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We are at the very beginning of time for the human race.

It is not unreasonable that we grapple with problems.

But there are tens of thousands of years in the future.

Our responsibility is to:

do what we can,

learn what we can,

improve the solutions, and

pass them on.

— Richard P. Feynman

To my family. . .
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Abstract

Non-Volatile Memory (NVM) is an emerging type of memory device that provides fast, byte-

addressable, and high-capacity durable storage. NVM sits on the memory bus and allows

durable data structures designs similar to the in-memory equivalent ones. Expensive serializa-

tion/deserialization operations, usually associated with block-based storage, are not necessary.

Unfortunately, using NVM is not as simple as placing a data structure in NVM and expecting

persistence. As NVM sits on the memory bus, processor caches buffer the cache lines from it

that are referenced by load and store instructions.

The volatility of the caches and possible power failures at a random point in a program

complicate the design and require ways to handle these failures. Prior work focused on

implementing crash-consistency mechanisms to correctly recover a program’s data after a

failure. The goal was to minimize the use of costly cache line write-back and fence instructions,

which are necessary for correct durability. Moreover, commercial NVM devices are slower

compared to DRAM and affect the design. In addition to performance overheads, correctly

implementing crash consistency is hard. The programmers need to carefully reason about

cache line write-back instructions and the order of persistent writes. Finding bugs can take

from minutes to hours.

In this thesis, we use checkpointing as an effective crash-consistency mechanism with low

overhead for building durable data structures. We also describe an inter-procedural dataflow

analysis for fast detection of NVM programming bugs. We show the practicality of these ideas

through three primary contributions and their implementations.

Firstly, we present InCLL to address NVM checkpointing. InCLL is a novel technique that

uses fine-grained checkpointing and in-cache-line logging to minimize the number of explicit

write-back and fence instructions in the fast path of data structure modifications. We evaluate

InCLL both on DRAM and Optane devices for the Masstree data structure. Secondly, we

present a new checkpointing design, CpNvm, which minimizes NVM write-back instructions

on the critical path of the execution. We achieve low overheads for Masstree and Memcached

for write-heavy workloads, and almost no overheads for read-only workloads. In addition, we

present FlowNvm to find NVM programming bugs. FlowNvm can identify NVM programming

pattern violations and anti-patterns at compile-time using inter-procedural dataflow analysis.

Keywords: non-volatile memory, NVM, durable data structures, checkpointing, dataflow

analysis
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Résumé
Non-Volatile Memory (NVM) est un nouveau type de dispositif mémoire qui fournit un sto-

ckage durable rapide, adressable par octet, et de grande capacité. La NVM se situe sur le bus

mémoire et permet de conçevoir des structures de données durables similaires aux structures

équivalentes en mémoire. Les opérations coûteuses de sérialisation/désérialisation, générale-

ment associées au stockage par blocs, ne sont pas nécessaires. Malheureusement, l’utilisation

de la NVM n’est pas aussi simple que de placer une structure de données dans la NVM et

de s’attendre à de la persistance. Comme la NVM se trouve sur le bus mémoire, les caches

des processeurs mettent en mémoire tampon les lignes de cache qui sont référencées par les

instructions de chargement et de stockage.

La volatilité des caches et les éventuelles pannes de courant à un moment aléatoire d’un

programme compliquent la conception et nécessitent des moyens de gérer ces pannes. Les

travaux antérieurs se sont concentrés sur la mise en œuvre de mécanismes de cohérence en

cas de panne pour récupérer correctement les données d’un programme après une panne.

L’objectif était de minimiser l’utilisation d’instructions coûteuses de réécriture et des barrières

mémoire qui sont nécessaires pour une durabilité correcte. De plus, les dispositifs NVM

commerciaux sont plus lents que la DRAM et affectent la conception. En plus des surcharges

de performance, la mise en œuvre correcte de la cohérence en cas de panne est difficile.

Les programmeurs doivent raisonner soigneusement sur les écritures de lignes de cache et

sur l’ordre des écritures persistantes. Trouver des bugs peut prendre de quelques minutes à

quelques heures.

Dans cette thèse, nous utilisons le checkpointing comme un mécanisme de cohérence en cas

de panne efficace et à faible surchargeen pour construire des structures de données durables.

Nous décrivons également une analyse interprocédurale du flux de données pour la détection

rapide des bugs de programmation NVM. Nous montrons l’aspect pratique de ces idées à

travers trois contributions principales et leurs implémentations.

Tout d’abord, nous présentons InCLL pour traiter le checkpointing NVM. InCLL est une

nouvelle technique qui utilise le fine-grained checkpointing et le in-cache-line logging pour

minimiser le nombre d’instructions de réécriture explicite et de barrières mémoire dans le

chemin rapide des modifications de structure de données. Nous évaluons InCLL à la fois

sur des dispositifs DRAM et Optane pour la structure de données Masstree. Ensuite, nous

présentons une nouvelle conception de checkpointing, CpNvm, qui minimise les écritures

NVM sur le chemin critique de l’exécution. Nous obtenons de faibles surcharges pour Masstree
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Résumé

et Memcached pour les charges de travail à forte intensité d’écriture, et presque aucune

surcharge pour les charges de travail en lecture seule. De plus, nous présentons FlowNvm

pour trouver des bugs de programmation NVM. FlowNvm peut identifier les violations et les

anti-modèles de programmation NVM au moment de la compilation en utilisant l’analyse du

flux de données interprocédural.

Mots clefs : non-volatile memory, NVM, structures de données durables, points de contrôle,

analyse de flux de données
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1 Introduction

Non-volatile memory (NVM) is an emerging type of memory that offers fast, byte-addressable

durable storage. It is possible to store and manipulate pointer-based data structures such as

B+ trees and hash maps directly in NVM using load and store instructions. These structures

are accessible even after a power failure or a process crash.

One promising use for NVM is constructing robust, high-performance internet and cloud

services, which often maintain very large, in-memory data structures and need to quickly

recover from faults or failures. In data centers, failures are rare, but they do occur. Barroso [20]

reports that, at Google, in a year, a server is restarted between 1.2−16 times. Approximately

45% of machines restart at least once in a 6-month period and approximately 5% of machines

restart more than once per month.

A challenge in restarting large-scale services is the size of computer memories, which has

grown far faster than bandwidth to external storage devices, exacerbating a long-standing

bottleneck in persisting and restoring memory state [16]. For example, Facebook [71] reports

that restoring 120GB of data for a single machine can require 2.5−3 hours due to low disk

bandwidth and in-memory format translations. NVM can avoid most of these costs and

provides higher bandwidth than disk.

NVM programming, using NVM as a durable memory device, requires crash-consistency.

Crash consistency ensures that after a reboot, the program data is in a consistent state and will

not lead to any failures. Unlike traditional block-level storage, NVM programming requires

careful reasoning about cache lines and ordering persistent writes.

In the rest of the section, we expand on:

1. background information about NVM devices,

2. key challenges and issues associated with NVM programming,

3. our contributions to NVM programming to provide crash consistency using checkpoint-

ing and to find programming mistakes using dataflow analysis.
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Chapter 1. Introduction

1.1 Non-volatile Memory (NVM)

Non-volatile memory devices promise performance characteristics similar to DRAM and allow

byte-addressable access. On top of these features, an NVM device also provides persistence,

making it effectively a durable storage media. There are many competing technologies such as

PCM [34, 105, 192], STT-RAM [162], ReRAM [14], and CTN [47] for constructing NVM devices.

While NVM devices are still evolving, several products are currently available in the market.

These are 3D-XPoint Optane devices from Intel and ReRAM devices from Crossbar. There are

also substitute technologies such as battery-backed devices that provide functionalities similar

to NVM technologies. We first cover the range of NVDIMMs in the market then continue our

discussion with the actual NVM technologies.

In practice, durable memory interfaces come in the form of a non-volatile dual in-line memory

module (NVDIMM). NVDIMMs can be attached to the memory bus of a server, which is NVM

compatible, to provide durable memory. There are several alternative NVDIMM options to

choose from, such as NVDIMM-F, NVDIMM-N, and NVDIMM-P [106, 152].

NVDIMM-F is NAND Flash storage attached to the memory bus. Compared to DRAM, it can

have higher capacities. It has the bandwidth of Flash storage and is much slower than

DRAM. NVDIMM-F uses block-based storage.

NVDIMM-N is battery-backed DRAM with NAND Flash. The program accesses the DRAM

with a byte-addressable interface. If a power failure occurs, the data from DRAM is

copied to the Flash storage. Either a battery or a supercapacitor ensures power during

the data transfer. The capacity is limited by the DRAM size. In 2019, the market share of

NVDIMM-N was 72.5% [152].

NVDIMM-P interface combines DRAM and a non-volatile device such as PCM, STT-RAM,

ReRAM, and CTN to provide high capacity main memory. NVDIMM-P provides a byte-

addressable interface and can be used as a durable memory device.

NVDIMM-P interface is the recent technology that allows a modern NVM technology to be

deployed to run on a server. In this thesis, we consider only NVM devices with an NVDIMM-P

interface.

There are several NVM technologies that are commercially available, such as Intel Optane and

Crossbar ReRAM. Crossbar Inc. [13] released NVM devices based on ReRAM technology. The

specifications state that the ReRAM device has a maximum of 4µs random read latency and a

maximum of 4µs of write latency without caching. The device supports 105 write cycles.
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1.1.1 Intel Optane

Intel released their 3D-XPoint NVM device based on PCM technology in cooperation with

Micron. The NVM device is commercially available under the brand name of Intel® Optane™

DC Persistent Memory (Intel Optane DCPMM). Optane comes in a variety of capacities ranging

from 128GB to 512GB [15]. Optane devices are cost-effective compared to DRAM. Dell’s server

price list specifies approximately $2700 for 128GB of DRAM and $940 for 128GB of Optane

(DRAM is approximately 3x costly) [12].

Device Read Write

DRAM 106 77
Optane 7 2

Optane-Interleaved 39 14

Table 1.1 – Approximate DRAM and Optane maximum bandwidth (in GB/s) characteristics.

Table 1.1 depicts the maximum bandwidths for the Intel Optane device. Optane is slower

than DRAM [188, 91]. Yang [188] reports that NVM’s sequential read latency is 2x DRAM and

its random read latency is 3x. However, peak NVM read bandwidth is approximately 6% of

DRAM and peak write bandwidth is approximately 3% of DRAM. Interleaving can improve

NVM bandwidth, but DRAM still has higher bandwidth.

For the rest of the thesis, we focus solely on Optane as an NVM device and ignore the other

technologies. There are several reasons for this decision. Servers using Optane are widely

available. Optane is exhaustively studied [69, 91, 120, 180, 184, 188] and its performance

characteristics are well-known. The reported measurements match the promise of NVM,

which is a high-capacity durable memory device with performance nearing DRAM. Many

enterprises such as Facebook, Oracle, Huawei, Alibaba, and Tencent have already incorporated

Intel Optane into their data centers or are in the process of integration [5, 56].

We will not consider Crossbar ReRAM, as we do not have access to ReRAM based devices

and its reported latencies are an order of magnitude worse than DRAM. We will not consider

NVDIMM-N as battery-backing introduces its own fault-tolerance problems and complica-

tions. Batteries can fail, increase hardware cost, consume space, require cooling, and overall

complicate fault-tolerance and system testing [97].

Intel Optane Operation Modes

Optane has different modes of operation [8] in which Optane acts either as volatile memory or

as a durable memory device. These modes are Memory Mode and App-Direct Mode. There is

also Mixed Mode, which is a combination of these two modes.

Memory Mode uses Optane as the backing store for volatile main memory. DRAM is used

as a direct-mapped physically indexed and physically tagged cache for NVM with 4KB
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granularity [69]. Since NVM offers high-density memory, the program’s main memory

benefits from Optane’s large capacity. DRAM caching can improve performance com-

pared to directly accessing NVM. Unfortunately, the DRAM cache is volatile and the

NVM backing store is not kept consistent, so the program data is not accessible after

program execution or power failure.

App-Direct Mode provides durable memory to a program. The program maps the NVM

device into its virtual address space and accesses memory locations in NVM using load

and store instructions. The writes that are flushed from the caches into NVM are durable

and available even after a power failure. In this mode, DRAM acts as a normal volatile

memory and does not act as a cache.

Mixed Mode allows use of both Memory Mode and App-Direct Mode. A portion of NVM

memory can be used for Memory Mode while the remaining portions can be allocated

for App-Direct use. This allows some part of NVM to be used as volatile main memory

while the rest is durable memory.

For the remainder of the thesis, we focus on App-Direct Mode and consider NVM as a durable

memory device. We mainly focus on the performance challenges that arise from introducing

crash consistency and checking the correctness of the implementation. We briefly discuss

Mixed Mode to extend the capacity of DRAM. We defer a more detailed discussion of NVM

programming in App-Direct Mode to section 2.1.

Figure 1.1 – Intel Optane platform.

Figure 1.1 shows an Intel Cascade Lake x86-64 machine [155, 188] using Optane with different

modes. We briefly explain each component in the figure. The cores perform computation

and data processing. The program normally uses L1 (data and instruction), L2, LLC (last-layer

cache) caches to ensure fast data access. Caching buffers modifications to memory.

Optane uses Intel’s proprietary DDR-T interface [188] to communicate with the memory

controller. The interface is similar to DDR4 and uses cache-line granularity (64B) for data

transfers. It is possible to bypass the processor caches and directly send data to the memory

controllers using x86-64 non-temporal move instructions.
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The left side shows one possible configuration, which is the Memory Mode. DRAM acts as a

cache to NVM and can buffer the modifications.

The right side of the figure depicts App-Direct Mode. The region within the green boundary

indicates the persistence domain and is power-fail safe. Any data within the persistent domain

is ensured to be durable by the underlying hardware. The persistence domain includes Optane

and Write-Pending Queues (WPQs) of the memory controller. On power failure, Asynchronous

DRAM Refresh (ADR) allows WPQs to drain its contents to NVM. The rest of the hardware

including CPU registers, caches, and DRAM are volatile and lose data upon power failure. We

explain the importance of the ADR assumption to our work in section 2.1.1.

1.2 Principle Problems for Programming NVM

The simple model presented in figure 1.1 depicts the critical issues related to NVM program-

ming: processor caches are volatile. During a power failure, all program data residing in the

caches are lost. This power failure can leave the program data in NVM in an unrecoverable

state and can lead to runtime errors after a restart [104]. The cache lines can be evicted dif-

ferently than the program order leading to unexpected states [40]. Furthermore, failure can

happen while an operation is ongoing.

1 book∗ create_book(title, author, ...){
2 //allocate and fill the book
3 b→ title = title;
4 b→ author = author;
5 ...
6 return b;
7 }

Figure 1.2 – Book example for a library program.

Consider the library example in figure 1.2 to motivate inconsistencies due to power failure.

The library program stores a list of books. The code in the figure 1.2 creates a new book, which

is later added to the list and made visible to the users. This program is incorrect.

Book Attributes Title Author

Initial NVM State - -
Cache State Computer Architecture Patterson

Possible NVM State 1 - -
Possible NVM State 2 Computer Architecture -
Possible NVM State 3 - Patterson
Possible NVM State 4 Computer Architecture Patterson

Table 1.2 – Possible NVM states for book example.

Table 1.2 shows the possible states that can occur after a crash. Initially, the title and
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the author fields are not modified and contain old data. Once the create_book function

completes, the caches reflect the changes to the book and contain the name as well as the

author of the book.

If additional code for durability is not introduced, power failure at the end of the create_book
function can leave the book data in NVM in a corrupt state. There are 4 possible NVM states

for the book data if we just consider the two fields. The book is not updated in NVM and the

old data remains unwritten (State 1). Only the title (State 2) or the author (State 3) fields of

the book are updated. The book is updated completely (State 4).

A crash at the end of the create_book function creates uncertainty about the possible NVM

states. If the book is added to the list in States 1-3, then users might see incorrect data after a

power failure.

1 book∗ create_book_tx(title, author, ...){
2 transactional{
3 //allocate and fill the book
4 b→ title = title;
5 b→ author = author;
6 ...
7 return b;
8 }
9 }

Figure 1.3 – Book example with transactions.

Transactions [76] can be used to provide atomic durability. Figure 1.3 sketches the use of a

transaction to avoid bad states.

Book Attributes Title Author

Initial NVM State - -
Cache State Computer Architecture Patterson

Possible NVM State 1 - -
Possible NVM State 2 Computer Architecture Patterson

Table 1.3 – Possible NVM states for transactional book example.

Table 1.3 shows the states for execution of the book creation function with transactions. When

the code region atomically executes, either the book is created properly or the NVM region

is left untouched. There is no partial update of NVM after execution. For safety, the book

insertion to the list should also be a single atomic transaction.
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1.3 Crash-consistency Challenges

There is no free lunch when it comes to using a crash-consistency mechanism for NVM.

There are trade-offs between different crash-consistency mechanisms. They have different

runtime performance, space, recovery overhead costs. We leave the detailed discussion of

crash-consistency mechanisms to section 2.2.

1.3.1 Cost of Ordering Persistent Writes

To provide atomic durability [155], crash-consistency mechanisms usually rely on cache

line flush instructions to force cache line contents back to NVM and fence instructions to

ensure that these instructions complete. Otherwise, the program can use non-temporal move

instructions with a fence instruction for persistent writes. Executing these instructions for

persistent writes is costly and can reduce program performance [118, 177].

1.3.2 Cost of Using Optane

Besides the cost of ordering persistent writes to NVM, Optane has intrinsic costs. Crash

consistency designs must take into account the peculiar characteristics of the underlying

hardware. Optane has latencies close to DRAM and provides good performance. However,

DRAM is still significantly faster than Optane [91, 188]. Moreover, Optane performs worse

under heavy concurrent load, mixed-access patterns (mixed read/writes), and random access

patterns [91, 188].

1.3.3 NVM Programming Correctness

NVM programming is a challenging endeavor. Programs [126] that use NVM as a durable

memory device are mostly written in bug-friendly unmanaged and unsafe programming

languages, such as C/C++ [109]. Reasoning about cache line write-back instructions and

ordering persistent writes is not conventional in programming and can be challenging.

Using a library for NVM programming remains challenging. The programmer still needs to

use the library correctly, for example, finding the right boundaries for a transaction. In addi-

tion, libraries such as Intel PMDK offer a complicated programming interface that expects a

programmer to use its logging interface to denote persistent memory regions for a transaction.

1.4 Thesis Statement

There should be a diverse set of tools for NVM programming to address the programmer’s

needs. The goal of this thesis is to expand the software support for NVM programming by

providing low-overhead crash-consistency mechanisms through the use of checkpointing
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techniques and static analysis techniques for discovering NVM programming bugs.

Instead of using transactions, we suggest using checkpointing [1]. Checkpointing avoids

eagerly propagating changes to NVM and can persist writes in batches. We show that periodic

checkpoints every few milliseconds are achievable with low overheads for NVM programming.

In the thesis, we also show that, by carefully exploiting DRAM, the slowdown due to crash-

consistency can be greatly reduced over transaction-based systems.

In addition, NVM programming requires tools that reassure a programmer after writing a

program. If a power failure occurs, the last thing a programmer wants is to have a program

failure after a restart or to find the program data in an inconsistent state. It is necessary to

have tools that allow the programmer to reason about the order of the persistence of writes.

To achieve this goal, we introduce a static data flow analysis tool to find NVM programming

bugs during the compile time.

The statement of this thesis is:

We can provide software support for NVM programming by building checkpoint-

ing tools that allow building durable data structures with low crash-consistency

overhead. We can also build tools based on dataflow analysis for finding NVM

programming bugs without executing the program code.

Firstly, we present InCLL a fine-grained checkpointing technique tailored for NVM with an

undo logging strategy. InCLL shows that fine-grained intervals, on the order of milliseconds,

are feasible to build durable data structures for NVM. Instead of solely relying on an external

undo log for backing up data before doing in-place updates, InCLL keeps the log inside a

cache line to avoid explicit cache-line write-back instructions, effectively improving runtime

performance. InCLL ensures that no cache-line write-backs are necessary for the fast path

data structure modifications using in-cache-line logging and fine-grained checkpointing. We

describe our modifications to Masstree [117] and evaluate InCLL.

Secondly, we present CpNvm to correct the shortcomings of the InCLL algorithm. InCLL

was specifically implemented for Masstree and required careful reasoning about the data

structure layout. InCLL periodically executes a privileged instruction to flush the entire cache

hierarchy (Dalí-style cache flush). The invalidation and eviction create challenges in multi-

tenant systems and impact runtime performance by periodically increasing the cache-miss

rate. Moreover, InCLL does not take the performance characteristics of Optane into account

and experiences significant performance degradation when running on Optane.

With CpNvm, we marry the ideas from traditional application-level checkpointing and durable

data structure design. We tailor CpNvm for Optane by using DRAM as a middle layer to do

write-combining before propagating modifications to NVM. Heavily read or written data

resides in DRAM, where it can be accessed at a fraction of the cost, and only modified values

propagate to NVM periodically. CpNvm API is general and easy to use with a simple API. We
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show that CpNvm has low overhead for Masstree and Memcached with minimal code changes

in both benchmarks.

Finally, we present FlowNvm to find bugs in NVM programs using static analysis. To reduce

the state explosion of a program, we reduce the problem to a dataflow analysis and explore

properties across all program paths. FlowNvm detects issues in program ordering, which can

leave program data in NVM in an inconsistent state. FlowNvm defines programming patterns

and anti-patterns and uses inter-procedural data flow analysis to detect the validity of the

patterns and occurrence of the anti-patterns to find bugs. FlowNvm design is inspired by well-

known correctness bugs such as failing to order the persistent writes properly or performance

bugs such as flushing a cache line unnecessarily.

In summary, this thesis makes the following contributions:

• InCLL, a fine-grained checkpointing technique for building durable data structures

with an undo logging approach, which minimizes the number of explicit cache line

write-back instructions for fast-path data structure modifications.

Specifically, its contributions are:

– Fine-Grained Checkpointing, a technique to ensure a consistent, quickly recover-

able data structure in NVM after a system failure.

– In-Cache-Line Logging, an undo-logging technique that enables recovery of the

state from the beginning of an epoch without requiring cache-line flushes in the

normal case.

– Implementation of these techniques for the Masstree data structure and making

Masstree durable.

– Evaluation of durable Masstree to demonstrate a low (< 20% DRAM evaluation)

runtime overhead cost.

• CpNvm, a checkpointing tool using DRAM write-combining during execution and an

NVM copy for fast recovery with a simple application-level checkpointing API.

Specifically, its contributions are:

– An application-level checkpointing API with checkpointing-based crash-consistency

guarantees with low-overheads.

– The design and implementation of CpNvm, a new C/C++ library that implements

these checkpoints at low cost.

– Evaluation of CpNvm using Masstree and Memcached on Optane, demonstrating

its low run-time overhead.

• FlowNvm, static inter-procedural data flow analysis tool for finding NVM programming

bugs using program properties and anti-patterns.

Specifically, its contributions are:
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– Identification and description of several NVM programming patterns and anti-

patterns.

– Description of static program analysis for identifying many instances of these

pattern violations and the existence of the anti-patterns.

– Implementation of an extension to LLVM for C/C++ applications that identifies

and reports these bugs.

– Evaluation of this tool on existing NVM programs and demonstration that the tool

can detect and report previously known errors as well as a new bug.

1.5 Thesis Organization

The thesis organization starts with detailed background information followed by the contribu-

tions. Chapter 2 provides the background context for NVM Programming, crash-consistency

mechanisms for NVM, and checkpointing. Chapter 3 describes the design, implementation

and evaluation of InCLL. Chapter 4 describes the design, implementation and evaluation

of CpNvm. Chapter 5 describes the design, implementation and evaluation of FlowNvm.

Chapter 6 summarizes the key points of the thesis, presents the future work, and concludes.

1.6 Bibliographic Notes

The major implementation work for InCLL was done in 2018-2019 and Optane evaluations

were done in 2020. InCLL is a joint work previously published with Nachshon Cohen and Hillel

Avni in the paper: "Fine-Grained Checkpointing with In-Cache-Line Logging". Nachshon

came up with the idea and contributed to the implementation. Hillel Avni contributed to the

design. The Optane evaluation was done independently.
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2 Background

In this chapter, we describe NVM programming in detail and provide the technical back-

ground to understand the contributions. We describe how programmers can use NVM as

durable memory, the ordering axioms for properly persisting writes, and the failure model. We

illustrate high-level approaches for designing crash-consistency mechanisms. We explain the

performance advantages of using checkpointing as a relaxed crash-consistency model.

2.1 NVM Programming

We first describe the NVM programming specification [164] and explain how to order the

writes to make them persistent. We specify the axioms and instructions that are necessary

for ordering persistent writes. We specifically focus on the x86-64 instruction set and Linux

operating system, which is our evaluation setting. We discuss some other instruction sets,

deprecated configurations, and operating systems.

The Storage Networking Industry Association (SNIA) is a non-profit organization that produces

standards for the storage industry. SNIA’s NVM Programming Model specification is currently

the accepted standard for using NVM. The first version was published in 2013 and contains

the memory-mapped file paradigm for using NVM as a durable memory device. We discuss

the recent version of the standard (v1.2 [164]) published in 2017. We mainly focus on the

App-Direct Mode with a byte-addressable interface, not the File I/O Mode, which provides

block-level access.

The NVM Programming Model specifies that the primary method to provide durable memory

address space for NVM programming is to use memory-mapped files with the Direct Access

(DAX) feature. A programmer uses the mmap system call on Linux and MapViewOfFile call on

Windows to map NVM into the processor’s virtual address space. A programmer then accesses

NVM through loads and stores to these mapped addresses.

Traditionally, modifying data in durable storage media such as SSD or disk requires bringing

pages from the storage media to page caches, which are in DRAM memory. In this situation,
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calling mmap [10] duplicates the persistent data in memory. The second copy in the page cache

wastes space [24] and can cause performance degradation [100]. Both Linux and Windows

support the DAX feature, which allows a program to bypass page caches and access NVM

directly. DAX is a crucial feature for NVM Programming as it eliminates the unnecessary

overhead of the kernel I/O stack and context switching. However, using DAX introduces

programming challenges when dealing with failures such as system crash, power failure, or

reboot.

2.1.1 Failure Model

To understand the challenges related to NVM programming, we must first discuss its failure

model. Our failure model is based on the fail-stop/crash-recovery as described in Atlas [32].

If a failure such as a power failure occurs, the process crashes and stops. After the cause of

the failure is mitigated, such as providing power again, the process restarts and continues

execution. We do not consider Byzantine faults [103].

Because of the failure model, the notion of persistence domain becomes important. A persis-

tence domain specifies which parts of the hardware are durable (retain values) even after a

power failure. The current industry standard is to have Asynchronous DRAM Refresh (ADR)

as the persistence domain [155]. We described ADR in section 1.1.1. ADR is available with

Cascade Lake x86-64 processors.

The NVM Programming specification also includes another persistence domain configuration,

Enhanced Asynchronous DRAM (eADR) [11]. eADR extends the persistence domain to include

the processor caches, effectively making caches durable. The eADR feature is provided with

3rd generation Ice Lake chips.

For the thesis, we only consider the ADR persistence domain. Both InCLL and FlowNvm

require and assume an ADR system. On the other hand, CpNvm offers benefits to eADR

systems as its main goal is to improve the performance of a data structure while using Optane.

2.1.2 NVM Programming Primitives

The key design decisions in this thesis stem from the fact that processor caches

are volatile (ADR persistence domain) and a program might crash at a random

point.

In x86-64, NVM programming primitives allow (1) ordering writes and (2) guarantee that the

data is in the persistence domain. Ordering and persistence can be done using cache line flush

or non-temporal move combined with fence instructions. For normal stores to the memory,

controlling the eviction of cache lines explicitly is necessary for persistence. x86-64 provides

cache line flush instructions (clflush, clflushopt, clwb) or entire cache hierarchy flush

instruction (wbinvd) to evict cache lines from the software. Another approach is to bypass

12
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the caches for persistent writes and propagate data directly to the persistence domain. x86-

64 provides non-temporal move instructions (movnti,movntq, movntps, movntpd, movntdq,

maskmovq, maskmovdqu) to bypass the caches. Fence instructions are useful for ordering both

cache line flush instructions and weakly-ordered non-temporal move instructions. x86-64

provides fence instructions (sfence, mfence) to ensure that outstanding memory operations

are finished.

Cache Flush

These instructions flush cache lines:

clflush Invalidates and transfers a single cache line to the memory controller.

clflushopt Invalidates and transfers a single cache line to the memory controller. Instruction

executes asynchronously.

clwb Transfers a single cache line to the memory controller. The cache line is not invalidated.

Instruction executes asynchronously.

wbinvd A privileged serializing instruction that invalidates the entire cache hierarchy of the

CPU and writes back all dirty cache lines.

Invalidating a cache line removes it from the cache hierarchy. Invalidating ensures that the

next access to it will trigger a cache miss. clflush is synchronous and ensures that the

operation completes when the instruction finishes. clflushopt and clwb are asynchronous

instructions that are non-blocking and can be run concurrently for different cache lines. Both

clflushopt and clwb initiate the cache line transfer. However, these instructions return

before the cache line is flushed to the memory controller.

The clwb instruction is expected not to invalidate the cache line explicitly. However, it should

be noted that Cascade Lake chips use clflushopt’s mechanism for the implementation of

clwb and clwb invalidates the cache line [170]. We do not rely on clwb instruction in our

checkpointing tools.

wbinvd invalidates all cache entries and writes back dirty cache lines on the CPU that executes

the instruction. The wbinvd instruction flushes and writes back the L1 and L2 caches local to

the CPU and the shared L3 caches. It is synchronous and waits until completion. As wbinvd
invalidates the cache hierarchy, subsequent program performance will be lower due to cache

line misses. Sizes of the caches are a major factor in the execution time of wbinvd instruction.

As wbinvd is serializing, a fence instruction is not necessary for ordering.
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Non-temporal Move

Non-temporal move instructions allow bypass of the caches [88]. The cache line corresponding

to the memory address is not fetched and the cache hierarchy is not used. Writes directly

propagate to the memory controller using write-combining (WC) buffers. Non-temporal move

instructions are weakly ordered and require fence instructions for ordering. Otherwise, non-

temporal stores to two different memory regions can happen independent of the program

order and can lead to bugs.

Fence

The Intel x86-64 memory model is Total-Store-Order (TSO) [146]. In TSO, stores cannot be

reordered after stores. Raad et al. [147] provide a formal model for the semantics of the

ordering of operations for x86-64 systems. In the thesis, we focus only on a subset of the

model. We consider the ordering of the write instructions, non-temporal move instructions,

cache-line flush instructions, and fence instructions.

These instructions act as a fence:

sfence Orders stores and flushes.

mfence Orders loads, stores, and flushes.

Both sfence and mfence are useful for ordering stores and flushes. However, mfence also

orders loads. Usually relevant work in this field solely focuses on sfence as a fence instruc-

tion [159]. A single fence instruction is sufficient to ensure the durability of all the previous

cache line write-back and non-temporal move instructions.

1 x = 1;
2 clflushopt(&x);
3 sfence();

(a) Write followed by
clflushopt and fence.

1 x = 1;
2 clflush(&x);

(b) Write followed by clflush

1 ntm(&x, 1);
2 sfence();

(c) Non-temporal write fol-
lowed by fence.

Figure 2.1 – Possible ways to write data to NVM durably.

Figure 2.1a shows an example of clflushopt usage. Figure 2.2 shows how multiple cache

lines are flushed concurrently. Completion of the write back is ensured by the sfence.

We can think of clflush as executing a flush and a fence instruction. The reason is that once

clflush executes, it is synchronous and runs to completion. Figure 2.1b shows an example

for clflush.

Non-temporal move instructions are weakly ordered. It is possible that two writes to the
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1 // x and y are in different cache lines
2 x = 1;
3 y = 1;
4 clflushopt(&x); // initiate write back of cache line belonging to x
5 clflushopt(&y); // initiate write back of cache line belonging to y
6 sfence(); //both x and y are durable

Figure 2.2 – Flushing multiple cache lines.

same cache line do not occur in program order unless there is a fence instruction in between.

Figure 2.1c shows an example for non-temporal move instructions.

Another important idea is to order the writes to the same cache line. Ensuring that a write

reaches NVM is expensive. On the other hand, ordering the writes to a cache line is almost

free. If there are two writes to the same cache line, the order of writes reaching the cache is the

same as the order of reaching the persistence domain.

It is possible to use release memory ordering [25] from C++11 to order writes to the same

cache line. A release fence creates a happens-before relation between writes. This release fence

ensures that the writes are ordered as intended by the program order. In x86-64, a release fence

does not incur any extra runtime overhead and only prevents the compiler from reordering

writes.

Ordering Axioms

In this section, we define the formal ordering axioms, which we use for building crash-

consistent NVM programs. Formally, we assume different memory regions x, y and denote

the cache line addresses via c(x) and c(y). c(x) = c(y) denotes that the memory regions are in

the same cache line. Table 2.1 defines the formal operations and the relations that we use.

Operation Explanation

w(x) write to memory region x
wn(x) non-temporal write to memory region x

f (x) synchronous flush memory region x (e.g., clflush)
fo(x) asynchronous flush memory region x (e.g., clflushopt, clwb)
p f () persist fence (e.g., sfence)

Relation Explanation

<hb standard happens-before
<p persists-before
∼p both operations can persist in any order

Table 2.1 – Formal operations and relations for NVM programming.

The main goal is to ensure the persistence of writes. For crash-consistency mechanism design,
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it is necessary to be able to order the persistent writes correctly. Specifically, our goal is to

persist w(x) before persisting w(y) if x is written before y .

The following axioms determine the order of persistence for normal write operations:

• 1) w(x) <hb w(y)∧ c(x) = c(y) ⇒ w(x) <p w(y) (same cache-line)

• 2) w(x) <hb w(y)∧ c(x) 6= c(y) ⇒ w(x) ∼p w(y) (different cache-line)

The first axiom states that if the writes w(x) and w(y) are to the same cache line, the first write

w(x) will not persist later than the second write w(y). The second axiom states that two writes

can persist out-of-order if the writes are to different cache-lines.

1 // Initially x=0, y=0
2 x = 1;
3 y = 1;
4 // Possible NVM state: x, y ∈ {0,1}

Figure 2.3 – Program without flush, non-temporal move, and fences.

The second axiom can lead to the situation as presented in figure 2.3. The program writes

value 1 to x, then writes value 1 to y where initially both x and y are 0. If the program crashes

after executing y = 1 and is restarted afterward, NVM can be left in a state where the value

of y is 1 and the value of x is 0. This is inconsistent with the program order and can lead to

hard-to-find bugs [115].

We need to ensure that a write w(x) persists before write w(y). The following axioms show

how to enforce this ordering:

• 3) w(x) <hb fo(x) <hb p f () <hb w(y) ⇒ w(x) <p w(y) (asynchronous flush)

• 4) w(x) <hb f (x) <hb w(y) ⇒ w(x) <p w(y) (synchronous flush)

• 5) wn(x) <hb p f () <hb w(y) ⇒ w(x) <p w(y) (non-temporal move)

Axioms 3, 4, 5 ensure the durability of the writes by propagating the write to the persistence

domain. The specific programming pattern ensure that the second write does not propagate

to the persistence domain before the first write. The third axiom specifies that asynchronous

flush needs a fence instruction to complete. The fourth axiom specifies that after synchronous

flush instruction completes, the write is durable. The fifth axiom specifies that a non-temporal

move requires a fence instruction to order the two writes. In these axioms (3−5), the second

write w(y) can be done using non-temporal move instruction wn(y) and the persistence order

remains the same.
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2.1.3 Alternative and Earlier Programming Models

The current NVM programming specification [164] evolved over many years. We briefly men-

tion earlier models to set our work apart from the previous models. When persistence domain

did not include the buffers in the memory controllers, programmers used the pcommit [4]

instruction to explicitly flush memory controller buffers to NVM. The pcommit is now dep-

recated. In earlier models, clflush was weakly ordered and required the use of the mfence
instruction [88].

ARM has a weak memory ordering model [148]. Stores can be reordered with respect to

other stores [110], which can be prevented by using a fence instruction such as dmb. ARM

provides durability and ordering instructions. The "Data or unified Cache line Clean by VA

to PoP" (dc cvap) instruction, which is similar to clflushopt, flushes a cache line to the

memory controller asynchronously. ARM also provides "Data or unified Cache line Clean

by VA to PoDP" (dc cvadp) instruction, which flushes a cache line asynchronously to NVM

directly. This is useful for cases where the programmer does not trust the persistence of the

ADR domain. "Data Synchronization Barrier" (dsb) is a memory barrier instruction, which

has similarities to mfence as it orders loads and stores while ensuring the completion of the

previous write-back instructions.

If DAX mode is not used, range-based msync or file-based fsync and fdatasync calls can

be used. These calls are suitable for the File I/O mode and ensure that the changes to the

memory-mapped file get propagated to NVM durably. These calls are block-based. For DAX it

is better to do cache line flushes for performance [187].

There are many persistency models proposed in academia [90, 137, 146, 148] and different

instruction set and hardware proposals [126, 159] to handle persistence.

2.1.4 Optane Configuration

In this section, we explain Optane configuration [6] used for evaluating our checkpointing

contributions. The bug finding tool does not require a machine with Optane. We use ipmctl
and ndctl command-line programs to configure NVM. ipmctl program is useful for config-

uring the operation mode and enable/disable interleaving. ndctl program is useful for using

Optane as a durable memory device with a byte-addressable interface in App-Direct Mode.

Figure 2.4 and 2.5 show how to configure NVM.

1 > ipmctl create −goal MemoryMode=100 #Memory Mode configuration (1)
2 > ipmctl create −goal PersistentMemoryType=AppDirect #App−Direct configuration (2)
3 > ipmctl create −goal MemoryMode=25 Reserved=50 #Mixed Mode configuration (3)

Figure 2.4 – Provisioning NVM for different operation modes using ipmctl.
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1 > ndctl create−namespace −m fsdax #Namespace creation using fsdax (1)
2 > mkfs.ext4 −F /dev/pmem0 #Create a file system to manage the device (2)
3 > mount −o dax /dev/pmem0 /mnt/memext4 #Mount (3)

Figure 2.5 – Durable memory device configuration using ndctl.

2.2 Crash-Consistency Mechanisms for Programming

To recap, crash consistency allows a program to ensure a consistent state after events such

as power failure, system failure, reboots. We present high-level design ideas [114] for build-

ing crash-consistency mechanisms. The high-level design ideas are mainly software-based

solutions and do not require architectural changes to the hardware.

To implement crash-consistency mechanisms, we need to ensure that a set of operations

can execute with atomic durability [73]. Atomic durability, is an all-or-nothing characteristic.

It states that either all operations commit their changes to durable storage or none of the

operations commit to durable storage.

Completion of a set of operations can be thought of in terms of either transactions [76] or check-

pointing [99]. Transactions provide atomicity, consistency, isolation, durability (ACID) [145]

properties. Transactions traditionally have stronger guarantees.

An alternative is to use checkpointing and persist data after a passage of time. Checkpoint-

ing [153] takes a snapshot of the program state and stores the state in a safe location where it

can be accessed after a restart. The state can be the program state [138] including the stack

and the registers or a subset of the program data in the heap [185]. In either case, recovery

after a crash returns the state to the last valid checkpoint. The safe media can be durable

storage such as disk and SSD [138], NVM [185], parallel file system [22] or memory of other

processes [139]. We provide a detailed discussion about checkpointing in section 2.3.

Implementations of transactions and checkpointing relies on several design ideas and mech-

anisms. The x86-64 ensures that up to 8-byte aligned stores are atomically executed [157].

We describe the high-level software design patterns (e.g., undo logging, redo logging, recov-

ery via resumption, copy-on-write, operational logging) to provide a context for our design

conributions.

Undo logging [37, 53] allows in-place updates. The program first stores the old value in a

durable backup (undo log). Then, the program modifies the data in place and updates it with

the newer value. If the set of operations commits, the program discards the backup. The new

value is the latest version. If the set of operations fails, the program uses the backup data to

replace the new value with its original old value.

Redo logging [68, 175] redirects both reads and writes to the latest version of the data in the

redo log. During program execution, the program writes to the backup (redo log) and does not
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modify the program data. If the set of operations commits, the program applies the redo log

to the original data and updates the old value. The log replay is idempotent. Even if a failure

occurs during log replay, it is possible to replay the same log. If the set of operations fails, the

program discards the redo log. No changes are necessary to the original data and the old value

remains intact.

The main difference between undo logging and redo logging is the difference between in-place

updates and read/write redirection. The program has to store the old value to the backup

durably before doing the in-place update. On the other hand, redo log redirection can avoid

ordering writes on the critical path of the program. However, read and write redirection incurs

cost [118, 177].

Recovery via resumption [89, 113] stores sufficient information about the program execution.

If the program fails, after a restart, the program can complete the execution of the failed code

regions. Recovery via resumption executes parts of the program code after a restart, which is

unlike undo and redo logging that apply data modifications to memory regions.

Copy-on-write (COW) [118] creates a copy of the original data for modifications. The copy

is modified during the execution. If the set of operations commits, the program atomically

replaces the original data with the updated data. In the program, the copy becomes the

original. Afterward, the program discards the old data. If the set of operations fails, the

program discards the copy and no changes are necessary for the original. However, this

implies that there must be a pointer referencing the object to be atomically updated.

The main difference between redo logging and copy-on-write (COW) is atomic updates. Both

redo logging and copy-on-write write to a copy of data stored elsewhere. The difference is that

redo logging modifies the original data at commit time, while COW only updates a pointer to

the copy.

Operational logging [122] logs only high-level operations. After a restart, the program needs to

re-execute the operations in the log to restore that state of the data structure.

Checksum [183] is useful for minimizing explicit write-back instructions by checking the

validity of the stored data after a restart. The program operates on the data and computes a

checksum. After a restart, if the checksum matches the program data, then the program data

is usable and correct.

There are many design parameters one needs to consider in designing a crash-consistency

mechanism. Overall, the trade-offs are based on 1) runtime performance, 2) recovery overhead,

3) volatile memory and durable memory overhead, 4) programming simplicity, 5) validation

and verification simplicity. There is no one-size-fits-all solution. This leads to many proposals

for durable data structures and runtime systems for NVM programming [32, 37, 108, 112, 121,

175, 149, 185].
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2.3 Checkpointing

Checkpointing is useful in many domains and is widely used in areas such as databases [77,

161], high-performance computing [58, 178], virtualization [179, 191], debugging [59, 167],

process migration [111], and computations in power-constrained IoT environments [66, 96].

Checkpointing designs differ with respect to availability, checkpointing overhead, and fault-

tolerance.

A program can take checkpoints periodically [153, 171], at user-specified points [138], af-

ter hitting the limit of the log threshold size [49], or during program shutdown [102]. We

denote the time spent between two checkpoints as an epoch. There is no one-size-fits-all

solution for determining the time to initiate checkpointing. Selecting the optimal time at

which to take checkpoints is known as the checkpoint placement problem and the solutions

are domain-specific [99]. The size of the checkpoint, the amount of lost data, the time spent on

checkpointing, and the runtime overhead are factors in determining the placement of check-

points. Different systems such as real-time systems, distributed systems, shared-memory

systems all have different constraints.

Checkpointing can be implemented at different privilege levels [99]. There are two major

levels, kernel-level checkpointing [70] and user-level checkpointing [50]. In kernel-level check-

pointing, the kernel thread can checkpoint a program without changing the program code.

The kernel is responsible for recovery after a restart.

User-level checkpointing uses a checkpointing library. User-level checkpointing can occur

transparently to the program. User-level checkpointing can also be done using user-directed

annotations [138] requiring changes to the program. These code changes can exclude memory

locations and determine when to take a checkpoint. Another form of user-space checkpointing

is application-level checkpointing. The programmer modifies the program code to implement

checkpointing and recovery functionality. In all these approaches, checkpointing can use

timer interrupts to periodically persist program data.

There are many optimizations to reduce the checkpointing size and minimize the programmer

effort. For libraries and approaches that require program modification, compiler-assisted

checkpointing [21, 44, 57] minimizes the programmer effort.

Another optimization is incremental checkpointing, also known as delta checkpointing [49, 59,

138]. Incremental checkpointing records only the modifications for the current epoch instead

of checkpointing the entire program data. This can reduce the checkpoint size.

Likewise, data compression techniques are useful for reducing the size of checkpoints [139,

140]. The main parameters are the time spent on compression, the compression ratio of the

program data, total time spent in checkpointing. Approximate checkpointing techniques can

further compress program data by allowing lossy compression [36, 131]. During checkpoint-

ing, approximate checkpointing techniques allow loss of modifications within a bounded
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error. Approximate checkpointing is domain-specific and is usually used in scientific pro-

grams. Speculative checkpointing [172] eagerly checkpoints pages from the working set of the

program to avoid checkpointing pages during checkpointing pause interval.

Long-running, large-scale programs such as HPC scientific programs use checkpointing [55,

58, 92, 138, 154, 178]. Traditionally, HPC checkpointing occurs in intervals of seconds to hours.

The granularity of checkpointing is a page [1].

Databases [77, 161] often rely on checkpointing as well. However, different databases use

checkpointing in different contexts. Relational database designs, typically follow the ARIES [124]

recovery model, where transactions provide ACID guarantees [145] and checkpointing acts

as a means to truncate logs and speed-up recovery time. Checkpointing can store relational

database critical data structures such as the Transaction Table and Dirty Page Table. To re-

duce the cost of checkpointing the structures, the database can use fuzzy checkpointing

techniques [165]. Fuzzy checkpointing takes a snapshot of the tables asynchronously and

allows execution to proceed.
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3 Fine-Grained Checkpointing with
InCLL

Computer Science is a science of abstraction - creating the right model for a problem and

devising the appropriate mechanizable techniques to solve it.

— Alfred Aho

The main challenge in building durable data structures for NVM is to design systems that

effectively deal with the volatility of the caches and provide high runtime performance and

low recovery cost. After a restart, the program should be able to access its data and continue

execution without encountering a failure or program data inconsistency. Providing crash

consistency for correct recovery after a restart is an essential feature of NVM programming.

However, crash-consistency mechanisms often rely on persisting writes eagerly along the

critical path of a program that leads to the execution of expensive cache line write back and

fence instructions. The overhead from explicit write-back and fence instructions can be

significant for program performance [118, 189]. Previous work [17, 40, 128, 189] focuses on

minimizing the use of these instructions.

In this chapter, we introduce InCLL, which is a durable data structure design technique for

minimizing explicit write-back instructions for fast-path data structure modifications, such as

insertions, updates, and deletions. The entire data structure resides in NVM, which is stored

durably and accessible after a restart. InCLL breaks the execution into epochs and periodically

writes back the caches to NVM using fine-grained checkpointing. If a crash occurs, after a

restart, the data structure can contain modifications from the failed epoch. InCLL provides a

new undo-logging technique (in-cache-line logging) to roll back modifications from the failed

epoch. The use of an in-cache-line log can avoid explicit write-back and fence instructions.

We implement the adaptation of these ideas into Masstree and make Masstree durable. We

provide the evaluations of InCLL both for DRAM and Optane.

This chapter is organized into the following sections:

• Section 3.1 introduces InCLL by describing the design goals and the motivation based

on simulation and explains the contributions of InCLL.
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• Section 3.2 describes the two main components of InCLL, which are fine-grained pe-

riodic checkpointing for periodically propagating writes from the cache hierarchy to

NVM and in-cache-line logging to ensure correct recovery.

• Section 3.3 describes the Masstree data structure and explains how InCLL incorpo-

rates the two components (fine-grained checkpointing and in-cache-line logging) into

Masstree.

• Section 3.4 evaluates InCLL on DRAM and Optane devices.

• Section 4.5 compares InCLL to related work and this section is presented in chapter 4

after introducing CpNvm.

We specifically note that we use InCLL as a general umbrella term for the entire system. The In-

CLL idea is a combination of in-cache-line logging, fine-grained checkpointing, and persistent

memory allocation. However, we use InCLLp , InCLL1, InCLL2, and InCLLa as specific instances

of an in-cache-line log.

3.1 Introduction

In section 2.2, we explained how transactions can be useful for persisting program data

atomically. Typically, transaction implementations rely on a form of write-ahead logging such

as redo logging or undo logging. Undo logging relies heavily on explicit write-back and fence

instructions on the critical path of a data structure, which can be costly [118, 177]. This is due

to the nature of the implementation of an undo log [37, 141].

For undo logging, each write is first logged durably to a backup location (log entry) before

applying it to the data structure. Traditional undo logging in total can require the execution of

two write-back and two fence instructions for a single write operation during execution. The

logging mechanism first writes back and fences the log entry to make it durable, then updates

the undo log and makes the changes to the log durable. It is also possible to reduce logging to

a single write-back followed by a fence instruction. In any case, doing a write back is necessary

in the critical path of a program.

As we explained in section 2.2, an alternative is to use checkpointing instead of transactions.

Checkpointing saves a program’s entire state on durable media. After a failure, the program

continues execution by first restoring the last recorded state. As the durable media is usually

slow, copying the program state to the durable media takes time and is expensive. For this

reason, the program takes checkpoints infrequently on the order of minutes to hours to

minimize this cost.

InCLL uses fine-grained checkpoints instead of traditional checkpoints. Fine-grained check-

points divide the program execution into epochs. InCLL keeps only the data structure state in

NVM, not the entire program state. InCLL ensures that after a crash, it is possible to recover
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the state of the data structures to the end of the last successful epoch. At the beginning of each

epoch, InCLL takes a checkpoint by flushing the processor caches to NVM. This ensures that

the data structures in NVM are in a consistent state before beginning the new epoch.

There are many benefits to using fine-grained checkpointing. The entire data structure can be

placed in NVM benefitting from NVM’s high capacity. NVM has lower performance compared

to DRAM, however, as new technologies emerge, it is possible for NVM performance to improve

significantly.

Unlike traditional checkpointing, a separate copy of the data structure is not necessary. The

data structure that resides in NVM acts as both the data structure and the checkpoint. In-

CLL can support fine-grained intervals on the order of milliseconds, as the time spent on

checkpointing is bounded by the cache sizes and the number of dirty cache lines. The hardware

batches the flush of dirty cache lines, which can further reduce this cost.

One issue with fine-grained checkpointing is dealing with the modifications done within a

failed epoch. Modifications done in an epoch can propagate from the caches to NVM, which

can complicate recovery. If a crash happens during an execution, InCLL treats that epoch as

a failed epoch. After a restart, the data structure can contain modifications from the failed

epoch and these modifications must be rolled back.

To roll back the modifications, InCLL needs to track data structure modifications. A traditional

solution would be to use an undo log. However, undo logging can be expensive due to write-

back and fence instructions on the critical path of the program. Even if an undo log is a general

solution and applicable to any data structure, we don’t fully benefit from using fine-grained

checkpointing, which aims to minimize the number of write-back and fence instructions on

the critical path.

Before introducing the in-cache-line log idea, we describe additional system assumptions for

persistence. InCLL was done in era that predates Optane. The main assumption was that a

single cache line is the unit of persistence as the memory controller uses cache-line granularity

(64-bytes) for data transfers. Therefore, it is possible to persist data with cache-line granularity

as long as writes are ordered to the same cache line correctly.

The real contribution of InCLL is an in-cache-line log. The key idea of an in-cache-line log

is to use cache-line granularity for atomic persistence and build an undo log without any

write-back and fence instructions.

The main difference between an in-cache-line log and a traditional undo log is the placement

of the log. An in-cache-line log resides in the same cache line with the data that it is logging.

To contrast, a typical undo log resides in an external space separate from the data. We place

the log with its data in the same cache line, because two persistent writes to the same cache

line can be ordered without a write back or a fence (Section 2.1.2). This allows in-cache-line

logging to avoid write-back or fence instructions for modifications that it can log.
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We implement InCLL for Masstree [117], which is a combination of B+ tree and Trie data struc-

ture. We extend in-cache-line logging to provide a persistent memory allocator. We evalute

the system on a machine equipped with Intel Optane (Section 3.4.1). We demonstrate that the

results are feasible in simulation (Section 3.4.7) similar to what we previously reported [38].

The Optane evaluation incurs significant overheads, which led us to an improved design that

we present in the next chapter (Chapter 4).

The main contributions of this work are:

• Fine-Grained Checkpointing, a technique to ensure a consistent, quickly recoverable

data structure in NVM after a system failure.

• In-Cache-Line Logging, an undo-logging technique that enables recovery of the state

from the beginning of an epoch without requiring cache-line flushes in the normal case.

• Evaluation of InCLL for durable Masstree both in simulation and on Optane.

3.2 InCLL Design Overview

The main novelty of InCLL design is the combination of fine-grained NVM checkpointing with

an in-cache-line log to avoid expensive write-back and fence instructions. In this section,

we first describe the Masstree data structure to motivate the design of the InCLL approach.

Then, we describe the essential components that allow InCLL to be usable in practice, which

are fine-grained checkpointing, in-cache-line logging, and external logging. Fine-grained

checkpointing allows periodic checkpointing using cache flushes. An in-cache-line log is an

undo log that does not use explicit write-back and fence instructions. External logging is used

for cases where the capacity of an in-cache-line log is not sufficient. We described the ordering

axioms and persistency model assumptions in section 2.1.2.

3.2.1 Masstree Data Structure

Masstree [117] is a high performance, production-quality Trie and B+ Tree hybrid data struc-

ture, carefully designed to exploit prefetching, optimistic navigation, cache-line awareness

and fine-grained locking. Masstree is also used as an index for in-memory databases such as

Silo [169].

We provide an abstraction of the Masstree data structure (Figure 3.1) to simplify the discussion

for the InCLL approach. Overall, Masstree contains two types of nodes, which are leaf nodes

and internal nodes. We focus on the leaf nodes as InCLL takes advantage of the leaf node

design. Another reason for focusing on leaf nodes is that there is roughly an order of magnitude

more leaf nodes than internal nodes. We describe the parameters, the arrays for storing data,

and the permutation field that plays a crucial role in insertions and deletions.
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1 class basenode; // lock, version, meta information
2 template <int width=15>
3 class leafnode : public basenode{
4 basenode ∗parent, ∗prev, ∗next;
5 uint64_t permutation; // which key/vals are active
6 keytype keys[width];
7 valuetype ∗vals[width];
8 void remove(keytype key){
9 int idx = find_idx(key);

10 remove_idx(&permutation, idx);
11 }
12 void insert(keytype key, valuetype ∗val){
13 int idx = find_idx(&permutation);
14 keys[idx] = key;
15 vals[idx] = val;
16

17 // make insertion visible
18 add_idx(&permutation,idx);
19 }
20 void update(int idx, valuetype ∗val){
21 vals[idx] = val;
22 }
23 };

Figure 3.1 – Masstree’s leaf node structure.

Figure 3.1 depicts the internal structure of a Masstree leaf node. The number of key-value

pairs in a leaf node is a template parameter (Line 2). The default leaf node holds 15 keys and

15 pointers to values. The keys and the values are stored separately in two different arrays, the

keys array (Line 6) and the vals array (Line 7).

The structure does not store the value buffers inside Masstree. The value buffers are stored in

an external area separate from the Masstree data structure and accessed using the pointers in

the vals array.

Masstree uses the 64-bit permutation field (Line 5) to make insertions and deletions atom-

ically visible. In addition, the permutation field is used to find unoccupied entries within

the keys array and the vals array. Figure 3.2 shows the layout of the permutation field. The

64-bit field is divided into 4-bit regions. The lowest 4-bit entry represents the number of

elements. Each of the other 4-bit regions represent an ordered array of 15 elements for 15

indices of the keys and vals arrays. Simply, the permutation field can be considered as a

bitmap indicating if an index entry is used that also provides ordering information for the

entries. In figure 3.2, there are two indices that are used, where indices 2 and 4 are occupied.

Deletions (Line 8) modify only the permutation field (Line 10) and remove the visibility of the
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Figure 3.2 – Layout for the permutation field.

deleted entry. Insertions (Line 12) add the key to the keys array (Line 14), modify the pointer

in the vals array (Line 15) to point to the value buffer that contains the value, and updates the

permutation field (Line 18) to make modifications visible. Masstree splits a node when a free

slot does not exist.

Masstree supports node splits and merges, however, these operations happen less frequently

than modifications to leaf nodes. The full details of the Masstree algorithm are quite in-

volved [117], but are not necessary to understand the contributions of InCLL.

Masstree leverages epoch-based memory reclamation for allocations and deallocations. The

default setting for epoch-based memory reclamation is 64ms.

3.2.2 Fine-Grained Checkpointing

InCLL breaks the program execution into 64ms epochs, which is also memory reclamation

epoch in Masstree. We provide evaluations for shorter and longer epoch intervals (Section 3.4).

InCLL flushes the entire cache hierarchy to NVM using the serialized wbinvd instruction at

the beginning of an epoch, effectively making the entire Masstree data structure durably

consistent.

3.2.3 In-Cache-Line Logging

In-cache-line logging is an undo log technique that eliminates write-back and fence instruc-

tions entirely. For the Masstree implementation, InCLL embeds undo logs inside the Masstree

leaf node.

The undo logging algorithm for using an in-cache-line log is straightforward. The program

first stores the old value for the Masstree leaf node data in the in-cache-line log. Then the

program updates the data.

One major issue with the in-cache-line log is the capacity of the log. The log occupies space

within the same cache line as its data. If the in-cache-line log is small, then the log cannot
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capture all the modifications for a cache line. On the other hand, if the in-cache-line log

occupies a larger space, this can reduce program performance by reducing the effectiveness

of caching. In addition, while a log entry can be discarded when it is no longer useful, an

in-cache-line log cannot be discarded as it always resides along with its data.

A small in-cache-line log implies limited coverage within a cache line. It is possible that the

in-cache-line log space is not sufficient to record all the modifications for a cache line. For

such cases, InCLL falls back to using a traditional undo log.

3.2.4 External Logging

The external log is a standard undo log [32, 40, 100, 141] and ensures that the modifications

for the failed epoch can be correctly rolled back after a power failure. The main purpose of

external logging is to handle complex operations that cannot be handled by the in-cache-line

log. We describe each case where an external log is used in section 3.3.3.

We prefer object-level granularity logging, which logs an entire node. The reason for this

design decision is the possible performance benefits and the simplicity of the design. When a

complex operation occurs for a leaf node, we log the entire node once within an epoch, and all

the subsequent modifications to the node will not require subsequent logging. Object-level

logging does not require pervasive changes to the Masstree code. Furthermore, the log size

only grows during an epoch and is reset by periodic checkpointing.

We describe the implementation details about how to combine an in-cache-line log with an

external log in section 3.3. Overall, the main idea is to use an in-cache-line log for fast-path

operations, while using the external log for slow-path operations and cases with insufficient

in-cache-line log capacity.

In practice, the combination of in-cache-line logging and external logging works well. If

Masstree updates are random, most accesses are to different nodes. InCLL uses the in-cache-

line log to handle the few modifications and uses the external log infrequently. On the other

hand, if the modifications are ordered or if there are hot nodes that are accessed frequently,

most modifications go to a small set of nodes. External logging captures the modifications of

the popular nodes efficiently and is used once per node per epoch, which amortizes the cost

of logging a node in an epoch.

3.3 InCLL Implementation

We implement InCLL approach into the Masstree [117] data structure and make Masstree

durable1. We assume that InCLL is a technique for expert library developers and the imple-

mentation requires careful programming.

1Our code is available at: https://github.com/epfl-vlsc/Incll
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3.3.1 Fine-Grained Checkpointing Intervals

We explained the fine-grained checkpointing methodology in section 3.2.2. We implement

a kernel module to execute the priviliged wbinvd instruction (which takes around 4.3ms to

execute, more details in section 3.4.7).

On top of this, we implement an 32-bits epoch counter with a durable monotonically increas-

ing index. A 32-bit index is sufficient for keeping track of fine-grained epochs and wraps after

8 years for 64ms epochs. If program data lives longer, a background thread could run every 8

years to reset all epoch indices back to zero.

InCLL also keeps track of failed epochs for correct recovery. After a restart, the recovery code

adds the epoch that had a crash to the failed epoch set. InCLL uses the recovery code to revert

the modifications that are done in a failed epoch.

3.3.2 In-Cache-Line Logging

In-cache-line logging requires data structure layout changes to embed the log inside the cache

line. Figure 3.3 shows the layout for the Masstree leaf node visually. InCLL uses InCLLp for

logging the permutation field and InCLL1,2 for logging a pointer to a value buffer in the vals
array.

Figure 3.3 – Visual durable Masstree leaf node layout.

Figure 3.4 shows the implementation of a leaf node structure using in-cache-line logging. We

reduce the number of keys and value entries from the default 15 to 14 (Line 11) to make space

for two in-cache-line logs, InCLL1 (Line 20) and InCLL2 (Line 22). Each InCLL1,2 can log a

single pointer entry that points to a value buffer. Each InCLL1,2 is carefully designed to be

cache-aligned single words (8-bytes). InCLL1 resides in the same cache line as pointers 0−6,

while InCLL2 resides in the same cache line as pointers 7−13 (as shown visually in figure 3.3).

We use another in-cache-line log, InCLLp (Line 16) for the permutation field. Deletions,

insertions, and updates modify the permutation field.
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1 class basenode; // lock, version, meta information
2 struct ValInCLL{
3 long idx:4;
4 static const INVALIDIDX=−1;
5 long ptr:44; // 48 bits minus 4 least significant bits
6 long lowNodeEpoch:16; // last 16 bits of the epoch;
7 ValInCLL(ptr, idx);
8 ValInCLL():ptr(nullptr),idx(INVALIDIDX);
9 void set(ptr, idx);

10 };
11 template <const int width=14>
12 class leafnode : public basenode{
13 basenode ∗parent, ∗prev, ∗next;
14 uint62_t nodeEpoch; // InCLLp field, 62 bits
15 bool logged, InsAllowed; // InCLLp fields, 2 bits
16 uint64_t permutationInCLL; // InCLLp field, 64 bits
17 uint64_t permutation; // which key/val are active, 64 bits
18 keytype keys[width];
19 alignas(64) struct {} ALIGN; // align to cache line
20 ValInCLL InCLL1; // same cache line as vals[0..6]
21 valuetype ∗vals[width];
22 ValInCLL InCLL2; // same cache line as vals[7..13]
23 };

Figure 3.4 – InCLL’s leaf node structure.

In-Cache-Line Log Insertion and Deletion

We describe InCLLp layout for both insertions and deletions due to their similarity in using

the log. Figure 3.4 shows the fields of InCLLp . Insertions and deletions leverage the properties

of the permutation field to minimize logging. Then, we describe the order of operations that

are necessary for correct recovery. Figure 3.5 depicts the implementation details for insertions

and deletions.

InCLLp Layout

For insertions, a slot for the key-value pair is unoccupied at the beginning of the failed epoch.

There is no key-value entry to recover and logging the permutation field is sufficient. InCLL

uses the permutationInCLL field to log the state of permutation. The same idea holds for

subsequent insertions.

Deletions remove a key-value pair by updating the permutation field to indicate that the

entry is unoccupied. As the entries in the keys and vals array are not overwritten, logging

the permutation field is sufficient. The same idea holds for subsequent deletions.

Mixed insertions and deletions are more complicated. Logging the permutation field is not

sufficient as insertion after a deletion can overwrite a key-value entry. Overwriting an entry

complicates the recovery as the original key-value pair from the beginning of the epoch does
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1 void leafnode::InCLL(bool InCLLallowed, permInCLL, valInCLL[2]){
2 if(curEpoch != nodeEpoch){
3 isInsertionsAllowed = true;
4 isLogged = false;
5 if(higher(curEpoch) != higher(nodeEpoch))
6 isLogged = logNode();
7 if(!isLogged){
8 permutationInCLL = permInCLL;
9 InCLL1 = valInCLL[1];

10 InCLL2 = valInCLL[2];
11 // order writes to the same cache line
12 atomic_thread_fence(memory_order_release);
13 }
14 InCLL[1,2].lowNodeEpoch = lower(nodeEpoch);
15 nodeEpoch = curEpoch;
16 } else if(!isLogged && !InCLLallowed)
17 isLogged = logNode();
18 // order writes
19 atomic_thread_fence(memory_order_release);
20 }
21 void leafnode::remove(keytype key){
22 int idx = find_idx(key);
23 InCLL(true, permutation, ValInCLL(), ValInCLL());
24 InsAllowed=false;
25 remove_idx(&permutation,idx);
26 }
27 void leafnode::insert(typetype key, valuetype ∗val){
28 int idx = find_idx(&permutation);
29 InCLL(InsAllowed, permutation, ValInCLL(), ValInCLL());
30 keys[idx] = key;
31 vals[idx] = val;
32 add_idx(&permutation,idx);
33 }
34 void leafnode::update(int idx, valuetype ∗val){
35 ValInCLL& InCLL = (idx<7) ? InCLL1 : InCLL2;
36 InCLLallowed = (InCLL.idx == idx || InCLL.idx == INVALIDIDX);
37 if(InCLL.idx == INVALIDIDX)
38 InCLL.set(vals[idx], idx);
39

40 ValInCLL vc1 = ValInCLL (vals[idx], idx);
41 ValInCLL vc2 = ValInCLL(nullptr, INVALIDIDX);
42 if(idx>=7)
43 swap(vc1, vc2);
44 InCLL(InCLLallowed, permutation, vc1, vc2);
45 vals[idx] = val;
46 }
47 void higher(uint32_t epoch); // get upper 16 bits of epoch
48 void lower(uint32_t epoch); // get lower 16 bits of epoch

Figure 3.5 – Durable Masstree operations.
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not exist anymore.

As shown in figure 3.4, we add nodeEpoch (Line 14), permutationInCLL (Line 16), ins-
Allowed (Line 15), and logged (Line 15) fields to handle insertions and deletions. InCLL falls

back to using the external log to handle mixed insertions and deletions. It does this by using

the insAllowed field to allow insertions for the node within the epoch. After a deletion, InCLL

sets the insAllowed value to false to disable mixed insertions and deletions. If insertions

are not allowed for a node within an epoch, then InCLL logs the entire node to the external

log and sets the logged field to indicate that the node is logged. If the entire node is logged,

subsequent operations do not use any form of logging for the remainder of the epoch.

Masstree can grow large and contain many key-value pair entries. It is not feasible to reset all

the in-cache-line log entries for a new epoch. For this reason, InCLLp also keeps track of the

current epoch number using the nodeEpoch field.

Overall, InCLLp contains four fields:

• nodeEpoch: Keeps track of the epoch number for the leaf node.

• permutationInCLL: Acts as a backup log for the value of the permutation field at the

beginning of the epoch indicated by nodeEpoch. Recovery code uses permutationIn-
CLL to restore the value of the permutation field.

• insAllowed: Allows logging to fall back to using external log for mixed deletions and

insertions. Indicates if the use of InCLLp is possible.

• logged: Indicates that the node is logged using the external log.

Insertion and Deletion Algorithm

We motivate the discussion for insertions and deletions using figure 3.5. The lines refer to

figure 3.5 for this section. We discuss recovery in detail in section 3.3.4.

The algorithm runs as follows. InCLL first checks if the node was modified in the current epoch

(Line 2). If the node is not modified, InCLL records the value of permutation in permuta-
tionInCLL (Line 8). It updates the nodeEpoch (Line 15) to current epoch and continues the

operation. If the node is not from the current epoch and if insertions are not allowed (Line 16),

InCLL logs the node (Line 17).

The recovery code can access leaf node fields and uses the information within an in-cache-line

log to revert the changes. That is why, if nodeEpoch is updated before permutationInCLL,

recovery can fail. If the write to nodeEpoch happens before the write to permutationIn-
CLL, then the recovery code assumes that an older value for permutation is the value at the

beginning of the epoch, which is not true. An older value from a previous epoch leads to an

inconsistent state for the leaf node.
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Figure 3.6 – Order of operations using InCLLp fields for insertions and deletions.

Figure 3.6 shows the order of operations of writes to permutation, permutationInCLL, and

nodeEpoch, which is crucial for correct recovery. InCLL (1) updates the value of permuta-
tionInCLL to the current value of the permutation field, (2) sets the value of nodeEpoch to

the current epoch, (3) modifies the value of the permutation field to reflect the insertion

or the deletion of the key-value pair. InCLL does not require ordering for insAllowed and

logged, as these fields are semantically transient.

The permutation, permutationInCLL, and nodeEpoch fields are all in the same cache line.

It is sufficient to use a release memory fence [25] (described in section 2.1.2) to ensure ordering

for the writes. By ensuring the order to the same cache line, an in-cache-line log can avoid

write-back and fence instructions.

We described the algorithm to handle cases where InCLLp is sufficient for reverting changes

within an epoch for insertions and deletions. We explain why this ordering is essential for

recovery and how data propagates to persistence domain. Recovery only needs to revert the

permutation field to correctly recover for these operations. There are four possible cases

that we need to consider for cache line eviction as permutation, permutationInCLL, and

nodeEpoch are in the same cache line.

1. If permutationInCLL is not modified, then permutation is also not modified, so there

are no insertions and deletions to a node. This is safe for in-cache-line log recovery.

2. If only permutationInCLL is modified and if the cache line is in persistence domain,

then recovery is not applied. The nodeEpoch field is not updated to the value of a failed

epoch that had a crash. Recovery is unnecessary as permutation is not modified yet.

3. If both permutationInCLL and nodeEpoch are modified and if the cache line is in the

persistence domain, then recovery is applied. However, the value of permutation and

permutationInCLL are the same. Recovery is safe even if it is unnecessary.

4. If permutationInCLL, nodeEpoch, and permutation are modified and the cache line

is in the persistence domain, then recovery is applied. As permutation is sufficient for

correct recovery, InCLL reverts the value of permutation using permutationInCLL.
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In-Cache-Line Log Update

InCLL updates are more complicated as they involve the InCLL1,2. Figure 3.4 shows the fields

of InCLL1,2. Updates require logging the value pointers in the vals array. Figure 3.5 depicts

the implementation details for updates.

InCLL1,2 Layout

We embed InCLL1,2 structures into the same cache lines as the vals array. Each InCLL1,2

structure is capable of logging a single pointer entry to a value buffer within a single cache

line. We compact the layout of InCLL1,2 to specifically fit into a single 8-byte word. A single

word layout allows 7 other pointer entries within the same cache line for a total of 14 key-value

entries for each leaf node. If we use two words for a single InCLL1,2 structure, then the number

of entries reduces to 6 per cache line. Using more space for InCLL1,2 reduces the number of

key-value pairs which a leaf node can hold down to 12. The reduction in leaf node capacity

would further incur a performance penalty.

We make the observation that the entries within the vals array are pointers to value buffers.

We can log a pointer more efficiently than a standard value as the current x86-64 only uses

the lower 48 bits for addressing. The upper 16 bits are equal to the value of the 47th bit for a

valid memory address. Since all the memory allocations are aligned on 16 byte boundaries,

the lower 4 bits are always zero as well. Overall, we can get 20 free bits for a pointer entry.

InCLL uses the free bits to store a compact epoch number and the index for the key-value pair.

As shown in figure 3.4, the log contains the index (Line 3), value pointer (Line 5), and lower 16

bits of the epoch number (Line 6).

Figure 3.7 – InCLL1,2 layout.

Figure 3.7 shows the InCLL1,2 layout. InCLL uses bits 0−3 for the index of the logged entry. 4

bits are sufficient to represent all indices for the vals array entries and one extra invalid value.

InCLL uses bits 4−47 to log the value of the pointer. InCLL uses the bits 48−63 for storing the

lower 16 bits of the epoch number (lowNodeEpoch).

When InCLL modifies the node for the first time in the epoch, InCLL updates the InCLL1,2 to

the current epoch by updating the lowNodeEpoch. Our assumption is that we can combine
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the 16 bits from the lowNodeEpoch with the 16 higher bits of nodeEpoch from the InCLLp to

form a full epoch number. If 16 bits are insufficient to correctly encode the epoch, InCLL falls

back to using the external log, which happens approximately once an hour (216 epochs with

64ms intervals).

There are architectural designs that can use the upper bits for addressing. Systems that use

5-level paging extend the addressable virtual address space and use the upper bits 48−57 for

addressing. As it uses the upper bits for the epoch number, we cannot use the same design for

5-level paging. One possible solution is to use the external log for addresses higher than 248.

Update Algorithm

We motivate the discussion for updates using figure 3.5. The lines refer to figure 3.5 for this

section. We discuss recovery in detail in section 3.3.4.

The algorithm runs as follows. InCLL first checks if the node was modified in the current

epoch (Line 2) similar to the insertions and deletions. If the node is modified for the first

time in the epoch, then InCLL uses InCLL1,2 for logging as well. InCLL first determines which

InCLL1,2 to use depending on the index number for the entry (Line 35). InCLL records the

index and the value entry in the appropriate InCLL1,2 and updates the epoch numbers. InCLL

compacts the value of the logged pointer and the slot number into a single word and updates

the corresponding InCLL1,2 entry (Lines 9–10). Then, InCLL updates the epoch number for

InCLL1,2 by setting the lowNodeEpoch using the lower 16 bits of the nodeEpoch.

On top of the base case, if a node is updated in the current epoch and if the node is not logged,

there are three special cases to consider.

1. Modification to the same entry with the same index: InCLL1,2 contains sufficient infor-

mation for recovery, so logging is unnecessary. Since the modification is to the same

index, in-cache-line log is allowed (Line 36). This allows the bypass of in-cache-line

logging (Line 2) and external logging (Line 16) to avoid unnecessary operations.

2. One of InCLL1,2 is used, but the other one is not used: We can still use the second In-

CLL1,2 structure to optimize performance. As one of the InCLL1,2 is used from a previous

modification within an epoch, the in-cache-line logging path (Line 2) is not usable.

Also, logging path is not usable (Line 16) as in-cache-line log usage is allowed (Line 36).

InCLL sets the value of the second InCLL1,2 directly (Line 38), which avoids unnecessary

external logging and allows the use of the second cache line.

3. One of the InCLL1,2 or both of them are used and the modification is to an unlogged

entry: In this case, the in-cache line log capacity is insufficient. That is why, InCLL logs

the entire node.
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3.3.3 External Logging Algorithm

We describe the cases for using the external logging. Internal nodes are useful for data structure

traversal and benefits from caching. Increasing the size of the internal nodes by introducing an

in-cache-line log can be detrimental to cache performance. Moreover, leaf nodes are modified

much more frequently.

InCLL uses the external log for tracking internal nodes by introducing an epoch number

(nodeEpoch) to each internal node similar to a leaf node. It checks if an internal node is logged

within the epoch by checking the equality of nodeEpoch and curEpoch.

InCLL uses the external log for infrequent leaf node splits and merges as these operations

touch most of the fields in a node and individually dealing with each modification would

complicate the algorithm. InCLL also uses external log to handle insertions after deletions

and updates to multiple entries within a cache line for the vals array.

The nodes that are accessed by InCLL are always locked. One benefit derived from locking

is that the node is logged only once within an epoch. For external logging, we use thread-

local logs and each log works independently, which avoids synchronization. As there are no

dependencies in the log entries, each thread can run logging in parallel during the program

execution. Likewise, during recovery, each thread can roll back independently. This is in stark

contrast to traditional undo log rollback that requires the log to be applied in the reversed

execution order, which limits the concurrency of the recovery procedure.

3.3.4 Recovery

InCLL consists of two types of undo logging mechanisms, in-cache-line logging and external

logging. The two separate mechanisms require a separate approach to recovery. InCLL, first

runs the external log roll-back mechanism. Afterward, InCLL lazily recovers the nodes that

solely rely on in-cache-line log.

Figure 3.8 shows the high-level algorithm for the recovery. After a restart, InCLL inserts the

epoch number that lead to a crash to failed epoch set. For correct recovery, the following

relation holds lastFailedEpoch < currExecEpoch < curEpoch, where lastFailedEpoch
is the epoch number of the last failed epoch, currExecEpoch denotes the first epoch in the

current execution. InCLL sets the value of currExecEpoch to be the first epoch in the current

execution after the restart and once recovery completes, the node continues operation from

the curEpoch. This relation allows recovery to be applied first then allows in-cache-line

logging.

The recovery algorithm as follows. First, InCLL rolls back the external logs (Line 4). Each

thread iterates over the thread-local external log separately (Line 6) and copies the contents of

each node from the log to the corresponding region in NVM (Line 7). Then, other components

of the node such as an in-cache-line log and the locking mechanism is recovered (Line 8).
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1 uint64_t currExecEpoch; // first epoch in the current execution
2 lock recoveryLocks[K];
3 // before first access to durable Masstree
4 void durableMasstree::recovery(){
5 # parallel for
6 for each entry L in external log do: // for a node n
7 memcpy(L→ addr, L→ content, L→ size);
8 n→ nodeRecovery();
9 }

10 // before first access to a leaf node
11 void leafnode::lazyNodeRecovery(){
12 if(unlikely(nodeEpoch<currExecEpoch)){
13 int idx = hash(this);
14 recoveryLocks[idx].acquire();
15 if(nodeEpoch<currExecEpoch){
16 nodeRecovery();
17 }
18 recoveryLocks[idx].release();
19 }
20 }
21 void leafnode::nodeRecovery(){
22 // InCLLp

23 if(failedEpoch.find(nodeEpoch))
24 permutation = permutationInCLL;
25

26 // InCLL1

27 uint64_t epoch = higher(nodeEpoch) | InCLL1.epoch;
28 if(failedEpoch.find(epoch))
29 vals[InCLL1.idx] = InCLL.ptr;
30 // InCLL2

31 epoch = higher(nodeEpoch) | InCLL2.epoch;
32 if(failedEpoch.find(epoch))
33 vals[InCLL2.idx] = InCLL.ptr;
34

35 // order writes
36 atomic_thread_fence(memory_order_release);
37 nodeFix();
38 }
39

40 void leafnode::nodeFix(){
41 basenode::initlock(); // might be in bad state after crash
42 InCLL[1,2].epoch = lower(currExecEpoch);
43

44 // order writes
45 atomic_thread_fence(memory_order_release);
46 nodeEpoch = currExecEpoch;
47 }

Figure 3.8 – Durable Masstree recovery.
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We describe the combined recovery after explaining the lazy recovery algorithm. External

log rollback does not require synchronization and each thread can run independently until

completion.

In-cache-line log structures are embedded into leaf nodes unlike the external log. Recovering

in-cache-line log is more involved. Iterating over the entire data structure to reset the in-cache-

line log is an option. However, the data structure traversal can be expensive depending on the

Masstree size and can delay the restart. Moreoever, there can be nodes that are not logged by

the external log, which are using an in-cache-line log.

InCLL uses lazy recovery (Line 11) to restore the nodes that use only the in-cache-line for a

failed epoch. The lazy recovery rolls back the in cache line log state to the state at the start of

the failed epoch.

The algorithm is as follows. When the program accesses the node after a restart, InCLL

first checks if the nodeEpoch is from a previous execution (Line 12). If the node is from a

previous execution, then the recovery algorithm brings the node to the beginning of the

current execution (currExecEpoch) and recovers the node if possible.

One important issue is that multiple threads can be accessing the node concurrently. Locking

is necessary to avoid data race conditions for the recovery code and to ensure that the recovery

is correctly visible according to the Masstree design. However, InCLL cannot rely on the leaf

node’s lock. The reason is that the leaf node lock might be in a failed state after a failure. If

InCLL tries to acquire a lock that is in the wrong state, the program can deadlock. The deadlock

can also occur when a single thread tries to acquire the leaf node’s lock.

InCLL uses its own separate locking mechanism for leaf nodes. It creates an array of transient

locks residing in DRAM for recovery, hashes the address of the leaf node (Line 13), finds the

appropriate bucket in the lock array, and acquires the lock (Line 14).

Once a node is locked, InCLL continues with the recovery code. InCLL checks the nodeEpoch
again to ensure that the node is not recovered before by a concurrent thread (Line 15). InCLL

then continues with the recovery code. InCLL checks if the last modifications to the node

are from a failed epoch (Line 23). If the node is from the failed epoch, then InCLL recovers

the permutation by using the value from permutationInCLL (Line 24). Afterward, InCLL

checks the epoch numbers of InCLL1,2 by combining the higher 16 bits of the nodeEpoch and

the lower 16 bits of the lowNodeEpoch (Lines 27, 31). This is safe as the higher 16 bits are the

same for the epoch that fails and the previous epoch. Otherwise, the node is logged (as shown

in Line 5 figure 3.5).

For each InCLL1,2, if the epoch number is from a failed epoch, then InCLL recovers the entry by

restoring the pointer entry in the vals array using the idx field from the InCLL1,2 and the ptr
field (Lines 29, 33). Finally, InCLL completes node recovery by re-initializing the leaf node lock

(Line 41) and fixing the epoch numbers (Lines 42, 46). By setting the nodeEpoch to the curr-
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ExecEpoch (Line 46), the node does not need further recovery. The program can continue the

execution normally and any subsequent use of an in-cache-line works as currExecEpoch <
curEpoch.

If a node is recovered using the external log, then in-cache-line log might need to be properly

recovered. The reason is that, during program execution, InCLL can log a node that uses

an in-cache-line log. We do not roll back the in-cache-line log before using the external log

for improved runtime performance. That is why, when using the external log, InCLL takes a

snapshot of the entire log with in-cache-line log state. When the node is recovered from the

external log, the recovery is not complete. The node is still not at the state at the beginning of

the epoch as the in-cache-line log is not yet recovered. InCLL eagerly recovers the in-cache-

line log during the recovery of the external log. The rest of the nodes that are not rolled back

using an external log use lazy recovery.

Similar to the program execution algorithm, recovery does not require any write-back or

fence instructions. If a power failure occurs before the recovery completes, recovery can be

re-executed safely.

3.3.5 Persistent Memory Allocation

As we described in section 3.2.1, the value buffers are not stored inside a Masstree node.

One important issue is that the allocation of the value buffers should be in NVM so they are

available after a crash. Allocating and deallocating value buffers requires persistent memory

allocation. For good runtime performance, it is essential to use high-performance persistent

memory allocation and avoid costly write-back and fence instructions in the fast-path of the

data structure.

Persistent memory allocation does not require any write-back or fence instructions. An

allocator is essentially a data structure that keeps track of free chunks of memory. We only

need to extend the in-cache-line logging approach to the data structure that records free

chunks of memory and use periodic checkpointing to ensure persistence. InCLL can recover

the state of the allocation data structure to its state at the beginning of an epoch.

The data structure that stores the free chunks of memory is a linked list. There are multiple

linked lists for multiple size classes. During an object allocation, Masstree finds the correct

size class and selects the appropriate linked list. Then Masstree pops an object from the free

list and uses the memory region as a value buffer.

Deallocation is similar. Masstree reclaims the memory region by adding it to the appropriate

linked list of free objects. The deallocated memory region becomes usable in the next epoch

as Masstree uses epoch-based memory reclamation.

We observe that it is sufficient to use a single next pointer per free list node to implement the

linked list of free objects. We use an in-cache-line structure, InCLLa , to log the next pointer.
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We first present a basic version of InCLLa to describe the high-level idea. Then we optimize

InCLLa by compacting its size. For each object, the basic InCLLa has a header containing

three fields that fit into a cache line. These fields are the next pointer, a backup location for

the next pointer, and the epoch number.

The major drawback for InCLL persistent memory allocation is that the allocator requires

header space for each object. The basic approach uses a 24-bytes header and can lead to

32-bytes space overhead due to 16 byte alignment constraints. We can compact the header

using techniques introduced for InCLL1,2.

Optimizing InCLLa Space Overhead

We compact the space occupied by the InCLLa and reduce the space overhead to 16 bytes for

each object. The InCLLa fields are:

• next: The current next pointer.

• nextInCLL: The value of the next pointer at the beginning of the epoch.

• allocEpoch: 32-bit epoch number to keep track of the current epoch.

Both next and nextInCLL are pointer values. The upper 16 bits of both pointers provide 32

bits in total. 32 bits are sufficient for compacting the epoch number allocEpoch. We break

the 32 bit epoch number allocEpoch into two 16 bit numbers and place the most significant

16 bits in the next and the least significant bits in the nextInCLL.

One problem with epoch number compaction is that we update a single word atomically.

However, the epoch number is spread across two words. The update to the epoch number can

see a partial write state after a crash. After recovery, InCLL can see a state where only half of

the epoch number is updated. Seeing a partial state can lead to incorrect recovery.

We encode a small counter to avoid torn writes using the lower unused bits of the pointers.

Specifically, InCLL uses the four least significant bits of both next and nextInCLL to imple-

ment a counter. InCLL increments the small counter when the program modifies the pointer

for the first time in the epoch.

If both counters are the same, InCLL assumes that the pointer modification is complete and

nextInCLL contains the backup value for next. InCLL constructs the correct epoch number

by combining the 16 most significant bits of next with the most significant 16 bits of next-
InCLL and checks the epoch number. If the epoch number is from a failed epoch, InCLL

recovers the next using the value of nextInCLL. InCLL creates the epoch number using the

16 most significant bits of next and nextInCLL to form an epoch number. If both counters

are different, then the difference between the counter values implies that a crash happened
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before during the pointer modification. InCLL recovers the value of the next field from the

nextInCLL field.

3.4 Evaluation

3.4.1 Machine Configuration

We performed the experiments on an Intel server with Intel Optane Persistent Memory. The

server had two sockets with Intel Xeon Platinum 8276L processors running at 2.20GHz each

containing 28 physical cores (56 hyperthreads). It had 39.8MB L3 cache, 375GB DRAM, and

1.5TB NVM. The machine ran Fedora 30 with Linux Kernel version 5.0.9. We used gcc/g++

version 9.3.1 and make version 4.2.1 for compilation. We set the CPU governor to "perfor-

mance", disabled Turbo Boost and huge pages, and pinned each worker thread to a core. We

used Optane in App-Direct Mode with 6-way interleaved NVDIMMs with DAX enabled ext4

file system as described in section 2.1.4.

3.4.2 Previous and Current Configuration

There are several differences between this evaluation and previous evaluations. This work

was published in ASPLOS 2019 [38] based on software simulation. Research predating Optane

relied on a variety of simulation strategies such as emulation [52, 53, 173], treating DRAM as

Optane [23, 32, 51, 128], and adding artificial latencies to fences [40, 68, 185]. In the ASPLOS

paper, we considered the effects of adding artifical latencies. The clflushopt instruction is

asynchronous (Section 2.1.2) and the write-back instructions complete at sfence point. For

this reason, the simulation approach introduced extra delay after each sfence instruction to

simulate the effects of write-back and fence instructions, for which InCLL is optimized.

The artifical delay models increased the cost of flushing cache lines to NVM. The simulation

methodology, however, did not model the speed of other memory accesses such as reads and

writes. It also failed to address the low read/write bandwidth of Optane, especially under

heavy concurrent accesses.

Another important factor was the cache sizes. Overall, the cache sizes in the current machine

were larger than those in the ASPLOS paper. The L3 cache size for ASPLOS was 19.25MB and

the current machine had 39.8MB (Section 3.4.1). The presentation made for PIRL 2020 [9]

used Optane evaluation, however it had 32MB L3 cache. Large caches can lead to more time

spent in wbinvd. Furthermore, filling a larger cache can take more time.

For the evaluation, in this dissertation, we did not use software simulation. Since we had

access to Optane, we evaluated directly on Optane. We also treated DRAM as Optane and

provided measurements for this case as well.
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3.4.3 Baseline Configuration

We configured Masstree to use the jemalloc allocator. We present the results for the unmodified

Masstree (Mt-Unmod in figure 3.9). We used an optimized version of Masstree as a baseline,

which ran 1.0−1.3x faster than the original Masstree. In this version, we modified the Masstree

allocator to place the node and value buffer allocation on a memory-mapped file using

Masstree’s pool allocator instead of relying on the jemalloc allocator. We left the rest of the

structures in the program intact and transient. The NVM version of baseline Masstree (Base-

line-NVM) is not crash-consistent and can be in an inconsistent state after recovery.

For the DRAM configuration (Baseline-DRAM), Masstree uses files stored in /dev/shm. The

DRAM configuration did not use two separate copies, as this file system is based on tempfs. For

the Optane configuration (Baseline-NVM), Masstree used files in a device backed by Optane

in App-Direct Mode. We used DAX-enabled ext4 file system for managing NVM. We did not

introduce artificial delays. We populated page table entries for the memory-mapped files by

writing idempotently into the address space initially. We pinned each Masstree thread to a

separate core.

3.4.4 InCLL Configuration

We built InCLL on top of baseline Masstree (Section 3.4.3). DRAM and Optane configurations

are similar to baseline Masstree (Section 3.4.3). We allocated the Masstree data structure, the

value buffers, and the external logs in DRAM for InCLL-DRAM and in Optane for InCLL-NVM.

Each leaf node had up to 14 key-value pairs. It is less than non-InCLL version because of

the in-cache-line log. The combination of the mechanisms allowed Masstree to be durable.

InCLL-NVM configuration is completely durable, however, InCLL-DRAM would require battery-

backed DRAM.

3.4.5 Logging Configuration

Logging is another durable version of Masstree. Logging is similar to the version of InCLL

without the in-cache-line log, but with external logs. We allocated the Masstree data structure,

the value buffers, and the external logs in DRAM for Logging-DRAM and in Optane for Log-

ging-NVM.

Each leaf node had up to 15 key-value pairs as in the original. Logging implemented fine-

grained checkpointing, external logging, and persistent memory allocation as described in

section 3.3. We only introduced a nodeEpoch field for the leaf nodes similar to internal node

logging. Persistent memory allocation still used an in-cache-line log (InCLLa). The Logging

design is useful to show that InCLL approach improves runtime performance for write-heavy

workloads, as we demonstrate in section 3.4.7.
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3.4.6 YCSB Configuration

We used the YCSB [42], a popular NoSQL benchmark, to evaluate Masstree performance.

Unless otherwise noted, we initialized Masstree with 24 million key-value pairs and run the

experiments using 6 threads. Keys were 8 bytes while value buffers were 24 bytes. The driver

threads generated the workload on the same machine to avoid network interference. We used

three different workloads:

YCSB A Write heavy, 50% puts, 50% gets

YCSB B Read heavy, 5% puts, 95% gets

YCSB C Read only, 100% gets

We used two types of memory access patterns, which were uniform access pattern and Zipfian

access pattern. For uniform access, the workload driver generates keys uniformly, at random

between 0 and 24M. For Zipfian access, the workload driver generates keys using a Zipfian

distribution with a skew parameter of 0.99. The workload driver scrambled the keys by hashing

their values to avoid frequent keys being in close proximity. Each workload thread ran 1 million

operations. We reported throughput (operations per second) for Masstree, where higher is

better. We ran the experiments 5 times and provided the average result. The standard deviation

for the experiments ranged from 0.01% to 0.33%.

3.4.7 Measurements

Figure 3.9 – Throughput of unmodified Masstree, baseline Masstree and InCLL with DRAM
and Optane evaluations.

Figure 3.9 shows the main workload for baseline Masstree, InCLL, and Logging running on

DRAM and Optane. Compared to Baseline-DRAM, the slowdown of InCLL-DRAM is 14.4−
19.4% (YCSB A, B, C - Uniform, Zipfian). Specifically, InCLL-DRAM has 19.4% overhead for

Uniform A, 19.2% for Zipfian A, 17.5% for Uniform B, 15.8% for Zipfian B, 16.5% for Uniform
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C, and 14.4% for Zipfian C. These results are similar to the ASPLOS evaluation. The main

difference is due to the cost of flushing larger caches.

Compared to Baseline-NVM, the slowdown of InCLL-NVM is between 18.6−19.0%, which is

similar to the difference between Baseline-DRAM and InCLL-DRAM. Read-only cases have

slightly more overhead due to cache misses to Optane after a wbinvd. This shows the effec-

tiveness of the InCLL algorithm, which minimizes write-back and fence instructions. However,

the full overhead of InCLL is exposed by the comparison between the baseline Masstree (Base-

line-DRAM) and fully durable Masstree (InCLL-NVM). In this, InCLL-NVM has a slowdown of

49.4−63.9%. The difference is attributed to using Optane to hold the Masstree data structure.

One way to see this is to compare baseline Masstree (Baseline-DRAM) with Baseline-NVM,

which leads to a slowdown of 38.7−55.6%.

Figure 3.10 – Mechanism breakdown of InCLL features.

Figure 3.10 breaks out the cost of using InCLL mechanisms (lower is better). We measure

the throughputs for reducing key-value pairs (Leaf-KV-14), fine-grained checkpointing, in-

cache-line logging, persistent allocation, and InCLL-NVM successively and calculate the

slowdown from the baseline for each configuration. We report the percentage differences for

the slowdowns. The majority of the cost is due to using NVM (34.9−44.4%). InCLL allocated

the entire Masstree data structure, value buffers, and external log in Optane, which has a

significant access penalty.

Globally flushing the caches imposes the next largest cost (9.1− 10.3%), due to the larger

caches and cache invalidation. Running the wbinvd instruction takes approximately 4.3ms

per epoch (6.7% overhead in a 64ms epoch) for both DRAM and Optane cases.

We measured the effect of flushes independently by running wbinvd (no InCLL) on top of

baseline Masstree. Cache flushes increase the cost of cache misses from 10−20% and the cost

of handling TLB misses up to 30% (VTune Profiler). This introduces 11−12% overhead in the

DRAM case and 10−14% in the Optane case.

45



Chapter 3. Fine-Grained Checkpointing with InCLL

The persistent memory allocator changes the buffer layout and leads to additional slowdown

in write-heavy cases of 4.2−4.5%, as allocation is heavily used. The slowdown due to reducing

the number of key-value pairs in leaf nodes (Leaf–KV–14) is minimal (0.0−0.8%).

The cost of using in-cache-line logging combined with external logging is between 3.8−5.0%,

which is low. The external log contains 181KB for Uniform A and 39KB for Zipfian A of data for

InCLL-DRAM, and 44KB for Uniform A and 16KB for Zipfian A of data for InCLL-NVM. The

main reason for fewer entries for the Optane case is that there are fewer operations within an

epoch.

Figure 3.9 reports the throughput results for Logging. The slowdown of Logging-DRAM over

Baseline-DRAM is between 12.7−33.6%. Specifically, Logging-DRAM suffers from external

log’s write-backs and fence instructions for fast-path operations (28.0−33.6% for YCSB A).

However, Logging-DRAM performs better for the read-only case (12.7−14.3% for YCSB C)

compared to InCLL-DRAM. This is expected as the layout of a leaf node is not modified except

introducing nodeEpoch and the external log is not needed for the read-only cases.

Comparing Logging-NVM with Baseline-DRAM leads to a slowdown of 48.2−68.0%, where the

bandwidth limitation of Optane dominates most of the cost. The external log contains 7.9MB

for Uniform A and 5.1MB for Zipfian A of data for Logging-DRAM, and 3.8MB for Uniform A and

2.9MB for Zipfian A of data for Logging-NVM, which is at least an order of magnitude greater

than InCLL. While both Logging-NVM and InCLL-NVM are slow due to using Optane, the

performance difference is not as significant as in the case of Logging-DRAM and InCLL-DRAM.

Figure 3.11 shows the scalability limitations of Optane for both baseline Masstree and InCLL.

We vary the number of threads from 1 to 28 and report the results for the write-intensive YCSB

A. Comparing with Baseline-DRAM, InCLL-DRAM slowdown is 19.0−21.5% for the Uniform A

case and 18.8−20.3% for the Zipfian A case. For the DRAM case, InCLL-DRAM scalability is not

affected significantly by increasing the number of concurrent worker threads. On the other

hand, the Optane case is different. Comparing with Baseline-DRAM, InCLL-NVM consistently

slows down as we increase the number of threads. The overhead is 61.9−75.5% for the uniform

case and 55.0−68.1% for the Zipfian case. The main performance bottleneck is due to Optane.

If we normalize the performance for each Masstree version with respect to a single thread

performance, the limitations of Optane become clear. For 28 threads normalized to a single

thread, the performance of Baseline-DRAM is 26.7−28.2x and InCLL-DRAM is 26.8−28.4x.

InCLL is a scalable approach. However, overall, the scalability of both baseline Masstree and

InCLL is hampered by Optane. Running with 28 threads leads to a speedup of 17.2−17.8x for

Baseline-NVM and 18.1−18.9x for InCLL-NVM.

Figure 3.12 shows the effect of the initial size of the tree on YCSB performance. We again

use YCSB A workload and vary the number of initial key-value pair entries from 6M to 96M.

The dominating trend for performance is tree traversal, which reduces Masstree throughput.

Compared to Baseline-DRAM, the slowdown of InCLL-NVM is between 61−64% for Uniform
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(a) Uniform A workload.

(b) Zipfian A workload.

Figure 3.11 – Throughput of baseline Masstree and InCLL with DRAM and Optane evaluations
for different number of threads.

A and 53−54% for Zipfian A.

Figure 3.13 shows the effect of changing the checkpointing interval from 16ms to 256ms. The

overheads for the baseline Masstree are mostly consistent (<0.8%). For InCLL, flushing the

caches more frequently has a negative effect on performance. If we compare the same InCLL

version with 16ms intervals and 256ms intervals, the performance for the InCLL version with

256ms intervals is always faster. InCLL-DRAM is 1.4x faster and InCLL-NVM is 1.3x faster.

Correctness and Recovery

We use testing to check the correctness of InCLL. We crashed InCLL at random points, launched

a new process and checked that the system state matches with the state at the beginning of

the failed epoch. We used many unit tests to check that in-cache-line log and external log

recovery can correctly restore the state.

We measured the time to recover the log for InCLL-NVM with a 24M initial tree size running

YCSB A Uniform workload. We crashed at the end of the 5th epoch before starting a new epoch.
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(a) Uniform A workload.

(b) Zipfian A workload.

Figure 3.12 – Throughput of baseline Masstree and InCLL with DRAM and Optane evaluations
for different initial tree sizes.

For each thread, the log contained 44KB of data on average and approximately took 0.18ms

to process the log, which included in-cache-line rollback of the logged entry. The program

performance returns to 2.6MOps/sec after 4 epochs of 64ms.

3.5 Summary

The chapter presented InCLL as a technique for building durable data structures. Overall,

InCLL places the entire data structure solely in NVM and periodically flushes modifications

from the caches to NVM. InCLL uses in-cache-line logging to minimize write back and fence

operations for fast-path data structure modifications.

We modified Masstree with InCLL technique and made Masstree durable. We persisted the

linked list allocator and provided persistent allocation. The new evaluation on DRAM is similar

to the previously published results in ASPLOS and showed that InCLL can be feasible using

battery-backed DRAM. We should note that the design of InCLL was specific to the simulation

strategy that we used to evaluate it. The simulation strategy introduced delays after each

sfence instruction and measured the costs related to write-back instructions and fences

similar to the previously published evaluation methods.
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(a) Uniform A workload.

(b) Zipfian A workload.

Figure 3.13 – Throughput of baseline Masstree and InCLL with DRAM and Optane evaluations
for different number of checkpointing intervals.

As the saying goes, we got what we measured by solely evaluating the effects of write-back

instructions. On the other hand, Optane in its current form is still slower. Optane has higher

latency and lower bandwidth compared to DRAM. The simulation strategy did not take costs

incurred by memory accesses and Optane characteristics into account. Not accounting for

performance bottlenecks from Optane leads to unsimulated overheads of up to 64% due to

additional memory access overheads. We acknowledge that this is a shortcoming of InCLL

design. We propose a new checkpointing design, CpNvm, to mitigate the costs related to

Optane in the next chapter.
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Programs must be written for people to read, and only incidentally for machines to execute.

— Abelson and Sussman

We expect Intel Optane to be used in a data center environment and be widely available as

durable memory as we explained in chapter 1. This implies that, InCLL, which is described in

chapter 3, will likely be using Optane as an NVM device. While InCLL-DRAM incurs overheads

less than 20%, the overheads for Optane vary between 49−64%. This cost is very significant

and the performance mismatch between the current Optane and DRAM devices is too large to

be practical.

DRAM is faster than Optane and has a higher read/write bandwidth. Exploiting the perfor-

mance of DRAM could surely improve performance. However, InCLL is already a complicated

design. There is no automated technique to apply InCLL to different data structures and it is

rather a tool for an expert library developer. Due to InCLL’s use of an undo logging recovery

scheme, it is difficult to move the data structure from NVM to DRAM. Furthermore, Intel does

not currently provide a hardware mechanism to cache persistent modifications in DRAM.

In this chapter, to address these problems, we introduce CpNvm, a runtime system for pe-

riodically checkpointing data structures. CpNvm uses write-combining in DRAM to buffer

modifications and periodically (on the order of milliseconds) propagates these modifications

to an NVM copy of the data structure using redo logging. Heavily read or written data in DRAM

are accessed at a fraction of the cost. We implement CpNvm as an easy-to-use application-level

checkpointing API.

This chapter is organized into the following sections:

• Section 4.1 motivates CpNvm by identifying the challenges related to Optane.

• Section 4.2 describes the high-level design of CpNvm.

• Section 4.3 explains the implementation details and the checkpointing interface.
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• Section 4.4 evaluates CpNvm and demonstrates its low overhead for both the Masstree

data structure and the Memcached program.

• Section 4.5 compares CpNvm to related work.

4.1 Introduction

Byte-level addressability does not make NVM a substitute for DRAM. Optane is slower than

DRAM as it has lower bandwidth. Yang et al. [188] reports that NVM read latency is 2−3x that

of DRAM, and writes can occasionally execute 100x slower (possibly due to page remapping

for wear leveling). Non-interleaved NVM has a peak read bandwidth of approximately 6% of

DRAM and peak write bandwidth of 3% of DRAM. NVM’s bandwidth degrades severely as the

number of threads increases. Furthermore, NVM has other unfortunate characteristics, which

further lower the bandwidth. Mixed read/write workloads to Optane can perform poorly [188].

Sequential access to NVM can be 4x faster than random accesses to NVM [91] (due to NVM’s

internal caches). A high-performance crash-consistency mechanism needs to account for

these characteristics.

As chapter 3 demonstrates, a program can incur a significant overhead by using Optane. The

Masstree data structure has a 39−56% slowdown when using Optane compared to DRAM as

shown in figure 4.1. This large overhead does not include any crash-consistency mechanism

nor a persistent memory allocator. After a restart, the Masstree data structure would be in an

inconsistent state, and the allocator could have dangling pointers and memory leaks.

Figure 4.1 – Throughput of Masstree for DRAM and Optane evaluations.

The majority of the overhead is due to memory accesses. Furthermore, carefully examining the

overheads in Masstree identifies the locking mechanism, which is a major source of overhead.

Masstree uses a spinlock to lock a Masstree node. If the program allocates the node in NVM,
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then the spin operation will cause NVM memory accesses.

Recipe [108] avoids implementing the lock in the Masstree node and instead uses the standard

mutex locks residing in DRAM. Recipe revamps the Masstree data structure design completely

to optimize performance for NVM. After a restart, Recipe reinitializes the locks for each node.

Our measurements indicate that even an optimized version of Masstree still suffers from the

cost of using Optane. Recipe suffers 38−51% slowdown because of Optane, not including a

persistent memory allocator.

We observe that if we move the runtime data structure from Optane to DRAM, we can improve

performance. There are several design alternatives that we can follow. We can implement

a hybrid model [81, 134, 181, 186, 189] where a part of the data structure is in DRAM and

another part is in NVM. We can make value buffers durable with its key and keep the rest of

the Masstree data structure as volatile, effectively eliminating in-cache-line logging. Other

schemes, such as keeping only internal nodes volatile, are also possible. However, these

complicate Masstree recovery and can introduce a significant overhead after a restart due to

reconstructing the entire traversal data structure.

InCLL also has other problems. It is not a general technique as the implementation requires an

expert library programmer. It requires modifications to the internal layouts of data structures.

It also requires the execution of a privileged instruction (wbinvd) to flush the caches to NVM,

which can create security issues in multi-tenant systems.

Our goal is to implement a general checkpointing solution that works for existing programs

and can support relaxed crash-consistency models while avoiding the cost of Optane. Our

approach stands in stark contrast with the previous work [32, 37, 108, 160], which used a

write-through mechanism to NVM to implement a strong consistency model such as atomic

transactions. The consequence of write-through is that only processor caches are used to

reduce memory latency. Bypassing DRAM, which offers high capacity and performance, can

severely hinder program performance. Newer systems [112, 185] use a write-back model, in

which a data structure resides in DRAM and a redo log propagates modifications to a copy in

NVM. The main issue with these systems is that the (simulated) performance is too slow for

general use. For example, DudeTM [112] reports 7.4−24.6% overhead on top of TinySTM’s

undocumented cost, while PMThreads [185] report slowdowns between 43−122%.

CpNvm is a runtime library that provides checkpointing functionality to store a recoverable

copy of the program data in NVM. CpNvm breaks the program execution into epochs and

periodically persists the modifications to NVM. CpNvm uses DRAM to buffer modifications

during an epoch and allow fast memory accesses. After a restart, CpNvm can restore program

data stored in the durable heap to its state at the last committed epoch.

CpNvm provides the checkpointing functionality with a general, easy-to-use API, which is

inspired by application-level checkpointing [26, 138]. The programmer inserts calls to CpNvm

API that can provide durability for the program data structures periodically.
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A program using the CpNvm library has four distinct stages: execution, checkpointing, back-

ground replay, and recovery. In execution, CpNvm keeps track of modified memory regions.

The tracking mechanism requires additional calls by the programmer.

The second stage is checkpointing. CpNvm persists the modifications to memory regions

by saving the changes in redo logs in NVM. Unlike InCLL, CpNvm does not flush the cache

hierarchy, as all the modifications are on DRAM data structures.

The third stage is background replay, which compacts the log by applying modifications

to an NVM copy of the data structure. Background replay runs concurrently with program

execution.

The fourth stage is recovery, which runs after a failure. CpNvm restarts the program, finishes

log replay and lazily faults in data pages from the shadow copy in NVM.

CpNvm performs well with low overhead (< 15%) for Masstree [117] and (< 6%) for Mem-

cached [61]. For read-only workloads CpNvm incurs almost no overhead for either Masstree

or Memcached. These results are achieved by 25 CpNvm library calls in 27K LoC of Masstree

and 29 LoC modifications in 4.5K LoC of Memcached.

Checkpointing is well-known technique with a lot of past work [1, 21, 29, 55, 99, 111, 130, 139,

140, 153, 161, 171, 176]. The new result from this work is that existing and new techniques can

be combined to form a usable application-level checkpointing API that can be implemented

with a low overhead for building durable data structures in NVM with performance near DRAM

execution speed.

The main contributions of this work are:

• The design of a new checkpointing library allowing periodic checkpointing intervals on

the order of milliseconds by relying on redo logging and shadow memory.

• A new programming model (API) for checkpointing for NVM based on identifying writes

to persistent data structures and program idleness.

• The implementation of CpNvm, a new C/C++ library that implements periodic check-

pointing as an application-level checkpointing library at low cost with minimal devel-

oper effort for NVM.

• Evaluation of CpNvm using Masstree and Memcached on Intel’s Optane DC Persistent

Memory, demonstrating its low run-time overhead.

4.2 CpNvm Design

As we explained in section 4.1, the goal of CpNvm is to provide an efficient checkpointing

mechanism by minimizing unnecessary operations on NVM. The main design constraint for
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CpNvm is the low bandwidth and high latency of NVM, compared to DRAM. For this reason,

we minimize operations in NVM by using DRAM as a last-layer cache.

Figure 4.2 – CpNvm design.

Figure 4.2 depicts the overall design for CpNvm. There are two copies of a data structure:

the volatile image in DRAM and the persistent image in NVM. The volatile image resides in a

memory-mapped file in DRAM. The second copy, persistent image, is a memory-mapped file

in NVM. The execution operates on volatile image and cannot directly modify the persistent

image. CpNvm coalesces multiple writes to a cache line to avoid unnecessary data transfer to

slow, possibly wear-sensitive NVM. We describe the memory capacity of a system in detail in

section 4.3.7.

In execution, CpNvm tracks the volatile image. The CpNvm design requires programmers

to explicitly identify modifications. The programmer inserts calls to the CpNvm library to

track memory regions that are modified within an epoch. Once a memory region is tracked,

tracking the same region within an epoch is not necessary. CpNvm uses a lightweight tracking

mechanism with little overhead (3.4% worst-case - Figure 4.8) that is negligible for read-only

workloads. CpNvm can track memory writes at word (8-bytes) granularity or cache-line

(64-bytes) granularity.

There are several ways to minimize programmer effort for implementing a tracking mechanism.

It is possible to use compiler-techniques [21, 44, 57, 185] to minimize the programmer effort.

The programs that we examine do not require many changes, and most modifications are local

and in close proximity to each other. For this reason, we did not explore compiler-techniques.

Another alternative is to rely on VM page protection to detect memory writes [112, 185]. Page

protection allows the system to detect the first write to a page. The system then assumes all

data on the page is modified, which causes unnecessary logging. PMThreads [185] avoids

copying unmodified locations by performing a byte-by-byte comparison between the DRAM

page and its NVM copy. However, the comparison is expensive and throttled by the low NVM

bandwidth.

During checkpointing, CpNvm stores a snapshot of the modified memory regions in persis-

tent logs. We prefer an append-only log, because of NVM’s higher sequential access pattern
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performance [91]. CpNvm uses intervals on the order of milliseconds for checkpointing.

There are many issues in using a redo log design. One major concern is that the redo log

can grow unbounded. It is necessary to compact the log. It is possible to use standard

compression [140] techniques, which trade-off the time spent in compression and log size

reduction. Moreover, traditional redo logging redirects reads and writes to the redo log for

the latest values. This redirection can require significant modifications to a codebase. Finally,

after a restart, the entire redo log must be replayed to regenerate the data structure, which can

take a significant amount of time depending on the log size.

To simplify the API, avoid read/write redirection, reduce time spent in restarting, and compact

the log size, we use shadow memory from DudeTM [112]. The persistent image is a loosely

synchronized copy of the volatile image and persistent logs act as an intermediate durable

format for the persistent image.

CpNvm uses background replay threads concurrent with execution to apply the log to the

persistent image. CpNvm discards log entries for an epoch once the snapshots are replayed,

compacting the log.

Recovery is similar. Recovery code in CpNvm first finishes replaying the log to update the

persistent image to the program state at the last committed epoch. Since the volatile image is

transient, after a restart, it is entirely lost. CpNvm faults in pages of the volatile image from the

updated copy in the persistent image lazily. It can also eagerly load all the pages.

4.2.1 Crash-Recovery Model

In this section, we discuss the implications of breaking the program execution into epochs and

using checkpointing for crash consistency. CpNvm breaks the program into epochs similar to

InCLL and takes a checkpoint at well-defined intervals. The duration of the checkpointing

interval creates a window of vulnerability. This is not a semantic problem, but a practical

problem depending on the program’s specification and needs. Increasing the frequency of

checkpoints can reduce the size of the window of vulnerability, at the cost of increasing

additional overhead costs.

If the system cannot tolerate data loss, it is possible to use another mechanism in addition to

CpNvm. Operational logging [122] can be useful for recording the operations within an epoch.

After a restart and completing CpNvm’s log recovery, all the operations committed within the

failed epoch can be re-executed using the operational log.

4.3 CpNvm Implementation

In this section, we describe the implementation of CpNvm checkpointing library. CpNvm is a

C/C++ header-only library that allows programs to periodically persist their data structures.
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Figure 4.3 depicts CpNvm API. The programmer needs to insert the calls to CpNvm API to

make selected program data structures durable.

1 void cpnvmInit(opt_t ∗options);
2 void cpnvmThreadInit();
3 void ∗cpnvmRoot(char ∗name, void ∗addr);
4 void ∗cpnvmAlloc(size_t size, bool mark=true);
5 void cpnvmFree(void ∗ptr, size_t size);
6 void cpnvmMark(void ∗ptr, size_t size);
7 void cpnvmCheckpoint();
8 bool cpnvmInRecovery();

Figure 4.3 – CpNvm API

The API operates follows:

1. Initialize CpNvm before accessing durable data structures (cpnvmInit).

2. Initialize CpNvm for each worker thread (cpnvmThreadInit).

3. Use CpNvm allocation functions to obtain and release memory for durable program

data structures (cpnvmAlloc, cpnvmFree).

4. Call the marking function to track modifications to memory regions (cpnvmMark).

5. Call the checkpointing function to initiate checkpointing (cpnvmCheckpoint).

That is it.

4.3.1 Execution

Before starting execution, a program calls cpnvmInit to initialize CpNvm data structures (e.g.,

persistent logs, address lists, bitmap) and background threads. cpnvmInit takes an options

argument, which configures the CpNvm library. The options determine the interval between

checkpoints in milliseconds (e.g., 64ms), the granularity of tracking (e.g., word or cache-line

granularity), allocator information, recovery information (e.g., lazy or eager), and the number

of background threads. When the program creates a thread, it must call cpnvmThreadInit
to initialize thread specific data structures (e.g., persistent logs and address lists). CpNvm

maintains these data structures: volatile image, persistent image, and persistent logs. The

volatile image files are in DRAM (using tempfs), while the persistent image and persistent logs

files are stored in Optane (using DAX in ext4).

In CpNvm, a root pointer keeps an address for a known location in the volatile image and

semantically is the root of the data structure. The reason is that, the program needs to access
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the same location after a restart and execution operates solely on the volatile image. cpnvm-
Root takes two arguments, a unique name for the root pointer and the memory location. If

the location is not specified, cpnvmRoot returns the address depending on the name if it exists.

If the location is specified, cpnvmRoot binds the address to the name durably and the location

is accessible given the name after a restart.

CpNvm requires the volatile and persistent images to be mapped to the same virtual addresses

after a restart. One possible technique to allow different mappings after a restart would be to

use pointer swizzling [39], fat pointers [141], relative pointers, or OS support [24].

CpNvm handles the recovery of the program data structures. However, after a restart, a

program might need further recovery, such as re-initializing locks and files [39]. We provide

cpnvmInRecovery to allow a programmer to implement recovery code specific to the program,

if CpNvm runs recovery after a restart. cpnvmInRecovery always returns true if the persistent

data structures (persistent logs, persistent image) exist.

The user of CpNvm library can erase the persistent state by deleting all the memory-mapped

files in NVM, which allows the program to start afresh.

Allocation

We use Masstree’s pool allocator. We discussed Masstree’s allocator in detail in section 3.3.5.

The main benefit of the Masstree pool allocation is that its data structures reside in the

memory-mapped file, instead of an external location, making it straightforward to make the

allocator durable.

We modify the allocator to use CpNvm’s tracking and checkpointing mechanisms to persist the

allocator structures, similar to any other data structure. The Masstree allocator has a pointer

to each free list for an unallocated block. CpNvm tracks the pointers if modified. CpNvm can

allocate (cpnvmAlloc) and free (cpnvmFree) 8-byte-aligned blocks of uninitialized memory

in DRAM, backed by NVM. Programs frequently modify the allocated memory regions after

allocation. That is why, to minimize programmer effort, CpNvm marks the memory region by

default before returning the allocation to the program. It is possible to disable the marking

by setting the mark argument to false. At deallocation, CpNvm only needs to mark the next
pointer.

4.3.2 Tracking

CpNvm needs to track modifications to data structures for checkpointing. CpNvm implements

a lightweight tracking mechanism. CpNvm provides two granularities for tracking, word

(8-byte) and cache-line (64-byte).

Figure 4.4 shows the high-level algorithm for tracking, which requires the use of the the cpnvm-
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1 class bitmap_t; // for globally shared bitmap
2 class addrlist_t; // for thread−local address list
3 class plog_t; // for thread−local persistent logs
4

5 bool setBits(bitmap_t∗,void∗,size_t); // sets bits in the bitmap
6 size_t resetBits(bitmap_t∗, void∗); // resets adjacent bits in the bitmap
7 void addToList(addrlist_t∗,void∗); // appends the location to address list
8 void logModification(plog_t∗, void∗, size_t); // appends the modification to a redo log
9 void finalize(plog_t∗,bool discard=false); // make durable, discard epoch entries if true

10 void threadBarrier(); // spinlock thread barrier
11

12 void cpnvmMark(void ∗addr, size_t size) {
13 bool isSet = setBits(bitmap, addr, size);
14 if (isSet) {
15 addToList(addrlist, addr);
16 }
17 }
18

19 void cpnvmCheckpoint() {
20 if (passed_time > interval) {
21 threadBarrier();
22 snapshot();
23 threadBarrier();
24 }
25 }
26

27 void snapshot() {
28 for (void ∗addr : addrlist) {
29 size_t size = resetBits(addr);
30 if (size == 0) continue;
31 logModification(plog, addr, size);
32 }
33 finalize(plog);
34 }

Figure 4.4 – Pseudocode for CpNvm tracking and checkpointing.
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Mark function (Line 12). The programmer inserts calls to cpnvmMark to track memory regions,

by passing the memory region address and size. Tracking only marks modified memory regions

in a globally shared bitmap (Line 13) and does not record the contents of these regions within

an epoch. A single bit in the bitmap corresponds to an 8-byte word in the memory region. It is

important to note that, the tracking mechanism is not a log. CpNvm also maintains thread-

local address lists to avoid traversing the entire bitmap to find marked locations. Address lists

hold the first address in a marked region of memory. CpNvm adds an address if the memory

region was not marked before (Line 15). The bitmap and the address lists are both transient.

CpNvm needs to be invoked only at the first write to a memory region in an epoch. Re-

peated calls on cpnvmMark with the same location are harmless, but can lead to performance

degradation.

Both word and cache-line granularity treat a single bit as an 8-byte word. However, there

are several differences between the granularities. Word granularity synchronizes accesses to

the bitmap to avoid data races in setting bits in byte. Different program threads can access

different bits in the same byte. Without synchronization, it is possible to unmark an already

marked bit in a byte due to a data race. Word granularity atomically reads-and-conditionally-

updates bits in the bitmap using compare-and-swap instructions. Word granularity maintains

the invariant that an address is in at most one address list within an epoch. However, this

synchronization on the bitmap incurs overhead.

We also provide cache-line granularity for better performance. Cache-line granularity uses

normal read and write instructions for the bitmap. We assume writing a single byte is atomic,

which is the case for x86-64 and ARM chips. Cache-line granularity records the entire cache

line by marking the entire byte instead of setting individual bits. This leads to data races to

the bitmap. Setting two different bits in a byte by concurrent threads can erase the work of

one of the threads. However, loading an entire byte and setting it is idempotent across two

concurrent threads, as these two threads are executing the same operation, which means that

recorded work cannot be "unmarked". Another issue is duplicate logging, which we explain in

the next section (Section 4.3.3). Cache-line granularity has better performance as shown in

section 4.4.2.

4.3.3 Checkpointing

CpNvm breaks the execution into epochs and executes checkpointing at the end of an epoch,

in contrast to InCLL, which checkpoints at the beginning of the epoch. It is a minor semantic

difference in the implementation.

Figure 4.4 shows the high-level algorithm for checkpointing, which requires the use of the

cpnvmCheckpoint function (Line 19) to initiate a checkpoint. cpnvmCheckpoint checks if a

sufficient amount of time has passed since its previous invocation (Line 20). The programmer

specifies the checkpointing interval between epochs as a configuration parameter to cpnvm-
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Init. If a sufficient amount of time has passed, CpNvm takes a checkpoint, otherwise, the

call returns. During checkpointing, CpNvm takes a snapshot (Lines 22, 27) of all the tracked

memory regions and makes this record of modifications durable in a persistent redo log.

The programmer must identify when to checkpoint in the program code. This is to ensure

the consistency of checkpointing. If we used a timer to initiate checkpointing periodically, at

the specified intervals, there might be an in-progress operation that puts the data structure

into an inconsistent state. After a restart, it would be difficult to make the state consistent or

complete the operation. We instead opt for allowing the programmer to decide. The points of

consistency are program-specific and require programmer knowledge. We insert the call to

cpnvmCheckpoint in the event loop of both Masstree and Memcached to divide the execution

into periodic intervals on the order of milliseconds.

Each thread can run in parallel without synchronization (except for word granularity access

to the bitmap). The thread pops an address from its address list (Line 28) and locates the

position in the bitmap. CpNvm then resets the region’s bits in the bitmap starting from the

address (Line 29) until an unmarked bit to infer memory region size. If the memory region was

already unmarked, then CpNvm tries a different entry (Line 30). If unmarking is successful,

then CpNvm takes a snapshot of the entire unmarked memory region.

Again, there are minor implementation differences between the word granularity and the

cache-line granularity. Word granularity avoids duplicate work, as an address can be in at

most one of the address lists for an epoch. Similarly, resetting is done using synchronization.

Cache-line granularity allows duplicate work if there is a data race, which is rare as adjacent

regions are usually accessed under a critical section. Duplicate entries can be logged twice,

which is wasteful but not harmful. Checkpointing is idempotent for an epoch and always

snapshots the same version of the data structure. In practice, we observe better performance

for cache-line granularity as shown in section 4.4.2.

When checkpointing completes, the entire bitmap is clear and ready for the next epoch.

4.3.4 Background Replay

Figure 4.5 shows the high-level algorithm for background replay (Line 8). The cpnvmInit
function creates background replay threads separate from the program execution threads,

where the number of background threads is specified in the options. The background threads

call the backgroundReplay function if there are log entries that can be replayed within an

epoch.

CpNvm replays the logs an epoch at a time. The background replay threads can run indepen-

dently for a single epoch. Replaying a single epoch is idempotent as log entries are snapshots

of the data structure at the time of checkpointing and always produces the same result in the

persistent image even with duplicate work. After a background thread finishes replay, the
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1 void ∗toNVM(void∗); // return the persistent image address
2 void threadBarrierB(); // spinlock thread barrier for background replay
3 void threadBarrierR(); // spinlock thread barrier for recovery replay
4 void protect(); // protects the volatile image from the previous execution
5 void load(); // loads the volatile image from the previous execution
6 void canReplayEpoch(); // returns true if there are epochs that can be replayed
7

8 void backgroundReplay() {
9 threadBarrierB();

10 logReplay();
11 threadBarrierB();
12 finalize(plog, discard=true);
13 }
14

15 void logReplay(){
16 entries = getEpochEntries(plog);
17 for log entry L in entries do{
18 void∗ nvmAddr = toNVM(L→ addr);
19 memcpy(nvmAddr, L→ content, L→ size);
20 }
21 }
22

23 void recover(){
24 while(canReplayEpoch())
25 backgroundReplay();
26

27 if(lazy_recovery)
28 protect();
29 else
30 load();
31

32 threadBarrierR();
33 }

Figure 4.5 – Pseudocode for CpNvm background replay and recovery.
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background thread has to wait for the other background threads to finish. Without a thread

barrier, a modification to the persistent image from an earlier epoch could overwrite the

modifications done in the current epoch and lead to an inconsistent state. The thread barrier

ensures that data race does not occur across epochs.

4.3.5 Recovery

At a restart, when the program calls cpnvmInit, CpNvm runs the recovery procedure. Fig-

ure 4.5 shows the high-level algorithm for recovery (Line 23). Each background recovery thread

calls cpnvmRecover to recover the state of the persistent image to last committed checkpoint.

CpNvm first completes background replay and ensures that all the redo logs are replayed to

the persistent image.

There are two modes for recovery, lazy and eager recovery. Eager recovery loads the pages

directly from persistent image to volatile image before execution begins (Line 30). Lazy recovery

uses the virtual-memory page protection to trap a read/write access to the entire address

range of the volatile image from the previous execution (Line 28). Afterward, the execution

continues.

Any read and write access by the program to the volatile image triggers a page fault. CpNvm

uses the SIGSEGV handler to lazily bring pages into the volatile image from the persistent

image. Since the persistent image version is consistent, the volatile image will start with the

last committed checkpoint. Moreover, CpNvm only pays the cost of a trap upon first access to

a page. It grants full access to other threads once the page is copied in the volatile image.

4.3.6 Masstree Example

Figure 4.6 depicts tracking for CpNvm API for Masstree. We rely on the same pseudocode,

which we used in section 3.2. Our tracking methodology is similar to the logging methodology

described in InCLL.
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1 class basenode; // lock, version, meta information
2 template <int width=15>
3 class leafnode : public basenode{
4 basenode ∗parent, ∗prev, ∗next;
5 uint64_t permutation; // which key/vals are active
6 keytype keys[width];
7 valuetype ∗vals[width];
8 void remove(keytype key){
9 int idx = find_idx(key);

10 remove_idx(&permutation, idx);
11 cpnvmMark(&permutation, sizeof(uint64_t));
12 }
13 void insert(keytype key, valuetype ∗val){
14 //value buffer pointer by val is marked
15 int idx = find_idx(&permutation);
16 keys[idx] = key;
17 cpnvmMark(&keys[idx], sizeof(keytype));
18

19 vals[idx] = val;
20 cpnvmMark(&vals[idx], sizeof(valuetype∗));
21

22 add_idx(&permutation,idx);
23 cpnvmMark(&permutation, sizeof(uint64_t));
24 }
25 void update(int idx, valuetype ∗val){
26 //value buffer pointer by val is marked
27 vals[idx] = val;
28 cpnvmMark(&vals[idx], sizeof(valuetype∗));
29 }
30 };
31

32 void workload::operationHandler(basenode ∗root, op_t &op){
33 //workload driver
34 executeOp(root, op); //put or get
35 cpnvmCheckpoint();
36 }

Figure 4.6 – CpNvm Masstree example.

We use coarse-grained tracking by marking the entire node for internal nodes, leaf node splits,

and leaf node merges. We use fine-grained tracking for insertions, deletions, and updates,

which are the common operations. For deletions, it is sufficient to track the permutation field

as the key-value pair is removed. Unlike, InCLL which uses an undo log, CpNvm uses a redo

log approach and needs to track all modifications. That is why, for insertions, CpNvm tracks

the permutation field along with the slots in the keys and the vals arrays. For updates, it is
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sufficient to track the pointer to the value buffer. CpNvm keeps track of the entire value buffer

upon allocation.

4.3.7 Memory Capacity

The initial implementation of CpNvm limits the size of persistent structures to the size of

DRAM. The reason is that CpNvm allocates durable memory directly in DRAM. Fortunately,

Intel Optane has Mixed Mode (Section 2.1.4).

CpNvm takes advantage of the existing Mixed Mode to expand the DRAM address space by

using almost half of NVM and leaving the rest of it for persistence (persistent image, persistent

logs, CpNvm metadata such as epoch number). One issue of this approach is that there will

be two copies of the persistent data in NVM, one as the NVM copy (persistent image) and

the other one as the temporary backing store (volatile image) in NVM. Keeping a single copy

would be interesting, but writes to the volatile image do not leave a consistent image that can

be used in recovery (see Future Work section 6.1).

4.4 Evaluation

This section evaluates CpNvm by using standard benchmarks to measure its performance as

well as to compare it against recent systems (Section 4.5). We used the machine configuration

from section 3.4.1. We used the Masstree data structure from section 3.4.3.

4.4.1 CpNvm Configurations

We inserted 25 lines to call CpNvm functions (in a codebase of 27K LoC) to make Masstree

durable and recoverable with 0−14.4% overhead. This version used CpNvm’s allocation and

we persist only the value buffers and the node structures for Masstree. We inserted CpNvm’s

tracking calls to Masstree’s insert and remove operations.

We implemented the entire CpNvm system in CpNvm-B2-NVM as described in section 4.3.

CpNvm-B2-NVM used CpNvm with 2 background replay threads (B2) and cache-line granular-

ity (64-bytes) tracking. CpNvm-B2-NVM provided crash consistency, avoided memory leaks,

and dangling pointers. We also report results for CpNvm-Word-B2-NVM, which implemented

CpNvm with word-granularity tracking as described in section 4.3.

CpNvm-B2-MixedMode used the cache-line granularity version of CpNvm under Intel Mixed

Mode as explained in section 4.3.7. We configured the Optane operation to 50% Mixed Mode,

which used 366GB of NVM for App Direct Mode and the rest as backing store for CpNvm-B2-

MixedMode running on socket 1.
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4.4.2 Measurements

Measurements used the same YCSB evaluation default configurations from section 3.4.6 for

Masstree.

Figure 4.7 – Throughput of Masstree for different implementations.

Figure 4.7 reports the throughput for the CpNvm implementations (higher is better) for

6 worker threads. CpNvm-B2-NVM is the principle CpNvm approach. It uses cache-line

granularity tracking and leaves the primary structure in DRAM and checkpoints modifications.

CpNvm-B2-NVM’s slowdown is less than 15%. Specifically, for write-intensive YCSB A, CpNvm-

B2-NVM’s slowdown is 14.4% for Uniform and 13.3% for Zipfian.

Read-heavy workloads have minimal overhead. For read-dominant YCSB B, the slowdown

is 2.6% for Uniform and 2.7% for Zipfian. In fact, each thread needs to synchronize for

checkpointing, which improves Masstree execution performance for YCSB C performance by

somewhat less than 1%.

Figure 4.8 shows the breakdown cost for each CpNvm mechanism. Lower is better. The

majority of the cost is due to checkpointing, which writes the persistent redo logs in NVM.

Its cost is 7.6% of execution for Uniform A and 7.5% for Zipfian A workloads. A single thread

logs 5.4MB in 6.2ms for Uniform A and 4.8MB in 5.4ms for Zipfian A, on average per epoch.

For YCSB B, checkpointing costs 0.9% for Uniform B and 1.1% for Zipfian B, since read-only

workloads do not require the tracking or the checkpointing mechanisms.

The second largest cost is the tracking mechanism that registers modified memory regions in

the bitmap and address lists. Its is 3.4% for Uniform A and 3.2% for Zipfian A, and 1.3% for

Uniform B and 1.2% for Zipfian B workloads.

The remaining cost is due to using Optane and a minimal cost from background threads. The

cost of using Optane for memory-mapped files is 2.7% for Uniform A and 2.2% for Zipfian A.

The cost of background threads is less than 1%.
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Figure 4.8 – Mechanism breakdown for CpNvm-B2-NVM.

We also measured the time spent replaying the logs to NVM copy for an epoch (logReplay
function in figure 4.5). A single background thread replayed 16.2MB in 30.6ms for Uniform A

and 14.4MB in 26.6ms for Zipfian A, on average for a 64ms epoch. Background replay does not

affect program performance if the memory bandwidth is not saturated. However, background

replay is slower than checkpointing as the copying is from the persistent log in NVM to the

persistent image in NVM (random access), while checkpointing sequentially copies from

DRAM to the persistent log.

CpNvm-Word-B2-NVM is slower than CpNvm-B2-NVM due to the cost of synchronization,

which is more significant in the Zipfian case. The slowdown of CpNvm-Word-B2-NVM over

Baseline-DRAM is 22.9% for Uniform A and 25.3% for Zipfian A.

We also evaluated CpNvm-B2-MixedMode, which uses Mixed Mode Memory to increase the

volatile memory capacity. The goal of the experiment to observe the effects of using Mixed

Mode Memory and whether it is a viable configuration option. The difference between CpNvm-

B2-MixedMode and CpNvm-B2-NVM is less than 1%. Since the Masstree data structure easily

fits in DRAM, this measurement does not include the cost of paging to NVM. We ran additional

micro-benchmarks, which bounded this overhead at 1.5−2.6x for memory-operation-intensive

kernels.

We also varied the number of background threads from 0 to 6 for CpNvm-B2-NVM from

figure 4.7. We observed that the performance effect of background threads is minimal, less

than 1% across all the threads.

Figure 4.9 shows the scalability of YCSB A with different numbers of worker threads. For

CpNvm, we did not use any background threads for this experiment. As we increase the

parallelism, the throughput of YCSB A increases from 1.1E6 Ops/sec to 2.4E7 Ops/sec for

the uniform workload and 1.3E6 Ops/sec to 3.1E7 Ops/sec for the Zipfian workload. This

67



Chapter 4. NVM Checkpointing with CpNvm

(a) Uniform A workload.

(b) Zipfian A workload.

Figure 4.9 – Throughput of the CpNvm implementation of Masstree for different numbers of
threads.

improvement is expected as Masstree was designed to achieve low memory contention and

good parallel performance. However, Optane limits its scalability. The throughput overhead

increases from 11% to 28% for Uniform and 11% to 24% for Zipfian. Baseline-NVM throughput

overhead increases from 51% to 69% for Uniform and 39% to 61% for Zipfian. Zipfian performs

better because of the increased locality with a skewed distribution.

Masstree is scalable and achieves 28x speedup for Uniform A and 27x for Zipfian A workloads

over a single thread. However, as we increase the number of threads, the limited bandwidth of

Optane becomes significant even for the CpNvm design. The speedup of CpNvm drops to 23x

for both Uniform A and Zipfian A.

Figure 4.10 shows the effect of varying the number of background replay threads for CpNvm

(B-<number of background threads>) when we saturate performance with 28 worker threads.

The performance overhead increases to 53.7% for Uniform A and 48.3 for Zipfian A as we

increase the number of background threads to 28. By comparison, if we put the Masstree

data structure in NVM, without even performing cache flushes, the throughput degradation

68



4.4. Evaluation

Figure 4.10 – Throughput of the CpNvm implementation of Masstree with 28 worker threads
and different numbers of background replay threads.

for 28 threads is 68.8% for Uniform A and 60.7% for Zipfian A. Baseline Masstree is a mixed

read/write workload, randomly accesses memory, and runs concurrently, all of which are

known to be detrimental to NVM performance [188, 91, 120].

We varied the checkpointing interval from 16ms to 256ms. For Baseline-DRAM, the difference

between the intervals is less than 1%. Overall, the performance improves for CpNvm-B2-NVM

as we increase the time between checkpoints and reduce the number of synchronization

barriers. The change is not large for Uniform A, going down from 15.5% to 13.4% overhead.

The change is more significant for Zipfian A as the overhead goes from 15.2% to 10.1%. On

average per epoch per application thread, checkpointing for 16ms logs 1.4MB in 1.6ms for

Uniform A and 1.3MB in 1.4ms for Zipfian, and for 256ms logs 20.9MB in 23.8ms for Uniform

A and 16.9MB in 18.9ms for Zipfian A. On average per epoch per background replay thread for

16ms replays 4.1MB in 8.3ms for Uniform A and 3.9MB in 7.2ms for Zipfian A and for 256ms

replays 62.8MB in 118.4ms for Uniform A and 50.6MB in 91.0ms for Zipfian A.

Figure 4.11 shows the effect of the initial tree size, where the cost of data structure traversal

dominates throughput. The default number of entries is 24M across the experiments. Com-

pared to Baseline-DRAM, the slowdown of CpNvm-B2-NVM is between 11−14% for Uniform

A and 10−13% for Zipfian A.

4.4.3 Recipe

We compared both CpNvm and InCLL implementations of Masstree to the published Recipe [108,

7] (published after InCLL) version of Masstree, which is optimized for Optane. Recipe, however,

revamped Masstree’s structure. Recipe removed internal nodes and used leaf nodes instead,
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(a) Uniform A workload.

(b) Zipfian A workload.

Figure 4.11 – Throughput of baseline Masstree and CpNvm with DRAM and Optane evaluations
for different initial tree sizes.

modified the node versioning, and used external locks (std::mutex).

The baseline Recipe-DRAM placed the Masstree data structure in DRAM. Recipe-NVM placed

the Masstree data structure in NVM using libvmmalloc [3] and followed the published ap-

proach that Recipe used for its evaluation. We note that Recipe-NVM with libvmmalloc is not

entirely persistent as libvmmalloc is not a persistent allocator. libvmmalloc only redirected

allocation calls to a memory-mapped file in NVM. Recipe also used pre-allocated value buffers,

which lowered its runtime cost. Unfortunately, Recipe’s Masstree implementation on PMDK

was not complete [7] and we do not provide PMDK comparison.

Figure 4.12 compares CpNvm-B2-NVM against the published version of Recipe and our InCLL

implementation. For YCSB A, Recipe-NVM has a 49.9% slowdown (1.9x CpNvm) for Uniform

and 39.8% slowdown (1.7x CpNvm) for Zipfian compared to Recipe-DRAM. For YCSB C, Recipe

pays the cost of keeping its data structure in NVM with a slowdown of 51.1% (2.1x CpNvm) for

Uniform and 38.0% (1.7x CpNvm) for Zipfian.
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Figure 4.12 – Throughput of Recipe and InCLL compared to different Masstree implementa-
tions.

4.4.4 InCLL

We compare our CpNvm-B2-NVM Masstree implementation to our previous InCLL-NVM

Masstree implementation. For YCSB A, CpNvm-B2-NVM is 2.4x faster for Uniform and 2.0x

faster for Zipfian compared to InCLL-NVM. For YCSB C, CpNvm-B2-NVM is 2.5x faster for

Uniform and 2.0x faster for Zipfian compared to InCLL-NVM.

4.4.5 PMThreads

We also compared CpNvm to PMThreads, another fine-grained checkpointing system. PM-

Threads leveraged locking in a concurrent program to identify persist durable regions. PM-

Threads operated on DRAM pages and propagated the modifications to NVM when the

program is quiescent (no active critical sections) to avoid checkpointing data structures in an

inconsistent state.

PMThreads required the program to use pthread_mutex_lock. Masstree did not use mutex

lock from pthreads and instead implemented its own locking mechanism. We introduced

a thread-local lock that we use for the entirety of an insertion or a deletion. Since the lock

is thread-local, operations do not interact with other concurrently running threads but are

sufficient to trigger the PMThreads’s checkpointing mechanism. We also applied the thread-

local locking mechanism to Masstree’s memory reclamation, which did deallocations based

on the epoch. To be fair, we evaluated the CpNvm version using these unnecessary locks. The

performance results would be even further skewed in favor of CpNvm without them.

For the PMThreads experiments, we used PMThreads’s allocator and do not modify anything.

We disabled the artificial delay for PMThreads [185] by setting it to 0. We reported two versions

using PMThreads, which were PM-I-DRAM and PM-P-DRAM. PM-I-DRAM used compiler

instrumentation to track writes at word granularity. PM-P-DRAM used virtual memory pro-

tection to track accesses at page granularity using mprotect. However, both versions marked
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an entire page as dirty during execution and use page-diffing to identify modified bytes to

be copied to NVM. We used 6M initial key-value pairs to populate the Masstree. For this

experiment, we compiled Masstree, CpNvm, and PMThreads with clang-7.0.1.

Figure 4.13 – Throughput of CpNvm and PMThreads implementation of pthread_mutex-
_lock Masstree.

Figure 4.13 shows the pthread_mutex_lock Masstree running with CpNvm and PMThreads.

Overall the thread-local locking mechanism introduces 2.1% overhead for Uniform A and

2.9% overhead for Zipfian A, while for the rest of the benchmarks the overhead is less than

0.5%. CpNvm’s slowdown is 14.5% for Uniform A and 14.2% for Zipfian A and the read-

dominant workloads perform better due to synchronization for checkpointing. For write-

heavy workloads, PM-I-DRAM is 94.1% slower for Uniform A and 93.2% slower for Zipfian

A. For read-only workloads, PM-I-DRAM is 47.9% slower for Uniform C and 55.5% slower

for Zipfian C. The poor performance is mainly from the cost of instrumenting each store in

Masstree and logging entire pages. On the other hand, PM-P-DRAM has lower overheads

as the virtual memory mechanism is not invoked for read-only workloads which leads to a

slowdown of 2.4% for Uniform C and 1.4% for Zipfian C. For Uniform A, PM-P-DRAM increases

page faults by 26x (perf profiler). However, PM-P-DRAM pays a huge cost for write-heavy

workloads due to page-level tracking which results in 99.1% overhead for Uniform A and 98.9%

for Zipfian A.

4.4.6 Recovery

We tested CpNvm by crashing the system at random points in an epoch, restarting the system,

doing log recovery, and verifying that the persistent image state after replay is the same as the

volatile image state before the crash.

To measure log recovery, we ran Masstree with the Uniform A workload with 24M initial entries.
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We crashed at the end of the 5th epoch after committing the redo logs. As Masstree replayed

background threads for the previous epoch in the current epoch, the recovery code only

needed to replay the committed epoch. Recovery replayed with 6 threads and each thread on

average spent 14.1ms replaying 5.4MB .

After a restart, we continued the Uniform A workload and the throughput normalized after 4s

as shown in figure 4.14. CpNvm creates a separate thread to lazily bring in pages on top of the

worker threads. CpNvm loads 440K pages from NVM in total.

Figure 4.14 – Execution of CpNvm after a restart.

For this program, it is possible to use memcpy and load the entire persistent image more

efficiently before starting the execution. This avoids paying the cost of page protection.

Eagerly loading the NVM pages to DRAM takes around 145ms with 6 threads (760ms with

a single thread). The throughput normalizes after 4 epochs. Different data structures with

different access patterns might perform better with eager or lazy loading. The choice is left to

the programmer.

4.4.7 Memcached

Finally, we evaluated the performance of CpNvm for the data center application Memcached-

1.2.4 [61], an in-memory key-value store, using the Memtier [2] benchmark. We enabled

processor socket 2 and ran memtier benchmark from socket 2. Memtier performed set and

get operations on a Memcached server running on socket 1. The evaluation used 50 clients, 8

threads, 128 byte data, 200 ms epochs running for 2 seconds. We persisted the heap allocations

and the hash table related data structures by adding 29 lines of CpNvm modifications in a

4.5K LoC application. We did not make the LRU cache of Memcached durable, and the entire

system was not durable, which is a challenging endeavor [119]. After a restart, the hash table

data structure and its contents are durable, however, recovery needs to handle LRU cache
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explicitly. CpNvm used 4 background threads.

We also compared it with PMThreads 4.4.5 and Atlas running Memcached. Atlas is similar

to PMThreads in that it requires lock-based concurrent applications. However, Atlas uses

transactions instead of checkpointing and all its log and the program data structures reside in

NVM. We used DRAM evaluation for Atlas as described in [32] without any added latencies.

Similar to CpNvm, we did not persist the LRU cache for either PMThreads and Atlas.

Figure 4.15 – Throughput for different versions of Memcached.

Figure 4.15 evaluates the CpNvm-annotated version of Memcached with a varying ratio of

gets and puts. The worst-case for CpNvm is the 1:0 put:get ratio (write-only), which incurs

5.6% overhead. The more balanced 1:1 ratio incurs 3.3% overhead. In the worst case, PM-

Threads with compiler instrumentation has 48.6% overhead due to its tracking mechanism

and checkpointing. Atlas has 74.6% due to transactional dependencies between logs and

tracking.
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Figure 4.16 – Latency vs. throughput measurements for Memcached and CpNvm for 1:1
(Put:Get).

Figure 4.16 reports the latency vs. throughput measurements for baseline Memcached and

CpNvm. We present the average latency and the 99th percentile latencies. We increased the

number of client threads to 14 and measured the 1:1 (Put:Get) case, as the overhead of CpNvm

for read-intensive workloads are minimal. We varied the number of Memcached worker

threads from 2 to 14 in increments of 2, using half the number of background replay threads as

worker threads. The drop at 8 threads for CpNvm 99th percentile latency is due to saturation.

Overall, the curves for CpNvm and baseline Memcached are very similar. The baseline has

better throughput and latency for each point, however, the difference is not large. It shows

that pausing for checkpointing does not affect in this benchmark very much.

4.5 Related Work

Both CpNvm and InCLL are checkpointing systems with intervals in the order of milliseconds.

Chapter 2 provided more details about crash-consistency and checkpointing in general. In

this section, we discuss related work for both of these systems and consider only the relevant

subset of the work.

4.5.1 NVM Programming Systems

Prior work builds on ideas from transactional memory [76]. There are many designs that rely

on software transactional memory (STM) [33, 37, 43, 68, 72, 79, 80, 98, 112, 141, 149, 175] and

HTM [18, 31, 65]. The two foundational works in transactional design are Mnemosyne [175]

and NV-Heaps [37]. Both use write-ahead logging for crash-consistency. Mnemosyne relies

on a redo log and uses a word-based transactional memory system based on TinySTM. For
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Mnemosyne, the programmer needs to modify each read and write operation within a transac-

tional region to use the redo log. NV-Heaps relies on an undo log and uses object granularity.

For NV-Heaps, the programmer needs to insert calls to the logging to track memory regions.

CpNvm and InCLL persist the data structure using checkpointing at periodic intervals instead

of using transactions. The only requirement of CpNvm and InCLL is to break the program

execution into epochs. CpNvm, like Mnemosyne, relies on a redo log approach. The full redo

log contains information to recreate the entire data structure from scratch. The CpNvm redo

log contains the latest value for a modified memory region at the end of the epoch before

checkpointing. InCLL uses an undo log approach similar to NV-Heaps. InCLL implements in-

cache line logging and an external log for undo logging. InCLL undo log mechanism contains

modifications done after the start of a new epoch.

Kamino-Tx [121] optimizes data copying for transactions. There are two heaps, the main

heap and the backup heap, that are stored durably in NVM. The backup heap asynchronously

synchronizes with the main heap, however, Kamino-Tx does not allow dependent transactions

to execute before the completion of asynchronous transfers. Kamino-Tx relies solely on NVM

similar to InCLL, however, in CpNvm the operations occur in DRAM.

DudeTM [112] is a transactional system based on redo logging and shadow memory to reduce

the redo log programming effort and reduce persistent operations on the critical path of

the program. Similar to CpNvm, the program operates on DRAM data structures. DudeTM

brings in the page from NVM upon access and keeps it until eviction is necessary. For each

transaction, DudeTM creates a volatile redo log that acts as a backup and asynchronously

persists the redo log to NVM. Similar to CpNvm, the persistent redo logs update an NVM

copy. DudeTM relies on page-level protection to detect writes and to create redo logs for

transactions, which can lead to write amplification.

Compared to DudeTM, InCLL requires the programmer to modify data structure fields and

methods to use in-cache-line logging. CpNvm requires the programmer to annotate the

code with calls to tracking for checkpointing the modified memory regions. CpNvm only

uses page protection to bring in pages from the previous execution. CpNvm and InCLL’s

approach require programmer effort, which is better for performance instead of relying

on costly instrumentation or protection by an STM system. DudeTM does not report the

overheads for the STM system, does not use Intel Optane for evaluation, and simulates

execution with introduced delays at each fence instruction. Despite the lack of overheads

from the DudeTM, CpNvm overheads reported in section 3.4 are comparable (< 15%)1.

There are transactional approaches that either rely on hardware transactional memory [18, 31,

65], or hardware modifications [73, 93]. Similarly, several checkpointing systems [67, 150, 182]

require hardware modifications or require HTM support. Both InCLL and CpNvm are pure

software approaches and do not require any HTM support. Both systems require support only

1At the time of working on CpNvm, we could not obtain a copy of DudeTM to conduct the experiments
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for NVM.

Pronto [122] is an operational logging approach and records data structure operations instead

of memory regions. Pronto uses background threads to asynchronously log the data structure

operation before the operation completes. After a restart, Pronto re-executes the data structure

operations to recreate the data structure. Pronto implements a naive checkpointing model

that takes a snapshot of the entire data structure. Both InCLL and CpNvm might benefit from

the operational logging approach by replacing the checkpointing stage and data structure

design in Pronto. Using Pronto, both InCLL and CpNvm can avoid lost work in a failed epoch.

Lock-delimited NVM systems [32, 78, 89, 113, 185] are an alternative to transactional systems.

These systems rely on a compiler infrastructure to convert existing locked-based concurrent

programs into durable equivalents. The foundational work in this area is Atlas [32], which uses

an undo log for crash-consistency. Similar to InCLL, both the data structure and the logs are in

NVM. NVthreads [78] use a redo logging approach, spawns a process for each different thread

to provide a separate address space, and merges modifications to a single NVM store using

synchronization points. JUSTDO logging [89] executes the FASE to completion after a restart.

iDO [113] improves JUSTDO logging efficiency by further dividing each FASE into idempotent

regions to avoid excessive logging.

Another important work is failure-atomic msync [135] that modifies the msync system call

to persist all writes to a memory-mapped region. Failure-atomic msync uses the journaling

mechanism of a file system to track modifications and provide crash consistency. The execu-

tion of the msync is similar to calling a checkpoint as all the modifications become visible in

NVM.

4.5.2 Checkpointing

As we explained in section 2.3, checkpointing is a well-established technique with considerable

prior work [1, 55, 99, 139, 153, 171, 176]. The novelty of InCLL is its mechanism to remove

explicit write-back instructions from the fast-path data structure modifications. The novelty

of CpNvm is the novel combination of existing mechanisms to checkpoint efficiently using

byte-addressable Optane. Both InCLL and CpNvm only persist program data structures. They

do not checkpoint the entire state of the process [70].

Compared to traditional long-running HPC programs, which rely on page-granularity tracking

and long time intervals from seconds to minutes, both InCLL and CpNvm use fine-grained

tracking with fine-grained intervals on the order of milliseconds.

Both InCLL and CpNvm are single-node, single-device checkpointing systems unlike multi-

level and distributed checkpointing systems [29, 46, 74, 125, 130]. One major disadvantage of

relying on local storage is node-local NVM failure, which is susceptible to data corruption.

Compared to ARIES [124] based databases [77, 161], both InCLL and CpNvm track data struc-
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ture modifications directly due to the lack of an intermediate layer between data and the

program. In-memory databases [30, 156] and virtual machines [41, 168] rely on copy-on-write

(COW) to implement checkpointing. These systems use fork or mprotect to protect the

address space that needs checkpointing. Page protection mechanism need to set each page

entry underlying a data structure. For example, forking [30] copies the entire page table, which

is dependent on the program’s address space. This operation can be costly. Cache size for

InCLL and the redo log size for CpNvm bound the time spent in checkpointing. The time

is independent of data structure size. Moreover, InCLL and CpNvm do not introduce page

protection overhead to the normal execution. CpNvm introduces page protection overhead to

bring in pages from a previous execution.

There are many new designs that use checkpointing with NVM [38, 60, 67, 95, 123, 128, 150,

181, 190, 182, 185]. Most of the designs use NVM as a high bandwidth device [123]. Other

designs specifically exploit the byte-addressable interface of NVM [60, 128, 185] and also

support high-frequency checkpointing.

PMThreads [185] is a checkpointing system for lock-based concurrent programs. PMThreads

uses lock-delimited regions to identify modifications to the memory regions. The system

assumes that lock-delimited critical sections lead to a data structure consistent state. The

implementation of PMThreads uses 2 NVM pages for a single DRAM page and allocates

the pages eagerly. PMThreads uses a dual-version redo log approach to capture and store

modifications. Similar to CpNvm, the program operates on the DRAM data structure and

treats one of the NVM pages as a working copy and the other one as the consistent copy.

PMThreads tracks modifications in two ways. One uses the compiler infrastructure to track

stores at a page granularity and the other version uses page protection. Both versions commit

the modifications in DRAM to the working NVM copy using byte-diffing to avoid NVM writes

at the cost of extra NVM reads. Both InCLL and CpNvm use fine-grained tracking and do not

require byte-diffing for tracking changes. PMThreads evaluation only introduces latencies at

fence instructions (Section 4.4.5).

InCLL does not keep two copies of the same data structure and does not use Mixed Mode.

There is only one persistent version that resides in NVM in App-Direct Mode. InCLL incurs

space overhead due to the use of in-cache-line logs and bounded external logs. CpNvm

keeps a single NVM page for a DRAM page and the bounded logs. PMThreads minimizes

programmer effort at the cost of program performance, as the programmer only needs to use

the PMThreads allocator for persistent data structures.

Dalí [128] is a periodically persistent hash table that persists modifications periodically by

flushing the entire cache hierarchy. Dalí hash table uses a multi-versioning scheme, where

updates prepend the new version to the appropriate bucket in the hash table and reads return

the latest valid version. Dalí implements garbage collection to remove failed modifications.

Both InCLL and Dalí periodically flush the entire cache hierarchy with the wbinvd instruction

to ensure persistence. However, the multi-versioning strategy leads to prepending new data
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instead of reusing the existing structures leading to inefficient cache usage. In InCLL there

is a single version of the data structure, which is modified by in-place updates and the undo

log reverts the modifications. Both systems store the data structure directly in NVM, are

program-specific, and hard to generalize. CpNvm operates on DRAM data structure and does

not use wbinvd, however provides a general application-level checkpointing API.

Montage [181] divides the execution into epochs as well, however, it allows the execution to

continue during checkpointing. However, a failure can lose two epochs worth of modification.

Montage only persists value buffers instead of the full structure and requires recovery code for

a data structure. Both InCLL and CpNvm lose a single epoch.

Phoenix [60] implements a multi-level checkpointing design and uses a log-structured file

system on NVM. Phoenix relies on an object-granularity while CpNvm and InCLL use fine-

grained tracking. Algorithm-Directed Crash Consistence [190] uses algorithmic information to

determine when to evict cache lines during the program execution. It requires careful analysis

of the program code and is non-trivial to reason about. Mona [64] and NVM-checkpoints [95]

focus on optimizing pre-copy mechanism for speculative checkpointing, which is a different

technique than ours. NV-Checkpoint [44] uses compiler instrumentation to create multi-

versioned data structures depending on developer annotations and optimizes the timing of

the checkpoints using machine learning models. The program can operate both on DRAM and

NVM data structures and at least one version of the data structure is in NVM. NV-Checkpoint

focuses on the domain of long-running HPC applications with long intervals between check-

points instead of durable data structures with fine-grained epochs. NV-Checkpoint only

provides examples for multi-versioning arrays, quadtrees, and graphs and persists the data

structure by copying the DRAM version to the version in NVM.

Hardware checkpointing designs [150, 182] rely on hardware modifications such as extensions

to the memory controller. InCLL and CpNvm do not require any architectural changes and do

not require any ISA modifications.

4.5.3 Durable Data structures

Most of the prior work focuses on reducing the number of writes to NVM [40]. wB+-Trees [35]

minimize writes to NVM with the implementation of a field similar to permutation in

Masstree. NV-Tree [189] relies on append-only insertions to log to reduce the NVM write

overhead. WORT [107] uses two explicit write-back and fence instructions for updates to

an NVM radix tree. BzTree [17] relies on durable lock-free multi-word CAS implementation

PMwCAS to implement a B+tree. They do not report the number of explicit write-back and

fence instructions, however, at least two are required for each PMwCAS. Each insertion uses

two PMwCAS, which requires four write-back and fence instructions in total.

The Log-Free data structures work [45] uses link-and-persist and link-cache to benefit from

atomic updates and makes lock-free data structures durable. CCEH [127] uses buckets of
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cache-line sizes to find an entry in the table and only requires a maximum of two cache line

accesses. The work by Cohen et al. [40] reduces explicit write-back instructions using writes to

the same cache line to provide an optimal logging algorithm. The Efficient Lock-Free Durable

Sets work [193] minimizes the write-back instructions and fences by avoiding making pointers

durable and persisting only value buffers, which leads to a single fence for updates and no

fence for reads. MOD [75] exploits the properties of functional data structures to minimize

ordering.

Similar to CpNvm, several data structure [81, 186, 189] designs exploit DRAM for performance.

Echo [19] is a key-value store that stores incoming operations in a thread-local DRAM store

and propagates these items to a singular master NVM store upon a commit. NV-Tree [189]

stores internal nodes in DRAM. FPTree [134] also places the internal nodes in NVM and places

the leaf nodes in NVM. HiKV [186] uses a NVM hash table for fast operations and B+ tree in

DRAM to support slow scan operations. Bullet [81] uses a DRAM hash table to take the load

off from the slow NVM hash table and propagates changes to the NVM version epoch-based.

NVTraverse [62] reduces flushes for the traversal part of lock-free traversal data structures.

Efficient Lock-Free Durable Sets [193] only persist value buffers in NVM.

Recipe [108] describes a set of methods to convert existing DRAM-optimized data structures.

Recipe requires the entire data structure to be in NVM similar to InCLL.

4.5.4 Persistent Memory Allocation

It is essential to have persistent memory allocation to avoid memory leaks and dangling

pointers after a restart. For this reason, NVM programming requires the use of persistent

memory allocation.

The nvm_alloc [158] breaks the allocation into two stages, which are reserve and activate. After

a restart, nvm_alloc rolls back reserved allocations, and each stage flushes data to NVM. NV-

Heaps [37] uses redo logs for implementing allocation with garbage collection and reference

counting. Makalu [23] uses garbage collection to avoid write-back and fence instructions.

However, Makalu has to traverse the memory for garbage collection after a restart, which

increases program restart time.

PAllocator [133] keeps per core big and small allocators and provides defragmentation. Posei-

don [48] provides metadata protection using Intel MPK. Ralloc [28] minimizes writes during

allocation using a garbage collector after a restart similar to Makalu. However, Ralloc improves

Makalu’s conservative garbage collector using filter functions to optimize pointer traversal. In-

CLL uses fine-grained checkpointing and avoids write-back and fence instructions for memory

allocation, while CpNvm uses the tracking infrastructure to mark changes to the allocator. Af-

ter a restart, InCLL lazily recovers the pointers, while CpNvm pointers are at the last committed

checkpoint upon the completion of log replay.
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4.6 Summary

The chapter presented CpNvm, which is an application-level checkpointing library for C/C++

programs that can persist application data structures efficiently in NVM. CpNvm has low run-

time overhead. Masstree evaluation shows overheads less than 15% for the YCSB benchmarks

and Memcached evaluation show less than 6%. The relaxed crash-consistency mechanism of

periodic checkpointing is suitable for cloud workloads where the program can be suspended

between tasks to capture a consistent image.

CpNvm also provides a simple checkpointing programming model, which minimizes de-

veloper effort for modifying the program. We modify less than 30 lOC individually in both

Masstree and Memcached.

CpNvm’s novelty is its simple checkpointing model, which requires minor changes in the pro-

gram codebase, and its efficient implementation, which provides an effective crash-recovery

mechanism for persistent data.
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5 Using Dataflow Analysis to Find NVM
Program Bugs with FlowNvm

Let us change our traditional attitude to the construction of programs: Instead of imagining

that our main task is to instruct a computer what to do, let us concentrate rather on explaining

to human beings what we want a computer to do.

— Donald E. Knuth

The byte-addressable interface provides convenience for NVM programming. A program-

mer, however, needs to carefully reason about the persistence of write operations due to the

volatility of the processor caches. Reasoning about cache line write-back instructions, object

layouts, and ordering persistent writes is not straightforward. Mistakes in programming can

lead to hard-to-find and subtle bugs that can corrupt program data after a restart or result in

performance slowdown.

In this chapter, we introduce FlowNvm, which is an inter-procedural data-flow analysis tool to

find NVM programming bugs. We identify three programming patterns and two anti-patterns

that are commonly used or abused across NVM programs. FlowNvm can identify instances of

the programming patterns and anti-patterns in program code. We demonstrate that FlowNvm

can find previously known bugs and can be useful for finding real bugs in NVM programs.

This chapter is organized into the following sections:

• Section 5.1 describes the design goals and the motivation.

• Section 5.2 describes the three programming patterns and two anti-patterns that are

identifiable by static analysis and are important for crash consistency and program

performance.

• Section 5.3 describes the high-level design and the dataflow framework.

• Section 5.4 explains the implementation.

• Section 5.5 provides an evaluation.

• Section 5.6 compares FlowNvm to other NVM programming bug finding tools.
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5.1 Introduction

NVM programming is a complicated task. A missing or misplaced flush instruction or re-

ordered pair of writes might not affect a program’s normal execution. Moreover, the lack of

an expensive write-back and fence instructions might even improve performance. However,

NVM programming errors can become apparent when the program fails at a specific point

in the program’s execution and state needs to be recovered. Failure at such a location can

lead to situations where execution cannot be resumed because the NVM state is inconsistent.

This type of programming error, similar to a data race [25], is execution-dependent, hard to

reproduce, and difficult to detect.

Eliminating crash-consistency bugs in a program, by conservatively putting flush and fence

instructions in the code, introduces runtime overhead to the program. Unnecessary flush and

fence instructions may degrade performance [118, 181].

A programmer can avoid programming with these primitives. Databases with NVM sup-

port [91, 188], durable data structures [17, 81, 108], file systems optimized for NVM [94, 101,

174], or higher level NVM programming libraries based on transactions [121, 141, 149, 175] or

checkpointing [60, 185] all can abstract away these primitives. However, the implementation

of these libraries and systems still need to be crash-consistent. Furthermore, it is possible for

programmers to incorrectly use the libraries.

NVM programming bugs are programming mistakes that either lead to inconsist program

data in NVM after a crash or cause performance degradation due to the unnecessary use of

durability primitives such as cache line flush and fence instructions. Previous work [63, 82,

104, 115, 132] relies on runtime profiling and testing to find NVM programming bugs. Using

these tools requires many test cases with many different inputs to achieve good test coverage.

We make two key observations:

1. Programmers use a small number of programming patterns that provide durability

across different NVM code bases.

2. We can use static program analysis at compile time to find many programming patterns

that can lead to NVM programming bugs.

These aforementioned observations provide a basis for building a static analysis tool to find

NVM programming bugs. We identify three programming patterns and two anti-patterns that

are suitable for static analysis. We explain the patterns in section 5.2.

We can use inexpensive static analysis to identify violations of the programming patterns and

occurrence of anti-patterns. We propose using data flow analysis to do the analysis and find

bugs. We build FlowNvm, which can identify NVM programming bugs using inter-procedural

data flow analysis.
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The main contributions of this work are:

• Identification and description of several programming patterns and anti-patterns used

in NVM programs that can lead to crash-consistency problems or cause program perfor-

mance issues.

• Description of a static program analysis using dataflow analysis for identifying many

instances of these patterns and when to report bugs.

• Implementation of an open-source extension to LLVM for C/C++ applications that

identifies and reports these bugs using dataflow analysis.

• Evaluation of FlowNvm on existing NVM programs and demonstrating FlowNvm’s

capability to find and report previously known bugs and a new bug.

5.2 Programming Pattern Examples

In this section, we present the three programming patterns (pair, durability, log) and the

two anti-patterns (double flush, double log). We discuss each pattern in detail and show how

the misuse of the patterns can lead to errors in recovery. We then discuss each anti-pattern

that can lead to program runtime performance degradation. We use the persistency model

described in section 2.1.2. We use the examples from section 5.1 and expand on them to

motivate the programming patterns.

5.2.1 Pair Pattern

The pair pattern ensures that writes do not persist out of order and enforces persistence

ordering of writes between two memory regions in NVM. We denote the location of the first

write as data and the location of the second write as sentinel. The sentinel acts as a

consistency variable. The program code can read the sentinel to check if the data is up-

to-date in NVM. Writes to data and sentinel are separated by a fence instruction and the

writes are written back before the execution of the fence instruction.

Figure 5.1 depicts program code for a log entry example. For the purposes of the example,

assume that the log entry is an undo log entry and is useful for rolling the state of the program

data back to a consistent state. The program first updates the contents of the log entry (Line

6). The program then flushes the contents (Line 7) and persists the modifications (Line 8)

instruction to explicitly write back the cache line. Afterward, the program modifies the flag
field and explicitly writes the field back. We assume that data and flag are on separate cache

lines.

The pair pattern demonstrates the necessity of ordering persistent writes. Otherwise, crash-

consistency is not assured. Assume that the programmer makes a mistake and forgets to
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1 //initially
2 //log_entry→ data=random data
3 //log_entry→ flag=false
4

5 //program code
6 fill(&log_entry→ data, contents);
7 clflushopt(&log_entry→ data);
8 sfence();
9 log_entry→ flag = true;

10 clflushopt(&entry→ flag);
11 sfence();

Figure 5.1 – Pair programming pattern with a log entry example.

flush the data field. The lack of the flush statement would not affect execution and can in

fact improve performance. However, if the program crashes at the end of figure 5.1, then it is

possible to get a failure after a restart.

log_entry Cache NVM

data contents random data
flag true true

Table 5.1 – A possible state at the time of power failure if data field of the log entry is not
flushed explicitly.

Table 5.1 presents one possible state at the end of the snippet in figure 5.1 if the programmer

omits the flush for the data field (Line 7 in figure 5.1). Forgetting to flush can lead to a hard-

to-reproduce error during recovery after a restart. At the power failure, the caches contain

updated fields. However, the NVM state does not reflect the cache state as the entries in the

cache have not propagated back to NVM. The data field can contain random data that can

lead to unexpected behavior.

The challenge of identifying these types of bugs arises from the fact that the crash is non-

deterministic, as not every execution leads to the same bug. We use the axioms described in

section 2.1.2 to ensure that the persistent writes are separated.

Pair Pattern Summary: The writes to data and sentinel must be separated by using write-

back or non-temporal move instructions followed by a fence.

5.2.2 Durability Pattern

The durability pattern ensures that atomic updates to memory regions are properly persisted.

The durable location is denoted as object that will be reachable through a location called

pointer. The program first needs to make the object durable, then the program can persist

the pointer. It is similar to pair pattern (Section 5.2.1) as durability pattern also requires
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ordering between two writes. However, the main difference is the intention of the programmer,

which is to capture pointer updates. Moreover, the durability pattern is optimized for pointer

assignments, as explained in section 5.4.

1 //class node; //data, next fields
2

3 //program code
4 node∗ newnode = nvmalloc(sizeof(node));
5 //newnode contains random data
6 fill(newnode, contents);
7 clflushopt(newnode);
8 sfence();
9 head = newnode;

10 clflushopt(&head);
11 sfence();

Figure 5.2 – Durability programming pattern with a linked list example.

Figure 5.2 depicts the program code for a singly-linked list example. The program first creates

a new node and updates the node entry. The program then flushes the node using (clflush-
opt) followed by the sfence instruction. The newnode is durable, then it can be safely used.

Afterward, the program links the newnode to the linked list.

The durability pattern is necessary for conducting atomic updates. Otherwise, after a crash,

the pointer can refer to a region that contains invalid data. Assume that the programmer

makes a mistake and forgets to flush the newnode (Line 7). Assume that newnode and head
are in different cache lines. If the program crashes at the end of the execution of figure 5.2, the

linked list can contain a node with random data.

Element Cache NVM

newnode contents random data
head newnode newnode

Table 5.2 – A possible state at the time of power failure if newnode is not flushed explicitly.

Table 5.2 presents one possible state at the end of the execution of the snippet from figure 5.2,

if the programmer forgets to flush newnode explicitly (Line 7). The cache reflects the correct

state similar to the pair pattern, however, NVM state is not up-to-date.

Durability Pattern Summary: For atomic-updates, updates to the object must be durable

before the updates to the pointer.

5.2.3 Log Pattern

Both pair pattern (section 5.2.1) and durability pattern (section 5.2.2) use primitives (e.g.,

cache line flush, fence instructions) for NVM programming. The log pattern is a higher-level
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pattern specifically tailored for libraries that rely on write-ahead, undo logging transactions,

such as PMDK. The log pattern is useful for ensuring that the programmer logs memory

regions in the program code within transactions. The program uses in-place updates to

update the memory regions and a write-ahead log for crash-consistency.

We can show the log pattern with a linked list similar to the durability pattern example (sec-

tion 5.2.3). The difference is that the program modifies an existing node using a transactional

region and an interface similar to PMDK [141].

1 //tx_log(void∗, size_t);
2 //class node; //data, next fields
3 //node spans multiple cache lines
4

5 //program code
6 tx_beg();
7 {
8 tx_log(oldnode, sizeof(node));
9 fill(&oldnode→ data, contents);

10 }
11 tx_end();

Figure 5.3 – Log programming pattern with a linked list example.

Figure 5.3 depicts the program code for transactional node update. The program initiates a

transactional region by calling tx_beg (Line 6) and terminates the transactional region by

calling tx_end (Line 11). The crash-consistency mechanism expects the programmer to track

the memory regions by calling tx_log function on the modified memory regions.

The log pattern identifies writes to memory regions that are not logged. Assume that the

programmer makes a mistake and forgets to call the tx_log function. The lack of logging can

improve performance but can lead to failure similar to the previous patterns. If the program

crashes at the end of the execution of figure 5.3, then it is possible to fail upon a restart.

Struct Cache NVM

undolog - -
node->data contents partial write

Table 5.3 – A possible state at the time of power failure if node is not tracked explicitly.

Table 5.1 presents one possible state at the end of the execution of the snippet from figure 5.3,

if the programmer forgets to log the node explicitly (Line 8). There would be no undo log entry

for the memory region. Therefore if a crash occurs at the end of the transaction, the node can

be partially written. However, there is no way to completely roll back the node, as its old value

is not stored elsewhere.

Log Pattern Summary: Within a transactional code region, the system must log memory

regions before modifying them.
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5.2.4 Double Flush Anti-Pattern

A program can flush the same memory region multiple times, which is unnecessary and can

affect performance. We use an example similar to the one from the pair pattern in section 5.2.1.

1 //initially
2 //log_entry→ data=random data
3 //log_entry→ flag=false
4

5 //fill function flushes updated memory locations
6

7 //program code
8 fill(&log_entry→ data, contents); //flush
9 clflushopt(&log_entry→ data); //double flush

10 sfence();

Figure 5.4 – Double flush anti-pattern with log entry example.

Figure 5.4 depicts an example of double flush anti-pattern. In this particular example, the

fill function, which mutates log entry data, flushes all modified cache lines.

Double Flush Anti-Pattern Summary: The same memory region should not be flushed mul-

tiple times without any modification in-between.

5.2.5 Double Log Anti-Pattern

A program can log the same memory region multiple times in a transactional system, which

is unnecessary and can degrade runtime performance. We use an example similar to the log

pattern in section 5.2.3.

1 //tx_log(void∗, size_t);
2 //class node; //data, next fields
3 //node spans multiple cache lines
4

5 //program code
6 tx_beg();
7 {
8 tx_log(oldnode, sizeof(node)); //first log of data
9 if(...){

10 ...
11 tx_log(&oldnode→ data, ...); //double log of data
12 fill(&oldnode→ data, contents);
13 }
14 }
15 tx_end();

Figure 5.5 – Double log anti-pattern.
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Figure 5.5 shows a double log anti-pattern example. In this particular case, the program first

logs the entire oldnode (Line 8), then logs data field again unnecessarily (Line 11).

Double Log Anti-Pattern Summary: The same memory region should not be logged multiple

times within a transaction.

5.3 FlowNvm Overview and Design

In this section, we formalize the patterns and the anti-patterns (Section 5.2) using a toy

programming language. We formalize the data flow frameworks for each pattern: (1) pair, (2)

durability, (3) log, (4) double flush, and (5) double log. Finally, we formalize the rules that are

useful for reporting violations of the programming patterns (pair, durability, log). We use the

ordering axioms as specified in section 2.1.2 for a Linux machine with x86-64 ISA.

v, v1, v2 ∈ Binding to memory locations in NVM
i , i1, i2 ∈ Immediate values

u,u1,u2 ∈ Whole numbers
opcmp ∈ Comparison operators
s, s1, s2 ∈ Statements

g , g1, g2 ∈ Identifiers
f , f1, f2 ∈ Functions

P ∈ NVM program

v := v | &v | v[u1 : u2]
z1 := w(v, i ) | w(v1, v2) | r (v) | w(v)
z2 := wn(v, i ) | wn(v1, v2) | rn(v) | wn(v)
z3 := wp (v1, v2) | wpn(v1, v2) | w
z4 := v = a(i ) | d(v)
z5 := f (v) | fo(v) | p f () | c(v)
z6 := tb() | te () | tl (v)
z := z1 | ... | z6

l := opcmp (v, i ) | opcmp (v1, v2) | opcmp (i1, i2)
m := if(l) then s1 {else s2} | while(l) do s

s := s1{s2, ..., sk } | z | m
f := g ({g1, ..., gk }){s}
P := f1{ f2, ..., fk }

Figure 5.6 – Context-free grammar rules for the imperative language.

To simplify the formalization, we use a simple language as described formally in figure 5.6. We

keep the notation from section 2.1.2. The toy language contains NVM programming primitives

and high-level transactions. We assume that all memory is allocated on NVM. Figure 5.7

depicts an example for each pattern and anti-pattern.

The language contains names that are bound to memory regions. Memory region can be of

any size and the read or write operations affect the entire range. The internal parts of the
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1 w(v1)
2 fo(v1)
3 p f ()
4 w(v2)
5 fo(v2)
6 p f ()

(a) Pair.

1 w(v2)
2 fo(v2)
3 p f ()
4 wp (v1, v2)
5 fo(&v1)
6 p f ()

(b) Durability.

1 tb()
2 tl (v)
3 w(v)
4 te ()

(c) Log.

1 w(v[0 : u])
2 fo(v[0 : u])
3 i f (...)
4 then
5 fo(v)
6 p f ()

(d) Double flush.

1 tb()
2 i f (...)
3 then
4 tl (v[0 : u])
5 tl (v)
6 w(v)
7 te ()

(e) Double log.

Figure 5.7 – Example snippets for each pattern in the toy language.

memory region can be accessed by the array notation. A binding v can be considered as a

C/C++ pointer or an object variable in Java.

Read and write operations to regions pointed by v use r (v) and w(v) respectively. These

operations use the cache hierarchy. Non-temporal move equivalents are rn and wn . Intuitively,

w(v1, v2) acts as a memcpy operation and copies v2’s region to v1.

For convenience, we also define a pointer update wp and its non-temporal move equivalent

wpn to update bindings. wp (v1, v2) updates the binding of v1 to v2 and both point to the same

memory region initially pointed by v2. We provide the (&) operator to get a reference to the

binding and executing w(&v) changes v to point to a new location. In C/C++, it is the address

operator. The following relation holds: wp (v1) = w(&v1).

We provide a single parameter version of these functions w, wn , wp , wpn to emphasize only

the write operation for the first argument of the function.

The language provides memory allocation using v = a(i ), which takes a size argument and

binds the memory region to v . We deallocate the memory region pointed by v using d(v). A

memory region can be within a single cache line or can span multiple cache lines.

We denote asynchronous flush (e.g., clflushopt or clwb) as fo , synchronous flush (e.g.,

clflush) as f , non-temporal move instruction as wn , fence instruction (e.g., sfence) as

(p f ). p f persists all the previously executed asynchronous flush and non-temporal move

operations.

The toy language also provides high-level transactional instructions. We denote the begin-

ning of the transaction as tb , the end of the transaction as te , and the transaction logging

mechanism to track a memory region as tl . For nested transactions, we consider the code

region spanned by the outermost transaction. We solely impose the rule that a memory region

should be logged before a write to the memory region.

The cache line function c(v) returns the set of cache lines for a given memory region pointed

by v . For the memory region pointed by v , asynchronous flush fo and synchronous flush f

flush the set of all cache lines c(v) and log tl tracks the entire memory region.
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5.3.1 Dataflow Framework Formalization

In this section, we define dataflow analysis rules for the toy language (figure 5.6). The dataflow

framework is useful for finding the violation of programming patterns and the existence of

anti-patterns in NVM programs. The dataflow construction is suitable for inter-procedural,

context-sensitive, and flow-sensitive analysis [151]. We build the lattice and the framework as

both monotone and distributive.

The dataflow framework is D = (G ,D,V , M ,F, I ), where G is the program graph, D is the

direction of the analysis, V is the set of dataflow values, M is the meet operator, F is the set of

transfer functions, and I is the initial value of the dataflow variables.

Meet Operator: The meet operator is merges state information across distinct paths for

dataflow analysis. Dataflow analysis defines state variables, which keep track of information

over a program. Dataflow analysis executes over all paths of a program and it is necessary to

keep track of the state of a dataflow variable across all paths. When the analysis comes to a

branch instruction, the dataflow analysis forks the state of the variable across different paths

in the control-flow graph. The analysis updates variables along each path. When the paths

join, the analysis uses the meet operator to merge forked versions of a variable into a single

state.

We define a dataflow framework for each pattern and anti-pattern. We provide the intuition

behind the construction and provide a sketch of the proof for each dataflow framework. We

finally provide the rules for reporting NVM bugs. For each framework, we use D as the forward

direction and I as > (Unknown) and meet operator as intersection M∧. For keeping track of

nested transactions, we use Mmi n = mi n operator, which takes the minimum number. For

simplicity and distributivity, we build the lattice as a linear chain. For this reason, in the

general case, we define the values V and the transfer functions F for each framework and

provide the value ordering explicitly.

We present all the dataflow frameworks for finding NVM bugs. These frameworks are (1)

pair framework (Dpai r ), (2) durability framework (Ddur ), (3) log framework (Dl og ), (4) double

flush framework (Dd f l ush), and (5) double log framework (Ddl og ). The complete dataflow

framework D is the union of all the frameworks (D = {Dpai r ,Ddur ,Dlog ,Dd f l ush ,Ddl og }).

5.3.2 Pair Framework

We define the pair framework (Dpai r ) as given below:

Dataflow Values St ateP ∈ {W r i teP ,F lushP ,FenceP ,>P } =VP

Value Ordering W r i teP < F lushP < FenceP <>P

Transfer Functions FP (figure 5.8)
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Pair Framework Dpai r = (VP ,FP )

v = St ateP w(v)

v =W r i teP
(P−write)

v = St ateP wn(v)

v = F lushP
(P−ntm)

v = St ateP f (v)

var = FenceP
(P−clflush)

v = St ateP fo(v)

var = F lushP
(P−clflushopt)

v = F lushP p f ()

v = Fence
(P−sfence1)

v = St ateP St ateP 6= F lushP p f ()

v = St ateP
(P−sfence2)

Figure 5.8 – FP : Dataflow transition rules for keeping track of persistence state.

Figure 5.8 defines the transition functions to track persistence state. Intuitively, write w(v)

updates the to W r i teP state, asynchronous flush fo(v) updates the location state to F lushP

(in-flight, not in NVM yet), fence p f () ensures all previous flushes complete by updating

the state to FenceP , synchronous flush f (v) flushes and fences, non-temporal move wn(v)

updates the location and puts the location to waiting state F lushP (in-flight, not in NVM yet).

1 //initially
2 //log_entry→ data=random data
3 //log_entry→ flag=false
4

5 //program code
6 fill(&log_entry→ data, contents); //data=Write
7 if(...){
8 clflushopt(&log_entry→ data); //data=Flush
9 sfence(); //data=Fence

10 } //Meet: data=Write, data=Fence −→ data=Write
11 log_entry→ flag = true; // Pair bug: write to flag when data=Write

Figure 5.9 – Meet example for the pair framework and depiction of the pair bug.

We use the ∧ operator as a meet operation to take the lower element in the lattice. Intuitively,

when the meet operation merges different paths, dataflow picks the path with the lower state

value in the lattice. Figure 5.9 shows an example meet operation for pair framework. The

state of data field is persisted in the then path but not in the else path of the if construct.

Therefore, it is necessary to find the path where a write is not persisted. Since W r i teP <
FenceP , merge across paths can find a write that is not persisted.

Sketch of distributivity proof: For P-write, P-ntm, P-clflush, P-clflushopt, the function f
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always leads to a single state output, therefore these functions are distributive for the lattice.

For P-sfence, a meet operation for any state other than F lushP is idempotent, therefore the

equality holds. If one of the states is F lushP , doing the P-fence rule advances the state to

FenceP . If the other state is lower than F lushP , the end result is the lower state for both sides

of the equality. If both states are F lushP , the equality holds trivially. If the other state is greater

than F lushP , then the result is FenceP and the equality holds.

We define two relations for bug violations. The first one is the pair relation rp , which forms a

pair between two different memory regions pointed by v1 and v2. We show this relation as

rp (v1, v2), where v1 6= v2. The pair relation is symmetric and the rules that apply to v1 also

apply in reverse order to v2. We also define a sentinel relation rs for annotating the memory

region as sentinel. We show this relation as rs(v2), where v2 is the sentinel location in a pair

relation rp (v1, v2).

v2 ∈ {W r i teP ,F lushP } rp (v1, v2) c(v1) 6= c(v2) (w(v1)∨wn(v1)∨ f (v1)∨ fo(v1))

Pair bug

v1 6= FenceP rp (v1, v2) rs(v2) c(v1) 6= c(v2) (w(v2)∨wn(v2)∨ f (v2)∨ fo(v2))

Sentinel bug

v 6= Fencep

End of program bug

Figure 5.10 – Pair pattern violation bugs.

Figure 5.10 provides the violation rules for the pair programming pattern. Pair bug reports

cases where two persistent writes are not separated by a fence. Figure 5.9 shows an example

case where data field is in W r i teP state and there is a write to flag field.

We also report other pattern violations, such as the sentinel bug and end of the program

bug. The end of the program ensures that all the NVM memory regions pointed by bindings

(e.g., v) are flushed. We provide the sentinel bug to identify sentinel relation and ensure

that no writes occur to the first memory region before the second memory region. Sentinel

bug does not capture all the possible cases. Meet operation for data=FenceP and data=>P

leads to false negatives as meet operation misses unknown conditions (>P ). The main goal of

the pair pattern is to ensure that two persistent writes are separated by using write-back or

non-temporal move instructions followed by a fence instruction.

5.3.3 Durability Framework

We define the durability framework (Ddur ) as given below:
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Dataflow Values St ateP ∈ {W r i teP ,F lushP ,FenceP ,>P } =VP

Value Ordering W r i teP < F lushP < FenceP <>P

Transfer Functions FP (figure 5.8)

Durability Framework Ddur = (VP ,FP )

We use the same framework from section 5.3.2 to keep track of the persistence of variables.

The only difference is the pattern violation rules. We define rd (v1, v2) as the durability relation.

v1 is the pointer variable that is updated and v2 variable points to a durable object o. The

same proofs for distributivity also hold for the durability framework.

v2 6= FenceP rd (v1, v2) (wp (v1)∨wpn(v1))

Durability bug

Figure 5.11 – Durability pattern violation bug.

Figure 5.11 provides the violation rules for the durability programming pattern. The atomic-

update operation should result in a new binding for v1, where v1 points to the memory region

pointed by v2, which is persisted properly (FenceP state).

1 //class node; //data, next fields
2

3 //program code
4 node∗ newnode = nvmalloc(sizeof(node)); //newnode=Unk
5 //newnode contains random data
6 fill(newnode, contents); //newnode=Write
7 if(...){
8 clflushopt(newnode); //newnode=Flush
9 sfence(); //newnode=Fence

10 } //Meet: newnode=Write, newnode=Fence −→ newnode=Write
11 head = newnode; //Durability bug, updating next when newnode=Write

Figure 5.12 – Meet example for the durability framework and depiction of the durability bug.

Figure 5.12 shows an example case for the durability bug. Durability bug reports cases where

a pointer can point to a memory region that is not persisted properly. In the example, newnode
is not persisted properly in the else path of the if construct.

5.3.4 Log Framework

We define the log framework (Dl og ) as given below:

Dataflow Values For Log St ateL ∈ {LogL ,>L} =VL
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Value Ordering For Log >L < LogL

Meet Operator For Log M∧ =∧

Dataflow Values For Transaction Counting St ateT ∈ {0, . . . , N } =VT ,n is a finite integer

Value Ordering For Transaction Counting 0 < ... < i < ... < N

Meet Operator For Transaction Counting Mmi n = mi n

Dataflow Values VM =VT ∪VL

Meet Operator MM = M∧∪Mmi n

Transfer Functions FL (figure 5.13)

Log Framework Dlog = (VM ,FL , MM )

We assume the ordering to be >L < LogL where the >L element is the greatest lower bound

and LogL is the least upper bound.

v = St ateL tl (v)

v = LogL
(L− txlog)

vT = St ateT tb()

vT = mi n(St ateT +1, N )
(T− txbegin)

vT = St ateT te ()

vT = max(St ateT −1,0)
(T− txend)

Figure 5.13 – FL : Dataflow transition rules for keeping track of logging state.

Figure 5.13 defines the transition functions to track log state and transaction state. There is a

global vT variable that counts the nesting of the transactions, where the maximum number

of allowed nesting is denoted by N . Intuitively, write tl (v) updates the memory region to

LogL state, transaction begin tb() increases the transaction counter vT and transaction end

decreases the counter.

We use the ∧ operator as a meet operation to take the lower element in the reversed lattice.

Figure 5.14 shows the meet operation for the log framework. The state of data field is logged

in the then path but not in the else path of the if construct. Therefore, it is necessary to find

the path where a write is not logged prior. Since >P < LogP , merge across paths can find a

write that is not tracked.

Sketch of distributivity proof: For L-txlog, the function f always leads to a single state LogL ,

therefore the lattice for keeping track of the logging state is distributive. Transaction count

tracking lattice is also a linear chain and is distributive.
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1 //tx_log(void∗, size_t);
2 //class node; //data, next fields
3 //node spans multiple cache lines
4

5 //program code
6 tx_beg(); //vT=1
7 {
8 if(...){
9 tx_log(oldnode, sizeof(node)); //data=Log

10 } //Meet: data=Unk, data=Log −→ data=Unk
11 fill(&oldnode→ data, contents); //Log bug: write to data is not tracked
12 }
13 tx_end(); //vT=0

Figure 5.14 – Meet example for the log framework and depiction of the log bug.

v 6= LogL vT > 0 (w(v)∨wn(v))

Log bug

vT = 0 (tl (v)∨w(v)∨wn(v))

Outside transaction bug

Figure 5.15 – Log pattern violation bugs.

Figure 5.15 provides the violation rules for the log programming pattern. Log bug reports

cases where a write is not tracked by the crash-consistency mechanism. Figure 5.14 shows

an example case where data field is not tracked before a write. We track writes to memory

regions outside a transaction using outside transaction bug.

5.3.5 Double Flush Framework

We define the double flush framework (Dd f l ush) as given below:

Dataflow Values St ateF ∈ {F lushF ,W r i teF ,>F } =VF

Value Ordering F lushF <W r i teF <>F

Transfer Functions FF (figure 5.16)

Double Flush Framework Dd f l ush = (VF ,FF )

Figure 5.16 defines the transition functions to track double flush state. Intuitively, we only

need to keep track of writes and flushes as we are only interested in double flushes, which have

no modifications in between. The state transitions are similar to the pair pattern as described

in section 5.3.2. The main difference is the lack of fence instructions and the ordering of the

states (VF ).
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v = St ateF w(v)

v =W r i teF
(F−write)

v = St ateF f (v)

var = F lushF
(F−clflush)

v = St ateF fo(v)

v = F lushF
(F−clflushopt)

Figure 5.16 – FF : Dataflow transition rules for keeping track of double flush state.

1 //initially
2 //log_entry→ data=random data
3 //log_entry→ flag=false
4

5 //fill function flushes updated memory locations
6 //for this example
7

8 //program code
9 if(...){

10 fill(&log_entry→ data, contents); //data=Flush
11 }//Meet: data=Flush, data=Unk −→ data=Flush
12 clflushopt(&log_entry→ data); //Double flush bug: flushing already flushed data
13 sfence();

Figure 5.17 – Meet example for the double flush framework and depiction of the double flush
bug.

Figure 5.17 shows an example meet operation for double flush framework. Compared to the

pair framework (in section 5.3.2) and the durability framework (in section 5.3.3), flush is in

a lower state (F lushF < W r i teF ) to capture flush across different paths. The state of data
field is flushed in the then path but not in the else path of the if construct. Therefore, it

is necessary to find the path where a flush occurred. Since F lushF <W r i teF , merge across

paths can find the flush without any modification in-between.

Sketch of distributivity proof: For F-write, F-clflush, F-clflushopt, the function f always

lead to a single state, therefore these functions are distributive for the lattice.

v = F lushF ( f (v)∨ fo(v)∨wn(v))

Double flush bug

Figure 5.18 – Double flush anti-pattern bug.

Figure 5.18 provides the violation rules for the double flush anti-pattern programming pattern.

Double flush bug reports cases where a memory region is flushed twice without any modi-

fications in-between. Figure 5.17 shows an example case where data field is flushed in one
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path and then flushed again afterward.

5.3.6 Double Log Framework

We define the double log framework (Ddl og ) as given below:

Dataflow Values For Log St ateL ∈ {LogL ,>L} =VL

Value Ordering For Log LogL <>L

Meet Operator For Log M∧ =∧

Dataflow Values For Transaction Counting St ateT ∈ {0, . . . , N } =VT ,n is a finite integer

Value Ordering For Transaction Counting 0 < ... < i < ... < N

Meet Operator For Transaction Counting Mmi n = mi n

Dataflow Values VM =VT ∪VL

Meet Operator MM = M∧∪Mmi n

Transfer Functions FL (figure 5.13)

Log Framework Dlog = (VM ,FL , MM )

The framework is similar to the log framework as described in section 5.2.3. We use the normal

ordering for VL . We assume the ordering to be LogL <>L where the >L element is the least

upper bound and LogL is the greatest lower bound. Figure 5.13 defines the transition functions

to track log state and transaction state.

1 //tx_log(void∗, size_t);
2 //class node; //data, next fields
3 //node spans multiple cache lines
4

5 //program code
6 tx_beg();
7 {
8 if(...){ //vT=1
9 ...

10 tx_log(&oldnode→ data, ...); //data=Log
11 fill(&oldnode→ data, contents);
12 } //Meet: data=Log, data=Unk −→ data=Log
13 tx_log(oldnode, sizeof(node)); //Double log bug: data is already logged
14 }
15 tx_end(); //vT=0

Figure 5.19 – Meet example for the double log framework and depiction of the double log bug.
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Figure 5.19 shows an example meet operation for double log framework. The state of data field

is logged in the then path. Therefore, it is possible to log data field twice within a transaction.

The proofs for distributivity from the log framework also hold for the double log framework.

v = LogL vT > 0 tl (v)

Double log bug

Figure 5.20 – Log pattern violation bugs.

Figure 5.20 provides exposes the double log bug. Double log bug reports cases where a

memory region is logged twice within a transaction. Figure 5.19 shows an example case where

data field is logged twice within a transaction.

5.4 FlowNvm Implementation

We implement FlowNvm as an extension to LLVM for C/C++ programs to identify bugs that

can lead to crash-consistency errors and performance degradations using inter-procedural

dataflow analysis. We designed FlowNvm with x86-64 architecture and ordering rules (Sec-

tion 2.1.2) in mind. We implement the dataflow analysis to be context-sensitive, flow-sensitive,

and inter-procedural program analysis [151]. FlowNvm requires programmer annotations for

analyzing NVM programs and checking specified properties.

In this section, we describe the design decisions such as the overall flow of the system, the

annotation system that we use for the dataflow analysis, and the several assumptions that we

use for building FlowNvm. We make several relaxations to the dataflow framework and forego

soundness [116] due to challenges of modeling the heap.

5.4.1 FlowNvm Internals

FlowNvm consists of 5 dataflow frameworks, which are pair, durability, log, double flush, and

double log frameworks. Each framework can be enabled or disabled individually. The dataflow

analysis can report pair, sentinel, end of program, durability, log, and outside transaction,

double flush, and double log bugs. Each bug can be enabled or disabled.

The programmer can use the FlowNvm tool as follows:

1. The programmer annotates the NVM program code with FlowNvm annotations.

2. The programmer compiles the program code (clang for C and clang++ for C++) to

generate the LLVM IR code for each compilation unit.

3. The programmer combines each compilation unit with llvm-link.
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4. The final whole program IR contains all the functions that can be analyzed.

5. The programmer runs the dataflow analysis, which uses the enabled frameworks for

keeping track of programming patterns and reports the enabled bugs.

FlowNvm runs a separate analysis for each function specified by the programmer. Before

running the dataflow analysis, FlowNvm does pre-processing. FlowNvm creates the necessary

data structures to easily keep track of annotations during the dataflow analysis.

We minimize the overhead from memory region tracking depending on the framework enabled.

Pair framework keeps track of type-annotated memory regions and alias analysis. Durability

and double flush frameworks keep track of all possible memory regions solely based on alias

analysis in NVM. Log and double log frameworks keep track of all possible memory regions

based on the alias analysis and attribute information for NVM transactions.

5.4.2 FlowNvm Annotations

Annotation Category Explanation

nvm_fnc Function Allows a function to independently be unit-under analysis.
nvm_cst(f) Function Custom functions for improving bug reporting

sentinel(d) Type For pair framework, pairs two types of memory regions.
dur_field Type For durability framework, persistent pointer annotation.

Table 5.4 – FlowNvm annotations.

FlowNvm uses two categories of annotations, which are function annotations and type an-

notations. We use function annotations to keep track of functions that are essential for the

dataflow analysis. All the frameworks use nvm_fnc to denote the function, which is the unit

under analysis. We do not support virtual functions nor multi-threading for dataflow analysis.

The dataflow analysis skips virtual function calls and thread creation calls. FlowNvm can start

the analysis from the main function for whole-program analysis. It is possible to analyze a

single function inter-procedurally. When starting the analysis, all the variables are assumed to

be in an unknown state and there are no active transactions.

We also support custom annotations (nvm_cst(f)) for functions to extend the functionality

of FlowNvm. For example, we can annotate flush functions, non-temporal move functions,

and allocation functions for better bug reporting.

The second category of annotation is type annotations. We use the data structure type infor-

mation for the annotation system. We observe that structural accesses such as field accesses

are heavily used. When a programmer modifies memory regions, most of the time, the mod-

ifications are done through the indirection of objects instead of raw memory. For instance,

entry->data represents the memory region for the data field inside a log entry object. Writes
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to this location update only the data memory region for the entry object. This insight greatly

simplifies our design approach as we use layout as a reference to do the dataflow analysis.

We leverage the type and attribute information stored within structures (e.g., class or struct)

to identify memory regions. There are several reasons for using the structure type and lay-

out information as a basis for annotations. By annotating types, the programmer can avoid

annotating each program code location where the program data in NVM is modified. The

programmer needs to annotate a structure to convey ordering relations, which can reduce

programmer effort. The annotation improves the programmer understanding of the function-

ality of the attribute and provides better documentation of the intention. FlowNvm does not

keep track of the persistence state for variables that live on the stack.

We present the set of all annotations for each framework. We group 5 frameworks into 3

categories for memory tracking overhead. We run each category of frameworks individually in

the experiments. We run durability and double flush frameworks together. We run log and

double log frameworks together.

Pair Annotations

Figure 5.21 shows the annotations in practice for the pair framework. Pair framework uses

the sentinel keyword to define a pair relation between two memory regions. The field

annotated with sentinel is considered as the sentinel memory region. The annotation takes

an argument, which is the name for the data memory region. data can be a field of an object

or can be an object. The programmer specifies the namespace (if it exists), name of the type,

and the field for the data region. When data is not specified as an argument, FlowNvm takes

all the fields in the object as data region other than the sentinel.

1 typedef struct kp_vte_ {
2 ...
3 // sentinel([namespace::]type[::<field name>]) ds_state state;
4 sentinel() ds_state state;
5 } kp_vte;
6

7 int nvm_fnc main(){
8 ...
9 }

Figure 5.21 – Annotations for the pair framework.

We assume that data and sentinel are in different cache lines. FlowNvm warns of the

possibility of being in the same cache line for fields within the same object using 64-byte

alignment boundary and object layout. For a single object, dataflow analysis follows the rules

that we specified in section 5.3.

The pair framework treats each field as a distinct memory region within an object. We explain
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memory region modeling in section 5.4.3 in detail.

As figure 5.9 demonstrates, field accesses directly update the dataflow variable corresponding

to the memory region. Updating the data field for the log entry updates the corresponding

dataflow variable data directly.

Durability/Double Flush Annotations

Figure 5.22 shows the annotations in practice for the durability framework. FlowNvm uses

dur_field annotation to check pointer updates. We do not use the sentinel keyword to

signify the difference in the intent of the programmer. If the pointer points to a location that is

not persisted properly, the dataflow analysis produces a warning.

1 typedef struct kp_vte_ {
2 ...
3 dur_field const void ∗value;
4 ...
5 } kp_vte;
6

7 int nvm_fnc main(){
8 ...
9 }

Figure 5.22 – Annotations for the durability framework.

Both the durability and the double flush frameworks need to keep track of all memory regions,

which might be in NVM. We rely on the alias analysis to model memory regions to deal with

situations such as casting. During pointer assignments, we check the state of the memory

region that is being assigned. If a programmer assigns a nullptr to a pointer variable, then

FlowNvm assumes that the assignment is safe.

Log/Double Log Annotations

We tailor the design of the log and double frameworks for Intel’s PMDK [141]. PMDK’s libp-

memobj library provides transactions. We hardwire the design of FlowNvm to support PMDK

transactions and we support a subset of PMDK functionality for Linux. We support only

begin transaction (pmemobj_tx_begin) and end transaction (pmemobj_tx_end) for transac-

tions. We support logging (pmemobj_tx_add_range, pmemobj_tx_add_range_direct), al-

locations (pmemobj_tx_alloc, pmemobj_tx_zalloc, pmemobj_tx_realloc, pmemobj_tx-
_zrealloc), reads, writes and pointer translations (pmemobj_direct, pmemobj_oid). Trans-

actional allocations log the newly created memory region, so FlowNvm assigns LogL state to

the dataflow variable for the log and double log frameworks during allocations.

Figure 5.23 depicts the log framework in practice. The transactional libpmemobj C library
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1 int nvm_fnc btree_map_insert(...){
2 TX_BEGIN(pop) {
3 ...
4 TX_ADD(root); //logging
5 TOID(struct rectangle) rect = TX_NEW(struct rectangle); //allocation
6 ....
7 } TX_END
8 ...

Figure 5.23 – Annotations for the log and double framework.

heavily relies on macros. The compiler preprocesses the macros and translates the macros

to PMDK function equivalents. Line 4 logs the root variable, while Line 5 allocates a rect
variable. Log memory modeling is similar to pair memory modeling, which relies on both

attribute and alias analysis information.

5.4.3 Memory Regions and Modeling

We make sweeping simplifications for the memory region modeling. FlowNvm analysis is not

sound because of memory modeling. FlowNvm does not use size information for memory

regions and relies on heuristics such as type information and memory addresses to make

inferences. An object and its fields represent dataflow variables (e.g., for obj->data: obj and

obj->data). We treat an array field as a single memory region.

Writing to an entire object (e.g., memcpy) updates all dataflow variables corresponding to the

object, while writes to a field update the object variable and the corresponding field variable.

Flushing or logging an entire object updates the dataflow variables corresponding to the

object, while flushing or logging a field updates only the corresponding field variable. If all the

fields are either written, flushed, or logged individually, then the object variable is set to the

corresponding state. We expect accesses to sentinel variables to be explicit, so a sentinel is

not included in object variable state computation. We optimize durability and double flush

analysis by computing state only over an object dataflow variable and the annotated pointer

fields.

We use out-of-the-box alias analysis for object memory regions from LLVM for FlowNvm

memory region modeling. The goal is to identify whether two pointers point to the same

memory region, which, in turn, requires a points-to analysis. For this reason, FlowNvm

uses Steensgard alias analysis [166] provided by LLVM. If two pointers can point to the same

memory region, then we treat the pointers as belonging to the same memory region. Likewise,

the approach compresses the phi nodes to a single memory region. FlowNvm assumes that

a pointer is not a self-referencing pointer (does not point to itself) and is not put the same

alias set. The alias analysis is field-insensitive, context-insensitive, and flow-insensitive. The

imprecision of the analysis leads to a high false-positive rate (Table 5.5). It is possible to use
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more precise semantics for memory modeling to provide a more precise alias analysis. For

example, FlowNvm can rely on Agamatto’s memory modeling from symbolic execution.

We extend the analysis to recognize persistent allocation function and transactional allocations

in the benchmarks. For PMDK, we extend the analysis to recognize the libpmemobj library.

We do it by taking advantage of PMEMoid object to represent it as a pointer. A PMEMoid object

consists of a location ID of the pool object and the offset within the pool. We make a best-effort

analysis to ensure that allocations done within a function do not alias with other allocations.

In our analysis, we do not differentiate between heap objects that are in DRAM or NVM. Flow-

Nvm can rely on taint analysis to reduce memory tracking for cases where a memory region

is in NVM. Values that originate from dynamic memory allocation in DRAM (e.g., malloc)

would taint the pointers, and the analysis could then disable bug reports for tainted values.

We do not support taint analysis in our approach, as the annotations imply that the memory

regions are in NVM.

5.4.4 Bug Reporting and Custom Functions

In this section, we describe the optimizations that we use for bug reporting and the custom

functions. Dataflow analysis reports only a single bug for a memory region or for a line of code

to reduce the false-positive rate.

We make the observation that in NVM programming, flush and non-temporal operations are

done with a specific API. For example, the Echo key-value store [54] uses kp_flush_range
to flush and/or fence a given memory region. The main issue with such a function is that,

inside the function, a for loop flushes multiple cache lines asynchronously at the same time

which can lead to double flush bugs. In addition, the function takes an argument that usually

specifies the memory region of interest. FlowNvm uses the information provided by the

custom function annotations to improve precision and provide better bug reports.

The argument (f) of the nvm_cst(f) annotation can be flush, flushfence, ntm, alloc, and

skip. We provide flush annotation to denote a function that only flushes a memory region,

flushfence annotation to denote a function that flushes and fences a memory region, ntm
annotation to denote a non-temporal move instruction. We provide alloc to denote that the

allocation is persistent and the annotation provides information to the alias analysis. skip
allows dataflow analysis to skip the function. We assume that the programmer can annotate

these functions.

Functions that use custom annotations simplify pointer analysis. Custom function anno-

tations can suppress double flush bugs and improve bug reporting. Figure 5.24 shows an

example use case of flushfence. The example shows buffer flushing for PMFS and the

annotation enables FlowNvm to not consider the internals of the function.
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1 void nvm_cst(flushfence) pmfs_flush_buffer(void ∗buf, uint32_t len, ...){
2 ...
3 if (support_clwb) {
4 for (i = 0; i < len; i += CACHELINE_SIZE)
5 _mm_clwb(buf + i);
6 ...
7

8 sfence();
9 }

Figure 5.24 – Function to flush a range of memory.

5.5 Evaluation

We present our results on 3 NVM programs from the Whisper NVM benchmarking suite [126].

The NVM programs are (1) PMDK [84, 141]: a persistent memory library by Intel for persistent

allocations and transactions, (2) Echo [19, 54]: a key-value store designed for NVM and (3)

PMFS [53, 143]: a file system designed for NVM.

We implemented FlowNvm as an extension to LLVM for C/C++ programs. FlowNvm mainly

checks for pair, durability and log patterns and double flush, double log anti-patterns as

described in section 5.4. We found a new bug using the pair framework as shown in figure 5.26

and exposed 4 previously known bugs in NVM systems. We also introduced 12 additional

synthetic bugs to show that the tool performs as intended.

We used the machine with the following configuration for evaluation. The machine used Intel

i7-6700 CPU @ 3.40GHz with 2 Kingston 8GB DDR4 DRAM @ 2133 MHz running Linux Ubuntu

16.04. We used LLVM and Clang version 8.0.0 to compile the code. The machine did not

have any NVM attached to it. We compiled each source file in each program to a bitcode file

and then used llvm-link to get a whole program IR. We added -fno-discard-value-names
-ggdb -femit-all-decls flags for better debug information. We added annotations to each

program as described in section 5.4 to check properties using dataflow analysis and find NVM

bugs.

5.5.1 Bug Finding Results

NVM Program reported bugs/correct/false positives num of annotations
Echo 13/1/12 20
PMFS 10/3/7 2
PMDK 33/5/28 8

Table 5.5 – NVM program breakdown of bug locations.

Table 5.5 breaks down the results for the 3 NVM programs. We showed the number of reported

bugs by FlowNvm, the number of false positives, and the number of correctly found bugs. We
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also reported the number of annotations.

Echo assigns a state (dead, allocated, active) to each of its durable data structures. We also

checked each data structure if there is a pointer to a persistent location. We did not support

thread libraries. That is why, we started the dataflow analysis from the worker_thread-
_entrypoint function. We checked fields that should be persistent such as commit_record.

We also annotated the kp_flush_range funtion with flushfence annotation and defined a

seperate version with flush annotation for program locations in the code that do not execute

sfence. Our tool found one new bug for the Echo benchmark.

We started the analysis for PMFS from the pmfs_xip_file_write function that does a lot of

NVM operations. We annotated the transaction part in PMFS. Our tool reported 3 previously

found bug locations.

We did not support virtual methods and functions. That is why, we annotated each data struc-

ture function separately for PMDK instead of using the main function. For our case, we targeted

insert and remove operations in PMDK data structures (btree, rbtree, and hashmap_atomic).

Our tool reported 5 previously found bug locations.

Bug Type reported bugs/correct/false positives introduced/found
Pair 9/1/8 2/2
Durability 5/0/5 1/1
Double flush 9/3/6 3/3
Log 6/4/2 1/1
Double log 27/1/26 2/2
Outside transaction 0/0/0 3/3

Table 5.6 – Bug type breakdown of bug locations.

Table 5.6 breaks down the same results with respect to different bug types. The table also

demonstrates that FlowNvm can find artificially introduced bugs separately from the reported

bugs. Our tool reported, 9 pair bugs, 5 durability bugs, 9 double flush bugs, 6 log bugs, 27

double log bugs.

We manually introduced bugs to NVM programs by (1) removing flush, (2) adding flush, (3)

adding write, (4) adding log, (5) removing log, and (6) removing transaction begin similar to

the process described in PMTest [115]. If the newly introduced bug created new bug locations

and the tool correctly finds the bug, we stated that the synthetic bug is found. Our tool found

all the manually introduced bug cases.

Most of the reported bugs are false positives. The main reason for false positives is the lack

of precision in the alias analysis, especially in the log framework. Figure 5.25 shows a false

positive from log framework, where alias analysis does a poor job. The program, in order to

maintain red-black tree properties, logs, and mutates the color fields of both the parent and

the grandparent nodes. The alias analysis is not precise enough to differentiate parent from
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1 TOID(struct tree_map_node) rbtree_map_recolor(...){
2 ...
3 TX_SET(NODE_P(n), color, COLOR_BLACK);
4 TX_SET(NODE_GRANDP(n), color, COLOR_RED);
5 ...
6 }

Figure 5.25 – Example for red-black tree alias analysis issue.

grandparent, therefore, the alias analysis assumes these two locations are the same. We believe

that a more precise alias analysis or a better heap modeling can be beneficial for our approach.

Classical symbolic execution [27] can be used for precise heap modeling, however, introducing

symbolic execution can incur computation and resource overhead due to problems such as

path explosion and keeping track of program state.

There are other reasons for false positives. For Echo, if the program has a condition that leads

to failure, Echo destroys the data structures and sets the data structure state to DEAD without

considering ordering constraints. This is correct as there are only two possible conditions. If

the state is DEAD, the other parts of the data structure is irrelevant for the recovery code and if

the data structure is not set to DEAD, the operation can continue as normal. For PMFS, the

tool gets a superblock virtual address using pmfs_get_block function, but we do not assume

anything about the persistence of the return value.

Real Bugs

Bug Type Program File Reported lines Description
Pair (New) Echo [163] kp_kvstore.c 1707 Missing dereference
Double flush PMFS [87] xip.c 218, 273 Flush same buffer twice
Double flush PMFS [83] journal.c 135 Flush log entry twice
Log PMDK [86] btree_map.c 192, 200, 203,205 Node not logged
Double log PMDK [85] btree_map.c 270 Node logged twice

Table 5.7 – Correctly reported bug locations.

In this section, we provide the breakdown of real bugs and explain the behavior of the analysis.

Table 5.7 summarizes the reported bug locations that are correct. We found one new bug in

Echo.

Figure 5.26 summarizes the newly found bug. Echo has a version table entry data structure to

keep each version of data buffers. The function creates a virtual table entry, where the entry

is a pointer to pointer. The function modifies the entry and then flushes it. However, the

program does not dereference the pointer to pointer object. The actual pointer for the object

requires a dereference. Our tool warns the programmer and provides the location telling that

before writing to state at line 1707 (Line 3 in figure 5.26), the vte object is not flushed correctly.
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1 int kp_vte_create(kp_vte ∗∗vte, ...){
2 ...
3 kp_flush_range((void *)vte, ...);
4 PM_EQU(((∗vte)→ state), (STATE_ACTIVE));
5 kp_flush_range((void ∗)&((∗vte)→ state), ...);
6 ...
7 }

Figure 5.26 – New bug found in Echo key value store.

The bug fix is incorporated to Echo key-value store [163].

The remaining 8 bug locations were previously fixed in 4 bug-fix commits. We exposed these

bugs using FlowNvm as well. FlowNvm provides information about the previous location of

pair, double flush, and double log. One thing to note is that FlowNvm can also provide trace

information. Using the previous location information, the programmer can assess, whether a

bug location in the report is reasonable. The tool correctly reports all the previous locations

for all cases except the bug report for double log in btree_map.c. Instead of showing line 359,

the tool reports line 168 in btree_map.c. The imprecision in the alias analysis is responsible

for this effect.

5.5.2 Performance Evaluation

We report the time it takes to run the dataflow analysis on NVM programs. The configuration is

the same as in the previous section. We measure each framework separately as the programmer

does not have to use all of the frameworks at the same time.

Framework NVM Program Time (s)
Pair Echo 1.82
Pair PMDK:hashmap_atomic 0.03
Durability/Double flush Echo 0.59
Durability PMFS 0.18
Log/Double log PMDK:btree 0.09

Table 5.8 – Time measurement for bug reporting.

Table 5.8 summarizes the runtime result of each framework averaged over 10 runs. As de-

scribed in the implementation section, we ran double flush with durability framework and log

framework with double log framework. The analysis is very fast given that testing and symbolic

execution takes around minutes to hours. The majority of the time is spent in dataflow analysis

with the rest of the time spent in dataflow data structure initialization. The analysis completes

under a second except for pair framework for Echo, which has overheads due to pair matching

and size of the unit of analysis.
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5.6 Related Work

FlowNvm uses inter-procedural dataflow analysis to find patterns that can lead to crash-

consistency bugs and performance degradation. In this section, we compare FlowNvm to

other bug finding work for NVM programs.

5.6.1 Program Analysis and Testing for NVM

Other work for finding bugs in NVM programs uses runtime profiling and testing [82, 104, 114,

115, 132, 142] and symbolic execution [129].

Yat [104] is a general testing framework designed for Intel PMFS. Yat tracks all writes, flushes,

and fences and divides the program profile into segments delimited by fences. It tests all

possible reorderings within a segment and tests the recovery code, which is costly as it uses

exhaustive reordering.

Oukid et al. [132] implement a framework for testing NVM programs using an old persistency

model with clflush and mfence. The testing framework keeps a copy of the durable heap

by replicating the flushes and copying data at each fence. While the program is executing,

the framework randomly simulates a power failure crash. Upon crash, the testing framework

pauses the main program and forks a testing process. The testing program can also crash,

which again leads to another fork from the testing program that is created from the original

testing program. The cases where recovery fails are reported to the user.

Intel developed pmemcheck [142], pmreorder [144] and Inspector Persistent Memory Debug-

ger [82] specifically to find NVM programming bugs in programs using PMDK. The pmem-

check [142] tool is built on top of Valgrind. The pmemcheck tool profiles the program and

creates a trace of stores, cache line flushes, and fences. The trace allows pmemcheck to report

writes that are not properly persisted to NVM, writes that are not tracked inside transactions,

writes to the same memory region multiple times without persist instructions in-between,

double flush without any modification in between, and logging the same memory region in

different transactions running concurrently in different threads (PMDK transactions require

explicit locking for isolation).

The pmreorder [144] tool uses the trace information from pmemcheck [142]. The pmre-

order [144] tool parses the trace information and reorder writes to NVM within fence-delimited

regions. The user of pmreorder provides a program that checks the data structure consistency

depending on the reorderings.

Intel Inspector Persistent Memory Debugger [82] is another runtime tool that provides a GUI.

Inspector can find unnecessary cache line flushes, undo logging issues inside a transaction,

missing persist instructions, and reordering bugs. Inspector is specifically tailored for PMDK

and provides a runtime API that allows the programmer to annotate the code with phases. The

phases allow the programmer to provide info to Inspector to know when a crash can occur
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and which code gets executed after a restart. Compared to the Intel tools, we can find similar

bugs in using static analysis.

PMTest [115] is a runtime profiling tool that requires the developer to put PMTest logic in

the program code for PMTest to find bugs. PMTest uses an interval tree to keep the state

of memory address ranges, whether an address range is written, flushed, or made durable

similar to FlowNvm design. The PMTest API is similar to assertions and PMTest can check two

properties. The first property is whether a memory region is persisted before another memory

region, which is similar to the pair pattern. The second property is persistence that checks

if a memory region is persisted at a given program location. Using the two basic low-level

properties, PMTest can report missing flush, missing fence, double flush errors. PMTest is also

extended for PMDK to report missing log, double log, and incomplete transactions. Most NVM

programming updates are done locally and PMTest requires the programmer to annotate the

entire program code. FlowNvm annotates types and does not require annotations across the

entire program. Determining this information for an entire program is challenging. The main

benefit of FlowNvm is that the analysis focuses on types, so the developer only focuses on the

correct use of the objects instead of worrying about each statement.

RECIPE [108] simplifies the crash-simulation methodology proposed by earlier systems min-

imizing the number of crash test locations. The testing methodology starts by running a

workload for a program, crashes the program with a low probability after an atomic store, runs

the recovery code, and checks the correctness of key-value pairs after recovery.

XFDetector [114] considers the interleaving between program execution and the recovery

code. The programmer uses the XFDetector API to mark regions for analysis and compiles the

NVM program. XFDetector adds a crash location before each fence operation. XFDetector

keeps a shadow memory for NVM program data in the form of a simple state machine similar

to PMTest [115]. XFDetector checks the state machine to see whether recovery uses the correct

version of the program data and reports the cases where it fails.

Witcher [63] uses static analysis to infer properties about the program, to avoid programmer

annotations, but still relies on testing to find bugs. Witcher automatically infers test cases for

a data structure that use its API and uses these test cases for validation. Witcher then traces

the write, flush, and fence instructions to create NVM program data for inferring program

invariants. Witcher uses program dependency analysis and the NVM program data image to

infer ordering constraints between memory regions such as persisting the memory regions in

conditional expressions before the writes to the memory regions in the body of the conditional

statement. Witcher reorders instructions to create possible crash states and uses the test cases

to check whether there are any outputs that violate the invariants.

Agamotto [129] uses symbolic execution to exhaustively detect missing flush/fence and extra

fence/flush instructions. Agamotto uses static analysis to find paths that heavily access NVM

and optimizes the search space to select the NVM-access-heavy-paths. Agamotto keeps

track of memory regions using a state machine similar to PMTest [115] and checks for NVM

111



Chapter 5. Using Dataflow Analysis to Find NVM Program Bugs with FlowNvm

programming bugs. FlowNvm does not check extra fence operations, however, it would

be simple to extend FlowNvm to support this feature. The main benefit of Agamotto is

the memory model, which has precise semantics for keeping track of program data state

without executing the program. However, Agamotto still requires symbolic execution and bug

detection can take minutes.

Overall methods that rely on runtime profiles and testing [136] suffer from a lack of full pro-

gram coverage and miss some feasible program paths. Static analysis, (1) achieves coverage

over all program paths, and (2) reports errors during compile time without executing the pro-

gram. There are classic issues such as precision versus completeness as our approach suffers

from a significant number of false positives. However, we should note that a conservative

approximation can be helpful for the developer, even at the cost of reviewing the false positives

as NVM program recovery code is infrequently executed.

5.7 Summary

The chapter presents FlowNvm tool, which is an LLVM extension for finding NVM program

bugs using inter-procedural dataflow analysis. We identify three programming patterns (pair,

durability, log) that can lead to incorrect recovery of the durable heap state after a restart and

two anti-patterns (double flush, double log) that can result in degrading a program’s runtime

performance. We formalize the dataflow framework and explain the intuition behind the

design decisions.

We show how dataflow analysis can be leveraged to identify the violation of the programming

patterns and find instances of anti-patterns in the code. We show how FlowNvm uses inter-

procedural dataflow analysis to cover all the paths in the program. We demonstrate that

FlowNvm can find and report previously fixed bugs and a new bug. Tools such as FlowNvm

help ensure the main reason for using NVM in practice, which is crash consistency with good

performance.
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6 Conclusion

In this thesis, we explored several software tools to support NVM programming. We describe

the challenges for NVM programming (Chapter 1), primarily how volatile processor caches

complicate NVM programming and require careful reasoning about object layout and cache-

line evictions. We demonstrate that these challenges can lead to hard-to-find bugs, which

require a crash-consistency mechanism to exploit NVM’s durability. In implementing crash-

consistency mechanisms, we explore the challenges posed by runtime and recovery overheads,

volatile and durable memory overheads, ease of programming, and correctness of the system.

We provide extensive background information on NVM programming including program-

ming primitives, formal rules, machine configuration, crash-consistency mechanisms and

checkpointing (Chapter 2).

Our three main contributions mitigate the performance and the recovery overheads and

provide means to find NVM programming bugs. Firstly, with InCLL (Chapter 3), we focus on

minimizing write-backs and fence instructions. Write-back and fence instructions on the

critical path of a program can lead to runtime performance degradation due to inefficient

cache use and blocking at fences. We partially solve this problem with an in-cache-line log.

InCLL places an entire data structure in NVM, breaks program execution into fine-grained

intervals on the order of milliseconds, and checkpoints by evicting the cache hierarchy to

NVM. InCLL uses an in-cache-line log, which resides in the same cache line as its data, as

a roll-back cache to undo modifications within a failed epoch. We extend the in-cache-line

log to persistent memory allocation and make Masstree completely durable. By using an in-

cache-line log, InCLL avoids explicit write-back and fence instructions on Masstree’s fast-path

operations such as insertion, deletion, and update.

Secondly, with CpNvm (Chapter 4), we focus on reducing the cost of using Optane. While

Optane is a fundamental improvement over traditional block-level addressable durable media

(disk and SSD) due to its byte-addressability, lower latency, and higher bandwidth, InCLL does

not perform well on it. We mitigate costs related to Optane by operating on a DRAM copy of a

data structure. CpNvm propagates modifications with redo logging, which is later compressed
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to an NVM version of the data structure. We provide CpNvm as an easy-to-use API and show

its practicality in Memcached as well. With CpNvm, we achieve low overheads and drastically

improve performance, while minimizing program changes.

Finally, with FlowNvm (Chapter 5), we focus on quickly finding NVM programming bugs,

which can lead to failures and data inconsistency after a restart or performance degradations

during execution. We use inter-procedural dataflow analysis and develop a framework to

find violations of common programming patterns and the existence of anti-patterns. We

demonstrate that FlowNvm can find existing and new bugs in NVM programs.

6.1 Future Directions

There are interesting areas in our work that can be further explored. Both CpNvm and InCLL

block while taking a checkpoint. The main reason for such an approach is that all the worker

threads are operating on shared memory and it is necessary to stop to checkpoint at a globally

consistent state of the data structure. A non-blocking approach could reduce the time spent

blocked and further reduce overheads, avoid latency spikes and mitigate tail latencies.

Another important limitation is that CpNvm and InCLL are single-node systems. While a

single-node system is useful for recoverable faults, when the node fails, it is not possible to

recover the data structure. One interesting approach would be to explore fault tolerance using

replication. There is a huge body of work on multi-machine replication. It would be possible

to use an existing replication scheme to extend both InCLL and CpNvm. One possibility

for CpNvm would be to replicate the persistent image to other machines. The background

replay thread could use RDMA or state-machine replication to replay the redo log to NVM

copies in other machines. The user of the system can select the number of replicas and the

persistence guarantees. This approach would require keeping the redo log for an epoch until

all the replicas are updated. Using replication would allow the program to survive single-node

NVM crashes.

In addition, memory capacity of CpNvm in Mixed Mode is limited to roughly half of the

capacity of NVM. We have not explored ways to extend the available capacity of DRAM and

NVM together. Implementing a paging mechanism, either in the user-space or the kernel,

might allow more efficient use of memory. However, implementing a paging mechanism is not

simple. The persistent logs and persistent image contain the last committed checkpoint state.

In other words, it is not possible to bring in a page from persistent image without first replaying

the persistent logs. This would require keeping track of whether a page in the persistent image

is waiting an update from the log. Otherwise, the page brought in from persistent image will be

stale and lead to inconsistencies. One solution would be to always keep the page in memory

and put it into NVM as a swap space. This is similar to what we do in Mixed Mode.

Finally, memory modeling in FlowNvm is not precise and it is the main bottleneck for the

efficiency of our approach. We have not looked into methods such as symbolic execution
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and runtime profiling to derive a more precise memory region model. A pointer can point to

multiple memory regions at a point in the program. An interesting challenge is how to use the

information from these multiple memory regions for a program point. We should note that

Agamotto’s memory region modeling, which relies on symbolic execution and inferring NVM

memory accesses, is a suitable approach.

6.2 Discussion

In this section, we briefly describe the key takeaways from our three major contributions.

6.2.1 Avoiding Write-Back and Fence Instructions

Using fine-grained checkpointing with an in-cache-line log allows a programmer to avoid

explicit write-back and fence instructions on the critical path of a program. The main idea

that enables this elimination is the intrinsic ordering of two different writes to the same cache

line. This write ordering allows the implementation of a logging mechanism inside a cache

line. However, for cases where the capacity of an in-cache-line log is not sufficient, we fall

back to using a traditional external undo log to build a fully durable data structure.

Evicting the cache hierarchy to NVM periodically ensures the data structure in NVM is consis-

tent at the beginning of the epoch. Our results show that for fast NVM devices (with DRAM

characteristics), the approach is feasible with overheads less than 20% in the common case.

However, with a real NVM device (Optane), the program operations on the data structure

residing in NVM are very costly. The overheads can rise up to 64% for InCLL-NVM, which

limits the feasibility of the approach.

6.2.2 Using Optane

Memory accesses to Optane are slow due to the device’s high latency and low bandwidth.

We use write-combining in DRAM and delay the propagation of writes to NVM. We keep

the checkpointing design with intervals on the order of milliseconds. The program accesses

its data in DRAM and only periodically propagate the modifications to NVM. This way, the

program only pays for the persistence of modifications, but not its memory accesses.

We use existing well-known techniques such as shadow memory, bitmap, DRAM copy for

checkpointing, redo logging and combine them in a novel way for NVM programming to

provide an application-level checkpointing API that mitigates the cost of using Optane and

provides better throughtput with low-overheads (< 15% for Masstree) compared to the fine-

grained checkpointing approach for InCLL.
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6.2.3 Bug Finding at Compile Time

The tools that rely on runtime profiling, testing, and symbolic execution are precise. However,

these tools take more than minutes to execute and the work on testing can miss cold paths

which are not executed. With FlowNvm we demonstrate that dataflow analysis is suitable for

bug finding at compile time.

6.3 Conclusion

With the release of Intel Optane, we expect many changes in programming the storage tier.

NVM’s byte-addressable interface, high capacity, and performance approaching DRAM require

new tools and new approaches to data structure design and implementation. Our goal in this

thesis was to build software tools to support NVM programming and allow the programmers

to have a wide array of choices for programming and checking their codebases. We built InCLL

and CpNvm checkpointing strategies to implement low-overhead checkpointing mechanisms

instead of transactions. Specifically, we built InCLL to minimize write-back and fence instruc-

tions and CpNvm to reduce the cost of using Optane. We built FlowNvm to capture NVM

programming bugs at compile time instead of using costly testing and runtime strategies. We

hope that our contributions allow both academia and industry to take full advantage of NVM.

116



Bibliography

[1] The Home of Checkpointing Packages, 2001. https://checkpointing.org.

[2] Memtier Benchmark, 2013. https://github.com/RedisLabs/memtier_benchmark.

[3] The libvmmalloc library, 2014. https://pmem.io/vmem/libvmmalloc.

[4] Deprecating the PCOMMIT Instruction, 2016. https://software.intel.com/content/

www/us/en/develop/blogs/deprecate-pcommit-instruction.html.

[5] Intel® Optane™ Persistent Memory, 2019. https://www.intel.com/content/www/us/

en/architecture-and-technology/optane-dc-persistent-memory.html.

[6] Persistent Memory Documentation, 2019. https://docs.pmem.io/persistent-memory/.

[7] RECIPE, 2019. https://github.com/utsaslab/RECIPE.

[8] The Challenge of Keeping Up with Data, 2019. https://www.intel.com/content/

www/us/en/products/docs/memory-storage/optane-persistent-memory/

optane-dc-persistent-memory-brief.html.

[9] Evaluation of In Cache Line Logging On Intel Optane Persistent Memory, 2020. https:

//pirl.nvsl.io/pirl2020-program/#paper-3001.

[10] mmap(2) — Linux manual page, 2020. https://www.man7.org/linux/man-pages/man2/

mmap.2.html.

[11] Third Generation Intel® Xeon® Processor Scalable Family Technical Overview,

2020. https://software.intel.com/content/www/us/en/develop/articles/

intel-xeon-processor-scalable-family-overview.html.

[12] Dell poweredge r940 rack server : Servers: Dell usa, 2021. https://www.dell.com/en-us/

work/shop/dell-poweredge-servers/poweredge-r940-rack-server.

[13] Intel® Optane™ Persistent Memory Products, 2021. https://www.intel.com/content/

www/us/en/products/memory-storage/optane-dc-persistent-memory.html.

117

https://checkpointing.org
https://github.com/RedisLabs/memtier_benchmark
https://pmem.io/vmem/libvmmalloc
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://docs.pmem.io/persistent-memory/
https://github.com/utsaslab/RECIPE
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://pirl.nvsl.io/pirl2020-program/#paper-3001
https://pirl.nvsl.io/pirl2020-program/#paper-3001
https://www.man7.org/linux/man-pages/man2/mmap.2.html
https://www.man7.org/linux/man-pages/man2/mmap.2.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/poweredge-r940-rack-server
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/poweredge-r940-rack-server
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html


Bibliography

[14] H. Akinaga and H. Shima. Resistive random access memory (reram) based on metal

oxides. Proceedings of the IEEE, 98(12):2237–2251, 2010. https://ieeexplore.ieee.org/

document/5607274.

[15] P. Alcorn. Intel Optane DIMM Pricing, 2019. https://www.tomshardware.com/news/

intel-optane-dimm-pricing-performance,39007.html.

[16] R. Appuswamy, G. Graefe, R. Borovica-Gajic, and A. Ailamaki. The five-minute rule 30

years later and its impact on the storage hierarchy. Commun. ACM, 62(11):114–120, Oct.

2019. https://doi.org/10.1145/3318163.

[17] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson. Bztree: A high-performance

latch-free range index for non-volatile memory. Proc. VLDB Endow., 11(5):553–565, Jan.

2018. https://dl.acm.org/doi/abs/10.1145/3164135.3164147.

[18] H. Avni and T. Brown. Persistent hybrid transactional memory for databases. Proc. VLDB

Endow., 10(4):409–420, Nov. 2016. https://doi.org/10.14778/3025111.3025122.

[19] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy. Exploring storage class

memory with key value stores. In Proceedings of the 1st Workshop on Interactions of

NVM/FLASH with Operating Systems and Workloads, INFLOW ’13, New York, NY, USA,

2013. Association for Computing Machinery. https://doi.org/10.1145/2527792.2527799.

[20] L. A. Barroso, U. Holzle, P. Ranganathan, and M. Martonosi. The Datacenter As a

Computer: Designing Warehouse-Scale Machines. 3rd edition, 2018. https://www.

morganclaypool.com/doi/10.2200/S00874ED3V01Y201809CAC046.

[21] M. Beck, J. S. Plank, and G. Kingsley. Compiler Assisted Checkpointing. Citeseer, 1994.

[22] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and

M. Wingate. Plfs: a checkpoint filesystem for parallel applications. In Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, pages

1–12, 2009. http://pages.cs.wisc.edu/~johnbent/Pubs/bent_sc09.pdf.

[23] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm. Makalu: Fast recoverable allocation of

non-volatile memory. In Proceedings of the 2016 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,

page 677–694, New York, NY, USA, 2016. Association for Computing Machinery. https:

//doi.org/10.1145/2983990.2984019.

[24] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and E. L. Miller. Twizzler: a data-centric OS

for non-volatile memory. In 2020 USENIX Annual Technical Conference (USENIX ATC

20), pages 65–80. USENIX Association, July 2020. https://www.usenix.org/conference/

atc20/presentation/bittman.

[25] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency memory model. In

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design

118

https://ieeexplore.ieee.org/document/5607274
https://ieeexplore.ieee.org/document/5607274
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://doi.org/10.1145/3318163
https://dl.acm.org/doi/abs/10.1145/3164135.3164147
https://doi.org/10.14778/3025111.3025122
https://doi.org/10.1145/2527792.2527799
https://www.morganclaypool.com/doi/10.2200/S00874ED3V01Y201809CAC046
https://www.morganclaypool.com/doi/10.2200/S00874ED3V01Y201809CAC046
http://pages.cs.wisc.edu/~johnbent/Pubs/bent_sc09.pdf
https://doi.org/10.1145/2983990.2984019
https://doi.org/10.1145/2983990.2984019
https://www.usenix.org/conference/atc20/presentation/bittman
https://www.usenix.org/conference/atc20/presentation/bittman


Bibliography

and Implementation, PLDI ’08, page 68–78, New York, NY, USA, 2008. Association for

Computing Machinery. https://doi.org/10.1145/1375581.1375591.

[26] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz. Application-level

checkpointing for shared memory programs. ACM SIGPLAN Notices, 39(11):235–247,

2004. https://dl.acm.org/doi/10.1145/1024393.1024421.

[27] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades later.

Commun. ACM, 56(2):82–90, Feb. 2013. https://doi.org/10.1145/2408776.2408795.

[28] W. Cai, H. Wen, H. A. Beadle, C. Kjellqvist, M. Hedayati, and M. L. Scott. Understanding

and optimizing persistent memory allocation. In Proceedings of the 2020 ACM SIGPLAN

International Symposium on Memory Management, ISMM 2020, page 60–73, New York,

NY, USA, 2020. Association for Computing Machinery. https://doi.org/10.1145/3381898.

3397212.

[29] G. Cao and M. Singhal. On coordinated checkpointing in distributed systems. IEEE

Transactions on Parallel and Distributed Systems, 9(12):1213–1225, 1998. https://

ieeexplore.ieee.org/document/737697.

[30] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and W. White. Fast check-

point recovery algorithms for frequently consistent applications. In Proceedings of

the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD

’11, page 265–276, New York, NY, USA, 2011. Association for Computing Machinery.

https://doi.org/10.1145/1989323.1989352.

[31] D. Castro, P. Romano, and J. Barreto. Hardware transactional memory meets memory

persistency. Journal of Parallel and Distributed Computing, 130:63–79, 2019.

[32] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging locks for non-volatile

memory consistency. In Proceedings of the 2014 ACM International Conference on Object

Oriented Programming Systems Languages & Applications, OOPSLA ’14, page 433–452,

New York, NY, USA, 2014. Association for Computing Machinery. https://doi.org/10.

1145/2660193.2660224.

[33] A. Chatzistergiou, M. Cintra, and S. D. Viglas. REWIND: Recovery Write-Ahead System

for In-Memory Non-Volatile Data-Structures. Proc. VLDB Endow., 8(5):497–508, jan

2015. http://dl.acm.org/citation.cfm?doid=2735479.2735483.

[34] S. Chen, P. Gibbons, and S. Nath. Rethinking database algorithms for phase change

memory. Cidr ’11, (Section 6):21–31, 2011. http://www.cs.cmu.edu/{~}./chensm/

papers/pcm-db-algo-cidr11.pdf.

[35] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. 8(7):786–797, Feb.

2015. https://doi.org/10.14778/2752939.2752947.

119

https://doi.org/10.1145/1375581.1375591
https://dl.acm.org/doi/10.1145/1024393.1024421
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/3381898.3397212
https://doi.org/10.1145/3381898.3397212
https://ieeexplore.ieee.org/document/737697
https://ieeexplore.ieee.org/document/737697
https://doi.org/10.1145/1989323.1989352
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
http://dl.acm.org/citation.cfm?doid=2735479.2735483
http://www.cs.cmu.edu/{~}./chensm/papers/pcm-db-algo-cidr11.pdf
http://www.cs.cmu.edu/{~}./chensm/papers/pcm-db-algo-cidr11.pdf
https://doi.org/10.14778/2752939.2752947


Bibliography

[36] Z. Chen, S. W. Son, W. Hendrix, A. Agrawal, W. Liao, and A. Choudhary. Numarck:

Machine learning algorithm for resiliency and checkpointing. In SC ’14: Proceedings of

the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 733–744, 2014. http://cucis.ece.northwestern.edu/publications/pdf/

CSH14.pdf.

[37] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swanson.

Nv-heaps: Making persistent objects fast and safe with next-generation, non-volatile

memories. SIGARCH Comput. Archit. News, 39(1):105–118, Mar. 2011. https://doi.org/

10.1145/1961295.1950380.

[38] N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus. Fine-grain checkpointing with in-

cache-line logging. In Proceedings of the Twenty-Fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

’19, page 441–454, New York, NY, USA, 2019. Association for Computing Machinery.

https://doi.org/10.1145/3297858.3304046.

[39] N. Cohen, D. T. Aksun, and J. R. Larus. Object-oriented recovery for non-volatile memory.

Proc. ACM Program. Lang., 2(OOPSLA), Oct. 2018. https://doi.org/10.1145/3276523.

[40] N. Cohen, M. Friedman, and J. R. Larus. Efficient logging in non-volatile memory

by exploiting coherency protocols. Proc. ACM Program. Lang., 1(OOPSLA), Oct. 2017.

https://doi.org/10.1145/3133891.

[41] P. Colp, C. Matthews, B. Aiello, and A. Warfield. Vm snapshots. Xen Summit, 2009.

http://www-archive.xenproject.org/files/xensummit_oracle09/VMSnapshots.pdf.

[42] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud

serving systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud Com-

puting, SoCC ’10, page 143–154, New York, NY, USA, 2010. Association for Computing

Machinery. https://doi.org/10.1145/1807128.1807152.

[43] A. Correia, P. Felber, and P. Ramalhete. Romulus: Efficient algorithms for persistent

transactional memory. In Proceedings of the 30th on Symposium on Parallelism in Algo-

rithms and Architectures, SPAA ’18, page 271–282, New York, NY, USA, 2018. Association

for Computing Machinery. https://doi.org/10.1145/3210377.3210392.

[44] T. Coy, S. He, B. Ren, and X. Zhang. Compiler aided checkpointing using crash-consistent

data structures in nvmm systems. In Proceedings of the 34th ACM International Confer-

ence on Supercomputing, ICS ’20, New York, NY, USA, 2020. Association for Computing

Machinery. https://doi.org/10.1145/3392717.3392755.
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