ENAC / PROJET DE MASTER 2020-2021 SECTION DE GÉNIE CIVIL

Finite element investigation of stability bracing force demands of steel moment resisting frame columns under cyclic loading

Author: Meriton Begiraj

Supervisor: Prof. Dimitrios G. Lignos / Andronikos Skiadopoulos, Resilient Steel Structures Laboratory (RESSLab), EPFL

In plane seismic loading

Introduction

Goals

- Acquire a thorough understanding of the out-of-plane behavior of steel MRF columns under cyclic loading
- Assess the current standard requirements
- Establish recommendations for the strength and stiffness of the out-of-plane stability bracing

Methodology

- Review of literature and standards
- Development of a FE analysis procedure validated against experimental data (use of ABAQUS 6.16 software)
- Generalization with a FE parametric study and comparison with standards

Standards

	SIA 263 (2013)	EN 1993-1-1 (2005)	CSA S16:19 (2019)	AISC-360-16 (2016)
Clauses	§4.2.3.7	\$5.3.3(4) \$6.3.5.2(5)B	§9.5 §9.6.2	§6.4(b)
Strength	$1\%N_{Ed}$	$1.5\%N_{Ed}$	$2\%N_{Rd}$	$1\%P_r + 2\%\frac{M_rC_d}{h_0}$
Stiffness	/	/	indirect	$\frac{1}{\phi} \frac{8P_r}{L_{br}} + \frac{1}{\phi} \frac{10M_rC_d}{L_{br}h_0}$

 N_{Ed} : compression force in the column

 N_{Rd} : compression strength of the column

: required axial strength of the column

: required flexural strength of the column

= 0.75 US design procedure (LRFD)

 L_{br} : unbraced length of the column h_0 : distance between flange

centroids

 C_d = 1.0 or 2.0 if beam is subject to

double curvature bending

4. Finite element analysis – Parametric study

High-fidelity member-level modeling approach

Top end boundary conditions

Parametric study matrix

	Name	#
Cross section	IC2,, IC9	8
Offset amplitude	A (L/100), B (L/250)	2
Geometric imp.	Positive, Negative	2
Axial load	10%,20%,35%,50%P _y	4
Brace stiffness	50%,100%,150%K₁ [′]	3

3. Finite element analysis – Validation

Validation against experimental data for 2 cases from Elkady (2012)

- Geometry cross section W24x146 equivalent to HEB600
- Boundary conditions perfectly fixed-fixed
- Loads

Axial load 20%P_v or 50%P_v In plane unidirectional symmetric protocol

- Material
 - A992 Gr.50 equivalent to S355

Voce-Chaboche constitutive law

Geometric imperfections

Local imperfections within limits from Elkady & Lignos (2018)

- Residual stresses
 - Young's distribution (1971)
- Numerical parameters Shell elements S4R

20%P_v or 50%P_v **▼** UDSYM fixed -=3900mm fixed

Results for the maximum stability bracing force demand

Results for the specimen with 50%P_v axial load

- Excellent match for the in-plane behavior
- Overall good match for the stability bracing force demand A shift is accounted for because of the out-of-straightness of the column Strong divergence in the last stage

5. Conclusion

- Local geometric imperfections are fundamental to assess the stability bracing force demands
 - Current standards are not satisfactory for stocky columns L/r_v<50
- Stability bracing force demands are independent of the level of axial load Suggestions
- SIA 263 and EN 1993-1-1: increase strength requirement to 2%P,
- Other standards could adopt an approach similar to AISC-360-16 regarding the stiffness requirement (\dot{P}_{ν} is the yielding axial strength of the column)

6. References

- Elkady, A. and Lignos, D.G., "Full-Scale Testing of Deep Wide-Flange Steel Columns under Multiaxis Cyclic Loading: Loading Sequence, Boundary Effects and Lateral Stability Bracing Force demands",
- Journal of Structural Engineering 144.2 (2018). DOI: 10.1061/(ASCE) ST.1943-541X.0001937. Elkady, A. "Collapse risk assessment of steel moment resisting frames designed with deep wide-flange columns in seismic regions". PhD thesis. McGill University, (2016).