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Abstract
Federated and decentralized learning have be-
come key building blocks for privacy-preserving
machine learning. Participation in these opaque
federations may be better incentivized by trans-
parent communication of each user’s contribu-
tion. For real-world applications with large num-
bers of heterogeneous participants, quantifying
these contributions according to their impact on
model quality remains challenging. We discuss
the applicability various contribution measures
with a particular focus on the personalized learn-
ing setting, where each participant has their own
learning objective.

1. Introduction
In past decades, research in artificial intelligence has been
driven primarily by the pursuit of predictive performance
often at the cost of privacy or other sociological concerns
coming from the interaction of users providing data or
getting predictions from such systems. However, in the
last few years, several incidents contributed to a change
in public perception, notably large scale privacy breaches
and mis-incentivized social network algorithms (Wheatley
et al., 2015). In this light, current interest in privacy pre-
serving techniques such as decentralized or federated learn-
ing is increasing. During training, these schemes keep the
data local on the device of each user, for improved privacy
and control over data access. The standard framework to
learn a model under these circumstances is to have a central
server that distributes the model and gathers/aggregates the
users’ updates. This is known as Federated Learning (FL)
(McMahan et al., 2016). However, as pointed out by Lian
et al. (2017b) and Vanhaesebrouck et al. (2017), the use of a
central server creates a single point of failure that compro-
mises trust, and might limit incentivization. Decentralized
(or Peer-to-Peer) learning (P2PL) goes a step further since
it does not depend on a central orchestrator, and therefore
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lets users interact between themselves without relying on
global insights that may not represent each participant’s in-
terests. (Tsitsiklis et al., 1986; Lian et al., 2017a; Nadiradze
et al., 2019; Koloskova et al., 2020).

The need for model personalization makes the decen-
tralised setting particularly interesting. In such decentral-
ized frameworks, users are likely to have heterogeneous
data, i.e. data that is not identically and independently
distributed (non-IID), and the performance of the shared
model might thus vary across users. To mitigate this effect,
each client can personalize its own model, i.e. by training
in parallel a local model and dynamically averaging it with
the shared model (Bellet et al., 2018; Mansour et al., 2020).
Alternatively, the client might choose to modify, clean, or
augment their local dataset, such as to better match the
overall feature distribution of the other peers, and thus im-
proving collaborative training. The goal of this study is
to explore how to quantify each peer’s contribution to the
global (or personalized) training process, with the aim of
incentivizing informed participation. For instance, to de-
termine if a given user is profiting (or not) from the shared
model, and then to potentially reward users that have high
contribution. In the personalized setting, the contribution
measure can be used by the client to select its collabora-
tors, in order to maximize quality of the tailored model.

Contribution measurement and reward allocation consti-
tute an important (but often overlooked) aspect of decen-
tralized learning known as Incentivization, i.e. how to nat-
urally guide participants’ behavior towards a collective in-
terest. Since one of the main difficulties of both decentral-
ized or federated learning comes from the fact that data is
non-IID, this article aims particularly at incentivizing col-
laboration between users in order to bring their own distri-
bution closer to the joint distribution that yields best results
for the global or personal task at hand.

Our work studies and empirically compares contribution
measures (CM) for learning that can then be used for fu-
ture non-monetary reward mechanisms, both for federated
or decentralized learning. We specifically focus on the case
of realistic heterogeneous data, for training global mod-
els or for personalized learning. In an example scenario
of a medical application where both privacy and collabo-
ration are of crucial importance, it could be hypothesized
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that peers with high contribution measures may be able
to (willingly) share some information so that other users
can adapt their datasets accordingly (for instance, collect-
ing different features or performing specific preprocessing
for improved interoperability). Thus, we propose that guid-
ing users on how to improve their contribution for the re-
ward of reciprocity should, in turn incentivize participation
and improve the overall model performance.

2. Related work
2.1. Decentralized Learning

Although definitions may vary, decentralized learning
usually refers to the setup in which the data is hetero-
geneously fragmented (non-IID) across multiple nodes,
whereas distributed learning refers to the setup in which
the distribution is homogeneous across nodes (Kairouz
et al., 2021), i.e. when the datasets are too large to be
stored on a single server. As mentioned in the Introduction,
decentralized learning can be further divided into two
categories:

Federated Learning: Although the term was first
coined by McMahan et al. (2016), the idea of privacy
preserving learning algorithms has been circulating over
the past decade, where Agrawal & Srikant (2000), for
instance, tried to build a decision tree classifier without
having access to the real data. Nowadays, FL is widely
used, notably by Google (Yang et al., 2018) and Apple.
The typical FL learning pipeline is summarized below:

1. The server initializes the model

2. The server distributes the model to the clients (edge
nodes)

3. The clients perform local learning on their private
datasets

4. The server gathers and aggregates the local updates of
the clients

5. The server updates the global model and repeats steps
2 to 5

Additionally, a distinction is usually made depending on
the number of nodes and the size of their datasets (Kairouz
et al., 2021). On one hand, when the number of nodes is
relatively small and the datasets are large, it is referred to
as Cross-Silo FL, and on the other hand, when number of
nodes is large, it is referred to as Cross-Device FL.

Fully Decentralized (Peer-to-Peer) Learning: The
idea to fully decentralize a computational task is not new,
but became popular with the file-sharing software Napster
(Saroiu et al., 2003). For machine learning, decentralized

training as an example of this paradigm has received
increased research attention recently (Tsitsiklis et al.,
1986; Lian et al., 2017a; Wang & Joshi, 2018; He et al.,
2018; Nadiradze et al., 2019; Koloskova et al., 2020;
Vogels et al., 2020). However, even in fully decentralized
learning, a helper server is often needed to hold metadata
such as user IPs and task descriptions, but it does not
participate directly in the learning of the model. Another
difference with FL is that the global model is usually re-
placed by local models on each node, which is particularly
suited for task personalization (Mansour et al., 2020). The
collaborative learning updates are typically performed
through model averaging with neighbouring nodes, also
known as gossip communication on the models (Tsitsiklis
et al., 1986; Koloskova et al., 2020; Vogels et al., 2020;
Bouchra Pilet et al., 2020).

2.2. Barriers to Participation

Decentralized learning addresses a long standing problem
concerning information sharing, particularly in medical
applications. In the recent Ebola crisis, for instance, it
was found that front line researchers where withholding
their data despite the urgency of the situation. A WHO
consultation (Goldacre et al., 2003) found diverse dis-
incentives to data sharing such as the fear of personal
data re-identification (i.e. privacy), concerns about data
ownership, the lack of reciprocity, poor interoperability
and the lack of a regulatory/ethical framework. A decen-
tralized setup alleviates several of these concerns, notably
the problem of data ownership, privacy and regulatory
frameworks, since data is not directly shared. Reciprocity
is also partly satisfied, since users are only able to use the
model when they participate in the learning task. However,
decentralized learning also has some drawbacks that can
disincentivize participation:

Privacy: Even when the data is not directly shared,
the model updates (gradients) still contain information
about the data, and several studies have demonstrated that
individual data samples could be fully recovered using
only the gradient of a mini-batch (Zhu et al., 2019; Zhao
et al., 2020; Geiping et al., 2020). To counter this, several
techniques were developed:

• Differential Privacy (DP): The idea behind DP is to
add noise to the data so that individual samples can-
not be recovered. It has the advantage of being quan-
tifiable but the noise also decreases the precision of
the model. It is therefore seen as a trade-off between
privacy and performance, which is not always desir-
able. Several FL frameworks are built around DP, e.g.
Sherpa.ai by Rodrı́guez-Barroso et al. (2020).

• Secure Multiparty Computation (MPC): This refers
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to a way of computing a previously agreed function
whose arguments are dispatched among several enti-
ties (like the aggregation of the model updates in FL)
but without revealing to each participant more than the
result of the computation. The theory behind MPC
was developed prior to machine learning (Yao, 1986)
but is now widely used in FL. An example using a 2-
server secure computation can be found in the work of
Mohassel & Zhang (2017).

• Homomorphic Encryption (HE): HE is a way of en-
crypting the data so that certain computations yield
the same results with the encrypted and decrypted data
(Gentry, 2009). It can also be used to enable MPC, but
the mathematical operations that are compatible with
the encryption scheme are often very limited, which
can be a problem for FL.

Performance Although decentralising the data in a non-
IID fashion increases the privacy of the individual data
providers, it usually also decreases the performance of the
learning algorithm. The different types of distribution dis-
parities can be categorized as follows, where Pu(x) and
Pu(y) represents the probability of finding feature x and
label y in the dataset of user u, respectively (Kairouz et al.,
2021):

1. Feature distribution skew, i.e. Pu(x) 6= Pv(x) for two
different users u and v.

2. Label distribution skew, i.e. Pu(y) 6= Pv(y).

3. Same label, different features: Pu(x|y) 6= Pv(x|y).

4. Same features, different label: Pu(y|x) 6= Pv(y|x).

In addition to these disparities, some users might also be
malicious or comprise a genuinely different or poorly in-
teroperable distribution which is not of interest to the other
participants. Here, the simple task of normalizing the
dataset becomes difficult. Wang et al. (2020) proposed the
idea of collectively creating a small dataset representing the
joint distribution so that users can refer to it. This also have
drawbacks since this this fictive dataset could be poisoned
by malicious/divergent users. Concerning the learning al-
gorithm, a (non-extensive) summary of the different op-
tions can be found in work of Kairouz et al. (2021). Some
of these algorithms also address the communication con-
straints by compressing the gradients in a suitable way.

2.3. Incentivization

Incentivization can take multiple forms, for instance:

• Incentivization to participate (attract more users),

• Incentivization to participate efficiently (with accu-
rate/sufficient data),

• Incentivization to participate constructively (instead
of maliciously),

• Incentivization to participate collaboratively (for ex-
ample by improving the datasets of others).

In any case, the incentive mechanism is composed of two
distinctive steps: contribution measurement and reward
allocation.

Contribution Measurement can be further catego-
rized into three main categories (Huang et al., 2020):

• Self-reported based measurement, where each user re-
ports some information about the performance of the
model on its own dataset, and that information is used
to compute the CM (Pandey et al., 2020). In this setup,
some precautions must be taken to make sure that the
self-reported information is accurate.

• Marginal Loss based measurement, where the CM
is computed by measuring what is lost by exclud-
ing one given participant (also referred to as leave-
one-out measures (Wang et al., 2019)). Song et al.
(2019) propose two techniques, one where the CM
is computed at each round, and a second one where
the new measure is computed using the CM of previ-
ous rounds (with a forgetting parameter). In general,
marginal loss CMs are based on Shapley values (Shap-
ley, 2016), which are theoretical quantities that share
several desirable properties.

• Similarity based measurements, where participants
measure similarities between their respective gradi-
ents. For instance, Kang et al. (2019) use these simi-
larities to create a reputation system. In other papers,
Zhao et al. (2021) measure these similarities by train-
ing a data value estimator using reinforcement learn-
ing, whereas Wu & Wang (2020) use the angles be-
tween the gradients. Finally, Liu et al. (2020) use the
similarities between the clients’ model parameters and
the global parameters to compute their proposed CM
(named FedCM).

Reward Allocation has two main categories:

• Monetary rewards: The simplest way of incentivizing
users is to reward them with money. This is particu-
larly useful when the central entity (server) generates
a profit using the global model and redistributes this
profit to the edge users. In that scenario, the contribu-
tion measure needs to be particularly fair and robust
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to malicious users. Another popular approach is to
use a contract theory based framework so that users
are held responsible if they degrade the model (Kang
et al., 2019; Lim et al., 2020). This is a particular setup
in which no explicit CM is required, since the rewards
(or punishments) are defined by the contracts.

• Non-monetary rewards: Little to no research is done
on non-monetary reward allocation. This is because
in most scenarios, the model is designed to generate
some sort of value. Since even a perfectly performing
model could not generate an infinite amount of money,
the learning task becomes a competition rather than a
collaboration. This is particularly unwanted in medi-
cal applications, and the need for a non monetary re-
ward is therefore obvious.

3. Setup
3.1. Context for Federated Learning

Let S denote the central server and U be the set of partic-
ipant and define N := |U|. Let wr be the global model at
round r and Di the dataset of user ui, separated as usual in
a training and testing dataset Dtri and Dtei . Also, denote

D :=
⋃
ui∈U

Di, Dtr :=
⋃
ui∈U

Dtri , Dte :=
⋃
ui∈U

Dtei .

Moreover, denote DC :=
⋃
uj∈C Dj , ∀C ⊆ U . Let Ar

be the server-side aggregation algorithm (taking as input
the set of models to aggregate) and let Fri be the local up-
date algorithm of user ui at round r (taking as input the
model to update and depending on Dtri ). With this nota-
tion, the most general FL pipeline can be represented by
Algorithm 1, which aims at solving the problem

Find w? = arg min
w
L (w,D) . (1)

where L is the empirical risk (or loss) and can be expressed
in term of the loss function l as follows:

L (w,D) :=
1

|D|
∑
d∈D

l(w,d). (2)

We focus on the following standard scenario of FL:

• The set of users is constant over time (Ur = U in
Algorithm 1).

• The local update functions and the aggregation func-
tion do not depend on time (Fri ≡ Fi and Ar ≡ A).

With these assumptions, the setting resembles to the one
showed in Figure 1, where N = 4.

Algorithm 1: FEDERATED LEARNING

1 S initializes w0, r ← 0
2 while training:
3 r ← r + 1
4 S selects Ur ⊆ U
5 for ui ∈ Ur:
6 S sends wr−1 to ui
7 wri ← Fri (wr−1)
8 ui sends wri to S
9 wr ← Ar({wri }1≤i≤N )

10 return wr

Figure 1. FL setup considered in this article, with N = 4.

3.2. Context for Decentralized Learning

Using the same notation as in the FL setting, apart from
the fact that the aggregation function Ari can now depend
on the user, the general peer-to-peer learning pipeline can
be represented by Algorithm 2, which aims at solving the
personalized learning problem

Find {w?i } s.t. w?i = arg min
w
L (w,Di) . (3)

A central helper server S can still be used to generate the
communication graph but it does not take part in the train-
ing nor the aggregation. We focus on the following stan-
dard scenario of decentralized learning:

• The sets of collaborating users remain constant over
time (Uri ≡ Ui)

• The local update functions do not depend on time
(Fri ≡ Fi).

• The local aggregation function is identical for all users
(Ai ≡ A).
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Algorithm 2: PERSONALIZED DECENTRAL-
IZED LEARNING

1 for ui ∈ U:
2 ui initializes its own model w0

i

3 r ← 0
4 while training:
5 r ← r + 1
6 for ui ∈ U:
7 w̃ri ← Fri (wr−1i )
8 ui (or S) selects Uri ⊆ U
9 ui sends w̃ri to uj for uj ∈ Uri

10 wri ← Ari ({w̃ri }∪{w̃rj such that ui ∈ Urj })
11 return {wri }1≤i≤N

3.3. Shapley Values

Shapley values were first introduced by Shapley (2016) in
the context of game theory, but are now commonly used
in interpretable machine learning to quantify the contribu-
tion of each feature according to a prediction. In decentral-
ized machine learning, they can also be used to compute
the contributions of data owners to a trained model. Their
formal definition of some of their main properties are pro-
vided below. Let v : 2U → R be a value function (giving
value to a certain coalition in U). The Shapley value φi of
user ui ∈ U is definied as

φi :=
∑
C⊆U
ui∈C

1

|C|

(
N

|C|

)−1
[v(C)− v(C \ {ui})] . (4)

• Efficiency:
∑
ui∈U φi = v(U)− v(∅).

• Symmetry: φi = φj if v(C ∪ {ui}) = v(C ∪ {uj})
∀C ⊆ U such that {ui, uj} ∩ C = ∅.

• Linearity with respect to the value function v.

• Null player: φi = 0 if v(C ∪ {ui}) = v(C) ∀C ⊆ U
such that ui 6∈ C.

For the moment, Shapley values are the only contribution
measures that have all these four properties combined.

4. Methods
4.1. Datasets, Models and Training Parameters

Datasets. The benchmark dataset used in this article is the
Adult Income dataset1. It consists of 8 categorical features,
6 numerical (continuous) features and one binary label y.
The continuous features are normalized to have zero mean

1
https://archive.ics.uci.edu/ml/datasets/adult.

and unit variance. The dataset is composed of 48’842 sam-
ples and it is split randomly into a train (n=34’189) and a
test dataset (n=14’651). Each categorical feature xi is em-
bedded in a space of dimension

⌈
ki
2

⌉
, where ki is the num-

ber of categories of feature xi. We then test the approach
on a unique real-world medical dataset from the 2014-16
West African Ebola epidemic 2. It exemplifies the scenario
of disincentivzed data sharing outlined in this article which
is summarized in the aforementioned WHO consultation on
data sharing in health emergencies (Goldacre et al., 2003).
It comprises clinical tabular data on 8386 patients sus-
pected of Ebola Virus Disease (EVD) that were collected at
12 independent Ebola treatment centers distributed across
3 countries (Sierra Leone, Guinea and Liberia). It is com-
posed of 2 categorical features, 5 numerical features and 65
distinct binary clinical signs and symptoms at admission to
the centre. The outcome is a binary categorization of diag-
nosis (EVD+ vs EVD-) by molecular blood test (RTPCR).
The data was collated into a central public repository by the
Infectious Disease Data Observatory (IDDO). This colla-
tion took several years to complete and several datasets are
still not represented, thus showing the need for real time
incentivized non-datasharing collaboration strategies.

Models and parameters. The model architecture used for
these two binary prediction tasks is a simple fully con-
nected neural network with three hidden layers of sizes
64, 16 and 4 for the adult income dataset (activated with
ReLU) and two hidden layers of sizes 128 and 64 for the
Ebola dataset (activated with Tanh). For both tasks, respec-
tively, the binary cross-entropy loss is used along with 1
and 5 epochs of mini-batch stochastic gradient descent as
the local update functions Fi (batch size of 32). The out-
puts are classified as true if they are above a threshold τ .
Finally, the aggregation function A is chosen to be a static
average, and the training is stopped after 100 rounds of ei-
ther FL or decentralized learning. This number of rounds
is large enough so that all the CMs can converge and the
models can reach an acceptable performance level.

4.2. Contribution Measures in FL

Four different contribution measures are tested for the fed-
erated learning setting. For scalability reasons, the metric
used as the value function of a specific coalition C ⊆ U
is the negative testing loss v(C) = −L(wrC ,Dte). Indeed,
the empirical loss is the only metric that is present in all
machine learning tasks (classification, regression, etc.).
Let wrC denote the model at round r that was only trained
and aggregated using users in coalition ui ∈ C ⊆ U during
rounds 0 to r. In other words, wrC is equivalent to wr if
U = C. To avoid confusion, note the distinction between
wrui

, which is the model who was trained only with Dtri
2
https://www.iddo.org/ebola/data-sharing/accessing-data.

https://archive.ics.uci.edu/ml/datasets/adult
https://www.iddo.org/ebola/data-sharing/accessing-data
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Table 1. Ebola Dataset Statistics. N represents the number of pa-
tient, PR the Ebola positive rate and MR the fraction of male.

Location N PR MR Median Age
Donka 1975 0.379 0.578 29
Guéckédou 1517 0.900 0.477 31
Kalihun 1173 0.726 0.529 27
Makeni 848 0.207 0.518 28
Foya 564 0.798 0.512 30
Bong 529 0.317 0.531 31
Bo 519 0.848 0.511 36
Port-Loko 477 0.379 0.539 30
Kerry-Town 275 0.956 0.447 25
Kambia 217 0.216 0.516 29
Magburaka 155 0.290 0.581 30
Nzérékoré 137 0.577 0.489 28

during rounds 0 to r, and wri which is the local update
of wr−1 using Dtri . If C ⊂ U , the model wrC is trained
in parallel by users in C. The four tested CMs are given
below:

Shapley value with retraining (SV):

φri =
∑
C⊆U
ui∈C

KC

[
L(wrC\ui

,Dte)− L(wrC ,Dte)
]

(SV)

Shapley value during aggregation (SVa):

φ̂ri =
∑
C⊆U
ui∈C

KC

[
L(ŵrC\ui

,Dte)− L(ŵrC ,Dte)
]

(SVa)

Marginal loss with retraining (ML):

θri = L(wrU\ui
,Dte)− L(wrU ,Dte) (ML)

Marginal loss during aggregation (MLa):

θ̂ri = L(ŵrU\ui
,Dte)− L(ŵrU ,Dte) (MLa)

where ŵrC := A ({wri }ui∈C) and

KC :=
1

|C|

(
N

|C|

)−1
.

The main properties of these CMs are sumarized in Ta-
ble 2, where Nmodels is the number of models that need
to be trained per user, and Nagg the number of model ag-
gregations on the server. A few practical remarks need to
be made. Firstly, SV and ML are highly inefficient since
they require the training of additional models, they are pre-
sented here for the sake of comparison and are not feasi-
ble in practice. The differences between the CMs that are

computed at aggregation (MLa and SVa) and the full CMs
(ML and SV) are explored in Section 5.3. Secondly, we
assume in this work that the server S has access to the test
datasets of all users so it can compute the losses L(·,DteC )
for all C ⊆ U . In practice, however, the privacy of the test
datasets could be preserved using Algorithm 3, where the
server only needs to know the dataset sizes {|Dtei |}ui∈U .

Algorithm 3: FEDERATED LOSS COMPUTATION

Input: Dataset sizes {|Dtei |}ui∈U and model w.
Output: Empirical loss L(w,DteC ).

1 for ui ∈ C:
2 S sends w to user ui
3 ui computes L̂i := |Dtei | · L(w,Dtei )

4 ui sends L̂i to S
5 S computes L(w,DteC ) =

∑
ui∈c

1
|Dte

i |
L̂i

6 return L(w,DteC )

Table 2. Contribution Measures in FL, where SV denotes Shapley
Value, ML denotes Marginal loss either during aggregation (a) or
with retraining

Name Nmodels Nagg Symbol

SV 2N−1 2N −N − 1 φi

SVa 1 2N −N − 1 φ̂i

ML N N + 1 (1 if N = 2) θi

MLa 1 N + 1 (1 if N = 2) θ̂i

Lastly, neither of φi, φ̂i, θi or θ̂i is properly normalized.
Their scale depends mainly on the loss function l which
makes them less interpretable. Several normalization func-
tions can be used to solve this problem, in particular L2

normalization, Softmax normalization, Standard normal-
ization and Min-Max normalization.

Evaluation Setup under Heterogeneous Data. There
are many different ways to evaluate the contribution mea-
sures in the FL setting. In this article, we focus on their de-
pendence on the heterogeneity of the data distributed over
clients, in terms of three following properties:

• Local dataset sizes (SZ),

• Label noise (YN),

• Feature noise (XN).

For all baseline analyses in the Adult Income dataset, the
number of users is set to N = 4 in order to facilitate the
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comparison. A larger number of users (N = 12) are then
tested in the Ebola dataset. The three experiment setups
used to test the CMs are summarized in Table 3. (SZ) repre-
sents heterogeneous dataset size per client. For added label
noise (YN), ηy represents the label accuracy (i.g. ηy = 0.8
represents a dataset where 20% of the labels have been ran-
domly switched). For different levels of feature noise (XN)
on each client, σx represents the standard deviation of the
Gaussian noise that is added to all continuous features. In
order to keep the data properly normalized (zero mean, unit
variance), the noisy version of feature xicont is obtained as
follows:

x̂icont =
xicont + Z√

1 + σ2
x

, Z ∼ N (0, σ2
x).

Table 3. Overview of the experiments on the Adult Income
dataset. Various heterogeneous data distributions are induced in
terms of data size per participant (SZ), label noise (YN), and fea-
ture noise (XN).

ID Users Results
u1 u2 u3 u4 FL decentr.

|Di|
|D| 0.4 0.3 0.2 0.1

SZ ηy 1 1 1 1 Fig. 3 Fig. 11
σx 0 0 0 0 (Appendix)

|Di|
|D| 0.25 0.25 0.25 0.25

YN ηy 1.0 0.98 0.96 0.94 Fig. 9 Fig. 4
σx 0 0 0 0 (Appendix)

|Di|
|D| 0.25 0.25 0.25 0.25

XN ηy 1 1 1 1 Fig. 10 Fig. 12
σx 0 0.1 0.2 0.3 (Appendix) (Appendix)

4.3. Contribution Measures in Decentralized Training

A novel idea to adapt the CMs to a fully decentralized set-
ting is to make each user act as a central server. As such,
each peer will have its own personalized set of contribution
measures and it will therefore be able to see which peer
is of most value to them. However, since not all users are
neighbors in the communication graph, it becomes totally
impractical to train several models in parallel. This is why
only SVa and MLa are tested for the decentralized setting.
Let φ̂rij and θ̂rij be the CMs of user uj from the point of
view of user ui, computed using Equations (5) and (6), re-
spectively.

φ̂rij :=
∑

c⊆Ui∪ui
uj∈C

K̄C,i

[
L(w̄rC\uj

,Dtei )− L(w̄rC ,Dtei )
]
,

(5)

θ̂rij := L(w̄rUi\uj
,Dtei )− L(w̄rUi

,Dtei ), (6)

where w̄rC := A
(
{w̃rj}uj∈C

)
and

K̄C,i :=
1

|C|

(
|Ui|+ 1

|C|

)−1
.

5. Results
5.1. Contribution Measures in FL

Figure 2 displays the history of the different contribution
measures for the experiment that leverages the effect of
the dataset sizes on the CMs. Several observations can be
made:

• All CMs converge during training, but those that are
computed using Shapley values (SV and SVa) tend to
take more time to reach their limit. This is quite in-
tuitive since in order to improve its SV or SVa, one
must be beneficial to all coalitions, and some of them
might have tasks that are substantially different, even
in the case of uniform dataset splitting. On the other
hand, to improve its ML or MLa, it is sufficient to be
beneficial only to the grand coalition.

• As expected, the users with bigger datasets end up
having larger contributions, but the scale of the dif-
ferences depends on the CM. When using models that
are retrained from scratch (SV and ML), the difference
is more significant. This comes from the fact that for
SVa and MLa, the models that are used to compute
the marginal losses are not completely decoupled (see
section 5.3). This makes it more sensitive to the noise
generated by the randomness of SGD, and it is there-
fore the main drawback of using marginal aggregated
models instead of marginal retrained models.

• Although it is sufficient to be beneficial only to the
grand coalition for MLa and ML, it is easier to be ben-
eficial to smaller ones, but these small contributions
are neglected when Shapley Values are not used. This
explains why the CMs based on marginal losses rather
than Shapley Values tend to be negative.

Since in practice, only the CMs computed at aggregation
(SVa and MLa) will be used (due to the computational
overhead resulting from training several models), and since
these two are sensitive to noise, the use of a low-pass fil-
ter over several rounds can be beneficial (i.e. moving av-
erage, exponential moving average, etc.). Moreover, if a
normalizing function f is used, one can also consider the
cumulative CMs:

ξ̄ri = f

(
r∑
t=1

ξri

)
,

where ξ is either φ, φ̂, θ or θ̂.
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Figure 2. Different CMs (unnormalized) during training obtained
in the dataset size experiment (SZ) as defined in Table 3. Each
graph represents a contribution measure outlined in Table 2. Lines
in each graph represent the four participants with dataset sizes of
10%, 20%, 30%, and 40% (= 100%).

Contribution measures for FL in data size variation
(SZ). Figure 3 displays the normalized cumulative CMs
obtained for the experiment that concerns the dataset sizes.
The violin plots represent the distribution of the values over
100 rounds.

Figure 3. Different normalization strategies (rows) of the cumula-
tive contribution measures (columns, and as detailed in Table 3)
obtained in the dataset size experiment (SZ), where the four points
in each graph represent the four participants with dataset sizes of
10%, 20%, 30%, and 40% (= 100%)

One can observe that the cumulative CMs yield different
results with certain normalization strategies, which may be
more intuitive to differentiate the expected contributions
between participants. For instance, with the Min-Max, SVa
and MLa tend to switch the order of contribution between
u1 and u2. Indeed, after a certain number of rounds, the
noise becomes dominant. Then, user u2 is more often than
u1 the maximum of all contributions, even if it is by a neg-
ligible margin. Additionally, the cumulative contribution
ensures that the work of the peers is not lost over time.

Contribution measures for FL in label (YN) and feature
noise (XN). The results for (YN) in Figure 9 are in total ac-
cordance with intuition. However, the experiment with the
feature noise (XN) yielded results that look random at first
(see Figure 10). This is probably due to the task at hand (i.e.
predicting if a individual earns more that 50K/year). Here,
the categorical features such as occupation and workclass
are more informative than continuous features, and were
not altered in the perturbation.

5.2. Contribution Measures in Personalized
Decentralized Learning

For the fully decentralized setting, only the complete com-
munication graph is considered, where each user is con-
nected to every other peer. This is because only the person-
alized CMs SVa and MLa are of interest in this work (i.e.
from the point of view of a specific user). As differences
in normalisation were already assessed in the FL setting
(and do not behave differently in the decentralized setting)
only standard normalization is shown here to reduce redun-
dancy.

Figure 5 shows the temporal development of different con-
tribution measures over rounds that are computed by user
u1 (i.e. the user that has the best dataset in all three ex-
periments and shown cumulatively in the first column of
Figure 4). Convergence is more or less reached in all sce-
narios, but some experiments have more noise than others.

When the CMs are normalized, as observed in Figure 4, the
results obtained in the experiment with label noise (YN)
are in accordance with expectations, suggesting that the
adaptation to the fully decentralized setting does not alter
the main properties of the CMs. However, this adaptation
comes with an inevitable cost. Indeed, the value function
that is used to compute MLa and SVa now depends on the
users’ datasets. One can observe, for instance, that the peer
with most label noise (label accuracy of 94%) is least ca-
pable of distinctively ordering the other peers’ contribu-
tions. Nevertheless, it is still able to detect that the user
with 100% label accuracy contributes more to its person-
alized model than itself, which is remarkable, especially
given that this is performed on unseen data.
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Figure 4. Different decentralized contribution measures (CMs,
rows) obtained in the label noise experiment (YN). Each sub-
plot represents proportional contributions of the four participants
which differ by percentage label noise. Column i represents the
CMs that are computed according to ui. All CMs are displayed
with standard normalization.

Figure 5. Training history of the different decentralized (unnor-
malized) CMs obtained in the different experiments.

The experiment with the dataset sizes (SZ) yields similar
results for which the same conclusions can be drawn. How-
ever, as in the FL setting, the experiment where noise is
added to the continuous features (XN) is not conclusive,
probably for the same reasons as in the FL setting. For
simplicity, this work does not address categorical feature
shifts.

5.3. CMs at Aggregation vs CMs with Retraining

The marginal losses and Shapley values at aggragation
(MLa and SVa) do not represent an exact marginal loss.

Indeed, the model ŵrc\ui
contains some information about

the dataset Di due to the local updates in rounds 0 to r− 1.
In order to understand the difference between the model
obtained by retraining without one specific user and the
model obtained by excluding the same user at aggregation,
consider the following federated learning study case where
the random data points (X,Y ) are in R2. Consider the two
users scenario (U = {u1, u2}) and let the data of users u1
and u2 be distributed as follows:

(X,Y )ui ∼ N
(

0,
[

σ2
x (−1)iρσxσy

(−1)iρσxσy σ2
y

])
, (7)

where ρ ∈]0, 1[. Using the mean-squared error loss (MSE)
l(y, ŷ) = (y− ŷ)2, the problem of user ui can be expressed
as follows:

Find g?i (x) = arg min
g

Eui
[l(Y, g(X))|X = x],

which has the elegant and intuitive solution

g?i (x) = Eui
[Y |X = x].

Using the distributions (7), the optimal estimators are the
simple linear functions

g?i (x) = (−1)iρ
σy
σx
x, i = 1, 2.

Hence, by considering linear models of the form g(x) =
αx+ β, the optimal parameters are given by

w?i := (α?i , β
?
i ) = ((−1)iε, 0),

where ε := ρ
σy

σx
quantifies the distances between the task

of u1 and u2. Suppose that the features are normalized (i.e.
σx = 1). The expected value of the loss is therefore given
by

Eui
[l(Y, g(X; w))] = α2 − 2(−1)iεα+ β2 + σ2

y.

Finally, assume that both u1 and u2 have enough data
points to compute the exact expected gradients

Eui
[∇wl(Y, g(X; w))] = 2 (w− w?i ) .

Consider the scenario in which the central server initializes
the model at w0 = (0, β0) (which is already a good guess
since it is equidistant from the optimal models w?1 and w?2),
and in which the local updates Fi are given by the simple
gradient descent

Fi(w) = w− γEui [∇wl(y, g(x; w))] ,

With these considerations, the learning algorithm is graph-
ically represented in Figure 6. The exact expressions of the
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Figure 6. Gradient descent of both users and aggregation at the
central server. The objective functions of user u1 and u2 are dis-
played in blue and green, respectively.

different models at each rounds are given by the recursive
formulas:

wrui
= w0 − 2γ

r−1∑
t=0

(wtui
− w?i ),

ŵrui
= wr−1 − 2γ(wr−1 − w?i )

wr =
1

2
(ŵru1

+ ŵru2
)

which are derived by a graphical analysis of Figure 6. As-
suming that the probabilities that a data point comes from
user u1 or user u2 are the same, the joint objective function
can be expressed as

L(w) := Eu1,u2 [l(Y, g(X; w)]

=
1

2
(Eu1 [l(Y, g(X; w)] + Eu2 [l(Y, g(X; w)])

= α2 + β2 + σ2
y.

which is optimized by the model w? = (0, 0). Since the
learning algorithm is invariant to scaling (linear gradient),
it can be characterised by ε, the step size γ and the ratio
β0

ε . In addition, the loss function needs the value of the
absolute correlation ρ ∈]0, 1[ to be fully characterised.

From there, several observations can be made:

• Assuming that γ < 1 (i.e. the algorithm converges):

lim
r→∞

θri

θ̂ri
= lim
r→∞

L(wruj
)− L(wr)

L(ŵruj
)− L(wr)

=
(ε2 + σ2

y)− σ2
y

(4γ2ε2 + σ2
y)− σ2

y

=
1

4γ2

This means that when γ is small, the ratio between the
marginal loss with retraining and the marginal loss at
aggregation explodes. This makes it more sensitive to
the random nature of the stochastic gradient descent,
as observed in Figure 2.

• At convergence, the value of the marginal loss with
retraining does not depend on γ:

∂

∂γ
( lim
r→∞

θri ) = 0.

However, its rate of convergence remains γ depen-
dent. This means in particular that MLa and SVa
might behave unexpectedly when using adaptive gra-
dient descents like Adadelta, Adagrad or Adam,
among others. This is in part why only the standard
SGD is used in this work.

• Instead of looking at the difference between L(wruj
)

(or L(ŵruj
)) and L(wr), one could also look at their

ratio. In this simple study case, these ratios would
converge to

lim
r→∞

L(wruj
)

L(wr)
=
ε2 + σ2

y

σ2
y

= ρ2 + 1,

lim
r→∞

L(ŵruj
)

L(wr)
=

4γ2ε2 + σ2
y

σ2
y

= 4γ2ρ2 + 1.

The scale difference between the two ratios is there-
fore greatly reduced due to the additional term +1,
but the value of the second ratio remains γ dependent.
However, since the absolute correlation ρ could be es-
timated using simple statistics on the datasets, γ could
be tuned to minimize this scale difference.

One must nonetheless remain aware that these remarks are
specific to this study case and may not be valid for other
loss functions like maximum absolute error (MAE) or bi-
nary cross-entropy (BCE).

5.4. Ebola Dataset

We conclude with an example of how contribution mea-
sures may be visualised and interpreted in a unique real
world example that inspired the assumptions of our setting.
The Ebola dataset is naturally fragmented across collection
sites which differ in geography, epidemiology, patient de-
mographics, and data collection practices. It was collated
retrospectively and semantic alignment was performed by
a third party several years after acquisition. Thus, these
datasets have a high risk of hidden label and feature biases
along with the known differences in data size that are de-
tailed in Table 1. We split the datasets according to these
real world divisions and build a set of personalised P2PL
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models that discriminate the diagnosis of Ebola virus dis-
ease. Figure 7 shows the model performance as area un-
der the receiver operating curve (AUROC) for each partic-
ipant, revealing clear differences in the predictive potential
of each dataset.

Figure 7. Area under the Receiver operating characteristic (AU-
ROC) curve of each of the 12 data owners in the Ebola data repos-
itory of the Infectious Disease Data Observatory (IDDO).

Figure 8 shows the contribution measures (MLa) with stan-
dard normalization of the twelve data owners with respect
to one another. Looking at the diagonal, we can compare
the self-contributions of each user, where some (e.g. Ker-
rytown) strongly favor a local model, whereas Nzérékoré
benefits more from the coalition than its own data. Another
example is Kalihun, which seems to systematically differ
from other datasets, as seen by the low contribution mea-
sures (yellow/red hues) down its column and it thus has a
low contribution measure to all other models. Indeed, this
dataset seems to be extreme in its large size and high per-
centage of Ebola cases as seen in Table 1 and thus, these
contribution measures may reflect its outlier status.

6. Discussion
6.1. Limitations

This work proposes several methods to extract and visual-
ize the individual contributions of a users’ data to the per-
formance of a collaborative model learned in federated and
P2P settings. It also explores contribution measures when
learning personalised decentralised models, which could
have the useful application of being measures of similar-
ity.

For clarity, this proof of concept study is limited to a single
scenario inspired by (and tested on) a real world scenario
of collaborative model building in public health emergen-
cies. This work could be greatly expanded in future stud-
ies to better generalize the results to other learning scenar-

Figure 8. Cumulative MLa with standard normalization of the dif-
ferent data owners in the Ebola experiment. One row corresponds
to a personalized set of CMs and one column represents the contri-
bution of one particular user to everyone (including itself, visible
on the diagonal).

ios, data types and distributions. Some examples include
changing the number of users, altering the categorical fea-
tures, feature-wise perturbations (one feature at a time), ex-
ploring different decentralized topologies and aggregation
functions, as well as varying the update and loss functions).

A more specific aspect that can be improved is the nor-
malization of the CMs. Indeed, the four functions that are
presented in this article are fairly general and and it may
be interesting to test how the normalisation strategies align
with perceived contributions and other measures of simi-
larity. Normalization strategies are easily interchangeable
and can be selected differently for each task.

6.2. Future work

In addition to the suggested explorations listed above, fu-
ture work should include the development of a system that
allows users to willingly share some statistics about their
data so as to guide other users in their data collection and
preprocessing practices towards more impactful contribu-
tions. For example, consider a scenario where several users
participate in a collaborative learning task that aims to rec-
ognize hand-written digits (like the MNIST dataset), but
each user has its own handwriting (i.e. disparities of type
3). Suppose now that one user u has a significantly higher
contribution than others, which suggests that its handwrit-
ing is easily readable. The goal would be to create a system
that enables all peers to ask user u some statistic about its
data so that they can try to adapt their handwriting and thus
improve their own contribution and their own model.
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The contribution measure could also be used in the aggre-
gation functions Ai as a way to dynamically average the
models, but care should be taken with to avoid the creation
of an infinite learning loop. Indeed, as of now, the CMs
presented in this work depend heavily onAi. It is therefore
probably better to keep the CMs separate from the learning
algorithm.

6.3. Conclusion

This work attempts to create an incentivization to partic-
ipate constructively in collaborative learning by creating
transparency on the individual contributions of users in a
coalition. We hypothesize that visualising this information
provides guidance on how users can increase their access
to collaborative insights which has reciprocal benefits for
other users in the collaboration.
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Inverting gradients – how easy is it to break privacy in
federated learning?, 2020.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the Forty-First Annual ACM
Symposium on Theory of Computing, STOC ’09, pp.
169–178, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605585062. doi: 10.
1145/1536414.1536440. URL https://doi.org/
10.1145/1536414.1536440.

Goldacre, B., Harrison, S., Mahtani, K. R., and Heneghan,
C. Background briefing for who consultation on data and
results sharing during public health emergencies, 2003.
URL https://www.who.int/medicines/
ebola-treatment/background_briefing_
on_data_results_sharing_during_phes.
pdf.

He, L., Bian, A., and Jaggi, M. COLA: decentralized linear
learning. In NeurIPS 2018 - Advances in Neural Infor-
mation Processing Systems, pp. 4541–4551, 2018.

Huang, J., Talbi, R., Zhao, Z., Boucchenak, S., Chen, L. Y.,
and Roos, S. An exploratory analysis on users’ contribu-
tions in federated learning, 2020.

Infectious Disease Data Observatory (IDDO). Ebola
Data Platform. URL https://www.iddo.org/
research-themes/ebola.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,
H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,
J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný,
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Ruiz-Millán, J. A., Martı́nez-Cámara, E., González-
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Figure 9. Different normalization strategies (rows) of the cumula-
tive contribution measures (columns, and as detailed in Table 3)
obtained in the label noise experiment (YN), where the four points
in each graph represent the four participants with label accuracy
of 100%, 98%, 96%, and 94%.

Figure 10. Different normalization strategies (rows) of the cumu-
lative contribution measures (columns, and as detailed in Table 3)
obtained in the label accuracy experiment (XN), where the four
points in each graph represent the four participants whose features
have been altered with white noise of standard deviation 0.0, 0.1,
0.2, and 0.3.

Figure 11. Different decentralized contribution measures (CMs,
rows) obtained in the dataset size experiment (SZ). Each sub-
plot represents proportional contributions of the four participants
which differ by dataset size. Column i represents the CMs that are
computed according to ui. All CMs are displayed with standard
normalization.

Figure 12. Different decentralized contribution measures (CMs,
rows) obtained in the feature noise experiment (XN). Each sub-
plot represents proportional contributions of the four participants
which differ by noise variance. Column i represents the CMs that
are computed according to ui. All CMs are displayed with stan-
dard normalization.


