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Abstract— Accurate localization is one of the biggest chal-
lenges in underwater robotics. The primary reasons behind
that are unavailability of satellite-based positioning below the
surface, and lack of clear features in natural water bodies for
visually aided localization. As such, the common method of
choice for external position referencing in underwater robots
is the use of acoustic signals for computing range or direction
of arrival. To that end, we have developed an acoustic range
based navigation system with floating, movable beacons. In this
paper, we present an approach for planning the trajectory of
acoustic beacons in a way that they provide the best possible
navigation support for a group of underwater vehicles. We use
an information theoretic approach to beacon path planning that
minimizes the group’s position uncertainty. We evaluate our
approach with realistic simulations calibrated using real-world
data, and present results.

I. INTRODUCTION

The physical properties of water limit application of
common outdoor robot localization methods to underwater
robots. The opacity of water to electromagnetic waves ren-
ders satellite-based positioning as well as radio communica-
tion unusable. Further, vision-based methods are not reliable
due to turbidity or lack of proximity to physical features in
natural water bodies. Highly accurate inertial sensors may
offer acceptable positioning accuracy, but are expensive and
often not compatible with small-sized underwater robots. A
common approach to underwater localization and communi-
cation, therefore, is to employ acoustic signals [1]. The time
of arrival of an acoustic signal is then used to either compute
range (based on time-of-flight) or direction of arrival (with a
multi-receiver array) to a transmitting beacon, whose position
must be known. A series of such geometric measurements
are used to deduce underwater position. Accurate on-board
positioning is necessary for underwater robots to follow
a pre-planned trajectory, and to provide an accurate geo-
reference for any spatial data collected.

We are developing Autonomous Underwater Vehicles
(AUVs) for environmental sensing in lakes and coastal areas
[2]. We have previously presented a navigation system using
surface beacons at known positions that provide a series of
range measurements to aid underwater localization [3]. The
beacons could transmit their own positions using acoustic
communication, and therefore did not need to be stationary.
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Fig. 1: Schematic showing effect of beacon placement, and reflections with
long distances.

However, the motion of the robots and beacons was unco-
ordinated, which poses a number of drawbacks. First, the
accuracy of range measurements decreases with increasing
distance, as we will show later. This is because the acoustic
signal strength drops as a square of distance, making the
received signal susceptible to noise from the environment
and the motors. The occurrence of outliers due to echoes and
reflections also increases with increasing distance. Second,
certain relative position configurations (such as collinearity
between two beacons and a robot) provide range measure-
ments resulting in position updates with high error. This is
illustrated in Fig. 1.

In this paper, we present an actively controlled beacon
system for providing localization support. Each beacon is
mounted on an Autonomous Surface Vehicle (ASV), whose
trajectory is controlled in a way that the aforementioned
problems are avoided. Further, they are commanded to move
to a position that provides the underwater robots with the
highest possible gain in position information.

Much of the existing work in underwater acoustic localiza-
tion utilizes beacons deployed at a known location, usually
on the surface [1], [4]. Becker et. al. in [5] presented an ap-
proach inspired by Simultaneous Localization and Mapping
(SLAM) to localize both the robot and a single fixed beacon
with unknown position but known depth. By using synchro-
nized clocks, range measurements can be obtained from a
single acoustic transmission with known transmission time,
as opposed to a round trip exchange. In [6], a multi-channel
receiver array was installed on the robots and synchronized
clocks were used to perform range and bearing measurements
with one-way signal transmission from a single beacon. The
beacon was fixed. Guo et. al. in [7] perform localization
considering that an anchored beacon can sway. However,
beacon mobility is not actively controlled. In [8], the authors
implement an acoustic network that also provides timing
information to enable range measurements from one-way
transmissions. They also recognize that fixed beacons limit



the operational area of the robots. In our previous work
[3], the beacons were mounted on surface robots, making
them mobile. However, mobility was only used for easy
deployment and not actively controlled to extend the area
of operation. All the aforementioned approaches suffer from
the drawbacks outlined earlier.

In [9], AUVs equipped with a multi-receiver array measure
range and bearing to a beacon. They use this to localize
themselves and also maintain a fixed relative position with
respect to the beacon. Then, the AUVs move in response to
motion of the beacon, effectively sidestepping the problem
of limitation in operational area. However, it is the beacon
that influences the AUV motion in a centralized fashion, not
the other way around.

In contrast, we seek to develop a method for surface
acoustic beacons to move automatically in response to the
localization needs of AUVs, in a way that the drawbacks
outlined earlier are avoided. In a similar vein, several ap-
proaches have previously been developed for localizing fixed
sensor nodes at unknown locations in a Wireless Sensor
Network (WSN). Erdemir et.al. [10] proposed a method
where a mobile beacon traverses an optimal path that pro-
vides sufficient range measurements to the fixed nodes for
localization by trilateration. Note that here the beacon is
mobile, while the localization targets — the sensing nodes —
are static at unknown positions. Other approaches addressing
the same problem have been presented in [11], [12], [13]. The
distinction in the robotics problem is that both the beacon
and the localization targets — the AUVs — are mobile, and
the positions of the AUVs are not completely unknown.

We consider AUVs and beacons equipped with acoustic
transceivers that can also calculate range based on time-of-
flight, and broadcast their positions. The beacons, being on
the surface, obtain their position from a Global Navigation
Satellite System (GNSS), while the AUVs estimate their
position by fusing inertial measurements with range mea-
surements. The AUVs perform environmental sampling, or
any other activity autonomously. The AUVs also periodically
broadcast their estimated position. Then, at each time instant,
we calculate the future desired position of the beacons
such that the next cycle of updates results in the maximum
reduction in collective uncertainty in AUVs’ positions, and
the beacons remain sufficiently close the the group of AUVs.

We tested our approach with realistically simulated exper-
iments. The simulations were calibrated to the real-world
performance of acoustic transceivers. We show that our
approach for path planning of mobile beacons improves the
localization accuracy in comparison to static beacons as well
as mobile beacons moving in a fixed formation.

II. PRELIMINARIES AND SYSTEM COMPONENTS

We consider deployment of a team of AUVs for any
cooperative activity, for example, environmental sampling.
The AUVs plan their own path, possibly adapting it during
operation. The only assumption we make about AUV trajec-
tories is that they are always within a distance of d,x from
each other such that dp,x < Tmax, Where 7., is the maximum

Fig. 2: Above: The Vertex AUV with its sensor suite in the front. The
AUV is about 70 cm long, weighs 7 kg. Below: The ASV with its acoustic
transceiver. The ASV is about 50 cm long and weighs around 2.4 kg.

range of the acoustic transceivers. We also deploy mobile
acoustic beacons mounted on ASVs. The beacons have no
prior knowledge of the motion of the AUVs. Our goal is to
estimate optimal positions for the beacons in real-time. This
section introduces the robotic platforms considered in this
work and relevant subsystems.

A. Robots

We consider two different kinds of robots in this work
— ASVs and Vertex AUVs [2]. The AUV is a small, light
weight (70 cm, 7 kg) platform equipped with a suite of
environmental measurement probes. The ASV is 80 cm
in length and weighs 2.4 kg. The robots are shown in
Fig. 2. The AUV and ASVs have the same sensing and
computation hardware, consisting of an Inertial Measurement
Unit (IMU), an acoustic transceiver and a GNSS receiver.
On the AUV, the GNSS receiver works only when it is not
submerged, while ASVs benefit from continuous GNSS and
radio communication.

In this paper, the ASVs function as mobile acoustic bea-
cons and provide localization support to the AUVs. By com-
munication their own position obtained from GNSS using
the acoustic transceivers, they provide range measurements
from a known reference point.

B. Position estimation

An Extended Kalman Filter (EKF) is used for state esti-
mation, including position. The state comprises of position,
velocity and acceleration:

X 2 [# 57, (1)

The process model takes into account propeller thrust as well
as hydrodynamic drag forces for inertial positioning.

f(Xtet,U0t), 2
FY'FT + R, 3)
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where f is the process model and F' is the corresponding Ja-

cobian matrix, X! is the state (including position &, velocity
and acceleration), X! is the state covariance and U? is the



Fig. 3: Exchange of acoustic signals and information during a range mea-
surement. The robots transmit their 2D position, covariance (3 covariance
matrix elements corresponding to 2D position) and heading.

control input, all at time t. R is the (constant) covariance
matrix describing the motion noise, which is determined
empirically. IMU, GNSS, acoustic or depth measurements
are fused when they become available using standard EKF
equations. We will see later that the process model is also
used by the beacons to predict the AUVs’ future positions.

C. Acoustic ranging and communication

All the robots are equipped with DiveNET Microlink
acoustic transceivers that are capable of exchanging data as
well as measuring range. The data throughput is 80 bits/s and
the communication is broadcast. All robots can listen to any
transmitted signal. Range measurements are performed using
a query-response cycle and measuring the two-way time-of-
flight. Accuracy characteristics are shown later in the paper.

Along with the range query, the AUVs and the beacons
exchange their position, 2D position covariance and heading
as shown in Fig. 3. To avoid overlapping range queries and
signal collisions, AUVs are assigned fixed time-slots of 4 s
duration during which they can initiate a range query, a
scheme known as Time Division Multiple Access (TDMA).
We have implemented such a scheme in a real system in [3].

D. Range updates

Range measurements are fused into the position estimates
using the EKF framework. Given the estimated state of the
AUV X, and covariance i, as well as the position of the
beacon 7, the measurement function is

9(X) = || — B &)
The Jacobian of the measurement model can be obtained as
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Using the standard EKF equations, the updated position and
covariance of each AUV is calculated as follows (note that
we dropped the time superscript).

K = 367 [GiGTJra,.r, ©6)
X = X+K(z—g(X)), 7
Y = (I-KG)%, (8)

where K is the Kalman gain, z is the range measurement,
o, represents the range measurement noise, I is an identity

matrix of appropriate dimension, and the bracketed inverse
expression in Eq. (6) evaluates to a scalar.

While errors in range measurements cannot be accurately
modeled with a Gaussian distribution, a Gaussian assumption
works well in practice. It also offers a number of advantages
such as low computational cost and simple implementation,
which make it suitable for a real-time system.

E. Problem statement

Given a set of beacons and a set of AUVs, as the AUVs
travel while carrying out their activity, we require that
1) the beacons move so that they are within a specified
distance of ry,x from all AUVs,
2) no AUV is collinear with the beacons, and
3) the beacon placement minimizes the posterior uncer-
tainty in AUVs’ positions.
As stated earlier, we assume that the AUVs are within a
distance of d. from each other.

III. METHODOLOGY

The beacons, mounted on ASVs, predict the future po-
sition and position covariance of the AUVs using the most
recent position information broadcast by them. This is then
used to compute an optimal placement for the beacons in the
next few seconds.

A. Position prediction

The beacons employ the process model of the AUVs in
Egs. (2, 3) to predict the AUVs’ position, £ and uncertainty
in position, S, at a future point in time. They use the
information broadcast by the AUVs and assume a constant
speed of 1 m/s (the AUV speed is set to this value). The
control input is assumed such that the drag forces are
canceled out. Note that since the AUVs can change their
direction, this prediction only serves as a heuristic.

B. Optimal beacon placement

We aim to find the beacon location that would provide
the best reduction in uncertainty in AUVs’ positions after
the range update. We do so by minimizing the collective
posterior (differential) entropy. Let &, be the future position
of the beacon, and let X; be the random variable describing
the posterior position of AUV i after the future range update.
We seek to solve the following minimization problem:

Ty = argmin h (X1, Xo,...), 9
@

where h(.) is the differential entropy of a continuous distribu-
tion. Here, we minimize the entropy of the joint distribution
of posterior AUV positions. It is reasonable to assume that
the AUV positions are independent, since they do not use
each others’ position estimates. Therefore, the joint entropy
reduces to a sum of individual entropies.

h(X1,Xo,...)=h(X1)+h(X2)+.... (10)
Further, given the Gaussian assumption, we have



(a) Optimal placement (b) Desired beacon distribution

Fig. 4: (a) Illustration of the optimal placement of the beacon given two
AUVs and their position uncertainties. (b) Desired placement of several
beacons around a group of AUVs. The ideal placement is a uniform
distribution of beacons around the centroid of the group.

where Z; and X, are posterior position and position-
covariance of AUV 4. Therefore, for X; of dimension n,
the differential entropy h(X;) can be evaluated as [14]

hX;) = %log ((2me)™| Xy, ]) bits, (12)

The posterior covariance X, can be obtained by predicting
the prior position and covariance at a future time, Z;, XA]L
(see Section III-A), and then applying the Kalman update
equation in Eq. (8) using the future potential range measure-
ment. Following from Eqs. (4-6) and Eq. (8), we obtain

Sy, =

(13)

The expression in the denominator here evaluates to a scalar.

Following from Egs. (10), (12), the joint entropy of AUV
positions is calculated as

1
= Z 5108((27T6)n‘2m|) (14)

h(X1,Xo,...)
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Using this, we can reformulate the optimization problem in
Eq. (9) as

Zp = arg min H |2z, ] (16)
Th i

In Eq. (13), note the dependence of ¥,, on position of

the beacon, Z. This minimization is performed by doing

a search on a uniform grid of granularity 1 m around the

centroid of the predicted AUV positions.

For a single AUV, & corresponds to any position along
the direction of maximum prior uncertainty in the AUV’s
position estimate. With a Gaussian distribution, this is the
line along the first eigenvector of the prior covariance matrix
f)x. For two AUVs, & lies on the intersection of two such
lines, one for each AUV. This is illustrated in Fig. 4.

C. Placement of subsequent beacons

After range updates to all AUVs from an optimally placed
beacon (see Fig. 4a), the uncertainties in their positions
change, resulting in a new optimal beacon location. The-
oretically, one beacon can provide sufficient localization
support by repeatedly moving to new optimal locations.
However, in practice, each cycle of range updates may result

Fig. 5: A screenshot of the Webots simulation environment with three robots.
Experiments are performed in a 140 X 140 m arena.

in large changes in the optimal beacon location, and a
single beacon may not be able to carry out the amount of
motion required. Further, additional beacons will improve
localization by immediately providing range information
along a complementary direction.

Given that range updates provide position information
along only one direction, we ideally require additional range
measurements from a diversity of directions. Therefore, the
desired placement of subsequent beacons is such that they
have a uniform circular distribution around the AUVs, as
shown in Fig. 4b. In this paper, we considered the case of
two beacons. We place the second beacon such that the two
beacons are in perpendicular directions with respect to the
centroid of the group of AUVs.

*iD. Master and slave beacons

We designate one of the beacons as the master, which
computes and assigns future placement to itself and the slave
beacon. Note that decentralized approaches are also possible,
but we exploited the fact that the beacons, being on the
surface, have access to radio communication.

The master beacon obtains the first desired position using
Eq. (16) in Section III-B, and computes the second such that

e it is in a perpendicular direction with respect to the
centroid of the AUV group (see Fig. 4),
« it does not cause collinearity with the other beacon and
any of the AUVs to the extent possible, and
o it is within a distance of r,x from each AUV.
Then, the two positions are assigned to the closest ASVs in
a way that the total travel distance is minimized.

IV. EXPERIMENTS

The proposed method was implemented and tested with
a group of one and three AUVs and one and two beacons.
Experiments were performed in simulation, and the acoustic
range measurements were calibrated to outdoor, real-world
performance, both in terms of accuracy and measurement
intervals. We evaluated the algorithm in terms of localization
accuracy. We compared the proposed optimal placement
approach with a variety of static and moving beacon con-
figurations.

A. Simulation

We used Webots [15], a high-fidelity robotics simulation
software. A picture of the simulation environment is shown
in Fig. 5. Webots simulates hydrodynamic forces, noise in
the actuators as well as inertial and GNSS measurements.
The kinematics of the AUVs in simulation were roughly
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Fig. 6: (a) A part of the ASV locations at which range measurements were recorded. (b) Characteristics of error in range measurements, showing standard

deviation in the error and occurrence of outliers for various values of range.

Outlier occurrence is shown as a percentage of the total number of range

measurements performed. (c) Distribution of error in range and bearing measurements at 40 m range, with a Gaussian fit, after outlier rejection.

Config. Description

2SB-A Two static beacons at position set A

2SB-B Two static beacons at position set B

IM.O One mobile beacon with optimal position based motion
1SIM.O | One static beacon, one mobile beacon (optimal .. motion)
2M.F Two mobile beacons with formation based motion

2M.O Two mobile beacons with optimal position based motion

TABLE I: Description of various beacon configurations. Positions of static
beacons are shown in Fig. 7.

calibrated to that of real AUVs. Note that in order to
evaluate the proposed algorithm, we do not rely on an
accurate simulation of dynamics of the robots, but only that
of kinematics and acoustic interaction between ASVs and
AUVs. Acoustic transceivers are not inherently simulated in
Webots. To overcome this limitation, we characterized their
behavior empirically, and simulated them with real-world
propagation delay and ranging accuracy within Webots.

B. Acoustic range measurement characteristics

To characterize the behavior of the acoustic transceivers,
we performed a series of measurements near the shore in
Lake Geneva. We mounted the acoustic transceivers on two
ASVs, and recorded range measurements as well as GNSS
positions by placing both ASVs at a variety of locations
shown in Fig. 6a. Note that due to forces from wind and
waves, it is not possible to hold the ASV static. We then
measured the accuracy with respect to GNSS and frequency
of occurrence of outliers. The GNSS itself has a positioning
error of about 1 m. We found that with increasing distance,
the error in range measurements as well as the occurrence of
outliers increases significantly. The accuracy characteristics,
are shown in Figs. 6b and 6¢. Note that these measurements
were performed in a shallow region of the lake, where the
depth of the water column ranges between 5-15 m. We used
these characteristics to generate realistic range measurements
with additive Gaussian noise in the Webots simulator.

C. Simulation scenarios

We simulated various beacon configurations with different
AUV operation scenarios. We used a combination of static
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Fig. 7: Preplanned sets of trajectories T1 (left) and T2 (right). The starting
point is shown with a dot. The circles in T2 indicate the positions of the
three AUVs at a particular instant of time. The position of static beacons
in various configurations is also shown. Experiments with one AUV use
only AUV.1 trajectory. Note that we also perform experiments with the
combination ‘2S-A’ with T2 and vice-versa.

and mobile beacons. Experiments were performed with a sin-
gle as well as a group of three AUVs, with two different sets
of trajectories. The AUV trajectories were pre-planned (but
the beacons had no prior knowledge of it). The trajectories
and static beacon locations are shown in Fig. 7. A summary
of the various beacon configurations is provided in Table I.
In optimal beacon positioning configurations (‘xx.0’), the
optimal positions were calculated using the strategy in Sec-
tion III-D. In the formation configuration (‘2M.F’), the two
beacons maintained a fixed relative position with respect to
the centroid of the AUV group.

We set the maximum speed of the AUVs to 1 m/s and that
of the mobile beacons to 2.5 m/s. The maximum separation
between the AUVs, dn.x in these trajectories was 25 m.
By exploiting motion, we aim to place the beacons such
that the maximum range measurement, ry,x < 50 for low
noise (although the rated maximum range of the DiveNET
transceivers is about 1 km). We compared the accuracy of the
estimated trajectory for each combination of AUV operation
scenario and beacon configuration.

V. RESULTS

A. Evaluation metric

We use the Root Mean Squared Error (RMSE) as a mea-
sure of accuracy. We compute it as the Euclidean distance
between the true and estimated positions averaged over all



RMSE [m]

Scenarios 2S-A 2S-B IM.O ISIM.O 2MF 2M.O
T1, AUV | 345 3.49 2.18 2.50 2.04 1.87
T2, 1AUV | 3.81 4.34 2.32 2.65 2.04 1.94
T1, 3AUV | 454 478 3.56 3.61 3.10 2.98
T2, 3AUV | 457  4.64 3.09 3.50 2.98 2.77

TABLE II: RMSE of the estimated trajectory in various scenarios. S=static
beacon, M=mobile beacon, F=motion in fixed formation, O=motion towards
optimal beacon position.

time steps since the beginning of the experiment.

T
1 t st
RMSE(T) = — ; |zt — . (17)
RMSE is higher when the estimated trajectory is farther
off from the true trajectory. The RMSE of the estimated

trajectories in various scenarios averaged over 5 runs are
shown in Table II.

B. Two static beacons

An example of a trajectory estimated with two static bea-
cons is shown in Fig. 8a. Static beacons result in decreasing
measurement accuracy as the AUVs move further from the
beacons. Further, a bad combination of relative positions
between the beacons and the AUVs (such as collinearity)
result in inaccurate position estimates. This can be seen in
the upper segment of the trajectory in Fig. 8a. As a result,
the two static beacons result in the highest estimated error in
most experimental scenarios (see 2S-A and 2S-B in Table II).

C. One mobile beacon

We performed experiments with a single mobile beacon
using the proposed approach (IM.O in Table II). In order to
show that successive optimal beacon locations can be diverse
and to stress importance of having multiple beacons, we
set the beacon velocity to a hypothetically large value of
4 m/s. We found that the beacon was not able to reach the
optimal locations in time, owing to large distances between
successive optimal locations, despite the higher velocity. The
estimated trajectory of the AUV, as well as that of the mobile
beacon in a one AUV experiment is shown in Fig. 8b. A
subset of the optimal locations obtained by solving Eq. (16)
are also indicated, showing large variation in successive loca-
tions. This generally provides an improvement in accuracy
as compared to two static beacons, but a lower accuracy
compared to two mobile beacons.

We also used one mobile beacon in combination with one
static beacon (1S1M.O). While this reduces the amount of
movement required by the mobile beacon to some extent,
the mobile beacon still misses some of the calculated optimal
locations. Estimated AUV trajectories in a three AUV exper-
iment with this beacon configuration are shown in Fig. 9a.

D. Two mobile beacons

We found that two mobile beacons generally outperformed
other beacon configurations. The proposed optimal approach

(2M.O) resulted in the lowest RMS error in all the scenarios.
However, fixed formation motion (2M.F) had only slightly
higher an aggregate error in many scenarios, and a lower
error in some individual runs of the simulation. This is be-
cause the constant velocity assumption yields poor prediction
of future AUV positions (and uncertainties) in case an AUV
changes direction shortly after the prediction is made. This
results in a sub-optimal beacon placement. Regardless of the
relative positions between the beacons and AUVs, closer
distance provides more accurate range measurements, due
to the characteristics of the error in range measurements.
Fig. 8c shows a plot of the trajectory estimated with range
measurements from two mobile beacons using the proposed
approach in a one AUV experiment. Estimated trajectories
in a three AUV experiment with two mobile beacons in
formation (2M.F) are shown in Fig. 9b, while those with the
two beacons using the proposed method (2M.O) are shown
in Fig. 9c.

VI. CONCLUSION AND OUTLOOK

This paper presents an approach for repeated, optimal
placement of mobile acoustic beacons providing range mea-
surements to a group of AUVs. The resulting mobile beacon
trajectory follows the motion of the AUVs. It also provides
range measurements from a direction that is close to the
direction of maximum uncertainty in position of the AUVs.
Our approach addresses the problem of limitation in opera-
tional area imposed by fixed, static beacons. It also avoids
the problem of collinearity. Our approach is especially useful
in shallow water and in coastal areas, where error in range
measurements increases significantly with distance due to
reflections and occlusions caused by nearby obstacles.

Ranging systems based on two-way transmissions, such
as the DiveNET system used in this work, require dedicated
time-slots for each AUV. This limits the scalability of the
system, because the time required to serve all the AUVs
increases linearly with the number of AUVs. In order to
achieve the best results with a large number of AUVs, a
tradeoff needs to be made between how often to reevaluate
optimal positions and which AUVs to serve first. Ranging
systems based on one-way-travel-time would be more ef-
ficient, since the localization targets are passive receivers,
much like GNSS receivers (although they would still need
to broadcast their position estimates). However, they require
accurate time synchronization, which introduces complexity.

A number of improvements to the system are possible.
The beacons rely on position estimates reported by the
AUVs to track them. Technically, it is possible for two
or more beacons to track the AUVs accurately based on
their acoustic transmissions using triangulation. However,
this is not inherently supported by the hardware used in this
work. Further, the beacons assume a constant velocity (and
heading) to predict future positions and uncertainty of the
AUVs. A better prediction can be made by sharing additional
information, such as a future waypoint.
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(a) Two static beacons (T1, 1AUV, 2S-B)

(b) One mobile beacon (T1, 1AUV, 1M.O)

(c) Two mobile beacons (T1, 1AUV, 2M.O)

Fig. 8: Trajectories estimated for one AUV with various beacon configurations. Locations of the fixed beacons as well as optimal locations for mobile
beacons are shown. (a) With two static beacons, the collinear section of the trajectory has higher error. (b) A single moving beacon is often unable to
reach successive optimal locations, even with a higher speed setting. (c) Two mobile beacons using the proposed approach provide the best accuracy in
most scenarios.

(a) Static+mobile beacon (T1, 3AUV, 1S1M.0)
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(b) Beacons in formation (T2, 3AUV, 2M.F)

(c) Two mobile beacons (T2, 3AUV, 2M.0O)

Fig. 9: Trajectories estimated for three AUVs with various beacon configurations. Location of fixed beacon as well as trajectories of mobile beacons are
shown. (a) With one static and one mobile beacon, the mobile beacon still often misses the calculated optimal locations. (b) Two mobile beacons moving
in formation with respect to the AUV group provide an improvement in the estimated trajectory in comparison with other beacon configurations except
2M.O. (c) Two mobile beacons using the proposed approach also provide the best results with a group of three AUVs.
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