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Abstract—Epilepsy is one of the most prevalent paroxystic
neurological disorders. It is characterized by the occurrence
of spontaneous seizures. About 1 out of 3 patients have drug-
resistant epilepsy, thus their seizures cannot be controlled by
medication. Automatic detection of epileptic seizures can sub-
stantially improve the patient’s quality of life. To achieve a high-
quality model, we have to collect data from various patients
in a central server. However, sending the patient’s raw data to
this central server puts patient privacy at risk and consumes
a significant amount of energy. To address these challenges,
in this work, we have designed and evaluated a standard
federated learning framework in the context of epileptic seizure
detection using a deep learning-based approach, which operates
across a cluster of machines. We evaluated the accuracy and
performance of our proposed approach on the NVIDIA Jetson
Nano Developer Kit based on the EPILEPSIAE database, which
is one of the largest public epilepsy datasets for seizure detection.
Our proposed framework achieved a sensitivity of 81.25%, a
specificity of 82.00%, and a geometric mean of 81.62%. It can
be implemented on embedded platforms that complete the entire
training process in 1.86 hours using 344.34 mAh energy on a
single battery charge. We also studied a personalized variant
of the federated learning, where each machine is responsible for
training a deep neural network (DNN) to learn the discriminative
electrocardiography (ECG) features of the epileptic seizures of
the specific person monitored based on its local data. In this
context, the DNN benefitted from a well-trained model without
sharing the patient’s raw data with a server or a central cloud
repository. We observe in our results that personalized federated
learning provides an increase in all the performance metric, with
a sensitivity of 90.24%, a specificity of 91.58%, and a geometric
mean of 90.90%.

Index Terms—Deep learning, Electrocardiogram (ECG),
Epilepsy, Federated learning (FL), Low-power, Privacy-
preserving, Seizure detection

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders
affecting around 65 million people worldwide [1]. Among this
population, one-third of the patients live with uncontrollable
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seizures because of no available treatment working for their
cases. One of the most life-threatening effects of epileptic
seizures is sudden unexpected death in epilepsy (SUDEP) due
to uncontrolled or poorly controlled attacks [2]. Although the
percentage of the population affected by SUDEP is relatively
low, every death due to SUDEP is thought to be potentially
avoidable by notifying caregivers, and emergency units in case
of a seizure [3].

To improve the quality of life and control fatal events,
patients should be monitored continuously on a long-term
basis. This way, in case the patient presents seizures, the
medical expert or the family members can be notified for
rescue [4, 5]. This long-term every-day remote monitoring is
only feasible by using energy-efficient embedded platforms.

Recent development of deep learning has provided a new
avenue for addressing these limitations. Deep neural networks
(DNNs) have become the new state-of-the-art in the classifica-
tion of high dimensional data in biomedical applications and
recently received increasing attraction in pathology detection.
The ability of DNNs to extract high-level and complex ab-
stractions from electrocardiogram (ECG) signals makes them
an attractive tool for epilepsy monitoring. However, in order
to create a high-quality epileptic seizure detection system, the
DNN requires a large-scale dataset. Therefore, training robust
DNN classifiers on a single central server often needs the med-
ical data from multiple patients. However, sharing the patient’s
raw data with a central server consumes a major amount of
energy and, most importantly, puts the patient’s privacy in
danger. Privacy law will apply to information if there is a
possibility of identifying a specific individual. Moreover, the
General Data Protection Regulation (GDPR) [6] is a regulation
in the European Union (EU) law on data protection and privacy
that addresses the transfer of personal data data outside the
EU. Also, the California Consumer Privacy Act (CCPA) is a
state law dedicated to enhancing privacy rights and consumer
protections for California residents, United States.

In this previous context, Federated Learning (FL) is an
excellent option to consider for privacy-related issues in per-
forming data analytics by using multi-institutional big data. It
protects patients’ privacy in training of the DNNs by leaving
all data within the originating institutions [7, 8]. In FL, a model
is learned by multiple clients in a distributed fashion [9, 10].
In the specific case of deep learning, the parameters of the
trained network are gathered by a server, and then it distributes
an aggregated model back to the clients. The information
uploaded by each client is inspectable, but it cannot be used
to recover any useful information about the local dataset [11].



In this work, we propose a personalized real-time FL
framework in the context of seizure detection on mobile plat-
forms and explore several DNN convolutional neural network
architectures to characterize the trade-off between the detec-
tion performance and energy consumption. In this proposed
framework, we allow every patient to train a personalized
DNN by effectively collaborating with the other patients and,
while reducing the energy of the communication between the
local battery-powered mobile platform and the server. Our
proposed approach performs seizure detection based only on
the ECG signal from the EPILEPSIAE database and achieves
an average sensitivity of 90.24%, specificity of 91.58% and
geometric mean of 90.90%. We implement and evaluate our
proposed real-time FL framework across an experimental
setup with a set of distributed mobile platforms, by including
multiple NVIDIA Jetson Nano units [12]. We study and
compare the epileptic seizure detection performance in terms
of specificity, sensitivity, and geometric mean when the DNNs
are trained using centralized approach and the FL framework.
Furthermore, we evaluate the energy consumption of the
proposed framework. Our experimental results show that local
processing (training) and synchronization (communication)
can be performed in 1.86 hours using a 344.34 mAh energy on
a single charge on NVIDIA Jetson Nano. To the best of our
knowledge, this article is the first to study the personalized
real-time FL for epileptic seizure detection and by using
only ECG signals. The main contributions of our work are
summarized below:

• A personalized real-time FL framework in the context of
seizure detection on mobile platforms and exploration of
DNN convolutional neural network architectures to char-
acterize the trade-off between the detection performance
and energy consumption.

• Implementation and demonstration of our proposed real-
time FL framework across an experimental setup with
a set of distributed mobile platforms in the context of
epileptic seizure detection.

The rest of this article is organized as follows. In Section
II, we review the latest epileptic seizure detection techniques.
In Section III, we describe our personalized real-time FL ap-
proach for epileptic seizure detection by defining the elements
of our framework and proposed FL technique. Then, in Section
IV, the experimental setup is discussed. Next, in Section V,
we evaluate the results of our proposed framework, in terms
of both detection accuracy and energy consumption on an
embedded platform. Finally, in Section VI, we summarize the
main conclusions of this work.

II. RELATED WORK

The gold standard in terms of non-invasive seizure detection
is EEG monitoring [13], which has been used for decades
in highly specialized and costly hospital environments. Sev-
eral techniques have been developed to extract information
from the EEG signal. These techniques use features such as
wavelet transform [14, 15], entropies [16], Hilbert marginal

spectrum [17], Hilbert Huang Transform [18], fusion fea-
tures [19], and tunable Q-factor [20], among other time-
domain and frequency-domain features. In addition, different
time–frequency based detection methods for epileptic seizures
are based on the fact that EEG signals are non-stationary,
have been developed [21, 22]. Recently, deep learning has
received notable attention in several applications like epileptic
focus localization, epileptic seizure prediction and detection.
In [23], the authors propose a method for epileptic focus
localization problem, where an unsupervised learning scheme
is implemented by merging a deep convolutional variational
autoencoder and K-means algorithm. In [24], the authors
present a pseudo-prospective seizure prediction from EEG sig-
nal. They train a deep learning classifier to distinguish between
pre-ictal and interictal signals. They employ a convolutional
neural network (CNN) to extract significant spatial features
from different scalp positions and a recurrent neural network
in expecting the incidence of epileptic seizures earlier. In [25],
the authors used deep neural networks for epileptic seizures
detection using EEG signals with an adaptive implementation
of CNNs. In [26], the authors presented a unified multi-view
deep learning framework to capture brain abnormalities associ-
ated with seizures based on multi-channel scalp EEG signals.
In [27], the authors proposed a hybrid bilinear DNN using
surface electroencephalogram (sEEG) with an application in
the clinical procedures of epilepsy classification diagnosis. Hy-
brid bilinear models are based on two type of feature extractors
namely CNNs and Recurrent Neural Networks (RNNs). CNNs
extract spatio-temporal patterns, while RNNs focus on the
characteristics of temporal dynamics in input data. However,
none of these studies are performed on existing embedded
devices, taking into consideration the stringent energy and
memory constraints of these devices, and the necessity to
permanently wear a cap and the high susceptibility of EEG
recordings to artifacts as soon as patients move has not
yet enabled the use of this previously mentioned framework
for real-time ambulatory chronic monitoring. Furthermore,
wearing a cap to monitor EEG outside the hospital is a clear
cause of social stigma and discomfort for patients [3].

In addition to abnormal brain activities during epileptic
seizures, there is also an effect on the central nervous sys-
tem manifested on non-EEG signals. In particular, it is well
known that ECG abnormalities often occur during or after
epileptic seizures and may contribute to SUDEP [28, 29, 30].
Also, several works have shown that in most cases, epileptic
seizures are associated with an increase in heart rate [31, 32].
Thus, ECG-based detection of epileptic seizures has recently
attracted increasing attention. In [33], the authors proposed a
curve-fitting algorithm to characterize the heart rate pattern,
as well as a new approach based on a moving median filter to
automatic detection of the heart rate changes. Their results lead
to a sensitivity of above 90% and a positive predictive value
of above 50%, but with a trade-off between the sensitivity
and positive predictive values. In [34], the authors proposed
a method that combines time and frequency-domain features
of heart-rate variability, but was limited to the specific case of



newborns, and reached a sensitivity of 60% and a specificity
of 60%. Using a similar approach, in [35], the authors could
reach a sensitivity of 70% and a corresponding false-alarm rate
of 2.11 per hour. However, none of these studies attempted to
find a personalized solution for each user and were performed
on an embedded platform, i.e., taking into account the energy
consumption of these devices as we consider in this work.

In recent years, there has been a rising interest in developing
algorithms to detect epileptic seizures on embedded systems
using the ECG signal. In particular, in [36, 37], the authors
proposed a multi-parametric machine-learning technique to
detect epileptic seizures by analyzing the cardiac and res-
piratory responses to seizures in the ECG signal. However,
their algorithm considered windows of 60 seconds, which
increases the latency of real-time seizure detection. In addition,
segmenting the dataset into segments of 60 seconds results in
having very few samples, leading to insufficient data to train
deep learning models.

A significant number of efforts have been dedicated to im-
plement FL algorithms to perform efficient machine learning
models. Several studies have conducted training of deep neural
networks using FL for various applications, including the
scalability of distributed systems and developing methods for
learning compressed federated networks form pretrained local
network [38, 39, 40, 41]. FL training by iteratively averaging
locally trained models has been studied in [42] for DNNs
for speech recognition. These works only consider a scenario
based on data centers, and do not consider unbalanced data that
is fundamental to the FL setting. In the real-world scenario,
the local data distribution varies among all patients, and class
imbalance problem could result in a slow converge rate of
the global model. Therefore, following this line of research,
we propose for the first time in this work a real-time FL
framework designed for battery-powered mobile platforms for
the detection of epileptic seizures. Moreover, we adopt this
style of algorithm and perform the appropriate personalized
FL, which capture their individual characteristics. Thus, FL
researches can be divided into three categories, i.e., horizontal
FL proposed by Google [43, 44], vertical FL and federated
transfer learning, which are based on the distribution charac-
teristics of the data. In this case, we focus on horizontal FL
where datasets in all patients share the same feature space but
different sample and allows patients to collaboratively learn
a DNN model. At the same time, the proposed framework
enables data analysis among hospitals/patient homes without
sharing sensitive raw data, which is important for the preser-
vation of patient’s privacy.

III. FEDERATED LEARNING FRAMEWORK

In this section, we describe our proposed personalized real-
time FL framework for epileptic seizure detection. As shown
in Fig. 1, the pipeline of our FL framework is divided into three
parts: ECG signal pre-processing, epileptic seizure detection
DNN, and personalized federated learning.

A. Signal
Pre-Processing

B. Epileptic Seizure
Detection DNN

C. Personalized
Federated Learning

Fig. 1: Pipeline of the proposed FL process for epileptic
seizure detection.

3 seconds
768 samples
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Fig. 2: ECG signal segmentation using slots of 3-seconds with
100 samples overlap.

A. ECG Signal Pre-Processing

A DNN requires a considerable amount of data for the
training process. Unfortunately, the amount of data of actual
epileptic seizures for a particular patient is generally limited.
Thus, we introduced data augmentation by segmenting the
ECG signals, which were acquired with a sampling frequency
of 256 Hz, into slots of 3-seconds (768 samples). These slots
are obtained by sliding a fixed-length window, with 100 sam-
ples overlapping, through the entire signal. One of the most
important parts of ECG signal processing is the interpretation
of QRS complex and obtaining its characteristics. In this work,
to ensure to have this complex, we considered 3-seconds
windows. Figure 2 shows how the segmentation of ECG signal
is performed in our approach.

After ECG segmentation, we propose a simple method for
each ECG signal segment’s pre-processing, as shown in Fig. 3.
It consists of three steps. First, we apply a 10th-order low-pass
Butterworth filter with a cutoff frequency of 50 Hz to smooth
the signal segment. Secondly, we perform a linear detrending,
where the result of a linear least-squares fit to data is subtracted
from the initial data. Finally, we apply standardization on each
segment to transform it to have zero mean and unit variance.

B. Epileptic Seizure Detection DNN

In this section, we describe our proposed DNN, referred
to as Residual 1-Dimensional Convolutional Neural Network
(Res1DCNN). This framework learns to distinguish the seizure
from the non-seizure data samples. Given a data sample, the
DNN returns an output of size 2 that predicts the label of
the data sample, i.e., seizure or non-seizure. We design our



Apply lowpass filter
cutoff frequency: 50 Hz

Remove linear trend along 
axis from data

Raw signal

Standardize dataset

Step 1

Step 3 Step 2

Fig. 3: Pre-processing consists of three steps: (1) applying a
low-pass filter, (2) removing linear trend along the axis from
data, and (3) standardization of datasets, to have zero mean
and unit variance.

proposed DNN model in three steps: starting with Multilayer
Perceptron (MLP), refining the model to a 1-Dimensional Con-
volutional Neural Network (1DCNN), and finally introducing
the residual connections to obtain the Residual 1-Dimensional
Convolutional Neural Network (Res1DCNN). The final model,
i.e., Res1DCNN, is designed to be efficient, in terms of energy
consumption and detection performance, for real-time FL on
mobile platforms with tight energy operation constraints (cf.
Section V).

1) Multilayer Perceptron (MLP): As shown in Fig. 4a,
we have developed a multilayer perceptron [45] which is
a modified version of an autoencoder proposed by [46] to
apply supervised learning. This network takes as input a time-
series of pre-processed ECG signals, and they go through
4 hidden layers, which are the computational engine of the
network, and outputs a sequence of label predictions. Table
I presents the architectural details of this network. The 3-
second ECG signal is sampled at 256 Hz. Here, we consider
a supervised learning setting, and the network is trained on
a set of input and output (label) pairs, where each input is
associated with a label defining its class. The main problem in
MLP, which is a fully connected network, is that each neuron
in one layer is connected to all neurons in the next layer.
This fully-connectedness makes the training slower and can
cause overfitting. To address this problem, we use a CNN
design combined with a fully-connected layer. Our CNN is
the results of a linear operation using a subset of the weights
of a fully-connected layer. The weights for the convolutions at
each location are shared. Then, thanks to the weight sharing
and using a subset of weights of a fully connected, fewer
parameters are needed in comparison to a fully-connected
network.

2) 1-Dimensional Convolutional Neural Network
(1DCNN): Convolutional neural networks [47] are well
known for performing feature extraction and finding simple

TABLE I: Architectural details of the MLP.

Input: 3 seconds signal ≡ (None, 768)
Layer type Dimensions Outputs

Fully connected 768 × 384 (None, 384)
Fully connected 384 × 768 (None, 768)
Fully connected 768 × 384 (None, 384)
Fully connected 384 × 2 (None, 2)

Output: (None, 2)

and complicated patterns in the data. The 2D convolutional
neural networks are widely used for object detection [48],
image classification [49] and semantic image segmentation
[50]. Since our data are a one-dimensional signal, we have
used 1D-CNN architecture, which is able to accurately extract
features from our fixed-length ECG segments, to perform
epileptic seizure detection. Figure 4b shows the design of this
network, in which four layers of 1D-CNN are used, followed
by a fully-connected layer. Table II presents the architectural
details of this network.

TABLE II: Architectural details of the 1DCNN network.

Input: 3-seconds signal ≡ (None, 768, 1)
Layer type Dimensions Outputs

Convolutional 1d 10, 1 → 10, /2 (None, 380, 10)
Convolutional 1d 7, 10 → 100, /2 (None, 187, 100)
Max pooling 1d 2, /1 (None, 93, 100)
Convolutional 1d 3, 100 → 200, /2 (None, 46, 200)
Convolutional 1d 3, 200 → 200, /2 (None, 22, 200)
Global average

pooling 1d
(None, 200)

Fully connected 200 × 2 (None, 2)
Output: (None, 2)

3) Residual 1-Dimensional Convolutional Neural Network
(Res1DCNN): The architecture of the proposed end-to-end
Res1DCNN model is shown in Fig. 4c. It starts with a block,
which performs a convolution on the input signal with a kernel
size of 7 and a stride of 2, followed by a max pooling with a
stride of 2. Then, the output is processed by 4 residual blocks
with 2 convolutional layers per block, all convolutional layers
have a filter length of 3 and have 64k filters, where k starts
out as 1 and is incremented in every residual block. In the
end, a fully connected layer is included, so that its output is
passed to a softmax layer to predict the class of the input
signal. Our final solution includes multiple skip connections
similar to those found in Residual Neural Networks [51].
These skip connections make residual blocks norm-preserving,
thus allowing us to propagate well the information in very
deep neural networks to render the training stable. In total, the
resulting network consists of 14 weight layers. At the same
time, we can implement the proposed network and perform
the training process on a mobile platform with limited com-
putational resources and powered by a battery, as described in
the next subsection. Table III presents the architectural details
of our proposed network.
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Fig. 4: Our explored networks architecture for epileptic seizure detetcion. a) The architecture of the Multilayer Perceptron
(MLP). This is equivalent to having a 4-layer neural network taking the preprocessed ECG signal. b) The architecture of the
1DCNN. The network contains 4 convolutional layers followed by a fully connected layer and a softmax function. c) The
architecture of the proposed Res1DCNN. The network contains 13 convolutional layers with skip connections followed by a
fully connected layer and a softmax function.

TABLE III: Architectural details of the proposed Res1DCNN
for epileptic seizure detection in mobile platforms.

Input: 3-seconds signal ≡ (None, 768, 1)
Layer type Dimensions Outputs

Convolutional 1d 7, 1 → 64, /2 (None, 381, 64)
Max pooling 1d 3, /2 (None, 190, 64)
Convolutional 1d 3, 64 → 64, /2 (None, 94, 64)
Convolutional 1d 3, 64 → 64, /1 (None, 92, 64)
Convolutional 1d 3, 64 → 128, /2 (None, 45, 128)
Convolutional 1d 3, 128 → 128, /1 (None, 43, 128)
Convolutional 1d 3, 128 → 256, /2 (None, 21, 256)
Convolutional 1d 3, 256 → 256, /1 (None, 19, 256)
Convolutional 1d 3, 256 → 512, /2 (None, 9, 512)
Convolutional 1d 3, 512 → 512, /1 (None, 7, 512)
Fully connected 7×512 → 2 (None, 2)

Output: (None, 2)

C. Personalized Federated Learning

To train DNNs, a large amount of data are required to
fit the parameters (often in the order of millions). However,
transferring the raw data to a server consumes a significant
amount of energy [52, 53] and puts the patient’s privacy at
risk for medical applications. A promising solution to address
this problem is to distribute the computation across several
clients (machines), which is known as federated learning (FL)
when a central hub coordinates the learning process [38, 39].

In the standard FL framework, the goal is to obtain a global
DNN model for all clients. By assuming that all clients’ data
come from the same (or similar) distribution, we expect that
the global DNN results in a better accuracy on any client than
the client’s own local DNN. However, when the clients’ data

come from different distributions and do not necessarily follow
the same profile, the global DNN is not adapted for each client.

To consider the profile of each individual patient, while
still exploiting the data from other patients, we propose a
personalized variant of the FL framework. Figure 5 illustrates
our proposed personalized FL framework with n clients in
the context of epileptic seizures monitoring. In our proposed
FL framework, each client trains their local models, while
contributing to the global model maintained by the central
server. Each client can take advantage of the information from
the global DNN model to compensate for its small training
data. When the local distribution is highly correlated with
global distribution, the global DNN is preferable; otherwise,
the global DNN could be ineffective and the client keeps the
local DNN. In Section V-A, we demonstrate that the mixture
of local and global DNNs increases the detection performance.

In our personalized FL framework, the training is distributed
among the clients, which use the same DNN architecture.
In each iteration, the clients are provided with the global
model Wi. Then, each client decides whether to exploit the
global model received from the server or to perform the
training based on its data locally and independently. After
the clients are trained for a fixed number of iterations, the
server collects the current weights of each client (Wi,1, Wi,2,
..., Wi,n). In the central server, the weights are averaged, and
all the clients receive a copy of the updated weights Wi+1

and continue the training process. Sending the weights to
the server, instead of the raw data, significantly reduces the
amount of energy consumption in communication between the
clients and the server, which is important for battery-powered
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Fig. 5: The overview of our personalized FL system with n clients. Each client trains an identical DNN on its data locally and
independently. During the training process, and after a specific number of iterations, each client transmits its current weights
to the server. The server calculates the global weights. Then, each client receives the updated weights and locally decides
whether to update its personalized weights based on the global weights that it receives from the server.

mobile platforms.
To determine the number of training iterations in our person-

alized FL framework, we adopt an early stopping technique as
a termination criterion. This early stopping technique specifies
a maximal number of epochs and retains the model once the
model performance stops improving on the validation dataset.
Once this criterion is met, we terminate the training process of
the clients. In the end, we obtain a model that is personalized
for each individual patient, but also robust since it exploits the
data from various patients.

Our personalized FL framework also contributes to preserv-
ing the privacy of the clients/patients involved in the training
process. This is because the sensitive raw personal/medical
data that leave the patients’ devices are limited in our pro-
posed framework. In particular, the server does not receive
any information regarding the DNN model architecture and
the clients do not share any information about the number,
type, and connectedness of network layers, or the connection
type (fully connected layer, convolution layer, deconvolution
Layer, pooling layer, etc.) and hyperparameters (stride size
and activation functions). As a result, during the FL training
process, the server obtains the weights in a pre-defined order
from all clients and disseminates the updated global weights
back to the clients. For instance, the Res1DCNN contains 13
convolutional layers and a fully connected layer, with a total of
2.8 million weights. Therefore, during the FL training process,
each client sends its weights in an pre-defined order as an array
(w1, w2, ..., w2,800,000) to the server.

Finally, we also explore the practicality of our personalized
FL framework on battery-powered mobile platforms with
limited resources in Section V-B. In fact, one of the main

challenges in this procedure is the fact that the number of
synchronizations cannot be defined strictly and may vary in
different setups. On the one hand, in case of frequent syn-
chronizations, the energy consumption of the transmission and
reception increases. On the other hand, if this synchronization
is performed rarely, the local learning weights for each client
will diverge, which results in a poor model after averaging. In
Section V-B, we explore the trade-offs between the epileptic
seizure detection performance of the model and its energy
consumption, as a function of the number of synchronizations.

IV. EXPERIMENTAL SETUP

In this section, we present the experimental setup for the
evaluation of our proposed real-time FL framework in terms
of detection performance and energy consumption.

A. Epileptic Seizures Dataset

For our experiments, we have used the EPILEPSIAE dataset
[54], which is one of the largest epilepsy datasets manu-
ally annotated by medical experts for seizure detection and
prediction worldwide and enables us to rigorously evaluate
our proposed methodology. This dataset consists of one-lead
ECG and 19-channel EEG data of 30 patients. The recordings
are made in a routine clinical environment, so non-seizure
activity and artifacts such as head/body movement, chewing,
blinking, early stages of sleep, and electrode pops/movement
are present. No constraints regarding the types of seizure are
imposed. The dataset contains complex partial (CP), simple
partial (SP), and secondarily generalized seizures (GS).

For one of the 30 patients in EPILEPSIAE dataset, different
recorded biosignals had different length and as a result it was



not possible to synchronize them to label the data reliably.
Thus, we have excluded the signals of this patient from our
analyzes and used the ECG data of 29 patients with 4603 hours
of recordings containing 277 seizures. The data were acquired
at a sampling rate of 256 Hz with 16-bit resolution. We
segmented seizure and non-seizure events of each patient
into overlapping windows of 3-second and fed them into the
proposed architecture of the MLP or CNN. Table IV details
the number of segments of seizures and non-seizures extracted
for each patient.

TABLE IV: Number of non-seizure and seizures segments per
patient

Patient Non-
seizures

Seizures Patient Non-
seizures

Seizures

#1 209,259 322 #16 124,239 124
#2 346,959 274 #17 237,994 99
#3 215,591 229 #18 194,744 516
#4 190,395 174 #19 216,150 148
#5 236,352 157 #20 208,739 188
#6 180,437 157 #21 214,409 291
#7 121,983 160 #22 127,108 272
#8 150,019 140 #23 183,343 251
#9 152,391 87 #24 311,367 188

#10 180,678 174 #25 174,798 320
#11 184,690 259 #26 212,439 150
#12 210,437 138 #27 210,149 685
#13 212,925 273 #28 212,623 1,001
#14 209,101 280 #29 208,991 338
#15 156,801 121

We split the dataset into training, validation, and test set.
The training set contained 6716 and 5,794,311 segments of
seizures and non-seizures. To evaluate the detection accuracy
of the proposed DNNs and the influence of the standard FL
approach in the classification of each individual segment, we
considered a balanced scenario where both the validation and
test set include 400 segments of seizures and 400 segments of
non-seizures each. Thus, we made sure that no overlap exists
between the training, validation, and test set segments. Most
importantly, the training, validation, and test set segments of
a specific patient are from different 1-hour signal recordings.
Table V gives a summary of the considered three sets. Since
we have unbalanced training data, we perform undersampling.
Undersampling means that from the majority class which is
non-seizure, we select as many segments as the minority
class which is seizure. This selection maintains the probability
distribution of the class during the training process.

In addition, since in practice the classification must be made
considering the unbalanced scenario on test set in seizure
detection, in Section V-A, we used a leave-one-out cross-
validation approach. Thus, the DNN is trained on all the
patients except for one patient, and the actual epileptic seizure
detection is performed for that patient. In this way, we ensure
the temporal and subject independence of the test set, hence,
guaranteeing the generality of the results.

TABLE V: Dataset summary

Dataset Seizure Not seizure
Training set 6,716 5,794,311

Validation set 400 400
Test set 400 400

Synchronizations #1

Iteration #3000 Iteration #6000

Client 1

⋯

Training
Parameters

Transmission
Parameters
Reception

Patients #1 - 7

Client 2
Patients #8 - 14

Client 3

Patients #15 – 21

Client 4

Patients #22 - 29

Fig. 6: The procedure of FL, which contains two major steps
of local training and synchronization with the server.

B. Detection Performance Metric

To evaluate the detection performance of our proposed
framework, we considered five metrics: the sensitivity (Sen),
which represents the percentage of ictal samples that are
labeled correctly; the specificity (Spe), which shows the per-
centage of inter-ictal samples that are labeled correctly; and the
geometric mean (Gmean) [55], which reflects both sensitivity
and specificity. The geometric mean measures the balance
between classification performance on both classes. A low ge-
ometric mean indicates poor performance in the classification
of the seizure cases, even if the non-seizures cases are correctly
classified. Thus, we also evaluate the accuracy (Acc), which
represents the proportion of true positive results in the selected
population. Finally, we use the F1 score, which is the harmonic
mean of precision and recall. It gives a better measure of the
incorrectly classified cases than the accuracy. These metrics
are defined as follows:

Sen =
TP

TP + FN
,

Spe =
TN

FP + TN
,

Gmean =
√

Sensitivity × Specificity,

Acc =
TP + TN

TP + TN + FP + FN
,

F1score =
2TP

2TP + FP + FN
,

where TP, TN, FP and FN are true positive, true negative, false
positive and false negative, respectively.

We also use a confusion matrix [56] to evaluate the detection
performance of our proposed framework. Since the output
can be one of two types of classes, the confusion matrix
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Fig. 7: Comparison of the epileptic seizure detection performance of our explored DNNs trained using a centralized approach
versus federated learning setting.

is one of the most intuitive and easy metrics used for this
type of classification tasks. In this case, the diagonal elements
represent the number of cases for which the predicted label
is equal to the correct label, while off-diagonal elements are
those that are mislabeled by the classifier.

C. Implementation Platform

We use the NVIDIA Jetson Nano Developer Kit GPU [12]
for the training. It allows us to perform the training of a
given DNN with a power consumption of only 5 watts. The
NVIDIA Jetson Nano includes a 64-bit quad-core Arm Cortex-
A57 CPU running at 1.43 GHz alongside a NVIDIA Maxwell
GPU with 128 CUDA cores capable of 472 GFLOPs (FP16),
and has 4 GB of 64-bit LPDDR4 RAM. We used Tegrastats
[57] for performance analysis and characterization of training
DNNs on NVIDIA Jetson Nano. Tegrastats is a tool provided
by NVIDIA that collects hardware utilization, memory and
power consumption of both CPU and GPU.

D. Learning Parameters

We trained our proposed networks from scratch using pre-
processed 3 seconds ECG segments. The weights initialization
of the layers follows a normal distribution with zero mean and
0.01 as standard deviation. We initialize all the biases to zero.
During the training, the network learns the correlation between
the input and the output consisting of two nodes and adjusts
the parameters of the model to minimize the cross-entropy
loss. For a binary classification, the final output of DNN can
have a single output and a threshold or we can use a multi-
class classification with only two nodes, so each class gets its
output neuron. However, the two node outputs technique code
is exactly the same for multi-class classification problem, and
can be easily extended to multi-class classification in future

work. Finally, we use the Adam optimizer with a base learning
rate of 10−5 and implement the DNNs on Tensorflow 1.14.0
[58].

E. Distributed Training Parameters
As shown in Fig. 6, to evaluate the epileptic seizure de-

tection performance and energy consumption of our proposed
DNNs for FL, we considered a random division of the patients
data between 4 clients that hold the same model and perform
the training process separately. Then, after the local models are
trained for 3,000 iterations, the server collects all the models
from each client and the weights are averaged. The clients
receive a copy of the updated weights and continue the training
process. The number of iterations between two consecutive
synchronizations has to be selected carefully. In Section V-B,
we explore that if we fix the number of iterations to be very
low, the energy consumption of communication increases. If
we increase the number of iterations to be high, the weights
in each client will diverge significantly. In other words, the
client’s model will have different local minima and averaging
the weights will not guarantee to find the global-local minima.
Therefore, the accuracy of the final model will be reduced.

To assess the benefits of our proposed personalized FL
approach with respect to a standard FL framework within a
real-world scenario (i.e., where there are many clients), we
also considered a set-up with 29 clients. Each client contains
the data of only one patient and holds the same DNN model.
In personalized FL, when the clients receive a copy of the
updated global weights, they compare the epileptic seizure
detection performance on the local validation data using the
updated global weights versus using their local weights and
can decide to accept the weights, thus resulting in a higher
detection performance. Each client allocates 80% of its data
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for training and the remaining 20% data are equally partitioned
between validation and test set.

V. EVALUATION

In this section, we present the assessment of the seizure
detection performance and energy consumption of our pro-
posed real-time federated-learning framework. In particular, as
a case study, we explore a distributed mobile platform setup,
including multiple NVIDIA Jetson Nano units [12].

A. Detection Performance Analysis

To verify the effectiveness of our proposed Res1DCNN in
terms of epileptic seizure detection performance, we compare
it with two other proposed architectures, namely MLP and
1DCNN. Figure 7 presents the detection performance of all
the proposed networks when they are trained in a centralized
approach without using FL technique. We observe that our
proposed 1DCNN achieves the geometric mean of 79.84%
and outperforms the MLP by 4%. This shows that 1DCNN is
more effective to extract features from the 3-second ECG input
signals compared to the MLP architecture. Res1DCNN, which
is the combination of 1DCNN and skip connection similar to
those found in Residual Neural Networks [51], results in a
geometric mean of 84.08% and improvement of 4% compared
to 1DCNN. This is due to the fact that these skip connections
allow the information to correctly propagate in deeper layers,
as we have explored experimentally in this work.

To have an unbiased epileptic seizure detection performance
estimation of Res1DCNN, we perform the leave-one-out-
cross-validation where the number of folds equals the number

Sen Spe Gmean Acc

%

Median

Mean

Outliers

Fig. 9: Box plot of leave-one-patient-out cross-validation of
Res1DCNN using only 3 seconds of ECG signal.

of patients, which is 29 in our data set. Thus, the learning
algorithm is applied once for each patient, using all other
patients as a training set and using the selected patient as a
single-item test set. Figure 9 shows the results of the leave-
one-out-cross-validation per patient of Res1DCNN while using
only 3 seconds of ECG signal. The average sensitivity and
specificity are 77.35% and 83.77%, respectively, which results
in a geometric mean of 80.49%.

As shown in Fig. 10, we also evaluate the epileptic detection
performance when we combine the output of Res1DCNN
for multiple consecutive 3 seconds segments of the ECG
signal. Figure 11 shows the results of the leave-one-out cross-
validation per patient of Res1DCNN while we use multiple
consecutive 3 seconds segments, which correspond to 768
samples with an overlap of 100 samples. We observe that
by using few more successive segments, we can improve the
real-time epileptic seizure detection performance. However,
extending the number of segments beyond a certain limit
reduces the detection performance, mainly due the fact that
the interval under analysis may contain both seizure and non-
seizure segments.

Figure 7 shows the results of all the proposed DNNs using
the FL setting versus centralized approach. We observe that,
in FL setting, the Res1DCNN achieves a geometric mean of
81.62% and outperforms both MLP and 1DCNN by 7% and
6%, respectively.

Then, in Table VI, we compare the normalized confusion
matrices of each DNN when they are trained using centralized
approach versus the FL setting, and understand the trade-off
between the training efficiency and model detection accuracy.
The final detection accuracy that we achieve using the FL
setting is slightly lower than the detection accuracy when the
training process is performed using centralized approach. In
particular, in Res1DCNN, we detect 82% of epileptic seizures
segments when the training is performed using centralized
approach, while in the FL setting, this value decreases by
only 1%. Figure 8 compares the ROC curve of the proposed
DNNs using the FL setting versus the centralized approach.
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Fig. 10: Example combining the output of Res1DCNN for
two consecutive segments of 3 seconds of the ECG signal
corresponding to 768 samples with an overlap of 100 samples.
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Fig. 11: Average value of sensitivity, specificity and geomet-
ric mean, while performing the leave-one-patient-out cross-
validation of Res1DCNN, using multiple consecutive 3 sec-
onds segments.

We observe that the area under the ROC curve of Res1DCNN
in FL is 0.8956, while in the centralized approach, it is 0.9113.
In our view, this situation is the result of the fact that, during
the training using centralized approach, we process one batch
at a time, then compute the model gradients, and update the
weights. On the other hand, when we use our proposed FL
setting, we process multiple batches at once, then average the
weights of the clients. In the centralized setting, the clients
have to trade their privacy by sending the raw data to a
central server in order to obtain a slightly better machine
learning model, but the FL technique enables the clients at
different locations to collaboratively learn a machine learning
model, while not exposing their data that may contain private
information. In other words, the clients benefit from obtaining
a well-trained model without sharing their sensitive personal
medical data with other entities, e.g., any server or cloud

Sen
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Spe
personalized FL

Sen
standard FL

Spe
standard FL

%

Median

Mean

Outliers

Fig. 12: Box plot of personalized versus standard FL approach
using Res1DCNN with 29 clients using only 3 seconds of ECG
signal. While using personalized FL, the average sensitivity
and specificity are 90.24% and 91.58%, which outperform
standard FL by 18% and 14%, respectively.

computing infrastructure.
The results comparing our proposed personalized FL ap-

proach with standard FL are depicted in Fig. 12, where we
have 29 clients with different amounts of data. Each client
contains the data of one patient. We observe that, in the
personalized FL setting, the average of sensitivity, specificity,
and geometric-mean are 90.24%, 91.58%, and 90.90%. In
contrast, in the standard FL setting, these values drop to
72.31%, 77.97%, and 75.08%, respectively.

TABLE VI: Comparison of the normalized confusion matrices
of MLP, 1DCNN and Res1DCNN in epileptic seizure detec-
tion using centralized approach versus our federated learning
setting.

Centralized approach
Seizure Non seizure

Seizure 79% 21%

Non seizure 27% 73%

Federated Learning
Seizure Non seizure

76% 24%

28% 72%

MLP

Centralized approach
Seizure Non seizure

Seizure 78% 22%

Non seizure 18% 82%

Federated Learning
Seizure Non seizure

69% 31%

18% 82%

1DCNN

Centralized approach
Seizure Non seizure

Seizure 82% 18%

Non seizure 13% 87%

Federated Learning
Seizure Non seizure

81% 19%

18% 82%

Res1DCNN

B. Energy Consumption Analysis

The FL scheme relies on communication between the clients
and the server to learn a machine learning model. Therefore,
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the first and key challenge in any FL approach is the energy
consumption for synchronization of the clients (or machines).
In addition, since we would like to implement the epileptic
seizure detection algorithm on an embedded medical platform
that runs on a battery, the second challenge is the energy
consumption for training process. In this context, Fig. 13
shows the energy consumption of each DNN for the training
process and synchronization. As this table highlights, we
have addressed both challenges by carefully designing our
Res1DCNN with only 2.8 million parameters. Hence, we are
able to perform the full training of our model on an mobile
platform using 344.34 mAh energy for 1.86 hours on a single
battery charge.

Let us now consider the Res1DCNN, which outperformed
both MLP and 1DCNN, and evaluate its epileptic seizure
detection performance versus the number of iterations that
the clients apply the synchronization with server to update
the weights. We expect the detection performance to increase
when the synchronization between the clients and the server
is more frequent. On the other hand, the energy consumption
of synchronization increases as well, which is not ideal for
the embedded platforms running on battery. Indeed, as shown
in Fig. 14, if we increase the number of iterations between
synchronizations from 30 to 10,000, the total energy consump-
tion referring to both training and synchronization decreases
from 1111.40 mAh to 338.98 mAh, but there is also a degra-
dation in terms of geometric mean from 82.36% to 76.74%.
Therefore, the number of iterations between two consecutive
synchronizations should be carefully selected to be able to use
our embedded platform running on battery, while maintaining
the epileptic seizure detection performance. As a result, in the
context of our experiments, we consider the synchronization
every 3,000 iterations, making the implementation possible on
mobile battery-powered devices, without any major machine-
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learning performance loss.

VI. CONCLUSION

In this article, we have designed and implemented a new
FL framework for epileptic seizure detection across a cluster
of mobile platforms. First, we have proposed an efficient
DNN solution that is implementable on low-power embedded
medical platform to extract the discriminative ECG features
of an epileptic seizure, without sharing the sensitive personal
medical data with a server or a cloud. Second, we have
developed and validated a new FL approach for epileptic
seizure detection using the EPILEPSIAE database on a dis-
tributed mobile platform setup, including multiple NVIDIA
Jetson Nano units. Our results indicate that this new approach
achieves a sensitivity of 81.25% and a specificity of 82.00%.
Moreover, our experimental evaluations have proven that the
proposed framework can be implemented on a mobile platform
powered by a 344.34 mAh battery, thus achieving up to
1.86 hours of operation for a typical battery size used today
in mobile medical devices. We have studied a personalized
variant of standard FL, where our goal is to find a suitable
DNN model for each client that can be adapted to their local
data. Our results illustrate that this personalized FL achieves
an average sensitivity of 90.24% and specificity of 91.58%.
Although the provided analyses and methodologies constitute
a set of powerful tools to guarantee the real-time personalized
FL framework for epileptic seizure detection, there are some
improvements that can be made. In this context, we survey
some of the provided results, which can be improved further,
as well as we briefly describe some interesting research topics,
that are worth investigating further: Using other bio-signal
such as EEG combined with ECG signal, and implement the
proposed personalized FL framework across other platforms.
We are also working on translating the proposed framework



into a real-life scenario by performing ECG and EEG signal
acquisition using hardware platforms such as Polar H10 heart
rate sensor and e-Glass.
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