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Abstract
Self-af!ne rough interfaces are ubiquitous in experimental systems, and display characteristic
scaling properties as a signature of the nature of disorder in their supporting medium, i.e. of
the statistical features of its heterogeneities. Different methods have been used to extract
roughness information from such self-af!ne structures, and in particular their scaling
exponents and associated prefactors. Notably, for an experimental characterization of
roughness features, it is of paramount importance to properly assess sample-to-sample
"uctuations of roughness parameters. Here, by performing scaling analysis based on
displacement correlation functions in real and reciprocal space, we compute statistical
properties of the roughness parameters. As an ideal, artifact-free reference case study and
particularly targeting !nite-size systems, we consider three cases of numerically simulated
one-dimensional interfaces: (i) elastic lines under thermal "uctuations and free of disorder, (ii)
directed polymers in equilibrium with a disordered energy landscape, and (iii) elastic lines in
the critical depinning state when the external applied driving force equals the depinning force
set by disorder. Our results show that sample-to-sample "uctuations are rather large when
measuring the roughness exponent. These "uctuations are also relevant for roughness
amplitudes. Therefore a minimum of independent interface realizations (at least a few tens in
our numerical simulations) should be used to guarantee suf!cient statistical averaging, an issue
often overlooked in experimental reports.
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(Some !gures may appear in colour only in the online journal)

1. Introduction

Ferroic materials are characterized by a spontaneous order
parameter that can be reversibly switched between at least two
energetically-equivalent ground states by an appropriate con-
jugated !eld. For example, in ferroelectrics and ferromagnets

∗ Author to whom any correspondence should be addressed.

these order parameters are the polarization and the magnetiza-
tion, respectively, switchable by applying an electric or mag-
netic !eld. Regions of homogeneous order parameter state in
the sample are called domains, separated by nanoscale bound-
aries known as domain walls. The ability to controllably engi-
neer ferroic domains in increasingly miniaturized devices has
played a signi!cant role in the integration of these materials
into the electronics industry [1–7]. At the most fundamental
level, such engineering is built on the understanding and con-
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trol of the static and dynamical behavior of the domain walls,
which determine the switching, growth, stability, and shape of
ferroic domains [8–12].

One extremely useful theoretical approach to study domain
walls in ferroic materials is to model them as "uctuating elas-
tic manifolds subject to the spatial inhomogeneities of an
underlying disordered potential [13]. A remarkable feature of
this reductionist picture is that, because the underlying micro-
scopic details of the system are only considered through a few
effective parameters, it can be applied to systems as diverse as
surface growth phenomena [14], fracture surfaces [15], burn-
ing [16] and wetting [17] fronts, edges of bacterial colonies
[18], cell migration [19], cell membranes [20], as well as fer-
roic domain walls [8, 21, 22]. In this approach, the complex
static and dynamical properties of the interface emerge from
a seemingly simple competition between elasticity, tempera-
ture and disorder pinning. In particular, such disordered elastic
systems present a rough morphology with characteristic self-
af!ne scaling properties, which depend on the dimensionality
of the system, the range of the elastic interactions, and the
nature of the disorder [23]. The quantitative characterization
of this roughness, including the value of the associated scaling
roughness exponent ζ, can rely on several methods either in
real or in reciprocal space.

Experimental roughness studies in ferroic materials [8,
24–32] have generally used real-space analysis of such domain
walls, built on images covering a !nite number of pixels,
typically of the order of a few hundreds, and thus always
requiring a detailed assessment of !nite-size effects. More
importantly, real-space methods are mainly used to extract
the value of the roughness exponent ζ from the power-
law growth of the correlation function of relative displace-
ments. As shown in a comparative study of analysis methods
on numerical—and thus exactly de!ned—self-af!ne pro!les,
the accuracy of ζ estimation can in fact vary signi!cantly
depending on the method used [33]. Furthermore, adequate
statistical averaging is an absolutely critical issue, with trust-
worthy ζ estimates obtained only when considering at least
a few tens of independent mono-af!ne interfaces [32, 34]. In
order to assess roughness features as the roughness exponent
ζ , particularly in experimental situations where the number of
interfaces is !nite, a thorough evaluation of statistical "uctu-
ations should be considered. This is specially important when
comparing roughness exponent values, obtained for differ-
ent materials and in different experimental conditions. Such
an evaluation would also allow the establishment of a well-
de!ned analysis protocol, which could be applied over all the
different ferroic systems under investigation and moreover to
the general class of interfaces described as disordered elastic
systems [13, 14, 23, 35].

Since for a !nite set of !nite interfaces each individual
realization has its own measured value of roughness param-
eters, our goal here is to describe and quantify the main char-
acteristics of these "uctuations. This permits us to address
speci!c issues typically encountered in experiments, such as
limited resolution, !nite size of interfaces and limited number
of realizations of interfaces and/or disorder. We perform here
an evaluation of statistical "uctuations using three different

numerical models of "uctuating interfaces, well benchmarked
from previous works, corresponding to different universality
classes. We !rst found that the mean value of individual rough-
ness parameters, i.e. each from a single independent inter-
face, converges to the roughness parameters obtained using
averaged correlation functions. Notably, the distributions of
roughness parameters from independent interfaces, an exper-
imentally relevant measure, are appreciably wide and size-
dependent. Finally, our numerical results show that a set with
at least a few tens of independent interface realizations should
be used to obtain representative averaged values for the rough-
ness exponent, something usually overlooked in experimental
reports.

The rest of the manuscript is organized as follows. In
section 2 we introduce the main de!nitions used as a met-
rics for the characterization of interfaces "uctuations and dis-
cuss some key features. Then, section 3 introduces the three
studied models and present the main numerical results, !rst
showing roughness parameters obtained using averaged cor-
relation functions and then presenting the statistics of single
interface roughness parameters. Finally, a brief discussion and
a summary of the results is presented in section 4.

2. Roughness metrics and scaling analysis

Since the seminal work of Mandelbrot et al revealing the self-
af!ne nature of cracks in metals [15], a signi!cant number
of different methods have been established and used to quan-
tify the roughness of self-af!ne interfaces, focusing in par-
ticular on fracture surfaces [36, 37]. The key quantity to be
determined is the roughness exponent ζ , which characterizes
the geometrical properties of interfaces through the power-
law growth of their transverse "uctuations w with respect
to the longitudinal size of the interface ", i.e. w(") ≈ b"ζ .
The roughness exponent is expected to characterize univer-
sal behavior [14], with well de!ned values associated to
each universality class. In addition to the roughness expo-
nent, roughness information is contained within the prefactor
b accompanying power-law growth. This is called the rough-
ness amplitude and is not expected to be universal, contain-
ing information about the intrinsic disorder of the system.
Both the roughness exponent and the roughness amplitude
are the roughness parameters we are measuring in different
model systems.

In all the proposed methods for the determination of rough-
ness parameters, a complete knowledge of the interface posi-
tion is assumed, in which case the analysis of the roughness
can be carried out via either reciprocal-space or real-space
autocorrelation functions. We restrict ourselves to effective
one-dimensional interfaces, as they are particularly relevant
for many experimental ferroic domain walls, but the following
de!nitions can be generalized to higher dimensions.

In this section, we brie"y recall the basic de!nitions of the
roughness "uctuations we use to measure roughness parame-
ters and discuss some key properties.

2.1. Measuring the roughness parameters

In a general sense, the roughness of an interface characterizes
its geometrical "uctuations [14]. Here we specify particular
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Figure 1. Pro!le of a one-dimensional interface, parameterized by
the displacement !eld u(z, t). For illustration purposes the relative
displacements ∆u(r) are shown for r taking the values r1 and r2. The
variance of the relative displacements of the pro!le {∆u(r, t)} is
given by the displacement–displacement correlation function B(r).

real-space and reciprocal-space de!nitions of correlation func-
tions giving alternative access to the roughness parameters, all
relying on the displacement !eld u(z) which parameterizes a
given con!guration of an interface at time t with respect to an
arbitrary reference con!guration, as illustrated in !gure 1. A
usual assumption in the theoretical framework of disordered
elastic systems is that the interface has no overhangs, so that
u(z) is univalued [23].

Real-space "uctuations can be de!ned in terms of differ-
ent correlation functions, as the global or local width. Another
local quantity containing geometrical information on inter-
faces is the displacement–displacement correlation function,
sometimes referred to as the height–height correlation func-
tion, the height-difference correlation function, or simply the
roughness function:

B(r) = 〈[u(z + r) − u(z)]2〉L, (1)

where ∆u(r) = u(z + r) − u(z) is the relative transverse dis-
placement between pairs of sites a distance r apart, as
illustrated in !gure 1, and B(r) is simply the variance of
the probability distribution function of relative displacements
P(∆u(r)). In equation (1) 〈· · ·〉L stands for an average over
different z values for a single pro!le of size L, while . . .
corresponds to an average over different realizations. Notice
that if we consider a set of N independent realizations of
interfaces pro!les ui(z), with i = 1, 2, . . . , N, and Bi(r) =
〈[ui(z + r) − ui(z)]2〉L is the roughness function of the inter-
face with label i, then averaging over realizations means
that B(r) = Bi(r).

The roughness function provides a convenient way to exper-
imentally measure the roughness exponent, and has thus been
used as a primary analysis tool in ferroic systems [8, 24, 26, 32,
38, 39]. It is usually assumed that the system is in a stationary
situation where the time-dependence can be ignored. Denoting
by ξ(t) to the growing "uctuations correlation length, the sta-
tionary limit corresponds to ξ(t) & r, as expected for the clas-
sic Family–Vicsek scaling scenario [14]. Then the roughness
function is expected to behave as

B(r) = B0

(
r
r0

)2ζ

, (2)

where B0 and ζ are the real-space roughness amplitude and
roughness exponent, respectively, i.e. the roughness parame-
ters. The scale r0 is a system dependent reference length scale
so that B0 has dimensions of length squared.

An alternative option to real-space correlation functions is
to compute correlations in reciprocal space. A particularly use-
ful quantity is the displacement power spectrum, referred to as

the structure factor:

S(q) = ũ(q)ũ(−q), (3)

where

ũ(q) =
1
L

∫ L

0
dz u(z)e−iqz (4)

is the Fourier transform of the displacement !eld u(z) de!n-
ing the interface position. Formally, the structure factor S(q)
and the roughness function B(r) contain the same geometrical
information and are related through

B(r) =

∫
dq
π

[1 − cos (qr)] S(q). (5)

For stationary self-af!ne interfaces q & ξ(t)−1 and the struc-
ture factor scales as

S(q) = S0

(
q
q0

)−(1+2ζ)

, (6)

where S0 is the reciprocal-space roughness amplitude and q0 =
2π/r0.

Equations (2) and (6) can be used to !t numerical or exper-
imental data in order to obtain the roughness parameters, ζ,
B0 and S0. In particular, the roughness exponent ζ is expected
to be a well de!ned quantity for a given universality class. In
the case of "uctuating interfaces this refers to stationary solu-
tions of stochastic differential equations in the thermodynamic
limit [14]. However, when using numerical or experimen-
tal realizations of interfaces, the measured roughness expo-
nent is expected to "uctuate among those realizations, and
thus the importance of properly characterizing "uctuations of
roughness parameters.

From a practical point of view, when suf!cient statistics
can be obtained (with a high resolution, and/or large systems,
and/or many systems to average over), !tting the structure fac-
tor has been shown to be a generally more reliable method to
estimate ζ than the real-space autocorrelation functions [33],
essentially because different scaling regimes depending on the
length scale are clearly separated in reciprocal space, whereas
they are mixed in real space functions. Moreover, as we discuss
below, it can be used to determine roughness exponents ζ > 1
for super-rough interfaces. More fundamentally, the structure
factor is a very important quantity for theoretical develop-
ments, and has in particular been shown to be pivotal in the
formalism of anomalous scaling [40].

Notice that both in numerical and experimental approaches
there is usually an intrinsic small length cutoff associated
with either discretization of the z direction in the numerical
approach or with resolution issues (pixel size) of images in
experiments. This sets on the one hand the lower length scale
limit a and the corresponding large wave vector q = 2π/a. On
the other hand the large scale cutoff is given by the system size
L and its corresponding small wave vector q = 2π/L.

In addition, since in the present work we will be considering
discretization of the z direction, as it is usually the case both
in numerical and experimental situations, it is convenient to
use a discreteness correction to the wave vector when dealing
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with the Fourier modes. Consider for instance the discretiza-
tion as z = j∆z, with j = 0, 1, 2, . . . , L − 1. Without loss of
generality we take ∆z = 1. Then the interface pro!le becomes
u j and its Fourier transform is ũn = L−1∑L−1

j=0u j e−iqn j, with
qn = 2πn/L. The large wave vector correction due to the
discreteness of z is achieved through the discretization
of the Laplacian, ∇2u(z) → u j+1 − 2uj + uj−1, which after
Fourier transformation becomes −q2ũ(q) → ũn e−iqn − 2ũn +
ũn eiqn = −4 sin2(qn/2)ũn. Therefore q̃n = 2 sin(qn/2) can be
identi!ed as the discretization-corrected wave vector properly
controlling small length scale behavior, as it has been explicitly
used [41–43].

2.2. Scaling of B(r) for super-rough interfaces

Following earlier reports of roughness scaling analyses [40,
44, 45], a generalized formalism distinguishes the global,
local, and reciprocal scaling behaviors of the self-af!ne
interface, characterized by global, local, and reciprocal
scaling exponents, respectively. In this picture, standard Fam-
ily–Vicsek scaling is given by all three exponents being equal.
Any other case falls in one of three categories of anomalous
scaling (cf reference [40] for details). In particular, super-
rough interfaces are globally characterized by ζ > 1, as found
using global or reciprocal-space measures, but locally char-
acterized by ζ loc = 1, when using a local measure like the
roughness function. In this super-rough case Family–Vicsek
relations are no longer valid.

Phenomenologically, ζ > 1 corresponds to the seemingly
unphysical case where the transverse "uctuations become
unbounded at very large length scales. In such a case, a
crossover to a bounded regime may therefore be expected.
Numerically, one-dimensional driven interfaces at the depin-
ning threshold were shown to possess a roughness exponent
ζdep = 1.25 when only short-range harmonic contributions to
the elastic energy were considered [46]. Thus, the depinning
phase of one-dimensional interfaces should exhibit a crossover
from a super-rough regime at small enough length scales to
a bounded regime with ζ < 1. Experimentally, driven mag-
netic domain walls were recently shown to exhibit a rough-
ening behavior consistent with this interpretation [47, 48].
One-dimensional static interfaces are also predicted to exhibit
such a crossover at small length scales, at least in a ‘low-
temperature’ regime [49, 50].

To understand the discrepancy between the global and local
roughness scaling behavior for super-rough interfaces, the ana-
lytical expression of B(r) can be considered. The usual deriva-
tion starts from the relation between B(r) and S(q) given in
equation (5). Assuming a long-time Family–Vicsek scaling for
S(q) (equation (6)), the scaling behavior of B(r) is then given
in all generality by

B(r) ≈
∫ 2π/a

2π/L
dq [1 − cos (qr)] q−(1+2ζ). (7)

When 0 < ζ ! 1 and taking the limits a → 0 and L →∞ the
integral converges and the Family–Vicsek scaling relation is
recovered, with a single ζ value describing both the local
and global correlation functions. In the case ζ > 1, taking

a → 0 and for large but !nite values of L, the roughness func-
tion B(r) obeys the general scaling behavior for ‘super-rough’
interfaces

B(r) ≈ r2 [−A0r2(ζ−1) + C(L)
]

, (8)

where ζ is the reciprocal-space roughness exponent, C(L) =
A1L2(ζ−1) is an L-dependent constant, and A0 and A1 are posi-
tive constants. The presence of the r2 prefactor indicates that,
when taking the limit L →∞ !rst and then the large r limit, the
local roughness exponent saturates to ζ loc = 1. We note that
this expression is slightly more general than the one reported in
reference [44], which holds only for large values of L. Equation
(8) can be rewritten in the form

C(L)r2 − B(r) = A0r2ζ . (9)

This power-law behavior can be used to obtain the roughness
exponent ζ > 1 and the amplitude A0 using a local measure.
Such a super-rough behavior will be illustrated in section 3.3
using numerical simulations.

2.3. The relevance of statistical averaging

As the scaling relations in equations (2) and (6) only hold
with the appropriate statistical averaging, a crucial step in
roughness analysis of experimental interfaces is to assess the
minimal number of independent con!gurations necessary to
achieve a meaningful estimation of the roughness parame-
ters [32]. Furthermore, one may ask how representative of the
actual roughness exponent, the one characterizing a universal-
ity class, is the value obtained from a single measurement.
In both cases, we can expect the answer to be both size and
method-dependent.

For numerical simulations where a large number of inde-
pendent realizations can be available, a meaningful estima-
tion of the roughness parameters can readily be obtained by
computing the desired correlation functions averaged over
the number of realizations, and subsequently !tting single ζ
and B0 values from the power-law behavior. In contrast, for
experimentally imaged interfaces the amount of different real-
izations is typically small and may in addition suffer from
differences in size and/or resolution. Therefore, a common
practice is to compute the roughness function of a single inter-
face, Bi(r), and extract individual roughness parameters ζ i
and B0i of a single interface pro!le using Bi(r) = B0i(r/r0)2ζi .
Mean values are then expected to be representative of the
scaling properties:

ζ =
1
N

N∑

i=1

ζi, (10)

B0 =
1
N

N∑

i=1

B0i, (11)

where N is the number of independent measurements. The
same procedure can be followed to obtain ζ i and S0i from indi-
vidual structure factors Si(q) to get mean values ζ and S0. It
is important to note that ζ is not necessarily equivalent to ζ
unless the underlying distribution for the roughness exponent
happens to be symmetric. Therefore, the skewness of the ζ i
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Figure 2. (a) Averaged displacement–displacement autocorrelation function 〈B(r)〉 and (b) averaged structure factor 〈S(q)〉 for the elastic
line with thermal noise model. The solid vertical lines indicate the common small length scale bound of the !tting ranges, while the large
length scale bounds depend on the system size and are indicated by the vertical dotted lines. Analytically we expect B(r) = Tr

c
(1 − r/L), for the periodic boundary conditions we consider, hence the observed parabola in a log–log scale in (a).

Table 1. Roughness parameters for the elastic line with thermal noise. Reported values for ζ, B0
and S0 are obtained by !tting power-law behavior to average roughness function and structure
factor, 〈B(r)〉 and 〈S(q)〉, respectively. ζ , B0 and S0 are the mean values of the distributions of
individual values for each interface.

Elastic line with thermal noise (ζ th = 1/2)

L 256 512 1024

〈B(r)〉 ζ 0.4723 ± 0.0008 0.480 ± 0.001 0.4810 ± 0.0009
B0 2.192 ± 0.006 2.18 ± 0.01 2.182 ± 0.009

〈S(q)〉 ζ 0.497 ± 0.005 0.498 ± 0.003 0.496 ± 0.002
S0 2.008 ± 0.009 2.038 ± 0.007 2.022 ± 0.005

Bi(r) ζ 0.456 ± 0.004 0.468 ± 0.003 0.471 ± 0.002
B0 2.69 ± 0.06 2.52 ± 0.04 2.47 ± 0.03

Si(q) ζ 0.494 ± 0.005 0.494 ± 0.003 0.497 ± 0.002
S0 1.153 ± 0.007 1.157 ± 0.005 1.138 ± 0.003

histogram is indicative of the validity of this method and the
accuracy of ζ [32, 34].

3. Numerical simulations

We shall use three different numerical models to evaluate
statistical "uctuations of roughness parameters: (i) an elas-
tic line model subject to thermal "uctuations, belonging to
the Edwards–Wilkinson universality class, (ii) a directed
polymer in equilibrium within a quenched disordered envi-
ronment (equilibrium quenched-Edwards–Wilkinson univer-
sality class), and (iii) a driven elastic line in a quenched
disorder exactly at the depinning critical point, within the
depinning quenched-Edwards–Wilkinson universality class.
Note that these three models have already been benchmarked
on their own in previous studies, as we cite accordingly when
we introduce them thereafter.

3.1. Elastic line with thermal noise

Fluctuations of an interface subjected to a thermal noise are
well described through the time evolution of the interface

pro!le u(z, t) given by the Edwards–Wilkinson equation

∂tu(z, t) = c [u(z + 1, t) − 2u(z, t) + u(z − 1, t)] + η(z, t),
(12)

where u(z, t) is the time-dependent position of the interface
with elasticity c and η(z, t) is a white noise representing con-
tact with a thermal bath of intensity T with 〈η(z, t)〉 = 0 and
〈η(z, t)η(z′, t′)〉= 2Tδzz′δ(t − t′), where δzz′ and δ(t) are respec-
tively Kronecker and Dirac delta functions. For simplicity, in
this equation we have used a discrete variable along the inter-
face, i.e. z takes discrete values, and a continuum variable for
the displacement !eld u. Taking as initial condition u(z, t =
0) = 0, equation (12) is solved using periodic boundary con-
ditions with discrete time units, δt = 0.05, and using T = 1
and c = 1/2. Dynamics under a white noise makes the inter-
face to roughen, with its roughness increasing with time until a
correlation length characteristic of the "uctuations reaches the
size of the system, ξ(t) ≈ L. After that, the system dynamics
reaches a stationary limit and the roughness "uctuates around
a size-dependent mean value, which is analytically known to
be B(r) = Tr

c (1 − r/L) for a continuous interface. This state is
representative of thermal roughness of a "uctuating interface.
We take N = 1000 independent realizations of pro!les u(z) in
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Figure 3. Histograms of the roughness exponent obtained using (a) B(r) and (b) S(q) for individual numerical interfaces corresponding to
elastic lines with thermal noise. The mean value and the variance of each distribution are indicated in table 1.

such state for different system size values, L = 256, 512 and
1024.

Figure 2(a) shows the averaged roughness function 〈B(r)〉
for different system sizes, as indicated. Power-law behavior
is observed for small r values. Then a maximum of 〈B(r)〉 is
reached at size-dependent values with a drop of the roughness
function due to periodicity of the interfaces. From the power-
law region at intermediate length scales we can !t roughness
parameters, ζ and B0, according to equation (2). The power-
law behavior breaks down around r = L/2, corresponding to
the local maximum of 〈B(r)〉 observed in !gure 2(a). The most
adequate !tting ranges are found to extend between r = 10
and r ≈ L/8, indicated by the vertical solid and dotted lines in
!gure 2(a). Fitted values are shown in the !gure and reported
in table 1, with error bars obtained from the power-law !tting.
These error bars are rather small and do not take into account
variations of the !tting range [32]. The roughness exponent
is close to the expected ζ th = 1/2 value, but always slightly
underestimated. Because we know in this case the exact ana-
lytical prediction for B(r) and it is an inverted parabola, this
underestimation can be directly attributed to the periodicity of
the interface and will always be there for any !tting range we
choose.

The average structure factor 〈S(q)〉 is presented in !gure
2(b). The data presents power-law behavior in all the stud-
ied range and the roughness parameters, ζ and S0, can be
extracted !tting the data using equation (6). In this case, the
lower bounds for the !tting range are size-dependent and we
used 2π/(L/8), vertical dotted lines in !gure 2(b). The !tting
range can be extended in comparison to the 〈B(r)〉 and we used
the same π/2 value for all system sizes (vertical solid line).
We have also used the wave vector number corrected by dis-
cretization effects, q̃n = 2 sin(qn/2). Values for the roughness
parameters are reported in table 1 and good agreement with the
expected values are found.

The roughness parameters obtained from the averaged cor-
relation functions are in good agreement with the expected val-
ues. However, experimental observations are generally based
on a few independent realizations of interfaces, not even using
a !xed system size. Therefore, we compute here roughness
parameters for individual independent realizations of "uctu-

ating interfaces to obtain information about the spread of the
data, useful to interpret experimental results.

The roughness function and structure factor are obtained
from each interface pro!le and then are !t to power-law behav-
ior. The distribution of the resulting roughness parameters
obtained using the roughness function and structure factor are
presented as histograms in !gures 3(a) and (b), respectively.
Results for different system sizes are shown, as indicated.
Mean values ζ, B0, and S0, with their error bars computed as
the variance of the distributions divided by the square root of
the number of realizations, σ/

√
N, are presented in table 1.

We observe in !gure 3 that the distributions of the roughness
exponents are considerably broad in general. Although the
mean value of the distributions, ζ, is very close to the expected
value ζ th = 1/2, values are spread in a !nite range inside the
0 < ζ i < 1 window. In general, the widths of the distributions
decrease with system size, as expected. In addition, B0i and S0i
values are also broadly distributed. In particular, the distribu-
tion of B0i is considerable broader and presents an appreciably
skewness, while the distributions of ζ i and S0i are symmetric.

3.2. Directed polymer in equilibrium with quenched
disorder

Interfaces in equilibrium, within an heterogeneous substrate,
can be generated by allowing a directed polymer living
in a disordered energy landscape to relax to its minimum
energy con!guration. One-dimensional equilibrated interfaces
in weak collective random-bond disorder were simulated from
a directed polymer model [51] on a discretized square lat-
tice. The position of the polymer is given by u(z), with u
and z " 0 taking discrete values, mimicking a "uctuating
interface. The solid-on-solid restriction |u(z + 1) − u(z)| =
±1 provides the effective short-range elasticity to the poly-
mer model. An uncorrelated Gaussian random potential dis-
tributed on each lattice site, V(u, z), is used to model a disor-
dered energy landscape. Disordered potential correlations are
given by V(u, z)V(u′, z′) = Dδu,u′δz,z′ , where D is the strength
of the disorder. The equilibrium zero temperature con!gura-
tion was obtained using the transfer-matrix method [52] with
a droplet geometry, i.e. with one end pinned at the origin while
the other end is free. Given the disordered potential V(u, z), the
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Figure 4. (a) Average displacement–displacement autocorrelation function 〈B(r)〉 and (b) average structure factor 〈S(q)〉 for the directed
polymer in equilibrium with a disordered environment. The solid vertical lines indicate the common small length scale bound of the !tting
ranges, while the large length scale bounds depend on the system size and are indicated by the vertical dotted lines.

Table 2. Roughness parameters for the equilibrium elastic line with quenched disorder. Reported
values for ζ , B0 and S0 are obtained by !tting power-law behavior to average roughness function
and structure factor, 〈B(r)〉 and 〈S(q)〉, respectively. ζ, B0 and S0 are the mean values of the
distributions of individual values for each interface. We considered N = 1000 independent
disorder realizations.

Equilibrium elastic line with quenched disorder (ζeq = 2/3)

L 512 1024 2048

〈B(r)〉 ζ 0.638 ± 0.006 0.647 ± 0.002 0.6490 ± 0.0007
B0 0.255 ± 0.006 0.248 ± 0.002 0.245 ± 0.001

〈S(q)〉 ζ 0.657 ± 0.003 0.658 ± 0.002 0.657 ± 0.001
S0 0.2389 ± 0.0007 0.2369 ± 0.0006 0.2376 ± 0.0004

Bi(r) ζ 0.621 ± 0.003 0.634 ± 0.002 0.638 ± 0.002
B0 0.295 ± 0.004 0.281 ± 0.003 0.277 ± 0.003

Si(q) ζ 0.656 ± 0.003 0.658 ± 0.002 0.657 ± 0.001
S0 0.1349 ± 0.0005 0.1338 ± 0.0004 0.1336 ± 0.003

probability weight Z(u, z) of a polymer starting at (0, 0) and
ending at (u, z) is given recursively by

Z(u, z) = e−βV(u,z) [Z(u − 1, z − 1) + Z(u + 1, z − 1)] , (13)

with initial condition Z(u, 0) = δu,0, and β the inverse tempera-
ture parameter. For each realization of the disordered potential
the path of minimum energy corresponds to the largest weight,
thus de!ning equilibrium interface [52]. In this canonical case,
the value of the roughness exponent ζeq = 2/3 is already well
known [53]. For the numerical simulations systems with L =
512, 1024 and 2048 sites were used, with N = 1000 different
disorder realizations for each size.

Figures 4(a) and (b) show the averaged roughness func-
tion 〈B(r)〉 and structure factor 〈S(q)〉, respectively, for dif-
ferent system sizes. The roughness functions were !tted in
the range 10 < r < L/8, while structure factor were !tted
for values in 2π/(L/8) < q < π/2, with vertical lines indi-
cating the !tting range, as described in the caption. The
obtained roughness parameters are summarized in table 2.
The roughness exponents are close to the expected value
ζeq = 2/3. Error bars from the power-law !tting underestimate
sample-to-sample "uctuations. For the roughness function,

systematic errors due to !nite system size are due to the
!nite size of the !tting range and therefore appear to lead to
slightly underestimated values of the roughness exponent (as
it was already the case in table 1). We emphasize here that
for real systems presenting both experimental artifacts and
fewer realizations for averaging, we expect this effect to be
signi!cantly greater. The structure factor functions presented
in !gure 4(b) show again less !nite-size effects when com-
pared with the roughness function, albeit with the same slight
underestimating trend.

The different sensitivities to size effects observed in real-
space and reciprocal-space methods, only marginally observ-
able on quantities averaged over 1000 different disorder real-
izations, can be expected to become much more prominent in
studies where disorder averaging is signi!cantly reduced. This
is immediately veri!ed, as can be seen from the distributions
of individual realization exponents extracted from B(r) and
S(q), shown in !gure 5. In both cases, scaling exponents are
obtained from power-law !ts for each single interface, with the
same !tting regions as the ones de!ned for the averaged quan-
tities. For L = 2048, the histogram of the individual exponent
values constructed from B(r) appears wider than the one from
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Figure 5. Histograms of the roughness exponent obtained using (a) B(r) and (b) S(q) for individual numerical interfaces corresponding to
elastic lines in equilibrium with a disordered environment. The mean value and the variance of each distribution are indicated in table 2.

Figure 6. (a) Average displacement–displacement autocorrelation function 〈B(r)〉, (b) scaling correction due to the super-roughness
behavior, and (c) average structure factor 〈S(q)〉 for the driven elastic line at depinning. The solid vertical lines indicate the common small
length scale bound of the !tting ranges, while the large length scale bounds depend on the system size and are indicated by the vertical
dotted lines.

S(q), with standard deviations of 0.06 and 0.03, respectively. In
contrast, both methods yield histograms of comparable widths
for L = 512, suggesting the convergence of the distribution
with increasing system size happens faster for the structure
factor. Another notable feature of the distributions presented
in !gure 5 is the slight negative skewness of all histograms,
also decreasing with increasing system size, but signi!cantly
more pronounced for B(r). For the roughness exponent, this
can be attributed to the inherent ζ < 1 cutoff of the method,
effectively compressing the histogram to the right. For B0i

histograms, the small but non-negligible skewness is corre-
lated with a slight underestimation of the roughness exponent.

Distributions are broader and with a larger skewness in the case
of B0i than S0i

3.3. Driven elastic line at critical depinning

When an interface living in a disordered energy land-
scape is driven by an external force, its zero tempera-
ture critical depinning state corresponds to the con!guration
encountered exactly at the depinning force, separating zero
velocity from !nite velocity steady states [43]. This critical
depinning state then results from the interplay between the
elasticity of the interface, the disordered energy landscape and
the external force. We use a simple model to describe the
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Table 3. Roughness parameters for the driven elastic line at critical depinning. Reported values
for ζ, A0 and S0 are obtained by !tting power-law behavior to average roughness function and
structure factor, 〈B(r)〉 and 〈S(q)〉, respectively. ζ, A0 and S0 are the mean values of the
distributions of individual values for each interface. We considered N = 1000 independent
disorder realizations.

Driven elastic line at critical depinning (ζdep = 1.25)

L 256 512 1024

〈B(r)〉 ζ 1.289 ± 0.001 1.281 ± 0.001 1.2747 ± 0.0007
A0 0.607 ± 0.004 0.643 ± 0.004 0.681 ± 0.003

〈S(q)〉 ζ 1.309 ± 0.007 1.297 ± 0.004 1.292 ± 0.002
S0 1.93 ± 0.01 1.931 ± 0.009 1.937 ± 0.006

Bi(r) ζ 1.280 ± 0.002 1.274 ± 0.002 1.269 ± 0.002
A0 0.70 ± 0.01 0.73 ± 0.01 0.760 ± 0.009

Si(q) ζ 1.300 ± 0.005 1.297 ± 0.003 1.293 ± 0.002
S0 1.109 ± 0.007 1.092 ± 0.005 1.092 ± 0.003

Figure 7. Histograms of the roughness exponent obtained using (a) B(r) and (b) S(q) for individual numerical interfaces corresponding to
driven elastic lines at depinning. The mean value and the variance of each distribution are indicated in table 3.

dynamics of an elastic interface in a disordered energy land-
scape given by the quenched Edwards–Wilkinson equation at
zero temperature,

∂tu(z, t) = u(z + 1, t) − 2u(z, t) + u(z − 1, t)

+ Fp (u(z, t), z) + F, (14)

where u(z, t) is the time-dependent position of the interface, F
is an homogeneous external drive, and Fp(u, z) = −∂uV(u, z)
is a pinning force. The disordered potential V(u, z) has zero
mean and correlations [V(u, z) − V(u′, z′)]2 = Dδz,z′R(u − u′),
with R(u) decaying in a !nite range. For this model, there
exists a !nite force value Fd separating pinning con!gura-
tions for F < Fd from moving con!gurations for F > Fd. Fd is
the depinning force and Middleton theorems [54] assure that
a unique critical depinning con!guration uc(z) exists, corre-
sponding to ∂tu(z, t) = 0 at Fd. One-dimensional interfaces in
a critical depinning state were obtained using the algorithm
developed in reference [55], where the interface is forced to its
last zero-velocity state under a !nite driving force. The rough-
ness exponent characterizing critical depinning interfaces is
then ζdep = 1.25 (see reference [46]). The simulation box lon-
gitudinal and transverse sizes L and M were chosen such that
L/M ∼ 3–10 in order to avoid spurious effects due to periodic

boundary conditions [56–58], and simulations were performed
with L = 256, 512, and 1024, with N = 1000 independent dis-
order con!gurations for each size. In this model, the inter-
nal coordinate of the interface position is a discrete variable
z = 1, 2, . . . , L and the transverse coordinate is a continuous
variable, as for the elastic line without disorder described in
section 3.1.

Since the expected value for the roughness exponent ζdep =
1.25 is larger than 1, interfaces are super-rough and local
real-space correlation functions are not expected to recover
the correct value. Indeed, in this case the local roughness
exponent gives ζ = 1 [44, 59], as discussed in section 2.2.
Figure 6(a) shows the roughness function, where a small but
noticeable vertical shift is observed when the system size
changes. This is a signature of anomalous scaling correspond-
ing to ζ local -= ζglobal [44, 59]. As discussed in section 2.2
for super-rough interfaces with an exponent ζ > 1, there is
an extra independent parameter in the mathematical expres-
sion of B(r) given by equation (8), C(L), and the deter-
mination of the value of the roughness parameters cannot
therefore be performed by a simple least-square-!tting proce-
dure. However, this dif!culty can in practice be overcome by
estimating the C(L) constant by extrapolating B(r)/r2 to small
length scales r (see equation (8)). The scaling correction of
〈B(r)〉 is shown in !gure 6(b) for L = 256, 512, and 1024. The
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size-dependent parameter C(L) is obtained using the !rst point
of 〈B(r)〉 as an approximation, i.e. C(L) ≈ 〈B(δz)〉/δz2 with
δz = 1. Figure 6(b) presents C(L) − 〈B(r)〉/r2 against r. As
observed, data presents power-law behavior independent of
the system size in a !nite range, scaling as ∼ rζ according to
equation (8). The !tted roughness exponents are reported in
table 3 and are a bit larger than the expected value ζdep = 1.25.
The value of A0, as a measure of roughness amplitude, is also
reported in the table.

The structure factor is shown in !gure 6(c), where it can
be observed that a power-law behavior correctly describes the
numerical data, without need of corrections due to anomalous
scaling, as expected. From the !tting, the values of the rough-
ness parameters ζ and S0 are obtained and presented in table 3.
The values of the obtained roughness exponent ζ are slightly
larger than the expected value, ζdep = 1.25, and compare well
with the ones obtained using the roughness function (!gure
6(b)). When comparing with reference [43], which reported
ζ = 1.25 using the structure factor for a system with L = 2048,
we notice that we have used the discretization-corrected wave
vector q̃ (see section 2.1) and that we have !xed a !tting range
to be consistent with the analysis presented in sections 3.1 and
3.2, while in reference [43] the !t was done for small q values.

The same !tting procedure, appropriate for super-rough
interfaces, can be applied to individual realization of the depin-
ning interfaces. Using the roughness function and consid-
ering its anomalous behavior individual values for ζ i and
A0i are obtained, whose distributions are presented in !gure
7(a). Fitting individual structure factors, values for the rough-
ness parameters, ζ i and S0i, are obtained and their distri-
butions are presented in !gure 7(b). The mean values for
the roughness exponents, coming from both the roughness
function and the structure factor, are reported in table 3
and are slightly larger than the expected value, ζdep = 1.25,
considering the error bars coming from the distribution of
the data.

4. Discussion and conclusion

The main result presented here is the fact that the distribution
of roughness parameters are considerably broad. Using model
systems in three different universality classes this revealed
to be a general feature of "uctuating interfaces. Since distri-
butions are rather wide, values of roughness parameters for
independent interfaces may differ considerably beyond the
error bar of their mean. In particular, the roughness expo-
nent is broadly distributed and then the differentiation between
universality classes should not be based on single !nite-size
interface pro!les. For example, a single experimental observa-
tion of a roughness exponent ζ = 0.58 would not be enough
to discern between thermal Edwards–Wilkinson or equilib-
rium quenched Edwards–Wilkinson universality classes since
the typical width of the distributions is of the order of the
difference between exponents. Furthermore, the width of the
distribution of roughness exponents depends on the size of

the sample, i.e. the number of independent individual real-
izations. For example, lets consider a fraction of the whole
set of N independent con!gurations composed of n < N inde-
pendent realizations. Figure 8(a) shows, as a measure of the
width of the distribution, the standard deviation σ as a func-
tion of the sample size n, corresponding to the distribution
of ζ i values obtained using the roughness function for sys-
tem size L = 512 and for the three model systems stud-
ied here. Each sample of n interface pro!les were randomly
taken from the N = 1000 con!gurations. As observed in the
!gure, the width of the distribution strongly "uctuates for
small n and then converges after using tens of con!gurations
(dashed lines correspond to σ(n = N)). Since σ tends to a
constant value, of order 0.1, the error of the mean of the
distribution, σ/

√
n, decreases as 1/

√
n, as shown in !gure

8(b). Notice that for 10 < n < 40 the value of the error of
the mean is in the range (0.01, 0.02), giving thus a reason-
able bound for experimental measurements of the roughness
exponent.

In addition, our results convincingly show that the real-
space displacements autocorrelation function can be used to
determine the global roughness exponent of super-rough inter-
faces, via the anomalous scaling of B(r) (equation (8)). As
demonstrated for surface fractures, super-roughening has a
signi!cant impact on the morphology of the interface [44].
Since the roughness function B(r) is the easiest quantity to
compute in experiments, equation (8) provides a convenient
way to assess the possibility of super-roughening without
having to compute the global width or structure factor.

In summary, we have shown numerical evidence for the
broad distribution of individual values of roughness param-
eters. For this purpose, we have used both real-space and
reciprocal-space correlation functions and three model sys-
tems belonging to different universality classes. This infor-
mation should be taken into account when experimentally
measuring roughness parameters, particularly when !nite size
effects are important. Our results reveal an important but often
overlooked property of roughness characterization: the mea-
sured roughness exponent originates in wide size-dependent
distributions. This should always be taken into account when
evaluating the roughness exponent for a given problem. For
instance, when reporting the roughness exponent, a number
of the order of tens of independent realizations of domain
walls should be considered to guarantee statistical convergence
to a meaningful average value. This result should prompt a
reevaluation and development of detailed experimental proto-
cols to assure statistical independence and !nite sample size
of domain wall con!gurations. Such protocols would be par-
ticularly relevant for ferromagnetic and ferroelectric domain
walls, since these experimental interfaces usually combine
the issues of !nite resolution, !nite size, and limited num-
ber of experimental interfaces. However, our results are more
broadly of interest for any experimental or numerical inter-
faces that could be described within the frame of disordered
elastic systems.
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Figure 8. Evolution of the dispersion of the data with the size of the sample for a system size L = 500 and for the three different cases
studied here (thermal, equilibrium and depinning). (a) Standard deviation of the distribution of roughness exponent as a measure of its
width, to be compared to ζ ∈ {1/2, 2/3, 1.25} respectively. (b) Error of the mean of the distribution of the roughness exponent. Dashed lines
correspond to the value for N = 1000, the largest sample studied here.
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B and Politi P 2010 Phys. Rev. Lett. 104 237206

[13] Giamarchi T, Kolton A B and Rosso A 2006 Dynamics of Dis-
ordered Elastic Systems Jamming, Yielding and Irreversible
Deformation in Condensed Matter ed M C Miguel and J M
Rubi (Berlin: Springer) p 91

[14] Barabasi A L and Stanley H E 1995 Fractal Concepts in Surface
Growth (Cambridge: Cambridge University Press)

[15] Mandelbrot B B, Passoja D E and Paullay A J 1984 Nature 308
721

[16] Myllys M, Maunuksela J, Alava M J, Ala-Nissila T and Timonen
J 2000 Phys. Rev. Lett. 84 1946

[17] Rubio M A, Edwards C A, Dougherty A and Gollub J P 1989
Phys. Rev. Lett. 63 1685

[18] Bonachela J A, Nadell C D, Xavier J B and Levin S A 2011 J.
Stat. Phys. 144 303

[19] Chepizhko O et al 2016 Proc. Natl Acad. Sci. USA 113 11408
[20] Speck T and Vink R L C 2012 Phys. Rev. E 86 031923
[21] Paruch P and Guyonnet J 2013 C. R. Phys. 14 667
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