
Published as a conference paper at ICLR 2021

Distributed Momentum for Byzantine-
resilient Stochastic Gradient Descent

El-Mahdi El-Mhamdi*

École Polytechnique, France
el-mahdi.el-mhamdi@polytechnique.edu

Rachid Guerraoui*

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
rachid.guerraoui@epfl.ch

Sébastien Rouault*

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
sebastien.rouault@epfl.ch

Abstract

Byzantine-resilient Stochastic Gradient Descent (SGD) aims at shielding
model training from Byzantine faults, be they ill-labeled training data-
points, exploited software/hardware vulnerabilities, or malicious worker
nodes in a distributed setting. Two recent attacks have been challenging
state-of-the-art defenses though, often successfully precluding the model
from even fitting the training set. The main identified weakness in current
defenses is their requirement of a sufficiently low variance-norm ratio for
the stochastic gradients. We propose a practical method which, despite
increasing the variance, reduces the variance-norm ratio, mitigating the
identified weakness. We assess the effectiveness of our method over 736
different training configurations, comprising the 2 state-of-the-art attacks
and 6 defenses. For confidence and reproducibility purposes, each configura-
tion is run 5 times with specified seeds (1 to 5), totalling 3680 runs. In our
experiments, when the attack is effective enough to decrease the highest ob-
served top-1 cross-accuracy by at least 20% compared to the unattacked run,
our technique systematically increases back the highest observed accuracy,
and is able to recover at least 20% in more than 60% of the cases.

1 Introduction

Stochastic Gradient Descent (SGD) is one of the main optimization algorithm used throughout
machine learning. Scaling SGD can mean aggregating more but inevitably less well-sanitized
data, and distributing the training over several machines, making SGD even more vulnerable
to Byzantine faults: corrupted/malicious training datapoints, software vulnerabilities, etc.
Many Byzantine-resilient techniques have been proposed to keep SGD safer from these faults,
e.g. Alistarh et al. (2018); Damaskinos et al. (2018); Yang & Bajwa (2019b); TianXiang et al.
(2019); Bernstein et al. (2019); Yang & Bajwa (2019a); Yang et al. (2019); Rajput et al. (2019);
Muñoz-González et al. (2019). These techniques mainly use the same adversarial model (Fig-
ure 2): a central, trusted parameter server distributing gradient computations to several work-
ers, a minority of which is controlled by an adversary and can submit arbitrary gradients.

Two families of defense techniques can be distinguished. The first employs redundancy
schemes, inspired by coding theory. This approach has strong resilience guarantees, but

*Author list written in alphabetical order, as for all the papers from the DCL at EPFL.

1

https://elmahdielmhamdi.com/
https://www.polytechnique.edu/
mailto:el-mahdi.el-mhamdi@polytechnique.edu
https://dcl.epfl.ch/rachid/
https://www.epfl.ch/
mailto:rachid.guerraoui@epfl.ch
https://sebastien.rouau.lt/
https://www.epfl.ch/
mailto:sebastien.rouault@epfl.ch

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 1: We report on the highest measured top-1 cross-accuracy while training under either
of the two studied, state-of-the-art attacks. [a, b]: a convolutional model (Section 4.1) for
CIFAR-10 under the attack from Baruch et al. (2019), and [c, d]: a fully connected model
for Fashion-MNIST (Xiao et al., 2017) under the attack from Xie et al. (2019a). Roughly
half the workers implements the attack in [a, c], and a quarter does in [b, d]; see Section
4.1. Each experiment is run 5 times. The dotted blue line is the median of the maximum
top-1 cross-accuracy of the 5 runs without attack, and the boxes aggregate the maximum
top-1 cross-accuracy obtained under attack with each 5 runs of the 6 studied defenses. Over
736 different combinations of attacks, defenses, datasets, etc (totalling of 3680 runs), our
method consistently obtain at least similar, if not substantially better performances (lower
minimal loss, higher maximal top-1 cross-accuracy) than the standard formulation. Notably,
our formulation obtains these results with no additional computational complexity.

its requirement to share data between workers makes this approach unsuitable for several
classes of applications, e.g. when data cannot be shared for privacy, scalability or legal
reasons. The second family uses statistically-robust aggregation schemes, and is the focus of
this paper. The underlying idea is simple. At each training step, the server aggregates the
stochastic gradients computed by the workers into one gradient, using a function called a
Byzantine-resilient Gradient Aggregation Rule (GAR). These statistically-robust GARs are
designed to produce at each step a gradient that is expected to decrease the loss.

Intuitively, one can think of this second family as different formulations of the multivariate
median. In particular, if the non-Byzantine gradients were all equal at each step, any
different (adversarial) gradient would be rejected by each of these medians, and no attack
would succeed. But due to their stochastic nature, the non-Byzantine gradients are different:
their variance is strictly positive. Formal guarantees on any given statistically-robust GAR
typically require that the variance-norm ratio, the ratio between the variance of the non-
Byzantine gradients and the norm of the expected non-Byzantine gradient, remains below a
certain constant (constant which depends on the GAR itself and fixed hyperparameters).
Intuitively, this notion of variance-norm ratio can be comprehended quite analogously to
the inverse of the signal-to-noise ratio (i.e. the “noise-to-signal” ratio) in signal processing.

However, Baruch et al. (2019) noted that an attack could send gradients that are close to
non-Byzantine outlier gradients, building an apparent majority of gradients that could be
sufficiently far from the expected non-Byzantine gradient to increase the loss. This can happen
against most statistically-robust GARs in practice, as the variance-norm ratio is often too
large for them. Two recent attacks (Baruch et al., 2019; Xie et al., 2019a) were able to exploit
this fact to substantially hamper the training process (which our experiments confirm).

The work presented here aims at (substantially) improving the resilience of statistically robust
GARs “also in practice”, by reducing the variance-norm ratio of the gradients received by the
server. We do that by taking advantage of an old technique normally used for acceleration:
momentum. This technique is regularly applied at the server, but instead we propose to
confer it upon each distributed worker, effectively making the Byzantine-resilient GAR
aggregate accumulated gradients. Crucially, there is no computational complexity attached
to our reformulation: it only reorders operations in existing (distributed) algorithms.

Contributions. Our main contributions can be summarized as follows:

2

Published as a conference paper at ICLR 2021

• A reformulation of classical/Nesterov momentum which can significantly improve the
effectiveness (Figure 1) of any statistically-robust Gradient Aggregation Rule (GAR).
We formally analyze the impact of our reformulation on the variance-norm ratio of the
aggregated gradients, ratio on which the studied GARs assume an upper bound.

• An extensive and reproducible1 set of experiments substantiating the effectiveness of our
reformulation of momentum in improving existing defenses against state-of-the-art attacks.

Paper Organization. Section 2 provides the necessary background. Section 3 presents our
distributed momentum scheme and provides some intuitions on its effects. Formal develop-
ments of these intuitions are given in the appendix. Section 4 describes our experimental
settings in details, before presenting and analysing some of our experimental results. The
appendix reports on the entirety of our experiments, and details how they can be reproduced
(in one command, graphs included). Section 5 discusses related and future work.

2 Background

2.1 Byzantine Distributed SGD

Stochastic Gradient Descent (SGD). We consider the classical problem of optimizing

a non-convex, differentiable loss function Q : Rd → R, where Q (θt) , E x∼D [q (θt, x)] for a
fixed data distribution D. Ideally, we seek θ∗ such that θ∗ = arg minθ (Q (θ)).

We employ mini-batch SGD optimization. Starting from initial parameter θ0 ∈ Rd, at every

step t ≥ 0, b samples
(
x
(1)
t . . . x

(b)
t

)
are sampled from D to estimate one stochastic gradient

gt ,
1
b

∑b
k=1∇q

(
θt, x

(k)
t

)
≈ ∇Q (θt). This stochastic gradient is then used to update the

parameters θt, with: θt+1 = θt − αt gt. The sequence αt > 0 is called the learning rate.

Classical and Nesterov momentum One field-tested amendment to mini-batch SGD is
classical momentum (Polyak, 1964), where each gradient keeps an exponentially-decreasing

effect on every subsequent update. Formally: θt+1 = θt − αt
∑t
u=0 µ

t−ugu, with 0 < µ < 1.

Nesterov (1983) proposed another revision. Noting vt the velocity vector, v0 = 0, formally:

vt+1 = µ vt +
1

b

b∑
k=1

∇q
(
θt − αt µ vt, x

(k)
t

)
θt+1 = θt − αt vt+1

Compared to classical momentum, the gradient is estimated at θt − αt µ vt instead of θt.

Parameter
server Byzantine

workers
(colluding)Honest

workers

Figure 2: A parameter server setup
with n = 8 workers, among which
f = 3 are Byzantine (i.e., adversarial)
workers. A black line represents a
bidirectional communication channel.

Distributed SGD with Byzantine workers.
We follow the parameter server model (Li et al., 2014):
one single process (the parameter server) holding the
parameter vector θt ∈ Rd, and n other (the workers)
estimating gradients. Among these n workers, up to
f < n are said Byzantine, i.e. adversarial. Unlike
the other n − f honest workers, these f Byzantine
workers can submit arbitrary gradients (Figure 2).

At each step t, the parameter server receives n dif-

ferent gradients g
(1)
t . . . g

(n)
t , among which f are arbi-

trary (submitted by the Byzantine workers). So the
update equation becomes: θt+1 = θt − αtGt, where:

Gt ,
t∑

u=0

µt−uF
(
g(1)u , . . . , g(n)u

)
(1)

1Namely: 736 × 5 = 3680 seeded runs, and one single script to reproduce all of our results.

3

Published as a conference paper at ICLR 2021

Function F is called a Gradient Aggregation Rule (GAR). In non-Byzantine settings, averaging

is used; formally: F
(
g
(1)
t , . . . , g

(n)
t

)
= 1

n

∑n
i=1 g

(i)
t . In the presence of Byzantine workers, a

more robust aggregation is performed with a Byzantine-resilient GAR. Sections 2.2 and 2.3
respectively describe the 6 existing GARs and 2 attacks studied in this paper.

Adversarial Model. The goal of the adversary is to impede the learning process, which
is defined as the maximization of the loss Q or, more judiciously for the image classification
tasks tackled in this paper, as the minimization2 of the model’s top-1 cross-accuracy. The
adversary cannot directly overwrite θt at the parameter server. The adversary only submits
f arbitrary gradients to the server per step, via the f Byzantine workers it controls3. We
assume an omniscient adversary. In particular, the adversary knows the GAR used by
the parameter server and, at each step, the adversary can generate Byzantine gradients
dependent on the honest gradients submitted at the same step and any previous step.

2.2 Byzantine-resilient GARs

We briefly present below the 6 studied Gradient Aggregation Rules (GARs). These GARs
are Byzantine-resilient (Section A), a notion first introduced by Blanchard et al. (2017)
under the name (α, f)-Byzantine-resilience. When used within its operating assumptions, a
Byzantine-resilient GAR guarantees convergence even in an adversarial setting.

Let n be the number of gradients the parameter server received from the n workers (Figure
2), and let f be the maximum number of Byzantine gradients the GAR must tolerate.

Krum (Blanchard et al., 2017). Each received gradient is assigned a score. The score of
gradient x is the sum of the squared `2-distances between x and the n−f−2 closest gradients
to x. The aggregated gradient is then the arithmetic mean of the n− f − 2 gradients with
the smallest scores. This variant is called Multi-Krum in the original paper.

To be proven (α, f)-Byzantine resilient, Krum requires the variance of the honest gradients

E ‖Gt − EGt‖
2

to be bounded above as follows:

2 ·
(
n−f+

f (n−f−2)+f2 (n−f−1)

n−2f−2

)
· E ‖Gt − EGt‖

2
< ‖EGt‖

2
(2)

Median (Yin et al., 2018). The coordinate-wise median of the n received gradients. Median
is proven (α, f)-Byzantine resilience with the following condition on the variance-norm ratio:

(n− f) · E ‖Gt − EGt‖
2
< ‖EGt‖

2
(3)

Trimmed Mean (Yin et al., 2018). The coordinate-wise trimmed-mean of the n received
gradients. The trimmed-mean of n values is the arithmetic mean, after the f smallest and
the f largest values have been discarded, of the remaining values. From Theorem 1 of Xie
et al. (2018b), we can derive the following condition on the variance-norm ratio:

2 (f+1) (n−f)

(n−2f)
2 E ‖Gt − EGt‖

2
< ‖EGt‖

2
(4)

Phocas (Xie et al., 2018b). The coordinate-wise arithmetic mean of the n − f closest
values to the coordinate-wise trimmed-mean. From Theorem 2 of Xie et al. (2018b):(

4 +
12 (f+1) (n−f)

(n−2f)
2

)
E ‖Gt − EGt‖

2
< ‖EGt‖

2
(5)

2Exempli gratia, with 10 classes, the worst possible final accuracy is arguably 0.1.
3Said otherwise, the f Byzantine workers can collude.

4

Published as a conference paper at ICLR 2021

MeaMed (Xie et al., 2018a). Same as Phocas, but with median replacing trimmed-mean.
Theorem 5 of Xie et al. (2018a) provides the following condition:

10 (n− f) · E ‖Gt − EGt‖
2
< ‖EGt‖

2
(6)

Bulyan (El-Mhamdi et al., 2018). This is a composite GAR, iterating on another GAR in
a first selection phase. In the remaining of this paper, Bulyan will use Krum, so the first
phase selects n− 2 f − 2 gradients, at each iteration removing the highest scoring gradient.
The aggregated gradient is the coordinate-wise arithmetic mean of the n− 4 f − 2 closest
values to the (coordinate-wise) median of the selected gradients.

The theoretical requirement on the variance-norm ratio are the same as the ones of the
underlying GAR. That is, in this paper, they are the same as Krum (Equation 2).

2.3 Studied Attacks

The two state-of-the-art attacks, that recently appeared in the literature, follow the same
core principle. Let ε ∈ R≥0 be a non-negative factor, and at ∈ Rd an attack vector which
value depends on the actual attack used (see below for possible values of at). At each step t,
each of the f Byzantine workers submits the same Byzantine gradient: gt + ε at, where gt is
an approximation of the real gradient ∇Q (θt) at step t. The value of ε is fixed (see below).

A Little is Enough (Baruch et al., 2019). In this attack, each Byzantine worker submits

gt + ε at, with at , −σt the opposite of the coordinate-wise standard deviation of the honest
gradient distribution Gt. Our experiments use ε = 1.5, as proposed by the original paper.

Fall of Empires (Xie et al., 2019a). Each Byzantine worker submits (1− ε) gt, i.e., at , −gt.
The original paper tested ε ∈ {−10,−1, 0, 0.1, 0.2, 0.5, 1, 10, 100}, our experiments use4 ε =

1.1, corresponding in the notation of the original paper to ε , − (1− ε) = − (1− 1.1) = 0.1.

3 Momentum at the Workers

Intuitively, the Byzantine-resilient GARs (Section 2.2) rely on the honest gradients being
sufficiently clumped (formalized in e.g. Equation 2 to Equation 6). In the edge case where
every honest gradient is equal (i.e. no stochastic noise), no attack can affect the learning:
there is by assumption a strict majority of identical honest gradients. On the contrary when
the honest gradients are “spread”, i.e. their variance is large enough compared to their norms,
the attack vectors can form a majority by relying on a few outlier (but honest) gradients
(Baruch et al., 2019), and so substantially influence the aggregated gradient.

Momentum makes the parameters θt travel down the loss function with inertia, accumulating
both the real gradient ∇Q (t) and the error (i.e. here, the stochastic noise) gt − ∇Q (t).
Intuitively, the accumulation of errors grows at a moderate rate, as past errors can be
partially compensated by future ones. But when consecutive ∇Q (t) have sufficiently low solid
angles, past real gradients do not compensate future real gradients: the norm of Gt can grow
“faster” (for each new step) than its variance, mitigating the potential impact of an attack.

3.1 Formulation

From the formulation of momentum SGD in a distributed setting (Equation 1):

Gt ,
t∑

u=0

µt−uF
(
g(1)u , . . . , g(n)u

)
we instead confer the momentum computation on the workers:

Gt , F

(t∑
u=0

µt−ug(1)u︸ ︷︷ ︸
G

(1)
t

, . . . ,

t∑
u=0

µt−ug(n)u︸ ︷︷ ︸
G

(n)
t

)
(7)

4This factor made this attack consistently successful in the original paper.

5

Published as a conference paper at ICLR 2021

Notations. In the remaining of this paper, we call the original formulation (momentum)
at the server, and the proposed, revised formulation (momentum) at the worker(s). The

quantities G
(1)
t . . . G

(n)
t will be called the submitted gradients (at step t). At step t, the

variance-norm ratio is computed on the honest subset of: g
(1)
t . . . g

(n)
t , if momentum at the

server is employed, otherwise G
(1)
t . . . G

(n)
t , if momentum at the workers is used instead.

Formal analysis. The formal analysis of the impact of our technique on the variance-norm
ratio of the aggregated gradients is available in the appendix, Section B.

4 Experiments

Our experiments cover 2 models, 4 datasets, the 6 studied defenses under each of the 2 state-
of-the-art attacks5, different fractions of Byzantine workers (either half or a quarter), using
Nestorov instead of classical momentum, plus unattacked settings where each worker is honest
and the GAR is mere averaging. Since our theoretical results (Section B) suggest that smaller
learning rates may reduce the variance-norm ratio, two learning rate schedules (an optimal
and a smaller one) are also tested. For reproducibility and confidence in the empirical benefits
of our reformulation, we test every combination of the hyperparameters mentioned above,
and each combination is repeated 5 times with specified seeds (1 to 5, totally 3680 runs).

The tools we developed to implement our reformulation captures ∼20 metrics, including the
evolution of the average loss, top-1 cross-accuracy and variance-norm ratio of the submitted
gradients. In this section and Section E, we specifically report on these 3 metrics.

4.1 Experimental Setup

We use a compact notation to define the models: L(#outputs) for a fully-connected linear
layer, R for ReLU activation, S for log-softmax, C(#channels) for a fully-connected 2D-con-
volutional layer (kernel size 3, padding 1, stride 1), M for 2D-maxpool (kernel size 2), B for
batch-normalization, and D for dropout (with fixed probability 0.25).

We use the models from respectively Baruch et al. (2019) and Xie et al. (2019a):

Fully connected Convolutional

Model (784)-L(100)-R-L(10)-R-S (3, 32×32)-C(64)-R-B-C(64)-R-B-M-D-
-C(128)-R-B-C(128)-R-B-M-D-
-L(128)-R-D-L(10)-S

Datasets MNIST, Fashion MNIST CIFAR-10, CIFAR-100
(83 samples/gradient) (50 samples/gradient)

#workers n = 51 f ∈ {24, 12} n = 25 f ∈ {11, 5}

For model training, we use the negative log likelihood loss and respectively 10−4 and 10−2

`2-regularization for the fully connected and convolutional models. We also clip gradients, en-
suring their norms remain respectively below 2 and 5 for the fully connected and convolutional
models. Regarding evaluation, we use the top-1 cross-accuracy over the whole test set.

Datasets are pre-processed before training. MNIST receives the same pre-processing as in
Baruch et al. (2019): an input image normalization with mean 0.1307 and standard deviation
0.3081. Fashion MNIST, CIFAR-10 and CIFAR-100 are all expanded with horizontally flipped
images. For both CIFAR-10 and CIFAR-100, a per-channel normalization with means 0.4914,
0.4822, 0.4465 and standard deviations 0.2023, 0.1994, 0.2010 (Liu, 2019) has been applied.

We denote by f the number of Byzantine workers either to the maximum for which Krum
can be used (roughly an half: f = bn−32 c), or the maximum for Bulyan (roughly a quarter,

f = bn−34 c). The attack factors εt (Section 2.3) are set to constants proposed in the
literature, namely εt = 1.5 for Baruch et al. (2019) and εt = 1.1 for Xie et al. (2019a).

5To the best of our knowledge, putting aside simple attacks (e.g. sending attack gradients sampled
from a Gaussian distribution) tested in each defense papers, no other attack has been published.

6

Published as a conference paper at ICLR 2021

We also experiment two different learning rates. The first and largest is selected so as
to maximize the performance (highest final cross-accuracy and accuracy gain per step) of
the model trained without Byzantine workers. The second and smallest is chosen so as
to minimize the performance loss under attack, without substantially impacting the final
accuracy when trained without Byzantine workers. The fully connected and convolutional
models are trained respectively with µ = 0.9 and µ = 0.99. These values were obtained by
trial and error, to maximize the accuracy gain per step when there is no attack.

Reproducibility. Particular care has been taken to make our results reproducible. Each of
the 5 runs per experiment are respectively seeded with seed 1 to 5. For instance, this implies
that two experiments with same seed and same model also starts with the same parameters θ0.
To further reduce the sources of non-determinism, the CuDNN backend is configured in de-
terministic mode (our experiments ran on two GeForce GTX 1080 Ti) with benchmark mode
turned off. We also used log-softmax + nll loss, which is equal to softmax + cross-entropy
loss, but with improved numerical stability on PyTorch. We provide our code along with a
script reproducing all of our results, both the experiments and the graphs, in one command.
Details, including software and hardware dependencies, are available in Section C.

4.2 Experimental Results

This section reports on the evolution of the average loss, top-1 cross-accuracy and variance-
norm ratio of the submitted gradients. Section E in the appendix reports on the entirety of
our experimental results, and Section D additionally experiments with a much larger model.

One first important remark is that our new formulation either obtain similar, or (subtantially)
increased maximum top-1 cross-accuracy measured, compared to the standard formulation
in the exact same settings. Namely, in only 4 pairs of runs (0.23% of all the tested pairs) did
our formulation lead to a decreased maximum top-1 cross-accuracy. Also, these decreases
were only observed with the fully connected model, using Krum against Xie et al. (2019a),
and for each of these 4 runs using any of the 4 other seeds made the decrease disappear.

In all of our experiments, we observe a strong correlation between higher top-1 cross-accuracies
and lower average losses; e.g. see Figure 4. The two state-of-the-art attacks decreased the accu-
racy by at least 20%, compared to the unattacked case (see “No attack” in Figure 3), in 25.80%
and 70.80% of the runs with respectively the fully connected and convolutional models.

Focusing on the convolutional model, when roughly an half of the workers are Byzantine,
both attacks actually succeed in decreasing the accuracy by at least 20% in 100% of our
runs. Our technique manages to recover at least 10% and 20% in respectively 79.75% and
49.25% of these runs. When roughly a quarter of the workers are Byzantine, the attacks
decrease the accuracy by at least 20% in 46.46% of our runs. Our technique then manages
to recover at least 20% in 95.07% of these runs. Figure 3 shows a fraction of these runs.

Technically, our reformulation aims at reducing the variance-norm ratio of the aggregated
gradients. Intuitively, this ratio is expected to increase as the loss decreases; more correctly
as the norm of the gradient decreases. For instance, Figure 5 displays the variance-norm
ratios of Trimmed Mean and Bulyan using the same settings as in Figure 4. At least before
the final cross-accuracy is reached, our technique consistently decreases the variance-norm
ratio of the aggregated gradients. Also, we consistently observed in the experiments that
reducing the learning rate indeed reduces the variance-norm ratio (e.g. Figure 5, t ≥ 1500).

5 Related and future work

Alternative Byzantine-resilient Approaches. The Byzantine abstraction is a very
general fault model that has long been studied in distributed computing (Lamport et al.,
1982). The standard, golden solution for Byzantine fault tolerance is the state machine
replication approach (Schneider, 1990). This approach is however based on replication, which
is known to be unsuitable for distributed machine learning and stochastic gradient descent.

Chen et al. (2018) was the first Byzantine-resilient mechanism based on a redundancy scheme
rather than statistical robustness. While the proposed mechanism is not vulnerable to the

7

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 3: CIFAR-10 and the convolutional model (Section 4.1), with n = 25, f = 5 and αt =
0.01 if t < 1500 else αt = 0.001, under attack from (Baruch et al., 2019). Each line and colored
surface correspond to respectively the average and standard deviation of the top-1 cross-
accuracy over 5 seeded runs. Only two parameters change between graphs: where momentum
is computed (at the server or at the workers), and which flavor of momentum is employed.

Momentum at the server Momentum at the workers

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 4: Accuracy and average loss, CIFAR-100 and the convolutional model, with n = 25,
f = 5 and αt = 0.01 if t < 1500 else αt = 0.001, under attack from (Xie et al., 2019a).

Trimmed Mean Bulyan

Figure 5: Same settings as in Figure 4, variance-norm ratios of Trimmed Mean and Bulyan
with momentum at the workers. “sample” corresponds to the variance-norm ratio of the
sampled gradients, and “submit” to the variance-norm ratio of the submitted gradients.

8

Published as a conference paper at ICLR 2021

attacks discussed in this paper, it induces (due to the redundancy) substantial computational
costs compared to statistically-robust techniques. Rajput et al. (2019) combines Chen
et al. (2018) with statistically-robust GARs into a hybrid system, and achieves an improved
aggregation time. Under the requirements of both redundancy-based schemes and statistically-
robust GARs, Rajput et al. (2019) can significantly decrease the voting power of the adversary,
and can consequently also deflect attacks in these cases. Xie et al. (2019b), and its follow-up
(Xie, 2019), introduced the concept of suspicion-based fault-tolerance: each gradient is
assigned a score based on the loss obtained by descending with this gradient only. The lowest
scoring gradients are then filtered-out, and the remaining gradients are averaged and used
to update the model. Compared to statistically-robust approaches, such a scheme does not
rely on sufficiently low variance-norm ratios, and gradients could be processed independently.
This advantage comes at the expense of a substantial computational load on the parameter
server, as the server has to compute several forward passes for each received gradients,
basically doing half the work of each worker again (the workers also have backpropagation
passes). Most importantly, the success of such a technique is conditioned to the quality of
the loss estimations at the server: if the estimation is biased (e.g. the server’s dataset is
“different” than the workers’ ones) , has a high variance (e.g. the server’s batch size is “too”
small), or if the “hard threshold” ε used is too large (would accept Byzantine gradients)/too
small (would refuse even honest gradients) the defense might be ineffective/harmful.

Momentum-based Variance Reduction. Our algorithm is different from Cutkosky &
Orabona (2019), as instead of reducing the variance of the gradients, we actually increase it
(Equation 8). What we seek to reduce is the variance-norm ratio, which is the key quantity for
any Byzantine-resilient GAR approximating a high-dimensional median, e.g. Krum, Median,
as well as Yang & Bajwa (2019b;a); Chen et al. (2017); Muñoz-González et al. (2019)6.
Some of the ideas introduced in Cutkosky & Orabona (2019) could nevertheless help further
improve Byzantine resilience. For instance, introducing an adaptive learning rate which
decreases depending on the curvature of the parameter trajectory is an appealing approach
to further reduce the variance-norm ratio (Equation 10). The computation of momentum at
the workers has also been used in the literature for the purpose of gradient compression (Lin
et al., 2018). These techniques are nevertheless not (meant to be) Byzantine-resilient.

Future Work. The theoretical condition to reduce the variance-norm ratio of the submitted
gradients (compared to the variance-norm ratio of the sampled gradients at the same step),
in Section B, shows that momentum at the workers is a double-edged sword. The problem is
that st can become negative: the norm of the momentum gradient would then be decreased,
increasing the variance-norm ratio. While the ability to cross narrow, local minima is
recognized as an accelerator (Goh, 2017), for the purpose of Byzantine-resilience we want
to ensure momentum at the workers does not increase the variance-norm ratio (compared
to the variance-norm ratio of the sampled gradients at the same step). The theoretical
condition for this purpose is given in Equation 9. One simple amendment would then be to
use momentum at the workers when Equation 9 is satisfied, and fallback to computing it at
the server otherwise. Also, a more complex, possible future approach could be to dynamically
adapt the momentum factor µ, decreasing it as the curvature increases.

Asynchronous SGD. We focused in this work on the synchronous setting, which received
most of the attention in the Byzantine-resilient literature. Yet, we do not see any issue that
would prevent our work from being applied in asynchronous settings. Specifically, combining
our idea with a filtering scheme such as Kardam (Damaskinos et al., 2018) is in principle
possible, as this filter and momentum commute. However, further analysis of the interplay
between the dynamics of stale gradients and the dynamics of momentum remain necessary.

Byzantine Servers. While most of the research on Byzantine-resilience gradient descent
has focused on the workers’ side, assuming a reliable server, recent efforts have started
tackling Byzantine servers (El-Mhamdi et al., 2020). Our reduction of the variance-norm
ratio strengthens the gradient aggregation phase, which is necessary whether we deal with
Byzantine workers or Byzantine servers. An interesting open question is whether the dynamics
of momentum could positively affect the model drift between different parameter servers in
a Byzantine context. Any quantitative answer to this question could enable the use of our
method in fully decentralised Byzantine resilient gradient descent.

9

Published as a conference paper at ICLR 2021

6 Acknowledgments

This work has been supported in part by the Swiss National Science Foundation (FNS grant
N°200021 182542).

We would also like to acknowledge here and thank the anonymous individuals who partook
in the review of this work and its code, in this final version and previous drafts, for their
valuable time and inputs.

References

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pp. 4618–4628, 2018.

Moran Baruch, Gilad Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses
for distributed learning. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, 8-14 December 2019, Long
Beach, CA, USA, 2019.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd
with majority vote is communication efficient and fault tolerant. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019.

Peva Blanchard, El-Mahdi El-Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine
learning with adversaries: Byzantine tolerant gradient descent. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp. 119–129, 2017.

Lingjiao Chen, Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. DRACO:
byzantine-resilient distributed training via redundant gradients. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pp. 902–911, 2018.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. CoRR, abs/1705.05491, 2017.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-
convex SGD. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 15210–
15219, 2019. URL http://papers.nips.cc/paper/9659-momentum-based-variance-
reduction-in-non-convex-sgd.

Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Rhicheek Patra, and Mahsa
Taziki. Asynchronous byzantine machine learning (the case of SGD). In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pp. 1153–1162, 2018.

El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability
of distributed learning in byzantium. In Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, pp. 3518–3527, 2018.

El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, Lê Nguyên Hoang, and Sébastien
Rouault. Genuinely distributed byzantine machine learning. In Yuval Emek and Christian
Cachin (eds.), PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020, pp. 355–364. ACM, 2020. doi: 10.1145/3382734.
3405695. URL https://doi.org/10.1145/3382734.3405695.

10

http://papers.nips.cc/paper/9659-momentum-based-variance-reduction-in-non-convex-sgd
http://papers.nips.cc/paper/9659-momentum-based-variance-reduction-in-non-convex-sgd
https://doi.org/10.1145/3382734.3405695

Published as a conference paper at ICLR 2021

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Bumsoo Kim. Best cifar-10, cifar-100 results with wide-residual networks using pytorch.
https://github.com/meliketoy/wide-resnet.pytorch, 2020. MIT license, using com-
mit 292b3ede0651e349dd566f9c23408aa572f1bd92.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. doi: 10.1145/357172.357176.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning
with the parameter server. In 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, pp. 583–598, 2014.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reduc-
ing the communication bandwidth for distributed training. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=SkhQHMW0W.

Kuang Liu. Train cifar-10 with pytorch, 2019. URL https://github.com/kuangliu/
pytorch-cifar/blob/ab908327d44bf9b1d22cd333a4466e85083d3f21/main.py#L33.

Luis Muñoz-González, Kenneth T Co, and Emil C Lupu. Byzantine-robust federated machine
learning through adaptive model averaging. arXiv preprint arXiv:1909.05125, 2019.

Yurii Nesterov. A method for solving a convex programming problem with convergence rate
o(1/k2). Soviet Mathematics Doklady, 27:372–367, 1983.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4:1–17, 12 1964. doi: 10.1016/0041-
5553(64)90137-5.

Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Detox: A
redundancy-based framework for faster and more robust gradient aggregation. Neural
Information Processing Systems, 2019.

Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

WANG TianXiang, ZhongLong ZHENG, TANG ChangBing, and PENG Hao. Aggregation
rules based on stochastic gradient descent in byzantine consensus. In 2019 IEEE 8th Joint
International Information Technology and Artificial Intelligence Conference (ITAIC), pp.
317–324. IEEE, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Cong Xie. Zeno++: robust asynchronous SGD with arbitrary number of byzantine workers.
CoRR, abs/1903.07020, 2019.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant SGD.
CoRR, abs/1802.10116, 2018a. URL http://arxiv.org/abs/1802.10116.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-resilient
stochastic gradient descent. CoRR, abs/1805.09682, 2018b. URL http://arxiv.org/
abs/1805.09682.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation. In Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, pp.
83, 2019a.

11

http://distill.pub/2017/momentum
https://github.com/meliketoy/wide-resnet.pytorch
https://openreview.net/forum?id=SkhQHMW0W
https://github.com/kuangliu/pytorch-cifar/blob/ab908327d44bf9b1d22cd333a4466e85083d3f21/main.py#L33
https://github.com/kuangliu/pytorch-cifar/blob/ab908327d44bf9b1d22cd333a4466e85083d3f21/main.py#L33
http://arxiv.org/abs/1802.10116
http://arxiv.org/abs/1805.09682
http://arxiv.org/abs/1805.09682

Published as a conference paper at ICLR 2021

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient descent
with suspicion-based fault-tolerance. In Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp.
6893–6901, 2019b.

Zhixiong Yang and Waheed U Bajwa. Bridge: Byzantine-resilient decentralized gradient
descent. arXiv preprint arXiv:1908.08098, 2019a.

Zhixiong Yang and Waheed U Bajwa. Byrdie: Byzantine-resilient distributed coordinate
descent for decentralized learning. IEEE Transactions on Signal and Information Processing
over Networks, 2019b.

Zhixiong Yang, Arpita Gang, and Waheed U Bajwa. Adversary-resilient inference and
machine learning: From distributed to decentralized. arXiv preprint arXiv:1908.08649,
2019.

Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter L. Bartlett. Byzantine-robust
distributed learning: Towards optimal statistical rates. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, pp. 5636–5645, 2018.

A Byzantine Resilience: Definition

Let n be the number of gradients the parameter server received from the n workers (Figure
2), and let f be the maximum number of Byzantine gradients the GAR must tolerate. Some
other notations below are reused from Section 2.1.

Definition 1. Without loss of generality, let g
(1)
t . . . g

(n−f)
t ∼ Gt be n − f independent,

“honest” gradients following the same distribution Gt, and let g
(n−f+1)
t . . . g

(n)
t ∈

(
Rd
)f

be
arbitrary gradients, each possibly dependent on Gt and the “honest” gradients. A GAR F is

said (α, f)-Byzantine resilient if and only if gt , F
(
g
(1)
t , . . . , g

(n)
t

)
satisfies:

1.
〈
E gt,E g

(1)
t

〉
> 0

2. ∀r ∈ {2, 3, 4}, E ‖gt‖
r

is bounded above by a linear combination of the terms

E
∥∥∥g(1)t ∥∥∥r1 . . . E ∥∥∥g(1)t ∥∥∥rk , with (k, r1 . . . rk) ∈ (N∗)k+1

and r1 + . . . + rk = r.

B Momentum at the Workers: Effects

We compare the variance-norm ratio of the non-Byzantine subset of the sampled gradients

g
(1)
t . . . g

(n)
t against the variance-norm ratio of the non-Byzantine subset of the submitted

gradients G
(1)
t . . . G

(n)
t when classical momentum is computed at the workers.

We denote by EGt , ∇Q (θt) the “real” gradient7 at step t.

Let λt , ‖EGt‖ > 0 be the real gradient’s norm at step t.

Let σt ,
√

E ‖Gt − EGt‖
2

be the standard deviation of the real gradient at step t. The

variance-norm ratio of the non-Byzantine subset of the sampled gradients at step t is:

r
(s)
t ,

σt
2

λt
2

7In this analysis, the expectations are by default conditioned on the past randomness (all what
happened up to step t) from the (n− f) · b data-points sampled, at each past step, by the (n− f)
honest workers to estimate their respective gradients.

12

Published as a conference paper at ICLR 2021

We will now compute the variance-norm ratio of the non-Byzantine subset of the submitted

gradients. Let G
(i)
t , with G

(i)
−1 , 0, be the gradient sent by any honest worker i at step t, i.e.:

G
(i)
t ,

t∑
u=0

µt−ug(i)u

The numerator of the variance-norm ratio is, for any two honest worker identifiers i 6= j:

E
∥∥∥G(i)

t −G
(j)
t

∥∥∥2
= E

∥∥∥g(i)t + µG
(i)
t−1 − g

(j)
t − µG

(j)
t−1

∥∥∥2
= E

∥∥∥g(i)t − g(j)t ∥∥∥2 + µ2 E
∥∥∥G(i)

t−1 −G
(j)
t−1

∥∥∥2 + 2µ

E g(i)t − E g(j)t︸ ︷︷ ︸
=EGt−EGt

 · (EG(i)
t−1 − EG(j)

t−1

)
︸ ︷︷ ︸

=0

= E
∥∥∥g(i)t − g(j)t ∥∥∥2 + µ2 E

∥∥∥G(i)
t−1 −G

(j)
t−1

∥∥∥2
= 2σt

2 + µ2
(
2σt−1

2 + µ2
(
2σt−2

2 + µ2 (...)
))

= 2

t∑
u=0

µ2(t−u)σu
2 (8)

= 2 E
∥∥∥G(i)

t − EG(i)
t

∥∥∥2
And the denominator of the variance-norm ratio is:∥∥∥EG(i)

t

∥∥∥2 =
∥∥∥E g(i)t + µ EG(i)

t−1

∥∥∥2
=
∥∥∥E g(i)t ∥∥∥2 + 2µ E g(i)t · EG

(i)
t−1 + µ2

∥∥∥EG(i)
t−1

∥∥∥2
= λt

2 + 2µ E g(i)t ·
(
E g(i)t−1 + µ

(
E g(i)t−2 + µ (...)

))
+ µ2

(
λt−1

2 + 2µ E g(i)t−1 ·
(
E g(i)t−2 + µ (...)

)
+µ2 E

∥∥∥G(i)
t−2

∥∥∥2)

=

t∑
u=0

µ2(t−u)

λu2 + 2

u−1∑
v=0

µu−v E g(i)u · E g(i)v︸ ︷︷ ︸
=EGu·EGv

Thus, assuming honest gradients EG(i)

t do not become null:

r
(w)
t ,

Ωt
2

Λt
2 =

∑t
u=0 µ

2(t−u)σu
2∑t

u=0 µ
2(t−u)

(
λu

2 + su
)

where the expected “straightness” of the gradient trajectory at step u is defined by:

su , 2

u−1∑
v=0

µu−v EGu · EGv

su quantifies what is intuitively the curvature of the gradient trajectory. Straight trajectories
can make su grow up to (1− µ)

−1
>1 times the expected squared-norm of the honest gradients,

while highly “curved” trajectories (e.g. close to a local minimum) can make su negative.

13

Published as a conference paper at ICLR 2021

This observation stresses that this formulation of momentum can sometimes be harmful for
the purpose of Byzantine resilience. We measured su for every step u>0 in our experiments,
and we always observed that this quantity is positive and increases for a short window of
(dozen) steps (depending on αt), and then oscillates between positive and negative values.
While the empirical impact (decreased or cancelled loss in accuracy) is concrete, we believe
there is room for further improvements, as discussed in Section 5.

The purpose of using momentum at the workers is to reduce the variance-norm ratio r
(w)
t ,

compared to r
(s)
t . Since g

(i)
0 = G

(i)
0 , we verify that r

(u)
0 = r

(w)
0 . Then ∀t > 0, assuming

Ωt−1 > 0 and σt > 0, we have:

r
(w)
t ≤ r(s)t ⇔

σt
2 + µ2 Ωt−1

2

λt
2 + st + µ2 Λt−1

2
≤ σt

2

λt
2

⇔ µ2 Ωt−1
2 λt

2 ≤
(
st + µ2 Λt−1

2
)
σt

2

⇔ st ≥ µ2 Λt−1
2

(
r
(w)
t−1

r
(s)
t

− 1

)
(9)

The condition for decreasing r
(w)
t can be obtained similarly, assuming Ωt−1 > 0 and σt > 0:

r
(w)
t ≤ r(w)

t−1 ⇔ st ≥ λt
2

(
r
(s)
t

r
(w)
t−1

− 1

)

To study the impact of a lower learning rate αt on st, we will assume that the real gradient
∇Q is l-Lipschitz. Namely:

∀ (t, u) ∈ N2, u < t, ‖EGt − EGu‖
2 ≤ l2 ‖θt − θu‖

2 ≤ l2
∥∥∥∥∥
t−1∑
v=u

αv Gv

∥∥∥∥∥
2

Then, ∀ (t, u) ∈ N2, u < t, we can rewrite:

‖EGt − EGu‖
2

= ‖EGt‖
2︸ ︷︷ ︸

λt
2

+ ‖EGu‖
2︸ ︷︷ ︸

λu
2

−2 EGt · EGu

And finally, we can lower-bound st as:
t−1∑
u=0

µt−u ‖EGt − EGu‖
2

=
t−1∑
u=0

µt−u
(
λt

2 + λu
2
)
− 2

t−1∑
u=0

µt−u EGt · EGu︸ ︷︷ ︸
st

≤
t−1∑
u=0

µt−u l2

∥∥∥∥∥
t−1∑
v=u

αv Gv

∥∥∥∥∥
2

⇔ st ≥
t−1∑
u=0

µt−u

λt2 + λu
2 − l2

∥∥∥∥∥
t−1∑
v=u

αv Gv

∥∥∥∥∥
2
 (10)

≥ 1− µt

1− µ
λt

2 +

t−1∑
u=0

µt−u

λu2 − l2
∥∥∥∥∥
t−1∑
v=u

αv Gv

∥∥∥∥∥
2

When the real gradient ∇Q is (locally) Lipschitz continuous, reducing the learning rate αt
can suffice to ensure st satisfies the conditions laid above for decreasing the variance-norm

ratio r
(w)
t ; the purpose of momentum at the workers. Importantly this last lower bound,

namely Equation 10, sets how the practitioner should choose two hyperparameters, µ and αt,
for the purpose of Byzantine-resilience. Basically, as long as it does not harm the training
without adversary, µ should be set as high and αt as low as possible.

14

Published as a conference paper at ICLR 2021

C Reproducing the results

Our contributed code is available at https://github.com/LPD-EPFL/ByzantineMomentum,
or as a ZIP archive from OpenReview (https://openreview.net/forum?id=H8UHdhWG6A3).

Software dependencies. Python 3.7.3 has been used, over several GNU/Linux distribu-
tions (Debian 10, Ubuntu 18). Besides the standard libraries associated with Python 3.7.3,
our scripts also depend on8:

Library Version
numpy 1.19.1
torch 1.6.0
torchvision 0.7.0
pandas 1.1.0
matplotlib 3.0.2
PIL 7.2.0

Library Version
requests 2.21.0
urllib3 1.24.1
chardet 3.0.4
certifi 2018.08.24
idna 2.6
six 1.15.0

Library Version
pytz 2020.1
dateutil 2.8.1
pyparsing 2.2.0
cycler 0.10.0
kiwisolver 1.0.1
cffi 1.13.2

Hardware dependencies. We list below the hardware components used:

• 1 Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
• 2 Nvidia GeForce GTX 1080 Ti
• 64 GB of RAM

C.1 Command

Our results are reproducible in one command. In the root directory of the ZIP file:

$ python3 reproduce.py

On our hardware, reproducing the results takes a bit less than a week. Please be aware this
script will require non-negligible disk space: 2.1 GB of run data, and 132 MB of graphs.

Depending on the hardware, instructing the script to launch several runs per available GPU
may reduce the total runtime. For instance, to push up to 4 concurrent runs per GPU:

$ python3 reproduce.py --supercharge 4

D Larger models

To assess our method on even larger models, we consider the “wide-resnet” model family
implemented by Kim (2020). We use the same model-specific parameters as the ones proposed
by the original author, namely: 28 (depth), 10 (widen factor), 0.3 (dropout rate), and 10
output classes (for CIFAR-10). This model contains 36 489 290 trainable parameters, almost
28 times more than the 1 310 922 trainable parameters of the convolutional model.

We employ the same hyperparameters as in our main experiments with the convolutional
model (Section 4.1), except for the number of workers (set to n = 11), the mini-batch
size per worker (set to 20), and the learning rate schedule (0.02 for t < 8000, 0.004 for
8000 ≤ t < 16000, 0.0008 for t ≥ 16000).

The training procedure lasts for 20 000 steps and only employs Nesterov momentum, as
proposed by the original author (Kim, 2020). We report on the maximum observed top-1
cross-accuracy in Figure 6 and evolution of the top-1 cross-accuracy in figures 7 and 8.

These results are also reproducible in one command. In the root directory of the ZIP file:

$ python3 reproduce-appendix.py

On our hardware, reproducing these results takes several weeks. Some of the 6 presented
GARs could not be employed, as they repeatedly trigger out-of-memory errors on our GPUs.

8This list was automatically generated (see get loaded dependencies() in tools/misc.py).

15

https://github.com/LPD-EPFL/ByzantineMomentum
https://openreview.net/attachment?id=H8UHdhWG6A3&name=supplementary_material
https://openreview.net/forum?id=H8UHdhWG6A3

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 6: CIFAR-10 and wide-resnet model. [a] Roughly an half (f = 4) Byzantine workers
implementing (Baruch et al., 2019). [b] Roughly a quarter (f = 2) Byzantine workers
implementing (Baruch et al., 2019). [c] Roughly an half Byzantine workers implementing
(Xie et al., 2019a). [d] Roughly a quarter Byzantine workers implementing (Xie et al., 2019a).

Momentum at the server Momentum at the workers

B
a
r
u
c
h

e
t

a
l.

(
2
0
1
9
)

X
ie

e
t

a
l.

(
2
0
1
9
a
)

Figure 7: CIFAR-10 and wide-resnet model, roughly an half of Byzantine workers.

Momentum at the server Momentum at the workers

B
a
r
u
c
h

e
t

a
l.

(
2
0
1
9
)

X
ie

e
t

a
l.

(
2
0
1
9
a
)

Figure 8: CIFAR-10 and wide-resnet model, roughly a quarter of Byzantine workers.

16

Published as a conference paper at ICLR 2021

E More experimental results

This section reports on the entirety of the main experiments, completing Section 4 of the
main paper. For every pair model-dataset, the following parameters vary:

• Which attack: Baruch et al. (2019) or Xie et al. (2019a)
• Which defense: Krum, Median, Trimmed Mean, Phocas, MeaMed , or Bulyan
• How many Byzantine workers (an half or a quarter)
• Where momentum is computed (server or workers)
• Which flavor of momentum is used (classical or Nesterov)
• Which learning rate is used (larger or smaller)

Every possible combination is tested9, leading to a total of 736 different experiment setups.
Each setup is tested 5 times, each run with a fixed seed from 1 to 5, enabling verbatim
reproduction of our results10. In this specific section, we report on:

• the maximum observed top-1 cross-accuracy with each of the 6 studied GARs,
• the evolution of the average and standard deviation of the top-1 cross-accuracy for

every tested setup.

The results regarding the maximum observed top-1 cross-accuracy are layed out by “block”
of 4 experiment setups, among which only the flavor of momentum and the attack used
are different. Namely: [a] classical momentum under attack from Baruch et al. (2019), [b]
nesterov momentum under attack from Baruch et al. (2019), [c] classical momentum under
attack from Xie et al. (2019a), [d] nesterov momentum under attack from Xie et al. (2019a).

The results regarding the evolution of the top-1 cross-accuracy are layed out by “blocks” of
4 experiment setups presenting the same model, dataset, learning rate schedule, number of
Byzantine workers and attack. These results are presented from Figure 25 to Figure 56.

9Along with baselines using averaging without attack.
10Despite our best efforts, there may still exist minor sources of non-determinism, like race-

conditions in the evaluation of certain functions (e.g., parallel additions) in a GPU. Nevertheless we
believe these should not affect the results in any significant way.

17

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 9: CIFAR-10 and convolutional model, with n = 25, f = 11 and αt = 0.01 if t < 1500
else αt = 0.001.

[a] [b] [c] [d]

Figure 10: CIFAR-10 and convolutional model, with n = 25, f = 11 and αt = 0.001.

[a] [b] [c] [d]

Figure 11: CIFAR-10 and convolutional model, with n = 25, f = 5 and αt = 0.01 if t < 1500
else αt = 0.001.

[a] [b] [c] [d]

Figure 12: CIFAR-10 and convolutional model, with n = 25, f = 5 and αt = 0.001.

18

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 13: CIFAR-100 and convolutional model, with n = 25, f = 11 and αt = 0.01 if
t < 1500 else αt = 0.001.

[a] [b] [c] [d]

Figure 14: CIFAR-100 and convolutional model, with n = 25, f = 11 and αt = 0.001.

[a] [b] [c] [d]

Figure 15: CIFAR-100 and convolutional model, with n = 25, f = 5 and αt = 0.01 if
t < 1500 else αt = 0.001.

[a] [b] [c] [d]

Figure 16: CIFAR-100 and convolutional model, with n = 25, f = 5 and αt = 0.001.

19

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 17: Fashion MNIST and fully connected model, with n = 51, f = 24 and αt = 0.5.

[a] [b] [c] [d]

Figure 18: Fashion MNIST and fully connected model, with n = 51, f = 24 and αt = 0.02.

[a] [b] [c] [d]

Figure 19: Fashion MNIST and fully connected model, with n = 51, f = 12 and αt = 0.5.

[a] [b] [c] [d]

Figure 20: Fashion MNIST and fully connected model, with n = 51, f = 12 and αt = 0.02.

20

Published as a conference paper at ICLR 2021

[a] [b] [c] [d]

Figure 21: MNIST and fully connected model, with n = 51, f = 24 and αt = 0.5.

[a] [b] [c] [d]

Figure 22: MNIST and fully connected model, with n = 51, f = 24 and αt = 0.02.

[a] [b] [c] [d]

Figure 23: MNIST and fully connected model, with n = 51, f = 12 and αt = 0.5.

[a] [b] [c] [d]

Figure 24: MNIST and fully connected model, with n = 51, f = 12 and αt = 0.02.

21

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 25: CIFAR-10 dataset and convolutional model, with n = 25, f = 11 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 26: CIFAR-10 dataset and convolutional model, with n = 25, f = 11 and αt = 0.001,
under attack from Baruch et al. (2019).

22

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 27: CIFAR-10 dataset and convolutional model, with n = 25, f = 5 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 28: CIFAR-10 dataset and convolutional model, with n = 25, f = 5 and αt = 0.001,
under attack from Baruch et al. (2019).

23

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 29: CIFAR-10 dataset and convolutional model, with n = 25, f = 11 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 30: CIFAR-10 dataset and convolutional model, with n = 25, f = 11 and αt = 0.001,
under attack from Xie et al. (2019a).

24

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 31: CIFAR-10 dataset and convolutional model, with n = 25, f = 5 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 32: CIFAR-10 dataset and convolutional model, with n = 25, f = 5 and αt = 0.001,
under attack from Xie et al. (2019a).

25

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 33: CIFAR-100 dataset and convolutional model, with n = 25, f = 11 and αt = 0.01
if t < 1500 else αt = 0.001, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 34: CIFAR-100 dataset and convolutional model, with n = 25, f = 11 and αt = 0.001,
under attack from Baruch et al. (2019).

26

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 35: CIFAR-100 dataset and convolutional model, with n = 25, f = 5 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 36: CIFAR-100 dataset and convolutional model, with n = 25, f = 5 and αt = 0.001,
under attack from Baruch et al. (2019).

27

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 37: CIFAR-100 dataset and convolutional model, with n = 25, f = 11 and αt = 0.01
if t < 1500 else αt = 0.001, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 38: CIFAR-100 dataset and convolutional model, with n = 25, f = 11 and αt = 0.001,
under attack from Xie et al. (2019a).

28

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 39: CIFAR-100 dataset and convolutional model, with n = 25, f = 5 and αt = 0.01 if
t < 1500 else αt = 0.001, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 40: CIFAR-100 dataset and convolutional model, with n = 25, f = 5 and αt = 0.001,
under attack from Xie et al. (2019a).

29

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 41: MNIST dataset and fully connected model, with n = 51, f = 24 and αt = 0.5,
under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 42: MNIST dataset and fully connected model, with n = 51, f = 24 and αt = 0.02,
under attack from Baruch et al. (2019).

30

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 43: MNIST dataset and fully connected model, with n = 51, f = 12 and αt = 0.5,
under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 44: MNIST dataset and fully connected model, with n = 51, f = 12 and αt = 0.02,
under attack from Baruch et al. (2019).

31

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 45: MNIST dataset and fully connected model, with n = 51, f = 24 and αt = 0.5,
under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 46: MNIST dataset and fully connected model, with n = 51, f = 24 and αt = 0.02,
under attack from Xie et al. (2019a).

32

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 47: MNIST dataset and fully connected model, with n = 51, f = 12 and αt = 0.5,
under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 48: MNIST dataset and fully connected model, with n = 51, f = 12 and αt = 0.02,
under attack from Xie et al. (2019a).

33

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 49: Fashion MNIST dataset and fully connected model, with n = 51, f = 24 and
αt = 0.5, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 50: Fashion MNIST dataset and fully connected model, with n = 51, f = 24 and
αt = 0.02, under attack from Baruch et al. (2019).

34

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 51: Fashion MNIST dataset and fully connected model, with n = 51, f = 12 and
αt = 0.5, under attack from Baruch et al. (2019).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 52: Fashion MNIST dataset and fully connected model, with n = 51, f = 12 and
αt = 0.02, under attack from Baruch et al. (2019).

35

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 53: Fashion MNIST dataset and fully connected model, with n = 51, f = 24 and
αt = 0.5, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 54: Fashion MNIST dataset and fully connected model, with n = 51, f = 24 and
αt = 0.02, under attack from Xie et al. (2019a).

36

Published as a conference paper at ICLR 2021

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 55: Fashion MNIST dataset and fully connected model, with n = 51, f = 12 and
αt = 0.5, under attack from Xie et al. (2019a).

Momentum at the server Momentum at the workers

C
la

s
s
ic

a
l
m

o
m

e
n
t
u
m

N
e
s
t
e
r
o
v

m
o
m

e
n
t
u
m

Figure 56: Fashion MNIST dataset and fully connected model, with n = 51, f = 12 and
αt = 0.02, under attack from Xie et al. (2019a).

37

