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a b s t r a c t 

Plastic deformation in elemental BCC metals and dilute alloys is controlled by the slower of the kink pair 

nucleation and kink migration processes along screw dislocations. In alloys nucleation is facilitated and 

migration inhibited, leading to a concentration- and temperature-dependent transition from nucleation 

dominance to migration dominance. Here, an analytical statistical model for the stress-dependent kink 

migration barrier in dilute BCC alloys is developed and validated. The barrier depends only on a clearly- 

defined solute/screw dislocation interaction parameter, the kink width, and dislocation length between 

jogs. The analytic model is extensively validated via fully atomistic nudged-elastic band calculations and 

stochastic simulations in a model Fe-Si alloy. Combined with a recent validated double-kink nucleation 

theory, a fully-analytic model for the temperature- and concentration-dependent flow stress is obtained 

that includes the transition from nucleation to migration control. The overall model is applied to Fe-Si 

and W-Re using independently-determined material properties and good agreement is obtained with ex- 

periments over a range of concentrations and temperatures. Overall, the two theories represent a unified, 

fully-statistical, parameter-free understanding of screw dislocation strength in dilute BCC alloys. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The temperature-dependent plasticity of BCC metals and dilute 

ubstitutional alloys is controlled by the motion of 1/2 
〈
111 

〉{ 110 } 
crew dislocations between local energy minima (Peierls valleys 

t spacing a ) by a two-step thermally-activated process [1–4] . 

he first step is nucleation of a pair of kinks somewhere along 

n initial long straight screw dislocation. The second step is the 

igration of these kinks along the screw dislocation of length 

, where L = 1 / 
√ 

ρ is estimated as the distance between dislo- 

ation junctions/jogs at dislocation density ρ . These steps lead 

o a plastic displacement of a for each dislocation segment. The 

acroscopic plastic strain rate due to the motion of all N dislo- 

ations is then consistent with Orowan’s law ˙ ε = Nab/L 2 t̄ = ρba/ ̄t 

here t̄ is the average time for the two-step process [2,4–6] . 

ucleation and migration processes each have stress-dependent 

ctivation energies �H(τ ) and the rate-controlling process is 

he one with the higher activation energy and longer time t̄ ∼
xp (�H(τ ) /kT ) . 

In pure BCC metals, flow is controlled by the double-kink nu- 

leation process because kink migration has a negligible barrier. In 
∗ Corresponding author. 
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ilute random alloys, the added solutes affect the activation ener- 

ies for both nucleation and migration processes [7,8] . Generally, 

olutes reduce the nucleation barrier, as understood theoretically 

1,2,9] and observed experimentally [1,10] , because nucleation al- 

ays occurs in a region along the dislocation line where the lo- 

al solute fluctuations in the random alloy most-favor double-kink 

ormation. In contrast, solutes increase the kink migration barrier 

ecause the kinks must overcome the largest barrier(s) created 

y the extreme solute statistical fluctuations along the remaining 

ine. Since stress provides a driving force for overcoming barri- 

rs and since longer lengths will have larger extreme fluctuations 

omewhere along the length, it becomes critical to accurately de- 

ermine the stress- and length-dependent barriers �H dk (τ, L ) and 

H km 

(τ, L ) for nucleation and migration, respectively, in a random 

lloy. 

Note that any model that embodies the above two effects of 

he solutes in some manner will predict a transition from nu- 

leation to migration control of strength. Predicting a transition 

s thus not sufficient validation of a model. Furthermore, mod- 

ls that involve adjustable parameters allow for the transition to 

e tuned to match data, and so again are not sufficient valida- 

ion. Historical models for nucleation and migration do not fully 

andle the energetic and statistical aspects of the problem [2,5,6] . 

hese models simplify the solute/screw dislocation interactions to 

 single value E and then use approximate statistics to estimate 
. This is an open access article under the CC BY-NC-ND license 
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he effects of solute fluctuations. The Suzuki model predicts a re- 

uced barrier for nucleation but the model of Trinkle and Wood- 

ard does not (see [11] for more discussion). For kink migration, 

uzuki [2] considered the statistical number of accumulated solute 

toms m (z) around the screw core that have been passed during 

he movement of the kink a distance z along the dislocation line 

ith barrier �H km 

= m (z) E − τ zab where b is the Burgers vector 

nd a = 0 . 943 b. The kink width w was then introduced by aver-

ging the barrier over z ± w/ 2 . Trinkle and Woodward [5,6] ap- 

roximated the barrier as �H km 

= m | E| with fixed m = 25 
√ 

c , or

ther related forms, as an estimate of the largest cluster, with no 

ccounting for kink width. Kinetic Monte Carlo methods have also 

een used recently to model both double-kink and kink-migration 

n dilute alloys [12–14] . The formulations ensure that a transition 

s obtained but treatment of the kink structure, solute/screw in- 

eractions, and/or solute effects on the nucleation barrier remain 

pproximate. 

We note that after the transition from double-kink nucleation 

o kink migration control has occurred, additional phenomena are 

ossible. In particular, when the kink migration barriers are high 

low stress, high temperature), it is possible that more than one 

ouble-kink can nucleate along the same dislocation segment. If 

his nucleation occurs on one of the other crystallographically- 

quivalent slip systems, the eventual intersection of two kinks on 

ifferent planes gives rise to cross-kinks. Cross-kinks form strong 

inning points that are only broken by formation of vacancy or 

elf-interstitial point defects, and so contribute to strengthening. 

his phenomenon tends to arise in the non-dilute regime, and is 

ncorporated into various theories [2,15] and can occur in KMC 

imulations [16–19] . This topic is beyond the scope of the present 

aper. 

Here, we develop a rigorous statistical model for the effect of 

olutes on the kink migration barrier as a function of concentra- 

ion and applied stress. Interactions of all solutes at all distances 

rom the straight and kinked screw are considered, as in our pre- 

ious model of double-kink nucleation. The model for the kink mi- 

ration barriers is validated against direct atomistic nudged elas- 

ic band (NEB) calculations and related stochastic simulations on 

 model Fe-Si alloy. We then show that the kink migration pro- 

ess under stress is essentially the random walk-type ”Wiener pro- 

ess with drift”, which yields analytic results for the barrier in 

erms of all relevant material properties. The resulting model for 

he kink migration barrier as a function of stress, solute concen- 

ration, and dislocation length is fully compatible with our previ- 

us analytic solution for the double-kink nucleation barriers, en- 

bling natural predictions of the transition from nucleation to kink 

ontrol of strength as function of temperature and strain rate in 

ny dilute alloy. Application to real dilute Fe-Si with independent 

nputs show that kink migration becomes controlling around 3% 

i. Application to real dilute W-Re up to 7%Re using DFT calcu- 

ations of the W-Re screw interaction energies and other inde- 

endent inputs also show good agreement for the transition from 

ucleation softening to migration strengthening at T = 300K and 

bove. 

The remainder of the paper is organized as follows. In section 2 , 

e discuss the effect of multiple solutes on the kink migration 

arrier. The statistical models to predict the double-kink nucle- 

tion barrier as a function of solute concentration and dislocation 

ength are presented. In Section 3 , we validate our analytic sta- 

istical model using atomistic simulations on a model Fe-Si alloy. 

ection 4 is devoted to the effect of applied stress on the kink mi- 

ration. The Wiener process is adapted to the kink-migration prob- 

em in this section. In Section 5 , we discuss the general applica- 

ion of our results and make specific comparisons for Fe-Si and 

-Re real alloys. 6 discusses our results further and summarizes 

hem. 
k

2 
. Solute effects on the kink migration barrier 

.1. Solute/kink interaction energy 

We consider a dilute binary alloy with ”solute” atoms at con- 

entration c << 1 and ”matrix” atoms at concentration 1 − c. The 

odel is easily generalized to multiple components and non-dilute 

oncentrations. For a dislocation at the origin x = y = 0 lying along 

he z direction, a solute at lattice site (x i , y j ) has an interaction

nergy U(x i , y j ) with the dislocation, independent of the z coor- 

inate due to translational invariance. When the dislocation glides 

y a along the glide direction x , the energy of the same solute has

n interaction energy U(x i − a, y j ) , and the change in interaction 

nergy is then denoted as �U i j (a ) = U(x i − a, y j ) − U(x i , y j ) . 

After double-link nucleation, the two kinks propagate away 

rom each other through the random field of solutes. The two kinks 

re assumed to be independent, neglecting their very small elastic 

nteractions. We thus focus on a single kink. The kink is the struc- 

ure that shifts the screw dislocation from the initial to the final 

eierls valley. The shape of the kinked dislocation with the kink 

entered at z c and gliding in the positive z-direction is commonly 

escribed by a hyperbolic tangent function [20,21] . We thus de- 

cribe the kinked dislocation as 

 (z − z c ; w ) = 

a 

2 

(
1 − tanh 

[
2(z − z c ) /b 

w/b 

])
(1) 

here w denotes the kink width defined as distance between the 

ntersections with the adjacent Peierls valleys of a tangent line at 

he kink inflection (see Fig. 1 a). Estimates and models show that 

 ∼ 10 − 20 b is typical, so that the kink character is very nearly 

crew (character angle at most tan 

−1 (2 a/w ) ≈ 5 ◦). 

We must compute the total energy change �E(z c ) of the sys- 

em (dislocation plus solutes) as a function of the center position 

 c of the kink as it glides across the segment length ( 0 < z c < L ).

ere, we assume a model for the solute/kink interaction energies 

nd validate that assumption via direct simulations in Section 3.2 . 

he solute/dislocation interaction energy should vary smoothly 

rom U(x i , y j ) to U(x i − a, y j ) as the kink glides past the solute, and

his total change is independent of the kink shape. Thus, although 

he theory is developed by carefully considering the solute/kink in- 

eractions, the final results emerge to be weakly dependent on the 

ctual kink width and shape (see Eq. (10) ). Since the kink shape 

s very nearly screw-like at either end, i.e. at | z − z c | → ±w/ 2 , the

olute interaction energies in these regions are very nearly those 

f the straight screw. Here, we assume that the interaction en- 

rgy between a solute at (x i , y j , z k ) and a kinked dislocation with

ink centered at z c is proportional to the normalized square of the 

ink position relative to the nearest Peierls valley in the same z k 
lane as the solute. This effective kink shape is shown schemat- 

cally in Fig. 1 (a); it is essentially identical to the original kink 

hape but with an effective kink width w 

∗ = 0 . 5 w k . Therefore, the

olute/kinked-dislocation interaction energy is approximated as 

 

(
x i , y j , z k , z c ; w 

∗) = 

x ( z k − z c ; w 

∗) 
a 

�U ij ( a ) + U ij . (2) 

n this approximation, the kink is assumed rigid, i.e. not affected 

y the solutes, which is also implicit in prior screw strengthening 

heories [2,5] . Nevertheless, using the NEB method as described 

ater, we have examined variations in the kink shape as it glides 

hrough a random atomistic in Fe-4 at.%Si model alloy that has sig- 

ificant solute/dislocation interactions. Among hundreds of specific 

andom solute environments, we find very little, if any, change in 

ink shape and width. 
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Fig. 1. (a) Schematic of the models for the kink shape and solute/kink interaction energy. The atomistic kink shape in the pure metal is described by a hyperbolic 

tangent function Eq. (1) with kink width w defined by the geometric constuction shown. The solute/kink interaction energy ( Eq. (2) ) is related to the square of the distance 

of the kink to the nearest Peierls valley, which is nearly identical to a tanh function with effective kink width w 

∗ = w/ 2 as shown. (b,c,d,e) Schematic of models developed 

here for determining the energy landscape of single kink migration across a random field of solutes. (b) Fully-atomistic NEB simulation with a possibly-varying kink 

shape and all solutes interacting with all portions of the dislocation line; (c) Discrete Rigid-Kink Model (DRKM) with solute/kink interactions governed by the effective 

kink shape (effective width w 

∗ = 0 . 5 w ) and interactions of each solute at z k scale with the relative distance z k − z c ; (d) Stochastic Rigid-Kink Model (SRKM) where the total 

solute/dislocation interactions at z k are replaced by a single stochastic value R i � ˜ E p chosen from the statistical distribution of the solute/dislocation interaction energies where 

R i is a random number chosen from a Gaussian probability distribution of mean zero and unit standard deviation; (e) Wiener Process Model (WPM) where the dislocation 

is divided into L/ 1 . 5 w 

∗ statistically uncorrelated segments each of which is assigned an energy R i �E p (1 . 5 w 

∗/b) 1 / 2 where R i is a random number chosen from a Gaussian 

probability distribution of mean zero and unit standard deviation randomly selected from a normal distribution with zero mean and standard deviation. This model does not 

involve the kink shape, only the decorrelation length 1 . 5 w 

∗ of the solute/kink interaction. 
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.2. Energy landscape models for kink glide 

Here, we present a sequence of models for determining the en- 

rgy landscape experienced by a kink gliding through a random 

eld of solutes. A schematic illustration of these models is shown 

n Fig. 1 . 

Using Eq. (2) for the single solute/kink interaction energy, the 

otal interaction energy of the solutes with a kink centered at z c 
s simply the sum of the interaction energies contributed by each 

ndividual solute in the specific configuration of solutes in the ran- 

om alloy, 

(z c ) = 

∑ 

i, j,k 

s i jk U(x i , y j , z k , z c ; w 

∗) (3) 
3 
here the site occupation variable s i jk = 1 if a solute is at po- 

ition (x i , y j , z k ) and 0 otherwise. The energy landscape that de-

ermines the overall kink migration corresponds to the total so- 

ute/dislocation energy change as a function of the migration dis- 

ance starting from an initial position z c = z 0 to the current z c ,

hich can now be written as 

E(z c ) = 

∑ 

i, j,k 

s i jk 

x (z k − z c ; w 

∗) − x (z k − z 0 ; w 

∗) 
a 

�U i j (a ) (4) 

e call this model for the energy landscape of the migrating kink 

he Discrete Rigid-Kink Model (DRKM); a schematic is shown in 

ig. 1 c. The DRKM differs from the true atomistic problem only by 

he assumed solute/kink interaction model and rigid kink shape. 
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Fig. 2. (a) Solute/screw interaction energy U i j versus solute position for single Si solute in Fe matrix computed using the EAM potential of [14] . (b) Interaction energy 

difference �U i j (a ) , as the screw dislocation core moves by one Peierls valley distance a (black arrow). Sites marked with 1 and 2 are substituted with Si atoms for subsequent 

NEB calculations, and are referred to in Fig. 3 . 
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The DRKM energy landscape is for one specific configuration of 

andom solutes. A further simplification is required to ultimately 

chieve an analytic model. We first note that the statistical aver- 

ge of the solute/kinked dislocation interaction energy change is 

ero, 
〈
�E(z) 

〉
= 0 , where the average is taken over the stochastic 

ariable s i jk . Thus, only the statistical fluctuations lead to energy 

ariations with position, as discussed in [11] . The relevant statis- 

ical quantity is the standard deviation in the interaction energy 

hange per Burgers vector of line length. For a straight segment of 

islocation, the standard deviation can be computed as [11,22] 

˜ E p = 

( ∑ 

i j 

c �U i j (a ) 2 

) 

1 
2 

(5) 

hen, within our solute/kinked-dislocation interaction energy 

odel, each individual section of material of width b perpendicu- 

ar to the dislocation line has some random set of solute positions 

hat dictate the contribution to the total energy at that position 

. The fluctuations in this energy over all possible solute config- 

rations are proportional to � ˜ E p and to the dislocation position 

 (z − z c ; w ) . The energy of each section of width b with the kink at

osition z c is thus R � ˜ E p x (z − z c ; w 

∗) /a where R is a random num-

er selected from a Gaussian probability distribution having zero 

ean and standard deviation of unity. For a dislocation segment 

f length L = N b the energy landscape can then be written as 

E(z c ) = � ˜ E p 

N= L/b ∑ 

k =1 

x (z k − z c ; w 

∗) R k (6) 

We call this model the Stochastic Rigid Kink Model (SRKM), 

chematically shown in Fig. 1 d. This model involves no direct dis- 

rete solutes, only the relevant stochastic energy quantity � ˜ E p , the 

ink shape, and a set of random numbers along the line that cap- 

ure the exact statistical fluctuations due to random solutes, within 

ur approximation for the solute/kinked-dislocation interaction en- 

rgy. 

The above models are representations of the entire energy land- 

cape over a length L in a specific random alloy as a function of 

he solute/dislocation interaction energies, the kink shape, and the 

ength L. An applied stress is added subsequently as discussed be- 

ow. From these models, we extract the largest global barrier for 
4 
ink glide, i.e. the difference between the highest energy and the 

owest energy along the entire path in the direction of the kink 

lide. It is this (stress-dependent) barrier that will control the kink 

igration over length L. 

. Validation using an atomistic model Fe-Si alloy 

We now compare predictions of our analytical model for the 

olute/kink interaction energy and the stress assisted kink migra- 

ion enthalpy barrier against direct atomistic simulations using a 

odel Fe-Si alloy. The only input parameters to the model are the 

olute/screw-dislocation interaction energies U(x i , y j ) at all distinct 

olute positions i j around the screw core, the length L of the dis- 

ocation, and the single kink shape in the pure matrix material. 

.1. Simulation Details 

We use a model Fe-Si alloy system as represented by an EAM 

otential [14] . The Fe-Fe interactions [23] have all the underlying 

FT-based features for Fe screw dislocations such as the compact 

ore structure, the single-hump Peierls potential, and { 110 } slip- 

lane. Since we are interested in dilute alloys, we further set Si-Si 

nteractions to those of Si-Fe, eliminating direct solute-solute in- 

eractions. Therefore, although not being an accurate representa- 

ion of real Fe or real Fe-Si, this potential is a well-defined model 

ystem that can be used with confidence to validate our analyt- 

cal model; it was also used previously to study solute effects 

n double-kink nucleation [22] . The kink shape in pure Fe is de- 

ermined using the disregistry method [24] and fit to the func- 

ional form given by Eq. (1) leading to w = 10 b. The critical so-

ute/dislocation energy change �U i j as a function of solute posi- 

ion for this potential is shown in Fig. 2 . The key statistical quan-

ity entering the analytic theories is then calculated as � ˜ E p = 

44 meV 

√ 

c at Si solute concentration c. We study both c = 0 . 01 

nd c = 0 . 04 , for which � ˜ E p = 34 . 4 meV and � ˜ E p = 68 . 8 meV . All

uantities entering the model are well-defined and computed in- 

ependently of the model. 

The minimum energy path during kink migration from an ini- 

ial position to a final position is computed using the nudged elas- 

ic band (NEB) method as implemented in LAMMPS. Since kinks 
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Fig. 3. (a)Schematic of solute positions that are bypassed by a single kink, with similar colors and numbers for solutes in the same atomic row position (x i , y j ) and 

corresponding to sites marked in Fig. 2 b with �U 1 = 112 meV and �U 2 = 95 meV. (b)-(i) NEB and predicted kink migration energy versus kink position z c /b for each special 

solute arrangement as indicated; e.g. 1 + 2 , d = 6 . 5 b in (f) denotes solutes at sites #1 and #2 at fixed distance d = 6 . 5 b. 
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ust come in pairs, the simulation of motion of a single kink re- 

uires special details. We start with pure Fe and create a cell hav- 

ng total dislocation line length longer than the simulated kink 

lide length L = 120 b subsequently studied in the alloy. A single 

olute is placed in the most energetically favorable location for aid- 

ng double-kink nucleation and a second solute placed at ∼ w away 

o inhibit glide of one of the two nucleated kinks. An NEB simula- 

ion is then performed during which the double-kink nucleates at 

he favorable solute and only one kink glides across the remaining 

ength of the simulation cell. A large number of replicas are used 

o that increments of kink motion between each replica are nearly 

ne b distance. These replicas are then used as the initial path for 

EB through a random solute field. More details of the NEB simu- 

ation can be found in Appendix A . 
5 
.2. Validation of solute/kink interaction energies 

Here we validate the solute/kink interaction model shown in 

ig. 1 a where the interaction involves the effective kink width 

 

∗ = w/ 2 . This is achieved by comparing predicted and NEB- 

omputed changes in energy as the kink moves past specific se- 

ected arrangements of solutes. 

The specific Si solute configurations studied here are shown 

chematically in Fig. 3 (a). For each specific set of solute positions, 

e calculated the energy landscape of the system as function of 

ink position z c using Eq. (4) . Direct NEB calculations of the to- 

al system energy change are then performed on the exact same 

olute configurations. Figs. 3 (b-i) show the atomistic NEB and pre- 

icted energy landscapes of the selected solute configurations. The 
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Fig. 4. (a) Schematic of a single kink migrating from left to right through a field of solutes randomly distributed within the yellow-shaded region of length L = 120 b. (b,c,d,e) 

Energy landscape as a function of the center position z c of the kink as computed from direct atomistic NEB and from the Discrete Rigid Kink Model on exactly the same 

solute configuration, for two typical samples of Fe-1%Si and two typical samples of Fe-4%Si alloys. The largest barrier encountered by the kink for two of the NEB landscapes 

is indicated as �E km for illustration. 
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greement is very good in all cases, with deviations of less then 

10 meV across all cases. Subsequent similar studies discussed 

elow in fully-random Fe-Si will further confirm, at a statistical 

evel, the agreement between the model and NEB. 

.3. Validation of Kink Migration Models 

Here, we validate the Discrete Rigid-Kink Model and Stochas- 

ic Rigid-Kink models by comparison against direct fully-atomistic 

EB simulations of a single kink migrating across a random field 

f solutes at zero stress. 

In order to perform the NEB simulations of kink migration in 

andom solute field, using the NEB simulation setup generated as 

iscussed in 3.1 , a random solute field of the Fe-Si alloy is created

y randomly distributing Si atoms at concentration c over a central 

ection of length L = 120 b in the simulation cell away from the 

riginal double-kink nucleation site. This length is approximately 

4 w 

∗, which is sufficient for validating our models. NEB is then 

xecuted to obtain the energy change �E(z c ) as a function of the 

ink position z c . We create 200 different realizations of random Si 

t concentrations 1% and 4% to assess the average barrier and vari- 

tions around the average with good accuracy. For each individual 

andom distribution of solutes, we have a precise corresponding 

RKM simulation. 
6 
Example energy landscapes as computed from the NEB and 

rom the DRKM on exactly the same solute configuration are 

hown in Figs. 4 b-e. By definition, the zero of energy corresponds 

o the energy at the initial kink position when it is first fully 

ithin the solute region. The net energy change over the length L 

an be positive or negative, depending on the overall fluctuations 

f the particular solute configuration. The DRKM captures the over- 

ll full NEB landscape very well in magnitude and length scales of 

ajor energy variations. Recall that the DRKM has no adjustable 

arameters. As expected, the NEB landscape shows additional en- 

rgy variations on scales smaller than w 

∗ = 5 b because the atom- 

stic kink may adapt subtly to the precise solute configurations and 

ecause the model for the solute/kink interactions is not exact. 

onetheless, the differences between the NEB and the DRKM are 

ypically below 0.05 eV and 0.1 eV for c = 1 % and c = 4 %, respec-

ively, which are small compared to the overall variations of 0.4 

V and 1.0 eV. 

The most important quantity controlling the rate of the kink 

otion is the largest typical energy barrier encountered by the 

ink over a glide distance z. We have thus extracted the maximum 

arrier over the length L = 120 b from our NEB, DRKM, and SRKM 

imulations. Fig. 5 shows the average barrier energy and the dis- 

ribution of barriers over 200 simulations for the NEB and DRKM 
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Fig. 5. (a) Average kink migration barrier �H km versus Si solute concentration at zero stress as obtained from NEB, the Discrete Random Kink Model (DRKM), the Stochastic 

Random Kink Model (SRKM), and the Wiener Process Model (WPM). The distributions of kink migration barriers �E km associated with each models for 200 Fe-1at.%Si and 

200 Fe-4at.%Si realizations are also shown, with the standard deviations indicated. 
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nd over ten thousand simulations for the SRKM at c = 1% and 4%, 

nd also the average values from the SRKM over a wider range of 

i concentrations c. Results are also shown for the Wiener process 

odel (WPM) discussed later. The DRKM captures the average bar- 

ier very accurately. The average maximum barrier for the SRKM is 

lightly higher at both concentrations. The statistical distributions 

f barriers around the mean all have the same overall shape and 

agnitude, and the standard deviations are nearly identical. The 

ean of the SRKM deviates from the NEB and DRKM by less than 

˜ E p , which is itself a factor of ∼ 6 smaller than the standard devi- 

tions of all models. These results quantitatively validate the DRKM 

nd SRKM. 

The good agreement between the NEB and the SRKM demon- 

trates that the dominant energy barriers are controlled by the 

ell-defined solute/dislocation interaction energy parameter. De- 

ails of specific solute distributions and deviations of the kink 

hape from an idealized model are not important in determining 

he operative distribution of barriers. This is not surprising because 

he kink is primarily affecting the transition of solute positions rel- 

tive to the (shifting) dislocation line, and the energy difference at 

ny z once the kink has fully passed by z is captured exactly in 

he model. This agreement has two important consequences: (i) it 

ustifies the application of the computationally-inexpensive SRKM 

o examine barriers over length scales L that are much larger than 

an be studied using direct atomistic NEB or the DRKM and (ii) it 

oints toward the development of an analytic stochastic model. 

. Kink migration under stress 

The analyses in the previous section were performed at zero 

tress. The competition between nucleation and migration is in- 

rinsically stress-dependent, with the applied stress doing work on 

he system as the double-kinks nucleate and then as the kinks mi- 

rate. Here we extend the models and analysis to incorporate the 

riving force due to an applied shear stress. Specifically, an applied 

hear stress τ on the glide plane does work (starting from z c = 0 )

f −τ b a z c and hence the energy landscape becomes �E(z c , τ ) =
7 
E(z c , τ = 0) − τ b a z c . This model assumes a rigid kink, but fluc-

uations in the area swept due to atomistic changes in kink shape 

t a fixed mean kink position z c are negligible. 

In the landscape �E(z c , τ ) with increasing applied stress, the 

aximum energy barrier �E km 

and the activation distance z ∗ be- 

ween the points of minimum and maximum energies that de- 

ermine the barrier are both reduced. For each individual en- 

rgy landscape �E(z c , τ = 0) computed from the NEB, DRKM, and 

RKM, the stress-dependent kink migration barrier �E km 

(τ ) is 

omputed as a function of τ . Fig. 6 (a) shows the average �H km 

(τ )

ver 200 independent simulations for the NEB and DRKM and over 

wenty thousand simulations for the SRKM at length L = 120 b for 

 = 1% and c = 4%. Fig. 6 (b) shows the activation distance z ∗ ver-

us stress, varying smoothly from ∼ L/ 2 at τ = 0 to 0 at the stress

here �H km 

= 0 . The overall agreement is very good. The slightly 

igher barrier for the SRKM at τ = 0 seen previously is again ev- 

dent, but the absolute difference then decreases with increasing 

tress. 

.1. Kink migration under stress: a Wiener Process 

The fluctuating energy landscape of a single kink migrating 

hrough a random field of solutes over a distance z has several 

ey features: (i) the mean energy change over all possible fluctua- 

ions in the solute positions is zero, (ii) the standard deviation of 

he energy changes due to the fluctuations in the spatial arrange- 

ent of solutes scales with 

√ 

z , and (iii) the incremental energy 

hange during kink migration over a distance z c2 − z c1 ≈ 1 . 5 w 

∗ is

 stochastic variable. The decorrelation distance of 1 . 5 w 

∗ is ob- 

ained by examining the correlation function between two kinks 

eparated by z c2 − z c1 , which decreases rapidly from ∼ 0 . 21 at w 

∗

oward zero ( ∼ 0 . 02 ) at 1 . 5 w 

∗. These features also appear in the

andom-walk ”Wiener process” [25] and so the known solution of 

he Wiener process can be adapted to address kink migration. 

The Wiener process is a continuous-time random walk in which 

he increments (in our case the energy changes as the kink 

igrates) are independent. Here, the kink energies become es- 
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Fig. 6. (a) Average kink-migration barrier �H km and (b) average activation distance z ∗ versus applied stress τ in model Fe-1at%Si and Fe-4at%Si alloys as obtained from NEB, 

the Discrete Random Kink Model, the Stochastic Random Kink Model, and the Wiener Process Model. 
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entially independent after motion by the decorrelation distance 

 . 5 w 

∗. In the presence of an applied stress, the kink migration is

hen similar to the ”Wiener process with drift” where there is a 

onstant-magnitude bias introduced in each step of the random 

alk. The Wiener process does not appear to capture all the sta- 

istical fluctuations of the real energy landscape on the scale of b

ut it is verified below to capture the all-important mean energy 

arrier as a function of τ and L . From here on, we will use a nor-

alized kink width w̄ = 1 . 5 w 

∗/b to reduce the notation. 

To validate the Wiener process as applied to the kink migration 

roblem, we first execute stochastic simulations at the increment 

cale of w̄ as follows and as shown schematically in Fig. 1 e. A dis-

ocation of length L is first divided into N = L/ (b ̄w ) sections, each

f which is assigned an energy � ˜ E p w̄ 

1 / 2 × R i where R i is a ran- 

om number selected from a normal distribution with mean zero 

nd standard deviation of unity. A bias energy of (−ab 2 w̄ ) τk is 

hen added to the k -th segment centered on z c /b = k ̄w . The dis-

rete kink-migration energy landscape sampled at discrete b ̄w in- 

ervals can then be written as 

E(k ̄w ) = � ˜ E p w̄ 

1 / 2 
k ∑ 

i =1 

R i − (ab 2 τ w̄ ) k, k = 1 , 2 , . . . , L/ (b ̄w ) (7) 

his model is called the Wiener Process Model (WPM). 

At zero stress ( τ = 0 ), we compare the mean and standard de- 

iations of the barrier distributions predicted by the WPM against 

he SRKM for L = 120 b (N = 16) , as shown in Fig. 5 . The agree-

ent is essentially perfect. The mean energy barrier versus applied 

tress as predicted by the WPM is shown in Fig. 6 , and again excel-

ent agreement with the SRKM is obtained. To further validate the 

PM, we considered longer migration lengths L/b = 20 0 , 40 0 , 80 0

nd a range of relevant concentration and stress levels. The com- 

arison between the WPM and the SRKM is shown in Fig. 7 , and

gain the agreement is excellent. Hence, the physical problem of kink 

igration in a random solute environment and under stress is quan- 

itatively captured by the random walk Wiener process with drift. 

We now make the final step to an analytic model, eliminat- 

ng entirely the need for any stochastic simulations. The analytic 

odel will then enable direct applications of the model to any sys- 

em under any experimental conditions (temperature, strain rate, 

tress, dislocation density) in terms only of the underlying mate- 

ial parameter � ˜ E p , w ∗ = w/ 2 , and L . Specifically, Magdon et al.

26] showed that the mean maximum minus minimum of the con- 

inuous Wiener process could be written as − 2 σ 2 

μ Q p 

(
μ2 N 

2 σ 2 

)
where 

 p (x ) is a tabulated function and σ and μ ≤ 0 are the standard 

eviation and the drift bias of the process and N denotes the to- 

al number of uncorrelated steps. Applied to the kink migration 

roblem, σ = �E p w̄ 

1 / 2 , μ = −ab 2 w̄ τ , and N = L/ (b ̄w ) . When these
8 
elationships are substituted into the result of Magdon et al., we 

btain 

H km 

= 

2� ˜ E 2 p 

ab 2 τ
Q p 

(
a 2 b 4 τ 2 L/b 

2 � ˜ E 2 p 

)

= 2� ˜ E p 
τc 

τ
Q p 

(
τ 2 

τ 2 
c 

L 

2 b 

)
; τc = 

� ˜ E p 

ab 2 
, (8) 

here the characteristic stress τc is the stress required to over- 

ome a single typical kink energy difference � ˜ E p over unit glide 

istance b. Interestingly, the kink width w̄ no longer appears in 

he barrier, and the barrier scales directly with the fundamental 

nergy � ˜ E p . This result demonstrates why the WPM and SRKM are 

ssentially identical at lengths L/b >> 1 . 

The kink migration is discrete, and the discrete-time Wiener 

rocess involves an additional correction term that is a function of 

and the discrete interval length (here w̄ ) [27] . The Wiener pro- 

ess also does not nominally apply when the activation distance is 

 

∗/b < w̄ . We can thus derive a correction factor by imposing the 

equirement that the energy barrier at the minimum WPM dis- 
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ance L/b = w̄ is zero at the stress τ = 

� ˜ E p 
√ 

w̄ 

ab 2 w̄ 

that is needed to 

vercome the average single-step barrier in the WPM. This leads 

o a correction factor −2 Q p ( 
1 
2 )�

˜ E p 
√ 

w̄ . The coefficient −2 Q p ( 
1 
2 ) =

0 . 926 , however, does not yield sufficiently agreement with the 

imulations and so we fit the numerical prefactor as −1 . 24 to best- 

atch the WPM simulations, obtaining 

H km 

= � ˜ E p 

[
2 

τc 

τ
Q p 

(
τ 2 

τ 2 
c 

L 

2 b 

)
− 1 . 24 ̄w 

1 
2 

]
(9) 

The function Q p (x ) with x ≡ τ
τc 

√ 

L 
2 b 

remain tabulated only. 

owever, we can accurately ( ∼ 2% ) approximate Q p (x 2 ) x −1 = 

 . 63 ( x + 1 . 91 ) −1 + 0 . 025 over the full range of x relevant in appli-

ations. Hence, a fully-analytic result for the kink migration barrier 

s then, after a bit of algebra, obtained as 

H km 

= � ˜ E p 

⎡ 

⎣ 3 . 26 

( 

τ

τc 
+ 

2 . 7 √ 

L/b 

) −1 

+ 0 . 035 

√ 

L/b − 1 . 07 

√ 

w/b 

⎤
⎦

(10) 

here we have also reverted to using the true kink width w . The 

esults of the analytical solution, Eq. (10) for relatively short dis- 

ocation segments of L/b = 20 0 , 40 0 , and 80 0 versus the Si con-

entration at various applied stresses are shown in Fig. 7 . Excel- 

ent agreement is obtained with the previous stochastic simula- 

ions which demonstrates the accuracy of this fully analytical solu- 

ion. Introducing the correction factor introduces a very small error 

n the activation volume V act = z ∗ab, as discussed in Appendix B . 

Before comparing the analytic model to more simulations with 

onger dislocation lengths, we discuss the final step of connecting 

he kink migration model to the double-kink nucleation/kink mi- 

ration problem of physical interest. In the real physical problem, 

wo kinks are nucleated and migrate away from each other. The 

mplicit assumption in essentially all models of the overall plastic- 

ty process is that the next double-kink nucleation and kink mi- 

ration event should only occur after the previous process is com- 

lete. Retaining this assumption, each of the two kinks experiences 

 similar statistical process but the migration distances L right and 

 left are different because the double-kink nucleation may occur 

nywhere along the total length L = L right + L left with equal prob- 

bility. Since the migration barrier increases with L , the kink with 

he longer migration path will typically encounter the largest bar- 

ier, and hence be the slowest process. The larger of the two sec- 

ions is then randomly distributed in the range (L/ 2 , L ) with an

verage of 3 L/ 4 . 

We thus adapt the SRKM to account for the double-kink nucle- 

tion process. For a dislocation of length L with stochastic energies 

ssigned for each section of width b, we use the solute/double- 

ink interaction energy developed in [11] to find the most favor- 

ble nucleation site along the entire line. The left and right kinks 

re nucleated at this location and the kinks migrate through their 

emaining landscapes of lengths L right and L left , respectively. The 

nergy landscape for each kink is computed ( Eq. 6 ) from which the

tress-dependent kink migration barrier �E km 

(τ ) is computed. We 

erform twenty thousand realizations for three dislocation lengths 

/b = 50 0 , 10 0 0 , 20 0 0 . For each realization, we determine the right

nd left migration distances L right and L left and the two associated 

igration barriers. The relevant barrier is the one corresponding to 

he longer of the lengths L right and L left . Although there are cases 

here the largest barrier is found along the shorter path, their ef- 

ects on the mean migration barrier are negligible (a few %). We 

hus apply the WPM at the mean 3 L/ 4 of the longest segment, 

eading to N = L/w . The results of the SRKM and WPM models 

re shown in Fig. 8 , and excellent agreement is obtained. Finally, 

ig. 8 also shows the analytical result for the mean migration bar- 
9 
ier, Eq. (10) . The agreement is again excellent, demonstrating the 

ccuracy of the fully analytical solution in this regime. 

. Applications 

The analytic theory of kink-migration has been extensively ver- 

fied against simulations. This enables us to apply the theory with 

onfidence to real BCC alloy systems in the dilute limit. Here we 

ombine the kink migration theory with our recent double-kink 

ucleation theory to examine the transition from solute softening 

o solute strengthening in several dilute binary alloys. The chal- 

enges in comparing predictions to experimental data mostly lie in 

btaining accurate input data, especially the solute/screw interac- 

ion energies, and accurate experimental results. 

Experiments measure yield strength versus temperature and/or 

train rate. Results here for the activation barrier are thus related 

o experiments via a standard thermally-activated Arrhenius model 

nd Orowan’s law. The total rate of dislocation motion in terms of 

he rates r dk for double-kink nucleation and r km 

for kink migration 

s 

 = 

(
1 

r dk 

+ 

1 

r km 

)−1 

. (11) 

nder almost all conditions, either r dk or r km 

dominates the rate 

nd thus the total rate is expressed as 

 = ν0 exp 

(
−�H(τ ) 

k T 

)
, (12) 

here the rate-controlling �H(τ ) is the larger of the double-kink 

ucleation and migration barriers and ν0 is an appropriate attempt 

requency [28] . As noted in the introduction, the temperature- and 

tress- plastic shear strain rate ˙ ε at applied stress τ follows from 

rowan’s law as ˙ ε ≈ ρbar and hence 

˙ = ˙ ε0 exp 

(
−�H(τ ) 

k T 

)
, (13) 

here ˙ ε0 = ρbaν0 is the reference strain rate. Experiments impose 

 temperature and strain rate, and hence an experimental enthalpy 

arrier �H 

exp = k T log ( ̇ ε / ̇ ε) . 
0 
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Fig. 9. Predicted barriers for double-kink nucleation �H dk (red) and kink-migration 
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Inverting Eq. (10) gives the yield stress required to achieve the 

mposed experimental enthalpy barrier as 

( ̇ ε, T ) = τc 

[ 

3 . 26 

(
�H 

exp 

� ˜ E p 
− 0 . 035 

√ 

L/b + 1 . 07 

√ 

w/b 

)−1 

−2 . 7 

√ 

b/L 

] 
(14) 

q. (14) constitutes our analytical model for the migration- 

ontrolled strength as a function of temperature and strain rate. 

he only inputs to the theory are the solute/dislocation interaction 

nergies that determine � ˜ E p , the dislocation line length, and kink 

idth. The reference strain rate appears in a logarithm and thus 

as modest quantitative effects. Moreover, in real physical prob- 

ems where the dislocation length is very large, L ∼ 2 × 10 3 b, the 

ink width has rather small effects on final strength predictions. 

Double-kink nucleation occurs at one of the most favorable lo- 

al region of solute fluctuations for the process. At low tempera- 

ures when the most-favorable region dominates, the barrier can 

e written as 

H dk (τ ) = �H 

0 (τ ) + �H̄ 

sol (c, N, τ ) . (15) 

ere, �H 

0 (τ ) is the nucleation enthalpy barrier of the pure ma- 

rix which often takes the form of a Kocks law [29] �H 

0 (τ ) =
H 

0 (0)[1 − (τ /τ 0 
p ) 

p ] q where p and q are fitting parameters and 

H 

0 (0) and τ 0 
p are the zero-stress enthalpy barrier and pure 

eierls stress, respectively. The solute contribution �H̄ 

sol (c, N, τ ) 

s the mean largest reduction in activation energy among all the 

 = L/ 2 w segments, and is [11] 

H̄ 

sol = � ˜ E p G (τ ) 
log (4 π log N) − 4 log N − 1 . 1544 √ 

8 log N 

, (16) 

here G (τ ) describes the stress-dependent double-kink transition 

tate shape in the pure BCC metal under stress. At higher temper- 

tures, additional regions could contribute to enhance the rate. We 

ill use the full solution, as given in [11] , in results shown below

sing the equations in [11] . Of importance here is that all of the

ffects of solutes on the nucleation barrier depend on exactly the 

ame material parameters as derived here for the migration barrier 

 � ˜ E p , w , dislocation length L ). 

With theory for both the migration barrier �H km 

(τ, L ) and the 

ucleation barrier �H dk (τ, L ) , the stress and temperature regimes 

f the controlling plasticity mechanism can be found. A schematic 

esult of the two barriers versus stress, using parameters for real 

-Re (see below), is shown in Figs. 9 (a),(b), and (c) for W-1%Re, 

-3%Re, and W-10%Re, respectively. With increasing solute con- 

entration and at any specified stress, the barrier for nucleation is 

ecreasing and the barrier for migration is increasing. Experimen- 

al conditions of temperature and strain rate determine the acces- 

ible barrier as �H 

exp and the highest-strength mechanism con- 

rols the strength under those conditions. The experimental bar- 

ier at T = 300K and ˙ ε = 5 . 5 × 10 −4 /s is shown in the Figs. 9 . At

%Re, yield is controlled by double-kink nucleation and is lower 

han pure W (solute softening). At 3% Re kink migration con- 

rols the strength but the double-kink nucleation strength is only 

lightly lower; the alloy is still softer than pure W. At 10% Re, the 

ink migration continues to control the strength, with the dou- 

le kink nucleation stress now being much lower. This demon- 

trates the transition in mechanism. Furthermore, at 10% Re, the 

lloy is stronger than pure W, demonstrating solute strengthen- 

ng. At a higher temperature, �H 

exp is higher and both the mech- 

nism transition and onset of strengthening relative to pure W 

ccur at a lower concentration. For example, but not shown, at 

 = 650K ( �H 

exp = 936 meV ) , the strength of W-3% Re is migration

ontrolled and slightly larger than that of pure W. 
10 
.1. Fe-Si alloys 

Experimental yield stresses for Fe-Si (0.52 at%, 1.3 at%, 3.2 at%, 

nd 5 at%) alloys versus temperature at a strain rate of 1 . 7 ×
0 −4 s −1 were reported by [30] . Other data by [31] at 1 and 4 at%,

hown previously [22] , is slightly lower than the data used here, 

nd so the experimental results are not definitive. For predictions, 

e use a reference strain rate of 10 4 s −1 , a dislocation density of 

= 10 12 m 

2 [32] and kink width w = 12 b [11] obtained by GAP 

or pure Fe [33] . The solute/dislocation interaction energy param- 

ter � ˜ E p = 178 
√ 

c meV was obtained previously by Maresca et al. 

15] as the value needed to fit data at 5at% using their non-dilute 

heory, with good agreement of that model at all higher concen- 

rations. The interaction energy parameter differs from that of the 

odel Fe-Si EAM potential because the EAM potential is not quan- 

itative for real Fe-Si. 

Fig. 10 shows the strength vs. temperature as measured and as 

redicted by various mechanisms. The data for pure Fe is shown 

or reference. The predictions are made for the kink migration 

odel presented here, the double-kink nucleation model (Eqs. 

9),(14),(20) [11] ), and also the non-dilute model of Maresca et al. 

pplied at these lower concentrations. The strength-controlling 
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Fig. 10. Yield strength versus temperature, as predicted for the double-kink nu- 

cleation model, kink migration model, and non-dilute model, Fe 1-x Si x alloys at the 

concentrations shown. 
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echanism is the mechanism with the highest strength at a given 

oncentration and temperature. At the low concentrations of 0.52 

t.%, double-kink nucleation is the controlling mechanism, with 

oth kink migration strength and the non-dilute theory being 

uch lower than experiments; the theory predicts almost no so- 

ute effects while experiments appear to show a slight strengthen- 

ng (but see Ref. [22] ). At 1.3 at.%, double-kink nucleation contin- 

es to control strength over nearly the entire temperature range. 

owever, both kink migration and the non-dilute theory are close 

o the nucleation strength near T = 300K. At 3.2 at.%, a transition 

n mechanism is predicted. The kink migration strength is higher 

han the double-kink nucleation strength over the entire tempera- 

ure range. The experiments show a clear strengthening at higher 

, consistent with predictions but slightly higher. At this concen- 

ration, in spite of different contributions to the total strength- 

ning, the non-dilute strength is predicted to be nearly identical 

o the kink migration strength, with differences only at very low 

. The nucleation-to-kink-migration and dilute-to-non-dilute tran- 

itions thus occur at essentially the same concentration. Then, at 

he higher concentration of 5.0 at.%, the alloy strength is signifi- 

antly higher than that of pure Fe, the kink migration strength is 

lso much higher but below the experiments, and the non-dilute 

heory captures the experiments with � ˜ E p having been fit to this 

ata. 

As discussed previously, other literature data on Fe-Si shows 

ery small softening at 1%Si and slightly less strengthening at 4at%, 

oth being more consistent with theory. With such uncertainties in 

he experiments, we consider the parameter-free predictions here 
11 
o capture the major trends versus temperature and concentra- 

ion quite well. We also conclude, however, that there is only a 

ery narrow concentration around 3at% where the kink migration 

echanism may control strength but where the non-dilute mech- 

nisms give nearly identical results. Thus, while increasing Si in 

e-Si shows very weak (if any) softening followed by hardening, 

he traditional transition from nucleation to migration is quickly 

uperseded by the non-dilute theory/mechanisms. 

.2. W-Re alloys 

We now turn to the W-Re system and examine the yield stress 

f this alloy over a wide concentration range and temperatures 

 = 150K, T = 300K, T = 590K, and T = 700K. Experimental data are re-

orted by [10] and [34] which were performed at nearly identi- 

al strain rates of 5 . 5 × 10 −4 s −1 and 8 . 3 × 10 −4 s −1 . We again take

= 10 12 m 

−2 ( L = 1 μm ), as a typical value for well-annealed met- 

ls, and ˙ ε0 = 10 4 s −1 . The kink width in pure W is taken as 12 b [11] .

he data on pure W reported by [10] is used to fit the Kocks model

arameters �H 0 = 1 . 4 eV, τ 0 
p = 1 . 1 GPa, p = 0 . 49 , q = 1 . 69 . Note

hat this fit does not have high accuracy due to the limited data 

ut that it only appears in the double-kink migration model and 

oes not affect kink migration predictions. The solute/dislocation 

nteraction energies were computed previously by first-principles 

FT [35] from which the solute/dislocation interaction energy is 

btained as � ˜ E p = 345 
√ 

c meV. Strength is again predicted as the 

arger of the nucleation and migration strengths. There are no ad- 

ustable parameters. 

Predictions of the strength versus Re concentration for sev- 

ral temperatures are shown in Fig. 11 along with the experimen- 

al data. The experiments are not definitive: the two datasets at 

 = 300K show some differences at low concentrations. Nonetheless, 

he data generally show a transition from softening to hardening 

ith increasing Re at temperatures up to 590K and no softening at 

00K. The theory predicts the transition from softening to harden- 

ng at all temperatures, but with very little softening at 700K. The 

oncentration at the transition is predicted to decrease with in- 

reasing temperature, as observed for 300K, 590K, and 700K. The 

xperiments at 150K suggest a transition below 3%, with strength- 

ning; this is a significant quantitative deviation between experi- 

ent and theory that remains unexplained. However, the experi- 

ents and theory at T = 300K suggest a transition around 3%, and 

here is no mechanistic theory that would predict that the tran- 

ition concentration increases with increasing temperature, so the 

xperiments at T = 150K and 3% Re are inconsistent with any model. 
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he 7at.%Re alloy is predicted to be in the strengthening regime at 

ll the temperatures studied (30 0, 590, 70 0K) and there is very 

ood quantitative agreement with available experiments. 

Predictions of the non-dilute theory of Maresca et al. [15] at 

at.%Re are also shown in Fig. 11 , and also agree very well with

xperiments and the kink migration strength. Thus, as for Fe-Si 

round 3%Si, there is also a concentation domain in W-Re (7% Re) 

here dilute and non-dilute theories give very similar results, in- 

icating a smooth transition. 

Overall, the predictions for W-Re are in good quantitative and 

ualitative agreement with the totality of available experiments. 

ote that no material parameters (beyond those for pure W) were 

tted to achieve this level of agreement. The parameters were cho- 

en based on independent considerations. Hence, we consider the 

redictions of the essentially parameter-free fully-derived statisti- 

al models for double-kink nucleation [11] and kink migration (this 

ork) to be quite good. 

. Discussion 

We have developed an analytical theory for the stress- 

ependent kink migration barrier in random dilute BCC alloys. We 

ave shown that the kink migration process under stress is essen- 

ially the random walk-type ”Wiener process with drift”. The ma- 

erial parameters in the theory are only (i) the solute/screw dis- 

ocation interaction energies leading to a single relevant energy 

uantity � ˜ E p , (ii) the total dislocation length L , and (iii) emerging 

o a play a minor role, the kink-width w in the pure metal. The 

heory has been extensively validated on a model Fe-Si alloy via 

EB calculations and direct stochastic simulations. Combined with 

 recent double-kink nucleation theory that involves the same ma- 

erial quantities, we have thus established a fully-analytic model 

or strengthening of screw dislocations over the full temperature 

ange in the dilute regime concentration. A transition from double- 

ink nucleation and softening to kink-migration and strengthening 

s predicted with increasing temperature and/or concentration. We 

lso find a smooth transition from the dilute theory to a recent 

on-dilute theory in application to both Fe-Si and W-Re alloys. 

Our derived theory rationalizes some results from the Suzuki 

odel. At high temperatures, corresponding to low stresses, the 

econd and third terms in the bracket of Eq. (10) can be neglected. 

lso, in real alloys the dislocation segments length are typically 

arge and so τ
τc 


 2 . 7 

√ 

b 
L . Then, setting the barrier equal to the

xperimental �H = k T log ( ̇ ε0 / ̇ ε) , the strength versus temperature 

an be estimated as 

� α′ � ˜ E 2 p 

k T b 3 
, (17) 

here α′ is nearly constant. The yield strength thus decreases as ≈
 /T and increases linearly with solute concentration since � ˜ E 2 p ∝ c. 

his rationalizes Suzuki’s high-T estimate [2] 

� α
E 2 c 

k T b 3 
, (18) 

he agreement in scalings with T and c arises because Suzuki’s 

ounting of the fluctuations in total solutes passed as the kink 

lides over long distances is captured correctly. However, E and α
iffer from � ˜ E p and α′ , leading to both qualitative and quantitative 

ifferences. 

Existing kMC methods have also made simplifying assumptions 

bout the solute/screw interactions and the kink structure. For in- 

tance, [14] show schematics of a sharp kink (pure edge) so that 

ink glide corresponds to very few solutes entering the advanc- 

ng screw segments. In a real kink, extending over 10 − 20 b, the 

hange in energy due to solutes entering and leaving the kink is 

ore gradual (spread over ∼ 1 / 2 the kink width). Our SRKM and 
12 
PM analysis demonstrate that the effect of the kink width is 

airly small, especially at higher temperatures. The kink width is, 

owever, critical for double-kink nucleation. Thus, kMC approaches 

o tackling the overall problem of nucleation and migration should 

nclude details such as accurate interactions and accurate represen- 

ation of the kinks and double-kink nucleation process. 

The motion of screw dislocations in BCC High Entropy Alloys 

as emerged as an important and challenging issue for theory. One 

ontribution to the strengthening is due to kink migration barriers. 

ecent work has shown that screw motion in complex alloys de- 

ends on a generalized form of � ˜ E p [15,28,36] as 

˜ E p = 

( ∑ 

i, j 

∑ 

n 

c n �U 

n 
i j (a ) 2 

) 

1 
2 

, (19) 

here all atom types n are considered solutes, c n is the concentra- 

ion of atom type n , and �U 

n 
i j 

is the change in interaction energy

f a type- n solute at position (x i , y j ) with the dislocation of the

verage alloy (see [15,37] ) as the dislocation glides by a . The re- 

ults here do not directly apply to screw controlled HEAs because 

EAs adapt to the local energy landscape by forming kinks spon- 

aneously along their length. The dislocation segments are in low- 

nergy environments rather than random environments, and this 

ust be accounted for in assessing kink glide. These aspects will 

e discussed in future work. We further note that the strength- 

ning in HEAs may be controlled by edge dislocations rather than 

crew dislocations [36] , making the kink migration process irrele- 

ant. 

The present theory applies within the standard approximation 

hat solute interactions are weak enough for (i) screw motion to 

ccur one Peierls valley at a time and (ii) the screw core structure 

s not altered by the solutes. The present analysis can be adapted 

o address the first assumption, but that is well beyond the scope 

f the present work. The second approximation has been found 

uitable for most substitutional solutes but not for interstitial so- 

utes such as C, N, and O [38–40] . Interstitial interactions in the 

ore can also be very large such that even the annihilation of two 

inks converging at the site of the interstitial is not sufficient to 

vercome the interstitial interaction energy. Thus, multiple kinks 

re required. These issues are beyond the scope of the present 

ork, but the concepts here can be generalized to address some 

spects of interstitial strengthening. 

In summary, our nucleation and migration models provide 

 complete, accurate, and nearly analytical statistical theory of 

trengthening in dilute substitutional BCC alloys. The set of mate- 

ial properties is small, and the same properties enter both double- 

ink nucleation and kink migration theories. While obtaining these 

roperties remains challenging, we believe the theory here ce- 

ents the long-sought quantitative understanding of strengthening 

n dilute BCC alloys. 
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Fig. A.1. Atomistic modeling of single kink motion. The initial state for the NEB 

simulation is constructed by placing a single solute (top red dot) at the most favor- 

able location and a second solute (bottom red dot) to inhibit motion of left sided 

kink. The final state of the kinked dislocation has the right kink at the far right of 

the sample. Executing NEB with no other solutes then generates a set of configu- 

rations (replicas) connecting the initial and final states and corresponding to kink 

glide. These replicas are then used as the initial path for subsequent NEB studies 

of the same kink motion through a field of solutes randomly distributed over the 

central length of L = 120 b. 
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ppendix A. Simulation details of NEB calculations 

To compute the minimum energy path (MEP) connecting the 

nitial and final states, nudged elastic band (NEB) computations 

41–44] are performed as implemented in LAMMPS [45] . The initial 

tate of the NEB simulations was created as follows. Using the Fe 

attice parameter, a rectangular simulation cell oriented with glide 

irection X || [1 ̄1 2] , glide plane normal direction Y || [110] , and dis-

ocation line direction Z || [ ̄1 11] was constructed. Periodic boundary 

onditions are imposed along X and Z directions, while surfaces 

ormal to the Y -direction are traction-free. The dimensions of the 

imulation cell are L x ∼ 110 ̊A, L 2 ∼ 100 ̊A, and L z ∼ 490 ̊A. A screw

islocation of Burgers vector a/ 2[111] with line direction along Z

s then introduced into the center of the cell by imposing a lin- 

ar displacement u z = −bx/l x for 0 < x < l x on all atoms in the up-

er half of the simulation cell. Subsequently, two Si solutes in the 

roper locations, as discussed in 3.1 , are added (see Fig. A.1 ). This

enerates the initial atomic configuration. The final state has the 

ame structure as the initial state but shifted by a relative to the 

nitial state. Atomic positions are then relaxed by using a combi- 

ation of the FIRE algorithm [46] and relaxation of the cell dimen- 

ions. Convergence is achieved when the norm of the force vec- 

or fell below 10 −6 eV /A and stresses σXX , σXY , and σY Y fell below 

.1 MPa. An initial path of intermediate configurations (replicas) is 

onstructed by linearly interpolating the atomic positions between 

he above relaxed initial and final states. We used 300 replicas and 

nter-replica spring constant was set to 10 −2 eV/ ̊A 

2 . Convergence 

as assumed when the maximum force acting on all of the atoms 

cross all replicas was less than 1 × 10 −3 eV/ ̊A 

2 . 

ppendix B. Activation volume 

Here we address the activation volume V act , of the thermally- 

ctivated kink-migration process. V act is the Burgers vector multi- 

lied by the area swept by the dislocation during the activation 

rocess and is computed as V act = −∂ �H km 

/∂ τ [28] . At the T = 0 K

ow stress, which is the highest stress required for any kink migra- 

ion, V act = 0 is required. The activation volume from Eq. (10) is 

 act = ab 2 

( 

0 . 55 

τ

τc 
+ 

1 . 5 √ 

L/b 

) −2 

. (B.1) 

This decays to zero only as τ → ∞ . Due to the introduc- 

ion of the correction factor, the energy barrier reaches zero 

t a finite τ with a finite V act . This is also a flaw of the

uzuki model. However, in the present model, the activation vol- 

me at the T = 0 K flow stress can be computed analytically as 

 

∗ = ab 2 
(

0 . 019 
√ 

L/b − 0 . 59 
√ 

w/b 

)2 

and at typical dislocation long 
13 
engths of L ∼ 2 × 10 3 b, V ∗ ∼ 0 . 1 abw , which is about one tenth of

hat obtained by Suzuki [2] . 
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