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Abstract—We consider three-dimensional cubic barcodes, con-
sisting of smaller cubes, each built from one of two possible
materials and carry one bit of information. To retrieve the
information stored in the barcode, we measure a 2-D projection
of the barcode using a penetrating wave such as X-rays, either
using parallel-beam or cone-beam scanners from an unknown
direction. We derive a theoretical representation of this scanning
process and show that for a known barcode pose with respect
to the scanner, the projection operator is linear and can be
easily inverted. Moreover, we provide a method to estimate the
unknown pose of the barcode from a single 2-D scan. We also
propose coding schemes to correct errors and ambiguities in the
reconstruction process. Finally, we test our designed barcode and
reconstruction algorithms with several simulations, as well as a
real-world barcode acquired with an X-ray cone-beam scanner,
as a proof of concept.

Index Terms—Rectangular cuboid barcodes, Cubic barcode,
Reed-Solomon, Parallel-beam scanner, Cone-beam scanner, Or-
thogonal projection, Central projection, Noise robustness.

I. INTRODUCTION

One-dimensional barcodes are a keystone of modern life
providing, amongst other things, a universal product code
used by checkout systems the world over. More recently, two-
dimensional barcodes, in the form of QR codes, have gained
in popularity largely thanks to the proliferation of smartphone
cameras.

In this paper, we consider three-dimensional barcodes with
an N ×N ×N structure as depicted in Figure 1a. Here, each
of the N3 cubes is made of one of two possible materials and
can thus store one bit of information. To scan the barcode,
we expose it to a penetrating wave, such as X-rays, light,
or sound, and measure the received signal intensity on a 2-
D plane. Therefore, what we are measuring is the absorption
that the wave undergoes when passing through the barcode.
While there are parallels with tomography setups, we assume
we measure only a single projection from an unknown angle.
Figure 1b depicts an example of such a projection.

The setup we have just described can be viewed as a
communication channel, which raises the question of how
information should be communicated across it. We propose
a practical recovery algorithm and investigate its recovery
properties both theoretically and practically to address this
question.

We envision several possible applications. For example, con-
sider object tracking and identification in warehouses where it
is challenging to print a barcode in a specific part of an object
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Fig. 1. (a) 3-D printed cubic barcode with 64 bits, and (b) a 2-D absorptive
scan of it obtained using X-rays.

and align it with a scanning camera to read the information.
However, since we can decode our barcode from a single
scan taken from almost any unknown direction, we can equip
each object with a 3-D cubic barcode and easily and robustly
identify it. Another advantage of 3-D barcodes is that many
bits are inside the code and thus not visible to non-penetrating
waves. This property could be exploited in security printing
applications [1], [2].

In this paper, we provide a full end-to-end analysis of
our approach. First, in Section II, we derive the theoretical
representation for the attenuation coefficient of cubic barcodes
and the measured 2-D scan image, for both parallel-beam
(orthogonal projection) and cone-beam (central projection)
scanners. We show that the projection operator (forward
model) is linear and straightforward to invert for a fixed
barcode pose.

In Section III, we show how to estimate the unknown
pose of the barcode from a single 2-D projection, for both
orthogonal and central projection. To do this, we use the
external shape of the barcode, which we know is a cube. We
do not embed in the barcode any information about its local
coordinate system. Thus, the resulting pose estimation is up to
an equivalence class as the barcode can be rotated 90 degrees
around any of its axes, and the external shape is unchanged.

To resolve this ambiguity and uniquely identify each bit,
we propose coding schemes in Section V. Combined with the
results of the previous two sections, this gives us a way to
estimate the bits from a single projection from an unknown
direction. For the coding, we adapt Reed-Solomon codes in
two different manners to be applicable to a 3-D barcode and
provide the advantages of each approach. As well as resolving
the previously described ambiguity, the coding schemes also
provide typical error correction.

In Section VI, we study the robustness of our approach to
different scanning directions. To do this, we take an infor-
mation theoretic approach and provide upper bounds on the
information content retrievable from each scanning direction.

Finally, in Section VII, we use simulations to examine the
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robustness of our reconstruction algorithm against noise and
then provide a real-world experiment that tests the whole
pipeline using an X-ray cone-beam scanner.

A. Related work

The initial barcode design goes back to 1952 by Sil-
ver and Woodland [3]. This one-dimensional barcode used
thin vs. thick bars to represent data similar to the Morse
code. Variations of this design include KarTrak [4], Code39,
Code128, and ITF14. To store more information in this visual
representation, David Allais, in 1987, developed the first 2-
D Barcode, called Code 49 [5]. Soon after, followed Data
Matrix [6], Aztec Code [7], PDF417 [8], quick response (QR)
Code [9], and many other 2-D Barcodes [10], [11], [12]. One
proposed approach to move beyond two-dimensional barcodes
is to include color information. ColorCode [13], University of
Cambridge’s Cronto Visual Cryptogram [14], Microsoft’s High
Capacity Color Barcode (HCCB) [15], and JAB-Code [16] are
all examples of barcodes with two spatial dimensions and one
color dimension. While adding color information increases the
capacity, it creates additional challenges, as effects such as
lighting conditions, can affect the appearance of a color image
[12].

In terms of barcodes with three spatial dimensions, a few
different approaches have been studied. A design by Xerox
proposes using elevation to encode more information in the
barcode [17]. Prasad proposes using a laser to encode infor-
mation in different layers of a two-photon dye [18]. Kikuchi
et al. introduce a framework to print QR codes onto B-spline
surfaces [19].

The main difference between these approaches and ours
is that we use the additional spatial dimension to increase
scanning flexibility. More precisely, our approaches require
just one scan from an unknown direction.

B. General setup

In general, our setup can easily be extended to P projections
of a rectangular cuboid barcode, with dimensions N1×N2×N3

consisting of cubes made of one of M different materials.
In this case, each voxel stores log2M bits of information.
We assume that the N1N2N3 information bits are distributed
along the third, then the second and finally the first dimension
of the cube. We also do not reserve any bits to identify the
local coordinate system of the barcode.

In Section III, we will show that reconstructing a cubic
barcode from a single projection leads to an equivalent class
of 24 barcodes that all describe the measurements. When N1 6=
N2 6= N3, the equivalence class is reduced to 4 elements as
the barcode can only rotate 180 degrees around each of its
axes without changing its external shape.

In this paper, we focus on the case where P = 1,
N1 = N2 = N3 = N and M = 2. These restrictions simplify
notation and impose clarity. Furthermore, the first two make
the problem harder since the size of the equivalence class
will be larger. Note that in all cases, it is easy to extend the
presented techniques to the general case. In particular, since
we use a linear reconstruction algorithm, it is easy to add more

Fig. 2. Rotation and translation of the base cubic barcode.

measurements when P > 1 by first estimating the pose of each
projection using the techniques that will be present.

II. CUBIC BARCODES FORMULATION

A. Barcode Formulation
Our proposed three-dimensional cubic barcode consists of

N×N×N voxels made of two materials with substantial den-
sity value differences, each representing one bit of information.
In order to retrieve the hidden information inside the barcode,
we need signals that can penetrate the object. While going
through the object, these signals get attenuated in proportion
to the characteristics of the material. Attenuation is defined
as the reduction in the intensity of a beam as it traverses
the matter. According to the Beer–Lambert law [20], signal
attenuation is modeled as

dI(l)

dl
= −µ(l)I(l). (1)

Here, I(l) is the signal intensity at depth l of the material (on
an axis parallel to the direction of the beam) and µ(l) is the
linear attenuation coefficient with the unit of m−1 (reciprocal
meter), which depends on the characteristic of the material that
the beam is passing through. Solving the differential equation
in (1) results in

I(l) = I0e
−

∫ l
0
µ(λ)dλ , (2)

where I0 is the signal intensity at the source. In particular, if
the attenuation coefficient is constant and equal to µ0, then
we have the well-known intensity attenuation formula:

I(l) = I0e
−µ0l .

We assume that each small cube inside the barcode has a
side length equal to d and is made of a single material with
a constant attenuation coefficient of µlow or µhigh. Thus, the
barcode is a cubic structure with a side length of Nd and
varying attenuation coefficients inside. In this structure, the
code-bits are defined as bijk for i, j, k ∈ {0, 1, · · · , N − 1}.
Each cube is a carrier for a single code-bit assigned as

µijk =

{
µlow, bijk = 0

µhigh, bijk = 1
. (3)

If a barcode is located at the origin and aligned with the
axes (call it the base barcode), we can define the attenuation
coefficient µB(x), at each 3-D point x, as

µB(x) =

N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

µijk ψ

x− d
 ij
k

 , (4)
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Fig. 3. (a) Central projection and (b) orthogonal projection.

where the subscript B stands for ‘base’. Here, we have used
the basis function ψ(x) : R3 → R defined as

ψ(x) = 1{0≤xi≤d} =

{
1 0 ≤ xi ≤ d ,
0 otherwise.

(5)

In order to simplify the notation, we change the indices of
the bits in the barcode as follows:

µB(x) =

N3−1∑
n=0

µnψ(x− τn), (6)

where τn = d[i, j, k]>, and n = i+ jN + kN2.
While scanning the barcode, an image gets recorded on a

scan plane P . Without any loss of generality, we assume that
the scan plane P is located on the xy-plane, and the cubic
barcode has an arbitrary pose in space. In order to model
the pose of the barcode in space, we assume that a base
barcode defined by µB(x) in (6) is first rotated over the x, y
and z axes with corresponding angles in ω = [ωx, ωy, ωz]

T ,
and then translated according to the translation vector t =
[tx, ty, tz]

T ∈ R3. This is shown in Figure 2. With this
assumption, we can derive the attenuation coefficient of a
barcode positioned arbitrarily in space as

µ(x) = µB(T−1(x)) =

N3−1∑
n=0

µnψ(T−1(x)− τn). (7)

Here, T (x) is the transformation that rotates and translates a
given point with ω and t, respectively, i.e.[

T (x)
1

]
= T

[
x
1

]
, (8)

with

T =

 1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

×
cosωz − sinωz 0 0
sinωz cosωz 0 0

0 0 1 0
0 0 0 1

×
 cosωy 0 sinωy 0

0 1 0 0
− sinωy 0 cosωy 0

0 0 0 1

×
1 0 0 0
0 cosωx − sinωx 0
0 sinωx cosωx 0
0 0 0 1

 .
(9)

In the following sections, we will use (7) to derive the
intensity of the signal on the scan plane after passing through
the barcode.

(a) (b)

Fig. 4. (a) Central versus (b) orthogonal projection of cubic barcodes and
calculation of ln(x, y;T ) in each case.

B. Projection Types

When we scan an object, we perform a projection of that
object onto the scan plane. We will consider both orthogonal
and central projections as they accurately model most practical
setups. On one hand, if the scanner source can be modeled as
a point source that omits cone-beams, then the projection is
central. On the other hand, when the source emits parallel
beams, like in medical X-ray scanners, or when the far field
assumption holds, the projection is orthogonal. In Figure 3,
we illustrate both the orthogonal and central projections.

Note that in the case of orthogonal projection, if we change
the value of translation vector t, the scan is simply shifted on
the image plane. Moreover, applying a rotation along the z-
axis with angle ωz , results in a rotation of the scan on the scan
plane P . In the above cases, the scan values do not change
(only shift or rotate).

In central projection, we assume a source s is located on
the z-axis at position [0, 0, zs]

T . The translation vector t does
indeed change the scan values, because it changes the relative
location of the barcode versus the source s (see Figure 3a).

C. Scan Formulation

While scanning the barcode, the scanner records the inten-
sity of the signal observed on the scan plane P; call it I(x, y).
Following the Beer-Lambert law in (2), the intensity of the
ray passing through the barcode and recorded on P can be
formulated as

I(x, y) = I0e
−

∫
v(x,y)

µ(x)dλ , (10)

where
∫
v(x,y)

· dλ : R3 → R2 denotes integration along
lines in direction v(x, y). To define v(x, y), we differentiate
between the orthogonal and central projections. We use the
visualization in Figure 4 to show this difference. In the case
of orthogonal projection, vector v(x, y) defines the z-axis
(normal vector to the scan plane P) and is independent of
x and y. In the case of central projection, however, vector
v(x, y) is defined by the direction of the line connecting the
source to the point with coordinates [x, y, 0]> on P .

Substituting (7) into (10) results in

I(x, y) = I0e
−

∑N3−1
n=0 µn

∫
v(x,y)

ψ(T−1(x)−τn)dλ

= I0e
−

∑N3−1
n=0 µnln(x,y;T ) ,

(11)
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Fig. 5. Examples of scans and shadows for orthogonal and central projections.

where we have defined ln(x, y;T ) as

ln(x, y;T )
def
=

∫
v(x,y)

ψ(T−1(x)− τn)dλ . (12)

We choose the notation ln(x, y;T ) to show the dependence of
the scan on the orientation of the barcode in space. In other
words, ln(x, y;T ) is the length of the intersection segment
between a line drawn from point (x, y) in the direction of
v(x, y) and the transformed block ψ(T−1(x) − τn). This is
visualized in Figure 4 for both orthogonal and central projec-
tion cases. We can rearrange (11) and define the linearized
scan Q(x, y;T ) as

Q(x, y;T )
def
= − ln

I(x, y)

I0
=

N3−1∑
n=0

µnln(x, y;T ) . (13)

If the transformation function T (·) is known, (13) simplifies
to a set of linear equations. Suppose that we take S samples
of I(x, y) at locations (xk, yk) with k ∈ {0, · · · , S−1}. Then
we have the following matrix notation,

q = LTµ , (14)

where q ∈ RS is the vector of linearized sample values
transformed using (13) and LT ∈ RS×N

3

is the matrix of line
lengths for rays passing through each cube in the barcode and
going through the sampling points in P . Subscript T shows
that this matrix depends on the pose of the cube. Finally,
µ ∈ RN

3

is the vector of unknown attenuation coefficients
for each cube in the barcode. More precisely,

q[k] = − ln
I(xk, yk)

I0
, LT [k, n] = ln(xk, yk;T ), µ[n] = µn,

for k ∈ {0, · · · , S − 1} and n ∈ {0, · · · , N3 − 1}. The line
lengths ln(x, y;T ) can be calculated using standard geometric
principles (see Appendix A for more details). In practice, the
pose function T (·) is not known. However, in the next sections,
we provide a way to estimate the unknown pose function T (·).
Given this estimate T̂ (·), we can construct matrix L̂T̂ and
compute the attenuation coefficients by inverting the linear
system:

µ̂ = L̂
†
T̂q =

(
L̂
>
T̂ L̂T̂

)−1
L̂
>
T̂ q. (15)

The linear formulation in (14) and its inverse in (15) enable
algorithms to find the attenuation values from a single scan
taken from a known direction.

III. ESTIMATING THE POSE OF THE BARCODE FROM A
SINGLE SCAN

Reconstructing 3-D objects from tomographic images has
been studied extensively [21], [22], [23], [24]. Using a single

Fig. 6. All 24 possible combinations of code-bit rotations that result in the
exact same barcode shadow.

image taken from an unknown direction to reconstruct an
object is challenging, if not impossible in the general setting.
Fortunately, in our case, we have prior knowledge about
the shape of the barcode, which helps in formulating the
reconstruction problem mathematically and finding a closed-
form solution. In order to use this prior information, we need
to identify the pose parameters of the barcode, ω and t.

Before going any further, let us provide a definition that is
useful throughout the rest of the paper.

Definition 1. The barcode shadow is the convex hull of the
eight points formed by the projection of the eight barcode
vertices of the cube on P .

The barcode shadows of an example barcode are illustrated
in Figure 5 for orthogonal and central projections. One can see
how it shows the shape of the scan and it will play an important
role in estimating the pose of the barcode. We use some
interesting properties of shadows in orthogonal and central
projection cases to estimate the pose with high precision. For
the orthogonal projection case, the following fact holds:

• The barcode shadow is a square if and only if the image
plane is parallel to one of the cube sides, otherwise the
barcode shadow is a convex hexagon with three pairs of
parallel edges.

For the central projection, the following fact holds:

• The barcode shadow is a convex quadrilateral if the z-axis
crosses the side of the barcode nearest to s. Moreover,
if there exists a ray from s to any point on the scan
plane which is tangent to a plane constructing a side of
the barcode, then the barcode shadow is a convex pen-
tagon. Otherwise, the shadow forms an irregular convex
hexagon.

In the following, we show how to use the barcode shadow
from a single scan to estimate the pose of the barcode for
both orthogonal and central projections. As mentioned in the
introduction, this recovery is up to an equivalence class as
the barcode shadow is unchanged if the barcode is rotated 90
degrees around any of its axes. Let us look at a simple example
in Figure 6. Here, a 2×2×2 cubic barcode is rotated in every
possible direction. These rotations account for the symmetrical
shape of the cubic barcode. The barcode shadow for all these
rotations is the same, and thus we will have an ambiguity in
the arrangements of the bits in the barcode. For example, the
first barcode in the figure with rotation [ωx, ωy, ωz]

>, would
produce the same scan and shadow as the second with rotation
[ωx, ωy − π/2, ωz]>. We show in Section V how to resolve
this ambiguity.
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Fig. 7. Relationship between the barcode orientation and the edges and
corners of the produced shadow on the scan plane in the case of (a) orthogonal
and (b) central projections.

Figure 7 depicts the notation we will use when deriving
the solution to the orientation estimation problem for both
orthogonal and central projections. Let us call the vertices of
the barcode vi, i ∈ {1, · · · , 8}. Denote the projection of each
vertex vi on the scan plane by pi. In this section we ignore the
special cases (which indeed have a zero measure), and assume
that the barcode shadow has six corners. Also define the set
of unit vectors ex, ey and ez , representing the direction of the
edges of the base barcode, as shown in Figure 7. While rotating
the barcode in space, these three unit vectors are mapped to
the unit vectors ea, eb and ec, respectively, according to (9):

ea =

cosωz cosωy
cosωy sinωz
− sinωy

 ,
eb =

− sinωz cosωx + sinωx cosωz sinωy
cosωx cosωz + sinωx sinωy sinωz

sinωx cosωy

 ,
ec =

 sinωx sinωz + cosωx cosωz sinωy
− sinωx cosωz + cosωx sinωy sinωz

cosωx cosωy

 .
(16)

We denote these three vectors as ea = [ea,x, ea,y, ea,z]
>, eb =

[eb,x, eb,y, eb,z]
>, and ec = [ec,x, ec,y, ec,z]

>. From (16) we
derive the following closed-form expressions for ωx, ωy , and
ωz:

cosωz =
|ea,x|√
e2a,x + e2a,y

,

cosωy =
√
e2a,x + e2a,y,

cosωx =
|ec,x cosωz sinωy − eb,x sinωz|

sin2 ωz + cos2 ωz sin2 ωy
.

(17)

Note that in (17), we assumed that the rotation angles are
in the range of [0, π/2). Since we do not know the local
coordinate system of the barcode, this orientation ambiguity
is inherent and will be later resolved using the Reed-Solomon
coding scheme and by considering all the 24 orientation
ambiguity cases. According to (17), to find the pose of the
barcode in the noiseless case, it is sufficient to find ea,x, ea,y ,
eb,x, and ec,x.

The general procedure to find the rotation and translation
parameters is similar for the orthogonal and central projec-
tions, and is as follows:

Step 1: Construct the barcode shadow from the scan.
Step 2: Extract the corners of the barcode shadow.
Step 3: Calculate the elements of ea, eb and ec.
Step 4: Given the estimated elements of ea, eb and, ec, use
(17) to compute ω.
Step 5: Estimate the translation parameters in t.

Steps 1 and 2 are the same for both orthogonal and central
projections. Steps 3 to 5 however, differ slightly between the
two.

In our practical implementation of Step 1, we first de-
noise the scan by a two-level wavelet decomposition with a
Daubechies 2 filter and soft-thresholding with the BayesShrink
method [25]. Then, we find the barcode shadow by applying a
thresholding followed by a closing morphological transform.
In Step 2, we extract the 2-D coordinates of the corners of the
barcode shadow using Harris’s corner detection method [26].

In Steps 3 to 5, we leverage the geometrical properties of
our barcode to find ω and t. We explain these steps separately
for each projection type below.

A. Orthogonal Projection

It is easy to see in Figure 7a that

[p3 − p1,p2 − p1,p6 − p2] = Nd

[
1 0 0
0 1 0
0 0 0

]
[ea, eb, ec] , (18)

where pi is the 3-D coordinate of the shadow corner pi, and
Nd is the length of each edge of the cube. We can derive ea,x,
ea,y , eb,x, and ec,x from (18) and substitute them into (17) to
find closed-form solutions for ωx, ωy , and ωz . With estimated
ω, we can find ea, eb, and ec from (16).

In the next step, to find the translation parameters in t, we
connect all the corners of the shadow to their next third corner.
The three lines will intersect in a single point — call it p̄ —,
which is the projection of the cube center on the scan plane.
We can then write

t = p̄− Nd

2
(ea + eb + ec) +

0
0
ζ

 .
Note that while performing an orthogonal projection, the
information about the barcode translation in the z-axis is lost
and the free parameter ζ represents this. Also, note that the
association of the shadow edges to the ea, eb, and ec can be
different than our choice in (18) as long as the three vectors
satisfy the right-hand rule. This ambiguity about the rotation
of the barcode is part of what we show in Figure 6 and will
be resolved later.

B. Central Projection

We use the notation in Figure 7b to visualize the derivation
of the barcode pose from its shadow corners in the central
projection case. Consider the plane P1,3, with normal n1,3 in
Figure 7b, defined as the plane passing through p1, p3 and the
source s. Plane P1,3 contains the edge v1− v3 from the cube,
thus n1,3 is orthogonal to v1− v3. Similarly, plane P6,8, with
normal n6,8, contains the edge v6−v8. Since the edges v1−v3
and v6−v8 are parallel to each other, the normal vectors n1,3
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Fig. 8. Special class of cases, where opposite edges of the barcode shadow
do not correspond to parallel barcode edges.

and n6,8 are orthogonal to both these lines. Hence, their cross
product produces the direction of these edges, represented
by the unit vector ea in the figure. By applying the same
procedure on the other corners of the barcode shadow we can
also identify unit vectors eb and ec as

ea =
n1,3 × n6,8

‖n1,3 × n6,8‖
, eb =

n7,8 × n1,2

‖n7,8 × n1,2‖
,

ec =
n3,7 × n2,6

‖n3,7 × n2,6‖
.

(19)

Now that we have calculated ea, eb and ec, we can use (17)
to find a closed form solution for ω.

Next, to find the translation parameters in t, we first note
that each projected vertex of the cube vi, can be represented
as

vi =

 αixi
αiyi

(1− αi)zs

 .
where [xi, yi]

> is the coordinate of the shadow corner pi on
the scan plane P , and vi contains the coordinates of vi. Also
note from Figure 7b that v1 +Ndea = v3. We can write the
same relationship for all the adjacent corners of the barcode
shadow and solve a set of linear equations to find the values of
αi, and thus the values of vi, i ∈ {1, 2, 3, 6, 7, 8}. The barcode
cube center — call it v̄ — is the average of the identified cube
vertices. With this, we can find the translation vector t as

t = v̄ − Nd

2
(ea + eb + ec).

In the example in Figure 7b for central projection, we
assumed that opposite edges of the barcode shadow (each edge
and the next third one) correspond to parallel edges of the
barcode cube (e.g. p1−p3 and its third next neighbor, p6−p8
correspond to two parallel barcode edges v1−v3 and v6−v8).
For a small set of arrangements of the barcode and the source,
this assumption is not true. We see an example in Figure 8,
where the opposite shadow edges p2 − p6 and p3 − p4 do
not correspond to parallel edges of the barcode cube. We can
identify such cases by simply connecting the opposite shadow
corners and seeing that they do not intersect in a single point.
In this case, out of the three pairs of opposite shadow edges,
only one pair corresponds to parallel edges of the cube, for
example, the pair p1 − p3 and p6 − p8 in Figure 8. Thus,

we need to consider P1,3 with P6,8, P1,2 with P3,4, and P2,6

with P4,8 to estimate the barcode pose. It is easy to show that,
almost surely, only this choice of pairs of planes results in ea,
eb and ec being orthogonal (more details are provided in the
supporting material). Hence, if we fall under this special case,
we test the three pairs of opposite shadow edges, and keep the
one that results in an orthogonal set of ea, eb, and ec.

C. Fine-tuning

Although straightforward, the geometrical approach that we
presented above does not directly take into account that the
barcode shadow is generated from a cube. Leveraging this
additional information can be beneficial in the presence of
noise. In order to enforce this condition on the barcode, we
apply further fine-tuning on the estimated pose parameters
using a gradient descent optimizer. To this end, we use a
numerical non-linear optimization method to minimize the cost
function defined as

f(w, t) = ‖p(w, t)− p̃‖2F , (20)

where p(w, t) ∈ R6×2 is the coordinates of the corners of the
shadow of a barcode rotated and translated by w and t, and
p̃ is the observed coordinates of the barcode shadow. We use
the output of the geometrical approach as the initial solution
for the non-linear optimizer.

In Figure 9, we provide an example of estimating the
orientation using the above procedure for central projection.
Here, the ground truth cube has ω = π/180 × [50, 15, 70]>

and t = [1.5,−4, 33]>. The corners of its scan are shown by
black dots in Figure 9b. We then perturb these corners by a
uniform noise in [−0.1, 0.1]2. The perturbed corners are shown
by the gray squares in Figure 9b. Then, we estimate the pose
parameters using only the geometrical approach, only Gradient
Descent (GD) with an initial solution set to (ω0, t0) = (0,0),
and with the combination of the two (geometrical + GD). In
the legend we report the relative reconstruction error, defined
as [

‖ω − ω̂‖
‖ω‖ ,

‖t− t̂‖
‖t‖

]
. (21)

In the reconstruction, we can see that the GD method gets
stuck in a local minimum, far from the ground truth. The
geometrical approach finds a better result, but when followed
by a gradient descent fine-tuning, the reconstruction improves
significantly, leading to relative errors equal to [0.010, 0.005].

D. Unique Reconstruction of the Code

Once we extract the pose parameters using the proce-
dures explained in Sections III-A to III-C, we can calculate
ln(x, y;T ), which enables us to invert the linear equation in
(14) and estimate the values of attenuation coefficients, µn.
We can prove that with this procedure, the embedded code
bits in the barcode can be recovered uniquely up to a known
set of 24 permutations shown in Figure 6.

Lemma 1. The pose reconstruction algorithm in Steps 1 to 5
and explained in Sections III-A and III-B, followed by solving
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Fig. 9. (a) A cubic barcode (in black) and its reconstructions using different
methods; (b) corners of the scan of the cubic barcode (black), perturbed
corners with noise (gray), and corners of the scans of reconstructions of the
barcode based on estimated pose parameters ω̂ and t̂. Numbers in the legend
correspond to the relative reconstruction errors defined in (21).

the inverse problem in (15) recovers the embedded barcode
bits uniquely up to a set of 24 permutations shown in Figure 6,
provided that we have enough samples from the scan such that
the matrix LT has full rank.

Proof. We provide the proof in Appendix B.

IV. SAMPLING THEOREM FOR ORTHOGONAL PROJECTION

In the reconstruction process, since we have the whole scan,
we can use all the pixel values for better robustness against
noise. However, it is interesting to know the minimum number
of samples required in the noiseless scenario to guarantee a
reconstruction in theory. The minimum number of samples
defines the maximum pixel size in the scan image and thus
the minimum reconstructable scan resolution. Since the scan
values for the central projection case depend not only on ω and
t, but also on zs, finding the answer to this question becomes
very complicated. Here we focus on the case of orthogonal
projection to answer this question.

We define a bit region for each particular bit voxel as the
region over the scan plane in which the projection of that bit
voxel lies. This region plays an important role in the sampling
process during reconstruction, as all the information about one
bit value exclusively appears inside its bit region. Without
a sample from this region, the information about that bit is
completely lost. The following lemma states a bound for the
maximum distance between samples that guarantees at least
one measurement from each bit region.

Lemma 2. Consider a cubic barcode with N3 bits carried
over voxels of side length d. The barcode is scanned by a
parallel beam scanner over plane P in an arbitrary direction
v(x, y). A uniform sampling inside the barcode shadow, with
spacing Dx and Dy along the x and y axes guarantees
at least one sample from each code-bit region over P if
Dx, Dy ≤ d

√
2rc(ωx, ωy), where rc(ωx, ωy) is the radius

of the inscribed circle inside a bit region, illustrated in
Figure 10b.

Proof. The proof of this lemma is given in Appendix C.

Fig. 10. (a) Definition of the bit region and sampling with at least one sample
at each bit region. (b) Values of the radius of inscribed circle rc(ωx, ωy).

Lemma 2 shows the relation between the number of samples
and the size of the voxels carrying the barcode information,
as well as the scanning direction. We can see that the smaller
the voxel size length, d is, the smaller the sampling period
needs to be. Moreover, as we have seen before, for some
special cases, e.g. when ωx = ωy = 0, no reconstruction
algorithm can find the bit values using a single scan. In the
above lemma, we do not consider the difference between
the attenuation coefficients of the materials that are used to
construct the barcode. Theoretically, if the two materials are
different, we can reconstruct the barcode bits. In the presence
of noise, however, we need to have materials with significantly
different attenuation coefficients to be able to reconstruct
the barcode information. We leave finding the relationship
between the material attenuation coefficients and the sampling
requirements as future work.

V. CODING SCHEMES FOR CUBIC BARCODES

It is common to use error correction codes in noisy
communication channels to retrieve the correct information
bits despite some toggled bit values. Normally, in an error
correction code, a partial redundancy is added to the code-
bits to guarantee detection of erroneous bits and correct
reconstruction up to some noise level. In our cubic barcode
structure, we use channel coding in order to achieve two
advantages:

1) Correct errors generated during the scanning and/or re-
constructing the barcode

2) Resolve the ambiguity around the barcode orientation.
Recall from Section III that we can find the barcode

orientation using the barcode shadow up to an equivalence
class, where the bits can form one of possible 24 arrangements.
These arrangements result in structured permutations in the
code-bits when reconstructed. Only one of such permutations
has the correct correspondence of the information bits to the
added redundant parity bits in the coded message. Provided
that the number of erroneous bits caused by the sampling and
reconstruction process does not surpass the error correction
capability of the code, that correct bit arrangement will pass
the decoder.

To encode the barcode information, we choose Reed-
Solomon (RS) codes. RS codes are linear error-correcting
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Fig. 11. Interpretation of 3-D Reed-Solomon coding scheme in terms of 1-D
conventional Reed-Solomon.

codes that Reed and Solomon introduced in 1960 [27]. They
are widely used in CDs [28], DVDs [29], QR codes [30], data
transmission technologies such as DSL [31], and broadcast
systems such as DVB [32].

We start by providing a quick recap of one-dimension
Reed-Solomon codes adapted to our cubic barcode structure.
Consider the finite field Zq as the set of integers modulo q,
with q a prime number. When q is finite, we call Zq a Galois
field and represented it as GF (q). An element α ∈ Zq is
called a primitive element of GF (q), if αq−1 = 1. Every
element of GF (q) can be written as a power of α. Thus, the
set {1, α, α2, · · · , αq−2} is a basis for GF (q). Reed-Solomon
codes are constructed by utilizing these basis vectors. A Reed-
Solomon code of length NO = q−1 and dimension KI ≤ NO
over a field Zq is constructed from the set of all degree KI−1
polynomials

R(x) =

KI−1∑
k=0

six
k,

where sk, k ∈ {0, · · · ,KI − 1} are the input symbols (to be
encoded) and the elements of the set

{(r0, r1, · · · , rNO−1)|ri = R(αi), i = 0, 1, · · · , NO − 1},

are the output symbols. The resulting RS code, represented by
RS(NO,KI), can correct up to 0.5(NO−KI) erroneous sym-
bols. We review a different representation of Reed-Solomon
codes using generalized Fourier transforms in the supporting
material document, that can help in using them in different
applications, including orientation disambiguation of cubic
barcodes.

A. 1-D Reed-Solomon

In the first scheme, we assume that we want to generate
N3 Reed-Solomon code bits from K information bits. If we
define each information byte as a symbol, then NO = N3/8
and KI = K/8. We construct RS(NO,KI) that results in N3

code bits from KI input bytes. We rearrange these N3 bits into
a 3-D tensor as our barcode. Thus, we encode K information
bits into N3 RS bits in our cubic barcode. Here we assumed
that N3 and K are multiples of 8. This is a design factor that
we can take into account while building the barcode.

The error correction capability (ECC) of this scheme in
terms of the number of bytes is

ECC =
NO −KI

2
=
N3 −K

8× 2
. (22)

B. 3-D Reed-Solomon

Suppose that we have K3
1 information bits, arranged in a

K1 × K1 × K1 tensor. We first group them into 2 × 2 × 2
blocks each of which we call a symbol. We thus have a
K1/2 × K1/2 × K1/2 tensor of symbols, which we will
use to construct a 3-D Reed-Solomon code. Let us define
KI = K1/2 and NO = N/2. With these definitions, the
input sequence is a KI ×KI ×KI structure and the output
is a NO × NO × NO structure whose symbols are numbers
in {0, 1, · · · , 255}; here, each symbol has 256 possible values
since it is built from 2× 2× 2 = 8 bits. We generate the 3-D
Reed-Solomon output symbols from input symbols as follows:

rl,m,n =

KI−1∑
i,j,k=0

si,j,kα
il+jm+kn, l,m, n ∈ {0, · · · , NO − 1}.

Since the summation in the above equation is separable,
generating the 3-dimensional RS code rl,m,n is equivalent to
applying the one-dimensional transformations consecutively to
each dimension of the input tensor. The 3-D RS scheme is
interpreted in terms of the conventional 1-D RS coding scheme
in Figure 11.

The error correction capability of the proposed 3-D RS code
is derived as follows,

ECC = K2
I
NO −KI

2
+KINO

NO −KI

2
+N2

O
NO −KI

2

=
NO −KI

2

(
K2

I +KINO +N2
O

)
=
N3 −K3

1

8× 2
.

(23)

C. 1-D vs 3-D Reed-Solomon

By comparing (22) and (23), we see that for K = K3
1

the two schemes have the same error correction capability.
However, there are other factors that contribute to the choice
of the coding scheme. For example, when N ≤ 8, since the
number of bytes in each dimension is too small, it is not
possible to generate RS codes with error correction for each
dimension separately and it is preferable to aggregate the code
bytes and generate a 1D RS code for the whole sequence. Also
when K is not a cube number, we are bound to using 1-D RS
codes, since 3-D codes work only when K is a cube number.
On the other hand, 3-D Reed-Solomon scheme works better for
large values of N , as it computes the code in each dimension
consecutively, while it is faster to generate RS codes with
length N than length N3.

D. Ambiguity Resolution

In this section, we delegated the task of resolving the
barcode orientation ambiguity to the coding scheme. Assuming
that the scanning and reconstructing procedures have not
introduced too many errors in the code-bits, the correct bit
arrangement (out of the 24 possible arrangements) will pass
the decoder test. Through all the tests that we ran with this
method, we did not run into a case, where more than one of
those 24 arrangements passed the decoder test. However, we
have not been able to prove this result theoretically, and leave
it as a conjecture to be proved in a future work.
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Alternatively, one can designate certain code bits in the bar-
code to identify the barcode’s local coordinate system, similar
to the currently implemented 2-D QR barcodes. Although we
believe in the potential of this approach, we do not explore it
in this article.

VI. THE ROBUSTNESS ANALYSIS OF BARCODE
ORIENTATION

Recall from (14) that the scanning framework in a cubic
barcode can be modeled as a linear system of equations.
In this section, we analyse the robustness of the process to
different barcode orientations, by upper bounding the amount
of information that is recoverable from a projection at a
particular angle. We can already have an intuitive guess on the
relation of the amount of recoverable information in the scan
and the orientation. For example, in the case of orthogonal
projection, when the scan plane P is parallel to a side of the
cube, some of the bit regions lie on top of each other and
appear on the same region on the scan plane. Therefore, we
expect that for the cases with this type of symmetricity, the
amount of information present in the projection is less than
the case where the barcode is scanned in a non-symmetric
direction such as ωx = 30◦ and ωy = 50◦. In the former case,
changing the order of the rows of the bits in the cube, does
not change the scan value, while in the latter, the orientation is
such that we receive information from all the bits in the scan.
In this section, the goal is not to have a capacity analysis
for the barcode, instead, we are interested in finding out how
robust is each orientation in terms of reconstructing the bit
values from the scan image. As long as µ is retrieved from
the scan, the bit values are not important in this analysis,
therefore, we assume a general case in which the bit values are
arbitrary and not just taken from a binary set, i.e. µ ∈ RN

3

.
We further assume that the scan samples are contaminated by
some additive i.i.d. random Gaussian noise ν ∼ N (0, σ2

νIS),
independent of the attenuation coefficients µ.

The sampling process can be formulated as follows,

q = LTµ+ ν , (24)

where µ ∈ RN
3

, q ∈ RS and LT ∈ RS×N
3

+ . The formulation
in (24) mimics a communication channel. We can compute the
recoverable information of the barcode as follows:

I(µ; q) = h(q)− h(q|µ) = h(q)− h(LTµ+ ν|µ)

= h(q)− h(ν) ,
(25)

where I(µ; q) is the mutual information between µ and q,
assuming that matrix LT is known, and h(·) is the entropy
function.

We assume an uncorrelated Gaussian noise with covariance
matrix Λν = σ2

νIS and define Λµ = E(µµT ) as the
covariance matrix of input sequence µ. If code-bits were
generated from binary set µi,j,k ∈ {µlow, µhigh} with uniform
distribution, then the average power for each code-bit was
PT = (µ2

low + µ2
high)/2.

In order to evaluate the maximum carried information, we
consider input code-bits to have Gaussian distribution with
the same average code-bit power. In other words, Λµ =
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Fig. 12. Normalized maximum mutual information that can be carried over
the scan of cubic barcode, with N = 4 for (a) orthogonal and (b) central
projections with some selected barcode orientations.

PT IN3/N3. We can verify that the mutual information is
maximized for Gaussian distribution of q and is derived as

I(µ; q) ≤ log2

(
(2πe)S det(LTΛµL

T
T +Λν)

)
− log2

(
(2πe)S det(Λν)

)
= log2

(
det(IS +LTΛµL

T
TΛ−1

ν )
)

(a)
= log2

(
det(IS +

PT

N3σ2
ν

ULT
ΛLT

UT
LT

)

)
(b)
=

N3∑
n=1

log2

(
1 +

PT

N3σ2
ν

λ
(n)
LT

)
.

(26)
Here, in (a) we have replaced LTL

>
T with its eigenvalue

decomposition LTL>T = ULT
ΛLT

U>LT
and in (b), we have

defined λ(n)LT
as the n-th non-zero eigenvalue of LTL>T .

In Figure 12, we show the Normalized maximum Mutual
Information (NMI) of the barcode scanned from different
directions vs the SNR for N = 4; here, SNR is defined as
SNR = (µ2

low + µ2
high)/(2σ2

ν). The normalization is done in
order to have a better scale on the figures for comparison. For
normalization, the maximum information calculated in (26)
is divided by the maximum value, which has been seen in
the simulation in the orthogonal and central projection cases.
Recall that the value of ωz does not change the scan values
in the orthogonal projection case. Thus, in the experiment for
orthogonal projection, we set it to zero and do not change
it. We can see that (ωx, ωy) = (30, 50) in the orthogonal
projection case and (ωx, ωy, ωz) = (30, 50, 40) for central
projection, provide higher recoverable information than several
others that would cause ambiguity in the reconstructed code
bits, such as (ωx, ωy) = (90, 90) in orthogonal projection case
and (ωx, ωy, ωz) = (90, 90, 0) in central projection case.

VII. SIMULATION AND REAL EXPERIMENT

In order to assess the performance of our proposed barcode
reconstruction algorithms, we test them both with simulations
and a real experiment. We embed the same information bits
in the barcode in all the simulations as well as the real
experiment. We explain the details of this barcode design in
Section VII-A. In a first test, we investigate the stability of
our reconstruction algorithm versus noise and barcode pose
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Fig. 13. Reconstruction of code bit values from simulation of the scan
from orthogonal projection. (a) simulation of noisy scan, (b) barcode shadow
along with the extracted corners using Harris’s corner detection method, (c)
comparison of reconstructed corners from orientation parameters calculated
by geometrical and gradient descent methods, (d) reconstructed attenuation
values compared to the ground truth.

for both orthogonal and central projections. Then, through a
simulation, we provide an example of the procedure to recon-
struction the information bits from an orthogonal projection
of the barcode. Finally, in the case of central projection, we
showcase a real implementation of the aforementioned cubic
barcode and provide the reconstruction framework from a scan
taken by a cone-beam X-ray scanner (the most common type
of industrial scanner).

A. Barcode Design and Implementation

We designed a cubic barcode with N = 4. Thus, the barcode
has in total 64 code-bits. We reserved 48 bits as information
bits, and applied an RS(8, 6) one-dimensional Reed-Solomon
coding scheme on them, as in Section V-A. Since we have two
check symbols (16 bits), our implementation has the ability to
correct one erroneous symbol (byte), i.e. 8 consecutive bits.
Therefore, we can only guarantee to correct one erroneous bit,
since two erroneous bits in different symbols cannot be cor-
rected; however, in principle, a maximum of eight erroneous
bits can be corrected if they are all in the same symbol. We
also assume that d = 1, resulting in a 4cm × 4cm × 4cm
barcode. In Figure 17a, you can see the 3-D barcode, where
black cubes correspond to 1 and yellow cubes to 0.

The barcode is constructed with materials with attenuation
coefficients of 0.61 and 0.39 to represent zeros and ones,
respectively1. In order to make the simulation and real ex-
periment similar, we choose the same attenuation coefficients
for simulations.

1Since higher attenuation results in a weaker signal on the scan plane, we
represent zeros by material with a larger attenuation coefficient. We explain
this specific choice of values in Section VII-E.

B. Orthogonal Projection Simulation

We assume that the barcode, with the design in Sec-
tion VII-A is scanned using orthogonal projection.

The pose parameters of the barcode are set to ω =
[70◦, 50◦, 0◦] and t = [0, 0, 0] (recall that in the case of
orthogonal projection, ωz and t do not affect the shape of
the scan. Thus, we set them to zero in this experiment). We
assume that the scan plane is located on the xy-plane. In order
to make the simulation more realistic, we assume that the scan
is perturbed with some small white Gaussian noise such that
we have a PSNR = 57 dB. Here, we add the noise to make
the problem of extracting the parameters non-trivial. The noisy
scan is shown in Figure 13a.

We first construct the barcode shadow according to Step 1
in Section III. Then we follow with Step 2 and using Harris’s
corner detection method, find the six corners of the barcode
shadow. This is depicted in Figure 13b. In Steps 3 to 5,
we follow the procedure in Section III-A to estimate the
parameters of the barcode pose. In Figure 13c, we show
the barcode shadow corners simulated using the estimated
parameters by only the geometrical approach as well as the
combination with the fine-tuning, compared to the extracted
corners from the barcode shadow in the previous step. We can
see that the fine-tuning step is helpful in estimating the barcode
pose parameters. Once the values for ω and t (equivalently
the transformation T ) are estimated, we can use the linear
inverse equation in (15) to find the attenuation coefficients
µn. Next, we use a threshold of 0.5 (the middle point of 0.39
and 0.61) to find the bits. We decode all the values above
this threshold as 0 and all below as 1. Finally, we construct
all the 24 arrangements of these bits according to Figure 6
and choose the one that passes the decoder test. The values
of the reconstructed µn for the correct estimated orientation
are shown in Figure 13d, along with the true ground-truth
attenuation coefficients.

C. Success Rate vs. Noise and Barcode Orientation

We aim at testing the stability of our reconstruction al-
gorithm to noise as well as to the barcode pose in space.
For example, we have seen that in the case that ω = 0
for orthogonal projection, there is no way to successfully
reconstruct the barcode from a single projection. For each
case, we compute the matrix LT and q as in (14), solve (15),
threshold the estimated attenuation coefficients to find the bit
values, and finally, use Reed-Solomon decoding to extract and
correct the information bits.

Here, we are interested in assessing the robustness of the
inverse problem in (15) to the pose parameters, and not
the pose estimation approach. Thus, in this experiment, we
assume that the pose parameters ω and t are known to the
reconstruction algorithm and skip the pose estimation step.

In order to add noise to the projections, we add a zero-
mean white Gaussian noise ν ∼ N (0, σ2

ν), with given σν , and
construct the noisy scan readings by

Q̃(x, y;T ) = max(Q(x, y;T ) + ν, 0).
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Fig. 14. Orthogonal Projection: (a) Success Rate in bit reconstruction vs. scan
angle ωy . (b) Scans at angles that the success rate is low (shown by dashed
lines in (a)). For ωy = 25, a noisy scan example at PSNR = 17.4 is shown.

Then, we define the scan PSNR as

10 log10

maxi,j(Q(xi, yj ;T ))2

1
NxNy

∑Nx

i

∑Ny

j (Q(xi, yj ;T )− Q̃(xi, yj ;T ))2
,

where Q(xi, yj ;T ) is the sample value of each point of
an Nx × Ny sampling grid. For each experiment, we try
σν ∈ {0, 0.3, 0.4, 0.45, 0.50} and report the average PSNR
value over the performed experiments. For each given barcode
orientation and noise level, we do 320 trials and compute the
ratio of instances for which we successfully retrieve all the
original 48 information bits correctly. We call this ratio the
success rate.

1) Orthogonal Projection: Recall that for orthogonal pro-
jection, the value of ωz does not affect the scan values.
Thus, we set it to zero in this experiment. We also assume
that ωx = 30◦ and change the value of ωy and noise as
explained above. In Figure 14a we show the success rate
as a function of ωy , with each color representing a different
noise level. We can see that in particular, for four values of
ωy ∈ {0◦, 25◦, 41◦, 90◦} the reconstruction becomes difficult
in the presence of large noise. Let us take a closer look at some
of these angles in Figure 14b. For ωy = 25◦, the barcode
orientation is such that the projection of the front and back
edges align with each other, causing a mirror symmetry in the
scan around the upper-left and lower-right diagonal of the scan.
For ωy = 41◦, we see a similar case with a mirror symmetry
around the upper-right and lower-left diagonal. At ωy = 90◦,
we lose information about the order of different layers of the
barcode. Thus, the algorithm fails to reconstruct the bits, even
in the absence of noise. Beyond these difficult orientations,
we see that the algorithm performs well, even in the presence
of large noise, for ωy ∈ [4◦, 16◦]∪ [47◦, 80◦]. To give a visual
indication of the noise level, we also show an example of a
noisy scan corresponding to ωy = 25◦ and PSNR= 17.4 in
Figure 14b.

2) Central Projection: In central projection, we have six
free parameters to set. Since this results in a very large
search grid, we restrict this study to ω = [30◦, wy, 40◦]> and
t = [−2,−2, 10]>. We also assume that zs = 25cm. The
above values are chosen arbitrarily. In Figure 15a, we show
the success rate for different values of ωy and noise levels. We
see that for three values ωy ∈ {8◦, 28◦, 81◦} the success rate

Fig. 15. Central Projection: (a) Success Rate in bit reconstruction vs. scan
angle ωy . (b) Scans at angles that the success rate is low (shown by dashed
lines in (a)). For ωy = 28, we also show on the bottom-right the zoomed
scan of three bits that align in such a way that causes a confusion for the
reconstruction, and thus a reduction in the success rate.
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Fig. 16. Average condition number of Lstk vs. the number of views P .

deteriorates for large noise perturbations. In Figure 15b, we
show the scans for these angles. We can see that at ωy = 8◦

and ωy = 81◦ we fall into a special category of central
projection where the barcode shadow has only five or four
corners, respectively. As the figures suggest, in these special
cases, layers of the barcode bits fall behind each other and
create a confusion in the order of the reconstructed layers.
For ωy = 28◦, explaining the drop in success rate is slightly
more complicated. For this specific orientation and translation,
bits (0, 1, 2), (1, 0, 0) and (1, 0, 1) make a special arrangement,
which is not only symmetric around the diagonal, but also bit
(1, 0, 1) covers the other two bits almost completely, leaving
a very small independent region for the other two bits. Thus,
a reduction in the value of one bit is compensated by an
increase in the value of the other two. The mistakes in the
reconstruction of these three bits cause the lower success rate
for this barcode orientation shown in Figure 15a. We show
the zoomed scan of these three bits in the bottom-right image
in Figure 15b. Again, for the majority of cases, our algorithm
performs well, even in the case of large noise.

D. Effect of Multiple Projections on Stability

Throughout this paper, we considered the most challenging
case where the number of projections is 1. However, we
know intuitively that increasing the number of projections
should (at least on average) improve the stability of the
reconstruction algorithm. Assume that we have P projections
from P random directions. For each projection, we produce the
barcode shadow and estimate the orientation of the barcode.
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Next, we form Lstk and ystk, by vertically stacking all L(p)
T

and y(p) for p = 1, · · · , P :

Lstk =

[
L

(1)
T

>
, · · · ,L(P )

T

>
]>

, ystk =
[
y(1)

>
, · · · ,y(P )>

]>
. (27)

Then we solve the following equation system: ystk = Lstkµ.
Note that each L(p)

T has 24 equivalent matrices, which result
in identical barcode shadows. To deal with this, we consider
all 24P possible combinations among different views. Among
all recovered µ vectors, only the true code will pass the error
correction and parity check in the decoder.

In order to evaluate whether cooperating multiple views of-
fers any additional stability in the reconstruction, we compute
the condition number of the stacked matrix Lstk in (14), for
different number of projections. For each of the orthogonal and
central projection cases, we generated 10 random views. Then
we calculated the average condition number when selecting
only one, or two, . . ., up to five out of these 10 views. For
example, when we choose 2 views, the average condition
number is calculated over all

(
10
2

)
combinations of views. The

result of this simulation is shown in Figure 16 for both central
and orthogonal projections. We can see that for both projection
types, the average condition number decreases as we increase
the number of projections. We can interpret this reduction in
the condition number as additional stability in reconstruction.
Furthermore, the average condition number is better in the
case of central projection than orthogonal projection. This is
expected, as central projection results in less symmetry in the
projection image compared to the orthogonal projection and
therefore we achieve more robustness in the reconstruction.

E. Real Experiment, Central Projection Scenario

For testing the central projection case, we performed a real
experiment. We used the same design that we explained in
Section VII-A. We used 3-D printers to print the barcode bits
using two materials with different X-ray attenuation. Since
we did not have access to a printer that would print with
two materials simultaneously, we decomposed the barcode
design into a 3-D puzzle and printed the parts separately
with two different printers. We printed the one bits as a
whole structure using ABS-M30 Black material with a “Fortus
400mc” FDM printer. The zero bits were printed in smaller
parts using RC70 material with an “Envisiontec Perfactory 4
Mini XL” DLP printer. We attached the barcode with a 30◦

tilt (the bottom side of the barcode cube has a 30◦ angle
with horizon) on an ABS-M30 stand to produce a non-trivial
orientation in the barcode for this experiment. The tilt angle is
assumed unknown during the reconstruction procedure. Note
that the stand is not part of the barcode and is ignored in
the reconstruction process. The printed and assembled barcode
is shown in Figure 17a. In addition, we provide a video of
the barcode construction in the supplementary material. We
estimated the X-ray attenuation of ABS-M30 Black and RC70
to be 0.39 and 0.61, respectively (thus the choice of simulated
attenuation values in Section VII-C1).

In order to scan the barcode, we used an “RX-SOLUTIONS
Ultratom micro CT” cone-beam scanner with a 160kW tube,
at a 40kV voltage and a beam angle of 140◦. The setup with

(a) (b)

Fig. 17. Real experiment with central projection scanner. (a) Printed cubic
barcode with a 30◦ tilt fixed on a stand, (b) cone-beam X-ray scanner with
the barcode fixed inside.

the source (on the left), the object and the scan plane (on the
right) is shown in Figure 17b. For this experiment, we set the
source object distance (defined as the distance of the source
point to the center of the cylindrical stand where the object
is lying) to 20cm and the source detector distance to 50cm.
The cylindrical stand in the middle rotates in constant angles
(in this experiment 11.25◦) and at each step an X-ray scan
is recorded. This way, we have several scans with different
orientations to test our proposed algorithm.

Recall from Section II that the observed values on the scan
plane are I(x, y). We need to first transform these values to
linear measurements Q(x, y;T ), defined in (13), as

Q(x, y;T ) = ln(
I0

I(x, y)
) ≈ ln(max

x,y
I(x, y))− ln(I(x, y)) ,

where we have used maxx,y I(x, y) as an approximation for
I0. In the first column of Figure 18, we plot Q(x, y;T ) for four
different barcode orientations captured by the X-ray scanner.

In the next step, we need to estimate the values of ω and t.
To do so, we follow Steps 1 and 2 from Section III to extract
the barcode corners. In this experiment, we manually delete the
corners detected for the barcode stand, as in real life this stand
will not be present anymore. The second column of Figure 18
shows the extracted corners enclosing the barcode shadow. We
then follow Steps 3 to 5 in Section III-B to to estimate the
parameters of the barcode pose, ω̂ and t̂, in the case of central
projection. Now that we have the pose parameters, we can also
simulate a synthetic scan with those parameters to compare
how well its corners match with the extracted corners. As
you can see in the third column of Figure 18, the extracted
and simulated corners match very well for all the presented
orientations. Finally, once the pose parameters are estimated,
we can construct matrix LT and vector q in (15) and estimate
the attenuation coefficients. We can then use a threshold equal
to 0.5 to compute the bits. These attenuation values, together
with the ground truth values are shown in the last column of
Figure 18. The bits that are estimated wrong are shown in
red, amounting to 0, 0, 1 and 1 errors from top to bottom.
In the next step, we construct all 24 possible arrangements of
these bits, according to Section V and pass them through our
Reed-Solomon decoder. As the maximum error in all the above
cases have been 1 bit, the Reed-Solomon decoder successfully
finds and corrects the erroneous bit value, resulting in the 48
original information bits.
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Fig. 18. Results of the real experiment with different barcode orientations in each row. First column: the linear scan measurements Q(x, y;T ), second column:
the barcode shadow and the enclosing hexagon constructed by the scan corners, third column: extracted corners, compared to simulated corners computed
using estimated orientation parameters ω̂ and t̂, fourth column: reconstructed attenuation coefficients compared to the ground truth; erroneous reconstructed
coefficients are shown in red.

VIII. BARCODE MATERIALS AND SUITABLE
ENVIRONMENTS

A great advantage of 3-D barcodes scanned with penetrating
waves is that they do not require a direct line of sight with
the scanner, in contrast to 2-D barcodes such as QR codes.
Thanks to this property, they can be placed or hidden inside
other environments and materials. In the above derivations, we
ignored the effect of the enclosing environment on the scan
of the barcode. In a realistic setup however, we need to also
take into account and remove this effect. Thus, the choice of
material for building the barcode as well as the environments
that the barcode can be utilized become important. In this
manuscript, we aimed at providing a proof of concept for
showcasing the end-to-end process of coding, implementing,
scanning and reconstructing 3-D barcodes. In doing so, the
limitations in constructing the barcode with the 3-D printers
at hand left us with a limited choice of materials to build the
barcode with. In practical implementations, one can choose
materials with significantly different attenuation coefficients.
For example, with an X-ray with 20KeV photon energy,
polyethylene has a mass attenuation coefficient of 0.43, while
for lead glass, this number is 65.7 [33]. The barcodes need to
be built with materials with high mass attenuation and placed
in environments with small mass attenuation. The choice of the
materials depends on the available technology for constructing
and scanning the barcode.

IX. CONCLUSION

We introduced 3-D barcodes, which can be read using a
single 2-D projection made with penetrating waves such as
X-rays, light or sound. We provided a mathematical represen-
tation of their attenuation coefficients and showed that if the
pose of the barcode in space is known, the reconstruction of
the information is as simple as inverting a linear equation. We
introduced a unified method for estimating the unknown pose
of the barcode using a single 2-D scan, both for parallel-beam
and cone-beam scanners. We further proposed coding schemes
to correct errors and ambiguities of the reconstruction. Our
simulations and real-world implementation of cubic barcodes
showed that these objects can be reliably used for carrying
information and, by using our algorithms, a single 2-D scan
of these barcodes is enough to retrieve their information in the
presence of noise.
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APPENDIX

A. Formulation of Line Lengths Matrix

Recall that for filling the matrix LT (equivalently finding
ln(x, y;T )), we need to find the intersection of a line passing
through point [x, y, 0]> in direction v(x, y) and the n-th cube
in the barcode. An intuitive explanation of (12) is that for a
given point [x, y, 0]> on the scan plane, we first transform the
coordinate system with the inverse of T (·), T−1(·), and then
find the intersection of the lines with the base cube located at
the origin. We can find the coordinates of a point on the plane
and also the line directions v′ in the new coordinate system
as [

x′

1

]
= T−1

[
x, y, 0, 1

]>
,

[
v′

1

]
= T−1

[
v
1

]
,

where matrix T is defined in (9). v is defined differently for
the orthogonal (OP) and central projections (CP),

OP: v =
[
0, 0, 1

]>
, CP: v =

[
−x,−y, zs

]>
.

Now we only need to find the intersection of the line x =
αv′ + x′ − tn with a base cube at the origin with side
length equal to d, defined by ψ(x) according to (5). The line
intersects with at most two sides of the base cube. The distance
between these two intersection points is ln(x, y;T ):

ln(x, y;T ) =

{
‖xn,i − xn,j‖ if ∃ (i, j) ∈ J ,
0 otherwise,

(28)

where, xn,i is the intersection point of the line with the i-
th side of the n-th base code-bit cube. We define the set
J = {(i, j)|i, j ≤ 6, i 6= j, 0 ≤ xn,i ≤ d, 0 ≤ xn,j ≤ d}.
For example, in Figure 4a, the line intersects n-th code-bit
cube on the fourth and the fifth sides, therefore ln(x, y;T ) is
defined as the distance between xn,4 and xn,5 points. With
the same intuition, in Figure 4b, ln(x, y;T ) is the distance
between points xn,1 and xn,4 illustrated in red. Once we find
ln(x, y;T ), we can fill in matrix LT in (14).

B. Proof of Lemma 1

In order to prove the lemma, we only need to prove that
there is a one-to-one relationship between the barcode pose
and the barcode shadow (up to the trivial equivalence classes).
Once we prove this property, then having a full-rank matrix
LT results in a unique reconstruction of the code bits. The
ambiguity in the code orientation in the barcode will give us
the result up to a permutation out of the given 24 cases shown
in Figure 6.

a) Orthogonal Projection: Consider the notation in Fig-
ure 7a. Take the three shadow corners p1, p2 and p3, corre-
sponding to barcode vertices v1, v2 and v3. Each of the vertices
v1, v2 and v3 need to be placed on the line orthogonal to P
at p1, p2 and p3, respectively. Since the translation of the
barcode in the z-direction does not change the scan, let us
fix v1 somewhere on its corresponding line. Given the known
length of edges v1−v2 and v1−v3, which are equal to Nd, we

can have only two possible positions for each of v2 and v3.
This results in four combinations for the locations of these
two vertices. But it is easy to see that only two of these
combinations result in edges v1−v2 and v1−v3 be orthogonal
to each other: one resulting in the pose shown in Figure 7a
and the other one to its mirror against a plane parallel to P .
Both of these poses produce the same matrix LT and thus we
can reconstruct the barcode bits.

b) Central Projection: Consider the notation in Fig-
ure 7b. We saw that the cross product of n1,3 and n6,8 gives
the unique direction of the two barcode edges v1 − v3 and
v6 − v8. The length of these edges is known (equal to Nd).
Moreover, the barcode vertices v1, v3, v6, and v8 need to
placed on lines s− p1, s− p3, s− p6 and s− p8 respectively.
Hence, we have a unique placement of these points in space.
With this, we have the two opposite cube edges v1 − v3 and
v6 − v8 uniquely placed in space. We can find only a single
cube that has these edges as its opposite edges. Thus, the
given barcode shadow corresponds to a unique barcode pose
in space. In the case of the special class of barcode poses
shown in Figure 8, we have seen how to identify the shadow
edges that correspond to parallel edges of the barcode. Once
this is done, the same arguments as above follow.

C. Proof of Lemma 2
Consider a bit region over the scan plane as illustrated in

Figure 10a in blue. For an arbitrary scan direction, the bit
region of a cubic voxel is a convex polygon. In order to
guarantee at least one sample from inside this bit region, we
need to find a maximum distance between samples such that
at least one sample falls inside any rotation and translation of
each bit region. We define the inscribed circle C(ωx, ωy) with
radius d rc(ωx, ωy) as the the largest circle that can fit inside
the bit region. The inscribed square of C(ωx, ωy) is illustrated
as SC(ωx, ωy) and it shows the largest square inside the circle.
The four corner points of SC(ωx, ωy) are the worst case of
sampling positions that still lie on the edges of the polygon.
The side length of square SC(ωx, ωy) is d

√
2rc(ωx, ωy).

With any arbitrary rotation, SC(ωx, ωy) will remain inside the
polygon. We set the maximum distance between these 4 corner
points (diagonal) to be less than minimum distance between
parallel sides of bit region. Now, if the samples are taken over
the x-axis and y-axis with spacing Dx, Dy ≤ d

√
2rc(ωx, ωy),

then with any rotation of scan plane or translation, at least
one sample lies inside this bit region. The rotated sampling
grid is shown in Figure 10a. Note that as expected, through
rc(ωx, ωy), the maximum distance between samples depends
on the angle from which the scan is taken. The value of
rc(ωx, ωy) is depicted in Figure 10b as a function of ωx and
ωy .
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