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Abstract— One of the main challenges in underwater robot
localization is the scarcity of external positioning references.
Therefore, accurate inertial localization in between external
position updates is crucial for applications such as underwater
environmental sampling. In this paper, we present a framework
for estimating kinematic and dynamic model parameters used
for inertial navigation. Accurate values of these parameters
result in better trajectory estimation. Our approach can run
online as well as offline, with either choice providing different
advantages. Further, our framework can correct errors in the
past trajectory at each estimation step. By doing so, we are
able to provide improved geo-references for past as well as
future spatial measurements made by the robots. This has
an impact on adaptive sampling methods, which use geo-
tagged measurements for building local spatial distributions
and choose future sampling points. We present results from
field experiments and demonstrate improvement in trajectory
estimation accuracy. We also experimentally show that with op-
timal parameter estimates, robots can tolerate longer intervals
in external positioning updates for a specified acceptable level
of estimation error.

I. INTRODUCTION

Application of mobile robots to sensing tasks in any
environment brings several advantages [1]. Not only does the
use of robots scale better than static sensing nodes in terms
of spatial coverage [1], but robots can also specifically target
regions of higher interest for gathering data [2], [3], [1]. We
have developed the Vertex Autonomous Underwater Vehicle
(AUV) [4] in our laboratory, a miniature, easy to deploy
platform equipped with an environmental sensing payload.
However, localization in underwater environments is a major
challenge, especially with miniature AUVs that lack high-
accuracy sensors such as a fiber-optic gyroscope or a Doppler
velocity log. Satellite-based positioning is unavailable when
the robots are submerged. Visually distinct features are sparse
in natural water bodies, and turbidity may hinder visibility.
Employing acoustic signals is usually the method of choice
for external position referencing in the underwater domain,
but, the drawback is that the time between successive acous-
tic updates is often several seconds. Therefore, accurate
inertial localization is crucial for underwater robots.

Although inertial sensors of high accuracy may be suffi-
cient to perform inertial localization, sensing modules com-
patible with miniature AUVs (e.g., MEMS based devices) do
not offer the required accuracy. Fusing these measurements
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with a dynamic model of the robot enhances the accuracy of
the position estimates [5]. However, this requires knowledge
of a wide range of parameters that make up such a model.
Measuring or estimating some of the parameters (such as
hydrodynamic constants) can be difficult, time-consuming
or even require special equipment. Further, some parameters
such as mass and actuator properties may differ from one
robot to another. They may also change, for example when
new equipment or sensors are added on the robot.

In this paper, we present a method for automatically
estimating kinematic and dynamic parameters online using
only on-board sensors. In doing so, our objectives are three-
fold. Firstly, we seek to improve the accuracy of inertial
localization in between successive external position updates.
Secondly, we aim to correct errors in the past trajectory by
recomputing it using the newly obtained parameter estimates.
This is important for adaptive sampling methods such as [6],
which rely on accurately geo-referenced past measurements
to decide future sampling locations. Finally, we aim to
calibrate the parameters for several robots. Identical robots
may have slightly different parameters owing to different on-
board equipment and differing wear and tear over time.

A number of methods exist in the state-of-the-art for
identifying model parameters of robots. Kelly et. al. in [7]
estimate geometric and camera parameters using camera
images and IMU measurements. They add the parameters
to be estimated as state variables to an Unscented Kalman
Filter (UKF) framework. A similar approach is presented
in [8]. An approach based on error-minimization for sensor
calibration is presented in [9], which is applied offline
to recorded datasets. Authors in [10] take an information
theoretic approach to asses the usefulness of robot operation
data before using them for re-calibration. The latter two
perform parameter identification offline. All of the above
use camera images, which are used to deduce relative pose
between successive measurements.

Approaches such as [11], [12], [13] attempt to estimate
dynamic or inertia parameters, usually to be fed into a model-
predictive control module. In [11], the authors rely on an
unspecified absolute pose sensor to estimate parameters using
an Extended Kalman Filter (EKF). In [13], a motion capture
system is used to observe absolute robot poses. Burri et. al.
in [14] use a Maximum Likelihood approach for parameter
identification, which is performed offline. They use a camera,
IMU and an external tracking system.

Online methods such as [7], [11] often estimate param-
eters as additional state variables in an EKF framework.



A drawback of such approaches is that the parameters are
rarely directly observed, especially if the measurements are
sparse. In order to cope with this partial observability, ad hoc
workarounds such as inclusion of intermediate state variables
are necessary.

In this work, we used GNSS or an acoustic range and
bearing system for obtaining absolute position. Suitable
tracking systems for accurate pose measurements at a high
frequency for outdoor aquatic environments are unavailable.
Indoor or controlled environments such as pools are too
small to perform adequate motion. Both GNSS and acoustic
systems are less accurate and have low update rates (100 ms
for GNSS, a few seconds for acoustics) compared to the
systems used in the aforementioned works. Note that they
also only measure position, not full pose.

Our work takes an approach similar to other error-
minimization based methods. However, in order to deal with
sparse position measurements, a timestamped history of all
robot control and measurement updates is maintained. We
use the sum of Kalman update errors (product of Kalman
gain and innovation) over a window of time as the error
metric to be minimized. When new external position infor-
mation is available, error minimization is performed over a
specified window of the measurement history that includes
several position measurements.

This approach offers several advantages. To begin with,
the error metric accounts for uncertainty in measurements
and state estimates. This is crucial for acoustic position-
ing devices, since the uncertainty in their measurements is
directional and dependent on relative positions of acoustic
beacons and robots, as explained later. In addition, this for-
mulation makes it easy to integrate our method into any kind
of state estimation framework with minimal modification to
it. In this paper, we plugged the parameter estimation frame-
work to an existing EKF framework. Finally, our approach
allows for correction of possible errors in past trajectory by
tracing a desired length of the history and recomputing past
estimates using updated parameters.

The proposed method can run both online or offline,
each providing different benefits. Online execution uses on-
board information to estimate parameters on-the-fly, but
the computational budget is limited. They are suited for
parameters that can change quickly such as drift in yaw
angle. Offline execution, on the other hand, is not constrained
by computational cost, and can perform estimation using a
larger amount of data. They are well suited for parameters
that are likely to remain constant or change rarely, such as
physical properties of the robot.

In the rest of this paper, we describe our method in detail,
and evaluate it using real world experiments as well as
simulations in which real-world data are plugged in.

II. RELEVANT SYSTEM COMPONENTS

A. Robots

Two different robot platforms are used – the Vertex AUVs
[4] and Autonomous Surface Vehicles (ASVs), shown in
Fig. 1. The AUVs and ASVs share the same sensing and

Fig. 1: Above: The Vertex AUV with its sensor suite in the front. The
AUV is about 70 cm long, weighs 7 kg. Below: The ASV with an acoustic
transceiver. The ASV is about 50 cm long and weighs around 2 kg. The
acoustic transceiver is suspended in water from the rear of the robot.

computation hardware. The ASVs serve as mobile acoustic
beacons, or are used as surrogates for AUVs for experimental
verification of new methods, using GNSS as ground truth.

The AUVs weigh 7 kg, are 0.7 m in length and are actuated
by five thrusters. Two thrusters provide forward propulsion
and three are used for attitude control. The ASVs weigh
2.5 kg and are 0.6 m long. They are actuated by two pro-
pellers, which provide differential-drive-like maneuvering.

B. Sensing

The robots are equipped with an Xsens MTi-1 MEMS
IMU for inertial measurements. Along with acceleration and
angular velocity, it also provides a fused attitude estimate.
The accuracy along the roll and pitch axes is 0.5◦. A magne-
tometer provides referenced yaw angle with an accuracy of
2.0◦, but owing to magnetic disturbances induced by motor
current, it is not used. Therefore, we need to track drift in
yaw angle in addition to knowing initial heading.

A uBlox GNSS receiver provides absolute position with
an accuracy of around 1 m on the surface. On the AUV, a
pressure-based depth sensor provides an accurate measure-
ment of depth. A DiveNET Commander acoustic positioning
system [15] provides range and bearing measurements. It
uses a base station equipped with an Ultra Short Baseline
(USBL) receiver array for measuring range and bearing to
a target. It transmits these measurements back to the target,
which is connected to the robot. Accuracy characteristics will
be shown later in the paper.

C. Coordinate systems

In our calculations, we use two different coordinate sys-
tems – a ground-fixed, local level frame with an NED (North-
East-Down) axes convention, and a robot-fixed moving frame
whose axes definition is shown in Fig. 2. We denote the
frame of reference of a vector by a subscript ‘g’ and ‘b’ for
ground-frame and robot-body-frame respectively. Rotations
are represented using the quaternion notation.

D. Dynamics model

In between acoustic or GNSS updates, a dynamics model
and IMU measurements are fused using an EKF framework
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Fig. 2: Left: Forces on the robots (AUV or ASV). Right: Body frame and
ground frame (NED) coordinate systems.

for inertial localization. We use a simplified dynamics model
that uses motor commands to compute thrust, and takes into
account mass, inertia and hydrodynamic drag forces. Fig. 2
shows the forces acting on the robots.

1) Linear dynamics: First, motor commands,
[u1, u2, ...ui] are sent to the motors in terms of the
desired rotational speed of each propeller. We compute the
thrust produced by each propeller i as

Fi = ku2i , (1)

where k is the thrust constant of the propellers, and i ∈ [1, 2]
for the ASV, i ∈ [1, 5] for the AUV. All propellers on a
particular robot are identical. We calculate the forces due to
viscous drag on the robot body in the robot frame ~Fdrag as

~Fdrag =

−sign(vrx) · kxv2rx−sign(vry) · kyv2ry
−sign(vrz) · kzv2rz

 , (2)

where kx, ky, kz are the viscous drag constants along the
body axes and ~vr,b = [vrx, vry, vrz]

T is the relative velocity
between the robot and water stream, in the body frame.
Essentially, in each direction, the drag force is proportional
to the square of this relative velocity and acts in a direction
opposite to it. ~vr,b is computed by appropriate rotation of
the said relative velocity in the ground frame as

~vr,b = q−1 (~vg − ~sg)q, (3)

where ~vg is the estimated velocity of the robot and ~sg =
[sx, sy, sz] is the water stream velocity, both in the ground
frame. q is the quaternion representing robot attitude, and
the operation q−1 (~v)q rotates the vector ~v, transforming it
from ground frame to body frame representation.

We assume that the drag constants ky and kz are equal,
and we refer to it with kyz . This is warranted since the AUV
geometry along those axes is largely similar, and ASV has
no vertical motion. We also assume sz = 0.

The AUVs are deliberately trimmed to be slightly posi-
tively buoyant, and ASVs are floating devices. We assume
that the weight of the robot nearly cancels out buoyancy,
and hence, both terms are ignored. The net force is then a
function of five quantities.

~Fnet,b(k, kx, kyz, sx, sy) =
(
~Fthrust + ~Fdrag

)
. (4)

2) Rotational dynamics: The shape of the AUV is stream-
lined only along its longitudinal (x) axis. As a result, rotation
about all three axes is highly damped. Further, the AUV is
trimmed in a way that the centers of mass and buoyancy

coincide. As such, the rotational motion of the AUV is
slow enough that the update rate of the IMU (100 Hz)
is sufficient to compute orientation. Therefore, we do not
consider rotational forces in the dynamics model, instead
relying only on the orientation computed internally and
reported by the Xsens IMU module. A correction is applied
to the yaw orientation, as explained in the next section.

E. EKF framework

1) State Vector: The state variable comprising of the
position and velocity in ground frame and acceleration in
the body frame is formulated as

X ,
[
~xTg , ~v

T
g ,~a

T
b

]T
(5)

We do not include the variables representing attitude since
they are not predicted by the model in this work. When
predicting angular motion in the model, the state can be
expanded correspondingly to include the attitude variables.

2) Attitude: The orientation reported by the Xsens IMU is
used directly. A correction θe is applied to the yaw (heading)
orientation, since it is both unreferenced (since we do not use
the magnetometer), as well as drifts over time. The corrected
attitude is computed as

q = q(θe)qraw, (6)

where q(θe) is the quaternion corresponding θe, which is
estimated separately as a parameter.

3) Process update: A process model f(.) is used to
compute the future state as

X̂t+dt = f
(
Xt, dt,P

)
, (7)

where t denotes time and P is the set of parameters which
is introduced later in Section III-A. Some of the parameters
were used earlier in Eq. (2). The individual state components
are computed as

x̂t+dt
g = ~xtg + ~vtg · dt, (8)

v̂t+dt
g = ~vtg + q

(
~atb
)
q−1 · dt, (9)

ât+dt
b = (1/m) · ~Fnet, b, (10)

where q is the attitude quaternion introduced earlier in
Eq. (6), used here for the inverse operation. The acceleration
is calculated using the dynamics model in Eq. (4). The
covariance matrix representing motion noise (not shown
here) is determined empirically.

4) Measurements: Measurement updates are performed
individually for IMU, GNSS or acoustic information, using
independent measurement models. The ‘update error’ ei is
defined as the product of the Kalman gain and innovation.

ei = Ki

(
zi − h(X̂)

)
, (11)

where zi is the ith measurement, Ki is the Kalman gain
computed during this measurement, and h(.) is the mea-
surement model of a particular sensor. The sum of errors
corresponding to a set of measurements is used later in the
optimization framework.



Variable Description
θe Offset between actual and estimated heading
sx Water stream velocity x (ground frame)
sy Water stream velocity y (ground frame)
k′ = k/m Ratio of thrust constant to mass
k′x = kx/m Ratio of drag constant to mass
k′yz = kyz/m Ratio of drag constant to mass

TABLE I: List of variables to be estimated.

5) Initialization: The initial position is obtained form
GNSS before launching the robots. The initial velocity and
acceleration can be assumed to be zero. The initial heading,
if unknown, will result in a large θe, which will be estimated
as a parameter eventually. The gyro biases are internally
estimated by the XSENS IMU module by leaving the robot
stationary for a few seconds.

III. METHODOLOGY

This section formulates parameter estimation as an opti-
mization problem, and describes our approach in detail.

A. Parameters to estimate

The set of parameters to be estimated, P, consists of the
following variables.

P ,
[
θe, sx, sy, k

′, k′x, k
′
yz

]
. (12)

Table I provides a description of the parameters. The last
three variables correspond to the dynamic model parameters
in Eq. (4) and always appear as a ratio with mass. Therefore,
the ratio itself is estimated.

The parameters can be categorized into two types – fixed-
parameters do not change often or during operation, such
as the vehicle model parameters, while variable-parameters
change depending on the situation or during operation, such
as the yaw drift and water stream velocities.

B. History management

We maintain a timestamped, chronological history of in-
formation pertaining to robot state updates, as illustrated in
Fig. 3. This includes all the measurements (IMU, acoustics,
GNSS etc.) as well as motor commands output by the
controller. Each of these entities is called an update node,
denoted by uti, where i denotes the index of the node, and
t the timestamp. Note that multiple update nodes may have
the same timestamp, for example, when there are concurrent
measurements from two sensors. We also record the initial
state of the robot at t = 0. Additionally, we record the state at
points of time when absolute position measurements (GNSS
or acoustics) are received. These are called anchor states.

Starting from an appropriate anchor state, we can use
the chain of update nodes for successive EKF updates to
compute the estimated robot state, X̂, at any point of time
in history. We will also need the values of parameters in P.

X̂t2 = F t2
t1

(
Xt1

a ,U ,P
)
, (13)

where F t2
t1 is some function that performs this computation

from t1 to t2, and U := {uti | t ∈ [t1, t2]} is the sequence
of all the update nodes between the two points of time. In
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Fig. 3: Timestamped history consisting of update nodes representing state
transition information. Each colored circle corresponds to an update node,
for e.g., IMU measurements, Motor Commands (MC), etc. Anchor states,
shown in dark green squares, are recorded after an acoustic or a GNSS
position update. The function F computes the state at t using the previous
anchor state and the intermediate sequence of update nodes.

Fig. 3, the computation of state at t is illustrated. Note that
we treat motor commands as a type of measurement, and
define the corresponding update error to be zero.

C. Optimization

A series of EKF updates are performed in Eq. (13). The
net error in calculation of the estimated state is defined as a
function of the parameters, P as

E[t1,t2](P) =
∑
U
‖ei‖2, (14)

where U is the set of nodes within the time window from t1
and t2, and ei is the update error corresponding to node i, as
computed in Eq. (11). Note that ei is computed as a product
of Kalman gain and innovation. The key advantage of this
is that the uncertainties in the measurement and the state
estimate are accounted for, which is important for acoustic
positioning measurements, which have non-constant error
characteristics. For a measurement with a larger uncertainty,
the resulting error will be lower.

We seek to find values of parameters P that result in the
most accurate inertial positioning. To do so, we need the
inertial estimates to be in agreement with absolute position
information. We achieve this by minimizing the measurement
update error in Eq. (11) over a time window [t1, t2], spanning
several GNSS or acoustic measurements. Formally, we seek
to solve the following optimization problem:

P∗ = argmin
P

E[t1,t2](P). (15)

For a valid solution, at least two absolute position measure-
ments are required within the time window.

D. Past trajectory correction

Once optimal parameter estimates are obtained for a
particular window [t1, t2], the past states are recomputed
again with the newly obtained parameters, starting from an
appropriate anchor state. Thus, the past trajectory of the robot
is also corrected.

E. Window size, online and offline execution

The computational complexity increases with the size of
P and the length of the time window [t1, t2]. A larger
optimization is more likely to contain sufficient motion and
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Fig. 4: A subset of the trajectories of robots in Lake Geneva from which data
is used for parameter estimation. Experiments were performed with three
ASVs and one AUV on several different days and two different locations
near the shore of Lake Geneva.

measurements to render all parameters sufficiently observ-
able. It results in better estimation of parameters that are
likely to be static or change slowly. However, for parameters
that may change quickly (e.g., local stream velocity), longer
time windows result in slow or no convergence.

Given the constrained online computational budget, online
estimation is performed for variable parameters with small
time windows. Offline estimation is preferred for fixed
parameters, which are unlikely to change during normal
operation of the robot. These parameters are then saved and
used as fixed values during normal operation.

F. Suboptimal or locally optimal estimates

Convexity of the optimization problem with respect to all
the parameters is not guaranteed. Therefore, the obtained
parameters may be a local optimum. However, if they result
in a lower inertial positioning error in the short term, they are
acceptable. A solution causing large errors will be updated
in the subsequent optimization steps.

In practice, with windows containing insufficient motion
(e.g., if robot was at rest), parameters show large variation
between successive optimization steps before converging
eventually. To avoid this, parameter bounds need to be chosen
carefully, for example, corresponding to physical limitations.
Further, we use the standard deviation between the last n = 3
parameter estimates as a measure of non-convergence.

IV. EXPERIMENTS

Experiments as well as data gathering missions were per-
formed in Lake Geneva with three ASVs and an AUV. The
ASVs are identical but are in varying states of wear after use.
In particular, the brushed motors are prone to wear and rust-
ing. They also have slightly different mechanical attachments
for external peripherals such as acoustic transceivers. Robot
trajectories were pre-defined and specified as a sequence of
waypoints. They were programmed to travel towards the next
waypoint until the last waypoint is visited. A waypoint is
considered to have been visited if the robot reaches within a
radius of 3 m.

Experiments were performed on days with mild-to-no
wind. The GNSS positions are available at around 1 Hz,
depending on the quality of the received signal. The true and

estimated (inertial) positions were recorded. Errors in inertial
position estimates were due to wind/water flow, unknown
initial heading, heading drift and other external factors.

A. Offline parameter estimation

We first recorded control inputs, INS measurements and
GNSS positions from operation of robots on the surface on
several trajectories. A plot of a subset of robot trajectories
is shown in Fig. 4. We used the recorded data to perform
offline estimation of fixed parameters, [k, kx, kyz] for each
robot separately. The optimization window was set to the
entire length of a combination of several trajectories, for
a particular robot i.e., using all the measurement nodes
from several mission datasets. We found slight differences
in model parameters between robots, as expected. Results in
Section V-A show significant reduction in error in the inertial
trajectory computed with optimal parameters.

B. Online parameter estimation

By using the optimal values of fixed parameters obtained
in the previous step, we ran the estimation procedure online
to estimate the variable parameters, [θe, sx, sy]. We were
able to improve the accuracy of estimation of the robot
trajectory between GNSS updates, as shown in Section V-
B. To demonstrate this clearly and to partially emulate the
use of acoustic positioning devices, we restricted access to
GNSS information to once in 8 s, a lower update rate than
that of an acoustic beacon. We show in Section V-C that we
are able to calculate an updated, improved estimate of the
past trajectory using the newly estimated parameters.

C. Online estimation using acoustic range and bearing

Finally, we performed online parameter estimation using
acoustic range and bearing measurements. We operated the
robots on the surface and recorded GNSS positions for
ground truth. The results are shown in Section V-D. The
acoustic positioning system consists of a base station with
a USBL receiver array deployed by attaching it to a rigid,
submerged mount near the shore, and a single channel
transceiver mounted on each robot. The base station uses a
query-response cycle to measure range (from two way time-
of-flight) and bearing (from angle of arrival). It then transmits
this information back to the robot. Therefore, each range and
bearing measurement requires three transmissions in total,
and takes 4.5 s, including idle time to avoid interference.
With N robots served by the base station, the update interval
for each robot would be 4.5N s.

The error characteristics of the system (after outlier rejec-
tion) are shown in Fig. 5. We found a very small change in
accuracy with increasing distance with this system. Note,
however, that the for a given error in bearing angle, the
uncertainty in the calculated position increases with increas-
ing range. For example, with increasing distance from the
beacon, the uncertainty in the measured position increases
along the tangential direction, while that in the radial direc-
tion remains largely the same. This error characterization is
used to set the measurement uncertainty parameters in the
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Fig. 5: (a): Characteristics of error in range and bearing measurements for various distances (range). (b,c): Distribution in error in range and bearing
measurements at 20 m range, with a Gaussian fit, after outlier rejection.

Fig. 6: Comparison of trajectories estimated with old non-optimal as well
as optimal parameters. The trajectory estimation as well as parameter
optimization was done offline by using real robot data. The RMSE error
in both kinds of estimated trajectories is shown in Table II. Note: The
trajectories have been offset in the plot to avoid overlap for clarity.

k′ k′x k′yz RMSE of estimated traj.

ASV.Old 8.0 2.0 0.3 Old param Opt. param

ASV.1 8.1 1.71 0.155 7.62 m 3.57 m

ASV.2 10.33 1.85 0.15 3.04 m 1.66 m

ASV.3 9.26 1.82 0.14 5.72 m 1.96 m

AUV 4.42 0.55 0.07 12.95 m 6.53 m

TABLE II: Left: Values of estimated parameters for different robots. The
three ASVs have slightly different parameters due to different attachments
and wear over time. The old, pre-optimization parameters are also shown.
Right: RMS error of inertial trajectory estimated with old parameters as
well as newly obtained optimal parameters.

corresponding EKF measurement model, and accounted for
by the error metric used for minimization.

V. RESULTS

A. Offline estimation

Table II shows the combination of fixed parameters for
each robot obtained after offline estimation. To demonstrate
the effectiveness of our approach, we tested the new pa-
rameters on a separate testing dataset. We recomputed the
inertial trajectory of the robot without using any GNSS mea-
surements (except for initial positions) with old as well as
new parameters. Fig. 6 shows a comparison of the estimated
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Fig. 7: Online estimation of variable parameters. The trajectory estimates
with and without parameter optimization are identical initially, shown by red
circles. After a few optimization steps, optimal values of variable parameters
result in a more accurate trajectory estimate.

trajectories. The RMS error in the trajectories computed with
old and optimal parameters is shown in Table II. Optimal
parameters result in a significant reduction in error.

B. Online estimation

Fig. 7 shows a plot of the estimated trajectory with and
without online estimation of variable parameters. GNSS
updates were restricted to once in 8 s (but were continually
recorded for ground truth). We deliberately chose a trajectory
with a high initial heading error (∼ 30◦). The optimization
window was set to include the latest three GNSS updates
(roughly 24 s long). The optimization was performed after
each new GNSS update (roughly every 8 s). The error
in the estimate is nearly identical initially, both with and
without online parameter estimation. However, after the
first three optimization steps, optimal parameters result in
a significantly better trajectory estimate. The initial heading
error does not get corrected without parameter estimation.

C. Past trajectory correction

To demonstrate this, we delayed the optimization process
until after a few GNSS updates. At this point, we performed
the optimization and used the newly estimated variable
parameters ([θe, sx, sy]) to trace the recorded measurement
history and recompute the past trajectory. We used the same
scenario as the previous section – GNSS updates once in 8 s,
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optimization window of 24 s. Fig. 8 shows the section of the
trajectory after which the first optimization is performed, and
the newly corrected past trajectory.

D. Parameter estimation with acoustic positioning

Trajectories estimated with the acoustic positioning system
are shown in Fig. 9. GNSS was available to the robot
only before launch, to provide the initial position. In the
rest of the experiment, only acoustic range and bearing
measurements were used for position updates, and GNSS
was recorded for ground truth. Parameter estimation was
performed after every acoustic measurement, and the window
size for estimation was set to 15 s (encompassing three last
range and bearing measurements). The estimated trajectory
with parameter optimization has better accuracy, mainly as
a result of correct estimation of heading error. Note that
in Fig. 9b, the heading drift increases significantly in the
inertial trajectory towards the end. This is estimated by the
optimization framework, as shown by the increasing error
in the estimated heading error in Fig. 9c, resulting in better
inertial estimation in between acoustic updates.

E. Evolution of trajectory error

The error in estimated position (distance between true and
estimated positions) increases in between external position
updates, when the robot is performing inertial estimation.
Minimizing this error will allow for longer intervals between
position updates, while still maintaining the error below a
specified level. Fig. 10 shows the evolution of instantaneous
error in the estimated position for different GNSS update in-
tervals. This data corresponds to the trajectory in Section V-
B, which had a high initial heading error. While GNSS was
continuously available, we restricted access to it to once in 4,
8 or 12 s, and recomputed the estimated trajectory with and
without parameter estimation. The window size for parameter
estimation is set to include the last three GNSS updates, i.e.
3× the update interval.

With online parameter estimation enabled, once the pa-
rameter values converge, the estimated trajectory shows sig-
nificantly lower estimation error. Results in Fig. 10 show that

for a specified level of acceptable error, optimal parameter
values can tolerate longer intervals between absolute position
updates. This is important in the context of acoustic posi-
tioning systems, which have long update intervals especially
when shared by several robots.

F. Computational overhead

We used gradient descent to solve the problem in Eq. (15)
and obtain optimal parameter estimates. The most expensive
component of this operation is the evaluation of the error
E[t1,t2](P) defined in Eq. (14). It involves computation of
the EKF process and measurement updates corresponding to
the time window [t1, t2]. For a time window of 15 s, this
evaluation takes about 10 ms. In practice, online estimation
of the three variable parameters [θe, sx, sy] typically requires
30-50 evaluations of the error before convergence. We have
used a 15 s time window with an acoustic update interval of
4 to 5 s. This amounts to about 300-500 ms of time spent on
the computation. Since the computation is performed every
5 s, this delay is affordable.

Our system consists of a microcontroller which handles
low-level control in real-time, and a companion computer,
which performs the parameter estimation. The companion
computer is a Raspberry Pi Zero with a single core 1 GHz
processor and 512 MB of RAM, running C++ code compiled
with -O2 optimization flag. For experiments of usual length
of about 15-20 minutes, the RAM is sufficient to store the
measurement and control history.

VI. CONCLUSION

In this paper, we have presented an approach for estimating
parameters for aquatic robots, using only GNSS or acoustic
absolute positioning information. It can run both online dur-
ing operation, or offline using recorded data. We performed
estimation of fixed parameters offline for several robots. The
parameter values differ for identical robots due to differing
levels of wear after use and different on-board peripherals.

We evaluated our approach with real-world experiments
using GNSS as well as acoustic range and bearing mea-
surements. We showed that optimal parameter estimates
result in improved inertial localization accuracy. We also
showed that by estimating variable parameters online, we
can tolerate longer intervals between position measurements
for a given level of acceptable position error. The presented
method can also correct the past trajectory online after a
parameter optimization step. This is useful in experiments
where improved estimates of past trajectory can enhance
performance, such as adaptive sampling.

In the context of aquatic robotics, communication and
external position references are sparse resources. Our ap-
proach addresses this challenge by exploiting computation,
which has become inexpensive in both price and power
consumption in the recent years.

We used the Kalman update error as the residual to be
minimized for theoretical reasons. In future, we will evaluate
other formulations of the minimization problem, in particular
using Maximum Likelihood. Further, we have not considered
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Fig. 9: (a,b) Two trajectories estimated with absolute positioning only from acoustic range and bearing measurements. GNSS data was recorded for ground
truth. Estimated trajectories with and without parameter optimization are shown. (c) Estimation of heading error parameter, θe, in the trajectory in (b). The
inertial trajectory shows increasing heading drift towards the end in (b), which is correctly estimated.
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Fig. 10: Evolution of error in position estimates for various GNSS position update intervals. Note that the error drops each time there is an external position
update. Optimal parameters result in lower error in estimated position, with 95 % of the samples below the level indicated by the blue horizontal line.

the relative positions between the GNSS receiver, IMU and
acoustic receiver, assuming them to coincide with the center
of mass. Given that the localization errors in aquatic robots
are of the order of few meters, this assumption is warranted.
However, accounting for these geometric relationships can
potentially result in further improvement.
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