
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Serial Lightweight Implementation Techniques for
Block Ciphers

Muhammed Fatih BALLI

Thèse n° 8259

2021

Présentée le 22 juillet 2021

Prof. P. Ienne, président du jury
Prof. S. Vaudenay, directeur de thèse
Prof. L. Batina, rapporteuse
Prof. T. Peyrin, rapporteur
Prof. D. Atienza Alonso, rapporteur

Faculté informatique et communications
Laboratoire de sécurité et de cryptographie
Programme doctoral en informatique et communications

Acknowledgements
Without a number of people’s help and support, I would not have been able to reach
where I am today, presenting my work and defending this thesis.

I would like to start by expressing my gratitude to my supervisor Prof. Serge Vaudenay.
Given my lack of theoretical background, during my first few years, I have had to rely
on his guidance, which he graciously provided. I thank him for his time and patience.
Without his supervision, I would not have learned how to express ideas formally, how
to be rigorous and concise in writing, and how to evaluate things from a more formal
and objective perspective. Thanks to his research attitude that allows students to be
autonomous, I enjoyed the freedom of working on unrelated topics, collaborate with
various people, and learned quite a lot during this repetitive process. I also thank him for
encouraging us to take initiatives, such as coming up with a research idea, improving our
presentation skills with weekly lab meetings, applying for a research grant, and supervising
projects, all of which require a demanding effort, but leads to personal academic growth.

Since I joined LASEC in 2016, it has hosted a number of bright and interesting colleagues,
to whom I also owe my gratitude.

With my arrival, it was Sonia, Damian and Handan who welcomed me in the lab. Many
thanks to Sonia for sharing her various collection of teas accompanied with boiled water
in the morning, her interesting conversations exclusively happening on doorsteps and
gathering the folks together even after her graduation. Many thanks to Handan for
welcoming me in Lausanne, for having introduced me so many Turkish friends, making
me feel like I am home. And thanks to Damian, for his hilarious jokes, well-played pranks,
his cheerfulness, after-lunch chocolates, but most importantly nerdy jokes and being a
“man of culture” with a solid knowledge of internet meme collection.

Many thanks to Gwangbae, who has been there countless times to save the day, when me
and my colleagues are in need of something. He has been there not only as a friend and
colleague who started at the same year with me, but also someone to advise me on how
to handle various lab chores, be it resolving issue on the lab’s web page, or regular T.A.
duties. He was our go-to guy, and his shoes were definitely hard to fill after his departure.
Also, thanks for all the chocolate, biscuits and Korean malang cow candy that you offered
us. Thanks for your witty jokes, your kind rejection to any invitation you receive, and
introducing us with your circle theory.

My deepest gratitude to Subhadeep, for having introduced me to a research topic at

i

Acknowledgements

the intersection of cryptography and engineering, and for providing funding on the
energy-efficient cryptography project, which eventually became the foundation of this
thesis. Thank you for your guidance in this research direction, and for being always
available for discussion and brainstorming, regardless of the time of the day. On a
more personal level, thank you for being so easy-going, humble and mature in character.
Thanks for storytelling us, sometimes multiple times, your countless events involving
bicycle accidents, getting a frostbite while running in the cold, a collection of weirdly
transcribed Danish words, your knee injuries, your naughty dog, your awkward memories
from past conferences. Thank you for being in the lab in the late hours, and keeping
an active working environment. Not to mention being so easily distracted and having
the-least-important-thing-comes-first prioritization algorithm among tasks.

The very first time I arrived to lab in 2016, it was Betül in INF 238 who welcomed me to
the lab. Over the years, she has been a very good office mate as postdoc, a friend to talk
to about literally anything, be it in Turkish or English. Her ideas and mood, changing
sometimes swiftly and something to be cautious of, has brought lots of joy and laughter
to the lab. I especially thank her for following me down from le Grammont on a route
which is too steep to be a hiking path. Thanks for being the founding member of the
intern destroying hikes too.

I cannot simply forget all the times Martine was there to help me out, when I found
myself in trouble. She has been, to me and to my colleagues, a gracious Swiss host, a
friendly adviser to understand the Suisse Romande culture and navigate ourselves with
our daily problems. Her kindness I will surely miss after I leave the lab. I also thank her
for enduring my basic French with a broken accent.

I would like to thank Khashayar for bringing a whole lot of black humor into our lab,
and for his energetic spirit. I thank him for encouraging me to try mountain biking, even
though it ended with an injury. I thank Loïs for taking some of our mean jokes on his
beloved Neuchâtel Xamax so lightly, and helping us understand the particular details and
differences on the Neuchâtel culture. Thanks to Simone Colombo, from the canton Ticino,
who is almost always there with brutal honesty, humorous critics and mostly rightful
complaints. Thanks to Bénédikt for his rigorous attitude in writing. Thanks to Hailun
for her kindness, friendship and homemade desert she brought to the lab. Thanks to
Andy, for his very disciplined work ethic, for being a reliable and hard-working co-author,
and for using spaces over tabs. Thanks to Daniel for his chill and easy-going attitude,
and bringing the core leftist ideas into the lab. Thanks to Abdullah Talayhan for his
special show of rubick cube solving and juggling at the same time, and for keeping the
line of Turkish existence in the lab after I leave.

I am also grateful for having two friends, Recep and Fazil, with whom I was able to
share the stress of pursuing PhD around the same time. More than that, they have been
my fellows for countless crazy hikes that are full of physical challenges, unsafe routing
decisions, bad weather and terrain conditions. Without them, hikes with such memorable
events would have remained unattempted.

ii

Acknowledgements

I would like to also thank many students with whom I had the chance to work with as
supervisor. Besides the technical-level discussions we had, and all the exchanges on life,
Swiss culture, and world politics. Thanks to Dora Neubrandt, Tijana Klimovic, Tiago
Kieliger, Sergio Roldán and Miro Haller for their meticulous work.

And thanks to David Balbás, Clement Humbert, Mladen Dimovski, Victor Mollimard,
Ciprian Baetu, Julien Corsin, Iraklis Leontiadis. Thanks to Phillip Gajland for being my
last office mate, and getting us familiar with the 996 working hour system.

I would like to thank the jury members Prof. David Atienza Alonso, Prof. Lejla Batina
and Prof. Thomas Peyrin for spending their valuable time to read my dissertation and
attend my oral exam. I would like to also thank Prof. Paolo Ienne for kindly accepting
my invitation to act as the jury president.

Lastly, I would like to also thank my family for their support. To my mother Hatice,
from whom I borrowed the very few good personal traits. To my elder sister, Rüveyda,
for her encouragement to follow my goals and apply for the PhD position. To my younger
siblings, Salih and Rümeysa, for bringing further colors into our family.

Thanks to my beloved wife Sakine, for supporting me in the harshest and the most
stressful of times. She has always balanced my pessimism with her optimism. I thank her
for believing in me, showing the patience during my ups and downs, and being always
there to comfort me.

iii

Abstract
Most of the cryptographic protocols that we use frequently on the internet are designed in
a fashion that they are not necessarily suitable to run in constrained environments. Ap-
plications that run on limited-battery, with low computational power, or area constraints,
therefore requires the new designs as well as improved implementations of cryptographic
primitives, hence emerges the field lightweight cryptography.

In this thesis, we contribute to this effort in few separate directions, in particular
regarding block ciphers and block-cipher-based authentication scheme implementations
as application-specific integrated circuits (ASIC).

First, we look at optimizations that can be achieved at higher level. In particular, we
show that the complete AES family (with varying key sizes 128, 192 and 256) can be
realized as combined lightweight circuit, in a manner that shares the storage elements in
order to save up silicon area.

Secondly, we contribute in the evaluation of a new design paradigm of fork cipher. We look
at how much lightweight efficiency can be gained with this new AEAD design approach,
by implementing ForkAES both in round-based and byte-serial implementations. Our
comparison with respect to silicon area and energy consumption provides useful insights
into AEAD design process.

Lastly, in the large portion of this thesis, we look at the permutation layer of block ciphers
from the perspective of serial-circuits. Based on the permutation theory, we establish
a method to divide the permutation layers of AES, SKINNY, GIFT and PRESENT
into simpler swap operations. Given that these swap operations are cheap in ASIC, we
further provide architectural optimization techniques for the implementation of these
block ciphers, and we provide the smallest 1-bit implementations of them.

Keywords: hardware implementation, lightweight cryptography, authenticated encryp-
tion with associated data, fork cipher, ForkAES, AES, SKINNY, GIFT, PRESENT, NIST
LWC

v

Résumé
Les protocoles que nous utilisons sur Internet sont pour la plupart conçus pour la puissance
de calcul élevée qui est disponible dans nos téléphones ou nos ordinateurs. Cependant,
nous avons aujourd’hui de plus en plus de contraintes à devoir réduire cette puissance de
calcul. En conséquence, le besoin d’une cryptographie alégée apparaît.

Dans cette thèse, nous nous concentrons sur les techniques d’optimisation pour les
chiffrements par blocs et les primitives de chiffrement authentifié basées sur le chiffrement
par blocs.

Tout d’abord, nous examinons l’implémentation optimisée de AES pour toutes les tailles
de clefs en tant que circuit combiné. Nos résultats montrent qu’un tel circuit peut être
conçu avec un petit budget en surface.

Ensuite, nous examinons le concept de fork cipher récemment proposé. Ici, nous testons
si l’intuition des concepteurs se traduit effectivement par des gains en terme de surface
en silicone ou de consommation d’énergie.

Enfin, nous fournissons des techniques pour réaliser des implémentations avec peu de
silicone pour du chiffrement par blocs tel que AES, SKINNY, GIFT, PRESENT lorsque
l’on considère des circuits en série.

vii

Açıklama
İnternette kullandığımız birçok kriptografik protokol, bilgisayar ve telefonlarımızda var
olan güçlü hesaplama kapasitesi göz önüne alınarak dizayn edilmiştir. Fakat günümüzde
sınırlı hesaplama ve enerji kapasitesine sahip bir çok uygulama görmekteyiz, ve bu
tip uygulamaların sayısı hızla artmakta. Bu kısıtlamalar tekrar değerlendirildiğinde,
kriptografik katmandaki protokollerin yerine getirilebilmesi için yeni dizayn ve tasarımlara
ihtiyaç vardır. İşte bu yüzden, kriptografik araştırma alanında hafif/kolay hesaplanabilir
kriptografi alt dalını görmekteyiz.

Bu doktora tezinde, sıklıkla kullanılan blok şifreleme ve doğrulanmış şifreleme elemanlarına,
ASIC (application-specific integrated circuit) teknolojisini göz önünde bulundurarak
bakmaktayız. Bu protokollerin daha hafif koşullarda çalıştırılabilmesi için tasarladığımız
yeni optimizasyon tekniklerini bu çalışmamızda sunmaktayız. Bunun yanı sıra, var olan
dizayn fikirlerini, ASIC teknolojisi üzerinde test ederek onların ne kadar tutarlı ve verimli
sonuçlar verdiğini test ediyoruz. Çalışmamız günümüzde sıklıkla kullanılan AES, GIFT,
SKINNY gibi blok şifreleme mekanizmaları için, kapladığı alan açısından en küçük ve
aynı zamanda optimal hıza sahip devrelerle sonlandırıyoruz.

ix

Contents
Acknowledgements i

Abstract (English/Français/Türkçe) v

1 Introduction 1

2 Preliminaries 11
2.1 Mathematical Notation . 11
2.2 Hardware-oriented Summary of Primitives 12

2.2.1 AES . 12
2.2.2 SKINNY . 15
2.2.3 PRESENT . 17
2.2.4 GIFT . 19
2.2.5 GIFT∗ . 22
2.2.6 ForkAES and ForkAE . 23

2.3 ASIC Details . 24
2.3.1 Technology Libraries and Cells 25
2.3.2 Test Bench and Synthesis Options 27
2.3.3 Higher-level Building Blocks . 27

3 All-in-one AES Circuit 31
3.1 Related Work . 32
3.2 Motivation . 32
3.3 Contributions . 33
3.4 Input and Output Formats . 33
3.5 Components . 35
3.6 High Level Description of the Design . 36
3.7 Elementary Operations of Layers . 39
3.8 Generic Encryption/Decryption Overview 41
3.9 Key Expansion Details . 41
3.10 Hardware Evaluation . 47
3.11 Conclusion . 49

4 Evaluation of ForkAES 51

xi

Contents

4.1 Related Work . 51
4.2 Contributions . 52
4.3 Removing Additional Storage . 53
4.4 Focusing on Area: Byte-serial ForkAES Architecture 56

4.4.1 Byte-serial Implementation Results 60
4.5 Focusing on Energy: Round-based ForkAES Architecture 60

4.5.1 Generic Architecture . 62
4.5.2 Modified Implementations . 66
4.5.3 Round-based Implementation Results 68

4.6 Conclusion . 68

5 Introduction to Swap-and-Rotate Technique 73
5.1 Related Work . 73
5.2 Contributions . 74
5.3 Permutation Preliminaries . 75
5.4 Single-swap Setting . 76

5.4.1 Analysis of the Permutation Layer 76
5.4.2 Pipeline with Swap (1, 0) . 79
5.4.3 Pipeline with Swap (κ, 0) . 81
5.4.4 Control Bit Concatenation . 83
5.4.5 Application to GIFT-64 . 87

5.5 Multiple-swap Setting . 88
5.5.1 4× 4 matrix transposition with swaps 90
5.5.2 From Transpositions to PRESENT Permutation 91
5.5.3 From Transpositions to GIFT-64 Permutation 94
5.5.4 Inverse Permutations for Decryption 94

5.6 Final Interleaving Optimization . 95
5.7 Conclusion . 98

6 The Area-Latency Symbiosis through Swap-and-Rotate 101
6.1 Related Work . 101
6.2 Contributions . 104
6.3 Generic Approach . 106
6.4 AES . 111

6.4.1 State Pipeline . 111
6.4.2 ShiftRows with Swaps . 111
6.4.3 The Nibble MixColumns . 113
6.4.4 Combined State Pipeline . 114
6.4.5 Key Pipeline . 115
6.4.6 8-bit Datapath . 116

6.5 SKINNY . 118
6.5.1 Combined State Pipeline . 118
6.5.2 Key Pipeline . 121

xii

Contents

6.5.3 8-bit . 121
6.6 GIFT∗ . 121

6.6.1 1-bit Datapath . 123
6.6.2 4-Bit Datapath . 125

6.7 GIFT . 127
6.8 AEAD Implementations . 128

6.8.1 SUNDAE-GIFT . 131
6.8.2 SAEAES . 132
6.8.3 Romulus . 133
6.8.4 SKINNY-AEAD . 136
6.8.5 Synthesis Results . 137
6.8.6 Interpretation of Power and Throughput Results 140

6.9 Cost of Decryption . 142
6.10 Conclusion . 143

7 Conclusion and Future Work 145

A Appendix 149
A.1 S-boxes . 149

A.1.1 AES S-box . 149
A.1.2 GIFT S-box . 149
A.1.3 SKINNY S-box . 149

Bibliography 151

Curriculum Vitae 163

xiii

1 Introduction

Over the last decades, cryptography has furnished a complete set of tools to secure our
daily communications on the internet. Over this medium, a communication between a
server and a client is usually secured with the use of TLS, which in return, employs a
large number of high-level cryptographic protocols such as key exchange mechanisms,
signature schemes, as well as fundamental primitives such as block ciphers and message
authenticated codes.

At the time of the writing of this thesis, my browser and the server hosting EPFL’s web
page1 agree on the use of AES-GCM to fulfill the three conventional goals of symmetric
cryptography, which are confidentiality, authenticity and integrity. In other words, as
these blocks are transmitted from my computer to their destination through a number of
untrusted intermediate internet service providers (or vice versa), not only the content of
the blocks are protected against eavesdropping, but any tampering or injection of bits
into the original message are also prevented.

From a more technical point of view, AES-GCM is a construction example of what is known
as authenticated encryption with associated data (AEAD), i.e. the primitive that fulfills
the three goals mentioned above all at once. As cryptographers tend to follow a modular
approach during the designing phase, most AEAD primitives first divide arbitrary-size
associated data and message into fixed-size blocks, and process them sequentially (or in
parallel depending on the mode). The very algorithm that lives at the core of AEAD
whose task is to process blocks and the surrounding mode of operation are the two most
crucial determining factors of how lightweight or heavyweight the overall scheme is.

Let us take a look at AES-GCM to observe this approach in practice, which is in fact a
hybrid of the two components: the counter mode of operation employing the block cipher
AES-128 and an accumulator from the Galois field GF(2128). This simply means that all
the exchanged content is first properly chopped into 128-bit blocks, and then XORed

1https://www.epfl.ch

1

Introduction

with the output blocks from AES-128 to obtain the ciphertext blocks. In parallel, the
accumulator value is updated through a multiplication in GF(2128) for each processed
128-bit block. Therefore, one block cipher call and one multiplication in the Galois field
is performed per 128-bit. In short, a rather heavyweight operation is used as the provider
of confidentiality, authenticity and integrity, which fortunately, is an easy chore for our
mobile devices and personal computers. Alas, we cannot expect all applications to have
such abundance of computational power.

On the other side of the spectrum lie the applications which lack the computational
means to perform such heavyweight encryption operation. Depending on the particular
application, the reason behind scarcity of computational power can be any of the following:
limits on energy (or power) consumption, expected low latency, tight budget on silicon
area etc. We can name a number of examples to these applications: sensor network
devices that run on batteries, RFID devices with tight silicon area budget, low-power
wearables that track the owner’s activity, bio-implants, low-power wide-area network
(LoRa/LPWAN) devices etc. This list will grow even larger if we consider the number of
emerging IoT applications.

All these applications partly rely on the future promise of the sub-field lightweight cryp-
tography, which pledge both the design of new cryptographic primitives and optimization
techniques to realize them efficiently. Therefore, this research field relies not only on the
established cryptographic discipline, but also on the good understanding of how cryptog-
raphy is implemented in practice (be it as ASIC, through FPGA, or on microprocessors).
Without cryptographic discipline, the effort is tainted with the risk of producing insecure
primitives that omit the decades of accumulated experience on the design of symmetric
schemes. And without engineering-focused thinking, the design of cryptographic primi-
tives rely only on high-level intuitions whose outcome is likely to be less-than-optimal in
lightweight metrics, which may not create sufficient incentive to move away from heavier
AES-GCM.

One should note that the design and optimization efforts are usually intertwined. On
one hand, the design of new primitives frequently rely on the intuition gained during
optimization attempts. On the other, new findings on the optimization techniques rely on
the designers’ insight. Advances and new results in one soon sparks results in the other.

The contributions in this thesis falls under the category of finding and improving the
optimization techniques on block ciphers and block-cipher-based authenticated encryption
schemes. The lightweight metrics are defined with respect to application-specific integrated
circuits (ASIC), as most decade-old cryptographic schemes eventually find themselves
directly implemented in silicon.

Lightweight cryptography through new designs. One particular and well estab-
lished collaborative effort in this field is to design a lightweight authenticated encryption

2

Introduction

primitive that is efficient with respect to the metrics of power, energy, area and throughput.
Among these metrics, optimization of area is particularly well studied, as it aligns well
with how simpler the operations are, and also comes with the benefit of being much easily
quantifiable.

The block cipher family KATAN (whose precursor was the stream cipher Trivium) and
then later Simon were in some sense aimed to achieve a lower limit of lightweight
encryption in terms of area occupied in silicon [CDK09, CP08, BSS+]. Both these
ciphers have update functions based on shift registers, which is efficient to implement
in ASIC. Similarly, PRESENT, RECTANGLE and later GIFT were designed with the
disposal of the matrix-based diffusion layer altogether to achieve further reduction in area
[BKL+07, ZBL+15, BPP+17]. In order to compensate for the lack of MixColumns-like
layer, these three block ciphers rely heavily on the permutation layer that operates on
1-bit level. Another such example is SKINNY family of block ciphers and their low-latency
variant MANTIS, which follow the same sequence of layers from AES, but instead they
employ a lighter S-box and MixColumns matrix [BJK+16].

Yet another example is Midori which was designed to optimize energy consumption
[BBI+15]. With a separate goal, the block cipher Prince was designed for low-latency
applications like memory encryption [BCG+12].

These efficient-by-design approach naturally extends all the way into authenticated
encryption primitives such as ForkAE, GIFT-COFB, HYENA, LOTUS-AEAD, Romulus,
SKINNY-AEAD, SUNDAE-GIFT; which not only pursue this goal by employing more
lightweight block ciphers, but also simplify processing of each block of message (and
associated data) in the surrounding mode of operation [ALP+19, BCI+19, CDJN19,
CDJ+19b, IKMP19, BJK+19, BBP+19].

Lightweight cryptography through circuit optimization techniques. In the sec-
ond major line of research lies the work dedicated towards, not design, but improvement
and optimization of the existing schemes. Before diving into the details of the opti-
mization process, a reliable method for quantifying lightweight metrics is established.
Given a particular cryptographic scheme S, how we perform this metric quantification
has close relationship with the type of platform S is implemented on. For instance,
with field-programmable gate arrays (FPGA), the number of slices, which inherently
consists of look-up tables (LUT) and flip-flops, is interpreted as the area metric for the
implementation of S. However, expressing S in terms of LUTs, as in FPGA, typically
does not give the best results for other metrics such as energy and power consumption,
hence the method for obtaining these metrics are not reliable in the strictest sense. This
is because the power and energy consumption by the FPGA itself is typically large, hence
its effects on the implementation of S stays diminished. On the contrary, ASIC is a more
reliable platform for evaluating the efficiency of S according to multiple metrics; such as
power, energy, area or throughput; as S is implemented at gate-level, with much more

3

Introduction

freedom, and the measurements can be extracted directly from the final circuit. As a
third option, one can look at the optimization of S when implemented as assembly and
run on particular microprocessor. This thesis concerns only ASIC, yet one should be
aware that the type of platform on which S is eventually implemented acts as the key
determiner of how lightweight S becomes in practice.

For instance, a line of work has already been devoted to the effort of minimizing the area
of AES S-box. Satoh was the first to propose a 32-bit serial architecture for AES-128
[SMTM01]. In his attempt to reduce the overall size of the circuit, he also came up with a
small AES S-box implementation, by utilizing a more efficient way to compute the inverse
in GF(28). Later, a series of papers are devoted to the methods of reducing the area of
AES S-box [Can05, BP12, RTA18, ME19]. Among these results, the one from Canright
is particularly significant as it held the record of the smallest combined AES S-box circuit
record for almost a decade, and therefore has been used widely as the go-to circuit in
full-fledged combined AES implementations [Can05]. More recently, the new record on
the smallest stand-alone and combined AES S-box results belong to Maximov [ME19].
One could observe that the inherent complexity of mathematical structure within the AES
S-box encouraged designers to seek new S-boxes which have simpler circuit representations.
The clear examples are 4-bit S-boxes in PRESENT, GIFT and the 8-bit S-box of SKINNY
that can be constructed with small number of logic gates [BKL+07, BPP+17, BJK+16].

In the same fashion, AES MixColumns matrix as a stand-alone circuit also received
sufficient attention from the research community [JMPS17, KLSW17, EJMY18, BFI19].
This effort also contributes to the search of MDS matrix with efficient circuit characteristics
[SS16, CLM16, LW17, LSL+19, DL18].

On the architectural level, a series of papers were dedicated towards minimizing AES-128
circuit, each improving the area metric gradually [FWR05, MPL+11, BBR16a, BBR16b,
JMPS17]. In that direction, minimizing the data path width typically yielded further
area reduction results, but at the expense of latency. Particularly, the results from Jean
et al. is significant as far as this thesis is concerned, as it was the first work to realize
AES, SKINNY and PRESENT as 1-bit serialized circuit [JMPS17]. Besides these results in
ASIC world, Wegener et al. also looked at minimization of S-box in FPGA, that uses
minimum number of slices [WMM20]. Their work reports the smallest implementation
of AES-128 with Xilinx Spartan-6 FPGA family. Adomnicai and Peyrin also report
the implementation of AES-128 that complete with fewest number of clock cycles (i.e.
instruction) for both ARM and RISC-V instruction set architectures [AP21].

On the energy-efficiency direction, Kerckhof et al. first provided initial results on the effects
of voltage scaling and round unrolling of six block ciphers including AES, PRESENT and
KATAN [KDH+12]. Batina et al. gave a comprehensive comparison between lightweight
block ciphers (including AES) and drew attention to the trade-off between area and energy
consumption, and the fact that the two metrics barely correlate at all [BDE+13]. The

4

Introduction

idea of optimal unrolling is later studied by Banik et al. in a work which tries to find
the optimal unrolling degree r which gives the best energy-efficient lightweight block
cipher [BBR15]. Later, Caforio et al. extended this work into AEAD schemes and gave
comparative analysis of each block-cipher-based candidate from NIST LWC [CBB20a].

NIST Lightweight Cryptography Standardization. NIST describes this effort, in
its own words, as “the process to solicit, evaluate, and standardize lightweight cryp-
tographic algorithms that are suitable for use in constrained environments where the
performance of current NIST cryptographic standards is not acceptable” [NISa]. The
main body of this thesis (in particular the published work [BB19a, BBRV20, BCB21]) was
produced while this standardization process was at the second round. Namely, there are
32 authenticated encryption candidates in the second round. The status report published
by NIST classifies these candidates into few categories (see Table 2, [NIS19]):

1. 16 of the remaining candidates are designed in permutation-based fashion. Simply
put, they employ a sponge (or follow the footsteps of sponge-like construction) at
their core, and typically use absorb-then-squeeze paradigm. In most cases, a fixed
permutation is used as the update function, therefore becomes the key component
from which efficiency is reached. For instance, the primary member of SpoC is based
on 192-bit state, with a lightweight update function (i.e. permutation) sLiSCP-light
[AGH+19, ARH+18].

2. 9 of the candidates are based on block ciphers, meaning that a block cipher is at
the core of the design and determines the overall efficiency of the candidate. For
instance, candidates COMET and HYENA respectively employs block ciphers AES
and GIFT at their core [GJN19, CDJN19].

3. 6 of the candidates are based on tweaked (or modified) variants of block ciphers. In
the mode of operation, the value of the tweak is typically determined by the nonce,
the internal block counter (i.e. how many blocks are processed since the start of
AEAD operation) and the domain separator. For instance, the primary member of
Romulus employs SKINNY-128-384 tweakable block cipher, whose 384-bit tweakey
space is sufficiently large to accommodate the key, the nonce, the counter and the
domain separator [IKMP19].

4. Not fitting into the previous categories, Grain128-AEAD is the only (remaining)
candidate that follows a stream-cipher-based approach [HJM+19]. The design uses
a slightly modified version of the stream cipher Grain-128a [ÅHJM11].

Even though there is a great amount of variety among the candidates on fine-grained
details, a common similar structure on the high-level view emerges. Namely, it is common
to have an internal cipher state, which is updated with each coming block of associated
data and message, and eventually this state is used to produce the tag. Ciphertext

5

Introduction

blocks also depend on the intermediate value of this internal cipher state. In that sense,
most candidates can be interpreted as modes of operation that employ either a keyless
permutation, a block cipher or a tweakable block cipher at their core. Therefore, the
great deal of effort goes into minimizing the core component, as well as the surrounding
auxiliary operations.

The choice of block ciphers studied in this thesis, i.e. AES, SKINNY, GIFT, is determined
by their popularity in NIST LWC (as of 2nd round). These three block ciphers split a
great share of use among block-cipher-based constructions (for further details, we refer to
Table 6.1 in Chapter 6). Therefore, our hope is that the improvements provided in this
work can be a part of more efficient implementations of AE schemes, and eventually find
themselves in real-world applications. Exception to this popularity is PRESENT, which is
also covered in this thesis. Even though no AE candidate was designed with PRESENT
in NIST LWC, we include it in this work given that it is predecessor to GIFT.

More recently, NIST has announced the ten finalists in the lightweight cryptography
standardization. Among them, Romulus and GIFT-COFB are the ones that are still relevant
from the perspective of the results produced in this thesis, as they employ SKINNY and
GIFT respectively.

Side-channel attacks. Side-channels constitute a major line of attacks from which the
security of embedded devices can suffer from, if the device is physically accessible to the
adversary. Nowadays it is quite cheap for a dedicated attacker to obtain a toolchain
and perform power side-channel measurements on any given circuit. This means that
power side-channel attacks become more and more serious threat, especially for those
applications where the adversary has physical access to the victim device. Protecting
encryption, realized in the form of ASIC, from leakages remain one of the great challenges.

There are numerous protection mechanisms suggested in the literature against side-
channels. In this context, the idea of representing a value x with two shares x1⊕x2 = x is
one of the most commonly used path to achieve this goal, as proposed by Chari et al. and
Goubin et al. [CJRR99, GP99]. This particular 2-share masking scheme is secure under
the assumption that the adversary is able to mount only single probe of measurement, i.e.
first-order security. A security model as well as a scheme that is provably secure against
adversary up to t probes is subsequently put forward by Ishai [ISW03]. Ishai’s scheme
uses 2t+ 1 shares to represent a value, where the designer/implementor can choose t as
she wills, at the expense of larger cost in hardware. This probing model is later extended
as to include the information leakage caused by glitches by Nikova et al. [NRR06].

These proposed side-channel resistant schemes are typically inspired by, and intended
for, hardware circuits. To that effect, a function f is first represented in terms of its
circuit realization Cf at gate-level. Then, a generic masking scheme, or a transformer
in Ishai’s terms [ISW03], replaces each gate with a gadget, wherein each wire of the

6

Introduction

original gate is represented with k different shares/wires in the gadget. Henceforth, a
transformer converts an unmasked circuit Cf to k-share circuit Ckf . Then, the (t+ 1)-th
order probing model allows the adversary A to observe up to t different wires of Ckf
(k ≥ t+ 1). Depending on whether the model at hand considers the transient nature of
signals on the observed wires, the information that is obtained by the adversary can be
analog and transient, i.e. glitch-resistant security models [NRR06, FGP+18], or binary
and static during a given time slice [ISW03].

In this thesis, we did not consider producing side-channel resistant implementations as one
of our priority goals. We must note that although side-channel attacks can be devastating
for some applications, there are still many others where the adversary does not have the
physical access or means to perform side-channel attacks. For these applications, one
could skip the aformentioned techniques for the sake of efficiency and readily use the
implementations provided in this thesis. With that said, it is possible to upgrade most of
our implementations following the generic idea of masking or threshold implementation
techniques [ISW03, NRR06]. This research venue is further discussed in Chapter 7.

Contributions. The contribution of this thesis goes into few directions under the
optimization techniques part, where the implementations are realized as ASIC. We actually
focus on block ciphers and block-cipher-based authenticated encryption primitives.

In the litetarure, the previous work had focused on the small-area implementations of
AES-128 [JMPS17, Max19, ME19, BBR16a, BBR16b], however there was no reported
implementations for AES-192 and AES-256. We filled this gap by our work Six Shades of
AES [BB19b], presented at Africacrypt 2019, and implemented the complete AES family
in the form of a small combined circuit.

With Exploring Lightweight Efficiency of ForkAES [BB19a], we turn our attention to the
recently proposed forking cipher paradigm. In this work, we have investigated whether
the high-level trade-off lies beneath the idea of forking a cipher actually translates into
lightweight metrics in hardware. Namely, comparing AES with ForkAES, what is the
additional cost incurred by the forking. Such implementation-based evaluations are useful
in the sense that it allows us to determine whether a design intuition actually works in
practice, even before a great amount of cryptanalysis effort is devoted to the proposed
design. Our results show that for area-metric, ForkAES indeed matches the designer’s
intuition, but the same is not true for the energy consumption. The disruption in the
energy-efficient AES circuit leads to significant loss in power consumption, meaning that
it is not suitable for applications with tight energy and power constraints. Our work was
presented at Indocrypt 2019.

With Swap and Rotate: Lightweight Linear Layers for SPN-based Blockciphers [BBRV20],
we revisit 1-bit serial implementations of block ciphers, whose permutation layer also
operates at 1-bit level, such as GIFT and PRESENT. In a pursuit to achieve the smallest

7

Introduction

area implementations in hardware, we observe that the permutation layers, by their 1-bit
level nature, are the hardest part of the circuit, which received almost no attention from
the community. Building on top of permutation theory, we devise a technique to execute
the permutation layers of these block ciphers efficiently, with as few additional gates as
possible. As showcase, we show that smaller members of their own family, we give the
smallest implementations of GIFT-64 and PRESENT-80. Our work was presented at FSE
2020.

In the last part, with The Area-Latency Symbiosis: Towards Improved Serial Encryption
Circuits [BCB21], we show that the techniques devised in our previous work [BBRV20] can
be applied to wide range of block ciphers, including AES, SKINNY, GIFT and GIFT∗2.These
applications lead not only the smallest implementations, but also achieve the theoretical
minimum latency a 1-bit serial implementation of a block cipher can have. With these
implementations at their core, we give the smallest AEAD implementations from NIST
LWC. For instance, with our technique, SUNDAE-GIFT can be realized as cheaply as 1200
GE (w.r.t. STM 90 nm). Our work will be presented at TCHES 2021.

Personal Bibliography. The list of peer-reviewed publications I have co-authored
during my PhD studies are given below in chronological order. The content of this
thesis is compiled from the articles marked with bold font. Our work Energy Analysis of
Lightweight AEAD Circuits presented at CANS 2020 received the best paper award.

1. Fatih Balli, F. Betül Durak, and Serge Vaudenay. BioID: A Privacy-Friendly
Identity Document. In Sjouke Mauw and Mauro Conti, editors, Security and
Trust Management - 15th International Workshop, STM 2019, Luxembourg City,
Luxembourg, September 26-27, 2019, Proceedings, volume 11738 of Lecture Notes in
Computer Science, pages 53–70. Springer, 2019 [BDV19]

2. Fatih Balli and Subhadeep Banik. Six Shades of AES. In Progress
in Cryptology - AFRICACRYPT 2019 - 11th International Conference
on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings,
volume 11627 of Lecture Notes in Computer Science, pages 311–329.
Springer, 2019 [BB19b]

3. Fatih Balli and Subhadeep Banik. Exploring Lightweight Efficiency of
ForkAES. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, edi-
tors, Progress in Cryptology - INDOCRYPT 2019 - 20th International
Conference on Cryptology in India, Hyderabad, India, December 15-18,
2019, Proceedings, volume 11898 of Lecture Notes in Computer Science,
pages 514–534. Springer, 2019 [BB19a]

2We use GIFT∗ to denoted the modified version of GIFT that assumes different ordering of input and
output bits (see Appendix A, [BPP+17]).

8

Introduction

4. Subhadeep Banik, Fatih Balli, Francesco Regazzoni, and Serge Vaude-
nay. Swap and Rotate: Lightweight Linear Layers for SPN-based Block-
ciphers. IACR Transactions on Symmetric Cryptology, 2020(1):185–232,
2020 [BBRV20]

5. Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency
Symbiosis: Towards Improved Serial Encryption Circuits. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2021(1):239–
278, 2021 [BCB21]

6. Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the Core Primitive for
Optimally Secure Ratcheting. In Advances in Cryptology - ASIACRYPT 2020 -
26th International Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
III, volume 12493 of Lecture Notes in Computer Science, pages 621–650. Springer,
2020 [BRV20]

7. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy Analysis of Lightweight
AEAD Circuits. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors,
Cryptology and Network Security - 19th International Conference, CANS 2020,
Vienna, Austria, December 14-16, 2020, Proceedings, volume 12579 of Lecture Notes
in Computer Science, pages 23–42. Springer, 2020 [CBB20a]

8. Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V: Improved
Lightweight Architectures. Journal of Cryptographic Engineering, 2020 [CBB20b]

9. Roldán S. Lombardía, Fatih Balli, and Subhadeep Banik. Six Shades Lighter: a
Bit-serial Implementation of the AES Family. Journal of Cryptographic Engineering,
2021 [LBB21]

Acknowledgement. The work presented in this thesis is produced during the time the
author was affiliated with the Energy-efficient Cryptography project, funded by the Swiss
National Science Foundation (SNSF) through the Ambizione Grant PZ00P2_179921.

9

2 Preliminaries

This section first establishes a common mathematical notation that is used throughout
the thesis. Then, reminders on the details of block ciphers are given. Lastly, a brief
coverage on application-specific integrated circuits (ASIC) is presented.

2.1 Mathematical Notation

We denote the set of integers {a, a+ 1, . . . , b} with [a, b]. Furthermore, we define (a, b) =

[a, b] \ {a, b}, (a, b] = [a, b] \ {a} and [a, b) = [a, b] \ {b}. [n] is shorthand for [0, n]. We
extend this interval notation to sequences. Namely, let x0, x1, . . . , x`−1 be a sequence of `
elements. Then, xa:b refers to the sub-sequence xa, xa+1, . . . , xb for some 0 ≤ a < b ≤ `−1.

The bit string concatenation is denoted with ||. Given a bit string x, x≫ y denotes the
right rotation of x by y bits. Similarly, ≪ denotes the left rotation.

We use the symbol Sn to denote the permutation group on the set [n− 1]. Naturally, we
have |Sn| = n! and Sn is a non-commutative group. For an integer 1 ≤ k ≤ n, a k-cycle
π ∈ Sn is generally expressed as the k-tuple (i1, i2, . . . , ik) which implies

1. ∀j ∈ [k − 1], π(ij) = i(j+1) mod k,

2. ∀i ∈ [n− 1] \ {i1, . . . , ik}, π(i) = i.

Moreover, we use the term swap to refer to 2-cycles.

Denote by Aπ the activity set of the permutation, i.e. Aπ = {i : π(i) 6= i}. The cycles π1
and π2 are called disjoint if they have no active elements in common, i.e. Aπ1 ∩ Aπ2 = ∅.

11

Preliminaries

2.2 Hardware-oriented Summary of Primitives

2.2.1 AES

AES is a family of block ciphers based on substitution permutation network (SPN). Let r
denote the number of rounds in the encryption algorithm, n denote the number of key
expansion rounds, ` denote the byte size of the key for a given AES member. Note that,
the tuple (r, n, `) receives the values (10, 10, 16), (12, 8, 24) or (14, 7, 32) for AES-128,
AES-192, and AES-256 respectively.

In AES, for some integer j, a byte string B0||B1|| . . . ||B4j−1 is mapped into (4× j)-byte
matrix in the following fashion:




B0 B4 . . . B4j−4
B1 B5 . . . B4j−3
B2 B6 . . . B4j−2
B3 B7 . . . B4j−1


 .

This mapping is used to construct the initial 4×4 cipher state matrix from given plaintext,
or construct the 4 × (`/4) key state matrix from given `-byte key. At the end of the
encryption, the same mapping is used to construct the ciphertext from the final value of
the cipher state.

State operations. Each round consists of sequential calls of AddRoundKey, SubBytes,
ShiftRows and MixColumns. Let B = B0|| . . . ||B15 denote the cipher state, and K denote
the current round key.

1. During AddRoundKey, the state matrix is XORed with the round key, which is
extracted from the key state. Therefore, B ← B ⊕K.

2. SubBytes passes each byte of the state from 8-bit input, 8-bit output Rijndael S-box.
Therefore, Bi ← S-box(Bi) for all i ∈ [15].

3. During ShiftRows, the 2nd (resp. 3rd and 4th) row is rotated left by 1 (resp. 2 and
3) positions. Namely, for each j ∈ {1, 2, 3},

Bj ||Bj+4||Bj+8||Bj+12 ← (Bj ||Bj+4||Bj+8||Bj+12) ≪ 8j

4. During MixColumns, each column (B4j , B4j+1, B4j+2, B4j+3) for j ∈ [3] is multiplied

12

2.2. Hardware-oriented Summary of Primitives

by the following matrix M in GF(28):



B4j

B4j+1

B4j+2

B4j+3


←




2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2


 ·




B4j

B4j+1

B4j+2

B4j+3




An important property of M is M4 = I, where I denotes the identity matrix. We
skip further details of these four layers, and refer the reader to the AES standard
[NIS01]. For multiplications in GF(28), the irreducible polynomial x8+x4+x3+x+1

is used. Therefore, given a byte values b = b0|| . . . ||b7, 2× b can be computed as
follows:

2× b = b1||b2||b3||(b4 ⊕ b0)||(b5 ⊕ b0)||b6||(b7 ⊕ b0)||b0
and 3× b can be computed with (2× b)⊕ b.

In the last round, MixColumns is skipped and a final whitening key is XORed into the
cipher state to obtain the ciphertext.

Key operations. In order to obtain sufficiently long fresh key material for multiple
calls of AddRoundKey operation, AES derives 128 bits of round key for each round
by expanding the original encryption/decryption key. This expansion algorithm is
denoted with KeyExpand. We recall and emphasize that for AES-192 and AES-256, the
encryption/decryption keys are actually larger than 128 bits, hence each invocation of
the key expansion algorithm produces 192, 256 bits of round keys respectively. This
means that for AES-192, 2 key expansion calls are made for every 3 rounds of execution
in the cipher state; and for AES-256, 1 key expansion call is made for every 2 rounds of
execution in the cipher state.

We abuse the key notation, and let K0, . . . ,K` denote the sequence of round key bytes
derived by scheduling an encryption key K0, . . . ,Kr−1 for a particular choice of AES-128,
AES-192 or AES-256 (where the first r bytes conveniently overlap with the key itself).
Therefore, r ∈ {176, 208, 240} in given order. Below, we briefly remind the key scheduling
algorithm.

The key expansion call is made for 10, 8, 7 times for each version of AES-128, AES-192,
AES-256 respectively. These number of calls generate sufficient number of bytes as each
state update consumes exactly 16 bytes of round key, regardless of the key length of the
AES member.

In particular, suppose that K0:15 denotes the encryption key for AES-128, and the full
sequence of key bytesK0:175 is defined through the iteration of the key expansion algorithm.
For each subsequent value of index i ∈ {16, 32, . . . , 160}, we will repeat the following key
expansion algorithm to compute the next round key Ki:i+15 from the previous round key

13

Preliminaries

Ki−16:i−1. For each i, the sub-sequences Ki:i+3 are computed by:




Ki

Ki+1

Ki+2

Ki+3


←




Ki−16
Ki−15
Ki−14
Ki−13


⊕




S-box(Ki−3)⊕ RCi/16
S-box(Ki−2)

S-box(Ki−1)

S-box(Ki−4)




and for the remaining sub-sequences Ki+4:i+15, the formula is simply Kj ← Kj−16⊕Kj−4
for each j ∈ {i+ 4, . . . , i+ 15}.

In the case of AES-192, the sequence K0:207 is derived in a similar fashion from the
encryption key K0:23. Again, we let i visit the elements of the set {24, 48, . . . , 192} in
given order. For the sub-sequences Ki:i+3, the formula is




Ki

Ki+1

Ki+2

Ki+3


←




Ki−24
Ki−23
Ki−22
Ki−21


⊕




S-box(Ki−3)⊕ RCi/24
S-box(Ki−2)

S-box(Ki−1)

S-box(Ki−4)




and for Ki+4:i+23, the formula is Kj ← Kj−24 ⊕Kj−4 for j ∈ {i+ 4, . . . , i+ 23}.

Finally, in the case of AES-256, the key sequence is K0:239 and the encryption key is K0:31.
Let i ∈ {32, 64, . . . , 224}. The sub-sequences Ki:i+3 and Ki+16:i+19 are derived with:




Ki

Ki+1

Ki+2

Ki+3


←




Ki−32
Ki−31
Ki−30
Ki−29


⊕




S-box(Ki−3)⊕ RCi/32
S-box(Ki−2)

S-box(Ki−1)

S-box(Ki−4)







Ki+16

Ki+17

Ki+18

Ki+19


←




Ki−16
Ki−15
Ki−14
Ki−13


⊕




S-box(Ki+12)

S-box(Ki+13)

S-box(Ki+14)

S-box(Ki+15)




and for the remaining Ki+4:i+15 and Ki+20:i+31, the formula is Kj ← Kj−32 ⊕Kj−4 for
j ∈ {i+ 4, . . . , i+ 15} ∪ {i+ 20, . . . , i+ 31}.

From a serial circuit perspective, these operations align well with the way we construct
pipelines, which will be introduced in Section 2.3. One can simply express key expansion
algorithm in terms of four basic operations:

• ke0 (key expand 0) is the operation that computes the first byte of the next round key.
Particularly in AES-128 (resp. AES-192, AES-256), this corresponds to computation

14

2.2. Hardware-oriented Summary of Primitives

of Ki+16 (resp. Ki+24, Ki+32). For example in AES-128, this can be done by feeding
K13 from the last column into the S-box, and XORing three terms as follows:
K16 ← K0 ⊕ S-box(13)⊕ RC1.

• ke1 (key expand 1) is the operation that computes the bytes Ki+17, Ki+18 and
Ki+19, in a similar fashion to ke0. The difference is that we skip the addition
of the round constant. For example, in AES-128, this operation would compute
K17 ← K1 ⊕ S-box(K14).

• ke2 (key expand 2) is an operation that is used only in AES-256. It is used to compute
the four bytes Ki+16, Ki+17, Ki+18, Ki+19. In particular, one such computation is
K48 ← K16 ⊕ S-box(K44).

• kxor (key XOR) is the operation that computes all remaining bytes of the next
round key. It XORs the current key byte with the (` − 4)-th previous key byte,
e.g. K20 ← K4 ⊕ K16 in AES-128 or K36 ← K4 ⊕ K32 in AES-256. Each key
expansion round contains 12, 20, 24 kxor operations in AES-128, AES-192, AES-256
respectively.

In summary, one can express key expansion algorithm with a sequence of these operations,
where ke1i denotes the execution of ke1 i times:

• In AES-128, the sequence is ke0, ke13, kxor12.

• In AES-192, the sequence is ke0, ke13, kxor20.

• In AES-256, the sequence is ke0, ke13, kxor12, ke24, kxor12.

And finally, RCi denotes the sequence of round constant bytes, generated with 0x02i−1 in
GF(28) with irreducible polynomial x8 + x4 + x3 + x+ 1.

2.2.2 SKINNY

SKINNY tweakable family of block ciphers was introduced by Beierle et al. [BJK+16]. In
this thesis, we are interested only in the three variants that utilize 128-bit blocks. Among
these three, SKINNY-128-128 (resp. SKINNY-128-256, SKINNY-128-384) admits 128 (resp.
256, 384) bits of tweakey, and runs for 40 (resp. 48, 56) rounds.

Let M = M0||M1|| . . . ||M15 denote the plaintext. The state matrix is initialized as a
4× 4 byte matrix according to the following placement of bytes:

St =




M0 M1 M2 M3

M4 M5 M6 M7

M8 M9 M10 M11

M12 M13 M14 M15




15

Preliminaries

For 128z bits of tweakey, z blocks are constructed, for z ∈ {1, 2, 3}. For example, with
SKINNY-128-128, T K1 is mapped to a matrix as below:




TK10 TK11 TK12 TK13
TK14 TK15 TK16 TK17
TK18 TK19 TK110 TK111
TK112 TK113 TK114 TK115




Similarly, SKINNY-128-256 contains two tweakey blocks T K1, T K2, and SKINNY-128-384
contains T K1, T K2, T K3.

State operations. SKINNY-128-128 consists of 40 (resp. 48, 56) rounds. Each round is
a sequence of SubCells, AddConstants, ShiftRows, AddRoundTweakey and MixColumns.

1. With SubCells, each byte is passed through 8-bit input, 8-bit output SKINNY
S-box. SKINNY uses its own dedicated S-box, which follows similar simplistic design
approach after PICCOLO [SIH+11a]. The details of S-box is given in Appendix A.1.3.

2. The AddConstants operation simply XORs a round constant matrix (given below)
onto the state matrix. First, a 6-bit LFSR is used to compute the round constant
for each round. We denote the state of the LFSR with the bit string rc0|| . . . ||rc5
with the following update function f :

f(rc0:5) = rc1:5||(rc0 ⊕ rc1 ⊕ 1)

These six round constant bits are initialized to zero, and updated before being
used in the round function. Letting c0 = 04||rc2:5, c1 = 06||rc0:1, c2 = 06||1||0, the
mapping of them into 4× 4 state array is as follows:




c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0




3. During AddRoundTweakey, only the first and the second rows of the tweakey
matrices are extracted and XORed onto the state matrix. For example, because
SKINNY-128-256 owns two blocks of tweakey T K1 and T K2, the added round key
becomes:




TK10 ⊕ TK20 TK11 ⊕ TK21 TK12 ⊕ TK22 TK13 ⊕ TK23
TK14 ⊕ TK24 TK15 ⊕ TK25 TK16 ⊕ TK26 TK17 ⊕ TK27

0 0 0 0

0 0 0 0




16

2.2. Hardware-oriented Summary of Primitives

Table 2.1 – The tweakey permutation P from the key scheduling algorithm of SKINNY.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 8 9 10 11 12 13 14 15 2 0 4 7 6 3 5 1

4. During ShiftRows, the i-th row is shifted in the rightward direction by i− 1, for
i ∈ {2, 3, 4}. This is similar to AES in that each row is shifted, but this time in the
rightward direction.

5. And finally, during MixColumns, the state is multiplied by the following matrix in
GF(28).

M =




1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0




Key operations. For each tweakey block, the key scheduling algorithm differs slightly.
The two operations are done over each of the tweakey blocks:

1. Each byte of a tweakey block is relocated to another position, through a permutation
P given in Table 5.5. The permutation P is defined in a fashion that the byte at
position i is moved to the position P (i) after execution of this layer. For all tweakey
blocks T K1, T K2 and T K3, the same permutation P is applied.

2. For T K2 (resp. T K3), every byte in the first and second columns are updated with
LFSR functions L2 and L3, where L2 and L3 are defined as below.

L2(x0:7) = x1:7||(x0 ⊕ x2)
L3(x0:7) = (x1 ⊕ x7)||x0:6

Finally, the ciphertext is obtained from converting the state matrix back into a sequence
of bytes, following the same ordering among bytes as before.

2.2.3 PRESENT

PRESENT is a small family block cipher based on substitution permutation network. Both
members, PRESENT-80 and PRESENT-128, admit 64-bit plaintext block and 80/128-bit
key respectively. In this thesis, we are only interested in the 80-bit key variant, therefore
we use PRESENT to specifically refer to PRESENT-80.

17

Preliminaries

Table 2.2 – The permutation function P of the linear layer of PRESENT. As our notation of
a bit string is inverted (leftmost bit is indexed by 0) in contrast to the original submission
[BKL+07], the table is updated accordingly.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

State operations. LetM = m0||m1|| . . . ||m63 be the plaintext. PRESENT encryption
contains 31 rounds, where each round consists of, in given order, AddRoundKey, SubBytes
and PermLayer.

1. During AddRoundKey, 64-bit is extracted as a round key and XORed with the
cipher state.

2. During SubBytes, the state is divided into nibbles, b0|| . . . ||b63 = s0|| . . . ||s15, and
each nibble si is updated through 4-bit input, 4-bit output S-box. Therefore,
si ← S-box(si) for all i ∈ [15].

3. During PermLayer, each bit at position i is moved to P (i), according to the bit-level
permutation given in Table 2.2. Therefore, the updated state b′ is computed with
b′P (i) ← bi.

At the end of the round 31, a final AddRoundKey is executed and the ciphertext becomes
available.

Key operations. Let k0|| . . . ||k79 denote the state of the key pipeline. Then the leftmost
64 bits k0:63 are extracted as the round key. Afterwards, in order to produce updated key
state for the next round, the key sequence is updated as follow:

1. k0||k1|| . . . ||k79 ← k61:79||k0:60,

2. k0:3 ← S-box(k0:3),

3. k60:64 ← k60:64 ⊕ rc0:4.

18

2.2. Hardware-oriented Summary of Primitives

Here, the 5-bit round constant value actually denotes the current round of encryption
such that

∑4
j=0 24−jrcj is the current round value. The counting of rounds starts from 1

in the initial round, and obtains the value 31 in the last round, therefore each non-zero
value of rc0:4 is used only once.

2.2.4 GIFT

GIFT family of block ciphers were inspired by PRESENT, and includes two members
GIFT-64 and GIFT-128 [BPP+17].

GIFT-64

GIFT-64 admits 128-bit key, 64-bit blocks, and consists of 28 rounds. We describe the
block cipher below.

State operations. LetM = m0||m1|| . . . ||m63 be the plaintext. A round consists of, in
given order, SubBytes, PermLayer, and AddRoundKey:

1. During SubBytes, the state is divided into nibbles, and each nibble is updated
through 4-bit input, 4-bit output S-box. Namely, let b0|| . . . ||b63 = s0|| . . . ||s15,
then for each i ∈ [15], si ← S-box(si) is computed. This S-box is described in
Appendix A.1.2.

2. During PermLayer, each bit at position i is moved to G64(i), according to the
permutation given in Table 2.3. Therefore, the updated state b′0|| . . . ||b′63 is computed
from the current state b0:63 such that b′G64(i)

← bi.

3. During AddRoundKey, two 16-bit words U and V are extracted from the key state.
Let these two words be decoded as U ||V = u0|| . . . ||u15||v0|| . . . ||v15. Then, the half
of the state bits are XORed with the key bits such that

b4i+2 ← b4i+2 ⊕ ui, b4i+3 ← b4i+3 ⊕ vi ∀i ∈ [15]

which is immediately followed by the addition of the round constant bits:

b0 ← b0 ⊕ 1, b40 ← b40 ⊕ c0, b44 ← b44 ⊕ c1
b48 ← b48 ⊕ c2, b52 ← b52 ⊕ c3, b56 ← b56 ⊕ c4, b60 ← b60 ⊕ c5

At the end of the round 28, the ciphertext is obtained from this internal cipher state.

Key operations. Let w0|| . . . ||w7 denote the key state, where each wi denotes a 16-bit
word. At each round, (U, V)← (w6, w7) is extracted as the round key from the key state

19

Preliminaries

Table 2.3 – The permutation function G64 of the linear layer of GIFT-64. As our notation of
a bit string is inverted (leftmost bit is indexed by 0) in contrast to the original submission
[BPP+17], the table is updated accordingly.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G64(i) 48 1 18 35 32 49 2 19 16 33 50 3 0 17 34 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
G64(i) 52 5 22 39 36 53 6 23 20 37 54 7 4 21 38 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
G64(i) 56 9 26 43 40 57 10 27 24 41 58 11 8 25 42 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
G64(i) 60 13 30 47 44 61 14 31 28 45 62 15 12 29 46 63

before the update. Then the key update is performed as follows, where ≫ denotes the
right rotation by given number of steps within the 16-bit word boundaries.

w0:7 ← (w6 ≫ 2)||(w7 ≫ 12)||w0:5

The 6-bit round constant value is updated with an LFSR. The value of the LFSR is reset
to 06 at the beginning of the encryption, and updated before the first use. The update is
performed exactly as in SKINNY:

rc0:5 ← rc1:5||(rc0 ⊕ rc1 ⊕ 1)

GIFT-128

GIFT-128 admits 128-bit key, 128-bit plaintext block, and consists of 40 rounds. The
state and key operations remain mostly same, with some minor adjustments for larger
state size.

State operations. LetM = m0||m1|| . . . ||m127 be the plaintext. A round consists of,
in given order, SubBytes, PermLayer, and AddRoundKey:

1. During SubBytes, the state is divided into 32 nibbles, and each nibble is updated
through 4-bit input, 4-bit output S-box. Namely, let b0|| . . . ||b127 = s0|| . . . ||s31,
then for each i ∈ [31], si ← S-box(si) is computed. This S-box is the same that is
used in the smaller member GIFT-64 (see Appendix A.1.2).

2. During PermLayer, each bit at position i is moved to G128(i), according to the per-
mutation given in Table 2.4. Therefore, the updated state b′0|| . . . ||b′127 is computed

20

2.2. Hardware-oriented Summary of Primitives

Table 2.4 – The permutation function G128 of the linear layer of GIFT-128. As our
notation of a bit string is inverted (leftmost bit is indexed by 0) in contrast to the original
submission [BPP+17], the table is updated accordingly.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G128(i) 96 1 34 67 64 97 2 35 32 65 98 3 0 33 66 99

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
G128(i) 100 5 38 71 68 101 6 39 36 69 102 7 4 37 70 103

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
G128(i) 104 9 42 75 72 105 10 43 40 73 106 11 8 41 74 107

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
G128(i) 108 13 46 79 76 109 14 47 44 77 110 15 12 45 78 111

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
G128(i) 112 17 50 83 80 113 18 51 48 81 114 19 16 49 82 115

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
G128(i) 116 21 54 87 84 117 22 55 52 85 118 23 20 53 86 119

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
G128(i) 120 25 58 91 88 121 26 59 56 89 122 27 24 57 90 123

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
G128(i) 124 29 62 95 92 125 30 63 60 93 126 31 28 61 94 127

from the current state b0:127 such that b′G128(i)
← bi.

3. During AddRoundKey, two 32-bit bit strings U and V are extracted from the key
state. Let these two words be decoded as U ||V = u0|| . . . ||u31||v0|| . . . ||v31. Then,
the half of the state bits are XORed with the key bits such that

b4i+1 ← b4i+1 ⊕ ui, b4i+2 ← b4i+2 ⊕ vi ∀i ∈ [31],

which is immediately followed by the addition of the round constant bits:

b0 ← b0 ⊕ 1, b104 ← b104 ⊕ c0, b108 ← b108 ⊕ c1
b112 ← b112 ⊕ c2, b116 ← b116 ⊕ c3, b120 ← b120 ⊕ c4, b124 ← b124 ⊕ c5.

At the end of the round 40, the ciphertext is obtained from this internal cipher state.

Key operations. Let w0|| . . . ||w7 denote the key state, where each wi denotes a 16-bit
word. At each round, (U, V)← (w3||w4, w6||w7) is extracted as the round key from the
key state before the update. Then the key update and round constant computations are
performed exactly as in GIFT-64.

21

Preliminaries

2.2.5 GIFT∗

The sibling variant GIFT∗ differs from GIFT in the way the bits are arranged into the
state matrix, and they are used in the NIST LWC candidates GIFT-COFB and SUNDAE-
GIFT [BCI+19, BBP+19]. In particular, we follow the notation used by SUNDAE-GIFT
[BBP+19].

We are only interested in the 128-bit member the modified family of GIFT∗, hence we
skip the details for the smaller member GIFT∗-64. Therefore, GIFT∗ solely refers to the
128-bit key variant. Below, we describe the slight differences in the operations applied on
top of the cipher state.

State operations. LetM = m0||m1|| . . . ||m127 be the plaintext. A round consists of,
in given order, SubBytes, PermLayer, and AddRoundKey. However, the internal cipher
state s is denoted as a matrix of 4× 32. Namely, the internal cipher state is initialized as:




S0
S1
S2
S3


 =




s0,31 s0,30 . . . s0,0
s1,31 s1,30 . . . s1,0
s2,31 s2,30 . . . s2,0
s3,31 s3,30 . . . s3,0


←




m3 m7 . . . m127

m2 m6 . . . m126

m1 m5 . . . m125

m0 m4 . . . m124




1. During SubBytes, each vertical column is updated through 4-bit input, 4-bit output
S-box (same as in GIFT, Appendix A.1.2). Namely, for each i ∈ [31]:

s3,i||s2,i||s1,i||s0,i ← S-box(s3,i||s2,i||s1,i||s0,i)

2. During PermLayer, each bit si,j is moved to the new position (i, Gi(j)), according to
the four permutations Gi given in Table 2.5. In other words, bits are only relocated
through row-local permutations. Therefore, the updated state s′ is:

s′i,Gi(j)
← si,j

for each row i ∈ [3] and column j ∈ [31].

3. The key scheduling and orientation of the bits remain exactly same as in GIFT.
Therefore, during AddRoundKey, two 32-bit bit strings U and V are extracted from
the key state. Let these two words be decoded as U ||V = u0|| . . . ||u31||v0|| . . . ||v31.
Here, U and V are respectively XORed into the second and third columns:

s2,31−j ← s2,31−j ⊕ uj , s1,31−j ← s1,31−j ⊕ vj

for j ∈ [31] and a final round constant addition is performed:

S3 ← S3 ⊕ 0x800000XY

22

2.2. Hardware-oriented Summary of Primitives

Table 2.5 – Bit-sliced GIFT∗ permutation where index 0 is the rightmost bit of a row
segment. Following the notation by SUNDAE-GIFT proposal, the bit identified by j moves
to the its new position denoted in Gi after application of the permutation [BBP+19].

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

G1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

G2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

G3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

where the byte XY corresponds to 00||rc0:5.

2.2.6 ForkAES and ForkAE

Let B, K, and T be non-empty sets, corresponding to plaintext blocks, keys and tweaks.
A tweakable forkcipher is a tuple of three deterministic algorithms (E,D,R). Each of the
three algorithms takes the key K and the tweak T as input, and differ in the following
manner:

1. An encryption algorithm E : K × T × B → B2 produces two blocks of ciphertext
(C1, C2), given the single-block plaintext P . Notation-wise, we let ETK(P)[0] = C0

and ETK(P)[1] = C1.

2. A decryption algorithm D : K × T × B × {0, 1} → B admits either of C0 or C1 to
recover the plaintext P . An additional 1-bit input clarifies whether the input is C0 or
C1. Then, it holds that DT,b

K (ETK(P)[b]) = P , for all (K,T, P, b) ∈ K×T ×B×{0, 1}.

3. A tag-reconstruction algorithm R : K × T × B × {0, 1} → B admits C0 (resp.
C1) and recovers C1 (resp. C0). An additional 1-bit input clarifies the direction
of the reconstruction, i.e. either C0 7→ C1 or C1 7→ C0. Then, it holds that
RT,bK (Cb) = Cb⊕1, for all (K,T, P, b) ∈ K × T × B × {0, 1} with (C0, C1) = ETK(P).

In this thesis, we are especially interested in ForkAES, a forked block cipher based on
AES-128. Therefore, B = {0, 1}128, K = {0, 1}128 and T = {0, 1}64. In most of the
context we use these algorithms, K and T are fixed, therefore we drop them in notation
and simply use (E,Db,Rb) for this tuple of algorithms.

State operations. The fork cipher ForkAES utilizes the round function of AES. En-
cryption in total consists of 15 rounds, where C0 and C1 are forked from the common
internal cipher state after 5 rounds, known as the forking state. The forking state is used
to compute both C0 and C1 with additional 5 rounds, but with different round keys. This

23

Preliminaries

SB

SR

KS

R

T̃

P

K0

K

S1

K1

KS

R

K4

S5

K5

T̃

KS

R

T̃

K5

X6

K6

KS

R

K9

X10

K10

T̃

KS

R

T̃

K11 K12

KS

R

K15

T̃

KS
K10

T̃

C0

Y 10

K16

T̃

C1

X5

Y 5 Y 6

SB MC
S1,SB S1,SR S1

Figure 2.1 – ForkAES Tweakable Block Cipher. SB, SR,MC are SubBytes, ShiftRows and
MixColumns operations of AES respectively; KS is a one-round key schedule operation.
Formal descriptions of algorithms are given in Figure 2.2.

is visualized in Figure 2.2, where R denotes the combination of SubBytes, ShiftRows and
MixColumns.

Key operations. During encryption, AddRoundKey is executed 17 times in total.
Therefore, in contrast to AES, the key scheduling algorithm must be invoked 16 times to
generate sufficiently many blocks of round keys. For that, ForkAES directly borrows the
key scheduling algorithm, denoted by KS, from AES-128.

Besides AddRoundKey, an additional tweakey is also XORed into the state, simultaneously
with the round key. However, in order to stretch 64-bit tweak T into 128-bit string,
T̃ = Transpose(T ||064) is used, where Tranpose corresponds to transposition in the 4× 4

matrix representation.

Exact descriptions of the three algorithms E,D0,R0 are given in Figure 2.2, and they
are used in the construction of two authenticated encryption modes SAEF and PAEF by
Andreeva et al. [ARVV18].

2.3 ASIC Details

Understanding the underlying technology on which circuits are implemented is essential
in the scope of this thesis, as the very definition of lightweight depends immensely on
how these circuits are realized. Simply put, an application-specific integrated circuit
eventually reduces to complex mesh of N and P-doped layers printed on a silicon wafer.

24

2.3. ASIC Details

Encryption ETK(P):
1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: S0 ← P
4: for i = 1 to 5 do
5: zi ← Si−1 ⊕Ki−1 ⊕ T̃
6: Si ← R(zi)

7: X5 ← S5; Y 5 ← S5

8: for i = 6 to 10 do
9: ui ← Xi−1 ⊕Ki−1 ⊕ T̃

10: Xi ← R(ui)

11: C0 ← X10 ⊕K10 ⊕ T̃
12: for i = 6 to 10 do
13: vi ← Y i−1 ⊕Ki+5 ⊕ T̃
14: Y i ← R(vi)

15: C1 ← Y 10 ⊕K16 ⊕ T̃
16: return (C0, C1)

Decryption DT,0
K (C0):

1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: X10 ← C0 ⊕K10 ⊕ T̃
4: for i = 10 to 6 do
5: ui ← R−1(Xi)
6: Xi−1 ← ui ⊕Ki−1 ⊕ T̃
7: S5 ← X5

8: for i = 5 to 1 do
9: zi ← R−1(Si)
10: Si−1 ← zi ⊕Ki−1 ⊕ T̃
11: P ← S0
12: return P

Reconstruction RT,0K (C0):
1: K0, . . . ,K16 ← KS16(K)
2: T̃ ← Transpose(T ||064)
3: X10 ← C0 ⊕K10 ⊕ T̃
4: for i = 10 to 6 do
5: ui ← R−1(Xi)
6: Xi−1 ← ui ⊕Ki−1 ⊕ T̃
7: S5 ← X5; Y 5 ← S5

8: for i = 6 to 10 do
9: vi ← Y i−1 ⊕Ki+5 ⊕ T̃

10: Y i ← R(vi)

11: C1 ← Y 10 ⊕K16 ⊕ T̃
12: return C1

Figure 2.2 – The encryption E, decryption D0, and reconstruction R0 algorithms of
ForkAES.

2.3.1 Technology Libraries and Cells

There is a clear line of abstraction that separates the nitty-gritty details of semiconductor
technology and the logical behavior of a given circuit. Manually designing a custom
transistor-level semiconductor layout for each unique circuit evidently would not scale
very well, hence a technology library provides this abstraction layer. Common logical
elements, among them are logic gates such as NAND, NOR, XOR as well as sequential
elements such as flip-flops, are provided as cells. Each cell of the library comes with a
functional description (what it does), as well as physical characteristics, such as timing
delays, power consumption etc. On the higher level, an engineer can provide a circuit
with the help of an hardware description language, which is later realized, thanks to those
cells provided by the library.

We use five different technology libraries in the thesis: STM 90 nm, UMC 90 nm, TSMC
90 nm, NanGate 45 nm and NanGate 15nm. The first three among those are commercial,
hence they are not publicly available. On the other hand, NanGate libraries are publicly
available, but they contain a minimal set of cells, whose power consumption and area
metrics are much less optimized than their commercial counterparts. Further details on
the libraries are given in Table 2.6.

On the combinatorial part, technology libraries always provide the basic set of logical
operations directly as cells, such as XOR, NAND, NOT gates. More often than not, multi-
input variants of these gates are also provided, e.g. 3-input XOR/OR/AND. Furthermore,
some common simple expressions can also be provided as cells from the library. For

25

Preliminaries

Table 2.6 – The exact variants of technology libraries used in this thesis.

Library TSMC 90 nm STM 90 nm UMC 90 nm NanGate 45 nm NanGate 15 nm

Variant tcbn90lphp CMOS090LP fday_sp_rvt_1v0_2011 fast fast
low-power low-power standard fast fast

instance, the cell AOI21 from the NanGate 15 nm library implements the function
¬((A ∧ B) ∨ C), where A, B and C are input wires to this cell. A 2-input multiplexer
(MUX) is also among such common cells with the expression (A∧ (¬S))∨ (B ∧ S), which
selects between signals A or B, based on the signal S. NanGate 15 nm provides this as
the cell MUX2. Further examples for the other libraries can be found in Table 2.7.

On the sequential part, the basic 1-bit storage element is the D flip-flop, whose ports are
the input data wire D, the input clock wire C and the output data wire Q. Q propagates
the stored value of the flip-flop, and exhibits a very brief glitch while the stored value is
being updated. The update always happens at the rising edge of C and the value of D is
captured and stored by the flip-flop. Sometimes, a few variants of flip-flops might also be
provided by technology libraries:

• Enabled flip-flop takes an additional control wire E, which can enable or disable
whether the flip-flop will trigger the update operation on the rising edge of the clock
signal. Therefore, if the wire E is low, then the flip-flop is frozen and maintains its
stored value by disregarding D. If such functionality is not implemented as cell, it
can as well be realized with a simple D flip-flop preceded by a MUX gate.

• A flip-flop with reset signal takes an additional input wire R, which can asyn-
chronously reset the stored value to low (or 0), without having to wait for the next
rising edge of the clock signal. Similarly, a flip-flop can have an input set wire,
which can asynchronously set the stored content to high (or 1).

• A scan flip-flop takes two data input ports, D1 and D2, and a selection signal S.
On the rising edge of the clock signal, the value to be stored is chosen either from
D1 or D2, based on the value of S. In terms of functionality, this is equivalent to a
simple D flip-flop preceded by a MUX gate at its input.

These mentioned functionalities are not necessarily exclusive. For example, UMC 90 nm
possess a flip-flop with both reset and set functionalities, i.e. the cell DFFRSBX1. On the
other hand, NanGate 45 nm possesses a cell with reset and scan functionalities combined,
i.e. the cell SDFFR_X1.

It is also usual for libraries to have a group of cells that implement the same function but
show different delay, area and power characteristics. Names of these cells conveniently
differ from their siblings merely by a reserved postfix. If we take NAND gate in Table 2.7

26

2.3. ASIC Details

Table 2.7 – The precise name of the cells corresponding to NAND, MUX and D flip-flop
from the five technology libraries with their respective area given in µm2.

Gate TSMC 90 nm STM 90 nm UMC 90 nm NanGate 45 nm NanGate 15 nm

NAND CKND2D0 ND2HVTX1 ND2CKX1 NAND2_X1 NAND2_X1
2.822 4.390 3.136 0.798 0.197

MUX MUX2D0 MUX21HVTX1 MUX2CKX1 MUX2_X1 MUX2_X1
6.350 8.781 7.056 1.862 0.639

D flip-flop DFQD1 FD1QSVTX1 QDFFX1 DFF_X1 DFFSNQ_X1
12.701 14.269 13.328 4.522 1.278

as an example, given cell names contain suffixes such as -X1 or -D0, which indicates that
these cells are likely the smallest NAND realizations found in those libraries. As a further
example, UMC 90 nm library actually contains five different cells for NAND gate with
names ND2CKX1, ND2CKX2, ND2CKX3, ND2CKX4, and ND2CKX6.

2.3.2 Test Bench and Synthesis Options

For all results reported in the thesis, we maintained the following design flow. The design
was first implemented at register-transfer level (RTL). A functional verification of the
VHDL code was then done using Mentor Graphics ModelSim.

Thereafter, Synopsys Design Compiler was used to synthesize the RTL design against a
technology library. With few exceptions, we used the compile_ultra directive of the tool,
which instructs the compiler to perform all-in-one optimization with regards to circuit
footprint, delay and power consumption. After synthesis, we obtain the netlist, which
is the a realization of our RTL-described circuit in terms of the cells provided by the
technology library. At this point, owing to the fact that the technology library contains
the physical characteristics of each cell, it is possible to compute area and critical path
delays of the circuit.

We then use the netlist for two purposes. First, we verify once more the correctness of
the circuit with post-synthesis simulation, via Synopsys VCS MX Compiled Simulator.
Secondly and at the same time, we collect the switching activity of each gate, so that
Synopsys Power Compiler can use it to derive the average power consumption of the
circuit, using the back annotated switching activity.

2.3.3 Higher-level Building Blocks

Pipelines. In a circuit, a bit-serial pipeline is a series of flip-flops that are arranged in a
way that allows the stored value to be shifted in a fixed direction, one bit position at each

27

Preliminaries

0 7

0 71 2 3 4 5 6b

b

binbout

binbout

0 71 2 3 4 5 6b

b

binbout

A

B

C

Figure 2.3 – The three equivalent representations of an 8-bit pipeline equipped with the
swap operation (2, 4), where each box denotes a flip-flop. A) The swap is implemented
by adding MUXes at the output of intended swap positions 2 and 4. B) If the technology
library supports, a scan flip-flop (marked with green) can be used instead, for the flip-flops
that immediately come after the intended swap positions. C) We can simply color boxes
1 and 3 to denote the swap (2, 4).

28

2.3. ASIC Details

clock cycle. In mathematical terms, an n-bit pipeline can be denoted with a series of
1-bit variables FF0,FF1, . . . ,FFn−1 that supports shifting of the stored bits. The shifting
operation then corresponds to

bout ← FF0, FF0:n−1 ← FF1:n−1||bin

where bin is the new input value of the pipeline, and bout is the exit value from the
pipeline. Typically, an encryption circuit consists of two pipelines, one for the state
update operations and the other for the key. Therefore, we use FFS to denote the flip-flops
of the state pipeline, and FFK to denote the key pipeline.

On top of the pipeline, we can further introduce additional operations. One particular
operation of interest is the swap operation (u, v) for some u, v ∈ [n− 1] such that u 6= v.
The swap operations are denoted with tuples, and (u, v) swaps the contents of FFu and
FFv without touching the other values. Therefore, it corresponds to:

∀i ∈ [n− 1] \ {u, v}, FFi ← FFi, and (FFu,FFv)← (FFv,FFu).

Swap operations are treated specially, because they can be efficiently realized in hardware,
by merely introducing two MUXs into the pipeline. This is illustrated in Figure 2.3 with
an 8-bit pipeline with the swap (2, 4). In the given circuit, a swap operation (u, v) can be
interleaved between two consecutive shift invocation on the pipeline, by controlling the
select signals of the MUXes. If the technology library further supports scan flip-flops,
this can be implemented even more efficiently with the use of scan flip-flops.

Color Coding. Throughout the thesis, we make extensive use of colors to mark the
swap positions in pipelines, as shown in Figure 2.4. This figure should be interpreted
as a legend for the rest of the figures. Let us briefly explain the meaning of the color
coding with respect to both functionality and cost. Let `FF and `MUX denote the areas of
a simple flip-flop (without reset functionality) and a 2-input multiplexer respectively. As
shown in Figure 2.4, a white box denotes a simple flip-flop and occupies area equal to `FF.
Any box that contains n different colors represents a flip-flop that can accept n+ 1 input
bits, one of which is latched on the flip-flop in the next rising clock edge, depending on
some select signal. All such instances cost `FF + n× `MUX units of silicon area (unless the
technology library has a dedicated cell implementation for this primitive).

29

Preliminaries

D flip-flop≃ ≃ ≃

Figure 2.4 – The color legend for interpreting circuit figures. White boxes denote a regular
D flip-flops, a single-colored box is used for 2-input scan flip-flop and an n-color flip-flop
denotes an (n + 1)-input flip-flop. Two boxes that share a color mean that they are
interconnected and therefore they can swap their input bits.

30

3 All-in-one AES Circuit

This chapter focuses on the design of a lightweight AES circuit that can perform both
encryption and decryption for each of AES-128, AES-192 and AES-256. Despite large
variations in the key scheduling algorithm for each of these six functionalities, we provide
a way to express them in terms of common simpler operations, which in return allows
us to construct small-size circuit. The results presented in this chapter includes the
extension of the work done in collaboration with Subhadeep Banik, which was presented
in Africacrypt 2019 [BB19b].

We briefly discuss the few proposed architectures in the literature that also target small-
size implementation for AES-128 in Section 3.1, and lay out the details of our contributions
in Section 3.3.

In Section 3.4, we give the high-level view of a 8-bit serialized AES circuit, with input and
output port details, as well as the arrangement of the bytes for loading to and retrieving
data from the circuit. In Section 3.5, we briefly cover the low-level circuit components that
are used in the design. Then, in Section 3.6, we give high-level description of the key and
state pipelines. In Section 3.7, we give the simpler operations that can be performed by
our state and key pipelines, and in Section 3.8 we explain how to express AES encryption
and decryption in terms of these operations. In Section 3.9, we explain how to run key
scheduling algorithm both in forwards and backwards, for each of AES-128, AES-192 and
AES-256.

In Section 3.9, we report the measurements of our implementation and conclude the
chapter in Section 3.11.

The VHDL source code of the implementations can be found as a public archive [6AE].

31

All-in-one AES Circuit

3.1 Related Work

There have been several lightweight implementations of AES suggested in the literature.
Satoh et al. [SMTM01] suggested a 32-bit serial architecture. Their main contribution
includes minimizing the S-box circuit via tower field implementation, as well as combi-
natorial optimization of the MixColumns circuitry. The size of this implementation is
around 5400 GE. Later, Grain of Sand implementation of Feldhofer et al. was constructed
as an 8-bit serialized architecture occupying 3400 GE of area in silicon, yet it comes with a
latency over 1000 clock cycles for each of encryption and decryption operations [FWR05].
The implementation by Moradi et al. with size equal to 2400 GE and encryption latency
of 226 cycles is one of the smallest known architectures for AES [MPL+11]. Similarly,
Mathew et al. reported an 8-bit serial implementation that takes 1947/2090 GE for the
encryption/decryption circuits respectively. Their contribution is on a separate direction,
as they use intermediate register files for storing the key and the cipher state. These
register files can be synthesized in the ASIC flow using memory compilers.

More recently, two further serial architectures have been proposed for AES-128. The first,
Atomic AES and its modified version Atomic AES v2.0 by Banik et al. [BBR16a, BBR16b],
builds on the ideas of Moradi et al. [MPL+11], with the main contribution being fusion of
encryption and decryption into a single pipeline. Namely, they show that the decryption
functionality can also be realized along with encryption only with a small area cost. Their
combined circuit occupies around 2060 GE. In order to achieve even smaller area results,
Jean et al. [JMPS17] takes the design one step further, by proposing the first 1-bit serial
architecture of AES, which costs less than 1600 GE. This architecture naturally requires
many more clock cycles for encryption and decryption operations, roughly multiplying
the latency by 8 (compared to 8-bit serial architectures).

3.2 Motivation

One of the main motivations, besides post quantum trend, to build the smallest all-in-one
AES in hardware is that some devices are expected to support large number of standards
at the same time. For instance many smart cards are designed to support a large
variety of symmetric and asymmetric cryptographic primitives altogether, including all
six functionalities of AES1. However, the number of protocols that these units can support
are limited due to the tight area budget. Our design proposes an alternative combined
solution with little extra area requirement, which would allow these cryptographic units
to be able to benefit from the use of the full AES with small cost. Besides, a combined
implementation provides an upper bound on individual implementations of AES-192 and
AES-256, that have not received sufficient attention in the literature.

Another major motivation to develop the combined circuit is the fact that many newer

1See Infineon jTOP ID SLJ 52GCA150CL Java Card 3.0.4 150K as an example.

32

3.3. Contributions

Table 3.1 – Comparison with the state of the art.

block cipher area library impl. functionality latency reference

AES-128 5400 GE – 32-bit enc+dec 5 [SMTM01]

AES-128 3400 GE P 350 8-bit enc+dec >100 [FWR05]
AES-128 2400 GE UMC 180 8-bit enc 21 [MPL+11]
AES-128 2060 GE STM 90 8-bit enc+dec 21 [BBR16b]
AES-128/192/256 3674 GE STM 90 8-bit enc+dec 24/32 [BB19b]
AES-128 1785 GE STM 90 8-bit enc 16 [BCB21]

AES-128 1596 GE UMC 90 1-bit enc+dec 168/248 [JMPS17]
AES-128/192/256 2268 GE STM 90 1-bit enc+dec 128 [LBB21]
AES-128 1267 GE STM 90 1-bit enc 128 [BCB21]

this work state-of-the-art reference follow-up work

NIST post-quantum designs use AES-256 as a sub-primitive in randomness generation
[EBB15, NISb]. Therefore it is necessary to have constrained implementations of AES-256
in hardware without drastically increasing the area budget.

3.3 Contributions

In this chapter, we present an 8-bit serial architecture that performs all encryption and
decryption operations of three instances AES-128, AES-192 and AES-256 in a combined
circuit. In other words, the circuit supports six functionalities of AES at the same time,
with the area-minimization goal in mind. We further eliminate the burden, that the bytes
should be ordered according to non-standard row-first fashion, and construct our circuit
in a fashion that it admits inputs arranged in the standard column-first fashion. For our
novel 6AES circuit, the original work reports around 3674 GE when synthesized with the
standard cell library of the STM 90nm CMOS logic process. In this thesis, we extend
these results to five libraries mentioned in Section 2.3.1. The comparison with the state
of the art is given in Table 3.1.

3.4 Input and Output Formats

Our AES architecture is a sequential one with 8-bit data path. The architecture consists
of the following ports:

• 8-bit input KeyIn port, from which the key is loaded in one byte per clock cycle
fashion.

• 8-bit input DataIn port, from which the plaintext (resp. ciphertext) during encryp-
tion (resp. decryption) is loaded in one byte per clock cycle fashion.

33

All-in-one AES Circuit

• 3-bit input Ins port, which allows to choose the functionality of the circuit from
either one of the members AES-128, AES-192, AES-256 plus encryption/decryption
direction.

• An asynchronous active-low signal Rst as input.

• A clock signal Clk as input.

• 8-bit output DataOut port, from which the ciphertext (resp. plaintext) during
encryption (resp. decryption) is propagated in one-byte-per-clock-cycle fashion.

• 1-bit Rdy signal as output, which indicates whether the operation is completed.

Loading the input values takes up to 16 (resp. 24, 32) clock cycles for AES-128 (resp.
AES-192, AES-256), and receiving the output similarly requires 16 clock cycles. In between,
the encryption and decryption operations take few hundreds clock cycles.

We denote the data (i.e. the input plaintext/ciphertext) as a byte sequence B0, . . . , B15.
We denote the original key with K0, . . . ,K`−1 where ` ∈ {16, 24, 32} for AES-128, AES-192
and AES-256 respectively. And lastly, we use K ′ sequence to denote the last ` bytes of
the round keys used in AddRoundKey, i.e. the sequence is K ′0, . . . ,K ′`−1. More precisely,
this sequence corresponds to K160, . . . ,K175 in AES-128; K184, . . . ,K207 in AES-192; and
K208, . . . ,K239 in AES-256.

Loading Cycles. In AES-128, the key and the data has the same size, therefore loading
both of them can be synchronized, i.e. Ki (resp. K ′i) and Bi are loaded at the same clock
cycle for encryption (resp. decryption). However, in AES-192/256, the key is larger than
the data, therefore we should clarify which bytes of the key and the data are loaded at
which cycles.

For encryption, the data and the first 16 bytes of key are loaded during the first 16 cycles.
If there are remaining bytes of the key, then K16, . . . ,K`−1 are loaded in the following 8
(resp. 16) cycles in AES-192 (resp. AES-256).

For decryption, the first ` − 16 bytes of the last used round key (i.e. the sequence
K ′0, . . . ,K

′
`−17) are loaded. In particular, first 8 (resp. 16) cycles are used to load

K ′0, . . . ,K
′
7 (resp. K ′0, . . . ,K

′
15) in AES-192 (resp. AES-256). Then, the following 16

cycles are used to load K ′`−16, . . .K
′
`−1 and B0, . . . , B15 simultaneously.

Input Format. For encryption, the key K0, . . . ,K`−1 and the data B0, . . . , B15 are
loaded. For decryption, the key byte sequence K ′0, . . . ,K ′`−1 is loaded instead of the
original key K0, . . . ,K`−1.

Result Cycles. The result data sequence C0, . . . , C15 (ciphertext for encryption or

34

3.5. Components

plaintext for decryption) is observed at DataOut in given order. The signal Rdy is raised
during the 16 cycles during which the result is available.

3.5 Components

On the higher-level, the circuit can be decomposed into following primitives, few of which
are already described in Section 2.3.1:

• An enabled byte flip-flop (henceforth referred to as EFF) is a byte storage unit that
preserves its output during many cycles when enable signal is unset. When enable
signal is set, its value (and thereby output) is updated following the rising edge of
the clock signal.

• An enabled byte scan flip-flop (henceforth referred as SEFF) is an EFF combined
with a multiplexer (or can be constructed directly with enabled scan flip-flops, if
the technology library has them). Two separate bytes are wired as input, and its
next value is assigned to either one of them based on an additional selection signal.
Its value is updated on the rising edge of the clock signal, if the enable signal is set.
If enable signal is unset, its value is preserved. They are used mostly in the state
pipeline.

• Control logic, which consists of a finite-state machine activated with the release of
the asynchronous reset signal Rst, and a large combinatorial circuit that computes
all control signals. It controls all flip-flop enable signals, scan flip-flop selectors,
MUX selectors, mask AND selectors, S-box direction signal and Rdy signal.

• The combinatorial MixColumns circuitry that takes 32-bit columns as input and
computes the 32-bit by multiplication over GF(28), as described in Section 2.2.1.

• We use the combined S-box architecture by Canright that performs both forward
and inverse operations with a low hardware footprint [Can05], i.e. both S-box and
its inverse S-box−1. The direction of the operation is determined with an additional
selection signal.

• Round constant lookup table contains ten round constant bytes used in all three
instances. An internal 4-bit counter is used to choose the correct entry from the
table.

In order to minimize number of gates, we limit our design to a single two-directional
S-box (shared between SubBytes and KeyExpand), a single MixColumns circuit that can
work in both direction. At the core of the design, we construct two pipelines from a series
of EFF and SEFF: one for the state and another for the key. As the key length in AES-256
is 32 bytes, the key pipeline contains 32 byte flip-flops to accommodate it.

35

All-in-one AES Circuit

8

b

b

b

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

b b bb

32

32

8

M
ix
C
ol
um

ns

St0

0

1

2

3
32

StPipeIn

Figure 3.1 – The state pipeline of our combined AES architecture.

3.6 High Level Description of the Design

Our design mainly consists of two parts: the state pipeline and the key pipeline. Below,
we describe each of them separately.

State Pipeline. 16 enabled scan byte flip-flops are arranged in an upward-moving serial
fashion, where a byte value enters into the pipeline from FFS15, visits each flip-flops in
their descending index order, and eventually exits the pipeline from FFS0 . This is done
via the vertical connections among flip-flops which further permit loading the cipher
state into the bus with one-byte-per-clock fashion so that AddRoundKey and SubBytes
layers can be executed simultaneously. Moreover, alternative lateral connections, e.g.
FFS12 → FFS8 → FFS4 → FFS0 , allow each column to be loaded into MixColumns circuit in 4
consecutive cycles. The same lateral connections in the leftward direction also allow us to
perform ShiftRows, by carefully enabling and disabling rows in harmony in 3 consecutive
clock cycles. With the help of MUXes connected to FFS12, FF

S
13, FF

S
14, FF

S
15, we can choose

between ShiftRows and MixColumns operations. The task of correctly controlling the
selection signals is assigned to the control circuit. Therefore, the controller can decide to
freeze the whole pipeline (through enable functionality of flip-flops), rotate rows in the
leftward direction (through scan functionality of flip-flops), choose to load a column from
the output of the MixColumns circuit (through four additional MUXs). The high-level
view of the state pipeline circuit is given in Figure 3.1.

Key Pipeline. It consists of 32 enabled flip-flops (without scan functionality) to
accommodate the 32 byte key in AES-256. The connections of the pipeline are tweaked
through two MUXes (denoted with 5 and 6 in Figure 3.2) in such a way that:

36

3.6. High Level Description of the Design

• During AES-128 operations, the flip-flops FFK8:23 are bypassed and the output of
FFK24 is wired to the input of FFK7 through MUX 5. Therefore the key pipeline
effectively shrinks to 16 byte flip-flops.

• During AES-192 operations, the flip-flops FFK16:23 are bypassed and the output of
FFK24 is wired to the input of FFK15 through MUX 6. Furthermore, the output of FFK8
is wired to the input of FFK7 through MUX 5. The key pipeline effectively shrinks
to 24 flip-flops.

• During AES-256 operations, all flip-flops are active. The output of FFK16 is wired to
the input of FFK15 through MUX 6. The output of FFK8 is wired to the input of FFK7
through MUX 5.

In order to work in harmony with the state pipeline, the task of the key pipeline is to
provide the particular byte of key to the bus, so that AddRoundKey can be performed
correctly with the byte coming from the state. This key byte from the pipeline can be
fetched either from FFK0 , FF

K
20 or FFK40 based on the selection signal of MUX 10. The

pipeline supports rotation through connections FFK0 → FFK23 through MUX 12. As before,
enable signals are configured by the control logic and can freeze the pipeline when another
operation is stalling the state pipeline.

The most challenging part of our design is by far the computation of proper round key
for AddRoundKey operation for 6 different instances on the same circuit. For this reason,
a combination of XOR/AND gates is connected to the key pipeline to execute the key
expansion algorithm on-the fly (while the pipeline is simultaneously providing key bytes
for AddRoundKey). These gates, highlighted with lightgray background in Figure 3.2, are
connected to FFK0 and FFK4 (positioned above the key pipeline) and they are utilized for
key expansion during both encryption and decryption. Moreover, the gates connected to
FFK7 , FF

K
11, FF

K
15, FF

K
27, FF

K
31 (positioned below the key pipeline) also help key expansion

in the reverse direction during decryption.

Main Bus. The main bus is used both by the state pipeline and the key pipeline, and
practically allows the sharing of the S-box between both. For the state pipeline, during
encryption, the bus can execute AddRoundKey and SubBytes operations simultaneously
in given order. During decryption, the bus can execute the inverse of the S-box and
then perform inverse key addition, with given reverted order. Therefore, this circuitry
is constructed with a single combined S-box that can perform both forward and inverse
computation of the S-box, XORs for AddRoundKey, and a couple of MUXs to choose
the correct signal accordingly.

37

All-in-one AES Circuit

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

16 20 24 28

17 21 25 29

18 22 26 30

19 23 27 31

b

b

RC
SelRC

b

Key71

SBOut

Sel1

Key24

KeyPipeIn5

Sel3

Key24

6

Sel2

Key24 Key28

Sel6 Sel7

4

Key8

b

Key4

Key0

8
b

b

b

ke0, ke1, ke2, kxor, ikxor

ikxor

b
b

b
b

Figure 3.2 – The state pipeline of our combined AES architecture.

Key0

combined S-box

KeyIn

DataIn

DataOutb

SelAdd0

b

Key20

St00 Key21

Key8
Key16

10
SelAdd1

7
811 b

Key23
Key0

KeyPipeIn

StPipeIn

12

Figure 3.3 – The main bus of our combined AES architecture.

38

3.7. Elementary Operations of Layers

3.7 Elementary Operations of Layers

In order to simplify the explanation of how our circuit operates, we conceptually divide
the control of the circuit into various operations. We also explain their connections to
four different layers plus KeyExpand in the key scheduling part. Some of the operations
described below are computed on completely independent parts of the circuit, hence they
can be performed simultaneously by our hardware. The goal is to squeeze them into same
cycles to the extent possible. Each of the following instructions sets particular control
bits in order to perform its corresponding operation during a clock cycle. If an operation
does not explicitly mandate how a certain flip-flop should behave, then we assume that it
is disabled (through enable signal). In order to draw a clear distinction, the key pipeline
flip-flops are denoted with FFKi and the state pipeline flip-flops are denoted with FFSi .

add Both the key and the state pipelines are fully active, and two bytes from each are
loaded into the bus. The state byte is fetched from FFS0 of the state pipeline. On
the other hand, the key byte is fetched from FFK0 of the key pipeline (exceptionally
in AES-192, FFK8 and FFK24 are also used for fetching the key byte). If the circuit is
at initialization phase, then the key and the byte values are actually read from the
input ports DataIn and KeyIn of the circuit. If the chosen functionality of the circuit
indicated by Ins signal is encryption, the two bytes on the bus are first XORed,
and then passed through S-box (therefore AddRoundKey and SubBytes are done
concurrently). Otherwise (if Ins indicates decryption), the state byte is passed
through inverse S-box, and then the key addition is done (therefore InvSubBytes and
AddRoundKey are done concurrently). In either case, the computed byte is stored
to FFS15 of the state pipeline, at the rising edge of the clock cycle. Simultaneously,
the byte key is stored back to FFK31.

sbox MUXes 8, 11 and S-box selection signals are configured accordingly so that S-box
can be computed.

isbox MUXes 8, 11 and S-box selection signals are configured accordingly so that inverse
S-box can be computed. Both sbox and isbox are performed simultaneously with
add during encryption/decryption operations respectively.

srow0 Rotates each of the last three rows of the state pipeline to left by one position. The
control logic uses the selection signal of the scan flip-flops to change the direction
in the pipeline, and freezes the unused state flip-flops.

srow1 Rotates each of the last two rows of the state pipeline to left by one position.

srow2 Rotates only the last row of the state pipeline to left by one position.

isrow0 Rotates only the second row of the state pipeline to left by one position, i.e.
FFS1 → FFS5 → FFS9 → FFS13.

39

All-in-one AES Circuit

isrow1 Rotates the second and the third rows of the state pipeline to left by one position.

mixcol MUXes 0, 1, 2, 3 are configured to load the input from MixColumns circuit. Again,
the selection signal of all state flip-flops are configured by the control logic so that
the pipeline moves in the leftward direction.

ke0 Performs the key expansion operation ke0, as described in Section 2.2.1. In the rising
edge of the clock cycle, FFK3 is loaded with FFK0 ⊕ S-box(FFK29) ⊕ RC. During ke0,
all flip-flops of the key pipeline except FFK0:3 and FFK28:31 are frozen. Columns FFK0:3
and FFK28:31 rotate in the upwards direction. The state pipeline is also frozen.

ke1 The only difference from ke0 is that RC is not XORed into the computation, through
SelRC signal. In the rising edge of the clock cycle, FFK3 is loaded with FFK0 ⊕
S-box(FFK29). Columns FFK0:3 and FFK28:31 rotate in the upwards direction. The state
pipeline is also frozen.

ke2 Similar to ke1, but the input byte of S-box is not rotated. In the rising edge of
the clock cycle, FFK3 is loaded with FFK0 ⊕ S-box(FFK28). Columns FFK0:3 and FFK28:31
rotate in the upwards direction. The state pipeline is also frozen.

kxor For key XOR operation of the key expansion algorithm, the input select bits of FFK3
and the MUX 4 are configured to store FFK4 ⊕ FFK0 in the rising edge of the clock
cycle.

ikxor This performs the inverse XOR operation and used during decryption. The cor-
responding circuitry is shown in a gray background in Figure 3.2. Sel1 Sel2, Sel3,
Sel6, Sel7 are the corresponding signals that are configured such that key XOR
is done, e.g. FFK7 ← FFK4 ⊕ FFK8 , only at selected clock cycles during decryption.
Similar to kxor, the key pipeline must be fully active, and state pipeline is frozen.

load MUX 10 is configured in such a way that the key is loaded from the input port
directly into the pipeline. This is necessary for AES-192, AES-256, for which the
key size is larger than block size. The key pipeline is fully active, and the state
pipeline is frozen.

rot The key is rotated in the pipeline, where the exit key byte FFK0 is fed back into the
pipeline through FFK31. The key pipeline is fully active.

rxor Pseudonym for combination of rot and kxor. Therefore the key is updated on the
pipeline with key XOR operation as it rotates.

In the following subsections, we will first look at encryption and decryption round
functions performed on the state pipeline, with the assumption that the round key bytes
are provided correctly for AddRoundKey. Encryption and decryption round function
operations are rather easy to implement with the design given in Figure 3.1 and remains
quite similar across six instances. However, the same does not hold for the key expansion,
as the different key sizes become a major challenge to deal with.

40

3.8. Generic Encryption/Decryption Overview

3.8 Generic Encryption/Decryption Overview

First, for the sake of argument, suppose that the key pipeline always contains the necessary
round key Ki at round i, with which AddRoundKey is being computed. Then we can
readily convert the encryption algorithm into a sequence of operations. AddRoundKey
and SubBytes can be done simultaneously through add and sbox operations in 16 cycles.
Then for ShiftRows, it suffices to run srow0, srow1, srow2 subsequently in 3 cycles. Then,
in 4 cycles of mixcol, we complete MixColumns. This sequence corresponds to one
round of operation in the encryption algorithm, and can be repeated as many times
as necessary, as long as the key pipeline handles the key expansion and provides the
correctly computed key bytes during AddRoundKey. The same line of reasoning also
applies to decryption, where inverse SubBytes and AddRoundKey can be done with isbox

and add simultaneously in 16 cycles, inverse ShiftRows can be done with isrow0, isrow1,
srow0 in 3 cycles; and inverse MixColumns can be done in 12 cycles of mixcol (as inverse
MixColumns is equivalent to 3 repetitions of MixColumns).

Therefore, what remains is to continuously refresh the key in the pipeline, by removing
dirty (used) key bytes, and replacing with fresh (unused) key bytes. If the current
operation is encryption, then refreshing means computing the next round key. Otherwise
(in decryption), we use it to refer to computing the round key in the reverse direction. In
the following section, we describe how key bytes are managed in the key pipeline, and
how its operations are interleaved with the four layers of encryption and decryption.

3.9 Key Expansion Details

In this section, we describe mainly how the key expansion algorithm is implemented with
the key pipeline for six instances of AES, while taking the running mechanism of the state
pipeline into account.

AES-128 Encryption. The detailed chronology of operations is given in Figure 3.4.
During the first 16 cycles, MUXes 7 and 10 are configured such that the key and the
data are loaded to the bus through input ports DataIn, KeyIn (see Figure 3.3). At the
same time, AddRoundKey and SubBytes operations are done simultaneously, where the
computed state is loaded into the state pipeline, and the key is loaded into FFK0:7 and
FFK24:31.

A round takes 23 clock cycles to complete. At the beginning of the round, all the keys in
the pipeline are dirty (i.e. already used for key addition, hence require key expansion).
Therefore, we use the first 4 clock cycles to refresh the first four bytes of the key with
executions of ke0, ke13. ShiftRows and MixColumns are also performed in the meanwhile.
At the end of 7 clock cycles (after ke0, ke13 and 3 clock cycles of stalling), the key pipeline
still contains 12 dirty key bytes. These bytes are refreshed in the following 12 clock

41

All-in-one AES Circuit

sbox

add

0

round = 1, 2, . . . , 9

16
16

4
3 12

16
16

16

123

16 0 3 7 19 23 0 4 20

AddRoundKey

SubBytes

ShiftRows

MixColumns
KeyExpansion

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns
KeyExpansion

16

4 3

0 1612 20 0 16

4 3
12

16
16

1 1 1

28 31

16
16

160

isbox

srow0

srow1

srow2

mcol

ke0

ke1

kxor

isrow0

isrow1

ikxor

1 1 1

1 1 11 1 1

1

1 1

1

init final

init round = 1, 2, . . . , 9 final

Figure 3.4 – The chronology of operations in AES-128 encryption (on top) and AES-128
decryption (below). The numbers in the boxes indicate the number of cycles over which
the operation is executed.

cycles with kxor as the pipeline moves, as they are loaded into FFK3 (in Figure 3.2). This
computation also overlaps with add and sbox. At the end of a round, all bytes in the key
pipeline again become dirty.

In the final round, MixColumns is skipped, and the ciphertext is available during the
very last 16 clock cycles.

AES-128 Decryption. We remind that for decryption, KeyIn loads the very last 16 bytes
of key used with the last AddRoundKey instead of the original key used for encryption.
The rounds can be seen as the symmetrically opposite versions of encryption.

In decryption, a round takes 31 clock cycles to complete, 8 clock cycles more compared
to encryption. At the beginning of a round, all bytes in the key pipeline are fresh. At
the end of 12 clock cycles, the key pipeline contains only 4 fresh bytes. Then, ikxor is
enabled through FFK7 , FF

K
27, FF

K
31 (through control signals Sel1, Sel6, Sel7) for 4 clock

cycles. Therefore at cycle 16, the key pipeline contains exactly 12 bytes of fresh key,
which are stored in FFK4:7 and FFK24:31. The remaining dirty key column is refreshed by
execution of the sequence ke0, ke13 in the following 4 clock cycles. Therefore, at the end
of the round, all bytes in the key pipeline become fresh again.

As before, the output of decryption, i.e. the plaintext, becomes available during the last
16 clock cycles.

AES-192 Encryption. The detailed chronology of operations is given in Figure 3.5.
Performing the key expansion in AES-192 becomes quite challenging given the fact that
each key expansion round generates 24 bytes of new round key, whereas only 16 of them

42

3.9. Key Expansion Details

0

round = 2, 5, 8, 11

16
16

4
12

16
16

123

16 0 3 7 23

0 4 20

AddRoundKey

SubBytes

ShiftRows

MixColumns
KeyExpansion

1 1 1

1 1 1

1

1 1 1
4

168

019

31

8
8

8
8

8

20

16

4
16

16
16

0 3 8 23

3

1 1 1

1
4

0 3 7 19

1 1 1

8
8

4 31 8

8
8AddRoundKey

SubBytes

ShiftRows

MixColumns
KeyExpansion

15 27

round = 3, 6, 9 round = 4, 7, 10

round = 1

sbox

add

srow0

srow1

srow2

mcol

ke0

ke1

kxor

load

rot

8 12

0 8

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns
KeyExpansion

1 1 1

2724

8

isbox

isrow0

isrow1

ikxor

16

4 31

8
8

8
8

round = 1, 4, 7, 10

12
1 1 1

0 8 12 20 32 35

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns
KeyExpansion 31

16
16

12

0 16 28 31

1 1 1

16
16

12

0 16 28 31

1 1 1

16
16

0 16

round = 2, 5, 8, 11 round = 3, 6, 9

init

final

40

init

final

4

4 4 4 4

Figure 3.5 – The chronology of operations in AES-192 encryption (on top) and AES-192
decryption (below). The numbers in the boxes indicate the number of cycles over which
the operation is executed.

are used for each encryption round. This leads to misalignment and desynchronization
between the state pipeline and the key pipeline.

We overcome this by interrupting AddRoundKey and SubBytes operations whenever
necessary. Namely, if there is no fresh key byte left on the key pipeline during the
execution of these two operations, we stall the state pipeline and run the key expansion
algorithm. This leads to three different types of rounds:

1. The first type of round has no fresh key byte in the pipeline at the beginning and
has to run a key expansion algorithm before key addition.

2. The second type of round has 4 leftover fresh bytes in FFK0:3 and 4 dirty bytes
in FFK4:7 that can be refreshed with kxor as the pipeline moves. This means that
AddRoundKey and SubBytes can run for 8 clock cycles, but then we stall and

43

All-in-one AES Circuit

handle the key expansion. Afterwards, the execution of key addition can resume for
8 more clock cycles.

3. The third type of round has 4 fresh bytes in FFK0:3, and 12 dirty bytes in FFK4:15 that
can be refreshed with kxor as the pipeline moves. Therefore, the key expansion can
be run in parallel to key addition, without stalling the state pipeline.

During the first 16 cycles, AddRoundKey and SubBytes are simultaneously performed
as before. The next 8 cycles are used to load the rest of the key into the key pipeline.
Then, in order to align the key properly, the key pipeline is rotated for 16 cycles with rot.
Thereby, at the end, 8 fresh bytes are located at FFK0:7, and the dirty bytes are at FFK8:15
and FFK24:31.

During round 1, we have to interrupt AddRoundKey and SubBytes after 8 cycles, at
which point all the bytes in the key pipeline are dirty. The 4 bytes of key that require to
be updated by key expand 0 and key expand 1 operations are located at FFK0:3, therefore
we run ke0, ke13 in the following four clock cycles. The remaining 20 dirty key bytes are
refreshed as they are loaded into FFK3 , by running kxor alongside add and sbox operations,
and it overflows into the next round. 8 dirty key bytes are refreshed in the current
encryption round and the remaining 12 are deferred to the next round. Note that since 8
AddRoundKey operations are done simultaneously, at the end of this round the number
of fresh bytes in the key pipeline is 4 + 8− 8 = 4.

At the beginning of rounds 2, 5, 8, 11 (which are type (3) rounds) the pipeline contains only
4 bytes of fresh key, but the following 12 dirty bytes can be refreshed with kxor. Therefore,
in order to align correctly, we run kxor during the first 12 cycles of AddRoundKey and
SubBytes. At the end of this round, all fresh bytes are therefore used up.

At the beginning of rounds 3, 6, 9 (which are type (1) rounds); the key in the pipeline
is completely dirty and the first column requires key expansion 0 and key expansion
1 operations. Therefore the sequence ke0, ke13 is run in the first 4 clock cycles. The
following 20 bytes of key can be easily refreshed with kxor alongside add and sbox. Among
these kxor operations, 16 of them are executed in the current round and the remaining 4
are deferred to the next round.

At the beginning of rounds 4, 7, 10 (which are type (2) rounds) there are 4 bytes of
fresh keys followed by 4 bytes of dirty keys that can be refreshed with kxor in the key
pipeline. However, the following column of key requires the key expand 0 and key expand
1 operations, so add and sbox is interrupted for key expansion. The remaining 8 bytes
of addition continues after 4 cycles of ke0, ke13. The ciphertext is available in DataOut

during the last 16 cycles.

AES-192 Decryption. Besides the misalignment issues as in encryption, a second
obstacle that arises during the decryption is that fresh bytes in the key pipeline do not

44

3.9. Key Expansion Details

necessarily always start from FFK0 . Recall that for decryption, the last 24 bytes of used
round keys are loaded initially, therefore we have to run the key expansion algorithm in
the reverse order. Therefore, we have to start refreshing key columns starting with the
highest index, i.e. whichever column of key was used last in the encryption should be
removed first. At the same time, due to flow direction of the pipeline, the lowest indexed
key column occupies FFK0:3, whereas during various stages of operation, the key columns
to be used in key addition are located at FFK8:11 or FFK24:27. Our solution is to use MUX
10, so that we can choose the exit byte of the pipeline either from FFK0 , FF

K
8 or FFK24. By

doing so, we can fetch the correct fresh key byte, even when the key is misaligned in
the key pipeline. Meanwhile, we can continue AddRoundKey, InvSubBytes operations
without requiring additional clock cycles for rotation. This irregular exit of key bytes
from the pipeline is only necessary for AES-192 decryption.

As the last 24 bytes of round key are loaded into the circuit, 8 clock cycles are used for
loading the first 8 bytes of this key. Then the following 16 cycles are used for add. During
the last four cycles of add, ikxor is also performed through FFK15, FF

K
27, FF

K
31 (specifically

excluding FFK3 , FF
K
7 , FF

K
11). Therefore, at cycle 24, the key pipeline contains 20 fresh

bytes (8 unused from the initial load and 12 from ikxor), where the 4 dirty bytes are stored
in FFK8:11 and they can only be refreshed with ke0, ke13. Therefore, we will wait until this
key moves into FFK0:3.

At the beginning of rounds 1, 4, 7, 10; the key pipeline contains 20 fresh bytes. However
the next 8 fresh bytes to be used for add are located at FFK24:31, whereas the remaining 8
bytes required for add are located at FFK0:7. Therefore we fetch the next byte key into the
bus from FFK24, and at the same time rotate the pipeline by connecting FFK0 → FFK31. After
8 cycles, we interrupt isbox and add because the dirty column of key that requires the
key expand 0/1 operations to update reaches FFK0:3, so we can perform ke0, ke13. After
refreshing this column of keys in 4 cycles, we resume fetching key bytes from FFK24 for
AddRoundKey and InvSubBytes. Concurrently, at the last 4 cycles, we do ikxor with FFK3 ,
FFK7 , FF

K
11, FF

K
15 to obtain 16 fresh bytes for the next round. We reach to a point where

all 24 bytes in the pipeline are fresh.

At the beginning of rounds 2, 5, 8, 11; the key pipeline is completely fresh. However the
next 16 bytes of key to be used with add are located at FFK8:15 and FFK24:31. Therefore,
key bytes are fetched from FFK8 into the pipeline, and the pipeline is rotated as before.
During the last 4 cycles of add, ikxor is performed over FFK11. After the 16 add cycles, the
bytes of key that require update by key expand 0/1 arrive at FFK0:3, and therefore ke0,
ke13 is executed to generate 4 fresh bytes. At the end, the key pipeline contains 16 fresh
key bytes in FFK0:15.

At the beginning of rounds 3, 6, 9; the key pipeline contains 16 fresh bytes starting from
FFK0 , and they are aligned with the state pipeline for add. In order to arrange upcoming
key bytes, we still perform ikxor on FFK15 and FFK27 for the first 4 clockcycles, and FFK15

45

All-in-one AES Circuit

0

round = 3, 5, 7, 9, 11, 13

16
16

4 12

16
16

123

16 0 3 7 23

0 4 20

AddRoundKey

SubBytes

ShiftRows

MixColumns
KeyExpansion

1 1 1

1 1 1

1

12

032 23

16

31

AddRoundKey

SubBytes

ShiftRows

MixColumns
KeyExpansion

round = 1, 2

sbox

add

srow0

srow1

srow2

mcol

ke0

ke1

kxor

load

rot

3 7

0 8

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns
KeyExpansion

1 1 1

3524

16

isbox

isrow0

isrow1

ikxor

16

31

round = 1, 3, 5, 7, 9, 11, 13

12
1 1 1

0 16 28 31

AddRoundKey

InvSubBytes

InvShiftRows

InvMixColumns
KeyExpansion

16
16

0 16

init

final

52

init

final

16 31 4

36

1 1 1
4

16
16

rxor

ke2

4

round = 4, 6, 8, 10, 12

12

16
16

0 3 7 23

1 1 1
4

16
16

4

12
1 1 1

0 16 28 31

16
16

4 4

round = 2, 4, 6, 8, 10, 12

Figure 3.6 – The cycle arrangement of AES-256 encryption (on top) and AES-128 decryp-
tion (below). The numbers in the boxes indicate the number of cycles over which the
operation is executed.

and FFK27, FF
K
31 for the last 4 clock cycles. At the end, the key pipeline contains 4 dirty

bytes located at FFK8:11.

AES-256 Encryption. The detailed chronology of operations is given in Figure 3.6.
AES-256 remains simpler to achieve than AES-192, because each key expansion round
produces enough keys for two AddRoundKey operations. During the first 16 cycles,
add, sbox is performed. We spend other 16 cycles to load the rest of the key. Then the
key expansion is performed with the sequence ke0, ke13, and the key is rotated for 16
cycles to move the fresh key bytes to FFK0:15. During the first 12 cycles of this period, we
also enable kxor (named rxor for convenience) so that dirty keys are refreshed as they
rotate through the pipeline.

At the beginning of round 1, the key pipeline is completely fresh, therefore there are
sufficient bytes of keys for round 2 as well. Therefore, no key expansion operation is done

46

3.10. Hardware Evaluation

during the first two rounds.

At the beginning of rounds 3, 5, 7, 9, 11, 13; the key pipeline is completely dirty, and the
bytes at FFK0:3 require 4 clock cycles, during which we need to run ke24. Then, during the
first 12 clock cycles of add, kxor is also enabled so that the following 12 dirty bytes can
be refreshed in parallel.

The rounds 4, 6, 8, 10,12 work exactly same, except that the special key column requires
the sequence ke0, ke13 for update, instead of ke24. The ciphertext is available in the last
16 rounds of the final round.

AES-256 Decryption. As the last 32 used bytes of key are loaded into the circuit, we
use first 16 cycles to load the first half of this key. During the following 16 clock cycles,
both the data (i.e. ciphertext) and the second half of the key are loaded at the same
time, therefore we execute add simultaneously.

At the beginning of rounds 1, 3, 5, 7, 9, 11, 13; the first 16 bytes of the key pipeline
are fresh and the rest are dirty. At the last 4 clock cycles of add, ikxor is performed
through FFK7 , FF

K
11, FF

K
15, so that 12 key bytes are refreshed. The following 4 bytes are

also refreshed with the sequence ke0, ke13.

The rounds 2, 4, 6, 8, 10, 12 work exactly same except the key column requiring update
by key expand 2 is refreshed with the sequence ke24 instead of ke0, ke13. The plaintext
is available in the last 16 clock cycles of the final round.

3.10 Hardware Evaluation

In order to perform a fair performance evaluation of our design, the circuit was synthe-
sized following the method described in Section 2.3.2. Given that the circuit is rather
comparatively large, we used the compiler directive compile -exact_map -area_effort
high, which tells the synthesizer to prioritize area. We did not use compile_ultra, as
all-in-one optimization approach takes very long time and therefore proves to be inefficient
for our circuit. We outline some of the essential lightweight metrics of our architecture in
Table 3.2.

In Figure 3.7, we present a component-wise breakdown of the circuit size when synthesized
with the STM 90 nm logic process. A significant area is required for generating the control
signals, as accommodating 6 different functionalities in a single circuit requires more
fine-grained control over specific circuit components. This is because both the structure
(w.r.t. the sequence of operations) and duration (w.r.t. the number of clock cycles) of a
single round shows a wide range of variations, as the size of the key changes in AES.

47

All-in-one AES Circuit

Table 3.2 – Performance comparison of our AES architecture for 5 different technology
libraries (where E denotes encryption, and D denotes decryption). Average power
consumption is reported at a clock frequency of 10 MHz.

Instance Area Power (µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/128-bit) (Mbit/s)

STM 90 nm

AES-128 (E) 16129 3674 194.7 243 4.73 72.07
AES-192 (E) 322 6.27 54.39
AES-256 (E) 371 7.22 47.21
AES-128 (D) 315 6.13 55.60
AES-192 (D) 400 7.79 43.79
AES-256 (D) 454 8.84 38.58

UMC 90 nm

AES-128 (E) 15587 4971 160.7 243 3.91 61.94
AES-192 (E) 322 5.17 46.75
AES-256 (E) 371 5.96 40.57
AES-128 (D) 315 5.06 47.78
AES-192 (D) 400 6.43 37.63
AES-256 (D) 454 7.30 33.15

TSMC 90 nm

AES-128 (E) 13431 4759 95.3 243 2.32 68.72
AES-192 (E) 322 3.07 51.86
AES-256 (E) 371 3.54 45.01
AES-128 (D) 315 3.00 53.01
AES-192 (D) 400 3.81 41.75
AES-256 (D) 454 4.33 36.78

NanGate 15 nm

AES-128 (E) 1150 5848 40.1 243 0.97 1196.10
AES-192 (E) 322 1.29 902.64
AES-256 (E) 371 1.49 783.43
AES-128 (D) 315 1.26 922.70
AES-192 (D) 400 1.60 726.63
AES-256 (D) 454 1.82 640.20

NanGate 45 nm

AES-128 (E) 4141 5189 310.2 243 7.54 167.45
AES-192 (E) 322 9.99 126.37
AES-256 (E) 371 11.51 109.68
AES-128 (D) 315 9.77 129.18
AES-192 (D) 400 12.41 101.73
AES-256 (D) 454 14.08 89.63

48

3.11. Conclusion

6AES (3672 GE)

Key Register - 1183 GE

State Register - 829 GE

MixColumns - 255 GE

S-box - 255 GE

Mux/Xor/And - 464 GE

Control System - 686 GE

32.4%

22.4%
7.0%

6.9%

12.6%

18.7%

Figure 3.7 – The footprint of the sub-components of the circuit, obtained w.r.t. the
technology library STM 90 nm.

3.11 Conclusion

In this chapter, we have presented an all-in-one AES circuit that supports six functionalities,
i.e. these are both encryption and decryption for AES-128, AES-192 and AES-256.
Compared to the smallest byte-serial AES-128 implementation reported by Banik et al.
(with 2060 GE in STM 90 nm technology) [BBR16b], our results show that upgrading
this circuit to support further AES-192 and AES-256 can be done with relatively small
cost. The main design principle behind is that, starting from a serial AES-128 circuit with
a goal to realize AES-192 and AES-256, the state pipeline without requiring many changes.
On the other hand, the key pipeline needs to be extended by 128 flip-flops so that it can
accommodate 256-bit key. Thanks to similarities in the key scheduling algorithms of AES
family, most of the auxiliary circuit in the key pipeline of AES-128 can be reused. Hence,
the main cost only comes from the additional flip-flops for the larger key, an observation
we can make from the break down in Figure 3.7.

Naturally, with the circuit we presented, one could still derive a stand-alone combined or
encryption-only AES-192 and AES-256 circuits. For instance, many of the candidates from
NIST Post-Quantum Cryptography that rely on AES actually just need the encryption
circuit for AES-256 [NISb]. For that, our results also provide an optimistic estimation for
the size of encryption-only lightweight implementation of AES-256.

One of the takeaways is that the serialized implementation of AES in the form of ASIC
spent larger portion of its silicon area for storage elements. Aligned with this observation,
in Chapter 6, we will also see that, area-wise, the more internal storage elements a block
cipher or AEAD scheme requires, the more heavyweight the implementation becomes.

49

4 Evaluation of ForkAES

In this chapter, we look at few architectural design choices for a lightweight implementation
of the recently proposed forking cipher ForkAES, which is specifically conceived as a core
primitive from which an AEAD scheme can be constructed [ARVV18].

The results presented in this chapter include the extension of the work done in collaboration
with Subhadeep Banik [BB19a], which was presented in Indocrypt 2019. The authors
were supported by the Swiss National Science Foundation (SNSF) through the Ambizione
Grant PZ00P2_179921.

We briefly discuss the line of work which contributed to the design of ForkAES in Section 4.1
and lay out the details of our contributions in Section 4.2. By design, ForkAES requires
storing an additional internal cipher state, and we discuss the pros and cons of introducing
an extra register, as well as an alternative method to skip it, in Section 4.3. Then, we
present the lightweight byte-serial implementation of ForkAES with small area goal in
Section 4.4. In Section 4.5, we present the lightweight energy-efficient implementation of
ForkAES. Finally, we conclude the chapter in Section 4.6.

The VHDL source code of our implementations can be found in a public git repository
[FAE].

4.1 Related Work

In the past few years, lightweight cryptography has indeed become an important research
discipline. A number of lightweight block ciphers like Clefia [SSA+07], and PRESENT
[BKL+07] have become popular and have been well-studied with respect to their security
and implementation. Both ciphers have been standardized in ISO/IEC 29192 [ISO12].
The Simon and Speck family of block ciphers [BSS+13] was proposed very recently by the
researchers of the NSA with the goal of reducing hardware area. While the above ciphers
have mostly targeted optimization of hardware area, there have been other block ciphers

51

Evaluation of ForkAES

aimed at optimizing other lightweight design metrics. One of the principal metrics among
them is energy.

Through a lightweight standardization process, NIST is seeking AEAD schemes with one
of the goals expressed as ”optimized to be efficient for short messages (e.g., as short as 8
bytes)” [NISa]. Following the suit, ForkAES was proposed as the first example forkcipher
construction by Andreeva et al. as an attempt to achieve a lightweight construction
[ARVV18], which is in line with the design ideas from the TWEAKEY framework [JNP14].
Later, the round-reduced variant of ForkAES is cryptanalyzed by Banik et al. [BBJ+19].
Furthermore, the forking construction that is built on top of the SKINNY block cipher
is also under submission to the NIST lightweight cryptography standardization project
[ALP+19, NISa]. At the time of writing this thesis, this standardization is at the second
round and ForkAE is one of the remaining candidates.

In a separate direction, the block cipher Midori was designed to specifically optimize
energy consumption [BBI+15]. It has also been shown that for energy-efficient encryption
of large quantities of data, stream-cipher-based constructions like Trivium perform much
better [CP08, BMA+18]. The smallest combined encryption and decryption circuit, as
well as the most energy-efficient round-based constructions of AES is studied by Banik et
al. [BBR16b, BBR17].

4.2 Contributions

In this chapter, our contributions are as follows:

1. We show that it is possible to implement ForkAES without any additional storage
elements other than those required to implement AES, if the AES circuit can perform
both the encryption and decryption operations.

2. We extend upon the Atomic-AES architecture by Banik et al. [BBR16b], to realize
ForkAES circuit that targets small area footprint. We implement ForkAES both
with and without additional storage, and compare the area-latency trade-offs
incurred in realizing the circuit. We conclude that area-wise, the smallest ForkAES
implementation brings at least 35% more silicon footprint, compared to AES.

3. We extend upon the S3K2 architecture by Banik et al. [BBR17], in order to realize
a ForkAES circuit with small energy consumption. Again, we implement ForkAES
both with and without additional storage and compare the energy-latency trade-offs
incurred in implementing the circuit. We further look at different component config-
urations to find out the most energy-efficient design. Our resulting implementations
conclude that the energy-wise, ForkAES is at least two and half times more costly
than AES.

52

4.3. Removing Additional Storage

4. We synthesize our ForkAES implementations with five different ASIC technology
libraries, and report their area, latency, power and energy consumption measure-
ments. Our original work had only taken the STM 90 nm library into account for
measurements, but this thesis extends them to all five libraries for completeness.

As a result, we report the additional energy, latency and area cost introduced by ForkAES,
in comparison to AES.

4.3 Removing Additional Storage

As described in detail in Section 2.2.6, ForkAES is a fork cipher, which is by design meant
to be used as the core of an authenticated encryption primitive. In order to construct the
latter, Andreeva et al. introduced two modes of operation, namely SAEF and PAEF, that
can process arbitrary-size message and associated data blocks [ARVV18].

In order to execute the PAEF and SAEF modes of operation, a circuit must be able to
execute the three algorithms: encryption E, decryption D0 and reconstruction R0. The
remaining two algorithms, D1 and R1, are not used in these modes. Therefore, we omit
the latter two algorithms in our circuit implementations.

ForkAES relies on a common state X5 after five AES rounds, which is referred to as the
forking state. We begin with a design that focuses on a smaller area footprint which
completely avoids the extra register for storing the forking state. By doing so, we can
handle encryption, decryption and reconstruction with single round function circuitry
and avoid extra storage register, yet this comes at the expense of latency. In order to
clearly understand the outcome of this trade-off, we then move on to another architecture
that uses an additional register to store this 128-bit value temporarily.

With a more detailed look at encryption, decryption and reconstruction algorithms in
Figure 2.2, we can observe that executing these three algorithms boils down to executing
the round function and the key expansion of AES. Therefore, our hardware implemen-
tations can build on the state pipeline (Figure 3.1) and the key pipeline (Figure 3.2)
implementations from our all-in-one AES architecture in Chapter 3, albeit with minor
modifications.

Starting from an AES circuit that supports both encryption and decryption, let us
first have a sketch idea of how to perform ForkAES encryption E, decryption D0 and
reconstruction R0:

Encryption E As shown pictorially in Figure 4.1, encryption on an AES circuit would
proceed as follows. In the first 5 rounds, the circuit would proceed in the forward
direction, i.e. execute the forward key schedule function on the key register and the

53

Evaluation of ForkAES

store S5 in register

Key pipeline

State pipeline

5 Rounds 5 Rounds 5 Rounds

forward round function

K0 K5 K10 K11 K16

S0 X5 = S5 X10 S5 C1

output C0

1 Round

load S5 from register

Figure 4.1 – Executing E on a generic AES circuit with an additional register.

input C0

Key pipeline

State pipeline

5 Rounds 1 Round 5 Rounds

forward round function

backward round function

register frozen

K10 K5 K11 K16

X10 X5 = S5 C1

store K10 in register

K10

load K10 from register

S5

Figure 4.2 – Executing R0 on a generic AES circuit with an additional register.

54

4.3. Removing Additional Storage

forward AES round function on the state register. After this, the intermediate state
X5 = S5 is stored in the additional register, parallelly while the circuit continues
to execute the forward functions on both the key and state registers for another 5
rounds. At this point the the first ciphertext C0 = X10 ⊕K10 ⊕ T̃ is output from
the state pipeline.

Thereafter, there needs to be one blank round in which the key registers execute
the forward key schedule to compute the 12th round key K11, during which the
state registers could either be frozen using clock-gating techniques, or let to operate
normally (it does not make any difference to the eventual circuit output). After
this, the state S5 that was stored in the extra register is loaded back on to the state
registers and the circuit operates in the forward direction in both the state and key
sides for another 5 rounds to output the second ciphertext block C1.

Reconstruction R0 The reconstruction function essentially outputs C1 when the input
is C0. It would be executed as follows as per Figure 4.2. The initial inputs to
the circuit are the ciphertext block C0 = X10 ⊕K10 ⊕ T̃ and the 11th roundkey
K10. We parallelly store K10 in the additional register and execute the inverse AES
round functions and key schedule for 5 rounds. At this point the state and key
registers store the intermediate states X5 = S5 and K5 respectively. We freeze the
state register for one round at this point and simultaneously load K10 that was
stored in the additional register back on to key registers. After this round, the key
registers compute the 12th roundkey K11 required to start the bottom branch of
the reconstruction process. After this the state registers are unfrozen and both run
in the forward direction for 5 more rounds to compute C1.

We now try to show that both encryption and reconstruction can be performed on an
AES circuit that additionally supports decryption.

Proposition 1. Consider a (128/32/8/1-bit) serial circuit that can perform both AES
encryption and decryption. Suppose that we complement this circuit by adding 64-bit
register to store the 64-bit tweak value. Then it is possible to perform both E and R0

operations on such circuit without requiring any other additional storage elements.

Sketch Proof. This proof idea is visualized in Figure 4.3. The AES circuit first runs for 10
rounds without interruption, and the ciphertext block C0 = X10 ⊕K10 ⊕ T̃ is output.
Thereafter the circuit is operated in the backward direction for 5 rounds, i.e. the inverse
AES round functions and key schedule operations are performed so that after five rounds,
the circuit returns to having the forking state X5 = S5 in the state register and K5 in
the key register. At this point, we freeze the state registers for 6 rounds and let the
key pipeline run in the forward direction for 6 rounds, so that the 12th roundkey K11 is
computed. After this, both the state and key registers are run in the forward direction
for 5 rounds, which ends up computing the ciphertext block C1.

55

Evaluation of ForkAES

Key pipeline

State pipeline

10 Rounds 5 Rounds 6 Rounds 5 Rounds

forward round function

backward round function

register frozen

K0 K10 K5 K11 K16

X0 X10

output C0

X5 X5 C1

Figure 4.3 – Executing E on an AES circuit without an additional register

Key pipeline

State pipeline

5 Rounds 6 Rounds 5 Rounds

forward round function

backward round function

register frozen

K10 K5 K11 K16

X10

input C0

X5 = S5 S5 C1

Figure 4.4 – Executing R0 on an AES circuit without an additional register

Next, we look at reconstruction R0. Reconstruction is essentially getting the circuit to
output C1, given C0 and K10 as inputs. This is essentially how the circuit functions in
the last 16 rounds in the encryption operation as is evident from Figures 4.3 and 4.4.

4.4 Focusing on Area: Byte-serial ForkAES Architecture

The Atomic AES v2.0 architecture was proposed in [BBR16b]. It is an 8-bit serial circuit of
AES that accommodates both encryption and decryption operations. For implementations
whose goal is to minimize area, Atomic AES v2.0 is a good starting point, as it is the
smallest byte-serial implementation in the literature.

56

4.4. Focusing on Area: Byte-serial ForkAES Architecture

The Atomic AES v2.0 has similar characteristics with our AES implementation in Chapter 3.
One forward round is executed in 23 clock cycles and an inverse round is executed in 31
clock cycles. It occupies an area of only 2060 GE when implemented with the standard cell
library of the STM 90 nm CMOS library and thus a very good candidate for a lightweight
implementation of ForkAES both with and without the use of additional storage elements.

We first look at the design of ForkAES circuit without an additional register, and refer to
this implementation as ConfA. Before getting into circuit details of our implementation,
let us look at the changes we need to make (starting from our AES circuit in Chapter 3)
to accommodate the ForkAES operations:

1. The size of the key in ForkAES is fixed to 128 bits, therefore we remove the
unnecessary flip-flops from the circuit, which were otherwise used for AES-192 and
AES-256. Eventually, the key pipeline consists of 128 1-bit flip-flops.

2. We change the loading order of bytes for the key, plaintext and ciphertext blocks.
Namely, we use row-major ordering. For example, given a 16-byte plaintext
B0||B1|| . . . ||B15, the order for loading these bytes into the circuit is:

B0, B4, B8, B12, B1, B5, B9, B13, B2, B6, B10, B14, B3, B7, B11, B15

3. Additional 64-bit tweak register is added, in order to store the tweak and handle
addition to the cipher state.

Besides these major changes, the bus and the controller are slightly modified. Those
changes address the differences between the number of round in AES and ForkAES. The
circuit is given in Figure 4.5.

We now look at register-level operations for a clearer picture of the movement of data in
and out of the registers. Note that we do not delve into circuit-level details of how the
AES round and key scheduling operate, as they were already explained in Chapter 3.

Now let us look at the sequence of operations necessary for E operation. Following the
algorithmic description in Figure 2.2, we recall that Si denotes the cipher state after i-th
round, and in a similar fashion, Xi and Y i represent the cipher states in diverged paths
after the fork. In particular, S5 = X5 denotes the forking state, C0 and C1 denote the
ciphertext blocks.

Cycles 0 to 15. The first 16 clock cycles are used for loading plaintext, and the key.
The tweak is also loaded in the first 8 clock cycles simultaneously. AddRoundKey
and SubBytes are also performed during loading.

Cycles 16 to 222. The next 207 clock cycles are used to execute 9 AES encryption

57

Evaluation of ForkAES

b

M
ix
C
ol
um

ns

combined S-box

RoundKey

RoundKey

b

KEY

TEXT

ENCOUT

DECOUT
StateOUT

SBIN SBOUT

SBIN

b

b b b

32

SBOUT

MCIN

32

8

StateOUT

SELAK1

SELAK2

SELXOR

b

b

b

SELED

SELRC

RC/RC−1

b

0

b

b

b

TWEAK

TweakOUT

SELTK1
SELTK2

StateOUT

1

2 3

4 5 6 7

8 9 10 11

14 1512 13

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

b

7 6 5 4 3 2

1

0

KeyPipeIn

TweakOUT

DECOUT

TweakOUT TweakOUT

KeyPipeIn

Figure 4.5 – ForkAES on the Atomic-AES v 2.0 circuit without an additional register.

58

4.4. Focusing on Area: Byte-serial ForkAES Architecture

rounds, with each round costing exactly 23 clock cycles. At the end, the state
pipeline stores X9.

Cycles 223 to 229. The next 3 + 4 = 7 cycles are used to execute the 10th round
ShiftRows (3 cycles) and the subsequent MixColumns (4 cycles). Thus the content
of the state register at this point is Z = MC ◦ SR ◦ SB(X9 ⊕K9).

Cycles 230 to 245. These 16 cycles are used to do the final key addition to generate
the first ciphertext block C0 = X10 = Z ⊕K10. At the same time the bytes coming
out of the state register are fed back into the state register. At the same time, K10

is recycled back into the key pipeline.

Cycles 246 to 400. The next 31 · 5 = 155 cycles are used to perform 5 inverse AES
round operations. Both the key and the state pipelines are reverted back to their
values in the forking state.

Cycles 401 to 515. At this point of time, the state registers store the forking state
S5 = X5 = Y 5. In order to compute the next state value Y 6, we need the round
key K11, which is not yet available in the key pipeline. Therefore the state pipeline
is frozen through enabled flip-flops. The key registers store K5, and so the next
5 · 23 = 115 cycles are used to operate the key schedule in the forward direction to
compute K10.

Cycles 516 to 538. The key registers function normally so that from cycles 523–538
the 12th round key K11 are available for key addition. The state registers are frozen
until clock cycle 522. From cycles 523 to 538 the bytes are taken out of the state
register, added to the individual bytes of K11, passed through the S-box and driven
back into the state registers. In this way, at the end of this set of cycles, the state
registers hold SB(Y 5 ⊕K11), which is exactly the value required to operate the
subsequent forward rounds.

Cycles 539 to 653. The next 5 · 23 = 115 cycles, 5 forward AES rounds are executed
in a normal way, so that it is able to output the final ciphertext block C1.

All the above description implicitly assumes that the tweak register essentially operates
as a circularly shifting register that makes the tweak bytes available for addition when
required. Note that decryption D0 is also performed in a manner which is exactly the
same as in our AES circuit, by merely following the sequence of operations in decryption
and completing in exactly 326 clock cycles. As per Proposition 1, the reconstruction
R0 is simply achieved by executing the operations from clock cycles 230 to 653. Thus
encryption, decryption and reconstruction takes 654, 326 and 424 cycles respectively.
This completes the analysis for ConfA.

The sequence of operations in the case with an extra register (call it ConfB) is much
simpler. The circuit does not need to recompute the forking state, as it can store it in

59

Evaluation of ForkAES

the extra 128-bit register. The encryption E can be done as follows.

Cycles 0 to 15. The first 16 clock cycles are used for loading plaintext, and the key.
The tweak is also loaded in the first 8 clock cycles simultaneously. AddRoundKey
and SubBytes are also performed during loading.

Cycles 16 to 130. The next 5 · 23 = 115 clock cycles are used to compute 5 rounds of
AES encryption, until the forking state S5 = X5 is computed. Between clock cycles
115–130, the bytes leaving the state pipeline are also driven into the extra register,
in order to store the forking state.

Cycles 131 to 245. The next 5 · 23 clock cycles are used to execute 5 more AES rounds,
until the first ciphertext block C0 is computed.

Cycles 246 to 268. In the following 23 clock cycles, the forking state is loaded into the
state pipeline, and simultaneously, the key update is performed on the key pipeline.

Cycles 269 to 383. The next 5 ·23 clock cycles are used to compute C1 from the forking
state S5 = Y 5. Between the clock cycles 368–383 the second ciphertext C1 becomes
available.

Note that the extra register can also be used to store the key in the reconstruction,
therefore R also takes fewer clock cycles to complete. However, decryption remains
exactly the same as in ConfA. Thus encryption, decryption and reconstruction takes 384,
326 and 309 clock cycles respectively. This completes the analysis for ConfB.

4.4.1 Byte-serial Implementation Results

With the presented byte-serial implementations, we achieve an implementation, namely
ConfA and ConfB that cost 2781 GE and 3438 GE respectively, when implemented with
the technology library STM 90 nm. The ConfA is 35% larger compared to the Atomic
AES v2.0 by Banik et al. [BBR16b]. The space for further area optimization is possible,
with the use of manual-labour clock-gating technique. However, clock-gating comes
at the expense of timing violations, which requires the implementor to handle those
violations case-by-case for each technology library. The detailed measurements on these
two byte-serial implementations are tabulated in Table 4.1.

4.5 Focusing on Energy: Round-based ForkAES Architec-
ture

During its functionality, the energy spent by a circuit can be divided into two parts:
leakage energy and dynamic energy. The former roughly scales with the number of gates

60

4.5. Focusing on Energy: Round-based ForkAES Architecture

Table 4.1 – Performance comparison of our ForkAES architecture for 5 different technology
libraries. Average power consumption is reported at a clock frequency of 10 MHz.

Circuit + Mode Area Power (µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/128-bit) (Mbit/s)

STM 90 nm

ConfA (E) 12209 2781 138.3 654 9.04 21.96
ConfA (D0) 326 4.51 44.05
ConfA (R0) 424 5.86 33.87
ConfB (E) 15095 3438 155.7 384 5.98 32.94
ConfB (D0) 326 5.08 38.80
ConfB (R0) 309 4.81 40.94

UMC 90 nm

ConfA (E) 10330 3294 108.7 654 7.11 20.79
ConfA (D0) 326 3.54 41.70
ConfA (R0) 424 4.61 32.06
ConfB (E) 12727 4058 130 384 4.99 34.07
ConfB (D0) 326 4.24 40.13
ConfB (R0) 309 4.02 42.34

TSMC 90 nm

ConfA (E) 9330 3306 75.05 654 4.91 26.36
ConfA (D0) 326 2.45 52.89
ConfA (R0) 424 3.18 40.67
ConfB (E) 12014 4257 99.97 384 3.84 42.96
ConfB (D0) 326 3.26 50.60
ConfB (R0) 309 3.09 53.39

NanGate 15 nm

ConfA (E) 841 4277 30.32 654 1.98 391.31
ConfA (D0) 326 0.99 785.03
ConfA (R0) 424 1.29 603.58
ConfB (E) 1066 5420 37.34 384 1.43 632.01
ConfB (D0) 326 1.22 744.45
ConfB (R0) 309 1.15 785.41

NanGate 45 nm

ConfA (E) 2998 3757 267.05 654 17.46 79.77
ConfA (D0) 326 8.71 160.03
ConfA (R0) 424 11.32 123.04
ConfB (E) 3803 4766 327.07 384 12.56 131.91
ConfB (D0) 326 10.66 155.38
ConfB (R0) 309 10.11 163.93

61

Evaluation of ForkAES

constituting the circuit, where each gate is associated with a constant power leakage due
to its implementation in the CMOS technology. The latter, on the other hand, essentially
stems from state changes of wires, as each component of the circuit receives and further
propagates glitches, until both its input and output values are stabilized. This repeats
each time the inputs of components change that coincides with the rising edge of the
clock signal.

Hence, minimizing the circuit size does not necessarily align with the goal of reducing
energy consumption. Following the work of Banik et al. [BBR17], a circuit that performs
one round of AES per clock cycle leads to the most energy efficient design. This particular
round-based implementation is called S3K2 architecture. Then the question that follows
is how can we transform that particular round-based AES circuit to obtain most energy-
efficient implementation for ForkAES. As converting a plain AES architecture that supports
both decryption and encryption into ForkAES circuit reveals a number of free design
choices, we consider and compare each one of the possible designs in the following section.

4.5.1 Generic Architecture

On a higher level, we propose and implement few round-based ForkAES architectures.
Following the approach taken by Banik et al. [BBR17], each variant is obtained by
applying an incremental change on the particular component of the design, with the
hope that a smaller energy consumption metric can be achieved. While the original work
relied only on the STM 90 nm technology library, this thesis takes all five technology
libraries mentioned in Section 2.3.1 into account. Our intuition behind the incremental-
step strategy is to find the most energy-efficient design so that we can establish a fair
comparison with the most energy-efficient AES circuit.

The following summary of the design refers to the most energy-efficient design on average
and it is obtained through a combination of compartmentalized components SC#2, KC#1,
TC, sg explained below. Further modifications we make lead to slight changes in the
precise description of these components and as well as the main circuit as seen in Figure 4.6.
We present the power and energy consumption results of the modifications in Table 4.2.

In comparison to Atomic AES v2.0 that uses 8-bit data and key path, the designs below
utilize 128-bit data and key paths. With few exceptions, these round-based circuits consist
of three components that respectively handle the cipher state, the key scheduling and
the temporary storage for the forking state. Below, we summarize these components
individually.

State component. We will use SC#1 from Figure 4.6 for the following functionality
description. This component consists of three parts:

• At its core, 128-bit RegisterSt is used to keep the cipher state after each ForkAES

62

4.5. Focusing on Energy: Round-based ForkAES Architecture

SC#2

RegisterSt

MC−1

Tmp

P

Key⊕ T̃

Key

St

Kenc ⊕ T̃

Tmp

SB

SR SR−1

Kenc ⊕ T̃

Kdec ⊕ T̃
MC

MC−1

SB−1

RegisterTmp

Tmp

Senc

Tmp

Key

RegisterKey

Kenc

Kdec

KS KS−1

Kenc Kdec

Sdec

St
CT

SdecSenc

RegisterSt

P

Key⊕ T̃

Kenc ⊕ T̃

Tmp

SB

SR SR−1

Kenc ⊕ T̃

Kdec ⊕ T̃

MC

MC−1

SB−1

CTSdec

Senc

SC#1

Tmp

RegisterKey

KS KS−1

Kenc

Kenc=Kdec

KeyKC#1 KC#2 TC

zenc

zenc Sdec

zenc

Figure 4.6 – The state components SC#1, SC#2; the key components KC#1, KC#2, and
the temporary register component TC of ForkAES circuit.

63

Evaluation of ForkAES

round. At the rising edge of the clock, its content is updated to the next state with
the help of the MUX described below.

• The MUX placed at the input of RegisterSt serves three functions, by selecting
which value should be loaded into this register. First, it can load the next plain-
text/ciphertext state from the wire St, after it is computed by the round function
circuit. Secondly, it can load the initial state, e.g. S0 during encryption. And lastly,
it can load the contents of the temporary register RegisterTmp.

• Round function bus consists of two series of 128-bit combinatorial circuits arranged
to perform either the forward round function or its inverse, as well as the tweaked
key addition. This dual-function circuit is complemented with masking AND gates
(denoted with the symbol) that disable the unused part of the circuit, i.e.
either the encryption or the decryption path, to reduce energy consumption. The
final output of the circuit is selected by the output MUX.

Key Component (KC). The key component KC works in a quite similar fashion to the
state component. In particular, we will describe KC#1 from Figure 4.6, which consists of
three parts:

• 128-bit RegisterKey is used to keep the current round key (more precisely it keeps
Ki−1 at round i). It is updated with the rising edge of the clock.

• The MUX wired to the input of RegisterKey supports three different basic operations,
by selecting which value to load into the register. First, it can load the next round
key computed by the key schedule circuit. Secondly, it can initialize the register
during cycle 0, e.g. load K0 during encryption. And lastly, it can load the content
of RegisterTmp.

• The key schedule consists of two series of 128-bit combinatorial circuits arranged
to perform either the forward key schedule function KS or its inverse KS−1. This
dual circuit is also complemented with masking AND gates () that disable
the unused part of the circuit for energy efficiency. The actual round key that the
state component needs is provided through either Kenc or Kdec based on the actual
ForkAES operation the circuit is performing.

Temporary (Register) Component (TC). It consists of two parts (see TC in Fig-
ure 4.6):

• 128-bit RegisterTC is used to keep a temporary 128-bit value. This is either the
state S5 used at fork (see Figure 2.1) or the round key K10 loaded to the circuit
during reconstruction operation.

64

4.5. Focusing on Energy: Round-based ForkAES Architecture

• The MUX wired to the input of RegisterTC supports three basic operations, by
selecting which value to load into the register. First, it can maintain its content
through reloading from itself. Secondly, it can initialize the register with the round
key K10. And lastly, it can load the forking state S5 from the state component.

Below, we describe how encryption is done with the particular ForkAES architecture
that combines components SC#1, KC#1, TC. We use the series of variables Si, zi,Ki,
which respectively define the cipher state, the round key and the cipher state just after
the round key and tweak addition in the i-th round (see the algorithmic descriptions in
Figure 2.2).

Cycle 0. On SC#1, AddRoundKey (with tweak) is done on plaintext, and the result
z1 = S0⊕K0⊕ T̃ is loaded into RegisterSt through MUX. On KC#1, the initial key
K0 is loaded into RegisterKey without any operation.

Cycles 1 to 4. At the very beginning of cycle i, RegisterSt holds zi. Then during cycle
i, Si ← SB(SR(MC(zi))) is computed through encryption path and the round key
addition follows it: zi+1 ← Si⊕Ki⊕ T̃ . As RegisterKey holds Ki−1 at the beginning
of clock cycle i, the round key Ki appears at the wire Kenc after being computed
by KS circuit of KC#1 and the result is passed to the encryption path via Kenc as
seen in Figure 4.6. Also, Ki is loaded into RegisterKey.

Cycle 5. Works similar to cycles 1 to 4. The only difference is that the forking state S5

from the encryption path is stored into the temporary register RegisterTmp.

Cycles 6 to 9. Similar to cycles 1 to 4.

Cycle 10. Works similar to cycles 1 to 4. The difference is that C0 becomes available
at the output wire CT during this clock cycle. Also, the control bits of MUX
before RegisterSt is set to load the forking state S5 for the next clock cycle from
the temporary register RegisterTmp.

Cycle 11. At the beginning of this cycle, RegisterSt receives v6 = S5⊕K11⊕ T̃ . Similar
to cycle 1, the computation Y 6 ← SB(SR(MC(v6))) is done first, and then the key
addition: v7 ← Y 6 ⊕K12 ⊕ T̃ . v7 is stored back into RegisterSt, and the round key
K12 is stored into RegisterKey.

Cycles 12 to 15. Similar to cycles 1 to 4.

Cycle 16. Similar to cycle 10, with the difference that C1 becomes available at CT.

Below we describe how ForkAES reconstruction is performed by the circuit, which involves
some parts of encryption and decryption operations. We assume that at the beginning
of the operation, the ciphertext C0 is loaded from the wire P, and the round key K10 is
loaded from the wire Key in Figure 4.6.

65

Evaluation of ForkAES

Cycle 0. On SC#1, AddRoundKey (with tweak) and the inverse MixColumns MC−1

are computed on the ciphertext C0, and the result X10,SR is loaded into RegisterSt
through MUX. On KC#1, the initial key K10 is loaded both into RegisterKey and
RegisterTmp without any operation.

Cycles 1 to 4. At the beginning of cycle i, RegisterSt holds MC−1(X11−i). Then during
cycle i, u11−i ← SB−1(SR−1(zi)) is first computed through decryption path1 and the
round key addition follows it: X10−i ← u11−i⊕K10−i⊕T̃ . And finally, MC−1(X10−i)

is computed and stored in the register. In the same fashion, at the beginning of the
clock cycle i, RegisterKey holds K11−i, hence the round key K10−i is calculated with
the combinatorial KS−1 circuit of KC#1 and the result is passed to the decryption
path via Kdec as seen in Figure 4.6; and also loaded back into RegisterKey.

Cycle 5. Works similar to cycles 1 to 4. The difference is that the forking state S5

from the decryption path appears at Sdec and hence it is loaded into the temporary
register RegisterTmp at the end of this clock cycle. Moreover, the round key K10 is
loaded back into RegisterKey from RegisterTmp.

Cycle 6. No decryption or encryption operation is done on SC#1, because an operation
that must follow is a round key addition (see Figure 2.1). Therefore, the forking
state S5 is read from RegisterTmp and the round key addition is done on the wire:
v6 ← S5⊕K11⊕ T̃ , where the round key K11 is computed with KS circuit in KC#1.
The result v6 is loaded into RegisterSt.

Cycles 7 to 11. Works similar to cycles 12 to 16 of ForkAES encryption operation above,
and the result C1 becomes available at clock cycle 11.

We skip the description of decryption, as it can be easily constructed by repeating the
cycles 1 to 4 of ForkAES reconstruction above.

4.5.2 Modified Implementations

We explore possible modifications to the generic circuit, and compare their results in
Table 4.2. In order to derive a single metric for strict comparison, we take the equal-weight
average of energy consumed by each ForkAES operation: encryption E, decryption D0

and reconstruction R0. In our measurements, we first compute the average latency of the
circuit for encryption, decryption and reconstruction. This average latency is then used to
compute the average energy as well as the average maximum throughput. The resulting
metric is used for deciding which design performs better in terms of energy efficiency.

Our choice of this metric is justified by the fact that the proposed modes of operation
SAEF and PAEF by Andreeva et al. make the following number of ForkAES calls for
processing a message of m blocks and an associated data of a blocks [ARVV18]:

1Note that SB−1(SR−1(x)) = SR−1(SB−1(x)) for all x.

66

4.5. Focusing on Energy: Round-based ForkAES Architecture

• encryption: (m+ a) · E,

• decryption: a · E +m ·D0 +m · R0.

Hence the average energy spent per message block roughly converges to our metric if
m� a. This metric omits the additional higher-level circuitry such as control logic that
handles multiple associated data and message blocks in SAEF and PAEF, as we only focus
on the ForkAES implementation.

Self-gating. One might notice that during encryption the control bits and contents
of RegisterTmp is irrelevant for 12 clock cycles, and used as a storage for 4 clock cycles.
Similarly, during reconstruction, the RegisterTmp stores its value for many cycles without
receiving a new value. The register preserves its value through a MUX that feeds the
register’s own value back into its input (see TC in Figure 4.6). Hence one might wonder
whether using an enabled flip-flops for this register yields better results. In that case,
we could use the enable signal to freeze the register, instead of reloading it with the
same value multiple times. We implemented this version. This incremental change on
top of the generic design (SC#1, KC#1, TC) is given in Table 4.2 as SC#1, KC#1, TC,
sg. Overall, this results in a slight reduction in the average power consumption, which
directly translates into reduction in the energy consumption too.

Reorganized decryption path. One of the benefits of the state component SC#1
(see Figure 4.6) is that both SB and SB−1 has the same input, which allows them to be
implemented as a single circuit and share a demultiplexer. This idea is due to Banik et
al. [BBR16a]. As a disadvantage, this design requires an extra MC−1 circuit attached to
the input wire P, as ForkAES does not skip a MixColumns operation at the last round in
contrast to the original AES-128. In order to understand this trade-off better, we compare
it with another state component design, i.e. SC#2. The latter organizes MC−1, SR−1,
SB−1 circuits in a more intuitive fashion in the decryption path, and eliminates the need
to append an extra MC−1 to the input (see Figure 4.6). In conclusion, this leads to a
slightly better implementation, as reported in Table 4.2, because the energy consumption
caused by duplication of some S-box circuitry is smaller than what is brought by the
additional MC−1 circuity.

Removing temporary register. We have shown in Proposition 1 that even without a
temporary register to store the forking state S5, one can still realize ForkAES operations.
This would apparently require more clock cycles, and therefore more energy. In order to
understand this trade-off, we consider the design that is a combination of SC#1, KC#1, sg
without temporary component. We still micromanage the key and state registers through
the use of self-gating, as there are few clock cycles in which they become inactive. It
can be seen in the Table 4.2 that even though it has the least power consumption in two
technology libraries, this design performs poorly in terms of energy efficiency than its
counterparts because of the incurred latency. Following our intuition, this design decision

67

Evaluation of ForkAES

has the most meaningful impact, both in terms of latency and energy consumption.

Flipped key scheduler. Our final tweaked design is based on the following observation:
during each clock cycle, the round key is computed either through KS or KS−1 circuit.
Because it takes a brief amount of time for these circuits to compute the final round key,
the output wires Kenc and Kdec propagate glitches into SC#1 circuit. That is due to the
fact that RegisterKey actually stores the previous round key instead of the exact round
key needed by the state component. In comparison, if the key component were to be
updated as such that the particular round key was stored in the key register precisely
when it was needed by the state component, then Kenc and Kdec would be glitch-free. The
modified key component is given as KC#2 in Figure 4.6. Depending on the technology
library, this modification might increase or decrease the average energy consumption.

4.5.3 Round-based Implementation Results

The area, power and energy measurements of all our implementations are reported in
Table 4.2. In order to further reason with the underlying causes for excessive power
consumption, we also indicate the amount of power dissipated due to leakage in addition
to the total power consumption. The ratio of leakage power is typically dependent on
the technology library, and indicates how carefully cells are optimized for low power. It
is evident that NanGate 15 nm and NanGate 45 nm libraries suffer significantly when
it comes to losing greater portion of power directly from cell leakages, which builds up
proportionately as the area of the circuit grows. On the other hand, the commercial
TSMC 90 nm library is able to maintain this leakage ratio close to %5.

It is also worth noticing that the round-based S3K2 implementation, upon which our
results build on, consumes 0.484 nJ of energy for processing 128-bit plaintext block on
average, according to UMC 90 nm library. Therefore, one of our take away contribution
in this work is that ForkAES is almost two and half times more expensive when it comes
to energy-efficiency (with 1.17 nJ per 128-bit), as the very idea of forking the cipher state
greatly disrupts the arrangement of subcomponents in hardware.

4.6 Conclusion

From an efficiency point of view, the key insight behind the design of forking cipher is
that the produced secondary ciphertext block can be directly used for authentication
purposes. Therefore, it removes an extra mechanism in the mode of operation to handle
authentication. In comparison, AES-GCM uses expensive multiplications over GF(2128) to
authenticate blocks. In short, one can say that the authentication is handled with this
amortized cost of half block cipher call. This chapter looked at whether this intuition
translates into lightweight metrics of energy and area, when forking cipher is realized as

68

4.6. Conclusion

Encryption (315 pJ) Decryption (207.1 pJ) Reconstructoin (230.8 pJ)

Encryption (472.3 pJ) Decryption (260.4 pJ) Reconstructoin (346.9 pJ)

Key Register

State Register

Temporary Register

Key Scheduler

MixColumns

Inverse MixColumns

S-box

Inverse S-box

Others

6.1%
6.3%

4.3%

16.2%

21.0%

3.5%
4.3%

29.1%

9.2%
6.3%

6.3%
4.2%

15.8%

28.2% 7.6%
1.9%

20.1%

9.6%
6.5%

6.4%
4.9%

15.8%

24.2%
5.8%

3.0%

23.6%

9.8%

15.2%

17.7%

6.5% 14.7%

1.4%0.3%

10.8%

17.2%

16.2% 12.5%

16.0%

7.5%

9.1%
25.3%

15.9%

0.2%1.6%
11.9% 13.8%

16.0%

8.4%
13.3%12.5%

7.0%

5.1%

8.5%
15.4%

Figure 4.7 – Component-wise breakdown of the energy consumption of the most energy-
efficient architecture (SC#2, KC#1, TC, sg configuration) during ForkAES encryption,
decryption and reconstruction operations. The breakdown of power consumption is
obtained from the NanGate 15 nm (top) and TSMC 90 nm (bottom) technology libraries.

69

Evaluation of ForkAES

Table 4.2 – Performance comparison of our energy-efficient round-based ForkAES archi-
tecture for 5 different technology libraries. Average power consumption is reported at a
clock frequency of 10 MHz.

Circuit + Mode Area Power (µW) Latency Energy Throughput
(µm2) (GE) Total Leakage (cycles) (nJ/128-bit) (Mbit/s)

STM 90 nm

SC#1, KC#1, TC 119483 27214 775.8 172.8 40/3 1.03 1770.9
SC#1, KC#1, TC, sg 120880 27533 752.1 173.3 40/3 1.00 1816.6
SC#2, KC#1, TC, sg 137289 31270 729.8 211.8 40/3 0.97 1952.1
SC#1, KC#1, sg 117657 26799 732.3 170.4 17 1.24 1624.6
SC#1, KC#2, TC 119378 27191 760.2 172.9 40/3 1.01 2222.2

UMC 90 nm

SC#1, KC#1, TC 109302 34854 940.8 432.6 40/3 1.25 1182.9
SC#1, KC#1, TC, sg 110422 35211 939.3 433.6 40/3 1.25 1195.2
SC#2, KC#1, TC, sg 120987 38580 878.6 427.6 40/3 1.17 1334.6
SC#1, KC#1, sg 107941 34420 898.1 425.8 17 1.53 957.4
SC#1, KC#2, TC 108550 34614 892.4 432.8 40/3 1.19 1469.6

TSMC 90 nm

SC#1, KC#1, TC 89296 31638 301.5 13.6 40/3 0.40 1845.9
SC#1, KC#1, TC, sg 90192 31956 298.5 13.7 40/3 0.40 2244.0
SC#2, KC#1, TC, sg 100127 35476 273.7 13.7 40/3 0.36 1899.5
SC#1, KC#1, sg 87646 31054 278.1 13.3 17 0.47 1405.2
SC#1, KC#2, TC 88939 31512 282.6 13.6 40/3 0.38 2403.0

NanGate 15 nm

SC#1, KC#1, TC 7063 35926 192.7 132.8 40/3 0.26 29065.1
SC#1, KC#1, TC, sg 7184 36539 194.0 134.1 40/3 0.26 28700.7
SC#2, KC#1, TC, sg 7796 39651 189.1 133.9 40/3 0.25 30018.1
SC#1, KC#1, sg 6936 35278 185.4 130.6 17 0.32 23238.8
SC#1, KC#2, TC 7060 35911 196.3 133.3 40/3 0.26 36331.4

NanGate 45 nm

SC#1, KC#1, TC 26122 32734 2578.3 2348.6 40/3 3.44 4238.7
SC#1, KC#1, TC, sg 26454 33150 2583.5 2351.8 40/3 3.44 4180.6
SC#2, KC#1, TC, sg 29399 36841 2564.7 2357.6 40/3 3.42 4488.0
SC#1, KC#1, sg 25606 32087 2523.2 2308.6 17 4.29 3435.8
SC#1, KC#2, TC 26167 32791 2620.4 2376.9 40/3 3.49 5417.5

70

4.6. Conclusion

ASIC.

As pointed out in Section 4.4.1, ConfA (resp. ConfB) implementation only brings extra
35% (resp. 67%) footprint into the circuit. Therefore, according to the ASIC area metric,
we can verify that the aforementioned design intuition holds. However, on the energy
direction, as pointed out in Section 4.5.3, the energy consumption grows to more than
two and half that of AES. Therefore, forking paradigm is not a very good candidate for
energy concerned lightweight applications.

71

5 Introduction to Swap-and-Rotate
Technique

The results presented in this chapter is based on the work done in collaboration with
Subhadeep Banik, Francesco Regazzoni and Serge Vaudenay [BBRV20]. It was presented
in FSE 2020. The authors Fatih Balli and Subhadeep Banik were supported by the Swiss
National Science Foundation (SNSF) through the Ambizione Grant PZ00P2_179921.

We summarize the previous work on byte and bit-serial block cipher implementations
in Section 5.1. We give the details of our contributions in Section 5.2. In Section 5.3,
we remind the preliminary definitions and notations (along with a brief sketch of the
proofs presented in [Con13]). The main mathematical background is built on top of the
single-swap setting, which is presented in Section 5.4. The theory built up in this section
is done in various stages. In each stage, we try to decrease the number of permutations
required to describe the PRESENT bit permutation. The same techniques are also applied
to GIFT in parallel. Then, we move on to multi-swap setting in Section 5.5. And lastly a
final optimization step is performed to match the number of clock cycles exactly with
the block size in Section 5.6. With these results, we conclude the chapter and defer the
actual circuit descriptions to Chapter 6.

5.1 Related Work

The block cipher family Katan [CDK09] (whose precursor was the stream cipher Trivium
[CP08]) and then later Simon [BSS+] were in some sense aimed to achieve a lower limit
of lightweight encryption in terms of area occupied in silicon. Both these ciphers have
shift-register-based update functions, which is efficient to implement in ASIC when the
length of datapath is reduced to one bit.

In CHES 2017, Jean et al. presented the concept of bit-sliding [JMPS17], in which byte
and nibble oriented block ciphers like AES [NIS01], PRESENT [BKL+07] and SKINNY
[BJK+16] were implemented in hardware by updating only one bit per clock cycle. The
main idea behind these constructions was to reformulate the linear layer for these ciphers

73

Introduction to Swap-and-Rotate Technique

so that they require fewer scan flip-flops, which have built-in multiplexer functionality
at the input port, meaning that they are larger in area compared to D flip-flops. In
particular, the PRESENT linear layer, which is essentially a bit permutation over the state,
was decomposed as P2 ◦P 4

1 , where P1 is a local permutation that operated on each 16-bit
block of the 64-bit state and P2 is some other global permutation. This decomposition
allowed Jean et al. to implement the linear layer using only 25 scan flip-flops and 39 D
flip-flops [JMPS17], whereas previous implementations have required all 64 flip-flops of
the state to have additional multiplexer at their input ports [RPLP08].

5.2 Contributions

The contributions of this chapter can be summarized in the following salient points:

1. The main idea behind [JMPS17] was that the fewer scan flip-flops one uses to
construct the circuit is likely to translate into a lowering of the total hardware
area of the circuit. Taking this idea forward, in this chapter, we try to answer the
following question:

Question. Is it possible to construct a 64-bit pipeline with only 2 additional MUXes
such that it can execute the linear layer of PRESENT and GIFT?

The answer is yes, and we can easily extend it to any given permutation through the
use of classical permutation theory [Con13]. However, even after applying various
optimizations to the preliminary ideas from the permutation theory, the amount of
time required to implement a PRESENT and GIFT round function takes at least
thousands of clock cycles, meaning that it is still very slow. As latency is also an
important lightweight metric, we explore a second direction in which we try to
decrease latency by minimally increasing the number scan flip-flops.

2. Naturally, we then investigate if adding more scan flip-flops to the circuit can
significantly reduce the number of clock cycles, possibly at the slight expense of area.
Intuitively this makes sense because more scan flip-flops would allow us to execute
more transposition operations on the state register in a single clock cycle, and
hence it could reduce the total number of clock cycles to implement the complete
bit permutation layer. Moreover, this could lead to a much smaller size of control
bits required to control swaps and keep the area to a minimum. In fact, we found
that adding 2 or 4 additional scan flip-flops provides us with a reasonable balance
between area and throughput.

3. As a result of the theoretical foundations built in this chapter, we construct
lightweight encryption-only and combined encryption+decryption implementations
for a number of block ciphers, including AES, PRESENT, GIFT, SKINNY in Chap-
ter 6. These implementations are not only the smallest of their kind (with respect

74

5.3. Permutation Preliminaries

to ASIC area metric), but they also have the side benefit of achieving the optimum
latency a serialized circuit can have.

5.3 Permutation Preliminaries

We recall the notation on permutations from Section 2.1. Sn denotes the permutation
group over n elements. A k-cycle π ∈ Sn (for 1 ≤ k ≤ n) is generally expressed as the
k-tuple (i1, i2, . . . , ik) which implies

1. ∀j ∈ [k − 1], π(ij) = i(j+1) mod k,

2. ∀i ∈ [n− 1] \ {i1, . . . , ik}, π(i) = i.

This is a permutation of order equal to k. A fixed point of the permutation can be
considered as 1-cycle. A swap (or interchangeably a transposition) τ ∈ Sn is a 2-cycle.
The permutation composition operation is denoted with ◦.

In our notation, we consider the following order of application among the permutations
of a given composition. f ◦ g(x) corresponds to f(g(x)). In contrast, when we give a list
of permutations, the application is assumed to start from the leftmost element, i.e. the
list {g, f, h} corresponds to h ◦ f ◦ g.

It is easy to see all disjoint cycles commute under the composition operation ◦. Further-
more, it is well known that every permutation in Sn can be expressed as a composition of
disjoint k-cycles, uniquely up to ordering of the k-cycles. To begin discussions, we use a
couple of results from Conrad [Con13].

Lemma 1. [Con13, Theorem 2.1] For n ≥ 2, Sn is generated by the set of its
transpositions.

Sketch Proof. First, the identity permutation (i.e. the neutral element) can be obtained
by τ2 where τ is an arbitrary transposition. As stated above, any permutation can be
expressed as compositions of multiple cycles, and each of its k-cycle (i1, i2, . . . , ik) can
be constructed with the use of swaps (i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik) and so the result
follows.

Lemma 2. [Con13, Theorem 2.5] For n ≥ 2, Sn is generated by the transposition
(0, 1) and the n-cycle (0, 1, . . . , n− 1).

Sketch Proof. A rigorous proof of the above lemma may be found in the work of Conrad
[Con13], but for the benefit of the reader we give the sketch idea. First note that the set
G1 = {(0, 1), (1, 2), · · · , (n− 2, n− 1)} also generates Sn. That is because any arbitrary
transposition (i, j) can be obtained by the composition (i, i + 1) ◦ (i + 1, j) ◦ (i, i + 1),
where the first and third transpositions are already in G1. If |i+ 1− j| > 1, then (i+ 1, j)

75

Introduction to Swap-and-Rotate Technique

can be further written as (i+ 1, i+ 2) ◦ (i+ 2, j) ◦ (i+ 1, i+ 2), and so on, until the term
in the middle is in G1. Given the following equality

π ◦ (i1, i2, . . . , ik) ◦ π−1 = (π(i1), π(i2), . . . , π(ik)),

for all k-cycles and π ∈ Sn, it is possible to show that any transposition of the form
(i, i+ 1) can be generated by (0, 1) and the n-cycle (0, 1, . . . , n− 1). Namely, if we denote
σ = (0, 1, . . . , n− 1), then we have

σi ◦ (0, 1) ◦ σ−i = (σi(0), σi(1)) = (i, i+ 1)

This completes the proof.

5.4 Single-swap Setting

5.4.1 Analysis of the Permutation Layer

The bit-permutation layer in PRESENT specifies that the i-th state bit is moved to the
P (i)-th position after application of the permutation layer. This permutation is given in
Table 2.2 in Chapter 2.

Let us look at the unique decomposition of P into its disjoint cycles. The disjoint
decomposition of P consists in total of twenty 3-cycles, where the remaining four points
are fixed. The 3-cycles are listed as follows:

• (1, 16, 4), (2, 32, 8), (3, 48, 12), (5, 17, 20), (6, 33, 24),

• (7, 49, 28), (9, 18, 36), (10, 34, 40), (11, 50, 44), (13, 19, 52),

• (14, 35, 56), (15, 51, 60), (22, 37, 25), (23, 53, 29), (26, 38, 41),

• (27, 54, 45), (30, 39, 57), (31, 55, 61), (43, 58, 46), (47, 59, 62).

For brevity, let the above 3-cycles be labeled by the symbols c0 to c19, in given order.
Note that since all the ci’s are disjoint, the composition of all of them in any order will
result in P . Each ci may be further expressed as a composition of two swaps: ci = si ◦ ti
(note that si and ti do not commute). Table 5.1 lists all such decompositions in an explicit
form.

Note that if we were to compose a permutation consisting of application of all the ti’s
(in any order) followed by application of all the si’s (again in any order), we would still
obtain P . That is to say

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19

76

5.4. Single-swap Setting

Table 5.1 – Decomposition of the 3-cycle ci’s into swaps for the PRESENT permutation

i ci si ◦ ti i ci si ◦ ti

0 (1, 16, 4) (4, 16) ◦ (1, 4) 10 (14, 35, 56) (14, 35) ◦ (35, 56)

1 (2, 32, 8) (8, 32) ◦ (2, 8) 11 (15, 51, 60) (15, 51) ◦ (51, 60)

2 (3, 48, 12) (12, 48) ◦ (3, 12) 12 (22, 37, 25) (25, 37) ◦ (22, 25)

3 (5, 17, 20) (5, 17) ◦ (17, 20) 13 (23, 53, 29) (29, 53) ◦ (23, 29)

4 (6, 33, 24) (24, 33) ◦ (6, 24) 14 (26, 38, 41) (26, 38) ◦ (38, 41)

5 (7, 49, 28) (28, 49) ◦ (7, 28) 15 (27, 54, 45) (45, 54) ◦ (27, 45)

6 (9, 18, 36) (9, 18) ◦ (18, 36) 16 (30, 39, 57) (30, 39) ◦ (39, 57)

7 (10, 34, 40) (10, 34) ◦ (34, 40) 17 (31, 55, 61) (31, 55) ◦ (55, 61)

8 (11, 50, 44) (44, 50) ◦ (11, 44) 18 (43, 58, 46) (46, 58) ◦ (43, 46)

9 (13, 19, 52) (13, 19) ◦ (19, 52) 19 (47, 59, 62) (47, 59) ◦ (59, 62)

where a0, a1, . . . , a19 and b0, b1, . . . , b19 are arbitrary ordering of the set {0, 1, . . . , 19}. We
will prove a generalized form of the above statement in the following lemma.

Lemma 3. Let u1, u2, . . . , u2k+1 denote a series of arbitrary permutations from Sn with
A1,A2, . . . ,A2k+1 denoting their activity sets, respectively. Suppose that each pair of
u2i, u2j−1 are pair-wise disjoint permutations for 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1. Let
π = u1 ◦ u2 ◦ · · · ◦ u2k+1 and θ = u2 ◦ u4 ◦ · · · ◦ u2k. Let Aeven = ∪ki=1A2i. For every
x ∈ Aeven, it holds that Θ(x) = Π(x).

Proof. The proof follows the idea of applying each permutation ui starting from the right-
side and going towards left in the descriptions of π and θ. Namely, for every x ∈ Aeven, we
can trace the computation of Θ(x) and Π(x) separately. Let Aodd = ∪k+1

j=1A2j−1. Given
that even, odd indexed permutations are pair-wise disjoint, then Aeven ∩ Aodd = ∅.

We can start by showing that u2k(x) = u2k ◦ u2k+1(x). Here, the condition x ∈ Aeven

naturally implies that x /∈ A2k+1, therefore u2k+1(x) = x. If we let xk = u2k(x), then it
also holds that xk ∈ Aeven.

Then we can continue by applying recursion from j = k and conclude at j = 1. In the
similar fashion, we define xj = u2j(xj+1) and it follows that:

• xj+1 ∈ Aeven =⇒ xj+1 /∈ A2j+1 =⇒ xj = u2j ◦ u2j+1(xj+1),

• xj+1 ∈ Aeven =⇒ xj ∈ Aeven.

At the final step, we can also deduce that u1(x1) = x1 = π(x) = θ(x), as x1 /∈ A1.

Lemma 4. Let π be a permutation in Sn whose disjoint cycle decomposition consists of
the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively such that i0 ≤ i1 ≤

77

Introduction to Swap-and-Rotate Technique

· · · ≤ im−1, i.e.
π = c0 ◦ c1 ◦ · · · ◦ cm−1

Let each cj be expressed as a composition of ij − 1 swaps sj(1), sj(2), . . . , sj(ij − 1), in
a manner such that any pair of sj(a), sj′(b) are also disjoint for all choices of a, b and
j 6= j′.

sm−1(im−1 − 1) ◦ · · · ◦ · · · ◦ · · · ◦ sm−1(2) ◦ sm−1(1) = cm−1
...

sj(ij − 1) ◦ · · · ◦ · · · ◦ sj(2) ◦ sj(1) = cj
...

s0(i0 − 1) ◦ · · · ◦ s0(2) ◦ s0(1) = c0

Sets: χim−1−1 χij−1 χi0−1 · · · χ2 χ1

Define the set χk = {sm−1(k), sm−2(k), . . .} (for 1 ≤ k < im−1) as explained above. Let
θk be the composition of all transpositions in χk in any arbitrary order. Then we must
have :

1. Each θk is invariant of the order in which the swaps in χk are applied,

2. We must have π = θim−1−1 ◦ · · · θij−1 ◦ · · · θ2 ◦ θ1.

Proof. The proof follows as an application of the Lemma 4, as it allows us to interleave
decomposed swaps of cj with other disjoint swaps from other ci (i 6= j) permutations.

Namely, we can first define the activity sets A0,A1, . . . ,Am−1 for each of the cycles
c0, c1, . . . , cm−1. Since, they are pair-wise disjoint, it holds that Ai ∩ Aj = ∅ for every
i 6= j. We can further define Am = [1, n] \ ∪m−1i=0 Ai.

Let θ = θim−1−1 ◦ · · · θij−1 ◦ · · · θ2 ◦ θ1. Suppose that we first fix a value for i such that
1 ≤ i ≤ m − 1. For each x ∈ Ai , we can show that θ(x) = π(x) with the help of
Lemma 4. We simply need to find a series of disjoint permutations uj . Here, we construct
the even-indexed permutations as si(1), si(2), . . . , si(ij − 1) in reverse order, and the
odd-indexed permutations are defined as the rest of the interleaving permutations. Then,
it is clear that θ(x) = π(x) for all x ∈ Ai.

Exception to the above statement is the case x ∈ Am. Then, π(x) = x = θ(x). This
concludes the proof.

Corollary 1. The PRESENT permutation P satisfies that

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19

for the swaps si, ti given in Table 5.1.

78

5.4. Single-swap Setting

5.4.2 Pipeline with Swap (1, 0)

Lemma 2 already states that any permutation in Sn can be generated by the cycles
(0, 1, . . . , n− 1) and (0, 1). In a typical serial implementation, the cycle (0, 1, . . . , n− 1)

naturally appears as the rotation operation of the pipeline constructed from n flip-flops.
The swap (0, 1) can be realized by simply replacing two of these flip-flops with scan
flip-flops. Therefore, Lemma 2 implies the existence of PRESENT permutation realization
with only 2 scan flip-flops. Therefore, we explore the number of necessary clock cycles
required for executing PRESENT permutation, i.e. by deriving the decomposition sequence
with a straightforward application of the above formalism.

We claim that S64 is generated by the cycles w = (1, 0) and r = (63, 62, . . . , 0). The idea
is to implement all the transpositions ti followed by all the si’s. In order to do so, let us
first see how any arbitrary transposition can be implemented only using r and w.

Implementing (x, x− 1). From Lemma 1, it suffices to find a permutation π such that
(π(1), π(0)) = (x, x− 1). To be more precise, we look for a positive integer a that satisfies
π = ra. It is easy to note that ra(x) = (64 − a + x) mod 64. Therefore a = 1 − x is a
proper solution. Therefore, from Lemma 1, it follows that (x, x− 1) = r1−x ◦w ◦ r−(1−x).

Implementing a transposition (x, y). We need to find a swap sequence for a tuple
(x, y) such that x > y and x, y ∈ [0, 63]. Following the results from the Lemmas 1 and 2,
we can deduce the following sequence:

(x, y) = (x, x− 1) ◦ (x− 1, y) ◦ (x, x− 1)

= (x, x− 1) ◦ (x− 1, x− 2) ◦ (x− 2, y) ◦ (x− 1, x− 2) ◦ (x, x− 1)

= (x, x− 1) ◦ (x− 1, x− 2) ◦ · · · ◦ (y + 1, y) ◦ · · · ◦ (x− 1, x− 2) ◦ (x, x− 1)

= (r1−x ◦ w ◦ rx−1) ◦ (r2−x ◦ w ◦ rx−2) ◦ · · · ◦ (r−y ◦ w ◦ ry) ◦ · · · ◦
(r2−x ◦ w ◦ rx−2) ◦ (r1−x ◦ w ◦ rx−1)

= r1−x ◦ w ◦ (r ◦ w)x−y−1 ◦ (r−1 ◦ w)x−y−1 ◦ rx−1

= r(1−x) mod 64 ◦ w ◦ (r ◦ w)x−y−1 ◦ (r63 ◦ w)x−y−1 ◦ r(x−1) mod 64

Given the decomposition of (x, y) in terms of r and w as given above, the next question
naturally arises is how to implement it using 2 scan flip-flops (or by adding 2 MUXes on
top of regular flip-flops). Consider the circuit in Figure 5.1. It consists of an array of 64
flip-flops, with the two additional MUXes placed before the leftmost two flip-flops, and
they are both controlled by the Sel signal. When Sel is logic 0, the data in the flip-flops
simply rotate bit-wise towards the left. When Sel is logic 1, the b0 bit stored in FF0 is
held in place, the bit b1 is forwarded to FF63 and all the other remaining 62 bits are
rotated left by 1 position. Implementing a particular permutation π ∈ S64 on this circuit,
essentially boils down to the following question.

79

Introduction to Swap-and-Rotate Technique

FF0 bb binbout b
. . .

b

Sel

FF63FF62FF1 FF2

Figure 5.1 – Shift register circuit with (subsequent) 2 scan flip-flops

Question. Suppose that FFi(t) denotes the value of the bit stored in flip-flop FFi at
t-th clock cycle, for t ≥ 0 and i ∈ [0, 63]. Does there exist some sequence of Sel signals
s0, s1, . . . , sT−1 such that, after T clock cycles the values stored in the pipeline become
FFπ(i)(T) = FFi(0)?

Lemma 5. Considering the circuit in Figure 5.1, implementing an arbitrary swap opera-
tion (x, y) with x > y requires at most 64(x− y) clock cycles.

Proof. Again, note that w = (1, 0) and r = (63, 62, . . . , 0). In Figure 5.1, setting the select
signal Sel to logic 0 causes the shift register to implement the r function, as data follows
the simple rotation path. Setting Sel to logic 1 brings about the following transformation:

(b0, b1, b2, . . . , b63)→ (b0, b2, b3, . . . , b63, b1)

This is the same as applying the function (r ◦w). As the Lemma 5 suggests, a sufficiently
long sequence of r and (r◦w) can perform any permutation from S64. Thus, by controlling
the Sel signal, we can make the shift register circuit alternate between r and v = (r ◦ w)

functions. Therefore, the following sequence can be used for setting the Sel signal in order
to execute an arbitrary swap (x, y):

0(−x) mod 64||1||1x−y−1||(062||1)x−y−1||0(x−1) mod 64

Note that the circuit must execute the Sel signal starting from the rightmost bit.

Corollary 2. Employing the shift register circuit in Figure 5.1, one round of the PRESENT
bit permutation can be executed in 36480 clock cycles.

Proof. The idea is to execute the PRESENT permutation P by executing each of the
transpositions ti and then si sequentially. Denoting ti = (xi, yi) and si = (x20+i, y20+i) for

80

5.4. Single-swap Setting

i ∈ [0, 19], (with xi > yi) the number of clock cycles can be calculated as
∑39

i=0 64(xi−yi) =

36480.

This result is a pessimistic one as it shows that executing one round of PRESENT in the
form of 1-bit serial pipeline circuit (with 2 scan flip-flops given in Figure 5.1) leads to
heavy loss of throughput. In the following subsections, we will show how this number can
be reduced further.

5.4.3 Pipeline with Swap (κ, 0)

Before we outline the method used to reduce the number of operations, let us look at the
following definition.

Definition 1. As in Lemma 5, let π be a permutation in Sn whose disjoint cycle decom-
position consists of the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively.
Let each cj be expressed as composition of ij − 1 transpositions sj(1), sj(2), . . . , sj(ij − 1).
Denote the transposition sj(k) = (xj(k), yj(k)) with xj(k) > yj(k). π is said to be a
special permutation of the type κ, if κ is the largest integer for which the following holds:

xj(k)− yj(k) ≡ 0 mod κ, ∀ j ∈ [0,m− 1],∀ k ∈ [0, ij − 1]

It is easy to see from Table 5.1, that the PRESENT permutation P is a special permutation
of type 3. Before we proceed, let us look at a result concerning special permutations of
type κ.

Lemma 6. Let Gκ denote the set of all the special permutations of S64 of type κ. Then
Gκ can be generated by the permutations wκ = (κ, 0) and r = (63, 62, . . . , 0).

Proof. The only thing we need to show is that any transposition (x, y) with x > y and
x ≡ y mod κ, can be generated using wκ and r. For brevity, let z = x−y

κ . Then the
following sequence can be obtained in the same manner as before:

(x, y) = (x, x− κ) ◦ (x− κ, y) ◦ (x, x− κ)

= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ (x− 2κ, y) ◦ (x− κ, x− 2κ) ◦ (x, x− κ)

= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ · · · ◦ (y + κ, y) ◦ · · · ◦ (x− κ, x− 2κ) ◦ (x, x− κ)

= (rκ−x ◦ wκ ◦ rx−κ) ◦ (r2κ−x ◦ wκ ◦ rx−2κ) ◦ · · · ◦ (r−y ◦ wκ ◦ ry) ◦ · · · ◦
(r2κ−x ◦ wκ ◦ rx−2κ) ◦ (rκ−x ◦ wκ ◦ rx−κ)

= rκ−x ◦ wκ ◦ (rκ ◦ wκ)z−1 ◦ (r−κ ◦ wκ)z−1 ◦ rx−κ

= r(κ−x) mod 64 ◦ wκ ◦ (rκ ◦ wκ)z−1 ◦ (r64−κ ◦ wκ)z−1 ◦ r(x−κ) mod 64

81

Introduction to Swap-and-Rotate Technique

FF0 bb binbout b
. . .

b

Sel

FF63FF1 . . . FFκ

Figure 5.2 – Shift register circuit with (κ, 0) swap

Naturally, the next inquisitive step is to see how much reduction we can get in number of
clock cycles by implementing type 3 swap operation on circuit.

Corollary 3. The circuit in Figure 5.2 can execute an arbitrary swap operation (x, y)

with x > y and x ≡ y mod κ in 64(x−y)
κ clock cycles.

Proof. As before, setting Sel to 0 executes the rotate function r. Setting Sel to 1, achieves
the following transformation:

(b0, b1, b2, . . . , b62, b63)→ (b1, b2, . . . bκ−1, b0, bκ+1, . . . , b62, b63, bκ)

This is same as applying the transformation vκ = r ◦ wκ. Then we can equally express
the permutation σ with the following formulation:

σ = r(κ−x−1) mod 64 ◦ vκ ◦ (rκ−11)z−1 ◦ (063−κ ◦ vκ)z−1 ◦ r(x−κ) mod 64

Thus, as before, controlling Sel makes the circuit alternate between r and vκ operations.
We can then execute (x, y) (with x ≡ y (mod 3)) with the following binary sequence:

0(κ−x−1) mod 64||1||(0κ−11)z−1||(063−κ||1)z−1||0(x−κ) mod 64

Corollary 4. The circuit in Figure 5.2 can execute the bit permutation P of PRESENT
in 12160 clock cycles.

Proof. We have already noted that P is a special permutation of type 3. As in the
previous corollary, let ti = (xi, yi) and si = (x20+i, y20+i) for i ∈ [0, 19], (with xi > yi).
For performing all the ti’s followed by all the si’s sequentially, the number of clock cycles
can be calculated as

∑39
i=0 64 · (xi−yi)3 = 12160.

By using the modified shift register structure, we obtain a threefold increase of throughput
in computation of the PRESENT permutation. However, this is still way too slow, and in

82

5.4. Single-swap Setting

the subsequent sections, we will try to find if the speed of computations can be further
increased.

5.4.4 Control Bit Concatenation

So far, we were executing each transposition operation sequentially, i.e. one after the
other. However in the interest of speeding up computations, let us investigate if it is at
all possible to execute some of the swap operations concurrently.

Definition 2. Given a swap (transposition) σ = (x, y) in S64 with x > y, the selection
vector

»

Selσ is defined as the binary vector that follows from the Corollary 4, for its
execution by the circuit in Figure 5.2.

First note that the length of
»

Selσ is exactly 64(x−y)
κ . For example, let κ = 3, as in

PRESENT. Consider σ = (12, 3), for which z = 3. In this case, we would have (following
from the proof of Corollary 3):

σ = r(κ−x) mod 64 ◦ wκ ◦ (rκ ◦ wκ)z−1 ◦ (r64−κ ◦ wκ)z−1 ◦ r(x−κ) mod 64

σ = r(κ−x−1) mod 64 ◦ vκ ◦ (rκ−1 ◦ vκ)z−1 ◦ (r63−κ ◦ vκ)z−1 ◦ r(x−κ) mod 64

»

Selσ = 054||1||021021||06010601||09

Let us now re-write the permutations r and vκ in a functional form:

r(α) = (α− 1) mod 64, vκ(α) =





κ− 1, if α = 0,

63, if α = κ,

(α− 1) mod 64, otherwise.

We can see that r and vκ differ on only two inputs 0 and κ. By stretching our selection
vector notation, let

»

Selρ also denote an arbitrary 64-bit binary vector that implements the
permutation ρ when fed to the Sel port of the circuit in Figure 5.2 over 64 consecutive
clock cycles. Let Bρ be the set of elements that denote the positions of 1’s in

»

Selρ. The
bits are indexed in a manner that the rightmost bit corresponds to the lowest index, i.e.
»

Selσ = Sel63|| . . . ||Sel1||Sel0.

From the functional equations of r and vκ, we can deduce that ρ’s set of active elements
Aρ = Uρ ∪ Vρ, where

Uρ = {α : α ∈ Bρ}, Vρ = {α+ κ mod 64 : α ∈ Bρ}

It is also possible to deduce ρ from Bρ. If Bρ contains a subset of elements {b, b+ κ, b+

2κ, . . . , b+ (`− 1)κ} which are in an arithmetic sequence with common difference κ, then
we have

ρ(b+ iκ) = b+ (i− 1)κ, ∀i ∈ [1, `], and ρ(b) = b+ `κ

83

Introduction to Swap-and-Rotate Technique

For all other elements b̂ ∈ Bp that are not part of any arithmetic sequence with common
difference κ, we have ρ(b̂) = b̂+ κ and ρ(b̂+ κ) = b̂. For all x ∈ [0, n− 1] \ Aρ, we have
ρ(x) = x.

Example 1. Suppose that Bp = {6, 9, 19, 29, 53, 56, 60, 61} with κ = 3. The subsets
of arithmetic sequences with κ = 3 difference are 6, 9 and 53, 56. Hence, we have
Ap = {6, 9, 12, 19, 22, 29, 32, 53, 56, 59, 60, 61, 63, 0}. We have ρ = (12, 9, 6) ◦ (59, 56, 53) ◦
(22, 19) ◦ (32, 29) ◦ (63, 60) ◦ (61, 0).

Suppose that we chop
»

Selσ into 64-bit blocks. Let πi (for i = 0 to z−1) be the composition
of all the permutations in the i-th 64-bit block. Let us use the notation

»

Selσ =
»

Selπz−1 ||
»

Selπz−2 || · · · ||
»

Selπ2 ||
»

Selπ1 ||
»

Selπ0

Naturally, we have σ = πz−1 ◦πz−2 ◦ · · · ◦π2 ◦π1 ◦π0. In the above example, for σ = (12, 3)

the selection vector can be partitioned into three 64-bit blocks:

»

Selσ = 054102102103 || 057106 || 054109

thus, we have Bπ0 = {9}, Bπ1 = {6}, Bπ2 = {3, 6, 9}.

If we generalize the above formulation for an arbitrary swap (x, y) such that x > y and
x ≡ y (mod κ), then we would always obtain a series of permutations π0, π1, . . . , πz−1
with their sets B0,B1, . . . ,Bz−1 respectively, where z = x−y

κ . Furthermore, it holds that
Bz−1 ⊇ Bi for all i ∈ [0, z − 2]. In particular, Bπ2 = {y, y + κ, . . . , x − κ}, where all
elements have the same residue modulo κ. From the analysis presented above, it can be
deduced that for all i,

πi(α) = α, ∀α 6≡ x mod κ.

This is because the 1’s (equivalently vκ’s) in this block appear at distances of κ. If we
apply each function in πi one by one, for any input α 6≡ x mod κ, the corresponding
input to vκ is never 0 or κ, and so a plain rotation is effectively executed. Therefore all
the πi’s perform shuffling on only a subset of elements that are congruent to x mod κ

and leave the others untouched. From the equation Aρ = Uρ ∪ Vρ, we can also deduce
that Aπz−1 = {y, y + κ, . . . , x− κ, x}. Thus each πi is effectively a permutation function
on only a subset of {0, 1, 2, 3, . . . , 63} that are congruent to x mod κ.

Lemma 7. Let
»

Selρ1 and
»

Selρ2 be two 64 bit signal vectors implementing permutations ρ1
and ρ2 on the circuit of Figure 5.2. If Aρ1 ∩Aρ2 = ∅, then ρ = ρ1 ◦ ρ2 can be concurrently
executed on this circuit using the signal vector

»

Selρ1 |̂
»

Selρ2 , where |̂ denotes a bit-wise OR
operation on the vectors.

Proof. First, ρ1 and ρ2 are disjoint, as Aρ1∩Aρ2 = ∅. Note that this implies Bρ1∩Bρ2 = ∅.
This means that the 1’s in the

»

Selρ1 and
»

Selρ2 vectors are not aligned. This is equivalent
to saying that

»

Selρ1 |̂
»

Selρ2 has 1’s in all the locations in which either
»

Selρ1 or
»

Selρ2 has

84

5.4. Single-swap Setting

1. Let
»

Selρ =
»

Selρ1 |̂
»

Selρ2 . We already know that Bρ would contain all elements of Bρ1
and Bρ2 . Thus the arithmetic sequence structures of both Bρ1 and Bρ2 are preserved in
Bρ. Furthermore, Aρ1 ∩ Aρ2 = ∅ ensures that no new arithmetic sequence of common
difference κ is created Bρ that is not already present in Bρ1 or Bρ2 .

Let us prove the latter part by contradiction. Suppose that ∃b1 ∈ Bρ1 , b2 ∈ Bρ2 such
that b2 = b1 + κ. Then by definition b1, b1 + κ ∈ Aρ1 and b2, b2 + κ ∈ Aρ2 . However,
b1 + κ = b2, and so this contradicts the fact that Aρ1 ∩ Aρ2 = ∅. Since the arithmetic
structures are preserved, ρ essentially executes ρ1 and ρ2 concurrently: we have ∀α ∈ Aρ1 ,
ρ(α) = ρ1(α) and ∀α ∈ Aρ2 , ρ(α) = ρ2(α). Also ρ(α) = α for all α 6∈ Aρ1 ∪Aρ2 . Thus we
have ρ = ρ1 ◦ ρ2.

Lemma 8. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions in S64 of type κ
satisfying xi > yi for i = 1, 2. Without loss of generality, let `1 = (x1−y1) ≥ (x2−y2) = `2,
and zi = `i

κ . Let the respective decompositions of these two permutations be denoted by
the symbols πi and θi:

σ1 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0
σ2 = θz1−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0

In order to ensure that
»

Selσ1 and
»

Selσ2 are of the same length, we use the identity
permutation as the padding θz1−1 = θz1−2 = · · · = θz2 = r64. If Aπz1−1 ∩ Aθz2−1 = ∅,
then it is possible to execute σ1 and σ2 concurrently on the circuit in Figure 5.2 and
achieve σ1 ◦ σ2 in 64 · z1 clock cycles. The sequence

»

Selσ1◦σ2 =
»

Selσ1 |̂
»

Selσ2 realizes this
permutation.

Proof. Let σ = σ1 ◦ σ2. Since Aπz1−1 ∩ Aθz2−1 = ∅, from the result of Lemma 7, we can
certainly use

»

Selπ0 |̂
»

Selθ0 to get π0 ◦ θ0. Since all Aπi ’s and Aθi ’s are subsets of Aπz1−1 and
Aθz2−1 respectively, we also have Aπi ∩ Aθi = ∅ for all 0 ≤ i ≤ z1 − 1. We can then use
»

Selπi |̂
»

Selθi to get πi ◦ θi for all 0 ≤ i ≤ z1 − 1. Thus if
»

Selρ =
»

Selσ1 |̂
»

Selσ2 , we naturally
have

ρ = (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (π1 ◦ θ1) ◦ (π0 ◦ θ0)

In order to show that σ = ρ, we can apply Lemma 3 twice. We recall that this lemma
allows us to reorder the decomposition on the condition that they are pair-wise disjoint.
We can individually look at the sets of elements x ∈ Aπz1−1 and x ∈ Aθz2−1 and show
that ρ(x) = σ(x) in these two disjoint sets. The remaining elements are trivially satisfied
as they are fixed points of ρ(x) = σ(x) = x.

The above result may be extended to a set of any number of special swaps σi (i = 1 to k)
of the type κ, provided that the respective Aπz−1 sets are pair-wise disjoint. In that case

85

Introduction to Swap-and-Rotate Technique

Table 5.2 – Concurrent execution of the ti and si’s in the PRESENT permutation

Group mod3 ti max(xi − yi) # of cycles
1 0 (57, 39), (36, 18), (12, 3) 33 704

1 (61, 55), (52, 19), (4, 1)
2 (62, 59), (44, 11), (8, 2)

2 0 (60, 51), (45, 27), (24, 6) 21 448
1 (46, 43), (40, 34), (28, 7)
2 (56, 35), (29, 23), (20, 17)

3 1 (25, 22) 3 64
2 (41, 38)

Group mod3 si max(xi − yi) # of cycles
1 0 (51, 15) 36 768

1 (55, 31), (19, 13)
2 (53, 29), (17, 5)

2 0 (48, 12) 36 768
1 (58, 46), (34, 10)
2 (59, 47), (32, 8)

3 0 (54, 45), (39, 30), (18, 9) 21 448
1 (49, 28), (16, 4)
2 (50, 44), (35, 14)

4 0 (33, 24) 12 256
1 (37, 25)
2 (38, 26)

we have
»

Selσ1◦σ2◦···◦σk =
»

Selσ1 |̂
»

Selσ2 |̂ · · · |̂
»

Selσk

Corollary 5. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that x1− y1 ≡ x2− y2 mod κ, and x1 6≡ x2 mod κ. Without loss of generality
let `1 = (x1−y1) ≥ (x2−y2) = `2, and zi = `i

κ . As before, let the respective decompositions
are denoted by the symbols πi and θi and append 64(z1 − z2) zeroes to

»

Selσ2 to make the
two

»

Sel vectors of the same length. It is possible to execute σ1 and σ2 concurrently on the
circuit in Figure 5.2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles by using

»

Selσ1 |̂
»

Selσ2 as the
select signal vector.

Proof. We have already seen that for any transposition σ = (x, y) = πz−1 ◦ · · · ◦ π0,
we have Aπz−1 = {x, x− κ, x− 2κ, . . . , y}. Thus Aπz−1 contains elements that are only
congruent to x mod κ. As (x1, y1) and (x2, y2) belong to different equivalence classes
modulo κ, Aπz1−1 ∩ Aθz2−1 = ∅. Thus the result follows.

86

5.4. Single-swap Setting

Corollary 6. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that y1 > x2. Let `1 = (x1 − y1) ≥ (x2 − y2) = `2, and zi = `i

κ . Let the
respective decompositions are denoted by the symbols πi and θi. Then after making the
»

Sel vectors of the same length by appending zeroes, it is possible to execute σ1 and σ2
concurrently on the circuit in Figure 5.2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles by
using

»

Selσ1 |̂
»

Selσ2 as the select signal vector.

Proof. We have Aπz1−1 = {x1, x1 − κ, x1 − 2κ, . . . , y1} and Aθz2−1 = {x2, x2 − κ, x2 −
2κ, . . . , y2}. Since y1 > x2, clearly Aπ0 ∩ Aθ0 = ∅. Thus the result follows.

We can use the results in the above two corollaries to further reduce the execution time
of the PRESENT permutation. We have to execute all the transpositions ti followed
by the transpositions si. The idea is to execute as many permutations concurrently as
possible so long as they have pairwise disjoint Aπz−1 ’s. In order to simplify this process,
we can easily partition the swaps modulo κ = 3. Then, the swaps that are in different
classes modulo 3 can obviously be executed concurrently, following Corollary 5. Also
transpositions in the same class modulo 3 that have disjoint Aπz−1 ’s can also be executed
together, following Lemma 8. For the ti’s we can think of the following solution given in
Table 5.2, that takes (11 + 7 + 1) · 64 = 704 + 448 + 64 = 1216 cycles. All the swaps in
i-th group can be executed concurrently, thereby reducing the number of cycles.

A similar construction for the si’s will take (12 + 12 + 7 + 4) · 64 = 2240 cycles. So a
total of 1216 + 2240 = 3456 cycles are required which is already much better than our
previous construction of 12160 cycles from Section 5.4.3.

5.4.5 Application to GIFT-64

We can apply the outlined steps of optimization on the GIFT block cipher as well.
The permutation G64 is given in Table 2.3 in Chapter 2. We can make the following
observations on the permutation function G64:

1. It is a special permutation of type κ = 4.

2. It can be decomposed into fourteen 4-cycles and two 2-cycles all of which are
pairwise disjoint. Additionally it has 4 fixed points.

3. Each 4-cycle can be decomposed into three transpositions si ◦ ti ◦ ui. The decompo-
sition is shown in Table 5.3.

Corollary 7. Let ai, ci (resp. bi) denote a series that is an arbitrary ordering of elements
from [0, 13] (resp. from [0, 15]). The GIFT permutation G64 satisfies that

G64 = sc0 ◦ · · · ◦ sc13 ◦ tb0 ◦ · · · ◦ tb15 ◦ ua0 ◦ · · · ◦ ua13

87

Introduction to Swap-and-Rotate Technique

Table 5.3 – Decomposition of the ci’s in the GIFT permutation

i ci si ◦ ti ◦ ui

0 (0, 48, 60, 12) (12, 48) ◦ (48, 60) ◦ (0, 12)

1 (2, 18, 22, 6) (6, 18) ◦ (18, 22) ◦ (2, 6)

2 (3, 35, 43, 11) (11, 35) ◦ (35, 43) ◦ (3, 11)

3 (4, 32, 56, 28) (28, 32) ◦ (32, 56) ◦ (4, 28)

4 (5, 49, 13, 17) (17, 49) ◦ (13, 49) ◦ (5, 17)

5 (7, 19, 39, 27) (19, 27) ◦ (19, 39) ◦ (7, 27)

6 (8, 16, 52, 44) (16, 44) ◦ (16, 52) ◦ (8, 44)

7 (9, 33) (9, 33)
8 (10, 50, 30, 38) (38, 50) ◦ (30, 50) ◦ (10, 38)

9 (14, 34, 26, 54) (34, 54) ◦ (26, 34) ◦ (14, 54)

10 (15, 51, 47, 59) (51, 59) ◦ (47, 51) ◦ (15, 59)

11 (20, 36, 40, 24) (24, 36) ◦ (36, 40) ◦ (20, 24)

12 (21, 53, 61, 29) (29, 53) ◦ (53, 61) ◦ (21, 29)

13 (25, 37, 57, 45) (37, 45) ◦ (37, 57) ◦ (25, 45)

14 (31, 55) (31, 55)
15 (42, 58, 62, 46) (46, 58) ◦ (58, 62) ◦ (42, 46)

for the swaps si, ti, ui given in Table 5.3.

We can again build our formalism on top of the circuit described in Figure 5.2, but with
κ = 4 in the case of GIFT. Namely, we let wκ = (4, 0) and r = (63, 62, . . . , 0), and recall
that, through application of Lemma 6, any swap (x, y) with x > y and x ≡ y mod 4 can
be constructed with the following sequence of basic operations:

(x, y) = r(κ−x) mod 64 ◦ wκ ◦ (rκ ◦ wκ)z−1 ◦ (r64−κ ◦ wκ)z−1 ◦ r(x−κ) mod 64

The optimization that follows after application of this formula is to arrange the swaps
into groups for concurrent execution, as Lemma 8 clearly permits this arrangement. The
final result of this regrouping can be found in Table 5.4. Overall, the G64 can be executed
in 4096 clock cycles.

5.5 Multiple-swap Setting

In this section, we look at trade-off between the number of scan flip-flops and the latency
of the permutation layer. In other words, we employ multiple scan flip-flops to complete
the permutation layer operation in at most few hundreds of clock cycles.

88

5.5. Multiple-swap Setting

Table 5.4 – Concurrent execution of the ti and si’s in the PRESENT permutation

Group mod4 ui max(xi − yi) # of cycles
1 0 (8, 44) 44 704

1 (25, 45), (5, 17)
2 (14, 54), (2, 6)
3 (15, 59), (3, 11)

2 0 (4, 28) 28 448
1 (21, 29)
2 (10, 38), (42, 46)
3 (7, 27)

3 0 (0, 12), (20, 24) 12 192

Group mod4 si max(xi − yi) # of cycles
1 0 (16, 52) 36 576

1 (13, 49), (53, 61)
2 (30, 50), (18, 22)
3 (19, 39), (47, 51)

2 0 (32, 56) 24 384
1 (37, 57)
2 (26, 34), (58, 62)
3 (35, 43)

3 0 (48, 60), (36, 40) 12 192

Group mod4 si max(xi − yi) # of cycles
1 0 (12, 48) 36 576

1 (17, 49)
2 (34, 54)
3 (11, 35)

2 0 (16, 44) 28 448
1 (29, 53)
2 (6, 18)
3 (31, 55)

3 0 (24, 36) 24 384
1 (9, 33)
2 (38, 50)
3 (19, 27)

4 0 (28, 32) 12 192
1 (37, 45)
2 (46, 58)
3 (51, 59)

89

Introduction to Swap-and-Rotate Technique

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15


swp3(4,1), r



3
, r4

73

2

0 4 5 6

1 8 9 10

12 13 14

11 15 73

2

0 4 8 9

1 5 12 13

6 10 14

11 15


r, swp2(4,1), r



2
, r8

73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

r2, swp(4,1), r
13

Figure 5.3 – A transposition can be done with r and swp(4,1) in 3×16 cycles. The operations
separated by comma are executed in leftmost-first fashion. The cells corresponding to
fixed swap positions of swp(4,1) are marked with green.

In order to understand how more scan flip-flops can be accommodated, let us start with
the basics. Again, we let r denote the simple rotation operation of the pipeline, that is
r ∈ S64 such that r(i) = i− 1 mod 64. Then we additionally introduce swap-then-rotate
operations to this pipeline. A swap-then-rotate operation is denoted with swp(x,y), and it
first swaps x and y, and then rotates the pipeline. Namely,

swp(x,y)(x) = (y − 1) mod 64, swp(x,y)(y) = (x− 1) mod 64

and the others elements remain untouched.

We have already seen that a swap-then-rotate operation can be done in the pipeline quite
efficiently, i.e. it requires only two extra MUXes before inputs of flip-flops x − 1 and
y − 1. The technique presented in this section targets reduction of the number of clock
cycles, at the expense of few other freshly introduced swap operations into the circuit.
For this reason, we extend the notion into multiple-swaps-then-rotate in a natural way.
Namely, assuming that {x, y} 6= {z, t}, then swp(x,y),(z,t) corresponds to application of
r ◦ (z, t) ◦ (x, y). Therefore, first the list of given swaps are executed starting from the
leftmost pair, and a final rotation is executed after all swaps are done.

We invite the reader’s attention to the difference between the swap operations, e.g.
swp(x,y), and swap permutations, e.g. 2-cycle (x, y). The former includes a self rotation
by definition, and can also include many pairs of swaps at once.

5.5.1 4× 4 matrix transposition with swaps

For simplicity, first imagine a 16-bit pipeline whose flip-flop are arranged as 4× 4 matrix
(see Figure 5.3). Suppose that the pipeline supports only r and swp(4,1) operations. These
two permutations are given in their mathematical forms in Table 5.5, where r(i) denotes
the final position of the bit i after r is executed.

Our claim is that the usual 4× 4 matrix transposition τ can be written in terms of r and

90

5.5. Multiple-swap Setting

Table 5.5 – Mathematical forms of some permutations over S16

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

r(i) 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

swp(4,1)(i) 15 3 1 2 0 4 5 6 7 8 9 10 11 12 13 14

τ(i) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

σ(i) 0 5 10 15 12 1 6 11 8 13 2 7 4 9 14 3

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15


swp(4,1), r



2
, r4

73

2

0 4 8 9

1 5 12 13

6 10 14

11 15 73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

swp(4,1)(8,2), swp(8,2), r
2, swp2(8,2), r

2

r2, swp(4,1), r
13

Figure 5.4 – Transposition τ can also be done in 128 clock cycles with 2 swap operations.

swp(4,1) permutations. Namely, our formula is τ = π3 ◦ π2 ◦ π1 where

π1 = r4 ◦
[
r ◦ swp3(4,1)

]3

π2 = r8 ◦
[
r ◦ swp2(4,1) ◦ r

]2

π3 = r13 ◦ swp(4,1) ◦ r2

This is demonstrated in Figure 5.3. In conclusion, performing a transposition τ requires
three full rotations of the pipeline, i.e. it takes 3× 16 cycles, with a single swap operation.

In order to optimize the number of clock cycles spent for each τ application, we can add
one or two more swaps into the pipeline. Hence, there is a trade-off between the number
of cycles and the circuit area required to execute the permutation. The sequences of
operations with two and three swap operations are demonstrated in Figures 5.3, 5.4 and
5.5.

5.5.2 From Transpositions to PRESENT Permutation

Now we give an alternative decomposition of PRESENT’s permutation P that is more
convenient to realize with a few swaps. The crucial observation is that the permutation

91

Introduction to Swap-and-Rotate Technique

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15

swp(4,1), r
5

swp(4,1)(8,2)(3,12), r
4, swp(4,1)(8,2), r

4

73

2

0 4 8 12

1 5 9 13

6 10 14

11 15

Figure 5.5 – Transposition τ can also be done in 64 clock cycles with 3 swap operations.

P from S64 can be written in terms of eight applications of τ from S16 so long as we chop
64 bits into four 16-bit matrices in a careful manner. We further use the pipeline rotation
to use the same swap operation to perform τ operation on different sub-matrices of the
pipeline.

In the first pass, we divide 64 positions {0, . . . , 63} into four vertical disjoint matrices,
that is we construct M0,M1,M2,M3 such that i-th row, j-th column of Mr is 16i+ j+ 4r

(where columns/rows are indexed from 0 to 3). Then we apply τ on each Mr. In the
second pass, we construct horizontal matrices Nr such that i-th row, j-th column of Nr

is 4i+ j + 16r. Again, τ is applied over each Nr. The choices of 16 indices for M3 and
N0 are demonstrated in Table 5.6. Below, we give the positions of the bits that are use
to fill in Mr and Nr matrices:

Mr ←




4r 4r + 1 4r + 2 4r + 3

4r + 16 4r + 17 4r + 18 4r + 19

4r + 32 4r + 33 4r + 34 4r + 35

4r + 48 4r + 49 4r + 50 4r + 51




Nr ←




16r 16r + 1 16r + 2 16r + 3

16r + 4 16r + 5 16r + 6 16r + 7

16r + 8 16r + 9 16r + 10 16r + 11

16r + 12 16r + 13 16r + 14 16r + 15




More formally, let Z denote an ordered subset {z0, z1, . . . , z15} of {0, . . . , 63} (equivalently
Z can be considered as a 4 × 4 matrix). Then we define the permutation τZ ∈ S64 as
applying τ ∈ S16 over Z while keeping the other 48 bits untouched. Which is to say,
given i ∈ {0, . . . , 63}, if i = zj for some j then τZ(i) = τZ(zj) = zτ(j), and otherwise (if
i /∈ Z) then τZ(i) = i. Our claim is that P = τN0 ◦ τN1 ◦ τN2 ◦ τN3 ◦ τM0 ◦ τM1 ◦ τM2 ◦ τM3 .

For a particular choice of Z, we need to consider that τZ ∈ S64 can differ from τ ∈ S16 in
two ways: 1) the positions of (x, y) in swp(x,y) operation and 2) the number of r ∈ S64
applications necessary to complete a full rotation in Z. For the former, we need to choose
(z4, z1) as swap positions instead of (4, 1). For the latter, we need to update our schedule

92

5.5. Multiple-swap Setting

Table 5.6 – The movement of bits according to the PRESENT’s permutation function P ,
where πi→j denotes πi ◦ πi−1 ◦ · · · ◦ πj .

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

π3→1(I) 0 16 32 48 4 20 36 52 8 24 40 56 12 28 44 60
1 17 33 49 5 21 37 53 9 25 41 57 13 29 45 61
2 18 34 50 6 22 38 54 10 26 42 58 14 30 46 62
3 19 35 51 7 23 39 55 11 27 43 59 15 31 47 63

π6→4(I) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

of operations. For instance, M3 requires 64 cycles of r to complete its full rotation instead
of 16. That means during τMr operations, r ∈ S64 that rotates the pipeline is actually
different than the one we used previously, i.e. r ∈ S16, to formulate τ ∈ S16. In particular,
since the pipeline consists of 64 bits, it takes 16 cycles for the second row of M to move
to its first row. Hence, we need to update our decomposition sequences to interleave τMr

operations.

We interleave τM operations as follows. Given

π1 = r16 ◦
[
r ◦ swp3(16,1)

]12

π2 = r32 ◦
[
r ◦ swp2(16,1) ◦ r

]8

π3 = r48 ◦
[
r ◦ swp(16,1) ◦ r2

]4

then π3 ◦ π2 ◦ π1 = τM0 ◦ τM1 ◦ τM2 ◦ τM3 . And for τN operations, given

π4 =

[
r4 ◦

[
r ◦ swp3(4,1)

]3]4

π5 =

[
r8 ◦

[
r ◦ swp2(4,1) ◦ r

]2]4

π6 =
[
r13 ◦ swp(4,1) ◦ r2

]4

then π6 ◦ π5 ◦ π4 = τN0 ◦ τN1 ◦ τN2 ◦ τN3 . Finally, P = π6 ◦ π5 ◦ π4 ◦ π3 ◦ π2 ◦ π1. The full
worked-out schedules and decomposition of PRESENT permutation is given in Table 5.8.

93

Introduction to Swap-and-Rotate Technique

1312

8

0 1 2 3

4 5 6 7

9 10 11

14 15 50

4

12 1 6 7

8 9 2 11

13 14 3

10 15

rot2, swp4(4,0), rot, swp(4,0)

rot, swp2(4,0), rot, swp(4,0), rot
3 rot3, swp(4,0), rot, swp(4,0), rot

10

50

4

12 1 6 11

8 13 2 7

9 14 3

10 15

Figure 5.6 – Performing σ with swp(4,0) and r in 2 full rounds, i.e 2× 64 cycles.

Note that we require 2 different swaps (therefore 4 scan flip-flops) to work this out. Each
πi requires 64 cycles and hence the permutation can be realized with 6× 64 cycles.

5.5.3 From Transpositions to GIFT-64 Permutation

The decomposition of GIFT permutation G64 is slightly different than P . We choose our
matrices such that the first operation becomes transposition τ over nibbles instead of
bits, and the second one consists of series of ad hoc swaps described as the permutation
σ in Table 5.5. In the same fashion, σ is a permutation over S16, but we can extend it to
S64 by defining σZ for Z being an ordered subset of {0, . . . , 63} as before.

Performing G takes four applications of τ followed by four applications of σ. We
choose our matrices as follows. The i-th row, j-th column of Mr is 4i + 16j + r.
Then we apply τ on Mr matrices. In the second pass, the i-th row, j-th column
of Nr is 16i + j + 4r. Again, σ is applied over Nr matrices. Our finding is that
G64 = σN0 ◦ σN1 ◦ σN2 ◦ σN3 ◦ τM0 ◦ τM1 ◦ τM2 ◦ τM3 . The structure of this decomposition
is illustrated in Table 5.7 and the sequence of operations to realize G64 with minimum
number of swaps are presented in Table 5.9.

5.5.4 Inverse Permutations for Decryption

One might notice that neither G64 nor P are involution, that is P (P (i)) = i does not
hold. This means that the permutation logic for encryption cannot be readily used in
decryption. A straightforward idea for decryption that avoids adding extra gates could
be based on the fact that P 3 and G4 are identity permutations. Hence, one can repeat P
and G two and three times respectively to get their inverse permutation. However, this
is not an optimal solution, as it double or triples the number of cycles required for the
inverse permutation layer, making decryption significantly more costly than encryption.

Our technique also enables more elegantly solution for the inverse permutations. We draw
attention to the fact that, because of the manner we decomposed both permutations, τ
and σ are in fact involutions. This can be easily deduced from the fact that they are,

94

5.6. Final Interleaving Optimization

Table 5.7 – The movement of bits according to the GIFT’s permutation function G64,
where πi→j denotes πi ◦ πi−1 ◦ · · · ◦ πj .

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

π3→1(I) 0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51
4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55
8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59
12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

π6→4(I) 12 1 6 11 28 17 22 27 44 33 38 43 60 49 54 59
8 13 2 7 24 29 18 23 40 45 34 39 56 61 50 55
4 9 14 3 20 25 30 19 36 41 46 35 52 57 62 51
0 5 10 15 16 21 26 31 32 37 42 47 48 53 58 63

in return, compositions of multiple disjoint swap operations. Hence, for decryption, it
suffices to change the order of executions. As an example, for PRESENT, we only need to
run τNr permutations in the first pass, and τMr in the second pass for decryption. The
number of cycles and trade-offs remain exactly the same. No extra gates or cycles are
required. In conclusion, the advantage of decomposing a permutation with our swap-based
technique is twofold: it adds quite small amount of gates (2 extra MUXes for each swap),
and it readily supports decryption with no extra cost, even if the composed permutation
is not an involution and might seem to require some extra gates for its inverse.

5.6 Final Interleaving Optimization

This section is dedicated to the goal of decreasing the latency even further. In Sections 5.5.2
and 5.5.3, we have shown how PRESENT and GIFT implementations can be realized with
very small additional cost, i.e. 4 to 12 scan flip-flops (i.e. 2 to 6 swaps). Even though our
approach achieves roughly 20 % reduction in the circuit area, it causes the latency of the
circuit to increase to threefold. Hence, in this section we show that by carefully arranging
all swap operations to run concurrently, we can beat the state-of-the-art implementations
of PRESENT and GIFT [JMPS17], in terms of both latency and circuit-size.

Building upon our finding in Section 5.5.2, we provide realization of PRESENT and GIFT
permutations with 6 swaps that require no additional clock cycles. While encryption/de-
cryption rounds take precisely 64 cycles to complete for each round (AddRoundKey and
SubBytes), our permutation layer operates on the state pipeline seamlessly to ensure that
each bit leaving the pipeline is already moved to its permuted position. There is no need
to freeze the state pipeline or allocate extra clock cycles to the permutation layer either.

95

Introduction to Swap-and-Rotate Technique

Table 5.8 – The sequence of operations for PRESENT’s permutation layer, and the trade-off
between the number of clock cycles vs. the number of swaps.

swaps round cycles decomposition
2 1 0-47 [swp3(16,1), r]

12

48-63 r16

2 0-31 [r, swp2(16,1), r]
8

32-63 r32

3 0-15 [r2, swp(16,1), r]
4

16-63 r48

4 0-63 ([swp3(4,1), r]
3, r4)4

5 0-63 ([r, swp2(4,1), r]
2, r8)4

6 0-63 [r2, swp(4,1), r
13]4

4 1 0-15 [swp(16,1),(32,2), swp(32,2), r
2]4

16-47 [swp2(32,2), r
2]4, [swp(16,1), r]

8

48-64 r16

2 0-63 [r2, swp(16,1), r]
4, r48

3 0-3, 16-19, 32-35, 48-51 swp(4,1),(8,2), swp(8,2), r
2

4-15, 20-31, 36-47, 52-63 swp2(8,2), r
2, [swp(4,1), r]

2, r4

4 0-63 [r2, swp(4,1), r
13]4

6 1 0-15 [swp(16,1),(32,2),(15,60), r
3]4

16-31 [r, swp(16,1),(32,2), r
2]4

32-63 [r2, swp(16,1), r]
4, r16

2 0-7, 16-23, 32-39, 48-55 swp(4,1),(8,2),(51,60), r
4, swp(4,1),(8,2), r

2

8-15, 24-31, 40-47, 56-63 r2, swp(4,1), r
5

96

5.6. Final Interleaving Optimization

Table 5.9 – The sequence of operations for GIFT’s permutation layer, and the trade-off
between the number of clock cycles vs. the number of swaps.

swaps round cycles decomposition
2 1 0-63 [swp12(16,4), r

4]3, r16

2 0-63 [r4, swp8(16,4), r
4]2, r32

3 0-63 r8, swp4(16,4), r
52

4 0-31 [r2, swp2(16,0)]
4, [swp2(16,0), r, swp(16,0)]

4

32-63 [r, swp2(16,0), r]
4, [swp(16,0), r

3]4

5 0-63 [r3, swp(16,0)]
4, [r, swp(16,0), r

2]4, r32

4 1 0-23 swp4(16,4),(32,8),(48,12), r
16, swp4(16,4),(32,8)

25-63 r16, swp4(16,4), r
20

2 0-31 [r2, swp2(16,0)]
4, [swp2(16,0), r, swp(16,0)]

4

32-63 [r, swp2(16,0), r]
4, [swp(16,0), r

3]4

3 0-63 [r3, swp(16,0)]
4, [r, swp(16,0), r

2]4, r32

6 1 0-23 swp4(16,4),(32,8),(48,12), r
16, swp4(16,4),(32,8)

25-63 r16, swp4(16,4), r
20

2 0-31 [swp(48,0), r, swp(16,0),(33,1), r]
4, [swp(16,0),(33,1), r

3]4

32-63 [r2, swp(16,0), r]
4, r16

In comparison, the smallest known implementation from Jean et al. [JMPS17] requires 4
additional cycles each round, leading to a loss of more than a hundred cycles in latency.
This is because the additional circuitry that handles the permutation layer requires four
cycles to complete the permutation, during which AddRoundKey and SubBytes layers
must be stalled. Our implementation of permutation layer, on the other hand, reaches to
maximum utilization in a bit-serial implementation architecture, as it brings no additional
cycles.

The intuition behind interleaving is the fact that disjoints permutations can be executed
in arbitrary order. As swaps are simply 2-cycles, given (a, b), (c, d) checking whether they
are disjoint is straightforward. On the contrary, if two overlapping swaps are given, e.g.
(a, b), (b, c), then we must preserve the order between them. If such a choice of swaps
emerge, one needs to be cautious about which exact swap is run at some given clock cycle,
as swp operations on the hardware actually operate at different 2-cycles. For instance,
swp(11,14) can execute any permutation from the set {(11 + i mod 64, 14 + i mod 64)} for
the clock cycles i in which it is active. Hence, if we expand the operation sequences that
leads to two rounds from Tables 5.8, 5.9 into a series of actual 2-cycle applications by
replacing each swp(x,y) at active clock cycle i with 2-cycle (x+ i mod 64, y + i mod 64),
the following question arises:

Question. Can the expanded sequence of swaps (which takes 128 clock cycles according

97

Introduction to Swap-and-Rotate Technique

to Sections 5.5.2 and 5.5.3) be squeezed into fewer number of clock cycles (close to 64) so
that we can complete the permutation layer in one pass (single round)?

Fortunately, the answer to this question is affirmative. Furthermore, if we make our
choices for the initial swap operations wisely, we can even use the exact same swap
operations in a combined encryption and decryption circuit for PRESENT permutation.
For GIFT permutation, we need to add two more swaps for the combined circuit. The fully
worked-out schedule and the carefully chosen six swaps are given in Table 5.10, for both
encryption and decryption circuits. In summary, we achieve the following permutation
layer implementations:

1. PRESENT encryption-only circuit with 6 swaps can compute the permutation layer
in 64 clock cycles,

2. PRESENT encryption and decryption combined circuit with 6 swaps can compute
the permutation layer in 64 clock cycles,

3. GIFT encryption-only circuit with 6 swaps can compute the permutation layer in 64
clock cycles,

4. GIFT decryption-only circuit with 6 swaps can compute the permutation layer in 64
clock cycles,

5. GIFT encryption and decryption combined circuit with 8 swaps can compute the
permutation layer in 64 clock cycles.

5.7 Conclusion

In this chapter, we looked at swap-based optimization techniques for the execution of
permutation layers of block ciphers in serial architectures. The Chapter 6 will build on top
of these results to achieve a large number of block ciphers, which again have the smallest
reported latency-area trade-off reported in the literature. For instance, according to STM
90 nm CMOS logic process, our work presented at FSE 2020 reports implementations
of GIFT-64 and PRESENT-80 costing 907 GE and 694 GE for encryption-only circuits,
and 1055 GE and 786 GE for combined encryption and decryption circuits respectively
[BBRV20]. These are the smallest known implementations of these two block ciphers.

More specifically, we tried to answer the question if bit-permutations like the one used
in the linear layers of block ciphers PRESENT and GIFT can be executed in a flip-flop
array using only two scan flip-flops. With the help of permutation theory, the response is
affirmative, however straightforward application of the ideas that follow the proofs take
lots of clock cycles, and thus affect the throughput of the resulting circuit drastically.

98

5.7. Conclusion

Table 5.10 – Realization of GIFT and PRESENT permutations in 64 clock cycles.

cipher mode swap active clock cycles
PRESENT enc (58, 43) {0, 4, 22, 26, 30, 34, 39, 43, 47, 51, 56, 60}

(59, 29) {2, 37, 41, 45, 49, 54, 58, 62}
(60, 15) {0, 52, 56, 60}
(6, 3) {3, 8, 14, 19, 24, 30, 35, 40, 46, 51, 56, 62}
(8, 2) {0, 5, 16, 21, 32, 37, 48, 53}
(10, 1) {2, 18, 34, 50}

PRESENT dec (58, 43) {3, 7, 11, 15, 33, 37, 41, 45, 50, 54, 58, 62}
(59, 29) {1, 5, 9, 13, 48, 52, 56, 60}
(60, 15) {3, 7, 11, 63}
(6, 3) {3, 9, 14, 19, 25, 30, 35, 41, 46, 51, 57, 62}
(8, 2) {0, 11, 16, 27, 32, 43, 48, 59}
(10, 1) {13, 29, 45, 61}

GIFT enc (51, 39) {5, 6, 7, 8, 29, 30, 31, 32, 49, 50, 51, 52}
(50, 26) {2, 3, 4, 5, 46, 47, 48, 49}
(49, 13) {0, 1, 2, 63}
(18, 2) {0, 4, 8, 12, 14, 18, 22, 26, 32, 36, 40, 44}
(33, 1) {2, 6, 10, 14, 16, 20, 24, 28}
(48, 0) {0, 4, 8, 12}

GIFT dec (19, 7) {0, 1, 2, 3, 20, 21, 22, 23, 40, 41, 42, 43}
(32, 8) {3, 4, 5, 6, 23, 24, 25, 26}
(49, 13) {2, 3, 4, 5}
(18, 2) {49, 53, 57, 61}
(33, 1) {37, 41, 45, 49, 51, 55, 59, 63}
(48, 0) {1, 21, 25, 29, 33, 35, 39, 43, 47, 53, 57, 61}

The great portion of the chapter is then dedicated to reducing the number of operations
required to execute the bit permutation in this setting. Eventually we are able to show
that as few as six swaps are sufficient to implement the permutations layers of PRESENT
and GIFT as fast as it can be expected from any serial circuit. For the sake of consistency,
the circuit implementation details are left to Chapter 6.

99

6 The Area-Latency Symbiosis
through Swap-and-Rotate

The results presented in this chapter are based on the work done in collaboration with
Andrea Caforio and Subhadeep Banik [BCB21], which will be presented in TCHES 2021.
The authors Fatih Balli and Subhadeep Banik were supported by the Swiss National
Science Foundation (SNSF) through the Ambizione Grant PZ00P2_179921.

In Section 6.1, we first give an extract on the authenticated encryption candidates
from NIST LWC, and we also summarize our motivation. In Section 6.2, we give
the details of our contributions. We use Section 6.3 to explain our generic high-level
approach. Sections 6.4, 6.5, 6.6 and 6.7 are respectively dedicated to detailed descriptions
of lightweight circuits for AES, SKINNY, GIFT∗ and GIFT respectively. Each of these
sections include the implementation details for both 1-bit and 4/8-bit serial circuits. In
Section 6.8, we turn our attention to serial implementation of four AEAD candidates:
SUNDAE-GIFT, SAEAES, Romulus and SKINNY-AEAD. In Section 6.9, we explain how our
circuit implementations can be tweaked to support decryption functionality, and what is
the associated cost. Lastly, Section 6.10 is the conclusion.

The VHDL source code of our implementations can be found in a public git repository
[ALS], and they also appear as artifact in TCHES 2021 [BCB20].

6.1 Related Work

Mode of operation. As of the second round, 13 out of 32 candidates in NIST LWC
are based on block ciphers [NISa]. These candidates simply design a mode of operation
around a given block cipher to function as an authenticated encryption scheme. From
Table 6.1, note that:

• 4 candidates use either the standard or a tweaked version of AES as the primary
choice. These are COMET, ESTATE, mixFeed, SAEAES [GJN19, CDJ+19a, CN19,
NMMaS+19].

101

The Area-Latency Symbiosis through Swap-and-Rotate

Table 6.1 – The list of second-round NIST LWC candidates that are based on block
ciphers. GIFT refers to the original block cipher from [BPP+17], and GIFT∗ refers to the
version that assumes different ordering of the input bits and the key [BCI+19, BBP+19].

Candidate Primary Alternative
cipher size (block+key) cipher size (block+key) cipher calls

COMET AES 128+128 CHAM, Speck 64/128+128 enc
ESTATE TweAES 128+128 TweGIFT 128+128 enc+dec
ForkAE ForkSKINNY 128+288 ForkSKINNY 64/128+192/256/288 enc+dec
GIFT-COFB GIFT∗ 128+128 - - enc
HYENA GIFT 128+128 - - enc
LOTUS-AEAD TweGIFT 64+128 - - enc
mixFeed AES 128+128 - - enc
Pyjamask Pyjamask 128+128 Pyjamask 96+128 enc
Romulus SKINNY 128+384 SKINNY 128+256/384 enc
SAEAES AES 128+128 - - enc
Saturnin Saturnin 256+256 - - enc
SKINNY-AEAD SKINNY 128+384 SKINNY 128+256/384 enc
SUNDAE-GIFT GIFT∗ 128+128 - - enc

• 3 candidates use either the standard or a forked version of SKINNY as the primary
choice. These are ForkAE, Romulus, SKINNY-AEAD [ALP+19, IKMP19, BJK+19].

• 2 candidates use either the standard or a tweaked version of 128-bit variant
of GIFT. Namely, ESTATE uses the tweaked version of GIFT as an alternative
choice [CDJ+19a], whereas HYENA uses the original version [CDJN19, BPP+17].
Besides, LOTUS-AEAD also employs a tweaked 64-bit variant of GIFT [CDJ+19b,
BPP+17].

• 2 candidates use GIFT∗. These two candidates are GIFT-COFB and SUNDAE-
GIFT [BCI+19, BBP+19]. The difference between GIFT∗ and GIFT is that the
former assumes a different indexing of the input and output bits. We denote their
modified version with GIFT∗, as it leads to a significant difference from a design
and implementation perspective (but remains equivalent in terms of cryptanalysis).

• Pyjamask and Saturnin are the exceptions to the popular approach, as they bring their
own dedicated block cipher designs into the standardization [GJK+19, CDL+19].

We should note that only Romulus and SKINNY-AEAD are the two AE designs that made
it to the final round [NISa].

Given the modular approach taken by these candidates, one can pose the two following
questions, which relates directly to their lightweight performance:

1. How lightweight is the block cipher employed at the core?

2. What is the cost of the surrounding mode of operation?

102

6.1. Related Work

This chapter responds to these two significant questions.

Bottleneck of storage. Most low-area implementations of SPN-based block ciphers
eventually face a bottleneck of storage, quite similar to the fashion in which they are
observed in hash functions [BLP+08]. Namely, all implementations (except those that
are fully unrolled) need to store the key and the cipher state during the encryption
operation. For a block cipher with `b-bit block and `k-bit key, this typically requires the
use of `b + `k flip-flops. More concretely, the area-cost of storing 256-bit corresponds
to 1088 GE, 832 GE and 1451 GE for the cell libraries UMC 90 nm, STM 90 nm and
NanGate 45 nm respectively. It naturally follows that for the smallest implementations
of AES (resp. SKINNY-128-128, GIFT), the 73% (resp. 83%, 69%) of the circuit is due to
merely D flip-flops [JMPS17, BPP+17]. Therefore, the state-of-the-art ultra-small ASIC
implementations of block ciphers contain mostly storage elements, and space for further
area optimizations is limited. We take this as an indicator that we should divert our
focus to the other aspects of the circuit while remaining in the same area budget.

Two previous papers that immediately evoke comparison with our work are the ones by
Jean et al. and Banik et al. [JMPS17, BBRV20]. The former was the first paper to propose
a 1-bit datapath implementation of AES, PRESENT and SKINNY family. However none
of the implementations reported in this paper achieved a latency per round figure equal
to the block size of the underlying block cipher. One of the reasons for this is that they
approach the entire round function as a monolithic entity, i.e. all the algebraic operations
in the round were completed in the time period allotted for the round.

Large amounts of the engineering in this chapter is devoted towards investigating what
happens if we flirt with these boundaries by executing some operations of round i in the
time period allotted to round i+1 while maintaining correct functionality. As it turns out,
when we do this efficiently, we can limit latency per round (in clock cycles) to the block
size and that is exactly the mathematical challenge we faced in this work. To make things
clearer, note that Jean at al. reports a bit-serial implementation of AES which completes
a round in 168 cycles [JMPS17]. 128 clock cycles are used to rotate bits across the state
pipeline and perform AddRoundKey and SubBytes operations simultaneously. Precisely
8 cycles are used for ShiftRows and 32 more for MixColumns. However, we observed
that we could be more flexible in the scheduling of operations, which is to say neither
do we have to wait for the AddRoundKey and SubBytes operation to be completed on
the entire 128-bit state to begin ShiftRows, nor wait for the ShiftRows to complete to
begin MixColumns. When a group of bits in the state have undergone AddRoundKey
and SubBytes, we can already begin ShiftRows on those bits immediately and the same
holds for the scheduling of MixColumns vis-à-vis ShiftRows. In the process of developing
this technique, we find that not all operations of a round is finished in the time allocated
for the round, and so we improvise and try to get them done in the next round, while
trying to maintain functionality at all times.

103

The Area-Latency Symbiosis through Swap-and-Rotate

A preliminary version of the aforementioned technique, targeting specifically the permu-
tation layers of GIFT and PRESENT, but without generalization to other family of block
ciphers is already summarized in Chapter 5. This chapter extends on these results in
order to generalize it to implementations of higher-bit datapaths and other family of
block ciphers.

6.2 Contributions

We provide 1/4/8-bit-serial architectures for the popular 128-bit block size variants of the
block ciphers AES, SKINNY, GIFT∗ and GIFT, which are popular among NIST candidates
as of the second round. Our implementations can be employed by 10 candidates out of 13
listed in Table 6.1. Our approach has the following benefits, and the detailed comparison
with the state of the art is summarized in Table 6.2:

• In terms of circuit area, each of our block cipher implementations is an evident
contender to be the smallest implementation.

• Each implementation fully utilizes both the state and the key pipelines. With 1-bit
datapath, each round consisting of 128-bit is executed exactly in 128 clock cycles.
This ensures that we get the maximum throughput from 1-bit-serial implementation.
This leads to an approximately 20% reduction in latency (in clock cycle units) over
the circuits reported by the previous work [JMPS17, BPP+17] (note that the AES,
SKINNY, GIFT circuits in these papers report a latency of 168, 168, 160 cycles per
round respectively). Our circuit design is novel in the sense that both pipelines are
continuously active.

• With 8-bit datapath, each round consisting of 128 bits is executed exactly in 16
clock cycles. This leads to a roughly 20% reduction in latency over the circuits
reported in [JMPS17, BBR16a] (note that the AES, SKINNY, GIFT circuits in these
papers report a latency of 21, 21, 20 cycles per round respectively).

• Each implementation respects the standard ordering of input and output bits. We
do not make a non-standard assumption on the ordering of the bits to reduce the
area and latency. Namely, we ensure that an implementation from our paper is
readily usable from a NIST LWC candidates without having to modify and deal
with the ordering the bits. Some implementations of AES, e.g. [MPL+11, JMPS17,
BBR16a, BBR16b], assume that plaintext and the key is arranged in a row major
fashion (which we call non-standard), even though the original specification of AES
assumes a column-major arrangement [NIS01].

• We avoid techniques such as clock-gating, which might sometimes result in timing
inconsistencies during synthesis phase and cost additional circuit area. This also
brings the additional benefit of being compatible with the recently introduced

104

6.2. Contributions

Table 6.2 – The comparison of our work with the state of the art in terms of latency, area
and energy. The measurements respect to the use of the same library and clock frequency,
NanGate 45 nm and UMC 90 nm for AES, SKINNY and STM 90 nm for GIFT∗. It has
been estimated in [MPL+11] that converting a non-standardized to a standardized circuit
requires an additional 20 MUXes. The area figures in this row is obtained by adding
the area of 20 MUXes to the figures in the previous row. bGIFT∗ refers to the slightly
modified version of GIFT used in SUNDAE-GIFT [BBP+19].

Area (GE) Latency (cycles) Energy (nJ/128-bit)
Block cipher NanGate 45 UMC 90 round total NanGate 45 UMC 90 Ref.

@ 100 KHz @ 100 KHz

AES (standard) 1974 1600 128 1408 1441.8 7.7 Sec. 6.4
AES (non-standard) 1982 1596 168 1776 1779.6 11.9 [JMPS17]
AES (standardized)a 2029 1641 168 1904 [JMPS17]

SKINNY-128-128 1748 1355 128 5248 4602.0 22.6 Sec. 6.5
SKINNY-128-128 1740 1363 168 6976 6045.4 39.1 [JMPS17]
SKINNY-128-256 2502 1927 128 6272 7837.5 38.9 Sec. 6.5
SKINNY-128-256 2501 1937 168 8448 10432.4 97.2 [JMPS17]
SKINNY-128-384 3263 2518 128 7296 11877.2 59.8 Sec. 6.5
SKINNY-128-384 3260 2508 168 9920 15875.0 153.8 [JMPS17]

STM 90 UMC 90 STM 90 UMC 90
@ 10 MHz @ 10 MHz

GIFT 1215 1531 128 5248 27.2 26.9 Sec. 6.7
GIFT 1213 - 160 6528 26.3 [BPP+17]
GIFT∗ b 1108 1332 128 5248 26.1 25.5 Sec. 6.6

glitch-resistant security model [BGI+18]. This paper provides framework for formal
verification of masked designs in the presence of glitches and is thus a very useful
tool to have for implementors. However, the model used in the paper assumes
that all registers are triggered by a perfectly synchronized clock signal. In the case
of clock-gating, this assumption does not hold, because gated clock has variable
delay in comparison to the main clock source. Thus when our techniques are used
to produce masked implementations by simply duplicating the combinatorial and
storage circuitry, it has the added advantage of conforming to this security model,
which would make it easier for the circuit designer to formally verify the security of
the circuit in the presence of glitches.

In the second part of this chapter, we direct our attention to implementation of four
AE schemes, one for each block cipher: SUNDAE-GIFT (1201 GE), SAEAES (1350 GE),
Romulus (2399 GE) and SKINNY-AEAD (3589 GE), with their respective area costs in
STM 90 nm technology library. We have chosen these candidates, because the mode
of operation part of the circuit has the minimal storage requirement, thus leading to
very compact implementations. To the best of our knowledge, these are the smallest
block-cipher-based authenticated encryption schemes reported so far in the bit-serial and
4/8-bit-serial configurations. In Table 6.3, we summarize the synthesis figures for the

105

The Area-Latency Symbiosis through Swap-and-Rotate

Table 6.3 – The comparison of our work with regards to 8-bit-serial AES, SKINNY and 4-
bit-serial GIFT state-of-the-art implementations. aThe number of clock cycles is incorrectly
reported for the 128-bit version of GIFT in [BPP+17] (and confirmed by the authors).
We report the rectified figures for the respective implementation. bGIFT∗ refers to the
slightly modified version of GIFT used in SUNDAE-GIFT [BBP+19]

.
Area (GE) Latency (cycles) Energy (nJ/128-bit)

Block cipher STM 90 UMC 180 round total STM 90 UMC 180 Ref.
@ 10 MHz @ 100 KHz

AES (standard) 1785 - 16 176 1.84 - Sec. 6.4.6
AES (non-standard) - 2400 21 226 - 8.36 [MPL+11]
AES (non-standard) 2060 - 23 246 - 3.2 [BBR16b]

SKINNY-128-128 1326 - 16 656 4.10 - Sec. 6.5
SKINNY-128-128 1638 - 21 840 6.64 - [BPP+17]
SKINNY-128-128 - 1840 21 872 - - [BJK+16]
SKINNY-128-256 1880 - 16 784 7.10 - Sec. 6.5
SKINNY-128-256 - 2655 21 1040 - - [BJK+16]
SKINNY-128-384 2431 - 16 912 10.9 - Sec. 6.5
SKINNY-128-384 - 3474 21 1208 - - [BJK+16]

GIFT a 1455 - 33 1352 10.78 - [BPP+17]
GIFT∗ b 1430 - 32 1312 8.06 - Sec. 6.6

multi-bit implementations and similarly, Table 6.4 tabulates the synthesis figures for our
AEAD constructions under the same technology library. The measurements for other
libraries can be found in Section 6.8.5. The source code of our implementations are also
publicly available [ALS, c4s].

6.3 Generic Approach

An SPN-based block cipher generally consists of three layers of operation in a round: key
addition, substitution and a linear operation. The linear layer is often a combination of a
permutation function and a matrix multiplication. For example in AES, the permutation
function is the ShiftRows operation and matrix multiplication is done by the MixColumns
operation. In the context of lightweight circuits, we can further classify these operations
into 2 broad classes: (1) swap-based and (2) replacement-based. In AES, for example, the
SubBytes and MixColumns operations can be seen as replacement-based operations, since
they take a finite portion of the AES state and replace them with new data block of equal
length. ShiftRows can be seen as a swap-based operation because it essentially swaps
some bits at two different locations of the state vector. Our technique, for implementing
an SPN-based block cipher, then consists of finding a good and short sequence of swap
operations that corresponds to the swap-based operation, and interleave them with the
replacement-based operations.

In particular, let us look at AES as an example. We recall that the same permutation τ

106

6.3. Generic Approach

Table 6.4 – Synthesis figures for the implemented bit-serial AEAD schemes using the
STM 90 nm process. Energy and throughput figures are based on the processing of 1024
bits of plaintext and 128 bits of associated data.

Area Power Latency Energy Ref.
(GE) (µW @ 10 MHz) (cycles) (nJ/1152-bit)

SUNDAE-GIFT 1-bit 1201 50.1 92544 463.6 Sec. 6.8.1
SUNDAE-GIFT 4-bit 1587 63.9 23136 147.8 Sec. 6.8.1
SAEAES 1-bit 1350 77.2 24448 188.7 Sec. 6.8.2
SAEAES 8-bit 1940 108.0 3056 33.0 Sec. 6.8.2
Romulus-N1 1-bit 2399 98.1 64647 634.2 Sec. 6.8.3
Romulus-N1 8-bit 2912 114.0 8080 92.6 Sec. 6.8.3
SKINNY-AEAD 1-bit 3589 134.3 72960 979.9 Sec. 6.8.4
SKINNY-AEAD 8-bit 3783 149.0 9856 146.9 Sec. 6.8.4

was considered in Section 5.5.1. Here, we look at it in more detail. At the byte level, the
ShiftRows is a permutation over the set [0, 15] which can be formulated as

(1, 13, 9, 5) ◦ (2, 10) ◦ (6, 14) ◦ (3, 7, 11, 15)

Given that the AES byte order is b0, b1, . . . , b15, the above notation means that after
ShiftRows, b1 is moved to location 13, b13 is moved to location 9 etc. Note that each
of the k-cycles correspond to a particular row of the AES state and they commute with
each other, so the order of their execution is irrelevant. The above expression can be
decomposed further as

[(9, 13) ◦ (5, 9) ◦ (1, 5)] ◦ (2, 10) ◦ (6, 14) ◦ [(11, 15) ◦ (7, 15) ◦ (3, 15)]

What does this tell us? First, the permutation is special and of type 4, since for all the
swaps (x, y) listed above we have y − x ≡ 0 (mod 4).

Let us turn our attention to the first 4-cycle which decomposes as (9, 13) ◦ (5, 9) ◦ (1, 5)

(note that these swaps no longer commute). We will show how to implement this 4-cycle
in 16 clock intervals. Let us choose to implement the (11, 15) swap in the circuit for this
purpose, for which we place scan-flip-flop-based byte registers in locations 10 and 14 as
shown in Figure 6.1. The only reason we chose these locations was that they are 4 places
apart. Later it would be easy to see that we could have chosen any 2 locations (x, x+ 4)

for this purpose.

The first task is to execute (1, 5). We do the rotate operation, denoted by r, a total of 6
times on the circuit, and so that bits arrive to positions shown in Figure 6.1(b). We now
invoke the scan functionality so that in the next cycle bytes 1, 5 would be in positions
10 and 14 as shown in Figure 6.1(c). Note that in doing so, we effectively execute the

107

The Area-Latency Symbiosis through Swap-and-Rotate

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4

5

6

7

8

9

10

11 15

14

13

12
0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10
0

1

2

3

4

5

6

7

8

9

10

11 15

14

13

12

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4

5

610

11 15

14

13

12

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

(a) (b) (c)

(d) (e) (f)

7

8

9

10

11

12

13

14

15

0

5

2

3

4

1

6

7

8

9

11

12

13

14

15

0

5

2

3

4

9

6

7

8

1

10

14

15

0

5

2

3

4

9

6

7

8

1

10

11

12

13

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

(g)

15

0

5

2

3

4

9

6

7

8

1

10

11

12

13

14

0

1

2

3

4 8 12

5

6

7

9 13

14

1511

10

0

2

3

4

6

7

8

10

11 15

14

12

(h)

5 9 13 1

Figure 6.1 – The contents of pipeline (a) initially, (b) after r6, (c) after θ ◦ r6, (d) after
r3 ◦ θ ◦ r6, (e) after θ ◦ r3 ◦ θ ◦ r6, (f) after r3 ◦ θ ◦ r3 ◦ θ ◦ r6, (g) after θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6,
(g) finally after r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6. Note the numbers in blue denote the byte index,
i.e corresponds to bi, and the subscripts in red denote the fixed register positions. As
explained in Figure 2.4, the yellow boxes denote the byte registers implemented with
scan flip-flops. Cyan and black arrows denote whether the operation θ or r is executed
respectively.

108

6.3. Generic Approach

permutation θ = r ◦ (11, 15). The next swap to be executed is (5, 9), which corresponds
to b1 ↔ b9 in the current state. By rotating 3 more times, we reach to the state in
Figure 6.1(d), where the bytes b1, b9 are in place to be swapped in the next cycle. After
executing θ at this point, we reach to the state in Figure 6.1(e). The final swap to be
performed is (9, 13), which as per the previous logic is swapping bytes b1 ↔ b13. Again
it is easy to see that performing θ ◦ r3 over the next 4 cycles gives us the position in
Figure 6.1(g), where all the bytes have now been swapped as required. We perform the
rotate operation once more to get the position in Figure 6.1(h), where all bytes are back
to the original position and the ShiftRows operation has been executed on the 1st row.
In effect, the permutation we performed is r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6, which takes 16 cycles.
Note that if we had chosen any other swap location of the form (x, x+ 4), it would still
be possible to do the above sequence of operations. For example if we had chosen the
swap (9, 13) instead of (11, 15), we would need to execute θ′ ◦ r3 ◦ θ′ ◦ r3 ◦ θ′ ◦ r8, where
θ′ = r ◦ (9, 13). This already takes 17 cycles and so all the bytes will be indeed swapped
correctly, but not return to their original positions as before. Conceptually, this means
that if the AES round is executed in 16 cycles, then a few of the swap operations of the
current round would take place in the next round, and we would have to tailor the other
operations in the pipeline accordingly.

Following the same logic, let us now try to do the swaps (2, 10) ◦ (6, 14) of the next row.
This time, let us choose two swap locations 8 places apart, in particular (5, 13). The
above swaps commute and so can be done in any order, so let us do (2, 6) first. After
r13, the bytes b2, b6 are in place for swapping, and in the next cycle we execute the scan
functionality to perform α = r ◦ (5, 13). After 3 more cycles of r, the bytes b6, b14 are in
place, and then we execute α again. Thus by executing α ◦ r3 ◦ α ◦ r13, we have again
already spent 18 cycles. As explained before, this indicates that at this point, the bytes
have again been correctly swapped in terms of their relative order in the pipeline and
that in terms of data flow in the circuit, some of the swaps of the current AES round
overflow into the next round.

The third set of swaps for the final row is (11, 15) ◦ (7, 15) ◦ (3, 15). We can construct this
sequence with 3 different swap locations also at distances 4, 8 and 12 apart. Let us choose
the swaps (11, 15), (5, 13) as before and (2, 14) as the additional swap location. We have
to execute (3, 15) first, therefore we rotate once to bring the bytes b3 and b15 in place and
then execute β = r ◦ (2, 14). We will now use the swap locations (11, 15), (5, 13), which
have already been used to do swaps in the previous 2 rows. At this point b7 and after
the previous swap b3 are already in place and so we execute α on the location (5, 13) by
invoking its scan functionality. For the last remaining swap (11, 15), we have to wait till
b11 returns to location 11, which requires 13 more rotations after which we can invoke θ.

Putting it together. We have just put together a set of swap sequences that enable
the execution of the AES ShiftRows operation. We looked at each row separately and
so it is conceivable that the swap sequences be performed one after the other, thereby

109

The Area-Latency Symbiosis through Swap-and-Rotate

requiring a little over 48 cycles. But in the interest of latency, we wish to do them in 16
and if required within a few cycles of the next round. Since the k-cycles in each row that
we executed commute with each other, the swaps can actually be executed concurrently.
That is, following the above example, we

1. invoke scan functionality on the swap location (2, 14) at clock cycle 1 (assuming we
start with cycle 0);

2. invoke scan functionality on the swap location (5, 13) at clock cycles 2, 13, 17;

3. invoke scan functionality on the swap location (11, 15) at cycle 6, 10, 14, 16.

The point is that since the k-cycles commute, we execute the swaps concurrently on
the given locations in 18 continuous cycles (numbered 0 to 17) and still achieve the
ShiftRows functionality. Indeed it is a matter of a simple arithmetic exercise to see
that the arrangement of bytes obtained after executing the above sequence of swaps
concurrently in 18 cycles results in ShiftRows off by 2 extra rotations.

We have seen that we can execute AES ShiftRows and more generally any permutation of
type 4, by judiciously choosing swap locations at distances 4, 8, 12 and tailoring the swap
sequences around it. What about the other operations like SubBytes and MixColumns?
That is where the engineering challenge lies. Since these are substitution type operations,
they have to be accommodated in the pipeline preferably when the scan functionalities
of the registers are not being invoked. There are of course precedence issues a designer
would have to deal with, for example, the SubBytes and ShiftRows in any round must
precede the MixColumns. Can this technique be applied to other block ciphers in general?
For block ciphers that employ some kind of byte/nibble/word-based swap operations
in their permutation function, the answer is affirmative. For example, SKINNY has a
permutation function given by

(4, 5, 6, 7) ◦ (9, 11) ◦ (8, 10) ◦ (12, 15, 14, 13)

This is a permutation of type 1, and has a similar form with AES, so it takes modest
effort to construct it using swaps, in the same fashion explained above. For block ciphers
such as GIFT that employ bit-based permutation function, the technique becomes slightly
more involved.

From byte to bit-serial. When we reduce the datapath to 1 bit, we can no longer
swap 2 bytes in one cycle and it would take exactly 8 cycles for every byte swap. At the
bit level, ShiftRows of AES is essentially the composition of the following permutations
over the set [0, 127] for all k ∈ [0, 7]:

(8+k, 104+k, 72+k, 40+k)◦(16+k, 80+k)◦(48+k, 112+k)◦(24+k, 56+k, 88+k, 120+k)

110

6.4. AES

As it can be seen from this expansion, at the bit level, everything scales by a factor of
8. At the byte level, we used the sequence r ◦ θ ◦ r3 ◦ θ ◦ r3 ◦ θ ◦ r6 to execute 4-cycle
(1, 13, 9, 5) with the swap located at (11, 15). At the bit level, let us choose the swap
locations (88, 120), located 32 places apart. Using the same logic as before, it is easy to
see that r8 ◦θ81 ◦r24 ◦θ81 ◦r24 ◦θ81 ◦r48 can realize

⋃7
k=0(8+k, 104+k, 72+k, 40+k), where

θ1 = (88, 120) ◦ r (with
⋃

denoting the composition operation). Similarly by choosing
swap locations that are 64 and 96 places apart, we can permute the other rows using the
same multiply-by-8 principle. Similarly the SKINNY permutations can be designed for
the bit-serial datapath with swap locations 8, 16 and 24 places apart.

6.4 AES

For the rest of this section, we assume familiarity with the round function and the key
scheduling algorithms of AES [NIS01], which is outlined in Section 2.2.1. Our circuit
simply consists of the following components in the main hierarchy: (1) a state pipeline,
(2) a key pipeline, (3) a controller, (4) a shared S-box.

6.4.1 State Pipeline

The state in our design uses the following components/techniques:

• nibble-level MixColumns circuit introduced by Jean et al. [JMPS17],

• the smallest known AES S-box “bonus” from Maximov and Ekdahl [ME19].

Given that state and key bits are stored in a pipelined fashion, one can easily notice that
AddRoundKey can be performed without much hassle as long as each of the state and
key pipelines produces the correct bit per clock cycle. Hence, the main challenges on the
state pipeline part is to (1) execute all SubBytes, ShiftRows, MixColumns operations
simultaneously, (2) complete the operations in 128 clock cycles, while (3) following the
standard ordering of bits for the plaintext and the key. Below, we first describe each layer
separately, and show how we can fuse them into one operation that executes over the
state pipeline continuously.

6.4.2 ShiftRows with Swaps

Assume that the 128-bit pipeline is defined in the same fashion as in Section 2.3, i.e. the
bits are loaded into FF127 and they are flushed out by FF0. We use three swap operations
to execute the ShiftRows layer: (80, 112), (56, 120) and (25, 121). The timetable for
scheduling these swaps are given in Table 6.5. Below, we explain how we came up with
these swap sequences and the mechanism in which they work for shifting rows correctly.

111

The Area-Latency Symbiosis through Swap-and-Rotate

row: 1 1 5 9 D 15 9 D 15 9 D 15 9 D

2 6 A E 26A E 2 6A E

3 7 B F 37 BF F 7B 3

row: 2

row: 3

Figure 6.2 – The transition diagram for rows 1, 2, 3; where the colored cells denote the
recently modified values. Note that there are three distinct swap operations, with distance
0, 1 and 2 cells in-between.

Table 6.5 – The timetable of operations for bit-serial AES encryption.

pipeline operation active cycles

state swap (80, 112) [56, 64) ∪ [88, 96) ∪ [120, 127] ∪ [8, 16)
swap (56, 120) [88, 96) ∪ [120, 127] ∪ [0, 8)
swap (25, 121) {127} ∪ [0, 6]

load S-box {8k + 7 : k ∈ [0, 15]}
load Mix Col. [32, 40) ∪ [64, 72) ∪ [96, 104) ∪ [0, 8)

key swap (96, 128) [0, 8)
swap (40, 72) [56, 64)
load S-box {112} ∪ {120} ∪ {0} ∪ {8}
key XOR [0, 96)
add RC (lookup table)

For simplicity, let us forget about the pipeline and shift operations for the moment, and
focus on the nature of ShiftRows in the 16-byte state. We try to express ShiftRows in
terms of byte swaps. Suppose that the values contained in the state are the hexadecimal
characters 0, 1, . . . ,F. Considering the standard byte arrangement for loading the initial
data [NIS01], row 0 contains the values 0, 4, 8,C; row 1 contains the values 1, 5, 9,D etc.
We then devise a sequence of swap operations over the rows 1, 2, 3 to perform ShiftRows.
Our three distinct swaps are denoted with distinct colors in Figure 6.2. This figure shows
the movement of the bytes as they arrive to their final position implied by ShiftRows.

We point out two important observations: (1) each byte-swap operation can be executed
by a bit-swap circuit through 8 consecutive calls interleaved by shift operations, (2) the
swap operations denoted with the same color can actually be executed by a single swap
operation as long as it is enabled in the correct clock cycle. Therefore, the choice of swaps
and the timetable in Table 6.5 are straightforward extensions of this example into the
128-bit state pipeline.

To help understand how the structure helps perform the ShiftRows operation, we note
that as the pipeline is always active, the shift operation is performed in every clock cycle.
To additionally perform the swap 80 ↔ 112, in any clock cycle, we need to place scan

112

6.4. AES

flip-flops at locations 79 and 111 (and wire the output of 80 to the input of 111; wire the
output of 112 to the input of 79) as is shown in Figure 6.3. So assuming that the bits
indexed 0 to 127 enter the pipelines through the location 127, at clock cycle k ≤ 127, the
pipeline stores exactly k bits. For instance, in the 56-th clock cycle, the bits indexed 8, 40
are at locations 80, 112 respectively. Enabling swaps for cycles 56 to 63 therefore swaps
bits 8, . . . , 15 with 40, . . . , 47, which are essentially bytes indexed by 1 and 5. It can be
verified without difficulty that performing the same swap in cycles [88, 96) actually swaps
bytes 1 and 9. This exactly follows the explanation in Section 6.3 using (80, 112) as swap
locations instead of (88, 120). Similarly the same swap in cycles [120, 127) swaps bytes
1 with 13, which completes the ShiftRows operation on row 1. It is not too difficult to
verify that the other swaps at cycles as listed in Table 6.2 faithfully perform the remaining
ShiftRows operations.

6.4.3 The Nibble MixColumns

The nibble MixColumns was introduced by Jean et al. [JMPS17]. The multiplication
over a single column is completed over 8 clock cycles, updating each nibble at a time. To
simplify, we first represent a single column of bytes as 8 vertical nibble vectors as below.
Namely, from the pipeline given in Figure 6.3, the vectors Mi are defined for 0 ≤ i ≤ 7 as
below:

Mi :=




FFi
FFi+8

FFi+16

FFi+24


 R(M0) :=




FF8
FF16
FF24
FF0




The nibble MixColumns architecture employs an additional set of 4 flip-flops to help
with the serialized computation of this functionality. Define the vector M8 to denote
this additional internal 4-bit storage this architecture employs. During its 8 clock cycle
operation, these flip-flops are used to keep the value of the leftmost bit of each one of the
four bytes. We define a function upward rotation R that rotates the elements in a given
vertical matrix by one position, as exemplified above. The circuit essentially performs
the following sequence of operations to derive the new value of Mi for each i = 0, 1, . . . , 7,
starting from i = 0 respectively:

• if i = 0, store M8 ←M0 before any of the following computation,

• update Mi ← R(Mi)⊕R2(Mi)⊕R3(Mi)⊕Mi+1 ⊕R(Mi+1),

• if i ∈ {3, 4, 6}, further update Mi ←Mi ⊕M8 ⊕R(M8).

In other words, at each clock cycle, based on the internal 7-bit counter, we can execute
a single slice of the previous computation. In total, it takes 8 clock cycles for a single

113

The Area-Latency Symbiosis through Swap-and-Rotate

0

8

16

24 56 88

96

12095

119112

111104

103

Mix Column

55 8748

40

32

80

72

64 71

79

7

15

23

31 63

47

39

0

8

24 56 88

96

120 12795

119112

111104

103

55 8748

40

32

80

72

64 71

79

7

15

31 63

47

39

KEY

k

k

PT

s

k

FF{0,1,8,9,16,17,24,25}

S-box ports Mix Column ports swaps (state) swaps (key)

16

S1 S2 S3 S4 S5 S6 S7

23

rc

FF24

S0

FF16

FF0

FF32

S1 S2 S3 S4 S5 S6S0 S7

s127

Figure 6.3 – The state (above) and key (below) pipelines of AES-128 encryption with
colored scan flip-flops. S-box output ports are denoted with S0||S1|| . . . ||S7.

column, and 32 clock cycles for the whole MixColumns layer. This serial circuit can be
realized with 8 XOR, 8 NAND gates and 4 flip-flops (see Figure 1 of [JMPS17]).

6.4.4 Combined State Pipeline

In the controller, the circuit contains an 11-bit counter to keep both the round (4-bit)
and the phase (7-bit). We split this counter into two parts and refer to them respectively
by variables 0 ≤ round ≤ 10 for the upper 4-bit and 0 ≤ count ≤ 127 for the lower 7-bit.

In contrast to previous work [JMPS17], we follow the standard ordering of bits in our
implementation. That is given a plaintext and a key, the bits are loaded into the circuit
starting from the leftmost bits, and following the natural order [NIS01]. This becomes a
crucial aspect of a block cipher implementation, if it is meant to be used in a mode of
operation that needs to comply with a fixed standard.

At the beginning of its operation, the 11-bit counter is reset to zero. During initialization,
i.e. round = 0, the white-colored MUXes in Figure 6.3 are configured so that the next bit
s of the state is received from the input port PT but after the XOR is performed with
KEY, which is also being loaded at the same time. For round > 0, we select the state bit
to be loaded from the exit of the state pipeline.

114

6.4. AES

SubBytes. Meanwhile, we proceed with executing the SubBytes layer, by enabling the S-
box at every 8-th cycle. More precisely, the S-box is configured to take FF121,FF122, . . . ,FF127
and s as input, and the scan flip-flops FF120, . . . ,FF127 are instructed to load the output
from the S-box if count mod 8 = 7.

ShiftRows. Starting from count = 56, the swap operations become active. Many of the
bits need to make a couple of jumps before they are located into their ultimate positions
implied by ShiftRows, as demonstrated in Figure 6.2. Hence, position-wise, many bits
are incorrectly located and look garbled as they pass through flip-flops FF24, . . . ,FF120.
Nonetheless, as soon as they exit the last swap position FF24, they are guaranteed to be
in their final position. See Table 6.5 to notice that the last swap operation executed on a
layer actually happens when count = 15 in the next round. In other words, performing
ShiftRows over the i-th state uses the last 72 cycles of the round i and the first 16 cycles
of the round i+ 1, and it is not aligned with the counter round itself .

MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for
i ∈ {0, 1, 8, 9, 16, 17, 24, 25}, and the output ports are input to the exit MUX of the
pipeline and FF7,FF15,FF23 respectively. The MixColumns of round i is performed at
round = i+ 1 and it is active during 0 ≤ count mod 32 ≤ 7, except the last round where
MixColumns must be skipped.

Resolving overlaps. Note that there are two clock cycles, i.e. count values, during
which two operations modify the same FF simultaneously in Table 6.5. First, at clock
cycle 127 both S-box and swap (25, 121) attempts to overwrite FF120. Here, the operation
precedence is given to the S-box (as SubBytes comes before ShiftRows), meaning that
the leftmost output bit of the S-box is fed to the swap operation (instead of FF120). A
second overlap occurs when count = 3, as MixColumns circuit attempts to read FF25
before its value is updated correctly by the swap (25, 121). Here, the precedence is given
to the swap operations, meaning that the output of the swap operation is fed as input to
MixColumns circuit (instead of FF25).

6.4.5 Key Pipeline

Suppose that K0,K1, . . . ,K15 represent the key bytes of a particular round. Then the
next round key sequence K16, . . . ,K31 is computed as follows:




K16 K20 K24 K28

K17 K21 K25 K29

K18 K22 K26 K30

K19 K23 K27 K31


←




K0 K4 K8 K12

K1 K5 K9 K13

K2 K6 K10 K14

K3 K7 K11 K15


⊕




S-box(K13)⊕ RC K16 K20 K24

S-box(K14) K17 K21 K25

S-box(K15) K18 K22 K26

S-box(K12) K19 K23 K27




where RC denotes the round constant byte.

115

The Area-Latency Symbiosis through Swap-and-Rotate

In summary, the first column requires special treatment, because it involves S-box calls,
and the remaining three columns can be updated smoothly (by simply XORing with a
neighboring bytes). In particular, one can notice the disarrangement in the update of the
first column, as it takes the current last columns bytes with a downward rotation (by
one byte). If we implement this in a straightforward fashion by updating each byte when
they arrive to position 0, we would have to choose the input of the S-box either from the
position 13 (for computing K16, K17, K18) or 9 (for computing K19). This means that
we would have to put an extra 8-bit MUX to choose which value needs to be fed to the
S-box. Instead, we decided to temporarily move the byte K12 to position 13 before it is
fed to S-box, and then return back to its original position after the S-box operation is
done. Therefore, the pipeline performs the following operations in sequence:

• In the first 8 clock cycles, we activate the swap (96, 128) so that the key byte K12 is
temporarily moved such that it comes after K15. Here, FF128 actually refers to the
new key bit that is about to be loaded into the key pipeline. With this operation,
the key pipeline contains K13,K14,K15,K12, in given order. Hence, it respects the
order they are being used to update the first key column.

• In clock cycles 112, 120 (of the current round) and 0, 8 (of the next round); the S-box
is used by the key pipeline. During these cycles, the S-box reads K13,K14,K15,K12

from FF120, . . . ,FF127 in given order. The output from the S-box is XORed with
FF16, . . . ,FF23 and the result is loaded into FF15, . . . ,FF22.

• The round constant is added as the bit FF24 is loaded into FF23. We use a lookup
table to decide when the round constant bit is enabled. In total, this bit is enabled
16 times during the whole encryption.

• During the clock cycles [56, 64), we activate the swap (40, 72) to return K12 back
to its original relative position. Hence the internal ordering of the bytes becomes
K12, K13,K14,K15 again.

• For the rest of the key bits, we handle the key scheduling by activating FF31 ←
FF0 ⊕ FF32 during the clock cycles [0, 96).

Table 6.6 tabulates the synthesis results for this AES circuit under 5 different standard
cell libraries.

6.4.6 8-bit Datapath

As already stated, there are several implementations of AES with a byte-serial datapath
that can execute one AES round in 21 cycles [MPL+11, BBR16a]. Since it is not possible
to implement the circuit in less than 20 cycles if the number of S-boxes is limited to
one, this represents a close-to-optimal latency for this datapath. However, note that

116

6.4. AES

Table 6.6 – Synthesis figures for the AES-128 encryption-only circuits.

Library Area Power (µW) Latency (cycles) Energy Throughput
(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)

1-bit
STM 90 nm 5562.6 1267 73.6 128 1408 10.4 13.44
UMC 90 nm 5016.8 1600 65.2 128 1408 9.2 12.53
TSMC 90 nm 4692.2 1663 56.1 128 1408 7.9 14.50
NanGate 15 nm 441.8 2247 18.4 128 1408 2.6 293.89
NanGate 45 nm 1575.0 1974 143.0 128 1408 20.1 45.87

8-bit
STM 90 nm 7838.0 1785 104.5 16 176 1.8 112.96
UMC 90 nm 6917.2 2206 85.6 16 176 1.5 115.60
TSMC 90 nm 6360.1 2256 68.9 16 176 1.2 121.89
NanGate 15 nm 564.2 2870 23.1 16 176 0.4 2160.68
NanGate 45 nm 2022.9 2535 192.4 16 176 3.4 376.94

these two circuits adopt a non-standard, row-first arrangement of bytes. One of our goals
therefore was to design a circuit that uses standard byte ordering. As there already exists
a 21-cycles-per-round circuit that achieves close to optimal latency, we did not attempt to
design one that also achieves 20 cycles per round. Instead, we focus on an implementation
that closely matches our bit-serial circuit, and achieves one round in 16 cycles, by using 2
S-box circuits.

As this circuit closely resembles the bit-serial circuit, all the calculations of swap locations
and the time intervals when the swap functionality is invoked basically scale by a factor
of 8. It is best to summarize it using the following salient points:

• The circuit has 32 byte-registers Reg0 to Reg15 and Key0 to Key15, and we use the
following swap operations to implement ShiftRows: (a) (9, 13) in cycles 7, 11, 15,
0, (b) (6, 14) in cycles 11, 15, 0, and (c) (2, 14) in cycle 0.

• We use a {0, 1}32 → {0, 1}32 MixColumns circuit for this implementation. We
chose to use the MixColumns implementation with 92 XOR gates from Maximov
[Max19], which has the lowest gate count known in the literature. The operation
is performed in cycles 0, 4, 8, 12. The inputs are taken from the byte registers in
the first column and written in registers 1, 2, 3, 15 in the order from MSB to LSB.
This closely resembles the bit-serial circuit.

• The key addition and S-box are done in every cycle.

• The key pipeline uses the swaps (11, 15) in cycle 0 and (4, 8) in cycle 7. The column
addition in the key update is done by calculating Key3 ← Key0⊕ Key4, in cycles 0

to 11.

117

The Area-Latency Symbiosis through Swap-and-Rotate

Table 6.7 – The timetable of operations for bit-serial SKINNY-128-384 encryption circuit.

pipeline operation active cycles

state swap (112, 120) [112, 120) ∪ [120, 127] ∪ [0, 8) ∪ [64, 72)
swap (104, 120) [64, 72) ∪ [88, 96) ∪ [96, 104)
swap (96, 120) [64, 72)

load S-box {8k : k ∈ [0, 15]}
rc addition. (lookup table + LFSR)

load Mix Col. [0, 32)

tweakey 1,2,3 swap (56, 120) [72, 127] ∪ [0, 8)
swap (48, 56) [120, 127]
swap (24, 56) [112, 120) ∪ [120, 127] ∪ [0, 8)
swap (8, 24) [120, 127] ∪ [0, 8) ∪ [24, 32)

tweakey 2 swap (0, 1) [0, 6] ∪ [8, 14] ∪ [16, 22] ∪ [24, 30] ∪ [32, 38] ∪ [40, 46] ∪ [48, 54] ∪ [56, 62]
LFSR XOR {8k : k ∈ [0, 7]}

tweakey 3 LFSR (8-bit) {8k : k ∈ [0, 7]}

Table 6.6 tabulates the synthesis results for the 8-bit circuit for the same 5 different
standard cell libraries.

6.5 SKINNY

SKINNY provides six different variants [BJK+16]. In this thesis, we consider the variants
that are used by NIST LWC candidates, i.e. these are the members with 128-bit block
size, as given in Table 6.1. In these variants, the tweakey size is variable, i.e. it can consist
of 128z bits for z = 1, 2, 3. These three versions are SKINNY-128-128, SKINNY-128-256
and SKINNY-128-384 respectively.

From circuit designer perspective, SKINNY is quite similar to AES, but it employs more
lightweight operations for the round function. Prominently, S-box and MixColumns
can be realized with much smaller circuitry compared to AES (see Appendix A.1.3).
The round function consists of SubCells, AddConstants, AddRoundTweakey, ShiftRows,
MixColumns. For the finer details of these layers, we refer the reader to Section 2.2.2.

Our design follows a similar architecture to that of AES. The circuit simply consists of the
following parts in the main hierarchy: (1) a state pipeline (which includes a dedicated S-
box), (2) a key pipeline, (3) a controller. Below, we will explain the 1-bit implementation,
and modifying the circuit into 8-bit implementation is quite straightforward.

6.5.1 Combined State Pipeline

In the controller, the circuit contains a 13-bit counter to keep both the round (6-bit) and
the phase (7-bit). We split this counter into two parts and refer to them respectively by

118

6.5. SKINNY

variables 0 ≤ round ≤ 56 for the upper 6 bits and 0 ≤ count ≤ 127 for the lower 7 bits.

Because SKINNY is already designed with hardware-friendliness in mind, we load the bits
into the circuit starting from the leftmost bits, by following the standard [BJK+16]. In our
implementations the key blocks and the plaintext are loaded simultaneously and completed
in 128 cycles. This applies to all three versions of SKINNY-128-128, SKINNY-128-256,
SKINNY-128-384.

At the beginning of its operation, the 13-bit counter is reset to zero. Then during
initialization, i.e. round = 0, the plaintext is loaded through 1-bit input port, and the key
is loaded through z-bit input port into their respective pipelines without modification.
Each tweakey block has its own dedicated input port. These ports are denoted with PT
(for plaintext) and KEY1, KEY2, KEY3 for the tweakey. Below, we describe the layers
of operations executed on the state pipeline, in an order observed by the incoming bits.
The high-level view of the circuit is given in Figure 6.4.

SubCells. SubCells layer is executed by enabling the S-box at every 8-th cycle. More
precisely, the S-box is configured to read FF120,FF121, . . . ,FF127 as input, and the scan flip-
flops FF119, . . . ,FF126 are instructed to be loaded with the S-box output if count mod 8 =

0.

AddConstants. The round constants are added right after the S-box operation. An
XOR gate is placed between FF119 and FF120, and the round constant bit rc is added.
We use a 7-bit LFSR circuit (not shown in the figure) to produce the round constant bit.

AddRoundTweakey. The key bits are added at the same position with the round
constant bit, i.e. between FF119 and FF120. In order to synchronize this with the key
pipeline, the key bits k0, k1, k2 are read from FF120 of the key pipeline. The key addition
is active during 8 ≤ count < 72. This corresponds to adding the first half of each tweakey.

ShiftRows. This layer is executed with 3 swap operations, similar to AES, and the
timetable of swaps is given in Table 6.7. Position-wise, bits are incorrectly located and
look garbled as they pass through flip-flops FF95, . . . ,FF119, but as soon as they exit the
last swap position FF95, they are guaranteed to be in their intended final position.

MixColumns. The input ports to the nibble MixColumns circuit are flip-flops FFi for
i ∈ {0, 32, 64, 96}, and the output ports are input to the exit MUX of the pipeline and
FF31,FF63,FF95 respectively. The MixColumns operation is active during the first 32
clock cycles of each round.

Resolving overlaps. Note that during clock cycles 64 ≤ count < 72 three swaps
(112, 120), (104, 120), (96, 120) are active at the same time and overlap at the same

119

The Area-Latency Symbiosis through Swap-and-Rotate

0

96 120 127

95

112111104103

Mix Column

55

87

484032

807264 71 79

7

4739

KEY1

PT

s

s

k1 ⊕ k2 ⊕ k3

{0, 32, 64, 96}st

S-box ports Mix Column ports

88

16 238 15

56 63

24 31

0

96 120 127

95

119112111104103

55

87

484032

807264 71 79

7

4739

88

16 238 15

56 63

24 31

119 rc

KEY2

0

96 120 127

95

119112111104103

55

87

484032

807264 71 79

7

4739

88

16 238 15

56 63

24 31

KEY3

0

96 120 127

95

119112111104103

55

87

484032

807264 71 79

7

4739

88

16 238 15

56 63

24 31

LFSR ports

k1

tk1

tk1

k2

tk2

tk2

k3

tk3

tk3

Figure 6.4 – The state (above) and key (T K1, T K2 and T K3 respectively) pipelines of
SKINNY encryption.

120

6.6. GIFT∗

flip-flop FF120. The order of execution here is (96, 120), (104, 120) and (112, 120), in given
order.

6.5.2 Key Pipeline

SKINNY can have up to three blocks of tweakey, referred to as T K1, T K2, T K3 [BJK+16].
The key schedule algorithm is quite similar in all three key blocks. More precisely, suppose
that K0,K1, . . . ,K15 represent the key bytes of a particular tweakey block. Then the
next round key sequence K16, . . . ,K31 is computed as follows:




K16 K17 K18 K19

K20 K21 K22 K23

K24 K25 K26 K27

K28 K29 K30 K31


←




Li(K9) Li(K15) Li(K8) Li(K13)

Li(K10) Li(K14) Li(K12) Li(K11)

K0 K1 K2 K3

K4 K5 K6 K7




where the operation Li are 8-bit permutations given below:

L1(x0||x1||x2||x3||x4||x5||x6||x7) := x0||x1||x2||x3||x4||x5||x6||x7
L2(x0||x1||x2||x3||x4||x5||x6||x7) := x1||x2||x3||x4||x5||x6||x7||(x0 ⊕ x2)
L3(x0||x1||x2||x3||x4||x5||x6||x7) := (x1 ⊕ x7)||x0||x1||x2||x3||x4||x5||x6

Therefore, our key pipelines do the following operations in sequence. First, we swap the
first and the last eight bytes by using the swap (56, 120). Then we perform the local byte
permutations on the upper half (i.e. the first 8 bytes) of the key through swaps (48, 56),
(24, 56), (8, 24). Finally we apply the 8-bit permutation L2 through another swap (0, 1)

for T K2, and use a dedicated 8-bit LFSR circuit for L3 in T K3.

6.5.3 8-bit

The 8-bit implementation is in fact simpler than 1-bit, because circuitry such as LFSR,
S-box are already compatible with the data path size. We only need to add extra gates for
swaps, e.g. extend each single swap into byte swap, and duplicate circuit for MixColumns.
The timetable is also updated so that each consecutive activity in 8 clock cycles are
squeezed into one clock cycle. Table 6.8 tabulates the synthesis results for the 1/8-bit
circuits for 5 different standard cell libraries.

6.6 GIFT∗

We will be focusing our efforts on the bit-sliced design of the GIFT block cipher, as used
in the NIST LWC candidates GIFT-COFB and SUNDAE-GIFT [BCI+19, BBP+19]. We
denote it by GIFT∗ as it differs from the original construction in the way data bits are
organized (the implementation of the regular GIFT circuit is given in Section 6.7). In this

121

The Area-Latency Symbiosis through Swap-and-Rotate

Table 6.8 – Synthesis figures for the SKINNY encryption-only circuits.

Library Area Power (µW) Latency (cycles) Energy Throughput
(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)

SKINNY-128-128 1-bit
STM 90 nm 4697.7 1070 51.47 128 5248 27.0 12.51
UMC 90 nm 4249.3 1355 52.08 128 5248 27.3 10.72
TSMC 90 nm 4022.6 1425 47.12 128 5248 24.7 14.36
NanGate 15 nm 391.7 1992 15.89 128 5248 8.3 258.45
NanGate 45 nm 1394.9 1748 122.06 128 5248 64.1 38.77

SKINNY-128-128 8-bit
STM 90 nm 5820.6 1326 62.44 16 656 4.1 71.02
UMC 90 nm 5233.2 1669 61.38 16 656 4.0 58.52
TSMC 90 nm 4812.2 1706 51.67 16 656 3.4 72.69
NanGate 15 nm 453.1 2304 18.62 16 656 1.2 979.38
NanGate 45 nm 1617.8 2022 146.17 16 656 9.6 209.08

SKINNY-128-256 1-bit
STM 90 nm 6642.7 1513 75.30 128 6272 47.2 11.93
UMC 90 nm 6043.9 1927 75.70 128 6272 47.5 10.52
TSMC 90 nm 5730.9 2030 69.25 128 6272 43.4 14.36
NanGate 15 nm 561.0 2853 22.99 128 6272 14.4 232.60
NanGate 45 nm 1996.9 2502 175.28 128 6272 109.9 38.13

SKINNY-128-256 8-bit
STM 90 nm 8252.9 1880 90.47 16 784 7.1 59.64
UMC 90 nm 7463.7 2380 88.64 16 784 6.9 43.27
TSMC 90 nm 6864.1 2434 75.21 16 784 5.9 60.42
NanGate 15 nm 658.5 3350 27.19 16 784 2.1 1033.79
NanGate 45 nm 2338.7 2923 211.66 16 784 16.6 166.14

SKINNY-128-384 1-bit
STM 90 nm 8631.5 1966 99.36 128 7296 72.5 8.25
UMC 90 nm 7895.7 2518 99.73 128 7296 72.8 9.94
TSMC 90 nm 7465.2 2645 91.38 128 7296 66.7 14.82
NanGate 15 nm 733.7 3732 30.22 128 7296 22.0 211.46
NanGate 45 nm 2603.6 3263 229.10 128 7296 167.2 38.77

SKINNY-128-384 8-bit
STM 90 nm 10674.2 2431 119.60 16 912 10.9 50.84
UMC 90 nm 9670.6 3084 116.40 16 912 10.6 38.61
TSMC 90 nm 8896.9 3155 99.29 16 912 9.1 68.41
NanGate 15 nm 859.5 4372 35.72 16 912 3.3 744.33
NanGate 45 nm 3060.3 3825 277.45 16 912 25.3 143.14

122

6.6. GIFT∗

variant, the cipher state is reordered and interpreted as a two-dimensional array, i.e. four
32-bit segments S0, S1, S2, S3 such that




S0
S1
S2
S3


 =




s3 s7 . . . s127
s2 s6 . . . s126
s1 s5 . . . s125
s0 s4 . . . s124




where s0s1 . . . s127 are the state bits. Further details are given in Section 2.2.5.

6.6.1 1-bit Datapath

In this section, we present our 1-bit swap-and-rotated GIFT∗ architecture in which each
round function computation is performed in exactly 128 cycles.

State Pipeline

The bit-wise nature of both the GIFT∗ and GIFT permutation complicates matters in a
swap-and-rotate setting, since each state bit needs to be moved to its designated position
individually. As a consequence, a simple solution with few swaps as devised for the AES
ShiftRows procedure, detailed in Section 6.4.2 is not achievable.

Nevertheless, the GIFT∗ permutation can be partitioned into three layers each can be
generated with three separate swaps, thus, in total, we allocate nine swaps.

1. (FF31,FF30), (FF31,FF28), (FF31,FF29).

2. (FF28,FF24), (FF28,FF26), (FF28,FF26).

3. (FF22,FF4), (FF22,FF10), (FF22,FF16).

Due to the column-wise application of the substitution layer in GIFT∗, the S-box ports in
the state pipeline are FF31, FF63, FF95 and FF127 which are active during the cycles 96 to
127. A graphical depiction of the GIFT∗ state pipeline is given in Figure 6.5.

Key Pipeline

The bit-sliced interpretation of GIFT∗ significantly simplifies how the 64-bit round keys
are extracted in each round since they are now mixed into a continuous stretch of the
cipher state. For this we can assume, without loss of generality, that the master key K is

123

The Area-Latency Symbiosis through Swap-and-Rotate

0

8

16

24 56 88

96

120 12795

119112

111104

103

55 8748

40

32

80

72

64 71

79

7

15

23

63

47

39
s

S-box Ports Layer 1

s

pt

rk

rc Layer 2 Layer 3

31

Figure 6.5 – 128-cycle, bit-serial GIFT∗ round function implementation using nine swaps.

loaded in the following order as to simplify the swapping algorithm.

K =




K0 || K1

K6 || K7

K2 || K3

K4 || K5


 ,

In this scenario, the 64-bit round keys K2||K3||K6||K7 are added to the block cipher
states during the cycles 32 to 96.

The swap sequence for the GIFT∗ key schedule is partitioned into four phases.

Phase 1 (Rotating the state). We rotate the entire key state by 64 positions to the
left. This operation can be achieved with a single swap during 64 active cycles. Preferably,
the transformation should occur concurrently with the addition of the round key into the
cipher state, i.e. we allocate FF0 and FF64 to perform the rotation during the cycles 32
to 96.

Phase 2 (Swapping the precedence). To achieve a full emulation of the 96-bit
rightward rotation of the key schedule, it is further necessary to swap the precedence of
the utilized round key halves, i.e. K2||K3 and K6||K7. This again only requires a single
swap during 32 cycles and can be performed subsequently to the first phase, hence we
allocate FF0 and FF96 for this second phase.

Phase 3 (Rotating K6). This transformation can been seen as a 14-bit leftward rotation
that can be achieved by composing three leftward rotations of magnitude 8, 4, and 2. The
position and the interval of those three swaps can be chosen relatively freely, as K6||K7

is not a part of the current round key, as long as they occur after the second phase has
terminated. To simplify the matter, we chose to perform them back-to-back during the
cycles 32 and 66. More concretely, the 4-bit rotation is done during the cycles 32 to

124

6.6. GIFT∗

Table 6.9 – The timetable of operations for bit-serial GIFT∗ encryption.

pipeline operation active cycles

state swap (31, 30) {8k + 7 : k ∈ [0, 15]}
swap (31, 28) {8k + 5 : k ∈ [0, 15]} ∪ {8k + 7 : k ∈ [0, 15]}
swap (31, 29) {8k + 5 : k ∈ [0, 15]}
swap (28, 24) {0, 1, 42, 43, 50, 51, 58, 59, 66, 67, 104, 105, 112, 113, 120, 121}
swap (28, 26) {6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (28, 22) {74, 75, 82, 83, 90, 91, 98, 99}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition [32, 96)
rc addition (lookup table)
load S-box [96, 128)

key swap (64, 128) [32, 96)
swap (32, 128) [96, 128]
swap (96, 100) [32, 44)
swap (84, 92) [44, 52)
swap (76, 78) [52, 66)
swap (96, 100) [48, 60)

44 using a swap at register FF95 and FF99. Subsequently, we perform the 8-bit rotation
during cycles 44 to 52 with the registers FF83 and FF91, followed by the 2-bit rotation
during cycles 52 to 66 using the registers FF75 and FF77.

Phase 4 (Rotating K7). Phase 3 is followed by a 4-bit leftward rotation of K7 that is
congruent to the 12-bit rightward rotation of the specification. This necessitates a single
swap of size 4 for which we can reuse the same swap as utilized in phase 3, i.e. FF99 and
FF95 during the cycles 48 to 60.

A summary of both the key schedule and round function swaps is tabulated in Table 6.9.

6.6.2 4-Bit Datapath

Analogous to the bit-serial implementation presented in the previous section, we now
describe the 4-bit-serial architecture that completes execution of a round in 32 clock
cycles.

125

The Area-Latency Symbiosis through Swap-and-Rotate

0

8

16

24 56 88

96

120 12795

119112

111104

103

55 8748

40

32

80

72

64 71

79

7

15

23

31 63

47

39

0
rk

Phase 1 Phase 2 Phase 3 (2, 4, 8 rotation) Phase 4

rk

key

Figure 6.6 – 128-cycle, bit-serial GIFT∗ key schedule implementation using five swaps.

State Pipeline

The 4-bit state pipeline is unlikely to be achieved by simple swaps and a concurrent
rotation as the substitution layer overwrites 4 non-adjacent bits FF31, FF63, FF95, FF127
(see Figure 6.5). Then it follows that the swaps performing the permutation must
necessarily be placed in the most significant quarter of the state pipeline and each 32-bit
row of the state has to be permuted in only 8 cycles. Furthermore since we employed 9
swaps, i.e. 18 scan flip-flops, in the bit-serial construct, we need at the least four times
this amount in the 4-bit case . This makes at least 72 MUXed flip-flops which significantly
complicates the placement of swaps.

A second difficulty arises due to the fact that the pipeline rotates four positions at a time,
thus the S-box taps are not constant but move further down the pipeline with every clock
cycle, requiring a significant number of multiplexers to differentiate the different taps.

In order to circumvent those complexities, we chose to equip the entire 128-bit state with
scan flip-flops and execute the permutation in the last cycle of the round while using 4
S-boxes in parallel to substitute 16 bits of the state during the cycles 24 to 31. Note that
a single GIFT∗ S-box can be synthesized in fewer than 20 GE, thus the overhead of using
four units is marginal and possibly still smaller than using multiplexers for the moving
S-box taps.

Key Pipeline

The 4-bit key pipeline can be seamlessly adapted from the 1-bit counterpart by simply
turning the single-bit swaps into nibble swaps, following the generic technique from
Section 6.3. As we had 5 swaps in the single-bit version, we now have 4× 5 = 20 swaps,
i.e. 40 scan flip-flops. In Table 6.10, we list the synthesis results for our 1-bit and 4-bit
GIFT∗ circuits.

In addition to these encryption circuits, the decryption circuits for all these block ciphers

126

6.7. GIFT

127

124

to

S S S S

to to tob b b b b bb b bb b b

a1a2a3a4 b1b2b3b4 c1 c2 c3 c4 d1d2d3d4

a1b2 c3d4 b1a2d3 c4 c1d2b3a4 d1 c2 a3b4

123

120

Permutation Layer

95

92

63

60

31

28

99

96

3

0

T

T

PT
to to to

k

rc

Figure 6.7 – 4-bit GIFT∗ state pipeline. Registers are marked in yellow.

Table 6.10 – Synthesis figures for 1-bit and 4-bit GIFT∗ encryption-only circuits.

Library Area Power (µW) Latency (cycles) Energy Throughput
(µm2) (GE) @ 10 MHz round total (nJ/128-bit) (Mbit/s)

1-bit
STM 90 nm 4863.5 1108 48.7 128 5248 25.5 9.09
UMC 90 nm 4410.8 1332 49.8 128 5248 26.1 9.77
TSMC 90 nm 4176.5 1480 45.1 128 5248 23.7 12.51
NanGate 15 nm 402.3 2047 15.4 128 5248 8.1 178.92
NanGate 45 nm 1432.1 1791 122.3 128 5248 64.2 29.82

4-bit
STM 90 nm 6280.5 1430 61.4 32 1312 5.1 35.92
UMC 90 nm 5779.7 1779 60.9 32 1312 4.4 30.91
TSMC 90 nm 5135.6 1819 50.8 32 1312 4.3 38.93
NanGate 15 nm 481.5 2449 17.1 32 1312 1.9 664.60
NanGate 45 nm 1704.5 2130 152.9 32 1312 13.9 114.87

are also easy to construct. Most of the AEAD modes we implement are inverse-free,
therefore encryption-only circuits are sufficient for these candidates. However for a
complete discussion, we present some ideas on decryption in Section 6.9.

6.7 GIFT

The regular GIFT specification is significantly harder to transform into a low-latency
swap-and-rotate circuit due to the fact that the round key bits are not added to cipher
state in a continuous stretch. Namely, if U = K5||K4 and V = K1||K0 represent the
64-bit round key, then its individual bits are mixed into the state S as follows,

s4i+2 = s4i+2 ⊕ ui, s4i+1 = s4i+1 ⊕ vi, ∀i ∈ {0, . . . , 31}

127

The Area-Latency Symbiosis through Swap-and-Rotate

Table 6.11 – Synthesis figures for the bit-serial GIFT encryption circuit.

Library Area Power (µW) Latency (cycles) Energy Throughput
(µm2) (GE) @ 10 MHz round total (nJ) (Mbit/s)

STM 90 nm 5334.3 1215 51.3 128 5248 26.9 7.35
UMC 90 nm 4801.2 1531 51.8 128 5248 27.2 6.32
TSMC 90 nm 4507.3 1597 45.9 128 5248 24.1 8.61
NanGate 15 nm 430.5 2190 16.1 128 5248 8.4 146.92
NanGate 45 nm 1528.4 1915 131.8 128 5248 69.2 23.34

By reordering the key bits in a manner such that the bits of U and V exit the pipeline
during the correct cycles, we can reuse the rotation techniques to obtain a key schedule
with 6 different swaps. On the other hand, we can recall the intuition for the state
pipeline from Section 6.6.1, in order to generate the swap sequence for the GIFT round
function. The summary of all GIFT key schedule and round function swaps are tabulated
in Table 6.12.

6.8 AEAD Implementations

As standalone block ciphers are not ready-to-use primitives, they are usually wrapped
in a mode of operation. In this section, we investigate four NIST LWC candidates
from the second round which are bootstrapped via the improved 1-bit (and 4/8-bit)
implementations of AES, SKINNY and GIFT∗ presented in the previous sections. Namely,
these candidates are SUNDAE-GIFT, SAEAES, Romulus and SKINNY-AEAD [BBP+19,
NMMaS+19, IKMP19, BJK+19]. For all four schemes, we report the hitherto smallest
block-cipher-based authenticated encryption circuits in the literature.

The choice of these four particular candidates in our work is influenced by the observation
that the area of a block cipher is determined, to a large extent, by the amount of storage
elements, rather than how lightweight the round operations are. This is more evident when
one compares SKINNY-128-384, whose round function comprises lightweight operations,
to AES, whose S-box and MixColumns circuits are significantly larger. The former is
much larger, only because it requires large number of flip-flops to store the key.

Because an authenticated encryption scheme produces a tag besides the ciphertext blocks,
it is natural to expect a particular value that is initialized at the beginning and updated
repetitively after processing each new block of data. We refer to this value as the running
state. The running state is eventually used to compute the tag, so that all blocks
contribute to its value. From the area perspective, an important question is whether
storing the running state requires an extra register or not. For the chosen candidates, the
running state is actually not a separate value, but rather it is passed between consecutive
encryption calls. In other words, we can use the state register inside the block cipher to

128

6.8. AEAD Implementations

Table 6.12 – The timetable of operations for bit-serial GIFT encryption.

pipeline operation active cycles

state swap (39, 71) [0, 8) ∪ [8, 16) ∪ [16, 24) ∪ [121, 128)
swap (38, 22) [0, 9] ∪ [58, 73] ∪ [122, 127]
swap (98, 110) [10, 13] ∪ [34, 37] ∪ [54, 57] ∪ [74, 77] ∪ [98, 101] ∪ [118, 121]
swap (109, 85) [7, 10] ∪ [51, 54] ∪ [71, 74] ∪ [115, 118]
swap (108, 72) [4, 7] ∪ [68, 71]

∪{34, 35, 72, 73, 80, 81, 88, 89, 96, 97}
swap (121, 117) {16k + 5 : k ∈ [0, 15]} ∪ {16k + 13 : k ∈ [0, 15]} ∪ {16k + 15 : k ∈ [0, 15]}
swap (122, 114) {16k + 1 : k ∈ [0, 15]} ∪ {16k + 3 : k ∈ [0, 15]}
swap (123, 111) {16k + 1 : k ∈ [0, 15]}
swap (22, 4) {2, 3, 34, 35, 66, 67, 98, 99}
swap (22, 10) {4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123}
swap (22, 16) {6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71}

∪{82, 83, 92, 93, 102, 103, 114, 115, 124, 125}
key addition {4k + 1 : k ∈ [0, 31]} ∪ {4k + 2 : k ∈ [0, 31]}
rc addition (lookup table)
load S-box {4k + 3 : k ∈ [0, 31]}

key swap (120, 128) {4k : k ∈ [3, 16]} if round mod 4 = 0
{4k − 1 : k ∈ [3, 16]} if round mod 4 = 1
{4k + 1 : k ∈ [3, 16]} if round mod 4 = 2
{4k − 2 : k ∈ [3, 16]} if round mod 4 = 3

swap (112, 128) {1} ∪ {4k − 2 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 0
{4k : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 1

{1} ∪ {4k − 1 : k ∈ [5, 16] ∪ [21, 32]} if round mod 4 = 2
{4k + 1 : k ∈ [5, 16] ∪ [21, 31]} if round mod 4 = 3

swap (1, 128) {4k : k ∈ [1, 31]} if round mod 4 = 0
{0} if round mod 4 = 1

{4k + 2 : k ∈ [0, 31]} if round mod 4 = 3
swap (1, 33) {4k + 1 : k ∈ [0, 7]} if round mod 4 = 0

{4k + 3 : k ∈ [0, 7]} if round mod 4 = 1
{4k + 2 : k ∈ [0, 7]} if round mod 4 = 2
{4k : k ∈ [1, 8]} if round mod 4 = 3

swap (4, 5) {4k : k ∈ [0, 31]} if round mod 4 = 0
swap (2, 3) {4k : k ∈ [0, 31]} if round mod 4 = 3

129

The Area-Latency Symbiosis through Swap-and-Rotate

keep this value temporarily until the next encryption starts. It is precisely the reduction
in the storage area that yields the impressive area results for the four candidates.

In the special case of Romulus, which actually defines six different variants, we decided
to implement two members, the primary member N1 and its sibling N3 that is likely to
cost the smallest area in ASIC circuit. Romulus-N1 is larger than Romulus-N3, because
the latter favors the smaller SKINNY-128-256, while its other nonce-based siblings all use
SKINNY-128-384.

Another important detail about our AEAD implementations, which directly concerns
the hardware API, is that we assume the padding is done a priori to the AEAD call. In
other words, our implementations leave padding task to the caller, and assume that the
associated data and message bits are well aligned with the block boundaries. This is in
contrast to the CAESAR Hardware API, which assumes the padding as the responsibility
of the circuit [HDF+16]. Hence, our reported area figures should be carefully interpreted,
if one happens to compare them with other implementations which contain the padding
circuit. AEAD mode of operations generally treat the last, empty or partial blocks
specially through some allocated bits in the domain separator. Hence, when assuming
that the associated data and message are properly chopped into blocks and passed to the
circuit, information lost during the padding must also be passed along. In our lightweight
API, we use few input signals to indicate if the current data block must be specially
processed, e.g. whether the current data block is the last block of associated data, or
a padded block. The input and output ports of our hardware API are defined in the
following way and can be scaled for both 1/4/8-bit inputs:

• input_wire CLK, RST: System clock and active-low reset signals.

• input_vector KEY, NONCE: Key and nonce ports through which key/nonce are
introduced in the circuit in chunks of 1/4/8 bits.

• input_vector DATA: Unified data port from which both associated data and regular
plaintext blocks are loaded into the circuit in chunks of 1/4/8 bits.

• input_wire EAD, EPT: Single-bit signals that indicate whether there are no associ-
ated data blocks (EAD) or no plaintext blocks (EPT). Both signals are supplied
with the reset pulse and remain stable throughout the computation.

• input_wire LBLK, LPRT: Single-bit signals that indicate whether the currently
processed block is the last associated data block or the last plaintext block (LBLK),
and also whether it is partially filled (LPRT). Both signals are supplied alongside
each data block and remain stable until the next block is fed to the circuit.

• output_wire BRDY, ARDY: Single-bit output signals that indicate whether the
circuit has finished processing a data block and a new one can be supplied on

130

6.8. AEAD Implementations

the following rising clock edge (BRDY) or the entire AEAD computation has been
completed (ARDY).

• output_wire CRDY, TRDY: Single-bit output signals that indicate whether the CT
and TAG ports will have meaningful ciphertext and tag values starting from the
following rising clock edge.

• output_vector CT, TAG: Separate ciphertext and tag ports, via which the output
is available in chunks of 1/4/8 bits.

6.8.1 SUNDAE-GIFT

The SUNDAE-GIFT AEAD scheme was proposed by Banik et al. and is based on the
SUNDAE mode of operation, featuring GIFT∗ block cipher at its core [BBP+19, BBLT18].
It is a bare-bones construction that does not require any additional registers aside the
ones used within the block cipher. After the encryption of the init vector, each data block
is mixed into the AEAD state between the encryption calls. A field multiplication over
GF (2128) is applied after the last associated data has been added to the state. The same
multiplication is also performed for the last message block. The multiplication is either
×2 when the last AD or message block has been padded or ×4 whenever the last blocks
are complete without any padding. More formally, the multiplication ×2 is encoded as a
byte-wise shift and the addition of the most significant byte into other bytes of the state
such that if B0||B1|| . . . ||B15 represents the 16 bytes of the intermediate AEAD state
(with B0 being the most significant byte), we have that

2× (B0||B1|| . . . ||B15) = B1||B2|| . . . B10||B11 ⊕B0||B12||B13 ⊕B0||B14||B15 ⊕B0||B0,

and 4 × (B0||B1|| . . . ||B15) = 2 × (2 × (B0||B1|| . . . ||B15)). The tag is produced after
processing all AD and message blocks and the ciphertext blocks are generated by repro-
cessing the message blocks afterwards. A schematic of the SUNDAE-GIFT is depicted in
Figure 6.8.

The simplicity of SUNDAE-GIFT can be exploited in a bit-serial implementation to attain
a circuit with very low overhead in terms of area. In fact, except for the slight increase in
the control logic, the sole addition to the GIFT∗ circuit presented in Section 6.6 is the
field multiplication.

The multiplier can be achieved with two swaps (one for ×2, another for ×4) and one
XOR gate. More concretely, we allocate 128 rounds for the multiplication ×2 and ×4

during which the block cipher round function and key swaps are disabled. In other
words, while the ciphertext bits exit the last round function computation, we swap FF120
and FF0 during the cycles 8 to 127 which rotates the state by 8 positions to the left.
Similarly, FF112 and FF0 are swapped during the cycles 16 to 127 in order to execute the
16-bit rotation. Hence, in the worst case, we require 2× 128 = 256 additional cycles for

131

The Area-Latency Symbiosis through Swap-and-Rotate

EK EK × EK EK ×

EK EK EK

T CT1 CTm

M1 Mm

Mm||10∗M1ADa||10∗AD1X||0124

b b bb b b

b b b

Figure 6.8 – The high-level overview of SUNDAE-GIFT, which depicts the processing of m
message and a associated data blocks. X denotes a 4-bit parameter, whose value depends
on the length of the nonce and whether there are no AD or message blocks.

multiplications. In terms of latency, each new encryption call is loaded with the new
plaintext, while the ciphertext bits of the previous computation exit the pipeline. As a
consequence, the very first encryption operates over 41× 128 = 5248 cycles, while the
remaining encryption each take 40× 128 = 5120 cycles.

The 1-bit version of SUNDAE-GIFT can seamlessly be amended to a 4-bit datapath design
by changing the bit swaps to nibble swaps. After synthesis, the resulting SUNDAE-GIFT
architecture is the smallest authenticated encryption circuit at around 1200 GE for the
STM 90 nm process, which is only a 8 percent larger compared to the bit-serial GIFT∗

implementation presented in Section 6.6.

6.8.2 SAEAES

The SAEAES AEAD scheme was proposed by Naito et al. [NMMaS+19] and uses the AES
block cipher as the underlying encryption core. The SAEAES document offers a number
of parameters according to which the mode can be operated, but the primary candidate
among them is SAEAES128-64-128, which implies a key size of 128 bits, message/AD
blocks of 64 bits and a tag size of 128 bits. This effectively makes the primary mode of
rate 1/2, since 2 block cipher calls are required per 128 bits of message/AD. However,
the mode requires no additional state other than those required in the calculation of the
block cipher encryption and so a very compact implementation is possible.

We only summarize the details regarding the 1-bit implementation, as transforming it to
8-bit follows the generic technique outline in Section 6.3. A high-level description of the
mode of operation is presented in Figure 6.9. It is easy to see that this mode of operation
does not require additional storage other than the ones required in the block cipher. From
a circuit designer’s point of view, it is not difficult to implement the mode, as the only

132

6.8. AEAD Implementations

bb b bEK EK EK bb b bEK EK EK Tag

064

064

AD1 AD2

1 or 2

NADa

3

M1 CT1 Mm CTm

1 or 2

EK

Figure 6.9 – The high-level overview of SAEAES, which depicts the processing of m
message and a associated data blocks.

real challenge is to ensure that at the beginning of a particular encryption operation the
circuit feeds the correct input vectors to the block cipher circuit, which are as follows:

• Inpi = ADi||064⊕EK(Inpi−1) or AD1 (if i = 1) during the associated data processing
stage, where Inpi is the i-th input to the block cipher.

• Inpa = ADa||const64 ⊕ EK(Inpa−1) for the last AD block, where const64 denotes a
64-bit constant.

• IV = N ⊕ 012611 ⊕ EK(Inpa) before the processing of the plaintext begins, where
012611 corresponds to the number 3 encoded as 128-bit string and N denotes the
nonce.

• Inp′i = Mi ⊕ EK(Inp′i−1) during the plaintext processing stage, where Inp′i is the i-th
input to the block cipher during plaintext processing. It can also be seen that Inp′i
is also incidentally the i-th ciphertext block, and the tag is simply the outcome of
the final encryption call that the mode performs.

A bit-wise AES encryption core produces output 1 bit per clock cycle during the last 128
cycles of the encryption operation. Since we are using no additional storage blocks, the
output bits, once produced, need to be XORed with the appropriate input signal and
concurrently fed back to the block cipher as the input of the following encryption call.
Essentially, cycles 1281 to 1408 not only produce the output of the i-th encryption but
also serve as the input period for the (i+ 1)-th encryption. Thus one needs to exercise
some more fine-grained control over the circuit, to ensure that the block cipher circuit is
able to perform the dual role during cycles 1281 to 1408. This effectively means that all
encryption calls except the first requires 1280 cycles. Hence, in order to process a AD
and m plaintext chunks of 64 bits each, the circuit requires a+m+ 1 encryption calls
which leads to 1408 + 1280× (a+m) cycles.

6.8.3 Romulus

Romulus is an AEAD scheme designed by Iwata et al. [IKMP19], and uses the SKINNY
family of block ciphers. In this work, we provide implementations for two members

133

The Area-Latency Symbiosis through Swap-and-Rotate

Romulus-N1 (both 1-bit and 8-bit) and Romulus-N3 (1-bit only). The former is the
primary candidate of the family that employs SKINNY-128-384, whereas the latter is the
lightest among them because it employs SKINNY-128-256.

In order to reduce the number of block cipher calls, and make use of the large tweakey
space, that is 384 bits for the primary member, Romulus makes 1/2 block cipher call per
associated data block, and 1 block cipher call per message block. Romulus-N1 member
admits 128-bit key, 128-bit nonce, variable-length message chopped into 128-bit blocks,
and produces 128-bit tag. In terms of input parameter sizes, the difference in Romulus-N3
is that it uses 96-bit nonce. An interesting design choice regarding Romulus is that
associated data blocks can have alternating size based on which member is chosen. For
example, with Romulus-N3, for some integer i, AD2i−1 blocks are 128-bit, and AD2i

blocks are 96-bit. In order to ease notation and the description, one can actually treat
AD2i−1||AD2i as a single 224-bit block, assuming that the original padding is preserved
during this conversion. In the case of Romulus-N1, things are much simpler, because all
associated data blocks are fixed to 128 bits. Figure 6.10 describes the three phases a full

bb b b
0128

AD1
AD2 NAD2a−1

CT1

ρ

AD2a M1

bb b b

CT2

ρ

M2

T

ρ

0128

CTm

ρ

Mm

EL,d,·,K EL,d,·,K EL,d,·,K

N

EL,d,·,K EL,d,·,K

N

Figure 6.10 – The high-level view of Romulus-N1, which depicts the processing of 2a
associated data and m message blocks. L denotes the 56-bit LFSR that counts the
number of processed blocks, and d denotes a single byte domain separator followed by
064.

AEAD operation passes through, namely processing of (1) associated data, (2) nonce and
(3) message blocks. Below, we first explain Romulus-N3 and the crucial details regarding
its 1-bit implementation, and give the differences for Romulus-N1 later.

During associated data phase, each combined 224-bit AD2i−1||AD2i block is processed
with a single block cipher call EK. For each of these SKINNY-128-256 calls, the plaintext
is AD2i−1, and the tweakey is a concatenation of a 24-bit counter1, an 8-bit domain
separator, a 96-bit AD2i block and the 128-bit key K. The output from the block cipher
is treated as the running state, and XORed with each new AD2i−1 block. Once all
AD2i−1||AD2i combined blocks are processed, the running state is encrypted by using
the nonce N itself as a part of the tweakey. We refer to this as processing of the nonce.
During the message phase, for each of the 128-bit message blocks, the running state and
the message block Mi are passed through ρ function defined below. Essentially ρ acts as

1The 24-bit counter is defined with regards to a LFSR (see [IKMP19]), and counts the number of
block cipher calls during a phase.

134

6.8. AEAD Implementations

XOR in the lateral direction, hence the running state is XORed with the message blocks
as before. Once all message blocks are processed, the final block cipher output is passed
through ρ with 0128 to produce the tag. ρ(S,M) = (S′, C) is defined as S′ ← S ⊕M and
C ← G(S)⊕M . For each byte, G performs the following operation:

G(x7||x6||x5||x4||x3||x2||x1||x0) := (x0 ⊕ x7)||x7||x6||x5||x4||x3||x2||x1

It is then clear how we can use 1-bit-serial SKINNY-128-256 to realize Romulus-N3. Except
for the computation of the ciphertext blocks through ρ, we can simply reuse the state
pipeline of SKINNY-128-256 to store the running state. In order to compute G, we use
two external 7-bit buffer pipelines, which keeps the copy of the last 7 bits that exit the
state pipeline and the last 7-bit of message block which is being fed to the circuit. This
leads to 7 clock cycle of delay in between the time a message block is fed and the time the
ciphertext bits become available. This similarly applies to the tag as well, hence the delay
of 7 clock cycles must be considered during latency calculation. As a concrete example,
the circuit would process 2× 224 bits of associated data and 1× 128 bits of message as
follows:

• During the first 128 cycles, the key K, and the first associated data block AD1 are
loaded simultaneously. Starting from the clock cycle 32, 96-bit AD2 is also being
loaded2. After loading is complete, the circuit becomes busy for 47 rounds (for
SKINNY-128-256 encryption), i.e. this takes 47× 128 clock cycles. At the last clock
cycle, the circuit signals that it is ready for receiving the next data block, which
can be either AD3 or M1, depending on whether there are more associated data
blocks to process. For the sake of this example, we assume there are 224 more bits
of associated data to process.

• For the following 128 cycles, the state pipeline XORs its content with AD3, and
initiates the first round of encryption simultaneously. Again, the key is reloaded
starting from cycle 0 and AD4 is also loaded starting from clock cycle 32. The
circuit becomes busy for 47 rounds to compute the encryption. At the last cycle,
the circuit signals that the key and the nonce must be reloaded during the following
round.

• The running state is encrypted, i.e. the state pipeline reloads its own content and
starts encryption. No data block needs to be loaded, but the key and the nonce
must be loaded simultaneously. Since nonce and 96-bit AD blocks are using the
exact same positions in the tweakey, the nonce is loaded starting from clock cycles
32. After 47 rounds, the circuit signals that the next data (i.e. message) block can
be loaded.

2According to Romulus-N3 specification, the last 96 bits of TK1 should receive nonce/associated data
blocks. The leftmost 32 bits of TK1 are reserved for the counter and the domain separator.

135

The Area-Latency Symbiosis through Swap-and-Rotate

• The message block is loaded, which happens simultaneously with reloading of the
key. The nonce also follows the key with 32 clock cycles delay, as before. The
ciphertext bits become available with 7 clock cycles of delay. The circuit again
takes 47 rounds to perform the final encryption.

• A final ρ operation is performed with the running state and the 0128 vector. The
tag becomes available with 7 clock cycles delay.

As for 1-bit-serial implementation of Romulus-N1, the steps taken by the state machine
is precisely the same. As for differences, however, (1) the invoked block cipher is
SKINNY-128-384, (2) all associated data blocks are 128-bit, hence loading for even and
odd-numbered associated data blocks (as well as nonce) starts and ends at the same clock
cycles, (3) and the block counter is defined as 56-bit LFSR (instead of 24-bit). Moving
towards 8-bit implementation is also quite straightforward, with the only difference being
the removal of the 7 clock latency caused by ρ function. As it operates on the byte level,
it is realized as a fully combinatorial circuit.

According to the 1-bit implementation of Romulus-N1, processing 1 AD blocks and 8

message blocks takes (1 + 8)× 56× 128 + 128 + 7 clock cycles. The additional 128 clock
cycles are incurred due to the delay of loading/flushing the pipelines, and the 7 clock
cycle is due to the execution delay of ρ. As for 8-bit implementation, the clock cycles are
amended as (1 + 8)× 56× 16 + 16.

6.8.4 SKINNY-AEAD

SKINNY-AEAD relies on the ΘCB3mode of operation [KR11] and uses the heaviest SKINNY
variant, i.e. SKINNY-128-384, as the core block cipher. ΘCB3 requires the addition of
three auxiliary registers that store intermediate values during the computation; a 128-bit
register denoted by Auth that accumulates the encrypted AD block, a second 128-bit
register Σ that holds the summation of all message blocks and finally a 64-bit LFSR
block counter L. Both the 1-bit and 8-bit version of SKINNY-AEAD can be instantiated
without any further modifications to the serial SKINNY-128-384 cores.

136

6.8. AEAD Implementations

EL,d,N,K
b b b

0 Auth

M1 Mm−1

b b b

CT1 CTm−1

0

CTm

Mm||10∗

Σ

Auth

T

AD1 ADa||10∗

EL,d,N,K EL,d,N,K EL,d,N,K EL,d,N,K EL,d,N,K

Figure 6.11 – The high-level view of SKINNY-AEAD. The block counter L, a domain
separator d, the nonce N and the encryption key K together make up the 384-bit tweakey.
The encryption of the zero string is only performed when the last message block is
incomplete.

6.8.5 Synthesis Results

Table 6.13 – Synthesis figures for selected AEAD Schemes in STM 90 nm and UMC 90
nm libraries. Energy and throughput are based on 1024 bits of plaintext and 128 bits of
AD.

Candidate Datapath Area Power(µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/1152-bit) (Mbit/s)

STM 90 nm

SUNDAE-GIFT 1-bit 5273.9 1201 50.1 92544 463.6 4.48
SUNDAE-GIFT 4-bit 6969.8 1587 63.9 23136 147.8 13.76
SAEAES 1-bit 5938.0 1350 77.2 24448 188.7 6.13
SAEAES 8-bit 8534.9 1940 108.0 3056 33.0 55.14
Romulus-N1 1-bit 10534.8 2399 98.1 64647 634.2 4.91
Romulus-N1 8-bit 12783.8 2912 114.6 8080 92.6 33.24
Romulus-N3 1-bit 7812.7 1780 79.1 55431 438.5 5.92
SKINNY-AEAD 1-bit 15756.1 3589 134.3 72960 979.9 5.04
SKINNY-AEAD 8-bit 16606.7 3783 149.0 9856 146.9 37.16
Grain-128AEAD3 1-bit 9576.6 2181 102.0 1664 17.0 331.78
Grain-128AEAD 4-bit 11378.8 2592 104.0 416 4.3 1320.47
Grain-128AEAD 8-bit 14324.4 3263 106.0 208 2.2 2614.78

UMC 90 nm

SUNDAE-GIFT 1-bit 4729.9 1508 51.1 92544 472.9 4.67
SUNDAE-GIFT 4-bit 6109.7 1948 63.5 23136 146.9 13.01
SAEAES 1-bit 5329.6 1700 95.0 24448 232.3 9.52
SAEAES 8-bit 8094.0 2581 103.9 3056 31.7 55.56
Romulus-N1 1-bit 9683.2 3088 103.7 64647 670.4 4.80
Romulus-N1 8-bit 11696.5 3730 118.5 8080 95.7 30.02
Romulus-N3 1-bit 7155.6 2282 81.6 55431 452.3 6.31
SKINNY-AEAD 1-bit 14567.5 4645 143.1 72960 1044.1 3.68
3The 1/4/8-bit Grain-128AEAD implementations were taken from [SHSK19] and re-synthesized.

137

The Area-Latency Symbiosis through Swap-and-Rotate

SKINNY-AEAD 8-bit 15161 4834 155.0 9856 152.8 23.42
Grain-128AEAD 1-bit 7354.7 2345 91.4 1664 15.2 354.96
Grain-128AEAD 4-bit 9006.6 2872 94.4 416 3.9 1239.87
Grain-128AEAD 8-bit 11255.1 3589 100.0 208 2.1 2456.68

138

6.8. AEAD Implementations

Table 6.14 – Low-latency synthesis figures for selected AEAD Schemes in TSMC 90 nm,
NanGate 15nm and 45nm libraries. Energy and throughput are calculated for processing
1024 bits of plaintext and 128 bits of AD.

Candidate Datapath Area Power(µW) Latency Energy Throughput
(µm2) (GE) @ 10 MHz (cycles) (nJ/1152-bit) (Mbit/s)

TSMC 90 nm

SUNDAE-GIFT 1-bit 4444.6 1576 45.9 92544 424.8 5.37
SUNDAE-GIFT 4-bit 5640.6 2000 52.1 23136 120.5 12.73
SAEAES 1-bit 4942.7 1751 56.9 24448 139.1 7.11
SAEAES 8-bit 6895.1 2452 70.2 3056 21.5 61.88
Romulus-N1 1-bit 9019.0 3198 95.3 64647 616.1 6.99
Romulus-N1 8-bit 10552.3 3742 100.8 8080 81.4 39.30
Romulus-N3 1-bit 6658.8 2361 74.0 55431 410.2 9.31
SKINNY-AEAD 1-bit 13554.6 4807 122.5 72960 893.8 6.84
SKINNY-AEAD 8-bit 13943.4 4944 137.0 9856 135.0 35.96
Grain-128AEAD 1-bit 7509.0 2663 87.4 1664 14.5 452.21
Grain-128AEAD 4-bit 8763.6 3108 93.1 416 3.9 1375.49
Grain-128AEAD 8-bit 13943.4 4944 95.9 208 2.0 2627.79

NanGate 15 nm

SUNDAE-GIFT 1-bit 426.6 2170 15.9 92544 147.1 84.80
SUNDAE-GIFT 4-bit 541.4 2754 19.5 23136 45.1 279.33
SAEAES 1-bit 464.3 2362 18.8 24448 46.0 142.21
SAEAES 8-bit 606.7 3086 24.9 3056 7.6 1119.93
Romulus-N1 1-bit 882.3 4488 32.1 64647 207.5 73.89
Romulus-N1 8-bit 1012.9 5152 36.8 8080 29.7 566.54
Romulus-N3 1-bit 650.8 3310 25.0 55431 138.6 152.46
SKINNY-AEAD 1-bit 1323.5 6732 46.0 72960 335.6 75.29
SKINNY-AEAD 8-bit 1381.2 7025 32.0 9856 31.5 530.80
Grain-128AEAD 1-bit 631.4 3211 20.4 1664 3.4 3143.97
Grain-128AEAD 4-bit 732.5 3726 20.6 416 0.9 11003.88
Grain-128AEAD 8-bit 914.7 4652 21.3 208 0.4 21127.46

NanGate 45 nm

SUNDAE-GIFT 1-bit 1527.9 1910 130.3 92544 1205.8 14.13
SUNDAE-GIFT 4-bit 1871.3 2339 168.2 23136 389.1 49.98
SAEAES 1-bit 1653.5 2067 148.8 24448 363.8 21.20
SAEAES 8-bit 2190.2 2745 205.5 3056 62.8 186.27
Romulus-N1 1-bit 3103.4 3879 265.5 64647 1716.4 17.17
Romulus-N1 8-bit 3566.0 4458 311.9 8080 252.0 99.25
Romulus-N3 1-bit 2304.1 2880 199.0 55431 1103.1 19.82
SKINNY-AEAD 1-bit 4784.0 5980 408.4 72960 2979.7 15.21
SKINNY-AEAD 8-bit 4793.3 5992 410.8 9856 404.9 94.46
Grain-128AEAD 1-bit 2584.4 3231 214.0 1664 35.6 1082.35
Grain-128AEAD 4-bit 2958.5 3698 237.1 416 9.9 4001.41
Grain-128AEAD 8-bit 3609.1 4511 288.1 208 6.0 7545.52

139

The Area-Latency Symbiosis through Swap-and-Rotate

6.8.6 Interpretation of Power and Throughput Results

So far in this chapter, we have extensively focused on the trade-off between the area
versus the latency of an evaluated circuit on a rather abstract manner, where the latency
is expressed in terms of number of clock cycles. From this point of view, the latency
is an attribute of the proposed architecture, and therefore it is independent of the
implementation technology. On the other hand, the throughput of the circuit heavily
depends on the implementation technology. For a single invocation of the encryption
operation, let us use the latency parameter ` to denote the total number of clock cycles
used by the circuit during this operation, N to denote the number of plaintext bits and τ
to denote the largest timing delay that comes from the longest path of the circuit. Then,
we compute the maximum achievable throughput Tmax by

Tmax =
N

τ × `

Therefore, once we fix an AEAD scheme, conversion from latency to throughput only
depends on the parameter τ . It is evident that depending on the timing characteristics of
the library cells, as well as the compilation options used to synthesize the circuit control
the value of τ . In this section, we first elaborate on the technology library aspect of
the throughput and energy. Later, we shall give brief explanation as to why there are
large observed differences among schemes such as SUNDAE-GIFT, SKINNY-AEAD and
Grain-128AEAD.

Energy comparison. It is worth noting that STM 90 nm and TSMC 90 nm are two
libraries for which the available variants from our design kits were tailored for low-power
consumption. Naturally, this implies that the cells are designed in a way that the leakage
power is minimal, and hence large amount of consumed energy is proportional to the total
switching activity of the circuit. On the other hand, the variant we used with UMC 90
nm library is not low-power, but instead a standard version. In the case of NanGate 15
nm and NanGate 45 nm libraries, the fast variants are used, which are much more leaky
in comparison. This overall comparison can be much better summarized in Figure 6.12.
Here, the power consumption is extracted from 1-bit serial 6AES circuit, similar to the
one described in Chapter 3. The same results were also reported in a follow-up work by
Lombardía, Balli and Banik [LBB21].

We typically use 10 MHz to report the average power consumption. Hence at this frequency,
according to Figure 6.12, it is evident that large portion of the power consumption is due
to leakage for both NanGate 15 nm and NanGate 45 nm. This immediately tells us that
we should cautiously interpret the power measurements in Table 6.14 and Table 6.13.
Namely, the reported figures do not purely reflect the switching activity, and there is a
significant share of power that scales with the area of the circuit. The same phenomenon
happens with UMC 90 nm also, but to more limited extent. As for STM 90 nm and
TSMC 90 nm, the reported power measurements are close to pure switching activity, and

140

6.8. AEAD Implementations

1.28
1.52

152.32

0.99 0.74

74.24

21.86

0.82

82.44
180.82

0.64

63.65

10.33

0.19

18.75

STM 90 nm TSMC 90 nm UMC 90 nm NanGate 45 nm NanGate 15 nm
100

101

102

103

104

P
ow

er
(µ
W

)
Static Power Dynamic Power at 100 KHz Dynamic Power at 10 MHz

Figure 6.12 – Breakdown of the total power consumption into its static and dynamic
components for 1-bit serial 6AES circuit reported by Lombardía et al. [LBB21]. Note
that y-axis is scaled logarithmically.

hence they are somewhat independent of the circuit size.

Throughput comparison. In our synthesis, we used the compile_ultra setting. This
means that the throughput, or reduction of the largest timing path, is not the priority
during compilation. In that sense, the reported throughput values do not necessarily
reflect the absolute maximum throughput that can be obtained from the given circuits.
Instructing the compiler to take further timing constraints into account would lead to
smaller timing values, and hence it would increase the throughput. This would come
at the cost of a slight increase in the area and power consumption, because in order
to shorten the largest path, the compiler typically picks larger cells with better timing
characteristics from the technology library. The amount of feasible throughput reduction
also depends on how rich the technology library is in terms of a number of different silicon
implementations for the same gate. For instance, TSMC 90 nm provides five different
cells for the simple 2-input NAND gate, whereas NanGate 15 nm provides only two
implementations.

Scheme differences. Despite the large variance among multiple libraries, it stands out
that SKINNY-AEAD > SUNDAE-GIFT > Grain-128AEAD in terms of energy consumption.
There are surely valid intuitions as to why such large differences in energy appear, once
these schemes are put into circuit form.

Grain-128AEAD follows a stream-cipher-based AEAD design paradigm. In other words, it
spares the design from the use of block ciphers, which are much heavier in design. While a
block cipher typically needs to operate many rounds of computationally demanding layers,
a stream-cipher constructions follow a LFSR-based paradigm with much lighter and

141

The Area-Latency Symbiosis through Swap-and-Rotate

faster operations. This explains not only why Grain-128AEAD outperforms the all other
candidates in terms of minimizing energy consumption, but also in terms of throughput
as well.

On the other side, among block-cipher-based candidates, the throughput and energy cost
of the AE scheme typically depends on how heavy the core block cipher is. Here, the
block ciphers of interest are mainly AES, GIFT∗ and SKINNY-128-384. Both in terms of
minimum energy consumption and maximum throughput, these ciphers can be given as
AES > GIFT∗ > SKINNY-128-384. In other words, AES is the most lightweight choice
with respect to energy and throughput metrics. This is a natural result of the number of
rounds required by each block ciphers, that are respectively 10, 40 and 56 rounds.

Here, we can see the extension of this cost all the way into AE schemes. Mainly, for
Romulus-N1 and SKINNY-AEAD, the underlying block cipher is SKINNY-128-384, which
makes them much more costly compared to SUNDAE-GIFT and SAEAES, in terms of
energy consumption and throughput.

6.9 Cost of Decryption

Some of the AEAD schemes in the NIST LWC [NISa] do require the inverse, i.e. the
decryption functionality, of block ciphers as well. Therefore, in this section, we assess the
cost of implementing the combined encryption and decryption circuit for the three block
ciphers.

For AES, the challenge really comes in arranging the order of operations, these are namely
inverse MixColumns, inverse ShiftRows and inverse SubBytes. Note that the inverse
ShiftRows is also a special permutation of type 4, and a swap sequence can be constructed
in the same way as described in Section 6.3. Furthermore, in order to avoid adding more
MUXes to the circuit, we can reuse the same swap locations as much as possible from
the encryption. Hence, the cost of implementing inverse ShiftRows is small, other than
the control logic required to generate the sequence of selection bits that controls when to
swap and when not to do so. The inverse MixColumns operation is perhaps the most
difficult operation to implement in this setting. It is well known that MixColumns matrix
M used in AES has the property that M3 = M−1. Hence, if we want to implement
multiplication by M−1 without any extra gates, then it would be necessary to make three
full rotations in the state pipeline until the MixColumns operation is completed (this
is the approach tried out in [BBR16b, JMPS17]). This invariably comes with a latency
penalty. If we do not want to impose a latency penalty, we must pay with extra gate area,
by accommodating 2 additional MixColumns circuits one after the other. This comes
with an additional area penalty of 100–120 GE, but makes it possible to complete the
decryption round in 128 clock cycles. Implementing a combined circuit for the forward
and inverse S-box also requires at most 50 GE [ME19]. The inverse key schedule can be

142

6.10. Conclusion

implemented without much additional logic as already explained in [BBR16a].

For SKINNY, which also has the similar structure with AES, the costs are considerably
smaller. Inverse ShiftRows is again easily implemented with the techniques described in
Section 6.3. For this cipher, the S-box and MixColumns circuit are extremely lightweight,
and so the forward and inverse function can be implemented without any significant area
costs. The inverse tweakey update functions at all the 3 levels are simple byte-based
LFSR updates and permutations, and can be instantiated with only a few multiplexers.

For GIFT, both the swaps in the round function and the key schedule are partitioned in
layers that are executed one after another (see Section 6.6.1). This means the decryption
can be performed by simply inverting the order of the swap layers. The main overhead
comes therefore in the form of the additional inverse S-box which can be synthesized with
fewer than 20 GE.

6.10 Conclusion

To conclude the chapter, let us take a look back at the main results of this chapter. The
synthesis results of AES, SKINNY and GIFT∗ are summarized in Tables 6.6, 6.8, 6.10
respectively for 5 standard cell libraries. For each of the 3 block ciphers, we can deduce
that in the bit-serial mode, the area occupied by the circuits is very close to the total area
required by the storage elements for the state and key registers. For AES, the area is only
slightly larger, since it has an 8-bit S-box and a reasonably heavyweight MixColumns
circuit. But for the other ciphers that have relatively lightweight S-box and linear layer,
the purely combinatorial circuit elements occupy only around 10% of the total silicon
area. Additionally, we are able to reduce the round latency to match precisely the block
size of the underlying block cipher. Note that it is not possible to have an implementation
that has lower round latency in clock cycles than the block size of the cipher, because
for a bit-serial circuit of SPN-based ciphers, all the state bits must be rotated across the
pipeline. Therefore, this represents the sweet spot in the area-latency curve, as far as
SPN-based block ciphers are concerned. For implementations with higher-bit data paths,
the area only marginally grows, mainly because the number of MUXes and XOR gates
required in the circuit needs to be multiplied by the length of the datapath the circuit
aims to achieve.

An interesting research direction is to extend our results to Feistel-based block ciphers.
Note that the SIMON/SPECK family of block ciphers were mainly designed to achieve
this optimal trade-off point, as the state update of these ciphers can simply be described
using rotate and a few bit-wise AND/XOR operations [BSS+13]. Nevertheless, not all
Feistel ciphers in the literature are designed with this specific goal in mind. It would be
interesting to see how a block cipher like PICCOLO can be re-engineered at the circuit
level to achieve the best possible area and latency figures [SIH+11b].

143

The Area-Latency Symbiosis through Swap-and-Rotate

Tables 6.13 and 6.14 tabulate synthesis results we obtained for all the individual modes of
operation that we investigated in this paper. SUNDAE-GIFT and SAEAES are essentially
rate 1/2 modes that need 2 block cipher calls for every 128-bit message block. Note
that for these two, the underlying block ciphers admit 128-bit key, and they require
exactly 256 flip-flops to store the key and the state. Thus in a sense, minimalism of the
core block cipher comes at the cost of having to execute 2 block cipher calls per 128-bit
message block. On the other hand, the rate 1 modes, which require only 1 block cipher
call per block of message, such as Romulus and SKINNY-AEAD employ SKINNY-128-384.
They take advantage of the large (384-bit) tweakey space to accommodate nonce, domain
separator, and counter for each block cipher invocation. However, for SKINNY-128-384,
this comes at the cost 512 flip-flops for both the state and the tweakey. This leads to an
interesting latency and area trade-off, and our work gives further insights on the nature
of these design decisions.

144

7 Conclusion and Future Work

In this thesis, we studied commonly used lightweight block ciphers, e.g. AES, GIFT,
PRESENT, SKINNY, and few of the block-cipher-based AEAD schemes that employ these
block ciphers, from the perspective of hardware lightweight metrics. Our study looked
at their 1-bit serial implementation, for the sake of pursuing even further reduction in
the silicon area. We proposed the swap-and-rotate technique to handle the execution of
the fine-grained permutation layers, which can be seen as an economical solution to a
relocation problem among storage elements. We further show how streamlined execution
can be adopted in the serial implementation of block ciphers, instead of the conventional
strictly-ordered execution among inner layers of the round functions.

In Chapter 3, our effort was on the architectural-level optimization of AES. The idea
of combining multiple functionality into the same circuit can come in handy for those
constrained applications (such as java cards) that are expected to support a large portfolio
of protocols. Instead of implementing each of these primitives as stand-alone circuits,
considerable silicon area can be saved by reusing the same register blocks. Although we
only looked at the family of AES, for the future work, the similar approach can be taken
for other family of block ciphers such as GIFT and SKINNY. This approach would work
very well particularly for SKINNY family, as the key scheduling operations among the
members SKINNY-128-128, SKINNY-128-256 and SKINNY-128-384 mostly contain the
same operations.

Moreover, it is not far-fetched to envision implementation of a single circuit that supports
all encryption and decryption functionalities of multiple block ciphers at once. For
instance, SKINNY-128-128 and AES-128 could be implemented on top of the same 128-bit
state and key pipelines. This approach is promising, as roughly 80% of the silicon area
is used by the storage elements in serial block cipher implementations. The modular
approach we presented simplifies this seemingly complicated engineering task. Along
these lines, later a follow-up work was presented by Lombardía, Balli and Banik [LBB21].
Lombardía’s implementation starts with the same design ideas from Chapter 3, and

145

Conclusion and Future Work

combines this approach with the swap-and-rotate technique introduced in Chapter 5. The
final circuit is 1-bit serial all-in-one 6AES circuit that only occupies 2268 GE of area, with
further 38% reduction in silicon area.

In Chapter 4, our effort was on testing the design intuition behind the fork cipher, from
the perspective of lightweight hardware metrics. In particular, we evaluated ForkAES, as
this was the first proposed fork cipher construction by the designers [ARVV18]. Later
on, in the full-fledged AEAD candidate ForkAE, instead of ForkAES, the designers opted
for ForkSKINNY, constructed by forking SKINNY block cipher [ALP+19]. Therefore the
future work could look into comparison between SKINNY and ForkSKINNY, and even
extend the results to full AEAD scheme ForkAE. The techniques presented in this chapter
can also be extended to produce the smallest and most energy-efficient ForkAE circuits.
On the other hand, it is unclear whether the forking paradigm will be used in practice, as
it was eliminated during the final selection process of NIST LWC.

In Chapter 5, we looked at 1-bit permutation layers of block ciphers PRESENT and GIFT,
when they are implemented on top of 1-bit serial pipeline. A trivial solution to implement
any permutation layer over the cipher state is to add 1 MUX for each flip-flop, yet this
approach is expensive. Therefore, we studied how we can express these permutations
in terms of simple swap operations, in order to make do with as few extra MUX gates
as possible. Our techniques are not limited to particular permutations that operate at
1-bit level, as we have extended these results into larger-width block ciphers such as AES
and SKINNY in Chapter 6. In this thesis, for further application of our technique, we
only looked at few block ciphers that are common among NIST LWC candidates, with
varying block sizes: GIFT, GIFT∗, PRESENT, AES, SKINNY. However, our technique
is not necessarily limited to this small set of block ciphers. In particular, other SPN-
based ciphers such as Pyjamask, Saturnin, TweAES, TweGIFT, ForkSKINNY could also be
implemented via our technique. The research effort here goes in two directions: first,
the permutation layers need to be concisely expressed in terms of minimum number of
swaps, and secondly, the deduced swap operations must be seamlessly integrated with
other operations of the round function, i.e. round key addition and S-box. In the case of
TweAES, TweGIFT and ForkSKINNY, the tweaked part of the block cipher does not modify
the permutation layer, hence the effort to produce these primitives would be relatively
small.

Our findings on the simpler and cheaper executions of permutation layers are followed up
by block cipher and block-cipher-based AEAD schemes in Chapter 6. We proposed 1-bit
and 4/8-bit serial implementations for AES, SKINNY and GIFT, with improved latency
characteristics while preserving the small area requirement. We also produced few of the
smallest AEAD scheme implementations in the literature, with SUNDAE-GIFT, Romulus,
SKINNY-AEAD and SAEAES. Given that there are other number of block-cipher-based
candidates in the NIST LWC, the future work could focus on the implementations of
those with the application of our technique, which achieves the smallest circuits with good

146

Conclusion and Future Work

latency properties. Again, the research effort for these other schemes would start with
the streamlined serialization of the core block cipher following the footsteps of Chapter 5
and Chapter 6, and later the mode of operation would also be realized through the same
level of serialization.

Most of our implementations are realized with the assumption that the circuit is physically
protected from the adversary, hence we have not considered protection against any form
of side-channel attacks. For devices that are exposed to these class of attacks, producing
threshold implementations as the extension of our presented techniques, while keeping
the size of the circuit small and the latency minimum remains an open question for future
research. In particular there is an open research question regarding the integration of our
streamlined serial implementation approach (that targets n clock cycles for n-bit block
cipher) with the classical threshold implementation technique [ISW03]. For example, in
the 8-bit serial implementation of SKINNY, the architecture by Beierle et al. spends four
clock cycles to execute S-box [BJK+16]. In comparison, our unprotected architectures
from Chapter 6 spends exactly one clock cycle. Therefore, the challenge here is to ensure
that we can squeeze this extra three clock cycles into our dense 128 clock cycles of
timetable. With current designs of AES, GIFT and SKINNY, the timetable of operations
are already quite dense that there are not spare clock cycles to allocate for extra operations
between layers. Hence it remains to be answered whether it is feasible to complete 128-bit
round in exactly 128 clock cycles with threshold implementation in place.

147

A Appendix

A.1 S-boxes

A.1.1 AES S-box

The AES S-box is given in Table A.1. Gate-count wise, the smallest implementation is
given by Maximov and Ekdahl [ME19]. The forward-only implementation consists of 58
XOR, 6 XNOR, 27 NAND, 5 NOR and 6 MUX gates, which corresponds to 195.10 GE
(see Table 4, [ME19]). The combined implementation consists of 70 XOR, 9 XNOR, 27
NAND, 5 NOR and 16 MUX gates, which corresponds to 253.35 GE (see Table 5, [ME19]).
The GE metrics are obtained from the GlobalFoundires 22 nm CMOS technology library.

A.1.2 GIFT S-box

The GIFT S-box is given in Table A.2. The fact that it is 4-bit input and 4-bit output
naturally implies that it can be realized with small number of gates. It roughly takes
16.5 GE, as reported by the designers [BPP+17].

A.1.3 SKINNY S-box

The SKINNY S-box is already designed with lightweight principles in mind by Beierle et
al., whose description is given in Table A.3. The forward-only S-box can be realized with
8 XNOR and 8 NOR gates (see Figure 3, [BJK+16]).

149

Appendix A. Appendix

Table A.1 – AES S-box

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ 63 7C 77 7B F2 6B 6F C5 30 1 67 2B FE D7 AB 76
1_ CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2_ B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3_ 4 C7 23 C3 18 96 5 9A 7 12 80 E2 EB 27 B2 75
4_ 9 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5_ 53 D1 0 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6_ D0 EF AA FB 43 4D 33 85 45 F9 2 7F 50 3C 9F A8
7_ 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8_ CD C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9_ 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E B DB
A_ E0 32 3A A 49 6 24 5C C2 D3 AC 62 91 95 E4 79
B_ E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 8
C_ BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D_ 70 3E B5 66 48 3 F6 E 61 35 57 B9 86 C1 1D 9E
E_ E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F_ 8C A1 89 D BF E6 42 68 41 99 2D F B0 54 BB 16

Table A.2 – GIFT S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F
1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table A.3 – SKINNY S-box (8-bit variant)

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F
0_ 65 4C 6A 42 4B 63 43 6B 55 75 5A 7A 53 73 5B 7B
1_ 35 8C 3A 81 89 33 80 3B 95 25 98 2A 90 23 99 2B
2_ E5 CC E8 C1 C9 E0 C0 E9 D5 F5 D8 F8 D0 F0 D9 F9
3_ A5 1C A8 12 1B A0 13 A9 5 B5 A B8 3 B0 B B9
4_ 32 88 3C 85 8D 34 84 3D 91 22 9C 2C 94 24 9D 2D
5_ 62 4A 6C 45 4D 64 44 6D 52 72 5C 7C 54 74 5D 7D
6_ A1 1A AC 15 1D A4 14 AD 2 B1 C BC 4 B4 D BD
7_ E1 C8 EC C5 CD E4 C4 ED D1 F1 DC FC D4 F4 DD FD
8_ 36 8E 38 82 8B 30 83 39 96 26 9A 28 93 20 9B 29
9_ 66 4E 68 41 49 60 40 69 56 76 58 78 50 70 59 79
A_ A6 1E AA 11 19 A3 10 AB 6 B6 8 BA 0 B3 9 BB
B_ E6 CE EA C2 CB E3 C3 EB D6 F6 DA FA D3 F3 DB FB
C_ 31 8A 3E 86 8F 37 87 3F 92 21 9E 2E 97 27 9F 2F
D_ 61 48 6E 46 4F 67 47 6F 51 71 5E 7E 57 77 5F 7F
E_ A2 18 AE 16 1F A7 17 AF 1 B2 E BE 7 B7 F BF
F_ E2 CA EE C6 CF E7 C7 EF D2 F2 DE FE D7 F7 DF FF

150

Bibliography

[6AE] 6AES Implementation Archive. https://lasec.epfl.ch/people/ballif/codes/
6aes.zip.

[AGH+19] Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Man-
dal, Mridul Nandi, and Raghvendra Rohit. SpoC. NIST Lightweight
Cryptography Project, 2019.

[ÅHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-
128a: a New Version of Grain-128 with Optional Authentication. Int. J.
Wirel. Mob. Comput., 5(1):48–59, 2011.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. ForkAE. NIST Lightweight Cryptography
Project, 2019.

[ALS] The-Area-Latency-Symbiosis. https://github.com/qantik/
The-Area-Latency-Symbiosis.

[AP21] Alexandre Adomnicai and Thomas Peyrin. Fixslicing AES-like Ciphers:
New Bitsliced AES Speed Records on ARM-Cortex M and RISC-V. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):402–425, 2021.

[ARH+18] Riham AlTawy, Raghvendra Rohit, Morgan He, Kalikinkar Mandal,
Gangqiang Yang, and Guang Gong. SLISCP-light: Towards Hardware Op-
timized Sponge-specific Cryptographic Permutations. ACM Trans. Embed.
Comput. Syst., 17(4):81:1–81:26, 2018.

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár.
Forking a Blockcipher for Authenticated Encryption of Very Short Messages.
IACR Cryptology ePrint Archive, 2018:916, 2018.

[BB19a] Fatih Balli and Subhadeep Banik. Exploring Lightweight Efficiency of
ForkAES. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors,
Progress in Cryptology - INDOCRYPT 2019 - 20th International Con-
ference on Cryptology in India, Hyderabad, India, December 15-18, 2019,

151

https://lasec.epfl.ch/people/ballif/codes/6aes.zip
https://lasec.epfl.ch/people/ballif/codes/6aes.zip
https://github.com/qantik/The-Area-Latency-Symbiosis
https://github.com/qantik/The-Area-Latency-Symbiosis

Bibliography

Proceedings, volume 11898 of Lecture Notes in Computer Science, pages
514–534. Springer, 2019.

[BB19b] Fatih Balli and Subhadeep Banik. Six Shades of AES. In Progress in
Cryptology - AFRICACRYPT 2019 - 11th International Conference on
Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings, volume
11627 of Lecture Notes in Computer Science, pages 311–329. Springer,
2019.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In Advances in Cryptology - ASIACRYPT
2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part II, pages 411–436, 2015.

[BBJ+19] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan Lucks, Willi
Meier, Mostafizar Rahman, Dhiman Saha, and Yu Sasaki. Cryptanalysis
of ForkAES. In Applied Cryptography and Network Security - 17th In-
ternational Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019,
Proceedings, pages 43–63, 2019.

[BBLT18] Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser.
SUNDAE: Small Universal Deterministic Authenticated Encryption for
the Internet of Things. IACR Trans. Symmetric Cryptol., 2018(3):1–35,
2018.

[BBP+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, Elmar Tischhauser, and Yosuke Todo. SUNDAE-GIFT
v1.0. NIST Lightweight Cryptography Project, 2019.

[BBR15] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring
Energy Efficiency of Lightweight Block Ciphers. In Selected Areas in
Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB,
Canada, August 12-14, 2015, Revised Selected Papers, pages 178–194, 2015.

[BBR16a] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-
AES: A Compact Implementation of the AES Encryption/Decryption
Core. In Progress in Cryptology - INDOCRYPT 2016 - 17th International
Conference on Cryptology in India, Kolkata, India, December 11-14, 2016,
Proceedings, pages 173–190, 2016.

[BBR16b] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-
AES v 2.0. IACR Cryptol. ePrint Arch., 2016:1005, 2016.

152

Bibliography

[BBR17] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Efficient
configurations for block ciphers with unified ENC/DEC paths. In 2017
IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2017, McLean, VA, USA, May 1-5, 2017, pages 41–46, 2017.

[BBRV20] Subhadeep Banik, Fatih Balli, Francesco Regazzoni, and Serge Vaudenay.
Swap and Rotate: Lightweight Linear Layers for SPN-based Blockciphers.
IACR Transactions on Symmetric Cryptology, 2020(1):185–232, 2020.

[BCB20] Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency Sym-
biosis: Towards Improved Serial Encryption Circuits. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021(1):239–278, De-
cember 2020. Artifact available at https://artifacts.iacr.org/tches/2021/a5.

[BCB21] Fatih Balli, Andrea Caforio, and Subhadeep Banik. The Area-Latency
Symbiosis: Towards Improved Serial Encryption Circuits. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2021(1):239–278,
2021.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of
Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu,
Mridul Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke
Todo. GIFT-COFB v1.0. NIST Lightweight Cryptography Project, 2019.

[BDE+13] Lejla Batina, Amitabh Das, Baris Ege, Elif Bilge Kavun, Nele Mentens,
Christof Paar, Ingrid Verbauwhede, and Tolga Yalçin. Dietary Recommen-
dations for Lightweight Block Ciphers: Power, Energy and Area Analysis
of Recently Developed Architectures. In Michael Hutter and Jörn-Marc
Schmidt, editors, Radio Frequency Identification - Security and Privacy Is-
sues 9th International Workshop, RFIDsec 2013, Graz, Austria, July 9-11,
2013, Revised Selected Papers, volume 8262 of Lecture Notes in Computer
Science, pages 103–112. Springer, 2013.

[BDV19] Fatih Balli, F. Betül Durak, and Serge Vaudenay. BioID: A Privacy-
Friendly Identity Document. In Sjouke Mauw and Mauro Conti, editors,
Security and Trust Management - 15th International Workshop, STM 2019,

153

https://artifacts.iacr.org/tches/2021/a5

Bibliography

Luxembourg City, Luxembourg, September 26-27, 2019, Proceedings, volume
11738 of Lecture Notes in Computer Science, pages 53–70. Springer, 2019.

[BFI19] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More Results
on Shortest Linear Programs. In Nuttapong Attrapadung and Takeshi
Yagi, editors, Advances in Information and Computer Security - 14th
International Workshop on Security, IWSEC 2019, Tokyo, Japan, August
28-30, 2019, Proceedings, volume 11689 of Lecture Notes in Computer
Science, pages 109–128. Springer, 2019.

[BGI+18] Roderick Bloem, Hannes Gross, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
pages 321–353, Cham, 2018. Springer International Publishing.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part II, pages 123–153, 2016.

[BJK+19] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD. NIST Lightweight Cryptography Project, 2019.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and
Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in
Computer Science, pages 450–466. Springer, 2007.

[BLP+08] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, and Yannick Seurin. Hash Functions and RFID
Tags: Mind the Gap. In Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August
10-13, 2008. Proceedings, pages 283–299, 2008.

[BMA+18] Subhadeep Banik, Vasily Mikhalev, Frederik Armknecht, Takanori Isobe,
Willi Meier, Andrey Bogdanov, Yuhei Watanabe, and Francesco Regazzoni.
Towards Low Energy Stream Ciphers. IACR Trans. Symmetric Cryptol.,
2018(2):1–19, 2018.

[BP12] Joan Boyar and René Peralta. A Small Depth-16 Circuit for the AES S-Box.
In Dimitris Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors,

154

Bibliography

Information Security and Privacy Research - 27th IFIP TC 11 Information
Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece,
June 4-6, 2012. Proceedings, volume 376 of IFIP Advances in Information
and Communication Technology, pages 287–298. Springer, 2012.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A Small Present - Towards
Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 321–345, 2017.

[BRV20] Fatih Balli, Paul Rösler, and Serge Vaudenay. Determining the Core
Primitive for Optimally Secure Ratcheting. In Advances in Cryptology
- ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part III, volume 12493 of Lecture Notes
in Computer Science, pages 621–650. Springer, 2020.

[BSS+] Ray Beaulieu, Douglas Shors, Jason Smith, Treatman-Clark Stefan,
Bryan Weeks, and Louis Wingers. Simon and Speck: Block Ciphers for
the Internet of Things. Available at https://csrc.nist.gov/csrc/media/
events/lightweight-cryptography-workshop-2015/documents/papers/
session1-shors-paper.pdf.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The SIMON and SPECK Families
of Lightweight Block Ciphers. IACR Cryptol. ePrint Arch., 2013:404, 2013.

[c4s] The-Area-Latency-Symbiosis. https://c4science.ch/diffusion/10848.

[Can05] David Canright. A Very Compact S-Box for AES. In Josyula R. Rao
and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer
Science, pages 441–455. Springer, 2005.

[CBB20a] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Energy Analysis of
Lightweight AEAD Circuits. In Stephan Krenn, Haya Shulman, and Serge
Vaudenay, editors, Cryptology and Network Security - 19th International
Conference, CANS 2020, Vienna, Austria, December 14-16, 2020, Proceed-
ings, volume 12579 of Lecture Notes in Computer Science, pages 23–42.
Springer, 2020.

[CBB20b] Andrea Caforio, Fatih Balli, and Subhadeep Banik. Melting SNOW-V:
Improved Lightweight Architectures. Journal of Cryptographic Engineering,
2020.

155

https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session1-shors-paper.pdf
https://c4science.ch/diffusion/10848

Bibliography

[CDJ+19a] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas
Lopez, Mridul Nandi, and Yu Sasaki. ESTATE. NIST Lightweight Cryp-
tography Project, 2019.

[CDJ+19b] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas
Lopez, Mridul Nandi, and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD.
NIST Lightweight Cryptography Project, 2019.

[CDJN19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HYENA.
NIST Lightweight Cryptography Project, 2019.

[CDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN - A Family of Small and Efficient Hardware-Oriented
Block Ciphers. In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9,
2009, Proceedings, pages 272–288, 2009.

[CDL+19] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin. NIST
Lightweight Cryptography Project, 2019.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 398–412. Springer, 1999.

[CLM16] Victor Cauchois, Pierre Loidreau, and Nabil Merkiche. Direct Construction
of Quasi-involutory Recursive-like MDS Matrices from 2-cyclic Codes.
IACR Trans. Symmetric Cryptol., 2016(2):80–98, 2016.

[CN19] Bishwajit Chakraborty and Mridul Nandi. mixFeed. NIST Lightweight
Cryptography Project, 2019.

[Con13] Keith Conrad. Generating Sets, 2013. available at http://www.math.uconn.
edu/~kconrad/blurbs/grouptheory/genset.pdf.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B.
Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 244–266. Springer, 2008.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS Matrices with Lightweight
Circuits. IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

156

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/genset.pdf

Bibliography

[EBB15] John M. Kelsey Elaine B. Barker. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. Technical report,
2015.

[EJMY18] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and Jing Yang.
A new SNOW stream cipher called SNOW-V. IACR Cryptol. ePrint Arch.,
2018:1143, 2018.

[FAE] Lightweight ForkAES. https://c4science.ch/source/lightforkaes.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in
the presence of physical defaults & the robust probing model. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FWR05] Martin Feldhofer, J. Wolkerstorfer, and Vincent Rijmen. AES Implemen-
tation on a Grain of Sand. Information Security, IEE Proceedings, 152:13–
20, 11 2005.

[GJK+19] Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu
Rivain, Yu Sasaki, and Siang Meng Sim. Pyjamask. NIST Lightweight
Cryptography Project, 2019.

[GJN19] Shay Gueron, Ashwin Jha, and Mridul Nandi. COMET. NIST Lightweight
Cryptography Project, 2019.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the "duplication" method). In Çetin Kaya Koç and Christof Paar, edi-
tors, Cryptographic Hardware and Embedded Systems, First International
Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceed-
ings, volume 1717 of Lecture Notes in Computer Science, pages 158–172.
Springer, 1999.

[HDF+16] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farah-
mand, Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. CAESAR
Hardware API. Cryptology ePrint Archive, Report 2016/626, 2016.
https://eprint.iacr.org/2016/626.

[HJM+19] Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sonnerup, and
Hirotaka Yoshida. Grain-128AEAD. NIST Lightweight Cryptography
Project, 2019.

[IKMP19] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas
Peyrin. Romulus v1.2. NIST Lightweight Cryptography Project, 2019.

[ISO12] Information technology — Security techniques — Lightweight cryptogra-
phy — Part 2: Block ciphers. Standard, International Organization for
Standardization, March 2012.

157

https://c4science.ch/source/lightforkaes
https://eprint.iacr.org/2016/626

Bibliography

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-
Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based
Primitives - Applications to AES, PRESENT and SKINNY. In Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages
687–707, 2017.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for
Block Ciphers: The TWEAKEY Framework. In Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, pages 274–288, 2014.

[KDH+12] Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and
François-Xavier Standaert. Towards Green Cryptography: A Comparison
of Lightweight Ciphers from the Energy Viewpoint. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embedded
Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Com-
puter Science, pages 390–407. Springer, 2012.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer.
Shorter Linear Straight-Line Programs for MDS Matrices. IACR Trans.
Symmetric Cryptol., 2017(4):188–211, 2017.

[KR11] Ted Krovetz and Phillip Rogaway. The Software Performance of
Authenticated-Encryption Modes. In Antoine Joux, editor, Fast Software
Encryption - 18th International Workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, Revised Selected Papers, volume 6733 of Lecture
Notes in Computer Science, pages 306–327. Springer, 2011.

[LBB21] Roldán S. Lombardía, Fatih Balli, and Subhadeep Banik. Six Shades
Lighter: a Bit-serial Implementation of the AES Family. Journal of
Cryptographic Engineering, 2021.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
Low-latency Involutory MDS Matrices with Lightweight Circuits. IACR
Trans. Symmetric Cryptol., 2019(1):84–117, 2019.

158

Bibliography

[LW17] Chaoyun Li and Qingju Wang. Design of lightweight linear diffusion layers
from near-mds matrices. IACR Trans. Symmetric Cryptol., 2017(1):129–
155, 2017.

[Max19] Alexander Maximov. AES MixColumn with 92 XOR gates. IACR Cryptol.
ePrint Arch., 2019:833, 2019.

[ME19] Alexander Maximov and Patrik Ekdahl. New Circuit Minimization Tech-
niques for Smaller and Faster AES SBoxes. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2019(4):91–125, 2019.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong
Wang. Pushing the Limits: A Very Compact and a Threshold Implemen-
tation of AES. In Kenneth G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, pages 69–88, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[NISa] NIST Lightweight Cryptography Project. https://csrc.nist.gov/projects/
lightweight-cryptography.

[NISb] NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
Post-Quantum-Cryptography-Standardization.

[NIS01] Advanced Encryption Standard (AES). 2001.

[NIS19] Status Report on the First Round of the NIST Lightweight Cryptography
Standardization Process. 2019.

[NMMaS+19] Yusuke Naito, Yasuyuki Sakai Mitsuru Matsui and, Daisuke Suzuki, Kazuo
Sakiyama, and Takeshi Sugawara. SAEAES. NIST Lightweight Cryptogra-
phy Project, 2019.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold
implementations against side-channel attacks and glitches. In Peng Ning,
Sihan Qing, and Ninghui Li, editors, Information and Communications
Security, 8th International Conference, ICICS 2006, Raleigh, NC, USA,
December 4-7, 2006, Proceedings, volume 4307 of Lecture Notes in Computer
Science, pages 529–545. Springer, 2006.

[RPLP08] Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar.
Ultra-Lightweight Implementations for Smart Devices - Security for 1000
Gate Equivalents. In Smart Card Research and Advanced Applications, 8th
IFIP WG 8.8/11.2 International Conference, CARDIS 2008, London, UK,
September 8-11, 2008. Proceedings, pages 89–103, 2008.

159

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

Bibliography

[RTA18] Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy. Smash-
ing the Implementation Records of AES S-box. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):298–336, 2018.

[SHSK19] Jonathan Sönnerup, Martin Hell, Mattias Sönnerup, and Ripudaman
Khattar. Efficient Hardware Implementations of Grain-128AEAD. In Feng
Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology
- INDOCRYPT 2019 - 20th International Conference on Cryptology in
India, Hyderabad, India, December 15-18, 2019, Proceedings, volume 11898
of Lecture Notes in Computer Science, pages 495–513. Springer, 2019.

[SIH+11a] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher.
In Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, pages 342–357, 2011.

[SIH+11b] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher.
In Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, pages 342–357, 2011.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A
Compact Rijndael Hardware Architecture with S-Box Optimization. In
Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology
and Information Security, Gold Coast, Australia, December 9-13, 2001,
Proceedings, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer, 2001.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight Diffusion Layer: Importance
of Toeplitz Matrices. IACR Trans. Symmetric Cryptol., 2016(1):95–113,
2016.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and T Iwata.
The 128-bit Blockcipher CLEFIA (extended abstract). volume 4593, pages
181–195, 08 2007.

[WMM20] Felix Wegener, Lauren De Meyer, and Amir Moradi. Spin Me Right
Round Rotational Symmetry for FPGA-Specific AES: Extended Version.
J. Cryptol., 33(3):1114–1155, 2020.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: A Bit-slice Lightweight Block

160

Bibliography

Cipher Suitable for Multiple Platforms. Sci. China Inf. Sci., 58(12):1–15,
2015.

161

Curriculum Vitae

Fatih Balli

E-mail ballifatih@gmail.com

Nationality Turkish

Education

2016-2021 PhD, Computer and Communication Sciences
Area: Cryptography (supervised by Prof. Serge Vaudenay)
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

2013-2016 BSc, Computer Engineering
TOBB University of Economics and Technology (EPFL), Turkey

2010-2015 BSc, Electrical and Electronics Engineering
TOBB University of Economics and Technology (EPFL), Turkey

Publications

1. Six Shades Lighter: a Bit-serial Implementation of the AES Family. Sergio Roldán
Lombardía, Fatih Balli, Subhadeep Banik, JCEN 2021

2. Melting SNOW-V: Improved Lightweight Architectures. Andrea Caforio, Fatih Balli,
Subhadeep Banik, JCEN 2020

3. The Area-Latency Symbiosis: Towards Improved Serial Encryption Circuits. Fatih

163

Curriculum Vitae

Balli, Andrea Caforio, Subhadeep Banik, TCHES 2021

4. Energy Analysis of Lightweight AEAD Circuits. Andrea Caforio, Fatih Balli,
Subhadeep Banik, CANS 2020

5. Determining the Core Primitive for Optimally Secure Ratcheting. Fatih Balli, Paul
Rösler, Serge Vaudenay, ASIACRYPT 2020

6. Swap and Rotate: Lightweight Linear Layers for SPN-based Blockciphers. Subhadeep
Banik, Fatih Balli, Francesco Regazzoni, Serge Vaudenay, ToSC 2020 Vol. 1

7. Exploring Lightweight Efficiency of ForkAES. Fatih Balli, Subhadeep Banik, IN-
DOCRYPT 2019

8. BioID: A Privacy-Friendly Identity Document. Fatih Balli, F. Betul Durak, Serge
Vaudenay, Security and Trust Management 2019

9. Six Shades of AES. Fatih Balli, S. Banik, AFRICACRYPT 2019

10. Distributed Multi-Unit Privacy Assured Bidding (PAB) for Smart Grid Demand
Response Programs. Fatih Balli, Suleyman Uludag, Ali Aydin Selcuk, Bulent Tavli,
IEEE Transactions on Smart Grid 2017

11. Privacy-Guaranteeing Bidding in Smart Grid Demand Response Programs. Su-
leyman Uludag, M. Fatih Balli, Ali Aydin Selcuk, Bulent Tavli, IEEE GC 2015
Workshop in SG Resilience

12. Enhanced Duplication: a Technique to Correct Soft Errors in Narrow Values. I.
Burak Karsli, Pedro Reviriego, M. Fatih Balli, Oguz Ergin and J. A. Maestro, IEEE
Computer Architecture Letters, 26 April 2012

Programming/Typesetting Languages

C, Python, Java, SageMath, VHDL/Verilog, x86, RISC-V, Matlab/Octave, HTML, PHP,
Latex

Languages

Turkish (native), English (advanced), French (A2-B1)

164

Curriculum Vitae

Experience as Teaching Assistant

2019–2020 Fall
2018–2019 Fall

Cryptography and Security

2019–2020 Spring
2017–2018 Spring

Advanced Cryptography

2020–2021 Fall
2017–2018 Fall

Computer Architecture

2016–2017 Spring Remedial Review Course

2016 Summer Internet and Data Security

2015–2016 Spring Introduction to Cyber Security

165

	Acknowledgements
	Abstract (English/Français/Türkçe)
	Contents
	Introduction
	Preliminaries
	Mathematical Notation
	Hardware-oriented Summary of Primitives
	AES
	SKINNY
	PRESENT
	GIFT
	GIFT*
	ForkAES and ForkAE

	ASIC Details
	Technology Libraries and Cells
	Test Bench and Synthesis Options
	Higher-level Building Blocks

	All-in-one AES Circuit
	Related Work
	Motivation
	Contributions
	Input and Output Formats
	Components
	High Level Description of the Design
	Elementary Operations of Layers
	Generic Encryption/Decryption Overview
	Key Expansion Details
	Hardware Evaluation
	Conclusion

	Evaluation of ForkAES
	Related Work
	Contributions
	Removing Additional Storage
	Focusing on Area: Byte-serial ForkAES Architecture
	Byte-serial Implementation Results

	Focusing on Energy: Round-based ForkAES Architecture
	Generic Architecture
	Modified Implementations
	Round-based Implementation Results

	Conclusion

	Introduction to Swap-and-Rotate Technique
	Related Work
	Contributions
	Permutation Preliminaries
	Single-swap Setting
	Analysis of the Permutation Layer
	Pipeline with Swap (1, 0)
	Pipeline with Swap (, 0)
	Control Bit Concatenation
	Application to GIFT-64

	Multiple-swap Setting
	4 4 matrix transposition with swaps
	From Transpositions to PRESENT Permutation
	From Transpositions to GIFT-64 Permutation
	Inverse Permutations for Decryption

	Final Interleaving Optimization
	Conclusion

	The Area-Latency Symbiosis through Swap-and-Rotate
	Related Work
	Contributions
	Generic Approach
	AES
	State Pipeline
	ShiftRows with Swaps
	The Nibble MixColumns
	Combined State Pipeline
	Key Pipeline
	8-bit Datapath

	SKINNY
	Combined State Pipeline
	Key Pipeline
	8-bit

	GIFT*
	1-bit Datapath
	4-Bit Datapath

	GIFT
	AEAD Implementations
	SUNDAE-GIFT
	SAEAES
	Romulus
	SKINNY-AEAD
	Synthesis Results
	Interpretation of Power and Throughput Results

	Cost of Decryption
	Conclusion

	Conclusion and Future Work
	Appendix
	S-boxes
	AES S-box
	GIFT S-box
	SKINNY S-box

	Bibliography
	Curriculum Vitae

