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Abstract. We present a method based on covariance intersection for
cooperative localization with pairwise range-only relative measurements.
Our method was designed for underwater robots equipped with an acous-
tic communication and ranging system. Range measurements are not suf-
ficient to compute a complete relative 3D position. Therefore, covariance
intersection is performed in a transformed space along their relative esti-
mated positions, while preserving cross-correlations between other state
variables. Given the characteristics of the acoustic channel, only one
robot can transmit data or a ranging request at a time, hence the pair-
wise limitation. We also present a heuristic for choosing a peer robot for
a range measurement by maximizing mutual information. Our method
places no further restrictions on the order, timing or scheduling of relative
measurements. We evaluated our method for accuracy and consistency,
and present results from simulations as well as outdoor experiments.

1 Introduction

A number of robot actions, such as path planning and spatial information gath-
ering depend on accurate localization. Robots operating on land or in the air can
often exploit external positioning references such as Global Navigation Satellite
Systems (GNSSs), cameras and range finders. However, access to such exter-
nal references is limited in many scenarios, such as indoor places, caves and
underwater environments. In Cooperative Localization (CL), a team of robots
operating together shares and fuses information and relative measurements to
improve their individual localization accuracy. This allows new, more accurate
information about position acquired by one robot to be propagated to other
robots. We have previously demonstrated acoustic navigation for underwater
robots with static and moving surface beacons [1]. However, by using CL and
taking turns to resurface periodically for GNSS reception, underwater robots
can function without relying on external beacons, as illustrated in Fig. 1.

An important characteristic of CL is that information sharing makes position
estimates of all robots correlated [2]. Position estimates of other robots coupled
with relative measurements are key ingredients for CL. However, measurement
models in localization frameworks used typically, such as Kalman filtering, often
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Fig. 1: Underwater robots periodically resurface for GNSS position reception, and then
use CL to share the improved position estimate with other robots.

assume that the measurement information is uncorrelated with robot state es-
timates [3]. Therefore, relative measurement updates in CL need to be handled
carefully to avoid inconsistent and overconfident position estimates. A further
problem of peer-selection arises in CL with pairwise relative measurements. The
ideal choice of a peer is that which provides a relative measurement resulting in
the maximum information gain.

CL has received considerable attention in the realm of multi-robot systems.
The simplest approach for CL is to gather all robot observations and relative
measurements and process them at a central location [4]. Roumeliotis et al. in [5]
showed that a centralized Kalman filter for CL can be decomposed into smaller,
communicating filters which are distributed among the robots. Later, Luft et al.
in [6] limited communication exclusively between the pair of robots that obtained
a relative measurement. This reduced the communication cost for N robots from
O(N) to O(1). However, both approaches require inter-robot cross-correlation
terms to be communicated along with robot position estimates. This is necessary
but adds communication cost.

Treating correlated information as independent, as in [7], can make new po-
sition estimates overconfident [8]. In the work of Bahr et al. [2], each robot
maintains a set of several state estimates, and keeps track of their dependen-
cies with other peers through careful book-keeping. A robot can use only those
estimates of another peer that are not correlated (directly or via other peers)
with its own estimate. However, the memory, computation and communication
requirements of this approach grow exponentially with the number of robots.

In [9] and [10], the authors use an approach based on distributed Maximum
Likelihood Estimation, where each robot optimizes its own state given the rel-
ative measurements. The problem of inter-robot correlations does not arise in
this approach. While there is no formal proof of convergence, it performs well in
practice.

Another technique for addressing the problem of inter-robot correlation is
Covariance Intersection (CI) [8] [11] [12] [13], which treats estimates as if they
were maximally correlated. They do not require robots to communicate cross-
correlation estimates, saving communication bandwidth. The price to pay is that
they are pessimistic in that they overestimate uncertainty. This overestimation is
addressed in a hybrid approach, called Split-CI [14, 15]. It splits the covariances
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into dependent and independent components. However, it requires communica-
tion of both, the independent and the dependent covariance matrices.

The second problem addressed in this paper is optimal peer-selection, which is
similar to optimal sensor or beacon selection. In [16], three best (fixed) ultrasonic
ranging beacons are selected based on Geometric Dilution of Precision (GDOP)
for indoor localization. An entropy-minimization-based sensor selection approach
for fixed target tracking is presented in [17]. [18] presents a selection criteria
based on mutual information for general Bayesian filtering problems.

In this paper, we present a Cl-based fully distributed cooperative localization
algorithm for range-only relative measurements. We have developed our method
keeping in mind limitations of underwater acoustic ranging and communication.
To that end, CI offers important advantages. It does not need inter-robot cor-
relations to be computed and communicated. While this is inefficient in that
the uncertainty in robot positions is overestimated, it allows for a completely
distributed implementation of CL. Additionally, CI is provably consistent.

When a relative measurement comprises of a full relative pose along with the
position estimate of another robot, it is straightforward to perform CI. This is
not the case with range measurements, which are one dimensional, whereas robot
positions can be two- or three-dimensional. Therefore, a range measurement up-
date can have a direct influence on robot position only along the relative position
vector between two robots. We perform CI in a transformed space aligned with
an estimate of this vector to update the robot position and the correspond-
ing position covariance. It is important to note that range measurements can
indirectly influence all state variables via the cross-correlations between them.
Our method accounts for and preserves the cross-correlation between the state
variables. While our method adds computational cost, the cost of internal com-
putation is much lower than that of acoustic communication.

We also derive a peer-selection heuristic for choosing the best peer for per-
forming a pairwise range measurement. In the trivial case when uncertainty in
positions of other robots is not known, the best choice is a peer robot that is
along (or closest to) the direction of highest uncertainty. However, the knowledge
of the said uncertainty exists because robots broadcast their position estimates
during a range measurement. We use the mutual information between current
position estimate of the robot and a potential range measurement to derive a
mathematical expression for scoring the ‘usefulness’ of peer robots.

In summary, our work consists of two main contributions. (1) We derive
a linear transform of the robot state in which to perform CI with range-only
relative measurements, while preserving the cross-covariances in the robot state,
and (2) we derive a mathematical expression to rank peer robots in the order of
the amount of information a relative update would provide.

2 Methodology

We consider a team of N underwater robots navigating in a three dimensional
space. Robots choose a peer with which to perform a range measurement and
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Fig.2: (a) Robot 1 chooses Robot 2 for a range measurement. (b) R2 responds to
the range query of R1 and also sends its position estimate. (¢) CI is performed in a
transformed space. (d) Updated estimate of R1 (in green).

transmit a ranging query. On receiving a response, CI is performed using our
our projected covariance intersection method, while preserving all the cross-
correlation terms in the state. The sequence of steps are illustrated in Fig. 2,
and explained in the rest of this section.

2.1 State Description

The states of the robots are assumed to be Gaussian random variables and are
expressed using the mean-covariance parametrization,

s; ~ N(X7, 23), (1)

where ¢ € {1,..., N}. Our algorithm is agnostic to the formulation of the state
variable, except that it requires the three-dimensional position represented in a
fixed frame to be a part of the state.

Xf = [fEi,yi,Ziw-J (2)

2.2 Motion and Individual Measurements

Motion and private measurement updates are purely internal to a robot do not
require any communication between them. They are processed individually by
robots using any kind of sensor fusion framework such as a Kalman filter.

2.3 Range-Based Covariance Intersection

Communication between two robots is required only when they perform a range
measurement. No other robots are required to be involved in the communication.
However, we assume all communication is broadcast, so other robots can listen
to this communication.

Consider a robot, ¢ with position and position covariance p;, R;. It chooses
to query another robot j and obtains a range measurement r;; with standard
deviation o,. Robot j also transmits its position estimate p;, R;. We define the
range vector as

Pj — Di 3)

P o B &
Y ey = wll
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Note that only magnitude of 7, i.e., ry;, is measured, the actual vector is ob-
tained from estimated quantities.

A transform F is applied to the state of robot i so that the dimension along
735 is decoupled from the rest of the elements of the state.

q=F(si — Xi), (4)
z=FN,F", (5)

where ¢ is the transformed state vector. Such a transform can be obtained by
setting )
F=VWw 2", (6)

where T" and W are obtained from the eigenvalue decomposition of the state
covariance matrix ;. V is obtained from the Gram-Schmidt orthogonalization
[19] starting with the vector 7j;. The key feature of this transform is that ¢
is zero-mean and the covariance matrix is identity, i.e., all the elements are
uncorrelated.

g~ NOnrxr, Inrsear)- (7)

This method has similarly been used in [20] for truncating Gaussian PDFs given
a hard constraint. The correlations between elements of X; are not lost but
encoded in T and W. The matrix V in the transform rotates the space in a way
that the first dimension in the transformed space is along the range vector. CI
is then easily performed in one dimension, and only applies to the first element

of ¢, qz-

Gz ~ N(0,1). (8)
Next, the transformation is applied to the other relevant quantities, namely 75,
or, p; and R;. Note that F applies rotation as well as scaling.

= FTijs (9)
o, = | Fillos, (10)
Py = Frj, (11)

)

R = FR;, (12

where 7 is the unit range vector. To perform CI, we are interested in the con-
ditional probability distribution of p; along the transformed range vector 7" as
below. This is trivial to obtain for a Gaussian distribution.
Pi(pjly’ = 0,2 = 0) ~ N(2,07). (13)
In the transformed space, using the range measurement and position of robot
j, an estimate of the position of robot 7 is calculated as

i;:x;-—?ﬂ, (14)

Thus, we have
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CI is now performed between ¢, and ¢, (see Eqgs. 8, 16) to obtain an updated
estimate of the position of robot ¢ in the transformed space.

2] =W (1w [ a7
par = [072] - {o.w 7'+ (1-w) [&?]—1} (18)

where w is chosen to minimize o/%. After this update, the resulting state and
covariance of robot 1 in the transformed space are

q: [:L"-'E/70707"'}7 (19)
X =diag (02,1,1,...). (20)

This is illustrated in Fig. 2c. Finally, the new estimate of the state of robot 1 in
the original space is computed by performing an inverse transform.

Xy =TWivTq+ X, (21)
Sy =TWHVISlVWaTT, (22)

which follows from the inverse of the transform, F~' =T W%VT, given that T
and V are orthonormal matrices (see Fig. 2d).

2.4 Peer Selection

Consider a robot i that needs to choose another robot j € [1,n] \ ¢ and perform
a pairwise range update (we performed experiments with n = 3 and n = 4).
We seek to choose a robot j that results in the lowest posterior uncertainty,
as shown in Fig. 2a. Doing so would require current position estimates of all
robots, which is not feasible in view of communication constraints. However,
since all communication is broadcast, all robots receive position estimates as
well as heading of other robots during a range measurement (see Fig. 2b and
Section 2.5). This information, coupled with a constant velocity model is used
to compute the current estimates for all other robots.
For the following analysis, we assume that the state consists of only the 3D
positions. We have
sk ~ N (pr, Ri). (23)

Let z;; be the random variable describing the potential range measurement be-
tween 4 and j (including the position of a peer robot j). We would like to choose
a j for which the mutual information I(s;; z;;) is maximized. Formally, we seek
to solve the problem
J* =argmax I(s;;zij). (24)
JELn)\i
We know that this mutual information between two random variables can be
written in terms of their differential entropy as

I(si;85) = h(si) — h(si|zij), (25)
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where h(s) is the differential entropy of random variable s [21]. When s has a
Gaussian distribution, the h(s) can be evaluated as

h(s) = %10g(27re)"|25| bits, (26)

where Y| is the determinant of the covariance matrix Y. In Eq. 25, P(s;)
is fixed, and only the posterior density P(s;|z;) depends on the choice of j.
Therefore, we can combine Eqgs. 25, 26 to reformulate the problem in Eq. 24 as

j* = argmin |ﬁ'i|j|, (27)
jeln)\i

where ﬁ'i‘ ; is the covariance of the posterior probability density. This was previ-
ously computed in Eq. 22. On the right side of the equation, note that 7" and V'
are orthonormal matrices, hence their determinant is 1. The posterior covariance
in the transformed space E{I is shown in Eq. 20 to be a diagonal matrix such
that its determinant will evaluate to o2,. Therefore, we have

| Zagl = W1 Zg| = [Wlez. (28)

Considering that that W is independent of j, and following from Eqgs. 15 and
17, the problem can be further simplified to
j* = arg min 03-2 + afj. (29)
JEln)\i
We recall here that the first term is the conditional distribution of the position
of robot j, and the second term is the variance of the range measurement, both
in the transformed space. Note that it can be easily deduced that if the first term
is ignored, the minimum is obtained for robot j which is along the direction of
highest uncertainty of robot i.
However, broadcasts from other robots coupled with a constant velocity
12

model provide a current estimate for the first term, o7, as explained earlier.

This serves as a heuristic for solving the optimization problem in Eq. 29.

2.5 Range Queries and Communication

The limitation of pairwise measurements is because of constraints of most under-
water acoustic transceivers. To avoid interference, only one robot can transmit
a signal at a time. However, all robots can listen to any transmitted signal, if
they are within communication range. We use a Time Division Multiple Access
(TDMA) scheme, where each robot is assigned pre-determined time slots by
rotation. Practical approaches for implementing such a scheme in underwater
robots have been discussed in [1].

During its assigned slot, a robot initiates a range query and the subsequent
exchange shown in Fig. 2b. Range is computed by measuring two-way-travel-
time. Finally, the robot performs CI and broadcasts its updated position esti-
mate. The duration of individual time slots depends on the time it takes to per-
form the exchange in Fig. 2b, which is a characteristic of the acoustic transceiver
hardware used.
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3 Experimental Setup

The proposed method was implemented and tested in a group of three to four
robots. We evaluated our algorithms in terms of localization accuracy and es-
timation consistency, both in simulation as well as with outdoor experiments.
The kinematics in simulation were roughly calibrated to that of real robots. In
both, simulation and real experiments, the robots were programmed to follow
a pre-planned trajectory. The state estimator uses proprioceptive sensors and a
motion model of the robot for inertial navigation, combined with range measure-
ments. To emulate periodic surfacing events in a team of underwater robots, two
of the three or four robots in the group were allowed periodic access to GNSS
positioning information, which would be passed on to other robots through the
cooperative localization framework. Otherwise, GNSS positions were used only
for following the trajectory and as ground truth.

Experiments are performed with two strategies of choosing a peer for range
measurement. In the first one, called cyclic, each robot queries other robots for a
range measurement turn-by-turn, in a cycle. The second one, called best-selection
or bsel, uses the proposed peer-selection approach.

Range measurement updates are performed using the proposed CI approach,
as well as an Extended Kalman Filter (EKF) approach. The EKF approach uses
the standard update equations, ignoring the correlation between inter-robot po-
sition estimates. We do not implement any centralized EKF for joint estimation
of positions of all robots. Each robot runs an independent state estimator.

(a) ASV with acoustic modem (b) Webots simulation

Fig. 3: (a) The ASV with the acoustic modem. When in operation, the modem, attached
to a rod, is suspended in water from the rear of the robot. (b) A screenshot of the
Webots simulation environment with three AUVs.

3.1 Simulation

Experiments were performed in simulation with three to four robots using We-
bots [22], a high-fidelity robotics simulation software. A picture of the simulation
environment is shown in Fig. 3b. An acoustic modem is also simulated with the
same propagation delay, ranging accuracy and bandwidth as the real acoustic
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modem. Simulations are performed with two different sets of trajectories, one
with four robots and another with three robots. We restrict access to GNSS to
two robots at 0.1 Hz or 0.05 Hz (once in 10 s or 20 s). The time-slot length for
acoustic transmission is set to 5 s, which means there is one range measurement
in the whole system every 5 s. We perform five experimental runs for each com-
bination of trajectory, GNSS access, peer-selection method (cyclic or bsel) and
range update method (EKF or CI).

3.2 Qutdoor Experiments

Outdoor experiments were performed using three Autonomous Surface Vehicles
(ASVs). The ASVs, pictured in Fig. 3a, are equipped with the same sensing and
computing hardware as the Vertex Autonomous Underwater Vehicles [23] from
Hydromea SA. Additionally, they have continuous GNSS reception, which serves
as ground truth (but the state estimator has limited access to it). All robots are
equipped with a Beringia Microlink acoustic transceiver for communication as
well as range measurements. The maximum data transfer speed is 10 Bytes/s,
and the ranging accuracy is about 2.5 m. A range measurement, including related
data exchange (Fig. 2b), takes about 3.5 s. Experiments were performed in Lake
Geneva.

The robots follow a pre-planned trajectory, which is occasionally disturbed
by strong waves. Robot 1 has no access to GNSS for position estimation. Robots
2 and 3 are allowed GNSS updates once in 20 s (0.05 Hz). Acoustic range is
recorded every 1.5 s between each of the three pairs of robots. For the purpose
of this experiment, shorter acoustic time-slots were used without any guard
times for avoiding echoes and interference, and only range measurements were
recorded. Position information was recorded via radio.

The recorded data is re-processed offline with different range update methods
(CI, EKF) and peer-selection strategies (cyclic, bsel). Depending on the peer-
selection strategy, and subject to a more realistic time-slot length of 5 s, only
a subset of the recorded range measurements are used. This gave us accuracy
and consistency metrics for both range measurement update methods as well as
peer-selection strategies.

4 Results

4.1 Evaluation Metrics

We use the Root Mean Squared Error (RMSE) as a measure of accuracy. We
compute it as the Euclidean distance between the true and estimated positions
averaged over all time steps since the beginning of the experiment.

T
1 N
RMSE(T) = = E |zt — 2. (30)
t=1
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Fig. 4: Two sets of trajectories, T1 and T2, in simulation. The starting point of the
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Fig.5: For scenario 1: (a) Example estimated trajectory of one of the robots using CI
and EKF. (b) Comparison of RMSE over time for the two peer-selection strategies.
Our peer-selection method results in higher accuracy. (c) Comparison of NEES for CI
and EKF. EKF has higher estimation error owing to ignoring inter-robot correlations.

RMSE is higher when the estimated trajectory is farther off from the true tra-
jectory.

For measuring consistency, we use the Normalized Estimation Error Squared
(NEES), averaged over all time steps since the beginning of the experiment.

1

T
NEES(T) = ) (2 — 2)T(2") (2" — &"). (31)

N

Higher values of NEES indicate higher inconsistency between the estimated po-
sition covariance and the actual error in estimated position. This metric was
introduced by Shalom et. al. in [24].

4.2 Simulations

An example of a trajectory of one of the robots estimated with CI and EKF
is shown in Fig. 5a. A comparison of evolution of RMSE is shown in Fig. 5b.
Our peer-selection strategy, bsel, results in an improved accuracy of estimated
position compared to a cyclic strategy. This is because robots are able to predict
which peer can provide most useful information based on the heuristic in Eq. 29.
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CI EKF
g . RMSE-Cyclic RMSE-bsel| RMSE-Cyclic RMSE-bsel
cenarios NEES-Cyclic NEES-bsel [NEES-Cyclic NEES-bsel
5.51 4.14 6.22 3.06
1. T1,GNSS 0.10Hz,2 Rob/4 515 338 076 e
6.19 4.57 6.77 3.85
2. T1,GNSS 0.05Hz,2 Rob/4 543 102 118 510
2.23 2.14 2.34 2.05
3. T2,GNSS 0.10Hz,2 Rob/3 571 369 P a1
2.60 2.33 2.88 1.94
4. T2,GNSS 0.05Hz,2 Rob/3 574 1l 503 e
3.28 2.17 3.23 2.44
5. Real,GNSS 0.05Hz,2 Rob/3 503 456 6.33 799

Table 1: RMSE and NEES for various scenarios and estimation methods.

Evolution of NEES for scenario 1 is compared in Fig. 5¢. EKF initially per-
forms similar to CI. However, as uncertainties increase over time, they must be
accounted for. Therefore, after a few range updates, NEES for EKF increases
in comparison with that of CI. The results of various experimental scenarios,
averaged over all runs and across all robots are tabulated in Table 1.

4.3 QOutdoor Experiments

The estimated trajectory for one of the three robots along with ground-truth
trajectories of the other two peers is shown in Fig. 6. The purely inertial estimate
(without any GNSS or acoustic updates) is also shown for comparison. The
evolution of RMSE and NEES is shown in Fig. 7a, 7b. The accuracy metrics are
shown in the last row of Table 1.

The results demonstrate that the trajectory estimated with CI is more con-
sistent compared to EKF. This is shown by a lower value of NEES, implying
that the estimated uncertainty is in better agreement with the actual estimation
error. Correct estimation of uncertainty is important because it is used to adap-
tively weight the influence of incoming measurements (e.g, via the Kalman gain
in EKF). Therefore, erroneous uncertainty estimates are likely to cause higher
trajectory RMSE eventually. The results also show that regardless of the range
update method (CI or EKF), the proposed peer-selection strategy resulted in a
lower RMSE. This shows the improvement in accuracy brought by an educated
choice of peer for a relative measurement. The experimental results with real
robots are in agreement with those obtained from simulations.

4.4 Computation and Data Overhead

The proposed CI approach is more expensive in computation compared to EKF.
A range update with EKF would require a 2 x 2 matrix inversion (assuming
position estimation in 2D, the vertical dimension is provided by a depth sensor),
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Fig. 6: Robot trajectories from the real experiment. For Robot 1, trajectory estimated
with with CI and the proposed peer-selection strategy is shown. The true (GNSS)
trajectory and the inertial estimate (without range measurements) are also shown for
comparison. For robots 2 and 3, only the true (GNSS) trajectory is shown.
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Fig. 7: RMSE and NEES for the real experiment. The plots show that CI results in lower
estimation error (NEES), which demonstrates more accurate estimation of uncertainty.
They also show that using the proposed peer-selection strategy results in more accurate
trajectory estimation.

regardless of the size of the state variable. The proposed transformation requires
eigenvalue decomposition, inversion of a diagonal matrix and several matrix
multiplications, the sizes of which depend on the size of the state. This adds an
overhead in computation time (EKF: 0.1 ms, CI: 1.5 ms, approx.).

For the peer-selection heuristic, the only additional information added to the
communication is the robot heading. All the other information is also needed for
range update. Computing this metric also requires many of the operations used
for CI-based range update (eigenvalue decomposition, etc.). The computation
time was found to be about 1.0 ms per peer on our setup. Our setup consists
of C++ code compiled with -02 optimization flag, running on a Raspberry
Pi Zero with single core 1 GHz processor. Since there is one range update in
approximately 5 s, this combined computation delay is affordable.
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5 Conclusion

We presented a range-based covariance intersection method for cooperative lo-
calization. CI provides a number of advantages for cooperative localization with
underwater robots, which have severe communication constraints. CI does not
require communication of inter-robot correlation terms. It can be run in a fully
distributed fashion, and uses information only from the two robots involved in
a relative measurement. It allows robots to exploit information from their peers
without any adverse effects such as overconfident estimates. We showed that
ClI-based cooperative localization results in a better estimation of uncertainty.

We also derived a peer-selection heuristic for performing range measurements
based on an information theoretic approach. We showed that our peer-selection
strategy improves localization accuracy in comparison to sequentially querying
peers for a range measurement.

A number of improvements to the system are possible. During real-world
operation, range queries or responses made by a robot may get lost or corrupted.
At the moment, we do not try to resend a query or query another peer, resulting
in no updates being performed during some time slots. A recovery strategy may
reduce this ‘dead time’ with no updates. The peer-selection heuristic is based
on estimating position of peers using a constant velocity model. When a peer
changes direction, this estimate becomes invalid. A better estimate can be made
if planned trajectories of peer robots are communicated in advance.

Acknowledgement: This work was partially funded by the Swiss National Science
Foundation under grant CRSII2_160726/1.
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