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Abstract— This paper considers the control of uncer-
tain systems operated under limited resource factors,
such as battery life or hardware longevity. We consider
here resource-aware self-triggered control techniques that
schedule system operation non-uniformly in time in order
to balance performance against resource consumption.

When running in an uncertain environment, unknown dis-
turbances may deteriorate system performance by acting
adversarially against the planned event triggering sched-
ule. In this work, we propose a resource-aware stochastic
predictive control scheme to tackle this challenge, where a
novel zero-order hold feedback control scheme is proposed
to accommodate a time-inhomogeneous predictive control
update.

Index Terms— Stochastic optimal control, self-triggered
model predictive control

I. INTRODUCTION

MOST devices in Internet of Things (IoT) networks and
wireless sensing systems are operated with some lim-

ited resource factors, such as battery life or hardware longevity.
In order to maintain desirable performance, a minimal number
of triggers are required to best exploit the limited resource.
Event-triggered control and self-triggered control are two main
control schemes [1] accommodating this issue. In particular,
control under an event-triggered scheme is updated reactively
by determining a trigger condition, for which a sensor has
to continuously monitor the trigger condition. Contrarily, a
self-triggered scheme updates proactively by planning the next
trigger in advance, leaving the sensor and controller in idle
mode. Due to the limitation of the resource factors, especially
battery life, a self-triggered scheme is often preferable and is,
therefore, the research object of this work.

The key ingredient of a self-triggered controller is the
decision of the triggering time sequence. The triggering time
can be chosen as long as possible to minimize resource
consumption as in [2], [3]. However, to balance performance
and resource consumption more effectively, the response of
the resource is explicitly considered in the model predictive
control (MPC) problem in [4], [5]. The former work solves
a mixed-integer problem and is designed for discrete-time
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systems, while the latter work solves a non-convex continuous-
time optimal control problem and has been later generalized
to a distributed control scheme [6].

Running a triggered system within an uncertain environ-
ment while maintaining system performance is challenging.
Especially for the self-triggered controllers, the lack of sen-
sor measurement between consecutive triggers requires extra
consideration of the uncertainty propagation. In [7], a nom-
inal control law is determined based on a nominal system,
while the discrepancy between the nominal and measured
trajectories serves as the triggering condition. In [8]–[10], the
idea of tube-MPC enables the design of robust self-triggered
controllers for both discrete-time and continuous-time linear
systems. [11] used a min-max optimization to optimize the
worst-case performance. Although it is capable of handling
general uncertainties in nonlinear systems, the resulting non-
convex robust optimization problem is NP-hard [12]. Except
for [11], other previous works mainly decouple the effects of
uncertainty from the nominal system, and the feedback control
laws are updated with a fixed frequency.

In this work, a resource-aware stochastic predictive control
scheme is designed for a stochastic linear system where
the process noise is explicitly considered in the predictive
control problem. In particular, a discrete-time zero-order-hold
linear feedback control law is integrated into the closed-loop
predictive control problem. The update time instances of this
feedback control law distribute non-uniformly on the time axis,
which we term time-inhomogeneous, and are optimized within
the predictive control problem. The contributions of this work
are summarized into two aspects:
• A sigma field decomposition strategy is proposed to

enable the analysis of a time-inhomogeneous control.
• A discrete-time closed-loop feedback control law for

stochastic self-triggered MPC is proposed.
The rest of this paper is organized as follows: Section II

reviews deterministic resource-aware self-triggered MPC, after
which the stochastic extension is elaborated in Section III.
This section further details the sigma field decomposition
and the continuous-time dynamics of a discrete-time feedback
law. The effectiveness of the proposed method is validated in
Section IV and conclusions are given in Section V.

Notation: {xi}Ki=0 denotes a finite set of size K whose
elements xi are indexed by i. Zba is the set of integers {a, a+
1 . . . , b}. A\B := {x |x ∈ A, x /∈ B}. E{·} denotes the
expectation operator and P(·) represents the probability.

II. DETERMINISTIC SELF-TRIGGERED MPC

This section recaps the main idea of deterministic resource-
aware self-triggered control. We consider a linear time invari-



ant (LTI) system in continuous time:

dx(t)

dt
= Ax(t) +Bu(t) (1)

with state x(·) : [0,∞) → Rnx and control input u(·) :
[0,∞) ∈ Rnu . A self-triggered controller determines both
the value of the control inputs and the time instances at
which the control input is changed. In the framework of direct
optimal control [13], a self-triggered controller parameterizes
its control inputs over the time horizon [0, tN ] by

u(t) =

N−1∑
k=0

vk · ζk(t, tk, tk+1), (2)

where the orthogonal functions ζk ∈ L2[t0, tN ], k ∈ ZN−1
0

model the triggering property with a piece-wise constant
function

ζk(t, tk, tk+1) =

{
1 t ∈ (tk, tk+1]

0 otherwise.
(3)

For the sake of compactness, we use notation v ∈ RNnu :=
[v>0 , v

>
1 . . . , v>N−1]> to stack the control coefficients, and

define the triggering time interval ∆k := tk+1 − tk and use
the notation ∆ = [∆0, ...,∆N−1]>.

A self-triggered agent updates its control inputs at triggering
time instances {tk}N−1

k=0 . When the control law is fixed within
(tk, tk+1], the resource r is recharged at a constant rate ρ
until saturation. More specifically, ṙ(t) = h(r− r(t))ρ for all
t ∈ [tk, tk+1), where r is the saturated value and h(·) is a
heaviside function with h(s) = 1 if s > 0 and 0 elsewhere.
When the agent is triggered to update the control input, the
resource is discharged by an amount η(∆k) to pay the update
cost. Hence, the resource at triggering time instants {tk}N−1

k=0

is

r(t) =


r0 t = t0

lim
t→t−k

r(t)− η(∆k) t ∈ {tk}N−1
k=1

(4)

with an initially available resource r0 at t0. Here, t → t−k
represents the left limits, i.e., t → tk and t < tk. Moreover,
the resource r is required to be lower bounded by r. In
conclusion, a resource-aware self-triggered agent can update
its control input when its resource is sufficiently high to
stay above the lower bound r. Otherwise, it must wait until
enough resource is available. Once the controller is triggered
at time t0, the resource-aware self-triggered control solves the
following optimization problem to plan the next trigger time
t1 and the control input within [t0, t1],

min
x(·),v,∆

N−1∑
k=0

∫ tk+1

tk

l(x(τ), vk)dτ +M(x(tN )) (5a)

s.t. x(t0) = x0 , r(t0) = r0 (5b)

∀ t ∈ [t0, tN ],
dx(t)

dt
= Ax(t) +Bu(t), (5c)

∀ t ∈ [t0, tN ], x(t) ∈ X , u(t) ∈ U , (5d)
∀ k ∈ {0, 1, ..., N − 1}
r(tk+1) = min{ρ∆k + r(tk)− η(∆k), r} (5e)

r(tk+1) ∈ [r, r] , (5f)

∆k ∈ [∆,∆] (5g)

where l(·, ·) and M(·) in (5a) are stage cost and terminal cost,
respectively. (5e) is a simplified yet equivalent formulation of
the resource dynamics (4) [5] and the resource is bounded
by (5f). The constraints of the triggering time interval in (5g)
protects the system from being Zeno1 or frozen. X ⊆ Rnx

and U ⊆ Rnu in (5d) model the state and input constraints.
The initial state and resource are given by (5b).

III. STOCHASTIC SELF-TRIGGERED MPC

In this section, we consider the LTI system (1) contaminated
by a Wiener process noise. This is described by the stochastic
differential equation (SDE)

dx(t) = (Ax(t) +Bu(t))dt+ dW , (6)

where W denotes a multi-dimensional Wiener process with
statistics E{W (t)W (s)} = Qmin(s, t) and E{W (t)} = 0.

The open-loop evolution of the system’s state distribu-
tion (6) is widely studied in filter theory [14] and the state
evolution remains Gaussian N (µ(t), P (t)), where

dµ(t)

dt
= Aµ(t) +Bu(t) , (7a)

dP (t)

dt
= AP (t) + P (t)A> +Q . (7b)

Above all, given the dynamics in (7), it is straightforward
to adapt the deterministic formulation in (5) to generate an
open-loop resource-aware stochastic MPC. The main focus
and contribution of this work are to develop a closed-loop
scheme with respect to the dynamics (7). In particular, a
feedback control law is explicitly considered in the predictive
control problem and this feedback control law should satisfy
the following requirements:

1) The feedback control law can only change its value when
the controller is triggered, otherwise, the control inputs
remain constant.

2) The feedback control law is not updated at a fixed
frequency, and its update time instances are decision
variables of the self-triggered problem.

In the following, the dynamics of the state distribution
driven by a discrete time feedback control law are developed
by using the technique of sigma field decomposition. This
results in a resource-aware stochastic self-triggered MPC and
its numerical implementation is discussed at the end of this
section. In order to convey the main idea of the proposed
scheme, we state the main results intuitively and provide the
mathematical details in the Appendix.

A. Stochastic Process Decomposition
Considering an ordered triggering time sequence {tk}Nk=0,

a sigma field Fk collects all the stochastic events occurring
between [t0, tk], whereas F0 includes all the deterministic
events. Because the controller can update only when it is

1Zeno means that the triggering time ∆ can be zero.



triggered, we propose to partition the stochastic events by
time intervals. In particular, the collection of stochastic events
between two consecutive triggers is defined by Fk,k+1 :=
σ(Fk+1 \Fk), where σ(·) denotes the minimal sigma field.
The following lemma indicates that there is no information
loss with the partitioning {Fk,k+1}N−1

k=0 .

Lemma 1 For a given Wiener process W with a stopping
time sequence {tk}N−1

k=0 , if tj > ti holds almost surely for
all j > i, the sigma field at time tN can be decomposed as
FN = σ(∪N−1

i=0 F i,i+1), where F i,i+1 is independent from
F j,j+1 for all i 6= j.

The proof can be found in Appendix VI-A. Lemma 1 is the
key component of the feedback control law analysis, which
enables us to decompose the statistics of the state evolution
into non-overlapping time intervals. Here, we focus on the
decomposition of the covariance matrix P (t) because of its
close link with the feedback control law. The projection2

of the covariance matrix P (t) onto the stochastic events
within (tk, tk+1] is defined by Pk(t) := E(P (t)| Fk,k+1), and
Lemma 1 implies that

∀ t ∈ [t0, tN ] , P (t) =

N−1∑
i=0

Pi(t) . (8)

Based on this decomposition, the open-loop evolution of the
conditional dynamics of Pk(t) are given by

dPk(t)

dt
=


0 t ∈ [t0, tk]

APk(t) + Pk(t)A> +Q t ∈ (tk, tk+1]

APk(t) + Pk(t)A> t > tk .

(9)

Note that substituting (9) into (8) yields the dynamics in (7b).

B. Discrete-Time Feedback Covariance Dynamics

To alleviate the perturbation caused by the process noise
in (6), a feedback control law is introduced to regulate the state
deviation around the expected trajectory µ(t) := E{x(t)}.
Based on the standard self-triggered scheme in (2) and (3),
the feedback control law is defined by

u(t) =

N−1∑
k=0

(vk +K(x(tk)− µ(tk)))ζ(t, tk, tk+1) , (10)

where vk is the nominal control input determined by the
expected dynamics of µ(t). Note that this is a discrete-time
linear control law written in continuous time, and it respects
the self-triggered control scheme such that the control input
remains constant within time interval (tk, tk+1] given by

u(t) = vk +K(x(tk)− µ(tk)) , t ∈ (tk, tk+1] .

Meanwhile, due to the fact that the state is accurately measured
at time instance t0, there is no feedback at t0. Recall (7), the
evolution of the state distribution under the control law (10) is

2This is a geometric interpretation of conditional expectation [15]. Given
a squared-integrable random variable X in Sigma field F and a sub-Sigma
field G ⊂ F , then E(X|G) = arg minY ∈G E((X − Y )2).

characterized by its mean and covariance, where the nominal
input vk governs the mean dynamics by

dµ(t)

dt
= Aµ(t) +Bvk, t ∈ (tk, tk+1], k ∈ ZN−1

0 . (11)

As the feedback part in (10) reacts to the deviation from
the nominal dynamics of µ(t), the covariance dynamics is
therefore governed by the feedback control gain K ∈ Rnu×nx .
The following theorem gives the covariance dynamics.

Theorem 1 Let the feedback control law be defined by (10).
The dynamics of the covariance is given by

dP (t)

dt
=AP (t) + P (t)A> (12a)

+BKPk,t(t) + Pt,k(t)(BK)> +Q ,

dPt,k(t)

dt
=APt,k(t) +BKP (tk) (12b)

with correlation matrix lim
t→tk,t>tk

Pt,k(t) = P (tk) and

Pt,k(t) := (13)

E{E{(x(t)− E{x(t)})(x(tk)− E{x(tk)})>| Fk}}

for all t ∈ (tk, tk+1] and k ∈ ZN−1
0 .

The proof first derives the dynamics of Pk(t) based on
Equation (9) and then, summarizes the dynamics of P (t) by
Equation (8). A detailed proof of Theorem 1 can be found in
Appendix VI-B. Before proceeding to the predictive control
problem, we discuss the physical meaning behind Theorem 1.
Equation (13) is the definition of Pt,k(t), ∀ k ∈ ZN−1

0 and
the rest of Theorem 1 summarizes its dynamics. In particu-
lar, Matrix Q in (12a) models the uncontrolled uncertainty
happening during interval (tk, tk+1] and Pt,k models the
stabilization effect of the feedback control law, Pt,k in (12b)
is the correlation between current time instance t and the
previous trigger moment tk, which reflects the fact that the
feedback control law within (tk, tk+1] only uses information
up to tk to generate a constant feedback. The final piece of
Theorem 1, lim

t→tk,t>tk
Pt,k(t) = P (tk), links the dynamics

between (tk−1, tk] and (tk, tk+1]. In particular, as the feedback
control law updates at tk, Pt,k gets reset at tk and drops the
information Pt,k−1(tk) from the last interval.

Remark 1 We have Pt,0(t0) = 0 and P (t0) = 0 in the first
time interval [t0, t1], . Hence, by Theorem 1, the covariance
dynamics in t ∈ [t0, t1] is

dP (t)

dt
= AP (t) + P (t)A> +Q ,

dPt,0(t)

dt
= 0, (14)

which is consistent with the fact that there is no effective
feedback within the first interval [t0, t1].

C. Model Predictive Control Scheme
In this section, we summarize a stochastic MPC controller,

that incorporates the dynamics derived in Theorem 1 into
the self-triggered MPC scheme. In particular, the controller
optimizes the expected performance while ensuring input/state



constraint satisfaction up to some user defined probability. For
the sake of compactness, the saturated resource dynamics are
denoted by g(r(tk),∆k) := min {ρ∆k + r(tk)− η(∆k), r}.
In general, the nominal inputs {vk}N−1

k=0 , the feedback control
K, the triggering time instances {tk}Nk=1 are determined by
following problem.

min
K,v,∆
µ(·),P (·)

N−1∑
k=0

∫ tk+1

tk

E (l(x(τ), u(τ))) dτ + E(M(x(tN ))) (15a)

s.t. ∀ t ∈ (tk, tk+1], ∀ k ∈ {0, 1, ..., N − 1},

dµ(t)

dt
=Aµ(t) +Bvk ,

dP (t)

dt
=AP (t) + P (t)A> +Q

+BKPk,t(t) + Pt,k(t)(BK)>,

dPt,k(t)

dt
=APt,k(t) +BKP (tk),

(15b)

∀ t ∈ [t0, tN ] ,

{
x(t) ∼ N (µ(t), P (t)),

P(x(t) ∈ X ) ≥ 1− εx,
(15c)

∀ t ∈ {tk}N−1
k=0 ,

{
u(tk) ∼ N (Kµ(tk),KP (tk)K>),

P(u(tk) ∈ U) ≥ 1− εu,
(15d)

∀ k ∈ {0, 1, ..., N − 1} ,{
r(tk+1) = g(r(tk),∆k), ∆k ∈ [∆,∆],

Pt,k(tk) = P (tk), r(tk+1) ∈ [r, r],
(15e)

where εx and εu are the threshold that the chance con-
straints (15c) and (15d) are required to stay above. Notice
that due to the feedback with respect to a random event,
the actual input value u(t) is uncertain as well. On the
practical side, if the feasible X and U are polytopic, the
chance constraints can be conservatively approximated by
an explicit reformulation [16, Chapter 3]. Without loss of
generality, we consider P(H>x,ix(t) ≤ hx,i), i ∈ Znh

i=1, where
nh is the number of inequality constraints with respect to x
and Hx,i ∈ Rnx and hx,i ∈ R. As x(t) follows a Gaussian
distribution, any of these constraints can be reformulated as

H>x,iµ(t) ≤ hx,i −
√
H>x,iP (t)Hx,iN−1(1− εx) ,

where N−1(·) is the inverse cumulative probability distribu-
tion function, i.e., P(x ≤ N−1(1− εx)) = 1− εx. Please refer
to [16] regarding the computation of the cost (15a).

D. Implementation Discussion

When Problem (15) is solved within a direct optimal control
scheme, the integration of the ordinary differential equations
can be achieved by numerical integration methods such as
the Runge-Kutta method or the collocation method [17].
We recommend to use the collocation method, because the
triggering time instances are decision variables. If Runge-
Kutta is used, the integration depends on high order terms of
{∆k}N−1

k=0 , which results in low numerical stability. Instead, a
collocation method depends linearly on {∆k}N−1

k=0 and hence
is numerically more stable.

IV. NUMERICAL RESULT

The proposed algorithm is tested on a double integrator with
state x(t) = (x1(t), x2(t)), whose SDE is

dx(t) =

([
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

)
dt+ dW.

The controller is designed to track a reference signal oscillat-
ing between 1 and −0.4. Only the stage cost is considered with
l(x(t), u(t)) = 10(x1(t)− ref(t))2 +0.1u(t)2 and ref(t) is the
tracking reference. The parameters for the chance constraints
in (15c) and (15d) are εx = 0.01, εu = 0.01. The recharging
rate is 1 with a trigger cost of 0.4. To show the effectiveness
of the proposed algorithm, we consider two different cases,
Q = 0.01I and Q = 10−4I . The former case can be
considered as more dangerous than the second case as it has
larger process noise. In both cases, we consider a input chance
constraint in [−10, 10] with a prediction horizon N = 10. The
triggering time is bounded within [0.1, 0.8].

In the first case, the covariance of the process noise is set
to be Q = 0.01I and the output is bounded by y ∈ [−2, 1]. In
this case, the reference overlaps with the output’s upper bound,
and the standard deviation of the process noise is around 10%
the scale of the output.

0 5 10 15 20
−2

−1

0

1

time(s)

x
1

Output Reference Constraints

Fig. 1: Output of the stochastic self-triggered MPC (Q = 10−2I)

A Monte-Carlo simulation of the output responses is shown
in Figure 1, where the controller tries to stay close to the
reference, however, as the output is upper bounded by 1, it
stays below the upper reference to ensure safety. Regarding
another reference signal at −0.4, because it is far away
from both constraints, the fluctuations of all the sampled
experiments center around the reference −0.4.

0 5 10 15 20
0

0.5

1

time(s)

r

Resource Constraints

Fig. 2: Resource response of the stochastic self-triggered MPC (Q = 10−2I)
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Fig. 3: Triggering time response of the stochastic self-triggered MPC (Q = 10−2I)

Figure 2 and Figure 3 show the responses of the resource
and the triggering time difference ∆ of all Monte-Carlo runs.



When the reference is close to the bound, the controller uses
the shortest triggering time confined by the resource dynamics
(i.e. 0.4s) and consumes all the resource. When the reference
is farther away from the bound, the resource starts to recharge,
which is also reflected as the time between triggering times
is larger than 0.4 in Figure 3. However, the resource level is
lower in comparison with another case because the process
noise is large and a more frequent triggers are required to
guarantee the controller performance.

0 5 10 15 20
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−1

0

1

time(s)

x
1

Closed Loop Reference Open-loop Constraints

Fig. 4: Output of the stochastic self-triggered MPC (Q = 10−4I)
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Fig. 5: Resource response of the stochastic self-triggered MPC (Q = 10−4I)

In the second case, a smaller process noise Q = 10−4I
is considered and the output is bounded by y ∈ [−2, 1.1].
In this case, we compare our proposed scheme against the
open-loop scheme to show the necessity of the closed-loop
control. Monte-Carlo samples of the output responses are
shown in Figure 4, where the output of the proposed scheme
tightly tracks the reference. Meanwhile, as a stochastic control
scheme, one can see that there is a sampled trajectory that
violates the upper bound at around 1s. The open-loop scheme
also performs the task properly, however, we can see that it
stays farther away from the reference 1. To make a cleaner and
more informative plot, the resource of one sampled trajectory
is shown in Figure 5, where we can see that the resource of
the closed-loop scheme tends to ramp up when the output
is already around the reference and tends to decrease when
the reference signal changes. Meanwhile, we can see that the
resource consumption in the open-loop scheme is much higher
than that of the closed-loop scheme, which means that the
open-loop is less desirable as it requires more frequent triggers
to maintain the system performance.

V. CONCLUSION

This paper proposes a novel resource-aware stochastic
self-triggered MPC, which generalizes resource-aware self-
triggered MPC to an uncertain environment. The discrete-
time covariance dynamics of a discrete-time feedback control
law is derived to accommodate a continuous-time uncertain
disturbance. This feedback law is intentionally designed to be
compatible with a self-triggered control scheme. Finally, the
proposed scheme is validated through a numerical example.
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VI. APPENDIX

A. Appendix to Section III-A
Proof of Lemma 1. First recall the definition Fk,k+1 :=

σ(Fk+1 \Fk). According to the independence property of
a Wiener process, F i,i+1 ⊥ F j,j+1 holds for all i 6= j,
therefore we have σ(∪N−1

i=0 F i,i+1) ⊂ FN . Then, we show the
equality holds by contradiction. If FN 6= σ(∪N−1

i=0 F i,i+1),
by definition of F i,i+1, there exists i ∈ ZN−1

0 such that
F ti 6= F t+i := σ(∩t>ti F t), which violates the continuity
of a Wiener process [18]. Hence, the proof concludes.

Remark 2 This lemma holds for any càdlàg Lévy pro-
cess [14], which is practical for real-world applications as
all the analysis is established from the current time step or,
in particular, the sigma fields accumulated up to the current
time instant.

Remark 3 Equation (8) holds due to product topology given
by the Lemma 1, which reflects the fact that the conditional



covariance matrix Pk(t) := E(P (t)| Fk,k+1) is a projection
onto the L2 space of the progressively measurable process on
Fk,k+1.

B. Appendix to Section III-B
To prove Theorem 1, we recall the Itô’s Lemma [18].

Lemma 2 (Itô’s Lemma) For a given drift-diffusion process
dx = adt+ bdW , if function f(·) is twice-differentiable, It̂o’s
formula holds as

df =

(
∂f

∂t
+ a

∂f

∂x
+
b2

2

∂2f

∂x2

)
dt+ b

∂f

∂x
dW .

Proof of Theorem 1. This proof consists of two steps:
1) Derive the decomposed covariance dynamics {Pk(·)}N−1

k=0 .
2) Reconstruct the ensemble conariance dynamics P (t).
Decomposed covariance dynamics
Conditioning on the sigma field Fk,k+1, the control law is

E(u(t) | Fk,k+1) = (16)vi t ∈ (ti, ti+1], i ∈ Zk0
vi +K E{x(t)− µ(t)| Fk,k+1} t ∈ (ti, ti+1], i ∈ ZN−1

k+1 .

Notice that under a predictive control scheme, {vi}N−1
i=0 are

determined at t0, hence {vi}N−1
i=0 are F0 measurable and

furthermore Fk,k+1 is measurable. Before tk+1, none of the
triggers can generate feedback with respect to the events
in Fk,k+1 because Fk,k+1 happens later than tk. These
facts conclude the conditional control law in (16). Based on
the system dynamics (6), the mean dynamics (11) and the
conditional control inputs (16), the SDE of the conditional
deviation dynamics of x(t)− µ(t) is

E{d(x(t)− µ(t))| Fk,k+1} = (17)
0 t ∈ [t0, tk]

A(E{x(t)− µ(t)| Fk,k+1})dt+ dW t ∈ (tk, tk+1]

[A(E{x(t)− µ(t)| Fk,k+1}) +B t ∈ (ti, ti+1]

·K(E{d(x(ti)− µ(ti))| Fk,k+1})] dt i ∈ ZN−1
k+1 .

More specifically, this dynamic means that when t ≤ tk,
there is no uncertainty generated by Fk,k+1, and E(x(t) −
µ(t)|Fk,k+1) = 0. After that, the stochastic events within
interval (tk, tk+1] do not generate any feedback before tk+1

and the deviation evolves in an open-loop form. After tk+1,
no new Fk,k+1-measurable events can happen anymore and
the feedback control law comes into effect.

As Pk(t) = E{E{(x(t)−µ(t))(x(t)−µ(t))>| Fk,k+1}}, we
can apply Itô’s Lemma (Lemma 2) to the deviation dynamics.
As a result, we have dPk(t)

dt = 0 for all t ∈ [t0, tk] and thus,

dPk(t) = (APk(t) + Pk(t)A> +Q)dt

+ E{E{x(t)− µ(t)| Fk,k+1}dW>}︸ ︷︷ ︸
(a)

+ E[dW E(x(t)− µ(t)| Fk,k+1)>]︸ ︷︷ ︸
(b)

holds for all t ∈ (tk, tk+1], where (a) = 0 and (b) = 0 as
E{E{x(t)− µ(t)| Fk,k+1}} = 0. We thus, conclude

dPk(t)

dt
= APk(t) + Pk(t)A> +Q ,∀ t ∈ (tk, tk+1] ,

which shares a form similar to (7b).
The last piece is the intervals in which the feedback control

law takes effect. Without loss of generality, we consider one
interval (ti, ti+1] with i ∈ ZN−1

k+1 , where we have

dPk(t)

dt
= APk(t) + Pk(t)A> +BKPi,t,k(t) + Pt,i,k(t)(BK)>

with Pt,i,k(t) = Pi,t,k(t)> :=

E{E{(x(t)− µ(t))(x(ti)− µ(ti)
>}| Fk,k+1} .

Applying Itô’s Lemma again, we have
dPt,i,k
dt

= APt,i,k +BKPt,i,k(ti) = APt,i,k +BKPk(ti) ,

where the second equality holds by definition.
Reconstruct general dynamics P (t)
Considering interval (ti, ti+1], we have following facts:

1) ∀ k ≥ i+ 1, we have Pk(t) = 0.
2) Because the feedback is not active for the sigma-fields
Fk,k+1, ∀ k ≥ i, we have Pt,i,k = 0, ∀ k ≥ i.

Based on the previous derivation, we have

dP (t)

dt

(a)
=

N−1∑
k=0

dPk(t)

dt
=

i−1∑
k=0

dPk(t)

dt︸ ︷︷ ︸
1

+
dPi(t)

dt︸ ︷︷ ︸
2

+
N−1∑
k=i+1

dPk(t)

dt︸ ︷︷ ︸
3

=
i∑

k=0

(APi(t) + Pi(t)A
>)︸ ︷︷ ︸

(b)

+Q+
i−1∑
k=0

BKPk,t,i(t) + Pt,k,i(BK)>︸ ︷︷ ︸
(c)

,

where (a) holds by Lemma 1. 1 corresponds to the compo-
nents whose feedback is active, 2 incorporates the stochastic
event happening in the current interval (ti, ti+1], while 3 are
the future stochastic events which have no effect yet. The first
aforementioned fact allows the reformulation of (b) as

(b) =

N−1∑
k=0

(APk(t) + Pk(t)A>) .

Similarly, the second aforementioned fact rewrites (c) as

(c) =

N−1∑
k=0

BKPi,t,k(t) + Pt,i,k(t)(BK)> .

Hence, by equation (8), we conclude

dP (t)

dt
= AP (t)+P (t)A>+BKPk,t(t)+Pt,k(t)(BK)>+Q.

In a similar approach, we have

dPt,k(t)

dt
= APt,k(t) +BKP (tk),

which concludes the proof. �

Remark 4 The left-open right-closed time intervals used in
this paper stress the continuity and guarantee a unique strong
solution [18]


