et al., 2019; Chu et al., 2019) have shown that the ranking correlation is high
on a MobileNet-based search space, where one only searches for the convolutional operations
and the number of channels, others (Yu et al., 2020b; Zela et al., 2020b) have revealed that the
correlation remains low on cell-based NASNet-like search spaces (Liu et al., 2019b; Luo et al.,
2018a; Zoph & Le, 2017a), even when carefully tuning the design of the super-net.

In Chapter 7, we will introduce a simple, differentiable regularization term to improve the ranking
correlation in weight-sharing NAS algorithms. We will show that this regularization term can be
used in a variety of weight-sharing NAS algorithms, and that it leads to a consistent improvement
in terms of ranking correlation and final search performance. Our regularization leverages the
stand-alone performance of a few architectures. While some contemporary works also use ground-
truth architecture performance, our approach differs fundamentally from theirs. Specifically, these
methods aim to train a performance predictor, based on an auto-encoder in (Luo et al., 2020) or on
a graphical neural network in (Tang et al., 2020), and are thus only applicable to weight-sharing
NAS strategies that exploit such a performance predictor. By contrast, we add a regularizer to
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the super-net training loss, which allows our method to be applied to most weight-sharing NAS
search strategies. Furthermore, our approach requires an order of magnitude fewer architectures
with associated stand-alone performance; in our experiments, we use 30 instead of 300 in (Luo
et al., 2020) and 1000 in (Tang et al., 2020).
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In this chapter, we identify a phenomenon that commonly appear with the weight sharing NAS,
which we refer to as multi-model forgetting, that occurs when sequentially training multiple
deep networks with partially-shared parameters; the performance of previously-trained models
degrades as one optimizes a subsequent one, due to the overwriting of shared parameters. To
overcome this, we introduce a statistically-justified weight plasticity loss that regularizes the
learning of a model’s shared parameters according to their importance for the previous models, and
demonstrate its effectiveness when training two models sequentially and for neural architecture
search. Adding weight plasticity in neural architecture search preserves the best models to the
end of the search and yields improved results in both natural language processing and computer
vision tasks.

4.1 Introduction

Deep neural networks have been very successful for tasks such as visual recognition (Xie & Yuille,
2017) and natural language processing (Young et al., 2017), and much recent work has addressed
the training of models that can generalize across multiple tasks (Caruana, 1997). In this context,
when the tasks become available sequentially, a major challenge is catastrophic forgetting: when
a model initially trained on task A is later trained on task B, its performance on task A can decline
calamitously. Several recent articles have addressed this problem (Kirkpatrick et al., 2017; Rusu
et al., 2016; He & Jaeger, 2017; Li & Hoiem, 2016). In particular, Kirkpatrick et al. (2017) show
how to overcome catastrophic forgetting by approximating the posterior probability, p(θ |D1,D2),
with θ the network parameters and D1,D2 datasets representing the tasks.

In many situations one does not train a single model for multiple tasks but multiple models for a
single task. This is the scenario we tackle in this paper. When dealing with many large models, a
common strategy to keep training tractable is to share a subset of the weights across the multiple
models and to train them sequentially (Pham et al., 2018a; Xie & Yuille, 2017; Liu et al., 2018b).
This strategy has a major drawback. Figure 4.1 shows that for two models, A and B, the larger the
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Figure 4.1: Multimodel forgetting. (Left) Two models to be trained (A, B), where A’s parameters
are in green and B’s in purple, and B shares some parameters with A (indicated in green during
phase 2). We first train A to convergence and then train B. (Right) Accuracy of model A as the
training of B progresses. The different colors correspond to different numbers of shared layers.
The accuracy of A decreases dramatically, especially when more layers are shared, and we refer
to the drop (the red arrow) as multi-model forgetting. This experiment was performed on MNIST
(LeCun & Cortes, 2010).

number of shared weights, the more the accuracy of A drops when training B; B overwrites some
of the weights of A and this damages the performance of A. We call this multi-model forgetting.
The benefits of weight-sharing have been emphasized in tasks like neural architecture search,
where the associated speed gains have been key in making the process practical (Pham et al.,
2018a; Liu et al., 2018d), but its downsides remain unexplored.

In this paper we introduce an approach to overcoming multi-model forgetting. Given a dataset D,
we first consider two models f1(D;θ1,θs) and f2(D;θ2,θs) with shared weights θs and private
weights θ1 and θ2. We formulate learning as the maximization of the posterior p(θ1,θ2,θs |D).
Under mild assumptions we show that this posterior can be approximated and expressed using
a loss, dubbed Weight Plasticity Loss (WPL), that minimizes multi-model forgetting. Our
framework evaluates the importance of each weight, conditioned on the previously-trained model,
and encourages the update of each shared weight to be inversely proportional to its importance.
We then show that our approach extends to more than two models by exploiting it for neural
architecture search.

Our work is the first to propose a solution to multi-model forgetting. We establish the merits
of our approach when training two models with partially shared weights and in the context of
neural architecture search. For the former, we establish the effectiveness of WPL in the strict
convergence case, where each model is trained until convergence, and in the more realistic loose
convergence setting, where training is stopped early. WPL can reduce the forgetting effect by
99% when model A converges fully, and by 52% in the loose convergence case.

For neural architecture search, we implement WPL within the efficient ENAS method of Pham
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et al. (2018a), a state-of-the-art technique that relies on parameter sharing and corresponds to
the loose convergence setting. We show that, at each iteration, the use of WPL reduces the
forgetting effect by 51% on the most affected model and by 95% on average over all sampled
models. Our final results on the best architecture found by the search confirm that limiting
multi-model forgetting yields better results and better convergence for both language model-
ing (on the PTB dataset (Marcus et al., 1994b)) and image classification (on the CIFAR10
dataset (Krizhevsky et al., 2009a)). For language modeling the perplexity decreases from 65.01
for ENAS without WPL to 61.9 with WPL. For image classification WPL yields a drop of
top-1 error from 4.87% to 3.81%. We also adapt our method to NAO (Luo et al., 2018c) and
show that it also significantly reduces multi-model forgetting. Our code is public available at
https://github.com/kcyu2014/multi-model-forgetting.

4.2 Related work

Single-model Forgetting. The goal of training a single model to tackle multiple problems is to
leverage the structures learned for one task for other tasks. This has been employed in transfer
learning (Pan & Yang, 2010), multi-task learning (Caruana, 1997) and lifelong learning (Silver
et al., 2013). However, sequential learning of later tasks has visible negative consequences for
the initial one. Kirkpatrick et al. (2017) selectively slow down the learning of the weights that
are comparatively important for the first task by defining the importance of an individual weight
using its Fisher information (Rissanen, 1996). He & Jaeger (2017) project the gradient so that
directions relevant to the previous task are unaffected. Other families of methods save the older
models separately to create progressive networks (Rusu et al., 2016) or use regularization to
force the parameters to remain close to the values obtained by previous tasks while learning new
ones (Li & Hoiem, 2016). In (Xu & Zhu, 2018), forgetting is avoided altogether by fixing the
parameters of the first model while complementing the second one with additional operations
found by an architecture search procedure. This work, however, does not address the multi-model
forgetting that occurs during the architecture search. An extreme case of sequential learning is
lifelong learning, for which the solution to catastrophic forgetting developed by Aljundi et al.
(2018) is also to prioritize the weight updates, with smaller updates for weights that are important
for previously-learned tasks. Teh et al. (2017) proposes a reinforcement learning approach for
multi-task and multi-model scenario, but it relies on knowledge distillation which works under
the assumption of two models. Applying it to train every two consecutive models, the knowledge
of model not in the current pair will again be forgotten.

Analysis of Parameter Sharing in Neural Architecture Search. In both sequential learning on
multiple tasks and lifelong learning, the forgetfulness concerns an individual model. Here we
tackle scenarios where one seeks to optimize a population of multiple models that share parts of
their internal structure. The use of multiple models to solve a single task dates back to model
ensembles (Dietterich, 2000). Recently, the weight sharing in neural architecture search arises
as a mainstream NAS method, as discussed in Section 3.2.1. Bender et al. (2018a) realized that

61



Chapter 4. Overcoming Multi-model Forgetting

training was unstable and proposed to circumvent this issue by randomly dropping network paths.
However, they did not analyze the reasons for the instability. Here, by contrast, we highlight the
underlying multi-model forgetting problem and introduce a statistically-justified solution that
further improves on path dropout.

4.3 Methodology

In this section we study the training of multiple models that share certain parameters. As
discussed above, training the multiple models sequentially as in (Pham et al., 2018a), for example,
is suboptimal, since multi-model forgetting arises. Below we derive a method to overcome this
for two models, and then show how our formalism extends to multiple models in the context of
neural architecture search, and in particular within ENAS (Pham et al., 2018a).

4.3.1 Weight Plasticity Loss: Preventing Multi-model Forgetting

Given a dataset D, we seek to train two architectures f1(D;θ1,θs) and f2(D;θ2,θs) with shared
parameters θs and private parameters θ1 and θ2. We suppose that the models are trained
sequentially, which reflects common large-model, large-dataset scenarios and will facilitate
generalization. Below, we derive a statistically-motivated framework that prevents multi-model
forgetting; it stops the training of the second model from degrading the performance of the first
model.

We formulate training as finding the parameters θ = (θ1,θ2,θs) that maximize the posterior
probability p(θ |D), which we approximate to derive our new loss function. Below we discuss
the different steps of this approximation, first expressing p(θ |D) more conveniently.

Lemma 1. Given a dataset D and two architectures with shared parameters θs and private
parameters θ1 and θ2, and if p(θ1,θ2 | θs ,D) = p(θ1 | θs ,D)p(θ2 | θs ,D), we have

p(θ1,θ2,θs |D) ∝ p(D | θ2,θs)p(θ1,θs |D)p(θ2,θs)∫
p(D | θ1,θs)p(θ1,θs)dθ1

. (4.1)

Proof. Provided in the Appendix A.1.

Lemma 1 presupposes that p(θ1,θ2 | θs ,D) = p(θ1 | θs ,D)p(θ2 | θs ,D), i.e., θ1 and θ2 are
conditionally independent given θs and the dataset D. While this must be checked in applications,
it is suitable for our setting, since we want both networks, f1(D;θ1,θs) and f2(D;θ2,θs), to train
independently well.

To derive our loss we study the components on the right of equation (4.1). We start with the
integral in the denominator, for which we seek a closed form. Suppose we have trained the
first model and seek to update the parameters of the second one while avoiding forgetting. The
following lemma provides an expression for the denominator of equation (4.1).
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Lemma 2. Suppose we have the maximum likelihood estimate (θ̂1, θ̂s) for the first model, write
Card(θ1)+Card(θs) = p1 +ps = p, and let the negative Hessian Hp (θ̂1, θ̂s) of the log posterior
probability distribution log p(θ1,θs | D) evaluated at (θ̂1, θ̂s) be partitioned into four blocks
corresponding to (θ1,θs) as

Hp (θ̂1, θ̂s) =
[

H11 H1s

Hs1 Hss

]
.

If the parameters of each model follow Normal distributions, i.e., (θ1,θs) ∼ Np (0,σ2Ip ), with
Ip the p-dimensional identity matrix, then the denominator of equation (4.1), A = ∫

p(D |
θ1,θs)p(θs ,θ1)dθ1 can be written as

A = exp{lp (θ̂1, θ̂s)− 1

2
v>Ωv }× (2π)p1/2|det(H−1

11 )|1/2, (4.2)

where v = θs − θ̂s , lp (θ) = l (θ)−θTθ/2σ2, and Ω= Hss −H>
1s H−1

11 H1s .

Proof. Provided in the Appendix A.1.

Lemma 2 requires the maximum likelihood estimate (θ̂1, θ̂s), which can be hard to obtain with
deep networks, since they have non-convex objective functions. In practice, one can train the
network to convergence and treat the resulting parameters as maximum likelihood estimates.
Our experiments show that the parameters obtained without optimizing to convergence can be
used effectively. Moreover Haeffele & Vidal (2017) showed that networks relying on positively
homogeneous functions have critical points that are either global minimizers or saddle points, and
that training to convergence yields near-optimal solutions, which correspond to true maximum
likelihood estimates.

Following Lemmas 1 and 2, as shown in the appendix,

log p(θ |D) ∝ log p(D | θ2,θs)+ log p(θ2,θs)

+ log p(θ1,θs |D)+ 1

2
v>Ωv ,

(4.3)

apart from an additive constant. To derive a loss function that prevents multi-model forgetting,
consider equation (4.3). The first term on its right-hand side corresponds to the log likelihood of
the second model and can be replaced by the cross-entropy L2(θ2,θs), and if we use a Gaussian
prior on the parameters, the second term encodes an L2 regularization. Since equation (4.3)
depends only on the log likelihood of the second model f2(D;θ2,θs), the information learned from
the first model f1(D;θ1,θs) must reside in the conditional posterior probability log p(θ1,θs |D),
and the final term, 1

2 v>Ωv , must represent the interactions between the models f1(D;θ2,θs) and
f2(D;θ1,θs). This term will not appear in a standard single-model forgetting scenario. Let us
examine these terms more closely.

The posterior probability p(θ1,θs | D) is intractable, so we apply a Laplace approximation
(MacKay, 1992); we approximate the log posterior using a second-order Taylor expansion around
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the maximum likelihood estimate (θ̂1, θ̂s). This yields

log p(θ1,θs |D) = log p(θ̂1, θ̂s |D)

− 1

2
(θ′

1,θ′
s)>Hp (θ′

1,θ′
s),

(4.4)

where (θ′
1,θ′

s) = (θ1,θs)− (θ̂1, θ̂s), and Hp (θ̂1, θ̂s) is the negative Hessian of the log posterior
evaluated at the maximum likelihood estimate (MLE). As the first derivative is evaluated at the
MLE, it equals zero.

Equation (4.4) yields a Gaussian approximation to the posterior with mean (θ̂1, θ̂s) and covariance
matrix H−1

p , i.e.,

p(θ1,θs |D) ∝ exp
{− 1

2
(θ′

1,θ′
s)>Hp (θ′

1,θ′
s)

}
. (4.5)

Our parameter space is too large to compute the inverse of the negative Hessian Hp , so we replace
it with the diagonal of the Fisher information, diag(F ). This approximation falsely presupposes
that the parameters (θ1,θs) are independent, but it has already proven effective (Kirkpatrick et al.,
2017; Pascanu & Bengio, 2014). One of its main advantages is that we can compute the Fisher
information from the squared gradients, thereby avoiding any need for second derivatives.

Using equation (4.5) and the Fisher approximation we can express the log posterior as

log p(θ1,θs |D) ∝ α

2

∑
θsi ∈θs

Fθsi
(θsi − θ̂si )2 , (4.6)

where Fθsi
is the diagonal element corresponding to parameter θsi in the diagonal approximation

of the Fisher information matrix and α is a hyper-parameter, which can be obtained from the
trained model f1(D;θ1,θs).

Now consider the last term in equation (4.3), noting that Ω = Hss − H>
1s H−1

11 H1s , as defined
in Lemma 2. As our previous approximation relies on the assumption of a diagonal Fisher
information matrix, we have H1s = 0, leading to Ω= Hss , so

1

2
v>Ωv = 1

2

∑
θsi ∈θs

Fθsi
(θsi − θ̂si )2 . (4.7)

The last two terms on the right-hand side of equation (4.3), as expressed in equation (4.6)
and equation (4.7), can then be grouped. Combining the result with the first two terms, discussed
below equation (4.3), yields our Weight Plasticity Loss,

LWPL(θ2,θs) =L2(θ2,θs)+ λ

2
(‖θs‖2 +‖θ2‖2)

+ α

2

∑
θsi ∈θs

Fθsi
(θsi − θ̂si )2,

(4.8)

where Fθsi
is the diagonal element corresponding to parameter θsi in the Fisher information
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matrix obtained from the trained first model f1(D;θ1,θs). We omit the terms depending on θ1

in equation (4.6) because we are optimizing with respect to (θ2,θs) at this stage. The Fisher
information in the last term encodes the importance of each shared weight for the first model’s
performance, so WPL encourages preserving shared parameters that were important for the first
model, while allowing others to undergo larger changes and thus to improve the accuracy of the
second model.

Relation to Elastic weight consolidation. The final loss function obtained in equation (4.8)
may appear similar to that obtained by Kirkpatrick et al. (2017) when formulating their Elastic
Weight Consolidation (EWC) to address catastrophic forgetting. However, the problem we
address here is fundamentally different. Kirkpatrick et al. (2017) tackle sequential learning on
different tasks, where a single model is sequentially trained using two datasets, and their goal
is to maximize the posterior p(θ | D) = p(θ | D1,D2). By relying on Laplace approximations
in neural networks (MacKay, 1992) and the connection between the Fisher information matrix
and second-order derivatives (Pascanu & Bengio, 2014), EWC is then formulated as the loss
L (θ) = LB(θ)+∑

i
λ
2 Fi (θi −θ?A,i )2, where A and B refer to two different tasks, θ encodes the

network parameters and Fi is the Fisher information of θi .

Here we consider scenarios with a single dataset but two models with shared parameters as shown
in Figure 4.2, and aim to maximize the posterior p(θ1,θ2,θs |D). The resulting WPL combines
the original loss of the second model, a Fisher-weighted MSE term on the shared parameters
and an L2 regularizer on the parameters of the second model. More importantly, the last term
in equation (4.3), v>Ωv , is specific to the multi-model case, since it encodes the interaction
between the two models; it never appears in the EWC derivation. Because we adopt a Laplace
approximation based on the diagonal Fisher information matrix, as shown in equation (4.7), this
term can be grouped with that of equation (4.6). In principle, however, other approximations of
v>Ωv could be used, such as a Laplace one with a full covariance matrix, which would yield a
final loss that differs fundamentally from the EWC one.

4.3.2 WPL for Neural Architecture Search

In the previous section, we considered only two models being trained sequentially, but in practice
one often seeks to train three or more models. Our approach is then unchanged, but each
model shares parameters with several other models, which entails using diagonal approximations
to Fisher information matrices for all previously-trained models from equation (4.3). In the
remainder of this section, we discuss how our approach can be used for neural architecture search.

Consider using our WPL within the ENAS strategy of Pham et al. (2018a). ENAS is a
reinforcement-learning-based method that consists of two training processes: 1) sequentially
train sampled models with shared parameters; and 2) train a controller RNN that generates model
candidates. Incorporating our WPL within ENAS only affects 1).
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Figure 4.2: Comparison between EWC and WPL. The ellipses in each subplot represent
parameter regions corresponding to low error. (Top left) Both methods start with a single model,
with parameters θA = {θs ,θ1}, trained on a single dataset D1. (Bottom left) EWC regularizes all
parameters based on p(θA|D1) to train the same initial model on a new dataset D2. (Top right)
By contrast, WPL makes use of the initial dataset D1 and regularizes only the shared parameters
θs based on both p(θA|D1) and v>Ωv , while the parameters θ2 can vary freely.
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Figure 4.3: From strict to loose convergence. We conduct experiments on MNIST with models
A and B with shared parameters, and report the accuracy of Model A before training Model B
(baseline, green) and the accuracy of Models A and B while training Model B with (orange)
or without (blue) WPL. In (a) we show the results for strict convergence: A is initially trained
to convergence. We then relax this assumption and train A to around 55% (b), 43% (c), and
38% (d) of its optimal accuracy. We see that WPL is highly effective when A is trained to at
least 40% of optimality; below, the Fisher information becomes too inaccurate to provide reliable
importance weights. Thus WPL helps to reduce multi-model forgetting, even when the weights
are not optimal. WPL reduced forgetting by up to 99.99% for (a) and (b), and by up to 2% for (c).

The first step of ENAS consists of sampling a fixed number of architectures from the RNN
controller, and training each architecture on B batches. This implies that our requirement for
access to the maximum likelihood estimate of the previously-trained models is not satisfied,
but we verify that in practice our WPL remains effective in this scenario. After sufficiently
many epochs it is likely that all the parameters of a newly-sampled architecture are shared with
previously-trained ones, and then we can consider that all parameters of new models are shared.

At the beginning of the search, the parameters of all models are randomly initialized. Adopting
WPL directly from the start would therefore make it hard for the process to learn anything, as it
would encourage some parameters to remain random. To better satisfy our assumption that the
parameters of previously-trained models should be optimal, we follow the original ENAS training
strategy for n epochs, with n = 5 for RNN search and n = 3 for CNN search in our experiments.
We then incorporate our WPL and store the optimal parameters after each architecture is trained.
We also update the Fisher information, which adds virtually no computational overhead, because
Fθ i = (∂L /∂θi )2, where L =∑

i Li , with i indexing the previously-sampled architectures, and
the derivatives are already computed for back-propagation. To ensure that these updates use
the contributions from all previously-sampled architectures, we use a momentum-based update
expressed as Fθ

t
i = (1−η)Fθ

t−1
i +η(∂L /∂θi )2, with η = 0.9. Since this is not computed at the

MLE of the parameters, we flush the global Fisher buffer to zero every three epochs, yielding an
increasingly accurate estimate of the Fisher information as optimization proceeds. We also use a
scheduled decay for α in equation (4.8).
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4.4 Experiments

We first evaluate our weight plasticity loss (WPL) in the general scenario of training two models
sequentially, both in the strict convergence case and when the weights of the first model are
sub-optimal. We then evaluate the performance of our approach within the ENAS framework.

4.4.1 General Scenario: Training Two Models

To test WPL in the general scenario, we used the MNIST handwritten digit recognition dataset (Le-
Cun & Cortes, 2010). We designed two feed-forward networks with 4 (Model A) and 6 (Model
B) layers, respectively. All the layers of A are shared by B.

Let us first evaluate our approach in the strict convergence case. To this end, we trained A until
convergence, thus obtaining a solution close to the MLE θ̂A = (θ̂1, θ̂s), since all our operations
are positively homogeneous (Haeffele & Vidal, 2017). To compute the Fisher information, we
used the backward gradients of θs calculated on 200 images in the validation set. We then
initialized θs of Model B, fB(D; (θ2,θs)), as θ̂s and trained B by standard SGD with respect to all
its parameters. Figure 4.3(a) compares the performance of training Model B with and without
WPL. Without WPL the performance of A degrades as training B progresses, but using WPL
allows us to maintain the initial performance of A, indicated as Baseline in the plot. This entails
no loss of performance for B, whose final accuracy is virtually the same both with and without
WPL.

The assumption of optimal weights is usually hard to enforce. We therefore now turn to the more
realistic loose convergence scenario. To evaluate the influence of sub-optimal weights for Model A
on our approach, we trained Model A to different, increasingly lower, top 1 accuracies. As shown
in Figure 4.3(b) and (c), even in this setting our approach still significantly reduces multi-model
forgetting. We can quantify the relative reduction rate of such forgetting as dA −dA+WPL/dA,
where d = acc∗A − acc is A’s accuracy decay after training B. WPL can reduce multi-model
forgetting by up to 99% for a converged model, and by 52% even for the loose convergence case.
This suggests that the Fisher information remains a reasonable empirical approximation to the
weights’ importance even when our optimality assumption is not satisfied.

4.4.2 WPL for Neural Architecture Search

We demonstrate the effectiveness of WPL in a real-world application, neural architecture search.
We incorporate WPL in the ENAS framework (Pham et al., 2018a), which relies on weight-
sharing across model candidates to speed up the search and thus, while effective, will suffer from
multi-model forgetting even with random dropping of weights and output dropout. To show this,
we examine how the previously-trained architectures are affected by the training of new ones by
evaluating the prediction error of each sampled architecture on a fraction of the validation dataset
immediately after it is trained, denoted by er r1, and at the end of the epoch, denoted by er r2.
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Figure 4.4: Error difference during neural architecture search. For each architecture, we
compute the RNN error differences er r2 −er r1, where er r1 is the error right after training this
architecture and er r2 the error after all architectures are trained in the current epoch. We plot
(a) the mean difference over all sampled models, (b) the mean difference over the 5 models
with lowest er r1, and (c) the max difference over all models. The plots show that WPL reduces
multi-model forgetting; the error differences are much closer to 0. Quantitatively, the forgetting
reduction can be up to 95% for (a), 59% for (b) and 51% for (c). In (d), we plot the average
reward of the sampled architectures as a function of training iterations. Although WPL initially
leads to lower rewards, due to a large weight α in equation (4.8), by reducing the forgetting it
later allows the controller to sample better architectures, as indicated by the higher reward in the
second half.

A positive difference er r2 −er r1 for a specific architecture indicates that it has been forced to
forget by others.

We performed two experiments: RNN cell search on the PTB dataset and CNN micro-cell search
on the CIFAR10 dataset. We report the mean error difference for all sampled architectures,
the mean error difference for the 5 architectures with the lowest er r1, and the maximum error
difference over all sampled architectures. Figure 4.4(a), (b) and (c) plot these as functions of the
training epochs for the RNN case, and similar plots for CNN search are in the appendix. The
plots show that without WPL the error differences are much larger than 0, clearly displaying
the multi-model forgetting effect. This is particularly pronounced in the first half of training,
which can have a dramatic effect on the final results, as it corresponds to the phase where the
algorithm searches for promising architectures. WPL significantly reduces the forgetting, as
shown by much lower error differences. With WPL, these differences tend to decrease over time,
emphasizing that the observed Fisher information encodes an increasingly reliable notion of
weight importance as training progresses. Owing to limited computational resources we estimate
the Fisher information using only small validation batches, but use of larger batches could further
improve our results.

In Figure 4.4(d), we plot the average reward of all sampled architectures as a function of the
training iterations. In the first half of training, the models trained with WPL tend to have lower
rewards. This can be explained by the use of a large value for α in equation (4.8) during this
phase; while such a large value may prevent the best models from achieving as high a reward
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Table 4.1: Results of the best models found. We take the best model obtained during the search
and train it from scratch. ENAS* corresponds to the results of Pham et al. (2018a) obtained after
extensive hyper-parameter search, while ENAS and ENAS+WPL were trained in comparable
conditions. For both RNN and CNN search, our WPL gives a significant boost to ENAS, thus
showing the importance of overcoming multi-model forgetting. In the RNN case, our approach
outperforms ENAS* without requiring extensive hyper-parameter tuning.

Datasets Metric ENAS* ENAS ENAS + WPL
PTB perplexity 63.26 65.01 61.9

CIFAR10 top-1 error 3.54 4.87 3.81

as possible, it has the advantage of preventing the forgetting of good models, and thus avoiding
their being discarded early. This is shown by the fact that, in the second half of training, when we
reduce α, the mean reward of the architectures trained with WPL is higher than without using it.
In other words, our approach allows us to maintain better models until the end of training.

When the search is over, we train the best architecture from scratch and evaluate its final accuracy.
Table 4.1 compares the results obtained without (ENAS) and with WPL (ENAS+WPL) with
those from the original ENAS paper (ENAS*), which were obtained after conducting an extensive
hyper-parameter search. For both datasets, using WPL improves final model accuracy, thus
showing the importance of overcoming multi-model forgetting. In the case of PTB, our approach
even outperforms ENAS*, without extensive hyper-parameter tuning. Based on the gap between
ENAS and ENAS*, we anticipate that such a tuning procedure could further boost our results. In
any event, we believe that these results already clearly show the benefits of reducing multi-model
forgetting.

4.4.3 Neural Architecture Optimization

Our approach is general, and its use in the context of neural architecture search is not limited to
ENAS. To demonstrate this, we applied it to the neural architecture optimization (NAO) method
of Luo et al. (2018c), which also exploits weight-sharing in the search phase. In this context, we
therefore investigate (i) whether multi-model forgetting occurs, and if so, (ii) the effectiveness
of our approach in the NAO framework. Due to resource and time constraints, we focus our
experiments mainly on the search phase, as training the best model that was found from scratch
takes around 4 GPU days. To evaluate the influence of the dropout strategy of Bender et al.
(2018a), we test NAO with or without random path-dropping and with four output dropout rates
from 0 to 0.75 by steps of 0.25. As in Section 4.4.2, in Figure 4.5, we plot the mean validation
perplexity and the best five model’s error differences for all models that are sampled during
a single training epoch. For random path-dropping, since Luo et al. (2018c) exploit a more
aggressive dropping policy than that used in Bender et al. (2018a), validation perplexity quickly
plateaus. Hence we do not add WPL to the path dropout strategy, but use it in conjunction with
output dropout.

At all four different dropout rates, WPL clearly reduces multi-model forgetting and accelerates
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Figure 4.5: Comparison of different output dropout rates for NAO. We plot the mean
validation perplexity while searching for the best architecture (top) and the best 5 model’s error
differences (bottom) for four different dropout rates. Note that path dropping in NAO prevents
learning shortly after model initialization with all different dropout rates. At all the dropout
rates, our WPL achieves lower error differences, i.e., it reduces multi-model forgetting, as well as
speeds up training.

training. The level of forgetting decreases with the dropout rate, but our loss always further
reduces it. Among the three methods, NAO with path dropping suffers the least from forgetting,
but only because it does not learn properly. By contrast, WPL reduces multi-model forgetting
while still allowing the models to learn. This shows that our approach generalizes beyond ENAS
for neural architecture search.

4.5 Conclusion

We identified the problem of multi-model forgetting in the context of sequentially training multiple
models: the shared weights of previously-trained models are overwritten during training of
subsequent models, leading to performance degradation. We show that the degree of degradation
is linked to the proportion of shared weights, and introduce a statistically-motivated weight
plasticity loss (WPL) to overcome this. Our experiments on multi-model training and on neural
architecture search clearly show the effectiveness of WPL in reducing multi-model forgetting
and yielding better architectures, leading to improved results in both natural language processing
and computer vision tasks. We believe that the impact of WPL goes beyond the tasks studied
in this paper. In terms of the future work, one direction is to integrate WPL within other
neural architecture search strategies in which weight sharing occurs and to study its use in other
multi-model contexts, such as for ensemble learning.
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5 Evaluating the search phase of neural
architecture search

While experimenting with NAS, we have discovered that the performance of NAS samplers
is often unstable; in some cases, simply changing the random seed will cause a drastic perfor-
mance difference. This motivated us to revisit the current NAS evaluation scheme. Existing
NAS approaches rely on two stages: searching over the architecture space and validating the
best architecture. NAS algorithms are currently compared solely based on their results on the
downstream task. While intuitive, this fails to explicitly evaluate the effectiveness of their search
strategies. In this chapter, we propose to evaluate the NAS search phase. To this end, we compare
the quality of the solutions obtained by NAS search policies with that of random architecture
selection. We find that: (i) On average, the state-of-the-art NAS algorithms perform similarly to
the random policy; (ii) the widely-used weight sharing strategy degrades the ranking of the NAS
candidates to the point of not reflecting their true performance, thus reducing the effectiveness
of the search process. We believe that our evaluation framework will be key to designing NAS
strategies that consistently discover architectures superior to random ones.

5.1 Introduction

By automating the design of a neural network for the task at hand, Neural Architecture Search
(NAS) has tremendous potential to impact the practicality of deep learning (Zoph & Le, 2017a;
Liu et al., 2018c;a; Tan et al., 2018; Baker et al., 2016), and has already obtained state-of-the-art
performance on many tasks. A typical NAS technique (Zoph & Le, 2017a; Pham et al., 2018b;
Liu et al., 2018a) has two stages: the search phase, which aims to find a good architecture, and
the evaluation one, where the best architecture is trained from scratch and validated on the test
data.

In the literature, NAS algorithms are typically compared based on their results in the evaluation
phase. While this may seem intuitive, the search phase of these algorithms often differ in several
ways, such as their architecture sampling strategy and the search space they use, and the impact
of these individual factors cannot be identified by looking at the downstream task results only.
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Table 5.1: Comparison of NAS algorithms with random sampling. We report results on PTB
using mean validation perplexity (the lower, the better) and on CIFAR-10 using mean top 1
accuracy. We also provide the p-value of Student’s t-tests against random sampling.

PTB (PPL) t-test CIFAR-10 (acc.) t-test

ENAS 59.88 ± 1.92 0.73 96.79 ± 0.11 0.01
DARTS 60.61 ± 2.54 0.62 96.62 ± 0.23 0.20
NAO 61.99 ± 1.95 0.02 96.86 ± 0.17 0.00

Random 60.13 ± 0.65 - 96.44 ± 0.19 -

Furthermore, the downstream task results are often reported for a single random seed, which
leaves unanswered the question of robustness of the search strategies.

In this chapter, we therefore propose to investigate the search phase of existing NAS algorithms
in a controlled manner. To this end, we compare the quality of the NAS solutions with a random
search policy, which uniformly randomly samples an architecture from the same search space as
the NAS algorithms, and then trains it using the same hyper-parameters as the NAS solutions. To
reduce randomness, the search using each policy, i.e., random and NAS ones, is repeated several
times, with different random seeds.

We perform a series of experiments on the Penn Tree Bank (PTB) (Marcus et al., 1994a) and
CIFAR-10 (Krizhevsky et al., 2009a) datasets, in which we compared the state-of-the-art NAS
algorithms whose code is publicly available—DARTS (Liu et al., 2019b), NAO (Luo et al., 2018a)
and ENAS (Pham et al., 2018b)—to our random policy. We reached the surprising conclusions
that, as shown in Table 5.1, none of them significantly outperforms random sampling. Since
the mean performance for randomly-sampled architectures converges to the mean performance
over the entire search space, we further conducted Welch Student’s t-tests (Welch, 1947), which
reveal that, in RNN space, ENAS and DARTS cannot be differentiated from the mean of entire
search space, while NAO yields worse performance than random sampling. While the situation
is slightly better in CNN space, all three algorithms still perform similarly to random sampling.
Note that this does not necessarily mean that these algorithms perform poorly, but rather that
the search space has been sufficiently constrained so that even a random architecture in this
space provides good results. To verify this, we experiment with search spaces where we can
exhaustively evaluate all architectures, and observe that these algorithms truly cannot discover
top-performing architectures.

In addition to this, we observed that the ranking by quality of candidate architectures produced by
the NAS algorithms during the search does not reflect the true performance of these architectures
in the evaluation phase. Investigating this further allowed us to identify that weight sharing (Pham
et al., 2018b), widely adopted to reduce the amount of required resources from thousands of
GPU days to a single one, harms the individual networks’ performance. More precisely, using
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Figure 5.1: Evaluating NAS. Existing frameworks consist of two phases: (a) The search phase,
where a sampler is trained to convergence or a pre-defined stopping criterion; (b) The evaluation
phase that trains the best model from scratch and evaluates it on the test data. Here, we argue
that one should evaluate the search itself. To this end, as shown in (c), we compare the best
architecture found by the NAS policy with a single uniformly randomly sampled architecture.
For this comparison to be meaningful, we repeat it with different random seeds for both training
the NAS sampler and our random search policy. We then report the mean and standard deviations
over the different seeds.

reduced search spaces, we make use of the Kendall Tau τ metric1 to show that the architecture
rankings obtained with and without weight sharing are entirely uncorrelated in RNN space (τ =
-0.004 over 10 runs); and have little correlation in the CNN space (τ = 0.195 over 10 runs). Since
such a ranking is usually treated as training data for the NAS sampler in the search phase, this
further explains the small margin between random search and the NAS algorithms. We also show
that training samplers without weight sharing in CNN space surpasses random sampling by a
significant margin.

In other words, we disprove the common belief that the quality of architectures trained with and
without weight sharing is similar. We show that the difference in ranking negatively impacts the
search phase of NAS algorithms, thus seriously impeding their robustness and performance.

In short, evaluating the search phase of NAS, which is typically ignored, allowed us to identify
two key characteristics of state-of-the-art NAS algorithms: The importance of the search space
and the negative impact of weight sharing. We believe that our evaluation framework will be
instrumental in designing NAS search strategies that are superior to the random one.

5.2 Evaluating the NAS Search

In this section, we detail our evaluation framework for the NAS search phase. As depicted in
Figure 5.1(a,b), typical NAS algorithms consist of two phases:

1The Kendall Tau (Kendall, 1938) metric measures the correlation of two ranking. Details in Section 5.2.5.
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Figure 5.2: Search space of NAS algorithms. Typically, the search space is encoded as (a) a
directed acyclic graph, and an architecture can be represented as (b) a string listing the node ID
that each node is connected to, or the operation ID employed by each node. (c) An alternatively
representation is a list of vectors α of size n(n+1)

2 |O |, where n is the number of nodes and O is the
set of all operations. Each vector, α(i , j ), captures, via a softmax, the probability po that operation
o is employed between node i and j . Note that any node only takes one incoming edge, thus (b)
and (c) represent the same search space and only differs in its formality.

• Search: The goal of this phase is to find the best candidate architecture from the search
space. This is where existing algorithms, such as ENAS, DARTS and NAO, differ. Never-
theless, for all the algorithms, the search depends heavily on initialization. In all the studied
policies, initialization is random and the outcome thus depends on the chosen random seed.

• Evaluation: In this phase, all the studied algorithms retrain the best model found in the
search phase. The retrained model is then evaluated on the test data.

The standard evaluation of NAS techniques focuses solely on the final results on the test data.
Here, by contrast, we aim to evaluate the search phase itself, which truly differentiates existing
algorithms.

To do this, as illustrated in Figure 5.1(c), we establish a baseline; we compare the search phase
of existing algorithms with a random search policy. An effective search algorithm should yield
a solution that clearly outperforms the random policy. Below, we introduce our framework
to compare NAS search algorithms with random search. The three NAS algorithms that we
evaluated, DARTS (Liu et al., 2019b), NAO (Luo et al., 2018a) and ENAS (Pham et al., 2018b),
are representative of the state of the art for different search algorithms: reinforcement learning,
gradient-descent and performance prediction.

5.2.1 NAS Search Space Representation

Our starting point is a neural search space for a neural architecture, as illustrated in Figure 5.2. A
convolutional cell can be represented with a similar topological structures. Following common
practice in NAS (Zoph & Le, 2017a), a candidate architecture sampled from this space connects
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the input and the output nodes through a sequence of intermediary ones. Each node is connected
to others and has an operation attached to it.

A way of representing this search space (Pham et al., 2018b; Luo et al., 2018a), depicted in
Figure 5.2(b), is by using strings. Each character in the string indicates either the node ID that the
current node is connected to, or the operation selected for the current node. Operations include
the identity, sigmoid, tanh and ReLU (Nair & Hinton, 2010).

Following the alternative way introduced in (Liu et al., 2019b), we make use of a vectorized
representation of these strings. More specifically, as illustrated by Figure 5.2(c), a node ID, resp.
an operation, is encoded as a vector of probabilities over all node IDs, resp. all operations. For
instance, the connection between nodes i and j is represented as y (i , j )(x) =∑

o∈O poo(x), with
O the set of all operations, and po = softmax(αo) = exp(αo)/

∑
o′∈O exp(αo′) the probability of

each operation.

5.2.2 NAS algorithms

Here, we discuss the three state-of-the-art NAS algorithms used in our experiments in detail,
including their hyper-parameters during the search phase. The current state-of-the-arts NAS on
CIFAR-10 is ProxylessNAS (Cai et al., 2018b) with a top-1 accuracy of 97.92. However, this
algorithm inherits the sampler from ENAS and DARTS, but with a different objective function,
backbone model, and search space. In addition, the code is not publicly available, which precludes
us from directly evaluating it.

ENAS adopts a reinforcement learning sampling strategy that is updated with the REINFORCE
algorithm. The sampler is implemented as a two-layer LSTM Hochreiter & Schmidhuber (1997)
and generates a sequence of strings. In the training process, each candidate sampled by the ENAS
controller is trained on an individual mini-batch. At the end of each epoch, the controller samples
new architectures that are evaluated on a single batch of the validation dataset. After this, the
controller is updated accordingly using these validation metrics. We refer the reader to (Pham
et al., 2018b) for details about the hyper-parameter settings.

DARTS It vectorizes the aforementioned strings as discussed in Section 5.2.1 and shown in
Figure 5.2(c). The sampling process is then parameterized by the vector α, which is optimized
via gradient-descent in a dual optimization scheme: The architecture is first trained while fixing
α, and α is then updated while the network is fixed. This process is repeated in an alternating
manner. In the evaluation phase, DARTS samples the top-performing architecture by using the
trained α vector as probability prior, i.e., the final model is not a soft average of all paths but one
path in the DAG, which makes its evaluation identical to that of the other NAS algorithms. Note
that we use the same hyper-parameters as in the released code of Liu et al. (2019b).

NAO It implements a gradient-descent algorithm, but instead of vectorizing the strings as in
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DARTS, it makes use of a variational auto-encoder (VAE) to learn a latent representation of the
candidate architectures. Furthermore, it uses a performance predictor, which takes a latent vector
as input to predict the corresponding architecture performance. In short, the search phase of NAO
consists of first randomly sampling an initial pool of architectures and training them so as to
obtain a ranking. This ranking is then used to train the encoder-predictor-decoder network, from
which new candidates are sampled, and the process is repeated in an iterative manner. The best
architecture is then taken as the top-1 in the NAO ranking. We directly use the code released
by Luo et al. (2018a).

BayesNAS Bayesian optimization was first introduced to the neural architecture search field
by Kandasamy et al. (2018) and Jin et al. (2019). We chose to evaluate BayesNAS (Zhou
et al., 2019) because it is more recent than Auto-Keras (Jin et al., 2019) and than the work
of Kandasamy et al. (2018), and because these two works use different search spaces than
DARTS, resulting in models with significantly worse performance than DARTS. BayesNAS
adopts Bayesian optimization to prune the fully-connected DAG graph using the shared weights
to obtain accuracy metrics. The search space follows that of DARTS (Liu et al., 2019b) with
minor modifications in connections, but exactly the same operations. Please see (Zhou et al.,
2019) for more details. Note that BayesNAS was only implemented in CNN space. We use the
search and model code released by Zhou et al. (2019) with our training pipeline, since the authors
did not release the training code.

5.2.3 Comparing to Random Search

We implement our random search policy by simply assigning uniform probabilities to all op-
erations. Then, for each node in the Directed Acyclic Graph (DAG) that is typically used to
represent an architecture, we randomly sample a connection to one previous node from the
resulting distributions.

An effective search policy should outperform the random one. To evaluate this, we compute the
validation results of the best architecture found by the NAS algorithm trained from scratch, as
well as those of a single randomly sampled architecture. Comparing these values for a single
random seed would of course not provide a reliable measure. Therefore, we repeat this process
for multiple random seeds used both during the search phase of the NAS algorithm and to sample
one random architecture as described above. We then report the means and standard deviations
of these results over the different seeds. Note that while we use different seeds for the search and
random sampling, we always use the same seed when training the models from scratch during
the evaluation phase.

Our use of multiple random seeds and of the same number of epochs for the NAS algorithms and
for our random search policy makes the comparison fair. This contrasts with the comparisons
performed in (Pham et al., 2018b), where the results of only a single random architecture were
reported, and in (Liu et al., 2019b), which selected a single best random architecture among
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an initial set of 8 after training for 300 epochs only. As shown in Section 5.3.5, some models
that perform well in the early training stages may yield worse performance than others after
convergence. Therefore, choosing the best random architecture after only 300 epochs for PTB
and 100 for CIFAR-10, and doing so for a single random seed, might not be representative of the
general behavior.

5.2.4 Search in a reduced space

Because of the size of standard search spaces, one cannot understand the quality of the search
by fully evaluating all possible solutions. Hence, we propose to make use of reduced search
spaces with ground-truth architecture performances available to evaluate the search quality. For
RNNs, we simply reduce the number of nodes in the search space from 12 to 2. Given that each
node is identified by two values, the ID of the incoming node and the activation function, the
space has a cardinality |S| = n!∗|O |n , where n = 2 nodes and |O | = 4 operations, thus yielding 32
possible solutions. To obtain ground truth, we train all of these architectures individually. Each
architecture is trained 10 times with a different seed, which therefore yields a mean and standard
deviation of its performance. The mean value is used as ground truth—the actual potential of the
given architecture. These experiments took around 5000 GPU hours.

For CNNs, we make use of NASBench-101 (Ying et al., 2019), a CNN graph-based search
space with 3 possible operations, conv3x3, conv1x1 and max3x3. This framework defines search
spaces with between 3 and 7 nodes, with 423,624 architectures in 7-node case. To the best of our
knowledge, we are the first to evaluate the NAS methods used in this chapter on NASBench.

5.2.5 Metrics to evaluate NAS algorithms

Kendall Tau metric. As a correlation measure, we make use of the Kendall Tau (τ) met-
ric (Kendall, 1938): a number in the range [-1, 1] with the following properties:

• τ=−1: Maximum disagreement. One ranking is the opposite of the other.

• τ= 1: Maximum agreement. The two rankings are identical.

• τ close to 0: A value close to zero indicates the absence of correlation.

Probability to surpass random search As discussed in Section 5.2.4, the goal of NASBench
is to search for a CNN cell with up to 7 nodes and 3 operations, resulting in total 423,624
architectures. Each architecture is trained 3 times with different random initialization up to 108
epochs on the CIFAR-10 training set, and evaluated on the test split. Hence, the average test
accuracy of these runs can be seen as the ground-truth performances. In our experiments, we use
this to rank the architectures, from 1 (highest accuracy) to 423,624. Given the best architecture’s
rank r after n runs, and maximum rank rmax equals to the total number of architectures, the
probability that the best architecture discovered is better than a randomly searched one given the
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same budget is given by
p = 1− (1− (r /rmax ))n . (5.1)

We use this as a new metric to evaluate the search phase.

5.3 Experimental Results

To analyze the search phase of the three state-of-the-art NAS algorithms mentioned above, we
first compare these algorithms to our random policy when using standard search spaces for RNNs
on (PTB) and CNNs on CIFAR-10. The surprising findings in this typical NAS use case prompted
us to study the behavior of the search strategies in reduced search spaces. This allowed us to
identify a factor that has a significant impact on the observed results: Weight sharing. We then
quantify this impact on the ranking of the NAS candidates, evidencing that it dramatically affects
the effectiveness of the search.

5.3.1 NAS Comparison in a Standard Search Space

Below, we compare DARTS (Liu et al., 2019b), NAO (Luo et al., 2018a), ENAS (Pham et al.,
2018b) and BayesNAS (Zhou et al., 2019) with our random search policy, as discussed in
Section 5.2.3. We follow (Liu et al., 2019b) to define an RNN search space of 12 nodes and a
CNN ones of 7 nodes. For each of the four search policies, we run 10 experiments with a different
initialization of the sampling policy. During the search phase, we used the authors-provided
hyper-parameters and code for each policy. Once a best architecture is identified by the search
phase, it is used for evaluation, i.e., we train the chosen architecture from scratch for 1000 epochs
for RNN and 600 for CNN.

RNN Results.

In Figure 5.3, we plot, on the left, the mean perplexity evolution over the 1000 epochs, obtained
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Table 5.2: Top 1 accuracy in the original DARTS Search space. We report the mean and best
top-1 accuracy on the test sets of architectures found by DARTS, NAO, ENAS, BayesNAS, and
our random policy. As sanity check, we also train from scratch the architectures reported in
original papers, as well as their reported performance.

Our seed Best reported result

Type Mean test Best test Original Reproduced

DARTS 96.62 ± 0.23 96.80 97.24 97.15
NAO 96.86 ± 0.17 97.10 96.47 96.92
ENAS 96.76 ± 0.10 96.95 96.46 96.87
BayesNAS 95.99 ± 0.25 96.41 97.19 97.13

Random 96.48 ± 0.18 96.74 97.15 †

†Result took from Li & Talwalkar (2019)

by averaging the results of the best architectures found using the 10 consecutive seeds.2 On
the right, we show the perplexity evolution for the best cell of each strategy among the 10
different runs. Random sampling is robust and consistently competitive. As shown in Table 5.1,
it outperforms on average the DARTS and NAO policies, and yields the overall best cell for these
experiments with perplexity of 57.60. Further training this cell for 4000 epochs, as in (Liu et al.,
2019b), yields a perplexity of 55.93. The excellent performance of the random policy evidences
the high expressiveness of the manually-constructed search space; even arbitrary policies in this
space perform well, as evidenced by the relatively low standard deviation over the 10 seeds of the
random architectures, shown in Table 5.1 and Figure 5.3(left).

CNN Results. In Table 5.2, we compare the NAS methods with our random policy in the search
space of Liu et al. (2019b). We provide the accuracy reported in the original papers as well
as the accuracy we reproduced using our implementation. Note that the NAS algorithms only
marginally outperform random search, by less than 0.5% in top-1 accuracy. The best architecture
was discovered by NAO, with an accuracy of 97.10%, again less than 0.5% higher than the
randomly discovered one. Note that, our random sampling comes at no search cost. By contrast,
Li & Talwalkar (2019) obtained an accuracy of 97.15% with a different random search policy
having the same cost as DARTS.

Observations:

• The evaluated state-of-the-art NAS algorithms do not surpass random search by a significant
margin, and even perform worse in the RNN search space.

• The ENAS policy sampler has the lowest variance among the three tested ones. This shows
that ENAS is more robust to the variance caused by the random seed of the search phase.

• The NAO policy is more sensitive to the search space; while it yields the best performance in
CNN space, it performs the worst in RNN one.

2Starting from 1268, which is right after 1267, the seed released by Liu et al. (2019b). Note that, using this seed,
we can reproduce the DARTS RNN search and obtain a validation PPL of 55.7 as in (Liu et al., 2019b).
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Figure 5.4: Architectures discovered by NAS algorithms. We rank all 32 architectures in the
reduced search space based on their performance of individual training, from left (best) to right
(worst), and plot the best cell found by three NAS algorithms across the 10 random seeds.

• The DARTS policy is very sensitive to random initialization, and yields the largest standard
deviation across the 10 runs (2.54 in RNN and 0.23 in CNN space).

Such a comparison of search policies would not have been possible without our framework.
Nevertheless, the above analysis does not suffice to identify the reason behind these surprising
observations. As mentioned before, one reason could be that the search space has been sufficiently
constrained so that all architectures perform similarly well. By contrast, if we assume that the
search space does contain significantly better architectures, then we can conclude that these search
algorithms truly fail to find a good one. To answer this question, we evaluate these methods in a
reduced search space, where we can obtain the true performance of all possible architectures.

5.3.2 Searching a Reduced Space

The results in the previous section highlight the inability of the studied methods to surpass random
search. Encouraged by these surprising results, we then dig deeper into their causes. Below, we
make use of search spaces with fewer nodes, which we can explore exhaustively.

Reduced RNN space. We use the same search space as in Section 5.2.4 but reduce the number
of intermediate nodes to 2. In Table 5.3 (A), we provide the results of searching the RNN 2-node
space. Its smaller size allows us to exhaustively compute the results of all possible solutions, thus
determining the upper bound for this case. In Figure 5.4, we plot the rank of the top 1 architecture
discovered by the three NAS algorithms for each of the 10 different runs.

We observe that: (i) All policies failed to find the architecture that actually performs best; (ii) The
ENAS policy always converged to the same architecture. This further evidences the robustness of
ENAS to the random seed; (iii) NAO performs better than random sampling on average because
it keeps a ranking of architectures; (iv) DARTS never discovered a top-5 architecture.

Reduced CNN space. In Table 5.3 (B), we report the mean and best test top-1 accuracy over
10 different runs on the NASBench-101 7-node space. To assess the search performance, we
also show the best architecture rank in the entire space. The best test accuracy found by these
methods is 93.33, by NAO, which remains much lower than the ground-truth best of 95.06. In
terms of ranking, the best rank of these methods across 10 runs is 19522, which is among the
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Table 5.3: Results in reduced search spaces. For RNNs (A), We report the mean and best
perplexity on the validation and test sets at the end of training the architectures found using
DARTS, NAO, ENAS. For CNNs (B), we show the mean and best top-1 accuracy on the test set.
Instead of running random sampling in the reduced space, we compute the probability of the best
model found by each method to surpass the random one (details in Section 5.2.5). The mean and
best statistics of the entire search space are / reported as Space.

(A) RNN n=2(32) in PPL. (B) NASBench n=7(423K)

Type Mean Valid Mean Test Best Valid Best Test Mean Acc. Best Acc. Best Rank p(>random)

DARTS 71.29 ± 2.45 68.74 ± 2.42 68.05 65.55 92.21 ± 0.61 93.02 57079 0.24
NAO 68.66 ± 2.50 66.03 ± 2.40 66.22 63.59 92.59 ± 0.59 93.33 19552 0.62
ENAS 69.99 ± 0.0 66.61 ± 0.0 69.99 66.61 91.83 ± 0.42 92.54 96939 0.07

Space 69.69 ± 2.44 67.21 ± 2.52 65.38 62.63 90.93 ± 5.84 95.06 - -

top 4% architectures and yields a probability of 0.62 to surpass a randomly-sampled one given
the same search budget. Note that ENAS and DARTS only have 7% and 24% chance to surpass
the random policy. Note that we provide a more comprehensive comparison on this space in
Section 5.3.6.

NAO seems to constantly outperform random search in the reduced space. Nevertheless, the final
architecture chosen by NAO is always one of the architectures from the initial pool, which were
sampled uniformly randomly. This indicates that the ranking of NAO is not correctly updated
throughout the search and that, in practice, in a reduced space, NAO is similar to random search.

5.3.3 Impact of Weight Sharing

Our previous experiments in reduced search spaces highlight that the ranking of the searched
architectures does not reflect the ground-truth one. As we will show below, this can be traced
back to weight sharing, which all the tested algorithms, and the vast majority of existing ones,
rely on. To evidence this, we perform the following experiments:

Without WS: We make use of the reduced space, where we have the architecture’s real perfor-
mance.

With WS: We train the architectures in parallel, using the weight sharing strategy employed in
NAO and ENAS. As DARTS does not have discrete representations of the solutions during the
search, the idea of solution ranking does not apply. During training, each mini-batch is given
to an architecture uniformly sampled from the search space. We repeat the process 10 times,
with 10 random seeds and train the shared weights for 1000 epochs for the RNN experiments
and 200 epochs for the CNN ones. Note that, this approach is equivalent to Single Path One
Shot (SPOS) (Guo et al., 2019). It guarantees equal expectations of the number of times each
architecture is sampled, thus overcoming the bias due to unbalanced training resulting from
ineffective sampling policies.

We then compute the correlation between the architecture rankings found with WS and the ground
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Figure 5.5: Rank disorder due to weight sharing in RNN reduced space. (a) We report
the average and std over 10 different runs. Note that the rankings significantly differ between
using (line plot) and not using WS (bar plot), showing the negative impact of this strategy. (b)
We visualize from left to right, the best, worst and average cases, and show the corresponding
Kendall Tau value. A change in ranking, indicated by the colors and numbers, is measured as the
absolute position change between the WS ranking and the true one. For conciseness, we only
show the top 10 architectures. (c) For example, in the average scenario, the 6-th best architecture
is wrongly placed as the best one, as indicated by the red arrow.

Table 5.4: Search results w/o weight sharing. We report results from ENAS ans NAO on
NASBench with 7 nodes over 10 runs.

Type Mean Acc. Best Acc. Best Rank P(>random)

NAO 93.08 ± 0.71 94.11 3543 0.92
ENAS 93.54 ± 0.45 94.04 4610 0.90

truth (i.e., the architectures trained independently). For each of the 10 runs of the weight sharing
strategy, we evaluate the Kendall Tau metric (defined in Section 5.2.5) of the final rankings with
respect to the real averaged ranking.

RNN Results. In Figure 5.5(a), we depict the architecture performance obtained without WS
(sorted in ascending order of average validation perplexity), and the corresponding performance
with WS. In Figure 5.5(b), we show the rank difference, where the best and worst were found
using the Kendall Tau metric, and show a concrete rank change example in Figure 5.5(c).

CNN Results. We report the average Kendall tau across 10 different runs. Note that we sampled
up to 200 architectures for each experiment and fully evaluated on the entire test set to use the
test accuracy for ranking. The Kendall tau for search spaces from 3 to 7 nodes is, respectively,
0.441, 0.314, 0.214, 0.195. We also provide other statistics in Table 5.6 of Appendix 5.3.6. Since
NAO and ENAS intrinsically disentangle the training of shared weights and sampler, to further
confirm the negative effect of weight sharing, we adapt these algorithms to use the architecture’s
performance in the NASBench dataset to train their sampler. Table 5.4 evidences that, after
removing weight sharing, both ENAS and NAO consistently discover a good architecture, as
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indicated by a small difference between the best over 10 runs and the mean performance. More
interestingly, for the 7-node case, the best cell discovered (94.11% by NAO and 94.04% by
ENAS) are more than 1% higher than the best cells found with weight sharing (93.33 and 92.54,
respectively, in Table 5.3).

Observations:

• The difference of architecture performance is not related to the use of different random
seeds, as indicated by the error bars in Figure 5.5(a).

• WS never produces the true ranking, as evidenced by the Best case in Figure 5.5(b).

• The behavior of the WS rankings is greatly affected by changing the seed. In particular,
the Kendall Tau for the plots in Figure 5.5(b) are 0.282,−0.004,−0.116 for Best, Average
and Worst.

• For RNNs, the Kendall Tau are close to 0, which suggests a lack of correlation between
the WS rankings and the true one. By contrast, for CNNs, the correlation is on average
higher than for RNNs. This matches the observation in Section 5.3.1 that CNN results are
generally better than RNN ones.

• If we train NAO and ENAS without weight sharing in NASBench, on average the per-
formance is 1% higher than them with it. This further evidences that weight sharing
negatively impacts the sampler, and with a good ranking, the sampler can be trained better.
Furthermore, the probability to surpass random search increases from 0.62 to 0.92 for NAO
and from 0.07 to 0.90 for ENAS.

Together with previous results, we believe that these results evidence the negative impact of weight
sharing; it dramatically affects the performance of the sampled architectures, thus complicating
the overall search process and leading to search policies that are no better than the random one.

5.3.4 Influence of the Amount of Sharing

Depending on the active connections in the DAG, different architectures are subject to different
amounts of weight sharing. In Figure 5.6 (a), let us consider the 3-node case, with node 1 and
node 2 fixed and node 3 having node 1 as incoming node. In this scenario, the input to node
3 can be either directly node 0 (i.e., the input), or node 1, or node 2. In the first case, the only
network parameters that the output of node 3 depends on are the weights of its own operation. In
the second and third cases, however, the output further depends on the parameters of node 1, and
of nodes 1 and 2, respectively.

To study the influence of the amount of sharing on the architecture ranking, we performed an
experiment where we fixed the first two nodes and only searched for the third one. This represents
a space of 12 architectures (3 possible connections to node 3 × 4 operations). We train them using
the same setting in Section 5.3.3. The ranking of the 12 architectures is shown in Figure 5.6 (b),
where color indicates the number of shared weight matrices, that is, matrices of nodes 1 and 2
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also used in the search for node 3. Note that the top-performing architectures do not share any
weights and that the more weights are shared, the worse the architecture performs.

Table 5.5: Ranking disorder of
weight sharing in CNN.

# of shared matrix 0 1 2 3

Kendall Tau τ 0.67. 0.33 -0.33 0.0

In CNN space, we conduct a similar experiment in NAS-
Bench. With total node equals to 6, we only permute the
last node operation and connection to one of the previous
nodes. In short, we will have a total 4 connection pos-
sibility and 3 operation choices, in total 12 architectures.
We compute the Kendall Tau among the architectures with the same connection but different
operations, and the results are reported in Table 5.5. Clearly, the correlation of architectures
decrease while the weight sharing matrices increase.

5.3.5 Random Sampling Comparison

As discussed before, the random policy in (Liu et al., 2019b) samples 8 architectures, and picks
the best after training them for 300 epochs independently. It might seem contradictory that
DARTS outperforms this random policy, but cannot surpass the much simpler one designed in
this chapter, which only randomly samples 10 architectures (1 per random seed), trains them to
convergence and picks the best. However, the random policy in DARTS relies on the assumption
that a model that performs well in the early training stage will remain effective until the end of
training. While this may sound intuitive, we observed a different picture with our reduced search
space.

Since we obtained the ground-truth performance ranking, as discussed in Section 5.3.2, in
Figure 5.7, we plot the evolution of models’ rank while training proceeds, based on the average
validation perplexity over 10 runs. Clearly, there are significant variations during training: Good
models in early stages drop lower in the ranking towards the end. As such, there is a non-
negligible chance that the random policy in DARTS picks a model whose performance will be
sub-optimal. We therefore believe that our policy that simply samples one model and trains it until
convergence yields a more fair baseline. Furthermore, the fact that we perform our comparison
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Figure 5.7: Rank changes while training. Each line represents the evolution of the rank of a
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random sampling was performed, either by the random policy in Liu et al. (2019b), or by ours.
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Table 5.6: Comparison of state-of-the-art methods on NASBench-101 search space with
CIFAR-10. n: number of nodes, (x): total architecture choices, mean and best: top 1 accuracy
(in %)

Search Space n = 4 (91) n = 5 (2.5K)

Method Mean Best K-T Mean Best K-T

Sampling methods, train sampler during training super-net
ENAS 89.41 ± 3.54 92.95 - 89.03 ± 2.76 91.84 -
NAO 92.87 ± 0.69 93.88 - 92.07 ± 1.14 93.97 -
DARTS 91.54 ± 1.93 93.71 - 91.82 ± 1.10 93.63 -
FBNET 91.56 ± 1.89 93.71 - 92.51 ± 1.51 93.90 -

One-shot methods, train sampler after optimizing super-net
SPOS 91.14 ± 3.47 94.24 0.441 91.53 ± 1.76 93.72 0.314
FAIRNAS 89.08 ± 4.35 94.13 -0.043 91.38 ± 1.44 93.55 -0.028

Search Space n = 6 (64K) n = 7 (423K) Best of

Method Mean Best K-T Mean Best K-T all n

Sampling methods, train sampler during training super-net
ENAS 91.41 ± 1.42 92.75 - 91.83 ± 0.42 92.54 - 93.69
NAO 92.83 ± 0.78 93.62 - 92.59 ± 0.59 93.33 - 93.97
DARTS 91.12 ± 1.86 93.92 - 92.21 ± 0.61 93.02 - 93.92
FBNET 91.76 ± 1.26 92.98 - 92.29 ± 1.25 93.98 - 93.98

One-shot methods, train sampler after optimizing super-net
SPOS 90.56 ± 1.03 92.29 0.214 89.85 ± 3.80 93.84 0.195 94.24
FAIRNAS 91.75 ± 2.20 94.47 -0.221 91.10 ± 1.84 93.55 -0.232 94.47

using 10 random seeds, for both our approach and the NAS algorithms, vs a single one in (Liu
et al., 2019b) makes our conclusions more reliable.

5.3.6 NASBench detailed results.

We provide additional evaluations on the NASBench dataset to benchmark the performance
of the state-of-the-art NAS algorithms. In addition to the aforementioned three methods, we
re-implemented some recent algorithms, such as FBNet (Wu et al., 2018), Single Path One Shot
(SPOS) (Guo et al., 2019), and FairNAS (Chu et al., 2019). Note that we removed the FBNet
device look-up table and model latency from the objective function since the search for a mobile
model is not our primary goal. This also makes it comparable with the other baselines.

To ensure fairness, after the search phase is completed, each method trains the top 1 architectures
found by its policy from scratch to obtain ground-truth performance; we repeated all the exper-
iments with 10 random seeds. We report the mean and best top 1 accuracy in Table 5.6 for a
number of nodes n ∈ [4,7], and the Kendall Tau (K-T) values for one-shot methods following
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Section 5.3.2 in the chapter.

From the results, we observe that: 1) Sampling-based NAS strategies always have better mean
accuracy with lower standard deviation, meaning that they converge to a local minimum more
easily but do not exploit the entire search space. 2) By contrast, one-shot methods explore more
diverse solutions, thus having larger standard deviations but lower means, but are able to pick
a better architecture than sampling-based strategies (94.47 for FairNAS and 94.24 for SPOS,
vs best of sampler based FBNet 93.98). 3) ENAS constantly improves as the number of nodes
increases. 4) FBNet constantly outperforms DARTS, considering the similarity, using Gumbel
Softmax seems a better choice. 5) The variance of these algorithms is large and sensitive to
initialization. 6) Even one-shot algorithms cannot find the overall best architecture with accuracy
95.06.

5.4 Conclusion

In this chapter, we have analyzed the effectiveness of the search phase of NAS algorithms via
fair comparisons to random search. We have observed that, surprisingly, the search policies of
state-of-the-art NAS techniques are no better than random, and have traced the reason for this to
the use of (i) a constrained search space and (ii) weight sharing, which shuffles the architecture
ranking during the search, thus negatively impacting it.

In essence, our gained insights highlight two key properties of state-of-the-art NAS strategies,
which had been overlooked in the past due to the single-minded focus of NAS evaluation on the
results on the target tasks. We believe that this will be key to the development of novel NAS
algorithms.
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6 How to Train Your Super-net

Although weight sharing promises to make neural architecture search (NAS) tractable even on
commodity hardware, in the previous chapter, we have shown that weight sharing negatively
impacts the search performance. Existing weight sharing NAS methods rely on a diverse set of
heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since
heuristics substantially vary across different methods and have not been carefully studied, it
is unclear to which extent they impact super-net training and hence the weight-sharing NAS
algorithms. In this chapter, we disentangle super-net training from the search algorithm, isolate
14 frequently-used training heuristics, and evaluate them over three benchmark search spaces.
Our analysis uncovers that several commonly-used heuristics negatively impact the performance
correlation between using the parameters from the stand-alone training and the super-net training,
whereas simple, but often overlooked factors, such as proper hyper-parameter settings, are key
to achieve strong performance. Equipped with this knowledge, we show that simple random
search achieves competitive performance to complex state-of-the-art NAS algorithms when the
super-net is properly trained.

6.1 Introduction

Neural architecture search (NAS) has received growing attention in the past few years, yielding
state-of-the-art performance on several machine learning tasks (Liu et al., 2019a; Wu et al., 2018;
Chen et al., 2019b; Ryoo et al., 2020). One of the milestones that led to the popularity of NAS is
weight sharing (Pham et al., 2018b; Liu et al., 2019b), which, by allowing all possible network
architectures to share the same parameters, has reduced the computational requirements from
thousands of GPU hours to just a few. Figure 6.1 shows the two phases that are common to
weight-sharing NAS (WS-NAS) algorithms: the search phase, including the design of the search
space and the search algorithm; and the evaluation phase, which encompasses the final training
protocol on the target task 1.

1Target task refers to the tasks that neural architecture search aims to optimize on.
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Figure 6.1: WS-NAS benchmarking. Green blocks indicate which aspects of NAS are bench-

marked in different works. A search algorithm usually consists of a search space that encompass

many architectures, and a policy to select the best one. P indicates a training protocol, and f a

mapping function from the search space to a neural network. (a) Early works fixed and compared

the metrics on the proxy task, which doesn’t allow for a holistic comparison between algorithms.

(b) The NASBench benchmark series partially alleviates the problem by sharing the stand-alone

training protocol and search space across algorithms. However, the design of the weight-sharing

search space and training protocol is still not controlled. (c) We fill this gap by benchmarking

existing techniques to construct and train the shared-weight backbone. We provide a controlled

evaluation across three benchmark spaces.

While most works focus on developing a good sampling algorithm (Cai et al., 2018b; Xie et al.,

2018) or improving existing ones (Zela et al., 2020a; Nayman et al., 2019; Li et al., 2020a), they

tend to overlook or gloss over important factors related to the design and training of the shared-

weight backbone network, i.e. the super-net. For example, the literature encompasses significant

variations of learning hyper-parameter settings, batch normalization and dropout usage, capacities

for the initial layers of the network, and depth of the super-net. Furthermore, some of these

heuristics are directly transferred from standalone network training to super-net training without

carefully studying their impact in this drastically different scenario. For example, the fundamental

assumption of batch normalization that the input data follows a slowly changing distribution

whose statistics can be tracked during training is violated in WS-NAS, but nonetheless typically

assumed to hold.

In this paper, we revisit and systematically evaluate commonly-used super-net design and training

heuristics and uncover the strong influence of certain factors on the success of super-net training.

To this end, we leverage three benchmark search spaces, NASBench-101 (Ying et al., 2019),

NASBench-201 (Dong & Yang, 2020), and DARTS-NDS (Radosavovic et al., 2019), for which

the ground-truth stand-alone performance of a large number of architectures is available. We

report the results of our experiments according to two sets of metrics: i) metrics that directly
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measure the quality of the super-net, such as the widely-adopted super-net accuracy 2 and a
modified Kendall-Tau correlation between the searched architectures and their ground-truth
performance, which we refer to as sparse Kendall-Tau; ii) proxy metrics such as the ability
to surpass random search and the stand-alone accuracy of the model found by the WS-NAS
algorithm.

Via our extensive experiments (over 700 GPU days), we uncover that (i) the training behavior of
a super-net drastically differs from that of a standalone network, e.g., in terms of feature statistics
and loss landscape, thus allowing us to define training settings, e.g., for batch-normalization (BN)
and learning rate, that are better suited for super-nets; (ii) while some neglected factors, such as
the number of training epochs, have a strong impact on the final performance, others, believed
to be important, such as path sampling, only have a marginal effect, and some commonly-used
heuristics, such as the use of low-fidelity estimates, negatively impact it; (iii) the commonly-
adopted super-net accuracy is unreliable to evaluate the super-net quality.

Altogether, our work is the first to systematically analyze the impact of the diverse factors of
super-net design and training, and we uncover the factors that are crucial to design a super-
net, as well as the non-important ones. Aggregating these findings allows us to boost the
performance of simple weight-sharing random search to the point where it reaches that of
complex state-of-the-art NAS algorithms across all tested search spaces. Our code is available
at https://github.com/kcyu2014/nas-supernet, and we will release our trained models so as to
establish a solid baseline to facilitate further research.

6.2 Preliminaries - A holistic overview of weight sharing NAS

We first introduce the necessary concepts that will be used throughout the paper. As shown
in Figure 6.1(a), weight-sharing NAS algorithms consist of three key components: a search
algorithm that samples an architecture from the search space in the form of an encoding, a
mapping function fpr ox y that maps the encoding into its corresponding neural network, and a
training protocol for a proxy task Ppr ox y for which the network is optimized.

To train the search algorithm, one needs to additionally define the mapping function fw s that
generates the shared-weight network. Note that the mapping fpr ox y frequently differs from
fw s , since in practice the final model contains many more layers and parameters so as to yield
competitive results on the proxy task. After fixing fw s , a training protocol Pw s is required to
learn the super-net. In practice, Pw s often hides factors that are critical for the final performance
of an approach, such as hyper-parameter settings or the use of data augmentation strategies to
achieve state-of-the-art performance (Liu et al., 2019b; Chu et al., 2019; Zela et al., 2020a).
Again, Pw s may differ from Ppr ox y , which is used to train the architecture that has been found by
the search. For example, our experiments reveal that the learning rate and the total number of
epochs frequently differ due to the different training behavior of the super-net and stand-alone

2The mean accuracy over a small set of randomly sampled architectures during super-net training.

93

https://github.com/kcyu2014/nas-supernet


Chapter 6. How to Train Your Super-net

Macro Parameters

# cells
# channel of first 
dropout rate
etc…

Cell Parameters

# node
Topology
Operation choices
etc…

Architecture Encoding Training protocol

Train Parameters

Learning rate
Decay 
Epochs
etc…

fws

Pws(Ω)

Ω

Cell 1 Cell 2 Cell n…I Y

conv-3x3

Op Choice

conv-5x5

max-3x3

Cell

Figure 6.2: Constructing a super-net.

architectures.

6.3 Evaluation Methodology

We first isolate 14 factors that need to be considered during the design and training of a super-net,
and then introduce the metrics to evaluate the quality of the trained super-net. Note that these
factors are agnostic to the search policy that is used after training the super-net.

6.3.1 Disentangling the super-net from the search algorithm

Our goal is to evaluate the influence of the super-net mapping fw s and weight-sharing training
protocol Pw s . As shown in Figure 6.2, fw s translates an architecture encoding, which typically
consists of a discrete number of choices or parameters, into a neural network. Based on a well-
defined mapping, the super-net is a network in which every sub-path has a one-to-one mapping
with an architecture encoding (Pham et al., 2018b). Recent works (Xu et al., 2020; Li et al.,
2020a; Ying et al., 2019) separate the encoding into cell parameters, which define the basic
building blocks of a network, and macro parameters, which define how cells are assembled into
a complete architecture.

Weight-sharing mapping fw s . To make the search space manageable, all cell and macro param-
eters are fixed during the search, except for the topology of the cell and its possible operations.
However, the exact choices for each of these fixed factors differ between algorithms and search
spaces. We report the common factors in the left part of Table 6.1. They include various imple-
mentation choices, e.g., the use of convolutions with a dynamic number of channels (Dynamic
Channeling), super-convolutional layers that support dynamic kernel sizes (OFA Kernel) (Cai
et al., 2020), weight-sharing batch-normalization (WSBN) that tracks independent running statis-
tics and affine parameters for different incoming edges (Luo et al., 2018a), and path and global
dropout (Pham et al., 2018b; Luo et al., 2018a; Liu et al., 2019b). They also include the use of
low-fidelity estimates (Elsken et al., 2019) to reduce the complexity of super-net training, e.g., by
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Table 6.1: Summary of factors

WS Mapping fw s WS Protocol Pw s

implementation low fidelity hyperparam. sampling

Dynamic Channeling # layer batch-norm FairNAS
OFA Conv train portion learning rate Random-NAS

WSBN batch size epochs Random-A
Dropout # channels weight decay

Op on Node/Edge

reducing the number of layers (Liu et al., 2019b) and channels (Yang et al., 2020; Chen et al.,
2019a), the portion of the training set used for super-net training (Liu et al., 2019b), or the batch
size (Liu et al., 2019b; Pham et al., 2018b; Yang et al., 2020).

Weight-sharing protocol Pw s Given a mapping fw s , different training protocols Pw s can be
employed to train the super-net. Protocols can differ in the training hyper-parameters and the
sampling strategies they rely on. We will evaluate the different hyper-parameter choices listed in
the right part of Table 6.1. This includes the initial learning rate, the hyper-parameters of batch
normalization, the total number of training epochs, and the amount of weight decay.

We randomly sample one path to train the super-net (Guo et al., 2019), which is also known as
single-path one-shot (SPOS) or Random-NAS (Li & Talwalkar, 2019). The reason for this choice
is that Random-NAS is equivalent to the initial state of many search algorithms (Liu et al., 2019b;
Pham et al., 2018b; Luo et al., 2018a), some of which even freeze the sampler training so as to
use random sampling to warm-up the super-net (Xu et al., 2020; Dong & Yang, 2019b). Note
that we also evaluated two variants of Random-NAS, but found their improvement to be only
marginal.

In our experiments, for the sake of reproducibility, we ensure that Pw s and Ppr ox y , as well as
fw s and fpr ox y , are as close to each other as possible. For the hyper-parameters of Pw s , we
cross-validate each factor following the order in Table 6.1, and after each validation, use the value
that yields the best performance in Ppr ox y . For all other factors, we change one factor at a time.

6.3.2 Search spaces

We use three commonly-used search spaces, for which a large number of stand-alone architec-
tures have been trained and evaluated on CIFAR-10 (Krizhevsky et al., 2009b) to obtain their
ground-truth performance. In particular, we use NASBench-101 (Ying et al., 2019), which
consists of 423,624 architectures and is compatible with weight-sharing NAS (Yu et al., 2020c;
Zela et al., 2020b); NASBench-201 (Dong & Yang, 2020), which contains more operations than
NASBench-101 but fewer nodes; and DARTS-NDS (Radosavovic et al., 2019) that contains over
1013 architectures, of which a subset of 5000 models was sampled and trained in a stand-alone
fashion. A summary of these search spaces and their properties is shown in Table 6.2. The
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Table 6.2: Search Spaces.

NASBench-101 NASBench-201 DARTS-NDS

# Arch. 423,624 15,625 >1012
# Op. 3 5 8
Channel Dynamic Fix Fix
Optimal Global Global Sample
Nodes=(n) 5 4 4
Param. O(n) O(n) - O(n2) O(n) - O(n2)
Edges O(n2) O(n2) O(n)
Merge Concat. Sum Sum
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Figure 6.3: Kendall-Tau vs Sparse Kendall-Tau. Kendall-Tau is not robust when many archi-
tectures have similar performance. Minor performance differences can lead to large perturbations
in the ranking. Our sparse Kendall-Tau alleviates this by dismissing minor differences in perfor-
mance.

search spaces differ in the number of architectures that have known stand-alone accuracy (#
Arch.), the number of possible operations (# Op.), how the channels are handled in the convolu-
tion operations (Channel), where dynamic means that the number of super-net channels might
change based on the sampled architecture, and the type of optimum that is known for the search
space (Optimal). We further provide the maximum number of nodes (n), excluding the input and
output nodes, in each cell, as well as a bound on the number of shared weights (Param.) and edge
connections (Edges). Finally, the search spaces differ in how the nodes aggregate their inputs if
they have multiple incoming edges (Merge).

6.3.3 Sparse Kendall-Tau - A novel super-net evaluation metric

We define a novel super-net metric, which we name sparse Kendall-Tau. It is inspired by the
Kendall-Tau metric used in Chapter 5 to measure the discrepancy between the ordering of stand-
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6.3 Evaluation Methodology

alone architectures and the ordering that is implied by the trained super-net. An ideal super-net
should yield the same ordering of architectures as the stand-alone one and thus would lead to
a high Kendall-Tau. However, Kendall-Tau is not robust to negligible performance differences
between architectures (c.f. Figure 6.3). To robustify this metric, we share the rank between two
architectures if their stand-alone accuracies differ by less than a threshold (0.1% here). Since the
resulting ranks are sparse, we call this metric sparse Kendall-Tau (s-KdT).

Implementation Details. To compute the sparse Kendall-Tau we need access to two quantities: 1)
the performance of the sampled architectures based on the trained super-net; and 2) the associated
ground-truth performances. For each architecture in 1), we compute the average top-1 accuracy
over n = 3 super-nets (that where trained with different random initialization) to improve the
stability of the evaluation. We round the ground-truth top-1 accuracy to a precision of 0.1%

for each sampled architecture to obtain the ground-truth performance 2). We then rank the
architectures in 1) and 2) and compute the Kendall-Tau rank coefficient (Kendall, 1938) between
the two ranked lists.

Sparse Kendall-Tau threshold. This value should be chosen according to what is considered
a significant improvement for a given task. For CIFAR-10, where accuracy is larger than 90%,
we consider a 0.1% performance gap to be sufficient. For tasks with smaller state-of-the-art
performance, larger values might be better suited.

Number of architectures. In practice, we observed that the sparse Kendall-Tau metric became
stable and reliable when using at least n = 150 architectures. We used n = 200 in our experiments
to guarantee stability and fairness of the comparison of the different factors.

Limitation of Sparse Kendall-Tau. We nonetheless acknowledge that our sparse Kendall-Tau
has some limitations. For example, a failure case of using sparse Kendall-Tau for super-net
evaluation may occur when the top 10% architectures are perfectly ordered, while the bottom
90% architectures are purely randomly distributed. In this case, the Kendall Tau will be close to
0. However, the search algorithm will always return the best model, as desired.

Nevertheless, while this corner case would indeed be problematic for the standard Kendall Tau,
it can be circumvented by tuning the threshold of our sKdT. A large threshold value will lead
to a small number of groups, whose ranking might be more meaningful. For instance in some
randomly-picked NASBench-101 search processes, setting the threshold to 0.1% merges the top
3000 models into 9 ranks, but still yields an sKdT of only 0.2. Increasing the threshold to 10%
clusters the 423K models into 3 ranks, but still yields an sKdT of only 0.3. This indicates the
stability of our metric.

In Figure 6.4, we randomly picked 12 settings and show the corresponding bipartite graphs
relating the super-net and ground-truth rankings to investigate where disorder occurs. In practice,
the corner case discussed above virtually never occurs; the ranking disorder is typically spread
uniformly across the architectures.
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Figure 6.4: Ranking disorder examples. We randomly select 12 runs from our experiments.
For each sub-plot, 0 indicates the architecture ground-truth rank, and 1 indicates the ranking
according to their super-net accuracy. We can clearly see that the ranking disorder happens
uniformly across the search space and does not follow a particular pattern.

6.3.4 Other metrics

Although, sparse Kendall-Tau captures the super-net quality well, it may fail in extreme cases,
such as when the top-performing architectures are ranked perfectly while poor ones are ordered
randomly. To account for such rare situations and ensure the soundness of our analysis, we
also report additional metrics. We define two groups of metrics to holistically evaluate different
aspects of a trained super-net.

The first group of metrics directly evaluates the quality of the super-net, including sparse Kendall-
Tau and the widely-adopted super-net accuracy. For the super-net accuracy, we report the average
accuracy of 200 architectures on the validation set of the dataset of interest. We will refer to this
metric simply as accuracy. It is frequently used (Guo et al., 2019; Chu et al., 2019) to assess the
quality of the trained super-net, but we will show later that it is in fact a poor predictor of the
final stand-alone performance. The metrics in the second group evaluate the search performance
of a trained super-net. The first metric is the probability to surpass random search: Given the
ground-truth rank r of the best architecture found after n runs and the maximum rank rmax , equal
to the total number of architectures, the probability that the best architecture found is better than
a randomly searched one is given by p = 1− (1− (r /rmax ))n .

Finally, where appropriate, we report the stand-alone accuracy of the model that was found by
the complete WS-NAS algorithm. Concretely, we randomly sample 200 architectures, select the
3 best models based on the super-net accuracy and query the ground-truth performance. We then
take the mean of these architectures as stand-alone accuracy. Note that the same architectures are
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Figure 6.5: Reproducing NASBench-101.

used to compute the sparse Kendall-Tau.

6.4 Analysis

We provide an analysis on the impact of the factors that are shown in Table 6.1 across three
different search spaces. In addition, we report the complete numerical results of all metrics in
Section 6.4.6.

Training Details. We use PyTorch (Paszke et al., 2019) for our experiments. Since NASBench-
101 was constructed in TensorFlow we implement a mapper that translates TensorFlow pa-
rameters into our PyTorch model. We exploit two large-scale experiment management tools,
SLURM (Slurm, 2020) and Kubernetes (Kubernetes, 2020), to deploy our experiments. We use
various GPUs throughout our project, including NVIDIA Tesla V100, RTX 2080 Ti, GTX 1080
Ti and Quadro 6000 with CUDA 10.1. Depending on the number of training epochs, parameter
sizes and batch-size, most of the super-net training finishes within 12 to 24 hours, with the
exception of FairNAS, whose training time is longer, as discussed earlier. We split the data into
training/validation using a 90/10 ratio for all experiments, except those involving validation on
the training portion. Please consult our submitted code for more details.

Reproducing the Ground Truth from Tensorflow. As the ground-truth performance used
by NASBench-101 are obtained on Tensorflow with TPU computation structure. We firstly
reproduce these results in Pytorch with our implementation to make sure the re-implementation
is trustworthy. We uniformly random sampled 10 architectures, and repeat 3 times. It results 30
architectures and covers the spectrum of performance from 82% to 93%. We adopted the optimizer
and hyper-parameter setting according to the code release of NASBench-101, repeated with 3
random initializations and take the mean performance. We plot the performance comparison
in Figure 6.5. The Kendall Tau metric is 0.81, and should be considered as the upper-bound of
super-net training. It clearly indicates that even the reproducing results are not perfectly aligned
with the Tensorflow original, it cannot explain why the significant drop to 0.2 after using weight
sharing (Yu et al., 2020c).
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Figure 6.6: Super-net evaluation. We collect all experiments across 3 benchmark spaces. (Top)
Pairwise plots of super-net accuracy, final performance, and the sparse Kendall-Tau. Each point
corresponds to statistics computed over a trained super-net. Note that for super-net accuracy, we
filtered out the accuracies below 40% to remove the statistics of ill-trained super-nets. (Bottom)
Spearman correlation coefficients between the metrics.

6.4.1 Evaluation of a super-net

The standalone performance of the architecture that is found by a NAS algorithm is clearly the
most important metric to judge its merits. However, in practice, one cannot access this metric—
we wouldn’t need NAS if standalone performance was easy to query. Furthermore, stand-alone
performance inevitably depends the sampling policy, and does not directly evaluate the quality
of the super-net. Consequently, it is important to rely on metrics that are well correlated with
the final performance but can be queried efficiently. To this end, we collect all our experiments
and plot the pairwise correlation between final performance, sparse Kendall-Tau, and super-net
accuracy. As shown in Figure 6.6, the super-net accuracy has a low correlation with the final
performance on NASBench-101 and DARTS-NDS. Only on NASBench-201 does it reach a
correlation of 0.52. The sparse Kendall-Tau yields a consistently higher correlation with the final
performance. This is evidence that one should not focus too strongly on improving the super-net
accuracy. While this metric remains computationally heavy, it serves as a middle ground that is
feasible to evaluate in real-world applications.

In the following experiments, we thus mainly rely on sparse Kendall-Tau, and use final search
performance as a reference only.
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Figure 6.7: Comparing sparse Kendall-Tau and final search accuracy. Here, we provide a toy
example to illustrate why one cannot rely on the final search accuracy to evaluate the quality of
the super-net. Let us consider a search space with only 30 architectures, whose accuracy ranges
from 95.3% to 87% on the CIFAR-10 dataset, and we run a search algorithm on top. (a) describes
a common scenario: we run the search for multiple times, yielding a best architecture with 93.1%
accuracy. While this may seem good, it does not give any information about the quality of the
search or the super-net. If we had full knowledge about the performance of every architecture in
this space, we would see that this architecture is close to the average performance and hence no
better than random. In (b), the sparse Kendall-Tau allows us to diagnose this pathological case.
A small sparse Kendall-Tau implies that there is a problem with super-net training.
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Table 6.3: Comparison of Kendall Tau (KdT) and Spearman ranking (SpR) with their
sparse variants.

Corr. of Perf. KdT. S-KdT SpR S-SpR

NASBench-101 0.29 0.45 0.23 0.41
NASBench-201 0.42 0.55 0.38 0.57
DARTS-NDS 0.08 0.19 0.09 0.20

Kendall Tau v.s. Spearman ranking correlation

Kendall-tau is not the only metric to evaluate the ranking correlation. Spearman ranking correla-
tion is also widely adopted in this field (Guo et al., 2019; Dong & Yang, 2020). Note that our idea
of sparsity also applies to SpR. In Table 6.3, we compare the performance of Kendall Tau(KdT),
Spearman ranking correlation (SpR) and their sparse variants, in the same setting as Figure 6.6.
Note that SpR and KdT performs similarly but that their sparse variants effectively improve the
correlation on all search spaces.

Stand-alone Accuracy v.s. Sparse Kendall-Tau

A common misconception is that the super-net quality is well reflected by stand-alone accuracy
of the final selected architecture. Neither sparse Kendall-Tau (sKdT) nor stand-alone accuracy
are perfect. Both are tools to measure different aspects of a super-net.

Let us consider a completely new search space in which we have no prior knowledge about
performance. As depicted by Figure 6.7, if we only rely on the stand-alone accuracy, the following
situation might happen: Due to the lack of knowledge, the ranking of the super-net is purely
random, and the search space accuracy is uniformly distributed. When trying different settings,
there will be 1 configuration that ‘outperforms’ the others in terms of stand-alone accuracy.
However, this configuration will be selected by pure chance. By only measuring stand-alone
accuracy, it is technically impossible to realize that the ranking is random. By contrast, if one
measures the sKdT (which is close to 0 in this example), an ill-conditioned super-net can easily
be identified. In other words, purely relying on stand-alone accuracy could lead to pathological
outcomes that can be avoided using sparse Kendall-Tau.

Additionally, stand-alone accuracy is related to both the super-net and the search algorithm. sparse
Kendall-Tau allows us to judge super-net accuracy independently from the search algorithm. As
an example, consider the use of a reinforcement learning algorithm, instead of random sampling,
on top of the super-net. When observing a poor stand-alone accuracy, one cannot conclude if
the problem is due to a poor super-net or to a poor performance of the RL algorithm. Prior to
our work, people relied on the super-net accuracy to analyze the super-net quality. This is not a
reliable metric, as shown in Figure 6.6. We believe that sparse Kendall-Tau is a better alternative.
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6.4.2 Weight-sharing Protocol Pw s – Hyperparameters

Batch normalization in the super-net

Batch normalization (BN) is commonly used in standalone networks to allow for faster and more
stable training. It is thus also employed in most CNN search spaces. However, BN behaves
differently in the context of WS-NAS, and special care has to be taken when using it. In a
standalone network (c.f. Figure 6.8 (Top)), a BN layer during training computes the batch
statistics µB and σB , normalizes the activations f A(x) as ( f A(x)−µB )/σB , and finally updates
the population statistics using a moving average. For instance, the mean statistics is updated as
µ̂← γµ̂+ (1−γ)µB . At test time, the stored population statistics are used to normalize the feature
map. In the standalone setting, both batch and population statistics are unbiased estimators of the
population distribution N (µ,σ).

By contrast, when training a super-net (Figure 6.8 (Bottom)) the population statistics that are
computed based on the running average are not unbiased estimators of the population distribution,
because the effective architecture before the BN layer varies in each epoch. More formally,
let f Ai denote the i -th architecture. During training, the batch statistics are computed as µi

B =∑
j f Ai (x j )/m, and the output feature follows the distribution N (µi

B ,σi
B ), where the superscript i

indicates that the current batch statistics depends on Ai only. The population mean statistics is
then updated as µ̂← γµ̂+ (1−γ)µi

B . However, during training, different architecture from the
super-net are sampled. Therefore, the population mean statistics essentially becomes a weighted
combination of means from different architectures, i.e., µ̂←∑

αiµ
i
B =∑

αi f Ai (x), where αi is
the sampling frequency of the i -th architecture. When evaluating a specific architecture Ai at test
time, the estimated population statistics thus depend on the other architectures in the super-net.
This leads to a train-test discrepancy. One solution to mitigate this problem is to re-calibrate
the batch statistics by recomputing the statistics on the entire training set before the the final
evaluation (Yu & Huang, 2019). While the cost of doing so is negligible for a standalone network,
NAS algorithms typically sample ∼ 105 architectures for evaluation, which makes this approach
intractable.

In contrast to Dong & Yang (2020) and Bender et al. (2020) that use the training mode also
during testing, we formalize a simple, yet effective, approach to tackle the train-test discrepancy
of BN in super-net training: we leave the normalization based on batch statistics during training
unchanged, but use batch statistics also during testing. Since super-net evaluation is always
conducted over a complete dataset, we are free to perform inference in mini-batches of the same
size as the ones used during training. This allows us to compute the batch statistics on the fly in
the exact same way as during training.

Figure 6.9 compares standard BN to our proposed modification. Using the tracked population
statistics leads to many architectures with an accuracy around 10%, i.e., performing no better
than random guessing. Our proposed modification allows us to significantly increase the fraction
of high-performing architectures. Our results also show that the choice of fixing vs. learning an
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Figure 6.8: Batch normalization in standalone and super-net training.
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Figure 6.9: Validation of BN. We plot histograms of the super-net accuracy for different

hyper-parameter settings. Tracking statistics (left) leads to many architectures with random

performance. Without tracking (right), learning the affine parameters (affine-true) increases

accuracy on NASBench-101 and NASBench-201, but strongly decreases it for DARTS-NDS.
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(a) Stand-alone (b) Super-net

Figure 6.10: Loss landscapes of a standalone network vs the super-net (Sampling n = 300
architectures, better see in color).

affine transformation in batch normalization should match the standalone protocol Ppr ox y .

Learning rate

The training loss of the super-net encompasses the task losses of all possible architectures. We
suspect that the training difficulty increases with the number of architectures represented by the
super-net. To better study this, we visualize the loss landscape (Li et al., 2018) of the standalone
network and a super-net with n = 300 architectures. Concretely, the landscape is computed over
the super-net training loss under the single-path one-shot sampling method, i.e.,

Ls(x,θs) =∑
i

Ls(x,θi ), where ∀i ,∪iθi = θs . (6.1)

Figure 6.10 shows that the loss landscape of the super-net is less smooth than that of a standalone
architecture, which confirms our intuition. A smoother landscape indicates that optimization will
converge more easily to a good local optimum. With a smooth landscape, one can thus use a
relatively large learning rate. By contrast, a less smooth landscape requires using a smaller one.

Our experiments further confirm this observation. In the standalone protocol Ppr ox y , the learning
rate is set to 0.2 for NASBench-101, and to 0.1 for NASBench-201 and DARTS-NDS, respectively.
All protocols use a cosine learning rate decay. Figure 6.11 shows that super-net training requires
lower learning rates than standalone training. The same trend is shown for other search spaces in
Section 6.4.6 Table 6.10. We set the learning rate to 0.025 to be consistent across the three search
spaces.
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super-net acc.learning rate sparse KdT 

Figure 6.11: Learning rate on NASBench-201.

Figure 6.12: Validating the number of epochs. Each data point summarizes 3 individual runs.
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Figure 6.13: Weight decay validation.

Number of epochs

Since the cosine learning rate schedule decays the learning rate to zero towards the end of
training, we evaluate the impact of the number of training epochs. In stand-alone training, the
number of epochs was set to 108 for NASBench-101, 200 for NASBench-201, and 100 for
DARTS-NDS. Figure 6.12 shows that increasing the number of epochs significantly improves
the accuracy in the beginning, but eventually decreases the accuracy for NASBench-101 and
DARTS-NDS. Interestingly, the number of epochs impacts neither the correlation of the ranking
nor the final selected model performance after 400 epochs. We thus use 400 epochs for the
remaining experiments.

Weight decay

Weight decay is used to reduce overfitting. For WS-NAS, however, overfitting does not occur
because there are billions of architectures sharing the same set of parameters, which in fact rather
causes underfitting. Based on this observation, (Nayman et al., 2019) propose to disable weight
decay during super-net training. Figure 6.13, however, shows that the behavior of weight decay
varies across datasets. While on DARTS-NDS weight decay is indeed harmful, it improves the
results on NASBench 101 and 201. We conjecture that this is due to the much larger number of
architectures in DARTS-NDS (243 billion) than in the NASBench series (less than 500,000).

6.4.3 Weight-sharing Protocol Pw s – Sampling

Aside from the Random-NAS described in Section 6.3.1, we additionally include two variants
of Random-NAS: 1) As pointed out by (Ying et al., 2019), two super-net architectures might
be topologically equivalent in the stand-alone network by simply swapping operations. We
thus include architecture-aware random sampling that ensures equal probability for unique
architectures in Chapter 5. We name this variant Random-A; 2) We evaluate a variant called
FairNAS (Chu et al., 2019), which ensures that each operation is selected with equal probability

107



Chapter 6. How to Train Your Super-net

1

2

3

4

1 Operation (ID)

Node

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

To
p

o
lo

g
y

O
p

e
ra

ti
o

n
 c

o
n

n
e
c
ti
o

n

Fixed connection

Dynamic connection

(a) Search space with fixed topology (b) Search space with dynamic topology

To
p

o
lo

g
y

O
p

e
ra

ti
o

n
 c

o
n

n
e
c
ti
o

n

Figure 6.14: Comparison between fixed and dynamic topology search spaces.

during super-net training. Although FairNAS was designed for a search space where only
operations are searched but not the topology, we adapt it to our setting.

Adaptation of FairNAS. Originally, FairNAS (Chu et al., 2019) was proposed in a search
space with a fixed sequential topology, as depicted by Figure 6.14 (a), where every node is
sequentially connected to the previous one, and only the operations on the edges are subject to
change. However, our benchmark search spaces exploit a more complex dynamic topology, as
illustrated in Figure 6.14 (b), where one node can connect to one or more previous nodes. Before
generalizing to a dynamic topology search space, we simplify the original approach into a 2-node
scenario: for each input batch, FairNAS will first randomly generate a sequence of all o possible
operations. It then samples one operation at a time, computes gradients for the fixed input batch,
and accumulates the gradients across the operations. Once all operations have been sampled, the
super-net parameters are updated with the average gradients. This ensures that all possible paths
are equally exploited . With this simplification, FairNAS can be applied regardless of the topology.
For a sequential-topology search space, we repeat the 2-node policy for every consecutive node
pair. Naturally, for a dynamic topology space, FairNAS can be adopted in a similar manner, i.e.,
one first samples a topology, then applies the 2-node strategy for all connected node pairs. Note
that adapting FairNAS increases the training time by a factor o.

Results. With the hyper-parameters fixed, we now compare three path-sampling techniques.
Since DARTS-NDS does not contain enough samples trained in a stand-alone manner, we only
report results on NASBench-101 and 201. In Figure 6.15, we show the sampling distributions
of different approaches and the impact on the super-net in terms of sparse Kendall-Tau. These
experiments reveal that, on NASBench-101, uniformly randomly sampling one architecture, as
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Figure 6.15: Path sampling comparison on NASBench-101 (a) and NASBench-201 (b). We
sampled 10,000 architectures using different samplers and plot histograms of the architecture
rank and the stand-alone test accuracy. We plot the s-KdT across the epochs. Results averaged
across 3 runs.

in Chapter 5, is strongly biased in terms of accuracy and ranking. This can be observed from
the peaks around rank 0, 100,000, and 400,000. The reason is that a single architecture can have
multiple encodings, and uniform sampling thus oversamples such architectures with equivalent
encodings. FairNAS samples architectures more evenly and yields consistently better sparse
Kendall-Tau values, albeit by a small margin.

On NASBench-201, the three sampling policies have a similar coverage. This is because, in
NASBench-201, topologically-equivalent encodings were not pruned. In this case, Random-NAS
performs better than in NASBench-101, and FairNAS yields good early performance but quickly
saturates. In short, using different sampling strategies might in general be beneficial, but we
advocate for FairNAS in the presence of a limited training budget.

6.4.4 Weight-sharing Mapping fw s – Lower Fidelity Estimates lower the ranking
correlation

Reducing memory foot-print and training time by proposing smaller super-nets has been an active
research direction, and the resulting super-nets are referred to as lower fidelity estimates Elsken
et al. (2019). The impact of this approach on the super-net quality, however, has never been studied
systematically over multiple search spaces. We compare four popular strategies in Table 6.4. We
deliberately prolong the training epochs inversely proportionally to the computational budget that
would be saved by the low-fidelity estimates. For example, if the number of channels is reduced
by half, we train the model for two times more epochs. Note that this provides an upper bound to
the performance of low-fidelity estimates.

A commonly-used approach to reduce memory requirements is to decrease the batch size (Yang
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Table 6.4: Low fidelity estimates under same computational budget, reporting final search
model accuracy (FSA) and sparse Kendall-Tau (S-KdT) on NASBench-201.

Metrics Settings

Repeated cells 3 2 1

S-KdT 0.751 ± 0.09 0.692 ± 0.18 0.502 ± 0.21
FSA 91.91 ± 0.09 91.95 ± 0.10 90.30 ± 0.71

Init Channel 16 8 4

S-KdT 0.740 ± 0.07 0.677 ± 0.10 0.691 ± 0.15
FSA 92.92 ± 0.48 92.32 ± 0.37 92.79 ± 0.85

Batch-size 256 128 64

S-KdT 0.740 ± 0.07 0.728 ± 0.16 0.703 ± 0.16
FSA 92.92 ± 0.48 92.37 ± 0.61 92.35 ± 0.34

Train portion 0.75 0.5 0.25

S-KdT 0.751 ± 0.11 0.742 ± 0.12 0.693 ± 0.13
FSA 92.13 ± 0.51 92.74 ± 0.43 91.47 ± 0.81

et al., 2020). Surprisingly, lowering the batch size from 256 to 64 has limited impact on the
accuracy, but decreases sparse Kendall-Tau and the final searched model’s performance, the most
important metric in practice.

Another approach is to decrease the number of channels in the first layer (Liu et al., 2019b).
This reduces the total number of parameters proportionally, since the number of channels in
consecutive layers depends on the first one. Table 6.4 shows that this decreases the sparse
Kendall-Tau from 0.7 to 0.5. By contrast, reducing the number of repeated cells (Pham et al.,
2018b; Chu et al., 2019) by one has little impact. Hence, to train a good super-net, one should
avoid changes between fw s and fpr ox y , but one can reduce the batch size by a factor > 0.5 and
use only one repeated cell.

The last lower-fidelity factor is the portion of training data that is used (Liu et al., 2019b; Xu
et al., 2020). Surprisingly, reducing the training portion only marginally decreases the sparse
Kendall-Tau for all three search spaces. On NASBench-201, keeping only 25% of the CIFAR-10
dataset results in a 0.1 drop in sparse Kendall-Tau. This explains why DARTS-based methods
typically use only 50% of the data to train the super-net but can still produce reasonable results.
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Table 6.5: Dynamic channels on NASBench-101.

Type Accuracy S-KdT P > R Stand-alone Acc.

Fixed 71.52 ± 6.94 0.22 0.546 91.79 ± 1.72
Shuffle 31.79 ± 10.90 0.17 0.391 90.58 ± 1.58
Interpolate 57.53 ± 10.05 0.37 0.865 93.35 ± 3.27

Baseline 76.91 ± 10.05 0.22 0.865 89.43 ± 4.30
Baseline-v2 75.18 ± 9.28 0.33 0.891 91.27 ± 1.18
Ours 76.95 ± 8.29 0.46 0.949 93.65 ± 0.73

Table 6.6: A fair comparison between the baseline dynamic channeling with randomly sampling
sub-spaces and our disable dynamic channeling approach.

Edges Accuracy S-KdT P > R Stand-alone Acc.

Baseline: random sampling sub-spaces with dynamic channeling.
1 70.04± 8.15 0.173 0.797 91.19±2.01
2 78.29±10.51 0.206 0.734 82.03±1.50
3 79.92± 9.42 0.242 0.576 92.20±1.19
4 79.37± 17.34 0.270 0.793 92.32±1.10

Average 76.905 ± 10.05 0.223 0.865 89.435 ± 4.30

Disable dynamic channels by fixing the edges to the output node.
1 76.92± 7.87 0.435 0.991 93.94±0.22
2 74.32± 8.21 0.426 0.925 93.34±0.01
3 77.24± 9.18 0.487 0.901 93.66±0.07
4 79.31± 7.04 0.493 0.978 93.65±0.07

Average 76.95 ± 8.29 0.460 0.949 93.65 ± 0.73

6.4.5 Weight-sharing Mapping fw s - Implementation

Dynamic channeling hurts super-net quality

Dynamic channeling is an implicit factor in many search spaces (Ying et al., 2019; Cai et al.,
2018b; Guo et al., 2019; Dong & Yang, 2019b). It refers to the fact that the number of channels
of the intermediate layers depends on the number of incoming edges to the output node. This
is depicted by Figure 6.16 (a): for a search cell with n intermediate nodes, where X and Y are
the input and output node with Ci n and Cout channels, respectively. When there are n = 2 edges
(c.f. Figure 6.16 (b)), the associated channel numbers decrease so that their sum equals Cout .
That is, the intermediate nodes have bCout /2c channels. In the general case, shown in Figure
6.16 (c), the number of channels in intermediate nodes is thus bCout /nc for n incoming edges. A
weight sharing approach has to cope with this architecture-dependent fluctuation of the number
of channels during training.

111



Chapter 6. How to Train Your Super-net

X In-channel

Y out-channel

1
2

N

Cout
<latexit sha1_base64="VMctouCciyXhLazW4H9FEpiM1y0=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHQi8cK9gPaUDbbbbt0k427E6GE/gkvHhTx6t/x5r9x0+agrQ8GHu/NMDMviKUw6Lrfzsbm1vbObmGvuH9weHRcOjltG5VoxltMSaW7ATVcioi3UKDk3VhzGgaSd4JpI/M7T1wboaIHnMXcD+k4EiPBKFqp2xikKsF5cVAquxV3AbJOvJyUIUdzUPrqDxVLQh4hk9SYnufG6KdUo2CSz4v9xPCYsikd856lEQ258dPFvXNyaZUhGSltK0KyUH9PpDQ0ZhYGtjOkODGrXib+5/USHNX8VERxgjxiy0WjRBJUJHueDIXmDOXMEsq0sLcSNqGaMrQRZSF4qy+vk3a14l1Xqvc35Xotj6MA53ABV+DBLdThDprQAgYSnuEV3pxH58V5dz6WrRtOPnMGf+B8/gDCPI/A</latexit>

Cin
<latexit sha1_base64="a5Ls+66vh2liWS9wMHTwQ8PlvlQ=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS4L3bisYB/QDiWTpm1oJjMkd4Qy9CPcuFDErd/jzr8x085CWw8EDufcS+45QSyFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY6JEM95mkYx0L6CGS6F4GwVK3os1p2EgeTeYNTO/+8S1EZF6xHnM/ZBOlBgLRtFK3eYwFWpRGpYrbtVdgmwSLycVyNEalr8Go4glIVfIJDWm77kx+inVKJjki9IgMTymbEYnvG+poiE3fro8d0GurDIi40jbp5As1d8bKQ2NmYeBnQwpTs26l4n/ef0Ex3XfBooT5IqtPhonkmBEsuxkJDRnKOeWUKaFvZWwKdWUoW0oK8Fbj7xJOrWqd1OtPdxWGvW8jiJcwCVcgwd30IB7aEEbGMzgGV7hzYmdF+fd+ViNFpx85xz+wPn8AdawjzU=</latexit>

(a) Search space

X

Y

1
2

N

(b) 2 edges

X

Y

1
2

N

(c) n edges

bCout/2c
<latexit sha1_base64="caCJC7nzG/nehDWEQehLXhpw/sg=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYXEVJKCRMdKXRiLRB9SE0WO67RWHTuyHaQq6sDCr7AwgBArH8HG3+CmGaDlTEfn3Kt77gkTRpV2nG+rtLG5tb1T3q3s7R8cHtnHJz0lUolJFwsm5CBEijDKSVdTzcggkQTFISP9cNpe+P0HIhUV/F7PEuLHaMxpRDHSRgrsqsciJoSE7SATqZ7DS9iAnsy1wK45dScHXCduQWqgQCewv7yRwGlMuMYMKTV0nUT7GZKaYkbmFS9VJEF4isZkaChHMVF+lj8xh+dGGcHIRIkE1zBXf29kKFZqFodmMkZ6ola9hfifN0x11PQzypNUE46Xh6KUQS3gohE4opJgzWaGICypyQrxBEmEtemtYkpwV19eJ71G3b2qN+6ua61mUUcZVMEZuAAuuAEtcAs6oAsweATP4BW8WU/Wi/VufSxHS1axcwr+wPr8AZSTl2A=</latexit>

bCout/nc
<latexit sha1_base64="dWaxjglmbEDh7QikfHnEfGnzQyI=">AAACBHicbVC7TsMwFHXKq5RXgLGLRYXEVJKCRMdKXRiLRB9SE0WO67RWHTuyHaQq6sDCr7AwgBArH8HG3+CmGaDlTEfn3Kt77gkTRpV2nG+rtLG5tb1T3q3s7R8cHtnHJz0lUolJFwsm5CBEijDKSVdTzcggkQTFISP9cNpe+P0HIhUV/F7PEuLHaMxpRDHSRgrsqsciJoSE7SATqZ7DS8ihJ3MtsGtO3ckB14lbkBoo0AnsL28kcBoTrjFDSg1dJ9F+hqSmmJF5xUsVSRCeojEZGspRTJSf5U/M4blRRjAyUSLBNczV3xsZipWaxaGZjJGeqFVvIf7nDVMdNf2M8iTVhOPloShlUAu4aASOqCRYs5khCEtqskI8QRJhbXqrmBLc1ZfXSa9Rd6/qjbvrWqtZ1FEGVXAGLoALbkAL3IIO6AIMHsEzeAVv1pP1Yr1bH8vRklXsnII/sD5/APFjl5w=</latexit>

Figure 6.16: NASBench-101 dynamic channel.

Let C denote the number of channels of a given architecture, and Cmax the maximum number
of channels for a node across the entire search space. All existing approaches allocate Cmax

channels and, during training, extract a subset of these channels. The existing methods then differ
in how they extract the channels: (Guo et al., 2019) use a fixed chunk of channels, e.g., [0 : C ];
(Zhang et al., 2018) randomly shuffle the channels before extracting a fixed chunk; and (Dong
& Yang, 2019a) linearly interpolate the Cmax channels into C channels using a moving average
across neighboring channels.

Instead of sharing the channels between architectures, we propose to disable dynamic channelling
completely. As the channel number only depends on the incoming edges, we separate the search
space into a discrete number of sub-spaces, each with a fixed number of incoming edges. As
shown in Table 6.5, disabling dynamic channeling improves the sparse Kendall-Tau and the final
search performance by a large margin and yields a new state of the art on NASBench101.

Random subspace baseline. Since each sub-space now encompasses fewer architectures, it
is not fair to perform a comparison with the full NASBench 101 search space. Therefore, for
each sub-space, we construct a baseline space where we drop architectures uniformly at random
until the number of remaining architectures matches the size of the sub-space. We repeat this
process with 3 different initializations, while keeping all other factors unchanged when training
the super-net. We refer to this as ‘Baseline’ in Table 6.5. We also provide additional results in
Table 6.6 for each individual sub-space and show that the sparse Kendall-Tau remains similar to
that of the baseline using the full search space, which clearly evidences the effectiveness of our
approach to disable the dynamic channeling.

Furthermore, we compose another baseline, where we enable dynamic channeling during super-
net training. During validation, we compute the average sparse Kendall-Tau of each sub-space,
where we sample 200 architectures that share the same number of channels. We call this baseline-
v2. In Table 6.5, we can see that this surpasses the original baseline by a significant margin.
It further evidences the importance of disabling dynamic channels. Nonetheless, the best is to
disable dynamic channeling during both the training and the validation phase.
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Figure 6.17: Influence of factors on the final model. We plot the difference in percent between
the searched model’s performance with and without applying the corresponding factor. For the
hyper-parameters of Pw s , the baseline is Random NAS, as reported in Table 6.9. For the other
factors, the baseline of each search space uses the best setting of the hyper-parameters. Each
experiment was run at least 3 times.

WS on Edges or Nodes?

Most existing works build fw s to define the shared operations on the graph nodes rather than
on the edges. This is because, if fw s maps to the edges, the parameter size increases from O(n)

to O(n2), where n is the number of intermediate nodes. We provide a concrete example in
Figure 6.18. However, the high sparse Kendall-Tau on NASBench-201 in the top part of Table 6.7,
which is obtained by mapping to the edges, may suggest that sharing on the edges is beneficial.
Here we investigate if this is truly the case.

On NASBench-101, by design, each node merges the previous nodes’ outputs and then applies
parametric operations. This makes it impossible to build an equivalent sharing on the edges.
We therefore construct sharing on the edges for DARTS-NDS and sharing on the nodes for
NASBench-201. As shown in Table 6.8, for both spaces, sharing on the edges yields a marginally
better super-net than sharing on the nodes. Such small differences might be due to the fact that,
in both spaces, the number of nodes is 4, while the number of edges is 6, thus mapping to edges
will not drastically affect the number of parameters. Nevertheless, this indicates that one should
consider having a larger number of shared weights when the resources are not a bottleneck.

Other mapping factors

We evaluate the weight-sharing batch normalization (WSBN) of (Luo et al., 2018b) , which
keeps an independent set of parameters for each incoming edge. Furthermore, we test the two
commonly-used dropout strategies: right before global pooling (global dropout); and at all
edge connections between the nodes (path dropout). Note that path dropout has been widely
used in WS-NAS (Luo et al., 2018a; Liu et al., 2019b; Pham et al., 2018b). For both dropout
strategies, we set the dropout rate to 0.2. Finally, we evaluate the super convolution layer of (Cai
et al., 2020), referred to as OFA kernel, which accounts for the fact that, in CNN search spaces,
convolution operations appear as groups, and thus merges the convolutions within the same group,
keeping only the largest kernel parameters and performing a parametric projection to obtain the
other kernels. The results in Table 6.8 show that all these factors negatively impact the search
performances and the super-net quality.
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Table 6.7: Comparison of operations on the nodes or on the edges. We report sKT / final
search performance.

NASBench-101 NASBench-201 DARTS-NDS

Baseline 0.236 / 92.32 0.740 / 92.92 0.159 / 93.59

Op-Edge N/A as Baseline 0.189 / 93.97
Op-Node as Baseline 0.738 / 92.36 as Baseline
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Figure 6.18: Operation on the node or edge? (a) Consider a search space with 2 intermediate
nodes, 1, 2, with one input (I) and output (O) node. This yields 5 edges. Let us assume that we
have 4 possible operations to choose from, as indicated as the purple color code. (b) When the
operations are on the nodes, there are 2 × 4 ops to share, i.e., I→2 and 1→2 share weights on
node 2. (c) If the operations are on the edges, then we have 5 × 4 ops to share.
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Table 6.8: Comparison of different mappings fw s . We report s-KdT / final search performance.

NASBench-101 NASBench-201 DARTS-NDS

Baseline 0.236 / 92.32 0.740 / 92.92 0.159 / 93.59

WSBN 0.056 / 91.33 0.675 / 92.04 0.331 / 92.95
Global-Dropout 0.179 / 90.95 0.676 / 91.76 0.102 / 92.30
Path-Dropout 0.128 / 91.19 0.431 / 91.42 0.090 / 91.90

OFA Kernel 0.132 / 92.01 0.574 / 91.83 0.112 / 92.83

Table 6.9: Final results. Results on NASBench-101 and 201 are from Chapter 5, and Dong &
Yang (2020). We report the mean over 3 runs. Note that NASBench-101 (n = 7) in Chapter 5 is
identical to our setting. Our new strategy significantly surpasses the random search baseline.

Method NASBench NASBench DARTS DARTS
101 (n=7) 201 NDS NDS?

ENAS Pham et al. (2018b) 91.83 ± 0.42 54.30 ± 0.00 94.45 ± 0.09 97.11
DARTS-V2 Liu et al. (2019b) 92.21 ± 0.61 54.30 ± 0.00 94.79 ± 0.11 97.37
NAO Luo et al. (2018a) 92.59 ± 0.59 - - 97.10
GDAS Dong & Yang (2019b) - 93.51 ± 0.13 - 96.23

Random NAS Li & Talwalkar (2019) 89.89 ± 3.89 87.66 ± 1.69 91.33 ± 0.12 96.74†

Random NAS (Ours) 93.12 ± 0.06 92.71 ± 0.15 94.26 ± 0.05 97.08
†Results from Li & Talwalkar (2019)
?Trained according to Liu et al. (2019b) for 600 epochs.
On NASBench-201, both random NAS and our approach samples 100 final
architectures to follow the setting of Dong & Yang (2020)

6.4.6 Results for All Factors

We report the numerical results for all hyper-parameter factors in Table 6.10, low-fidelity factors
in Table 6.11 and implementation factors in Table 6.12. These results were computed from the
last epochs of 3 different runs.

6.5 How should you train your super-net?

Figure 6.17 summarizes the influence of all tested factors on the final performance. It stands out
that properly tuned hyper-parameters lead to the biggest improvements by far. Surprisingly, most
other factors and techniques either have a hardly measurable effect or in some cases even lead to
worse performance. Based on these findings, here is how you should train your super-net:

1. Do not use super-net accuracy to judge the quality of your super-net. The sparse Kendall-Tau
has much higher correlation with the final search performance.

2. When batch normalization is used, do not use the moving average statistics during evaluation.
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Table 6.10: Results for all WS Protocol Pw s factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Batch-norm.

affine F track F 0.651±0.05 0.161 0.996 0.916±0.13 0.660±0.13 0.783 0.997 92.67±1.21 0.735±0.18 0.056 0.224 93.14±0.28
affine T track F 0.710±0.04 0.240 0.996 0.924±0.01 0.713±0.14 0.718 0.707 91.71±1.05 0.265±0.21 -0.071 0.213 91.89±2.01
affine F track T 0.144±0.09 0.084 0.112 0.882±0.02 0.182±0.15 -0.171 0.583 86.41±4.84 0.359±0.25 -0.078 0.023 90.33±0.76
affine T track T 0.153±0.10 -0.008 0.229 0.905±0.01 0.134±0.09 -0.417 0.274 90.77±0.40 0.216±0.18 -0.050 0.109 90.49±0.32

Learning rate.

0.005 0.627±0.07 0.091 0.326 0.908±0.01 0.658±0.11 0.668 0.141 90.14±0.55 0.792±0.08 0.130 0.033 91.81±0.68
0.01 0.668±0.06 0.095 0.546 0.919±0.00 0.713±0.12 0.670 0.711 91.21±1.18 0.727±0.05 0.131 0.258 92.86±0.64
0.025 0.715±0.05 0.220 0.910 0.917±0.01 0.659±0.13 0.665 0.844 92.42±0.58 0.656±0.14 0.218 0.299 93.42±0.20
0.05 0.727±0.05 0.143 0.905 0.911±0.02 0.631±0.14 0.594 0.730 92.02±0.70 0.623±0.04 0.147 0.489 91.70±0.33
0.1 0.690±0.07 0.005 0.905 0.909±0.02 0.609±0.28 0.571 0.618 91.82±0.81 0.735±0.06 0.096 0.099 92.73±0.24
0.15 0.000±0.00 -0.274 N/A N/A 0.551±0.14 0.506 0.553 91.22±1.20 0.371±0.27 0.027 0.218 91.20±0.72
0.2 - - - - 0.519±0.12 0.557 0.035 88.74±0.11 0.102±0.48 -0.366 N/A N/A

Epochs.

100 0.468±0.07 0.190 0.759 0.920±0.01 0.472±0.09 0.355 0.997 92.11±1.67 0.643±0.04 0.144 0.901 93.90±0.49
200 0.662±0.05 0.131 0.685 0.914±0.01 0.604±0.12 0.610 0.881 91.88±2.01 0.761±0.05 0.169 0.778 94.08±0.21
300 0.727±0.03 0.251 0.739 0.920±0.01 0.664±0.13 0.627 0.840 91.42±1.91 0.793±0.06 0.098 0.870 93.22±0.95
400 0.769±0.03 0.236 0.932 0.921±0.01 0.697±0.14 0.667 0.158 89.83±0.97 0.798±0.07 0.106 0.036 92.34±0.22
600 0.815±0.02 0.246 0.556 0.911±0.01 0.720±0.13 0.682 0.285 90.28±0.82 0.734±0.10 0.090 0.209 93.23±0.19
800 0.826±0.02 0.243 0.177 0.907±0.00 0.760±0.13 0.711 0.378 91.53±0.53 0.728±0.10 0.044 0.853 93.29±0.81
1000 0.794±0.03 0.177 0.831 0.920±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.717±0.09 0.044 0.997 93.92±0.90
1200 - - - - 0.775±0.13 0.723 0.198 90.81±0.56 - - - -
1400 - - - - 0.774±0.13 0.750 0.604 92.26±0.33 - - - -
1600 - - - - 0.778±0.13 0.731 0.882 91.85±1.20 - - - -
1800 - - - - 0.783±0.13 0.746 0.266 90.64±0.82 - - - -

Weight decay.

0.0 0.645±0.05 -0.037 0.179 0.899±0.01 0.713±0.13 0.652 0.266 90.58±0.99 0.670±0.03 0.159 0.629 93.09±0.73
0.0001 0.719±0.03 0.109 0.659 0.912±0.01 0.756±0.13 0.734 0.612 91.88±0.59 0.751±0.05 0.143 0.396 93.37±0.44
0.0003 0.771±0.03 0.144 0.648 0.915±0.01 0.772±0.13 0.721 0.726 92.34±0.57 0.759±0.06 0.110 0.890 93.82±0.51
0.0005 0.782±0.03 0.117 0.910 0.911±0.02 0.764±0.13 0.705 0.882 92.61±0.59 0.739±0.07 0.077 0.051 91.61±1.01

Sampling.

Random-A 0.717±0.04 0.133 0.862 0.919±0.02 0.764±0.13 0.705 0.882 92.61±0.59 - - - -
Random-NAS 0.638±0.20 0.167 0.949 0.913±0.02 0.765±0.14 0.750 0.897 92.17±1.01 - - - -
FairNAS 0.789±0.03 0.288 0.382 0.908±0.01 0.774±0.14 0.713 0.917 93.06±0.31 - - - -

Table 6.11: Results for all low-fidelity factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Number of Layer (-X indicates the baseline minus X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
-1 0.759±0.03 0.214 0.222 0.901±0.01 0.749±0.13 0.710 0.796 91.85±0.92 0.843±0.04 0.178 0.299 92.35±1.25
-2 0.817±0.03 0.228 0.713 0.910±0.02 0.777±0.13 0.700 0.822 92.68±0.37 0.852±0.03 0.205 0.609 92.65±1.89

Train portion

0.25 0.433±0.07 0.216 0.281 0.901±0.01 0.660±0.11 0.668 0.979 92.30±1.14 0.597±0.14 0.132 0.359 92.27±1.84
0.5 0.612±0.06 0.251 0.424 0.896±0.02 0.740±0.12 0.669 0.979 93.17±0.47 0.666±0.17 0.083 0.551 92.22±1.36
0.75 0.688±0.05 0.222 0.857 0.920±0.01 0.758±0.13 0.725 0.618 92.46±0.19 0.715±0.18 0.096 0.081 92.29±0.47
0.9 0.722±0.05 0.186 0.996 0.931±0.01 0.772±0.13 0.721 0.726 92.34±0.57 0.703±0.18 0.042 0.065 92.78±0.10

Batch size (/ X indicates the baseline divide by X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
/ 2 0.670±0.05 0.246 0.807 0.920±0.01 0.728±0.16 0.719 0.842 92.37±0.61 0.698±0.20 0.037 0.209 93.24±0.13
/ 4 0.686±0.07 0.155 0.913 0.921±0.01 0.703±0.16 0.679 0.672 92.35±0.34 0.633±0.20 0.033 0.690 93.68±0.62

# channel (/ X indicates the baseline divide by X)

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
/ 2 0.658±0.05 0.156 0.704 0.898±0.02 0.697±0.14 0.667 0.158 89.83±0.97 0.776±0.05 0.190 0.993 93.90±0.71
/ 4 0.604±0.06 0.093 0.907 0.922±0.01 0.606±0.13 0.616 0.878 92.86±0.34 0.707±0.05 0.202 0.359 92.93±0.58

Instead, compute the statistics on the fly over a batch of the same size as used during training.
3. The loss landscape of super-nets is less smooth than that of standalone networks. Start from a
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Table 6.12: Results for all implementation factors on the three search spaces.
Factor NASBench-101 NASBench-201 DARTS-NDS
and Super-net Final Super-net Final Super-net Final
settings Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance Accuracy S-KdT P > R Performance

Other factors

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
OFA Kernel 0.708±0.08 0.132 0.203 92.01±0.19 0.672±0.18 0.574 0.605 91.83 ± 0.86 0.782±0.05 0.112 0.399 93.22±0.43
WSBN 0.155±0.07 0.085 0.504 0.809±0.13 0.703±0.14 0.676 0.585 92.06±0.48 0.744±0.16 0.033 0.682 92.88±1.22

Path dropout rate

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
0.05 0.750±0.02 0.206 0.819 0.915±0.07 0.490±0.09 0.712 0.881 92.25±0.89 0.184±0.06 0.006 0.359 92.93±0.60
0.15 0.726±0.02 0.186 0.482 0.910±0.01 0.250±0.03 0.640 0.526 91.44±1.25 0.366±0.05 0.059 0.570 92.61±1.28
0.2 0.669±0.01 0.110 0.282 0.901±0.01 0.185±0.02 0.431 0.809 92.15±0.85 0.518±0.06 0.090 0.009 91.45±0.58

Global dropout

Baseline 0.769±0.03 0.236 0.932 0.921±0.01 0.782±0.13 0.740 0.589 92.92±0.48 0.670±0.03 0.159 0.629 93.09±0.73
0.2 0.739±0.05 0.233 0.221 0.910±0.00 0.712±0.13 0.702 0.950 91.76±1.36 0.557±0.19 0.018 0.451 93.51±0.27

Please refer to Section 6.4.5 for mapping on the node or edge and Section 6.4.5 for dynamic channel factor results.

Table 6.13: Parameter settings that obtained the best searched results.

Search Space implementation low fidelity hyperparam. sampling

Dynamic Conv OFA Conv WSBN Dropout Op map # layer portion batch-size # channels batch-norm learning rate epochs weight decay

NASBench-101 Interpolation N N 0. Node 9 0.75 256 128 Tr=F A=T 0.025 400 1e-3 FairNAS
NASBench-201 Fix N N 0. Edge 5 0.9 128 16 Tr=F A=T 0.025 1000 3e-3 FairNAS
DARTS-NDS Fix N Y 0. Edge 12 0.9 256 36 Tr=F A=F 0.025 400 0 FairNAS
For batch-norm, we report Track statistics (Tr) and Affine (A) setting with True (T) or False (F).
For other notation, Y = Yes, N = No.

smaller learning rate than standalone training.
4. Do not use other low-fidelity estimates than moderately reducing the training set size to

decrease the search time.
5. Do not use dynamic channeling in search spaces that have a varying number of channels in

the intermediate nodes. Break the search space into multiple sub-spaces such that dynamic
channeling is not required.

Comparison to the state of the art. Table 6.9 shows that carefully controlling the relevant
factors and adopting the techniques proposed in Section 6.4 allow us to considerably improve
the performance of Random-NAS. Thanks to our evaluation, we were able to show that simple
Random-NAS together with an appropriate training protocol Pw s and mapping function fw s

yields results that are competitive to and sometimes even surpass state-of-the-art algorithms. Our
results provide a strong baseline upon which future work can build.

We also report the best settings in Table 6.13.
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7 Landmark Regularization

As empirically shown in the previous chapters, the ranking disorder between the performance of
stand-alone architectures and that of the corresponding shared-weight networks violates the main
assumption of weight-sharing NAS algorithms, thus limiting their effectiveness. In this chapter,
we tackle this issue by proposing a regularization term that aims to maximize the correlation
between the performance rankings of the shared-weight network and that of the standalone
architectures using a small set of landmark architectures. We incorporate our regularization term
into three different NAS algorithms and show that it consistently improves performance across
algorithms, search-spaces, and tasks.

7.1 Introduction

Modern algorithms for neural architecture search (NAS) can now find architectures that outper-
form the human-designed ones for many computer vision tasks (Liu et al., 2019a; Wu et al.,
2018; Chen et al., 2019b; Ryoo et al., 2020). A driving factor behind this progress was the
introduction of parameter sharing (Pham et al., 2018b), which reduces the search time from
thousands of GPU hours to just a few and has thus become the backbone of most state-of-the-art
NAS frameworks (Bender et al., 2020; Yu et al., 2020a; Cai et al., 2020; Luo et al., 2020). At the
heart of all these methods is a shared network, a.k.a. super-net, that encompasses all architectures
within the search space.

To train the super-net, NAS algorithms essentially sample individual architectures from the super-
net and train them for one or a few steps. The sampling can be done explicitly, with strategies such
as reinforcement learning (Pham et al., 2018b; Cai et al., 2018b), evolutionary algorithms (Guo
et al., 2019; Wang et al., 2020), or random sampling (Li & Talwalkar, 2019) and Chapter 5, or
implicitly, by relying on a differentiable parameterization of the architecture space (Li et al.,
2020a; Liu et al., 2019b; Cai et al., 2020; Wu et al., 2018; Zela et al., 2020a). Whether explicit
or implicit, the underlying assumption of these methods is that the relative performance of the
individual architectures in the super-net is highly correlated with the performance of the same
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Figure 7.1: Landmark regularization. Traditional super-net training leads to poor correlation
between relative stand-alone performance and super-net performance (top). We sample landmark
architectures and use their relative performance to guide training towards an improved ranking
and show that this improves the search performance (bottom).

architectures when they are trained in a stand-alone fashion. If this were the case, one could then
safely choose the best individual architecture from the super-net after the search and use it for
evaluation. However, this assumption was disproved in Zela et al. (2020b) and Chapter 5, who
showed a correlation close to zero between the two rankings on complex search spaces (Ying
et al., 2019; Liu et al., 2019b). The major reason behind this is fairly intuitive: To be optimal,
different individual architectures should have different parameter values, which they cannot
because the parameters are shared. Super-net training will thus not produce the same results as
stand-alone training. More importantly, there is no guarantee that even the relative ranking of
the architectures will be maintained. While for simple, linear search spaces the ranking can be
improved by using a carefully crafted sampling strategy (Chu et al., 2019; 2020), addressing the
ranking disorder for more realistic, complex search spaces remains an open problem (Yu et al.,
2020b).

In this chapter, we propose to explicitly encourage architectures represented by the super-net
to have a similar ranking to their counterparts trained in a stand-alone fashion. As illustrated
by Figure 7.1, we leverage a set of landmark architectures, that is, architectures with known
stand-alone performance, to define a regularization term that guides super-net training towards
this goal. We show that a small set of landmark architectures suffices to significantly improve
the global ranking correlation, so that the overall search procedure, including the independent
training of the landmark architectures, remains tractable.

Our regularization term is general and does not make assumptions about the specific sampling
algorithm used for super-net training. As such, it can easily be combined with many popular
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weight-sharing NAS algorithms. We demonstrate this by integrating it into three different
algorithms (Guo et al., 2019; Luo et al., 2018a; Dong & Yang, 2019b) that are representative
of three different categories of weight-sharing NAS algorithms: i) Algorithms that sample
architectures from the super-net in an unbiased manner throughout the super-net training (Li &
Talwalkar, 2019; Bender et al., 2018b; Guo et al., 2019; Chu et al., 2019); ii) approaches that
employ learning-based samplers, which are updated during the training based on the performance
of the partially-trained super-net (Pham et al., 2018b; Li et al., 2020a; Luo et al., 2018a; Wang
et al., 2019; Zhao et al., 2020); and iii) algorithms that rely on differentiable architecture
search (Liu et al., 2019b; Cai et al., 2018b; Xie et al., 2018; Nayman et al., 2019; Xu et al., 2020).

Our extensive experiments on CIFAR-10 and ImageNet show that landmark regularization
significantly reduces the ranking disorder that occurs in these algorithms and that they are
consequently able to consistently find better-performing architectures. To further showcase the
effectiveness and generality of our approach, we study its use in the context of architecture
search for monocular depth estimation. To the best of our knowledge, this is the first attempt at
performing NAS for this task. We, therefore, construct a dedicated search space and show that a
landmark-regularized NAS algorithm can find novel architectures that improve upon the state of
the art in this field.

7.2 Preliminaries

We first revisit the basics of super-net training and highlight the ranking disorder problem.

Let Ω be a search space, defined as a set of N neural network architectures ai , i ∈ [1, N ]. stand-
alone training optimizes the parameters θa j of architecture a j independently from the other
architectures by minimizing a loss function L (x,θa j ), thus yielding the optimal parameters θ∗a j

for the given training data xtr ai n . Without weight sharing, NAS then aims to train a search
algorithm S to sample architectures S(Ω) = {ak } whose stand-alone performance outperforms
that of other architectures, that is, L (x,θ∗ak

) < L (x,θ∗a j
), ∀a j ∉ S(Ω). In its simplest form,

i.e., random search, there is no search algorithm to train per se, and one just samples a set of
architectures, trains them in a stand-alone fashion, and ranks them to choose the ones with lowest
loss.

With a proper search algorithm, however, NAS without weight sharing requires training and
evaluating an impractically large amount of stand-alone architectures Zoph & Le (2017a); Zoph
et al. (2018); Wang et al. (2020); Tan et al. (2018); Tan & Le (2019) . To circumvent this,
weight-sharing NAS strategies construct a super-net θs that encompasses all architectures in the
search space. The relative performance of individual architectures sampled from the super-net
then acts as an estimate of their relative stand-alone performance. Training is typically formulated

121



Chapter 7. Landmark Regularization

Search Space Landmark 
Sampler

Landmark Architectures

Super-net

Super-net 
Training

Landmark 
regularization

<latexit sha1_base64="38ZBkK3ZbJnoFNN+Sq2+buBNNLA=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IRPJVEFHssePHgoYKthTaEzXbTLt1swu5GqCG/xIsHRbz6U7z5b9y0OWjrwMIw8x5vdoKEM6Ud59uqrK1vbG5Vt2s7u3v7dfvgsKfiVBLaJTGPZT/AinImaFczzWk/kRRHAacPwfS68B8eqVQsFvd6llAvwmPBQkawNpJv14cR1hOCeXab+5nKfbvhNJ050CpxS9KAEh3f/hqOYpJGVGjCsVID10m0l2GpGeE0rw1TRRNMpnhMB4YKHFHlZfPgOTo1ygiFsTRPaDRXf29kOFJqFgVmsoiplr1C/M8bpDpseRkTSaqpIItDYcqRjlHRAhoxSYnmM0MwkcxkRWSCJSbadFUzJbjLX14lvfOme9l07i4a7VZZRxWO4QTOwIUraMMNdKALBFJ4hld4s56sF+vd+liMVqxy5wj+wPr8AVXIk38=</latexit>Ls

Search Phase

Evaluation Phase

Trained
Super-net

NAS 
algorithm

Best Super-net
Architectures 

Stand-alone
Performance rank

1
2
3
4
5

Stand-alone
Training

t < T?

1
No

Output the best

Yes

Add these architectures as landm
ark, repeat the search

NAS 
algorithm

<latexit sha1_base64="D4tAN8dXWsxlyGX3s0+7OruVIvU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIYpcVNy5cVLAPaIeSSTNtaCYZk0yhDP0ONy4UcevHuPNvzLSz0NYDgcM593JPThBzpo3rfjuFtfWNza3idmlnd2//oHx41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxreZ355QpZkUj2YaUz/CQ8FCRrCxkt+LsBkRzNP7/s2sX664VXcOtEq8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHA6K/USTWNMxnhIu5YKHFHtp/PQM3RmlQEKpbJPGDRXf2+kONJ6GgV2Mgupl71M/M/rJias+SkTcWKoIItDYcKRkShrAA2YosTwqSWYKGazIjLCChNjeyrZErzlL6+S1kXVu6q6D5eVei2vowgncArn4ME11OEOGtAEAk/wDK/w5kycF+fd+ViMFpx85xj+wPn8AcTPkhA=</latexit>LA

<latexit sha1_base64="TIe7Xa7tvyN2c5Cia/S86DnP6ic=">AAAB9HicbVBNTwIxFHyLX4hfqEcvjcTEE9k1GjmSePGIRpAENqRbCjR0u2v7loRs+B1ePGiMV3+MN/+NXdiDgpM0mcy8lzedIJbCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMlGiGW+ySEa6HVDDpVC8iQIlb8ea0zCQ/DEY32T+44RrIyL1gNOY+yEdKjEQjKKV/G5IccSoTO9nhPTKFbfqzkFWiZeTCuRo9Mpf3X7EkpArZJIa0/HcGP2UahRM8lmpmxgeUzamQ96xVNGQGz+dh56RM6v0ySDS9ikkc/X3RkpDY6ZhYCezkGbZy8T/vE6Cg5qfChUnyBVbHBokkmBEsgZIX2jOUE4toUwLm5WwEdWUoe2pZEvwlr+8SloXVe+q6t5dVuq1vI4inMApnIMH11CHW2hAExg8wTO8wpszcV6cd+djMVpw8p1j+APn8wc8lJG2</latexit>R

Figure 7.2: Overview of our approach. Left: During the search phase, we first sample a set of
landmark architectures and obtain their stand-alone performance. We train the super-net with
our regularization term such that the landmark ranking is preserved. Right: After a round of
training, we sample the best architectures given the current super-net performance and evaluate
their stand-alone performance. We add these architectures to the set of landmarks and repeat the
process for a few iterations.
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7.3 Landmark regularization

as minimizing a joint loss over all architectures that are represented by the super-net:

Ls(θs) =
N∑

i=1
L (x,θs

ai
), (7.1)

where the optimization is made tractable by randomly sampling terms from this sum for each
update.

In contrast to stand-alone training, parameters overlap between different architectures and in
general we have that θs

ai
∩θs

a j
6=∅. Since the parameters shared by ai and a j would typically not

have the same optimal values in the stand-alone training of Chapter 4, the optimal solution of
super-net training is not the same as that of stand-alone training, and neither is the ranking of the
architectures.

7.3 Landmark regularization

We address the issue of low ranking correlation by introducing a simple yet effective approach to
regularize super-net training with prior knowledge about the relative performance of individual ar-
chitectures. To this end, we sample M << N architectures to form a set of landmark architectures,
ΩL = {ai }M

i=1, and obtain their stand-alone performance Lval i d (xval i d ,θ∗ai
) on validation data,

where θ∗ai
= argminL (xtr ai n ,θai ). We shorten this to LA (x,θ∗ai

) to simplify the notation. To
ensure that the trained super-net is predictive of the performance of the stand-alone architectures,
we aim to preserve the relative performance of these landmark architectures in the super-net.
Formally, we want to enforce that

LA (x,θ∗ai
) ≤LA (x,θ∗a j

) ⇒L (x,θs
ai

) ≤L (x,θs
a j

), (7.2)

for all pairs of architectures i , j ∈ [1, M ].

To achieve this, we propose a differentiable regularization term that can readily be integrated
into standard super-net training procedures. We first sort the landmark architectures in ascending
order based on their ground-truth loss:

∀i , j ∈ [1, M ], i < j ⇔LA (x,θ∗ai
) ≤LA (x,θ∗a j

), (7.3)

and use this ordering to define a regularization term

R(θs) =
M∑

i=1

M∑
j=i+1

max(0, L (x,θs
ai

)−L (x,θs
a j

)) , (7.4)

which penalizes deviations from the ordering induced by equation (7.2). Since all operations
involved in the proposed regularizer are differentiable, it is straight-forward to implement in
existing deep learning frameworks. Note that the several alternative formulations of this loss are
possible. We will discuss them in
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The landmark-regularized training loss is then given by

L (θs) =Ls(θs)+λR(θs) , (7.5)

where λ> 0 is a hyper-parameter. To avoid leakage of validation data into the super-net training,
we follow Liu et al. (2019b); Luo et al. (2018a); Cai et al. (2018b) and split the training set into
two parts. We use one part to evaluate the super-net loss Ls and the other part to evaluate the
regularization R during training.

Computational cost. The complexity of evaluating the regularizer discussed above is O(M 2).
This factor can have a significant impact on the training time, as the regularizer has to be evaluated
at every training iteration. To reduce this computational burden while still encouraging the super-
net to encode a correct architecture ranking, we propose to randomly sample m pairs of landmark
architectures i , j at each iteration and evaluate their ranking:

R(θs) =
m∑
i , j

max(0,L (x,θs
ai

)−L (x,θs
a j

)) . (7.6)

This reduces the time complexity from O(M 2) to O(m). We will show empirically that even
evaluation with a single pair introduces virtually no degradation of the resulting architecture
ranking.

Landmark selection. The choice of the landmark architectures has an impact on the effectiveness
of our regularizer. In particular, we would like to use landmarks that cover the complete search
space. To promote this, we introduce the diverse landmark sampling strategy described by
Algorithm 1. We start by randomly sampling a root architecture from the search space. We then
generate M −1 diverse architectures by mutating the root architecture such that the Hamming
distance is larger than a threshold τ. For example, in the DARTS search space (Liu et al., 2019b),
one architecture is encoded as a sequence, where each element represents selecting either a
previous node or an operation. Mutating an architecture is then achieved by randomly altering
one element, and the Hamming distance between two architectures is computed as the number of
unequal elements.

Regularization schedule. For all practical applications, the number of landmark architectures
will be several orders of magnitude smaller than the total number of architectures in the search
space. The regularization term thus needs to have high weight to be effective and have a
noticeable effect on the training. However, too much regularization can negatively impact the
training dynamics, especially in the early stages. To alleviate this issue, we propose to enable
regularization after a warm-up phase and to gradually increase its influence using a cosine
schedule. Specifically, we set the regularization weight at epoch t to

λt = 1t>tw · 1

2

(
1+cos

π(t − tw )

ttot al

)
λmax, (7.7)
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7.3 Landmark regularization

Algorithm 1: Landmark-regularized training.
Input :Search space Ω, NAS algorithm S , super-net and stand-alone losses Ls , LA , distance

threshold τ.

initialize super-net parameters θs

initialize an empty landmark set ΩL

while step t < T do
Obtain landmark architectures
a0 ←RandomSample(Ω,1)
while |ΩL | < M ×T do

at ←Mutate(a0)
if dH ammi ng (at , a0) > τ then

add at to ΩL

end
end
foreach training step do

Train super-net L while sampling m pairs
{(ai , a j )} ← RandomSample (ΩL ×ΩL ,m)
L =Ls (θs )+λR(θs )
Train sampler S if necessary

end
Sample architectures to get stand-alone performance
∀a j ∈Ωt ←S (Ω), obtain LA (x,θa j )
ΩL ←ΩL ∪Ωt

end
Output :Model at ← argmina∈Ωt LGT (x,θa)

where tw denotes the number of warm-up epochs, ttot al denotes the total number of epochs, and
λmax denotes the final value for the regularization parameter.

Application to existing NAS methods. The proposed regularization term is independent of the
search algorithm, and thus widely applicable to many different weight-sharing NAS algorithms.
We discuss its use in three different classes of NAS strategies, specific instances of which will act
as baselines in our experiments.

We categorize weight sharing NAS algorithms into three broad categories according to their
interaction with the super-net: i) unbiased architecture sampling algorithms (Li & Talwalkar,
2019; Bender et al., 2018b; Guo et al., 2019; Chu et al., 2019) that sample one or a few paths
uniformly at random, ii) learning based sampling that favors the most promising architectures
given the performance of the current, partially trained super-net (Pham et al., 2018b; Li et al.,
2020a; Luo et al., 2018a; Wang et al., 2019; Zhao et al., 2020), and iii) differentiable architecture
search that parametrizes the architecture sampling probability as part of the super-net (Liu et al.,
2019b; Cai et al., 2018b; Xie et al., 2018; Nayman et al., 2019; Xu et al., 2020).

For the first two categories, our method can be directly incorporated into the super-net training
to improve its quality, and hence to improve the final search results. For algorithms in the last
category, the algorithm is usually composed of two distinct phases that are executed alternatingly.
In the the first phase the parameters that define the architecture are fixed and only the weights
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are updated, whereas in the second phase the weights are fixed and the architecture parameters
are updated. Our regularization term can directly be integrated into the first phase when using
discrete architectures in the forward pass as in works that employ the Gumbel-Softmax (Dong &
Yang, 2019b; Wu et al., 2018) or binary gates (Cai et al., 2018b; Xie et al., 2018). When using
continuous architecture specifications in the forward pass (Liu et al., 2019b; Xu et al., 2020), we
do not have a discrete sub-path to sample and evaluate the regularization term, so additional care
has to be taken to incorporate it.

Multi-iteration pipeline. Figure 7.2 depicts the complete training pipeline. We first sample
landmark architectures using our landmark selection strategy and obtain their stand-alone perfor-
mance. We then train the NAS algorithm with landmark regularization. After a round of training,
we sample the top M architectures using the trained NAS algorithm, obtain their stand-alone
performances, and add these architectures to the set of landmarks. We proceed training of the
super-net with the expanded set of landmarks and iterate this process.

In our experiments on different tasks and algorithms, we observed a stable improvement after
sampling 3 sets of M = 10 architectures for a total of 30 landmarks, which is computationally
feasible. Additionally, our algorithm can leverage previously trained models to improve the search
by simply adding them to the landmark set. Considering that search spaces usually encompass
billions of architectures, the number of landmarks is negligible.

7.4 Experiments

To validate the landmark regularization we incorporate it into three popular weight-sharing
algorithms and evaluate them on the task of image classification using the CIFAR-10 (Krizhevsky
et al., 2009b) and ImageNet (Russakovsky et al., 2015) datasets. We then discuss a new search
space for monocular depth estimation architectures and show that our approach also applies to
this new task. Finally, we ablate the key components and hyperparameter choices of our landmark
regularization.

We used PyTorch for all our experiments and follow the evaluation framework defined in Chapter 5
to ensure a fair comparison with the baseline methods. Following (Radosavovic et al., 2019;
2020), we shorten the training time from 600 to 100 epochs on CIFAR-10 and from 250 to 50 on
ImageNet, which still yields a good prediction quality. We will make our code publicly available
upon acceptance.

Baselines. We select single-path one-shot (SPOS) as a representative unbiased architecture
sampling algorithm. We use SPOS to train the super-net, followed by an evolutionary search to
select the best models based on the super-net performance (Guo et al., 2019). Among the learning-
based architecture sampling methods, we select neural architecture optimization (NAO) (Luo
et al., 2018a), which trains an explicit auto-encoder-based performance predictor. Finally, for
differentiable architecture search, we select the gradient-based search using a differentiable
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architecture sampler (GDAS) (Dong & Yang, 2019b), which has been widely used in other
works (Xie et al., 2018; Wu et al., 2018; Cai et al., 2018b; Li et al., 2020a).

Hyperparameters. We sample M = 10 landmark architectures at each iteration, and perform
T = 3 iterations. We sample m = 1 pairs for each training step and set λmax = 10 in all of our
experiments unless otherwise specified. The Hamming distance threshold τ is set according to the
configuration of each search space. We train the baselines for the same total number of epochs,
to ensure that any performance improvement cannot be attributed to our approach sampling more
architectures.

Metrics. We follow (Guo et al., 2019; Yu et al., 2020b) and report the ranking correlation in terms
of the sparse Kendall-Tau (S-KdT). We sample 200 architectures randomly to compute this metric
for the CIFAR-10 experiments, 90 for the ImageNet experiments, and 20 for the monocular depth
estimation experiments. Note that we exclude the landmark architectures from this set to avoid
reporting overly optimistic numbers for our approach. Furthermore, following (Dong & Yang,
2020), we report the mean and best stand-alone performance of the best architectures found over
three independent runs.

7.4.1 Image classification on CIFAR-10

Since the inception of NAS, CIFAR-10 has acted as one of the main datasets to benchmark NAS
performance (Zoph et al., 2018; Pham et al., 2018b; Luo et al., 2018a; Guo et al., 2019; Xu et al.,
2020; You et al., 2020). We utilize two search spaces, NASBench-101 and NASBench-201, for
which the stand-alone performance of many architectures is known.

NASBench-101. NASBench-101 (Ying et al., 2019) is a cell search space that contains 423,624
architectures with known stand-alone accuracy on CIFAR-10. It is the largest tabular benchmark
search space to date. We use the implementation of Chapter 5 to benchmark the performance of
SPOS and NAO. We do not report the results of GDAS on this search space, as the matrix-based
configuration used in NASBench-101 is not amenable to differentiable approaches (Ying et al.,
2019; Zela et al., 2020b). We set the Hamming distance threshold to τ= 5.

As shown in Table 7.1 (top), landmark regularization improves the ranking correlation (sparse
Kendall-Tau) from 0.267 to 0.347 for SPOS, and from 0.329 to 0.457 for NAO. This translates to
a 1-2% improvement in terms of mean stand-alone accuracy over three runs. The best architecture
discovered on this search space, thanks to our regularizer, ranks 9313-th which corresponds to
the top 2% of architectures. Note that NAO without landmark regularization consistently got
trapped in local minima, leading to its best architecture being only in the top 30%.

NASBench-201. We report additional results on the NASBench-201 cell search space (Dong
& Yang, 2020), where each cell is a fully connected graph with 4 nodes. Each edge contains
5 searchable operations including a zero operation that effectively removes the edge from the
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NASBench-101

Model S-KdT Mean Acc. Best Rank Best Acc.

SPOS 0.267 ± 0.02 91.02 ± 0.52 38953 92.82
SPOS+Ours 0.347 ± 0.03 92.48 ± 0.51 27697 92.99

NAO 0.329 ± 0.11 90.56 ± 0.88 131969 91.60
NAO+Ours 0.457 ± 0.03 92.23 ± 1.32 9313 93.34

NASBench-201

Model S-KdT Mean Acc. Best Rank Best Acc.

SPOS 0.771 ± 0.04 87.66 ± 4.95 3383 92.30
SPOS+Ours 0.802 ± 0.02 92.08 ± 0.37 2557 92.53

GDAS 0.691 ± 0.01 93.58 ± 0.12 463 93.48
GDAS+Ours 0.755 ± 0.01 93.98 ± 0.09 109 93.84

NAO 0.653 ± 0.05 91.75 ± 1.52 649 93.35
NAO+Ours 0.758 ± 0.05 92.84 ± 0.71 179 93.75

Table 7.1: Results on NASBench-101 and NASBench-201. We report the S-KdT at the end of
training, the mean stand-alone accuracy of the searched architectures, the best rank, and the best
accuracy. Each method was run 3 times.

computation graph. This yields a total of 15,625 architectures. We set τ= 5 and benchmark all
three baseline algorithms on this space. As shown in Table 7.1 (bottom), landmark regularization
consistently improves the ranking correlation (sparse Kendall-Tau) across all three methods. We
also observe an improvement in mean accuracy of more than 4% with SPOS. The best architecture
is obtained by GDAS with landmark regularization and ranks 109-th. This corresponds to the
top 0.7% architectures across the search space. In Figure 7.3 (top), we plot the mean sparse
Kendall-Tau as super-net training progresses. We can see that the regularization improves the
ranking correlation by a significant margin, especially towards the end of training.

DARTS search space. The NASBench search spaces are relatively small. To evaluate our

Model S-KdT Mean Acc. Params (in M) Best Acc.

SPOS 0.058 ± 0.010 92.80 ± 0.03 5.082 92.88
SPOS+Ours 0.206 ± 0.018 93.41 ± 0.43 2.181 93.84

GDAS 0.176 ± 0.014 90.48 ± 2.95 3.418 93.43
GDAS+Ours 0.209 ± 0.001 94.32 ± 0.28 2.540 94.60

NAO 0.102 ± 0.018 92.93 ± 0.87 5.080 93.03
NAO+Ours 0.231 ± 0.012 93.53 ± 0.43 2.184 93.78

Table 7.2: Results on the DARTS search space on CIFAR-10. Our best model (GDAS+Ours)
surpasses the state-of-the-art model of Xu et al. (2020) (94.02% accuracy with 3.62M parameters)
with 30% fewer parameters.
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ASBench-201
DARTS Space

NAO GDAS SPOS

Figure 7.3: Evolution of the S-KdT of three NAS algorithms on two search spaces. Landmark
regularization significantly improves the ranking correlation of the super-net in all cases.

approach in a more realistic scenario, we make use of the DARTS search space (Liu et al., 2019b;
Xie et al., 2018; Xu et al., 2020; Nayman et al., 2019) which spans 3.3×1013 architectures and is
commonly used to evaluate real-world NAS performance. In contrast to NASBench, for which
we could query the existing stand-alone performances, here, we need to train the discovered
architecture from scratch. To compute the ranking correlation, we rely on the 5,000 pre-trained
models of (Radosavovic et al., 2019) from which we randomly sample 200 as before.

We report our results in Table 7.2. We observe a clear improvement in terms of both sparse
Kendall-Tau and mean accuracy over three independent searches across all three algorithms.
Interestingly, the best model obtained using our ranking loss can surpass the baseline models
by almost 1% with only around 50% of the parameters. The best model from GDAS with our
regularizer surpasses the state-of-the-art model on this space (Xu et al., 2020) by 0.58% with
30% fewer parameters.

7.4.2 Image classification on ImageNet

To further evidence the effectiveness of our method, we move to ImageNet classification. For
evaluation, we pick the best model of three independent runs predicted by each NAS algorithm
and train them from scratch on the entire ImageNet training set for 50 epochs. We follow the
setup of Xu et al. (2020) and use stochastic gradient descent with a linear learning rate scheduler,
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Model S-KdT Mean Top-1 Params (in M) Best Top-1 (50/250)

SPOS 0.210 ± 0.010 64.57 ± 3.30 4.579 67.88 / 73.69
SPOS+Ours 0.267 ± 0.018 67.38 ± 0.92 4.766 68.61 / 74.58

GDAS 0.247 ± 0.012 67.50 ± 0.26 5.076 67.26 / 74.03
GDAS+Ours 0.272 ± 0.023 68.82 ± 0.24 5.073 68.36 / 74.82

NAO 0.253 ± 0.006 67.70 ± 0.43 4.675 68.21 / 73.71
NAO+Ours 0.279 ± 0.003 68.89 ± 0.58 4.488 69.58 / 74.92

Table 7.3: Results on ImageNet. We report mean top-1 accuracy over 3 runs after 50 epochs and
best top-1 accuracy after 50 and 250 epochs, respectively.

which linearly increases from 0.1 to 0.5 in the first five epochs, and decreases to 0 over the
remaining 45 epochs. We use a weight decay of 3e-4 and a label smoothing coefficient of 0.1

for all models. For this dataset, we use the popular DARTS search space, which provides 120
architectures trained for 50 epochs (Radosavovic et al., 2019). We split these architectures into
90 to report the sparse Kendall-Tau evaluation metric, and 30 for landmark sampling. We train
the super-net with only 15% of the training dataset as in Xu et al. (2020). As the test data is not
public, we report the top-1 validation accuracy as a metric for stand-alone training.

Results. Table 7.3 shows that landmark regularization consistently improves the three baselines.
Overall, the best model is found by NAO with landmark regularization and achieves 74.92% top-1
accuracy, which outperforms the best baseline model by more than 1%. This further evidences
the effectiveness of our regularization and its robustness across datasets.

7.4.3 Monocular depth estimation

To showcase the generality of our approach, we apply our landmark-regularized NAS to the task
of monocular depth estimation. Monocular depth estimation aims to predict pixel-wise depth
from a single RGB image. Different paradigms have emerged on how to train single-image depth
predictors, ranging from fully supervised training (Alhashim & Wonka, 2018; Xian et al., 2018;
Ranftl et al., 2020), to self-supervised approaches (Godard et al., 2019). We follow the supervised
paradigm and use the loss function proposed by Ranftl et al. (2020) to search for an architecture
on the ReDWeb (Xian et al., 2018) dataset.

Search space. Figure 7.4 gives a detailed overview of the structure of our search space. Fig-
ure 7.4 (a) shows the structure of a traditional monocular depth estimation network. It is composed
of a backbone network that acts as a feature extractor, typically pre-trained on ImageNet, followed
by decoder fusion blocks that aggregate multi-scale information into a final prediction. Since
using a pre-trained high-capacity network has been shown to be of high importance for final
performance (Alhashim & Wonka, 2018; Ranftl et al., 2020), its architecture is fixed. We thus
propose to search for the fusion blocks that define the decoder.

As depicted in Figure 7.4 (b), each fusion block is a search cell and takes the output of its
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Figure 7.4: Monocular depth estimation search space. (a) We modify MiDaS Ranftl et al.
(2020) to construct the search space. We keep the backbone unchanged and search for fusion
blocks in the decoder branches. (b) To define a fusion block, we model the input from the
backbone and from the preceding fusion block as two nodes. We add two feature nodes, which
sum up all previous inputs. The nodes are connected by edges, which represent the searchable
operations. The final output node Y takes the output of the last feature node and applies a
potentially searchable upsampling operation. (c) Each edge, except the output edge, represents
an Edge Op (blue) that contains five operations to choose from, while an upsampling edge
(purple) contains four. (d) We propose four sub-space configurations: ‘V1’ indicates that we only
search edge operations and fix the upsampling operator to bilinear upsampling. ‘V2’ includes
a search over the upsampling operators. ‘Sync’ indicates that all fusion blocks share the same
configuration, while ‘Non-sync’ allows them to differ.

preceding fusion block and the features from the backbone network as input. As the first
fusion block does not have a predecessor, we simply duplicate the features from the encoder.
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Search space Method
Sync Non-sync

s-KdT Best Val. loss S-KdT Best Val. loss

V1
|Ω| = 3,125 |Ω| = 9.5×1013

SPOS 0.751 ± 0.003 0.0960 ± 0.001 0.732 ± 0.008 0.0973 ± 0.002
SPOS+Ours 0.781 ± 0.002 0.0958 ± 0.001 0.867 ± 0.044 0.0974 ± 0.001

V2
|Ω| = 12,500 |Ω| = 2.4×1016

SPOS 0.401 ± 0.010 0.0957 ± 0.001 0.611 ± 0.004 0.0973 ± 0.001
SPOS+Ours 0.555 ± 0.026 0.0936 ± 0.000 0.681 ± 0.002 0.0964 ± 0.001

Table 7.4: Results on the RedWeb validation set. The performance achieved by Ranftl et al.
(2020) is 0.0942 (lower is better).

Figure 7.4 (c) shows the possible searchable operations, whereas (d) illustrates four possible
configurations of our search space. We report the total number of architectures |Ω| for each search
space in Table 7.4. While the search space is relatively simple, it is large enough to exhibit the
problem of ranking disorder.

Results. We use the single-path one-shot algorithm to benchmark the influence of our regu-
larization term on this task. We run T = 2 iterations, and sample 10 architectures in the first
iteration. After the first round of training, we pick the three top models, obtain their stand-alone
performance, and add them to the set of landmarks before we perform training for a second
iteration. In addition to sparse Kendall-Tau, we report the scale- and shift-invariant loss (Ranftl
et al., 2020) on the validation set as the performance metric.

Our results in Table 7.4 indicate that our method consistently yields an improvement in terms
of sparse Kendall-Tau for all four configurations of the search space. Our best model improves
upon the state-of-the-art handcrafted architecture of (Ranftl et al., 2020) in terms of the final
performance.

7.4.4 Ablation studies

We finally provide an analysis of different aspects of our approach. We first evaluate the influence
of the hyper-parameter λ and different regularization schedules. We further study the robustness
of our method to the landmark sampling distance τ and the number of iterations T . We conduct
the ablations under the experimental setting described in Section 7.4.1 and use SPOS as baseline.

Loss coefficient λ and scheduler. In Table 7.5, we ablate five different coefficient schedulers:
constant regularization throughout training, two schedulers that gradually decrease the regular-
ization, and two schedulers that gradually increase regularization (c.f.Table 7.5 (top)). For the
constant and decreasing schedulers, we gradually increase the loss from 0 to λmax linearly in the
first 10 epochs to avoid an abrupt change of the loss. As shown in Table 7.5, the cosine increasing
scheduler, with λmax = 10, yields the best results. We used this strategy in all our experiments.
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t

Schedule λmax

Const Cos ↓ Cos ↑ Step ↓ Step ↑ 1 10 100

S-KdT 0.753 0.712 0.803 0.709 0.785 0.789 0.803 0.793
Mean Acc. 91.13 91.38 92.08 91.02 91.31 91.89 92.08 91.97

Table 7.5: Influence of the regularization parameter λ. Left: Different schedules (c.f.top plots)
to modify the strength of regularization throughout training. Right: Influence of λmax with the
increasing cosine schedule.

SPOS SPOS+Ours

Iteration T=1 T=3 T=10 T=1 T=3 T=10

S-KdT 0.763 0.771 0.758 0.760 0.802 0.811
Mean Acc. 91.13 91.48 91.78 91.29 92.08 92.17

Table 7.6: Influence of the number of iterations T on NASBench-201.

m Pair(s) 1 2 10 20 50 100

S-KdT 0.803 0.801 0.805 0.812 0.807 0.791
Mean Acc. 92.08 92.12 92.13 92.10 92.11 92.00

Table 7.7: Influence of the stochastic approximation of Eq. 7.4. We randomly sample m pairs
from 30 landmarks during each training step .

Iterations. We investigate the impact of the number of iterations T in Table 7.6. We first pre-train
the super-net for 250 epochs and then continue training for another 150 epochs per iteration T

both with and without landmark regularization. Table 7.6 indicates that our method improves the
results when increasing the number of iterations, while the performance of the baseline does not
increase. We selected T = 3 for our experiments as it strikes a balance between efficiency and
accuracy.

Sampling in loss computation. In Table 7.7, we show that sampling a single pair of architectures
per iteration to compute the regularization term is sufficient. Using more pairs does not improve
the ranking correlation. We hypothesize this to be due to the fact that, overall, super-net training
undergoes thousands of steps, thus providing a good coverage of all possible combinations of
landmark architectures when the landmark set is small.

Influence of the sampling distance.

We finally evaluate the importance of the distance threshold τ in our landmark sampler. We first
pre-train the super-net with SPOS on NASBench-201 for 150 epochs, then train for 50 epochs
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Sampling distance 
Figure 7.5: Comparison of different sampling distances τ. The black, dashed line indicates the
baseline performance.

Table 7.8: Validating different loss function on NASBench-201.

Loss Name ReLU Softplus ReLU-Norm Sign Tanh

S-KdT 0.802 0.613 0.741 0.709 0.756
Mean Acc. 92.08 92.00 91.91 91.02 91.48

with landmark regularization, where we sample landmarks with varying distances τ. We repeated
this experiment 3 times and report the average sparse Kendall-Tau as well as the mean accuracy
of the discovered architectures. Figure 7.5 shows that the performance degrades if τ is chosen
too small. Performance gradually improves as τ increases. This highlights the importance of a
diverse set of landmarks. Note that our sampling strategy does not require knowledge about the
stand-alone performance and thus is applicable to new NAS search spaces.

Loss formulation.

ReLU Softplus ReLU-Normalize Sign Tanh
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Figure 7.6: Visualization of different loss formulation f (L1 −L2) and its first-order gradient.
Note that the loss shape of ReLU and ReLU-Normalize are the same, because we normalize Li

but not its associated function.

We validate other possible formulations of the ranking regularization. Specifically, to penalize the
architectures that disobey the ideal ranking order, we evaluate various instances of loss functions
f that obey R = f (L (x,θs

ai
),L (x,θs

a j
)) > 0 when i < j but L (x,θs

ai
) >L (x,θs

a j
). We shorten
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7.4 Experiments

L (x,θs
ai

) to Li during this discussion, and rewrite the formulation as R = f (Li −L j ). We evaluate
the following functions (c.f.Figure 7.6):

• ReLU: f (x) = max(0, x)

• Softplus: f (x) = ln1+ekx /k, where k = 3

• ReLU-normalized: f (x) = max(0, x), however, we normalize Li s.t. Li ∈ [0,1].

• Sign: f (x) = max(0,sign(x))

• Tanh: f (x) = max(0,tanh(x))

Table 7.8 reports the results of the different loss functions on NASBench-201. The best per-
formance is achieved by the ReLU formalism, which corresponds to the formulation shown in
Section 7.3.

7.4.5 Case study: Application on PC-DARTS

We show how to apply our method to DARTS-based methods with a continuous sampling of the
super-net. We pick the state-of-the-arts method PC-DARTS (Xu et al., 2020) to experimentally
validate our approach. We conduct our experiments on NASBench-201 search space.
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Figure 7.7: Different encodings of the continuous super-net. (a) Traditional continuous
encoding used in DARTS-based method. The architecture is encoded in architecture parameters
that sum to one. (b) We propose to select one architecture during continuous training by adding a
fixed amount perturbation D to the selected branch, and subtracting a perturbation of D/(n −1)
from the other branches. (c) Naive approach to select one architecture by one-hot encoding. Note
that, we refer (b) as soft one-hot encoding because it is in between of (a) and (c).

Naive one-hot encoding in continuous space. We introduce a novel soft one-hot encoding to
apply our landmark regularization in a continuous super-net. A fundamental difference between
discrete super-net with a continuous one is how to select a single architecture from the continuous
architecture specification (also known as rounding), which is a requirement to be able to evaluate
our regularization term. As shown in Figure 7.7(c), a single architecture in a discrete space can
be picked directly from its associated weights. In continuous space, however, there is no real
architecture selection because the architecture parameters are part of the super-net as shown in
Figure 7.7(a). To the best of our knowledge, there is no existing method that can effectively
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Figure 7.8: Soft One-hot encoding results. (Left) Validation accuracy during super-net training
for one-hot encoding and our proposed soft one-hot with different D. We can observe that the
naive one-hot encoding always yields accuracies around 0.1 on the validation set, whereas our
proposed soft one-hot ranges from 50% to 60%. (Right) We further compare sparse Kendall-Tau.
We choose D = 0.01 for further experiments with our landmark regularization.

sample one architecture from a continuous search space to conduct ranking analysis.

Soft one-hot encoding. To this end, we propose a simple but effective encoding to sample one
architecture from a continuous super-net, dubbed as soft one-hot encoding. The idea is to relax the
traditional one-hot encoding to simulate the continuous one. As shown in Figure 7.7(b), we start
with a uniform distribution and add a perturbation D to the selected branch, while substracting a
perturbation by D/(n −1) from the other branches such that the sum of weights remains equal to
one. In Figure 7.8 (left), we can see this drastically increases validation accuracy from 10% to
around 50%. In addition, we ablate different values of D ∈ {0.01,0.05,0.1} in Figure 7.8 (right).
Setting D = 0.01 reaches the highest sparse Kendall-Tau.

Applying landmark regularization with the soft one-hot encoding. We further deploy this
method with our landmark regularization. We keep all configuration the same as in our previous
NASBench-201 GDAS experiment. Our regularization improves the sparse Kendall-Taufrom
0.12 to 0.269, and improves the best model from rank 906 to 245. This evidences that our method
can generalize to continuous differentiable architecture search method.

7.4.6 Searched model

For DARTS search space, we report the configuration of the searched models on CIFAR-10 in
Figure 7.9 and on ImageNet in Figure 7.10.

7.5 Conclusion

We have presented a simple yet effective approach to leverage a few landmark architectures to
guide the super-net training of weight-sharing NAS algorithms towards a better correlation with
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Figure 7.9: Best architectures discovered by our algorithms on CIFAR-10.
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Figure 7.10: Best architectures discovered by our algorithms on ImageNet.
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stand-alone performance. Our strategy is applicable to most NAS algorithms and our experiments
have shown that it consistently improves both the ranking correlation between the super-net and
stand-alone performance as well as the final performance across three different search algorithms
and three different tasks. Additionally, our approach can leverage the information from previously
trained stand-alone models to improve NAS performance.
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8 Conclusion and future directions

In summary, this thesis has covered a variety of current machine learning trends, ranging from
human-designed networks to automatically searched ones. We have started by manually building
convolutional neural networks for two different tasks, exploiting heuristics from earlier experience
in a human-designed fashion. We have then moved to an automatic machine learning approach,
neural architecture search with parameter sharing, discovered several drawbacks in this field, and
proposed effective solutions to address them. Below, we first summarize the contributions of the
individual chapters, and then discuss the remaining limitations in this field and identify some
potential directions for future research.

8.1 Thesis Summary

In Chapter 1, we have presented a statistically-motivated second-order pooling approach moti-
vated by the earlier success of covariance descriptors. Compared to the previous second-order
baselines, which yield final representations that are orders of magnitude larger than the standard
first-order ones, our approach effectively maps the representation to a first-order one, and sig-
nificantly reduces the memory consumption and implementation difficulty. Furthermore, our
statistically-motivated approach leads to a Gaussian-distributed final representation also similar
to the first-order ones inherently used by standard first-order networks, thus reducing the training
difficulty. Our approach out-performed the previous baselines by a significant margin in terms
of computational cost on many fine-grained classification tasks and for two popular network
architectures, VGG-16 and ResNet-50.

In Chapter 2, we have observed that most current segmentation CNNs rely on very deep networks
as backbone, which makes them hard to train on limited data and translates to long inference
times on standard GPUs. We have proposed to transform the traditional light-weight U-Net into a
recurrent formalism, which significantly reduces the number of model parameters while retaining
its performance. This approach substantially reduces the GPU cost and achieves real-time
performance on mobile devices, while out-performing earlier baselines over multiple benchmark
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segmentation tasks.

From Chapter 3 on, we have then turned to neural architecture search, starting by briefly introduc-
ing the core concepts of neural architecture search and parameter sharing. In Chapter 4, we have
identified the phenomenon of multi-model forgetting, where the shared weights of previously
trained models are overwritten during training subsequent ones. This negatively impacts the
super-net training in one-shot neural architecture search. We have shown that the degree of
forgetting is positively correlated with the proportion of weight sharing, and derived a statistically
sound approach to addressing this.

In Chapter 5, we have revisited the current evaluation of NAS algorithms, which surprisingly
showed that the search policy of many state-of-the-art algorithms cannot surpass a random
baseline. We have then traced the reason for this phenomenon to two factors, the constrained
nature of the search space and parameter sharing, which shuffles the architecture ranking of
stand-alone training, i.e., makes the search policy see a randomly shuffled architectures ranking
during the search.

In Chapter 6, we have focused on the core part of weight-sharing NAS, the super-net. We have
isolated 14 factors that are agnostic to the NAS algorithms, and provided a detailed analysis
of these factors over three benchmark datasets. We have discovered that many factors that are
commonly adopted in weight-sharing NAS in fact negatively impact the prediction ability of the
super-net. After carefully tuning these factors, a simple random algorithm can again surpass many
state-of-the-art algorithms. However, the ranking disorder cannot be fundamentally improved by
simply tuning these factors.

In Chapter 7, we have observed that the standard training objective of a super-net, that is,
the summation of individual architecture losses, differs fundamentally from the goal of NAS,
i.e., discovering the best architectures in a given search space. We have then incorporated a
small set of carefully sampled landmark architectures to regularize the super-net training. We
have shown this approach to effectively improve the super-net prediction ability of individual
architecture performance and reduce the ranking disorder for three popular NAS algorithms and
across multiple search spaces. Furthermore, we have extended our method to monocular depth
estimation, constituting the first NAS approach to this task.

8.2 Limitations and Future Directions

In this section, we discuss some remaining limitations and provide potential future research
directions to address them.

Combining second-order pooling with NAS. During the experiments we performed for Chap-
ter 1, we observed that second-order pooling is not always better than first-order ones. While
second-order pooling outperforms first-order networks on fine-grained classification tasks, the
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8.2 Limitations and Future Directions

first-order ones tend to yield better results when the visual differences between the different
classes are more significant, e.g., recognize cars from humans. In the future, one natural research
direction would therefore be to combine the NAS approach with second-order pooling, letting
the network automatically learn to select either first-order or second-order operations based on
the input data.

Multi-model forgetting in one-shot NAS. In Chapter 4, we have introduced a novel weight
plasticity loss (WPL) that addresses the forgetting issue. However, computing WPL relies on
intermediate gradients during back-propagation, which increases the computational cost by factor
around two compared to the baseline. As a consequence, we did not leverage this loss in the
subsequent chapters. One potential direction would therefore be to study the effectiveness of
WPL with our landmark regularization, and in particular evaluate if, together, these two loss
terms can further boost the super-net training speed.

Sampling landmark architectures. In Chapter 7, we have introduced a landmark regularization
scheme. While effective, our current landmark sampling approach merely aims to maximize the
topological distance between the landmark architectures. While we have shown this strategy to
outperform random sampling, there is no guarantee for this approach to be optimal. In the future,
one potential direction to improve this could consist of exploiting meta-learning techniques to
select better landmark architectures, i.e., search for the landmark architectures that yield the
highest super-net Kendall Tau

Going beyond a single super-net. The ranking disorder still impedes progress in the current
weight sharing NAS field. Based on our analysis in Chapter 6, the upper limit of the super-net
Kendall Tau is around 0.8, while our landmark regularization of Chapter 7 usually increases
this metric from 0.2 to 0.3 on harder search spaces. This raises the question of whether using a
single super-net to represent the entire search space truly is reasonable, or if one should not rather
reconsider the current one-shot neural architecture search approach in general. One possible
direction would consist of again leveraging landmark architectures, but letting each landmark
represent a group of architectures. One could then formulate a new training pipeline where poor
landmark architecture groups are pruned whereas good ones are kept. Iteratively repeating this
pruning process would then translate to finding a superior super-net, whose ranking correlation is
high, and thus has higher potential to improve the NAS performance.
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A Proofs

A.1 Overcome multi-model forgetting

Lemma 1. Given a dataset D and two architectures with shared parameters θs and private
parameters θ1 and θ2, and if p(θ1,θ2 | θs ,D) = p(θ1 | θs ,D)p(θ2 | θs ,D), we have

p(θ1,θ2,θs |D) ∝ p(D | θ2,θs)p(θ1,θs |D)p(θ2,θs)∫
p(D | θ1,θs)p(θ1,θs)dθ1

. (4.1)

Proof. Using Bayes’ theorem and ignoring constants, we have

p(θ |D) = p(θ1,θ2,θs ,D)

p(D)

∝ p(θ1 | θ2,θs ,D)p(θ2,θs ,D)

= p(θ1 | θs ,D)p(D | θ2,θs)p(θ2,θs)

∝ p(θ1,θs ,D)p(D | θ2,θs)p(θ2,θs)

p(D,θs)

∝ p(θ1,θs ,D)p(D | θ2,θs)p(θ2,θs)∫
p(D | θ1,θs)p(θs ,θ1)dθ1

∝ p(θ1,θs |D)p(D | θ2,θs)p(θ2,θs)∫
p(D | θ1,θs)p(θs ,θ1)dθ1

,

where we used the conditional independence assumption p(θ1 | θ2,θs ,D) = p(θ1 | θs ,D) in the
third line.

We now derive a closed-form expression for the denominator of equation (4.1).

Lemma 2. Suppose we have the maximum likelihood estimate (θ̂1, θ̂s) for the first model, write
Card(θ1)+Card(θs) = p1 +ps = p, and let the negative Hessian Hp (θ̂1, θ̂s) of the log posterior
probability distribution log p(θ1,θs | D) evaluated at (θ̂1, θ̂s) be partitioned into four blocks
corresponding to (θ1,θs) as
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Hp (θ̂1, θ̂s) =
[

H11 H1s

Hs1 Hss

]
.

If the parameters of each model follow Normal distributions, i.e., (θ1,θs) ∼ Np (0,σ2Ip ), with
Ip the p-dimensional identity matrix, then the denominator of equation (4.1), A = ∫

p(D |
θ1,θs)p(θs ,θ1)dθ1 can be written as

A = exp{lp (θ̂1, θ̂s)− 1

2
v>Ωv }× (2π)p1/2|det(H−1

11 )|1/2, (4.2)

where v = θs − θ̂s , lp (θ) = l (θ)−θTθ/2σ2, and Ω= Hss −H>
1s H−1

11 H1s .

Proof. We have

p(D | θ1,θs)p(θs ,θ1) ∝ e l (θ1,θs )−(θ1,θs )T (θ1,θs )/2σ2 = e lp (θ1,θs ),

where l (θ1,θs) = log p(D | θ1,θs), and lp (θ1,θs) = l (θ1,θs)− (θ1,θs)T (θ1,θs)/2σ2.

Let Hp (θ1,θs) = H(θ1,θs)+σ−2Ip be the negative Hessian of lp (θ1,θs), with Ip the p-dimensional
identity matrix and H(θ1,θs) the negative Hessian of l (θ1,θs).

Using the second-order Taylor expansion of lp (θ1,θs) around its maximum likelihood estimate
(θ̂1, θ̂s), we have

lp (θ1,θs) = lp (θ̂1, θ̂s)− 1

2
[(θ1,θs)− (θ̂1, θ̂s)]T Hp (θ̂1, θ̂s)[(θ1,θs)− (θ̂1, θ̂s)]; (A.1)

the first derivative is zero since it is evaluated at the maximum likelihood estimate. We now
partition our negative Hessian matrix as

Hp (θ̂1, θ̂s) =
[

H11 H1s

Hs1 Hss

]
,

which gives

A = [(θ1,θs)− (θ̂1, θ̂s)]T Hp (θ̂1, θ̂s)[(θ1,θs)− (θ̂1, θ̂s)]

= (θ1 − θ̂1)T H11(θ1 − θ̂1)+ (θs − θ̂s)T Hss(θs − θ̂s)+ (θs − θ̂s)T Hs1(θ1 − θ̂1)+ (θ1 − θ̂1)T H1s(θs − θ̂s)

= (θ1 − θ̂1)T H11(θ1 − θ̂1)+ (θs − θ̂s)T Hss(θs − θ̂s)+ (θ1 − θ̂1)T (H1s +H T
s1)(θs − θ̂s).
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A.1 Overcome multi-model forgetting

Let us define u = θ1 − θ̂1, v = θs − θ̂s and w = H−1
11 H1s v . We then have

(u +w )T H11(u +w ) = uT H11u +uT H11w +w T H11w +w T H11u

= (θ1 − θ̂1)T H11(θ1 − θ̂1)+ (θ1 − θ̂1)T H11H−1
11 H1s(θs − θ̂s)

+v T H T
1s H−1

11 H11H1s v +v T H T
1s H−1

11 H11(θ1 − θ̂1)

= A −v T Hss v +v T H T
1s H−1

11 H1s v

= A −v T (Hss −H T
1s H−1

11 H1s)v

= A −v TΩv ,

with Ω= Hss −H T
1s H−1

11 H1s .

Thus
A = (u +H−1

11 H1s v)T H11(u +H−1
11 H1s v )+v TΩv . (A.2)

Given equation (A.2), we are now able to prove Lemma 2, as∫
e lp (θ1,θs )dθ1 =

∫
e lp (θ̂1,θ̂s )− 1

2 Adθ1

=
∫

e lp (θ̂1,θ̂s )e−
1
2 Adθ1

= e lp (θ̂1,θ̂s )
∫

e−
1
2 Adθ1

= e lp (θ̂1,θ̂s )
∫

e−
1
2 ((u+H−1

11 H1s v )T H11(u+H−1
11 H1s v )+v TΩv )dθ1

= e lp (θ̂1,θ̂s )
∫

e−
1
2 ((u+H−1

11 H1s v )T H11(u+H−1
11 H1s v ))e−

1
2 v TΩv dθ1

= e lp (θ̂1,θ̂s )− 1
2 v TΩv

∫
e−

1
2 (θ1−z)T H11(θ1−z)dθ1

= e lp (θ̂1,θ̂s )− 1
2 v TΩv (2π)

p1
2 |det(H−1

11 )| 1
2 (2π)−

p1
2 |det(H−1

11 )|− 1
2

∫
e−

1
2 (θ1−z)T H11(θ1−z)dθ1

= e lp (θ̂1,θ̂s )− 1
2 v TΩv (2π)

p1
2 |det(H−1

11 )| 1
2 ,

where we re-arranged the terms so that the integral is over a normal distribution with mean
z = θ̂1−H−1

11 H1s(θs−θ̂s) and covariance matrix H−1
11 , which can be computed in closed form.

From Lemma 1 and Lemma 2, we can obtain equation (4.3) by replacing the denominator with
the closed form above and taking the log on both size of equation (4.1). This yields

log p(θ|D) ∝ log p(D | θ2,θs)+ log p(θ1,θs)+ log p(θ2,θs)− log{
∫

p(D | θ1,θs)p(θ1,θs)dθ1}

= log p(D | θ2,θs)+ log p(θ1,θs)+ log p(θ2,θs)− lp (θ̂1, θ̂s)+ 1

2
v TΩv

∝ log p(D | θ2,θs)+ log p(θ2,θs)+ log p(θ1,θs |D)+ 1

2
v TΩv .
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