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Abstract
Over the past decade, machine learning techniques have seen widespread adoption in the

chemistry and materials science community, and for good reason: (continuing) advances

in high performance computing have led to an explosion of public databases containing

experimental, theoretical, and hypothetical materials and molecules alongside their observed

(or predicted) properties. The result is a veritable sea of information that can be explored in

search of new materials or to better understand those that already exist.

But just because we have vast quantities of data at our disposal does not mean that all of

it is useful for every application. Part of the problem with “big data” is that it is so big. Sifting

through a sea of real and hypothetical structures and properties is very much like finding a

handful of needles among several dozen haystacks; brute force approaches quickly become

nonviable. However, if we first consider a broad perspective of the available information, we

can better understand the structure of the data space and subsequently determine where we

should focus our efforts in order to find as many of the highest quality needles as possible.

For instance, do we have reason to believe the needles will be distributed evenly among the

different haystacks, and if not, which haystacks shall we search first in order to be the most

efficient? Where in each haystack might we have the best chance of finding, not only the most,

but also the highest quality needles for our target use case? Broadly speaking, posing and

answering these kinds of questions is the realm of machine learning in the context of materials

science and chemistry, and is the focus of this thesis.

In particular, the work presented in this thesis combines the two main paradigms of

machine learning, namely supervised learning, where we attempt to predict certain charac-

teristics of particular materials and molecules based on our knowledge about others, and

unsupervised learning, in which we examine how materials and molecules are arranged in the

data space to understand how they are related to one another, to examine structure–property

relationships in databases of materials. The combination of these two approaches maps well

onto the finding-needles-in-haystacks problem: through unsupervised learning, we are able

to understand the layout of the haystacks; with supervised learning, we are able to narrow

our search for useful needles and predict their ultimate quality. While either supervised learn-

ing or unsupervised learning alone can be a powerful tool for assessing materials and their

properties, the focus here is to demonstrate the utility of combining both supervised and

unsupervised learning to gain actionable insight about complex materials, whether through

a unified approach or in sequential workflows. To this end, the application of combined

supervised–unsupervised learning schemes will be presented for two examples, each focusing
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on a different class of materials.

The first is an analysis of hydrogen bonding and backbone dihedral motifs in protein

crystal structures from the Protein Data Bank, and demonstrates that data-driven definitions

of structural motifs obtained through unsupervised learning can be more detailed and precise

than conventional heuristics and can also be validated through supervised learning. We found

that the motifs identified using a Gaussian mixture model largely agreed with more “tradi-

tional” definitions, but proved to be more precise for edge cases. Furthermore, we found that

outside the more well-defined secondary structure motifs such as helices and sheets, several

conventional secondary structure definitions did not coincide with the observed data-driven

structural motifs, suggesting that the heuristic definitions corresponding to less-ordered

secondary structure motifs do not strongly reflect the distribution of structural patterns in

protein crystals in the Protein Data Bank; at the same time, there also exist clear, though as-yet

unnamed motifs in the configuration space of proteins.

The second example centers around the exploration of structure–property relationships

in all-silica zeolites, ultimately aiming to address the challenge of finding new zeolite frame-

works that might be experimentally synthesizable. We begin by constructing a map of atom-

centered environments in a database of hypothetical zeolite frameworks based on principal

component analysis, where we validate our choice of “cardinal directions” by demonstrating

that they correlate with the predicted atomic contributions to the molar volume and energy

of the frameworks while emphasizing the diversity of the structural space. We extend this

exploration of the structural space to a supervised classification exercise to distinguish hy-

pothetical zeolite frameworks from those that have been experimentally synthesized, where

frameworks that share several structural characteristics with synthesized frameworks are likely

to be misclassified, and therefore may serve as promising synthesis candidates. To further

filter the synthesis candidates based on their thermodynamic stability, we apply a convex

hull construction based on a measure of classification prediction strength and the lattice

energies of the zeolite frameworks. Through this combined supervised–unsupervised learning

workflow we are able to propose a collection of hypothetical zeolites as likely candidates for

experimental synthesis.

These two examples show that by combining supervised and unsupervised learning, it

is possible to gain deeper insight into the structure–property relationships in a wide array

of materials than through either set of methods in isolation, especially when using models

and feature representations that allow for direct inspection of the structural characteristics

that contribute most to the model outcomes. As the use of machine learning techniques in

the materials science and chemistry community continues to grow, workflows and unified

models that combine both supervised and unsupervised learning stand to become even more

powerful tools for understanding structure–property relationships in materials and molecules.

Keywords: machine learning, supervised learning, unsupervised learning, structure–property

relationships, hydrogen bonds, proteins, zeolites
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1 Introduction

Throughout much of human history, innovations in materials have been closely tied to greater

technological revolutions, from the birth of metallurgy to the dawn of the information age.

In 2010, Christopher L. Magee made an attempt to quantify the contributions that materials

innovation makes in the development of associated technologies, and concluded that between

20–80% of technological progress can be attributed to advances in materials, depending

on the field [1]. However, the time between materials discovery and large-scale industrial

adoption is on the order of several years to several decades [2, 3]. Given that there is a

practically infinite number of possible materials and molecules, it is impossible to manually

sift though all possible combinations of elements, bonding arrangements, crystal structures,

and conformations to pick out those that might be good candidates for a particular application.

Accelerating the technology transfer related to new materials, then, requires knowledge of

structure–property relationships within the design space and in silico evaluations of materials

that are capable of facilitating the development of synthesis and processing routes. Over the

past decade, machine learning techniques have shown promise as tools for addressing these

requirements, and have increasingly found use in materials discovery efforts.

As machine learning techniques have gained popularity in chemistry and materials

science, they have been used to learn and predict energies and other ground-state quantities

[4–14], crystal growth [15], mechanical properties [16], chemical shifts [17, 18], and dipole

moments and polarizibilities [19–21], in addition to the electron density [22–25], density of

states [25–27], and molecular wavefunctions [28–31]. Additionally, machine learning has been

used to accelerate computational chemistry calculations through the generation of interatomic

potentials [32–36], optimal basis functions [37], and by avoiding redundant computation of

energies and forces of similar configurations in ab initio molecular dynamics simulations

[38]. Finally, high-throughput techniques have been used to extract synthesis recipes from

the literature [39–46] and to search for and evaluate materials for a particular application

based on their structure and properties [47–49]. Concurrent with the growth of machine

learning and statistical techniques in materials science research, a number of databases of

hypothetical or real materials have come online, including those for small molecules [50–52],

molecular crystals [53], framework materials [54–59], amino acid conformers [60, 61], and

randomized structures including carbon polymorphs [62, 63], in addition to the continued

growth of established databases such as the Protein Data Bank [64] and the Crystallography
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Open Database [65–71].

To date, many of the applications of machine learning to materials science and chemistry

could be classified as supervised learning, in which the goal is to predict a quantity y (e.g., a

property or a categorical label) based on a representation of the known structure or properties

x. Each sample used to train a supervised learning model is thus associated with some known

target data that we wish to reproduce for the training samples and accurately predict for new,

unseen samples [72–74]. Perhaps less common are applications of unsupervised learning,

where the goal is to analyze the structure of the data space in order to find statistically relevant

motifs [72–74] (normally regarding the structure of different materials). Given the different

paradigms offered by supervised and unsupervised learning, it can be instructive to apply

both approaches concurrently to materials informatics problems: workflows that combine

both learning paradigms allow us to identify (structural) motifs and subsequently examine

their correlations with (predicted) materials properties in a unified manner.

This thesis aims to examine, both qualitatively and quantitatively, structure–property re-

lationships in materials using combined supervised–unsupervised workflows and algorithms

that can be leveraged to yield additional insight that would not be otherwise available. It is

important to note that the hybrid supervised–unsupervised learning discussed in this thesis

is distinct from what is often referred to as “semi-supervised learning”, where one typically

has goals similar to that of supervised learning (predicting properties or labels), but only

some of the training data have known auxiliary labels or properties; the rest are missing [75].

By contrast, the hybrid supervised–unsupervised schemes that are the focus of this thesis

combine supervised learning on fully labeled data with unsupervised learning that does not

rely on any auxiliary information.

Chapter 2 discusses some of the practicalities of applying machine learning techniques

to materials science and chemistry in particular, including specific considerations for feature

representations and kernel methods. Chapters 3 and 4 discuss the specific unsupervised and

supervised algorithms integral to this work, focusing on the principal component analysis

and ridge regression families of methods. Chapter 5 presents methods for combining both

supervised and unsupervised machine learning to extract structure–property relationships,

detailing the concepts behind principal covariates regression and some of its nonlinear ex-

tensions. Using the techniques described in Chapters 2–5, Chapters 6 and 7 then provide

examples of how supervised and unsupervised machine learning can be applied to chemistry

and materials science, through examples of hydrogen bonding in proteins and searching

for synthesizable zeolites. Specifically, Chapter 6 demonstrates the utility of unsupervised

learning for identifying structural motifs in materials that can be validated through supervised

learning, and Chapter 7 provides a thorough example of how supervised and unsupervised

learning can be integrated into hybrid workflows that reveal structure–property relationships

in a large database of structurally diverse materials.
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2 Machine Learning for Materials and
Molecules
When applying machine learning techniques to a particular collection of data, there are five

basic steps that are generally employed, which are: (1) building a feature representation,

(2) pre-processing the input data, (3) tuning the machine learning model, (4) training the

model, and (5) evaluating the predictions made by the model. During the training process, the

main objective is to minimize a loss function on a set of training samples; the particular form

that this loss function takes is the main aspect that distinguishes different machine learning

techniques from one another, and is discussed in more detail in Chapters 3–5, but is mentioned

here as it will be revisited in Section 2.2. To start, this chapter discusses the practical aspects of

this machine learning “recipe” that are particular to materials science and chemistry, namely

the specific requirements of the feature representation and the modifications to the recipe that

are required based on the nature of the structure–property relationships under investigation,

i.e., whether they correspond to individual atomic environments or to whole structures. A

brief introduction to kernel methods is also presented, as there are additional considerations

that must be made when building kernels for materials data. More general aspects related to

pre-processing and model tuning are discussed in Appendix A.

2.1 Feature Representations
The first step in applying machine learning methods to a collection of materials or molecules

data is to compute a numerical representation in the form of a vector x, often called the

feature representation, for each structure (or atomic environment that the structure comprises)

that can be understood and manipulated by the machine learning model. In principle, we

have complete freedom to choose the form that x takes; however, not all choices are created

equal. For instance, constructing x from a simple concatenation of the atomic coordinates

is less than ideal, as the raw coordinates do not encode the symmetries and invariances

that govern many structure–property relationships. The quality of the data-driven insights

that we can derive from a machine learning model depends in large part on how well the

feature representation is able to capture the similarities and differences between structures

(or environments) in line with physical principles. In 2015, Ghiringhelli et al. [76] proposed a

set of guidelines for materials descriptors that can be summarized as the following: (1) the

feature representation must uniquely describe a structure (or environment), (2) the difference

between two representations must be commensurate with the difference between the entities

3



Chapter 2. Machine Learning for Materials and Molecules

that they describe, and (3) the representation is as low-dimensional as possible and the

computation of the descriptor must not serve as the bottleneck in a machine learning pipeline.

Consequently, much effort in the field of materials informatics has been devoted to the design

and implementation of materials-specific feature representations.

2.1.1 The Feature Representation Zoo
Materials and molecules can be represented in machine learning models in a number of ways,

including approximate interaction representations like the Coulomb Matrix [4], Bag of Bonds

[6], and other related representations [5, 77, 78]; molecular graphs [11, 13]; Voronoi tesselations

[79]; representations based on radial distribution functions [12, 27]; character strings such as

SMILES [80, 81]; a vector of properties [18]; stoichiometry and crystal sites [7]; bonding motifs

[10]; and vectorized descriptions of the atomic structure such as the Faber-Christensen-Huang-

von Lilienfeld representation [9], Many-Body Tensor Representation [82], Behler-Parrinello

symmetry functions [83], and the Smooth Overlap of Atomic Positions (SOAP) [84–89]. Each

feature representation has its own advantages and disadvantages, ranging from its descriptive

power, computational expense, and uniqueness, to its embedded symmetries and invariances.

The latter is of particular importance, given that the structures and properties of molecules

and materials exhibit certain translational, rotational, and permutation symmetries and

invariances. For example, the energy of a molecule does not change if it is rotated or translated

in space. While this may seem obvious, this sort of intuition is not automatically understood by

machine learning models. To acquire predictions that take these symmetries and invariances

into account, they must be baked into the machinery of the model itself, encoded into the

feature representation, or learned through large quantities of data. In the example given above,

the translational and rotational invariance of the energy could be learned by training on a large

number of identical molecules that differ only in their relative orientation in space. Building

models in this way can be effective, but it is rather inefficient and is often avoided in favor of

using feature representations or purpose-built models that incorporate the relevant physics.

The feature representation must also be chosen to be compatible with the problem at

hand. For example, a descriptor constructed by concatenating a number of properties contains

no explicit structural information and therefore may not be particularly useful for exploring

structure–property relationships. Similarly, descriptors that depend only on connectivity, such

as SMILES- or graph-based representations, may not be as useful for investigating differences

between different conformers of the same molecule, and descriptors that do not account for

periodic boundary conditions, such as the Coulomb Matrix or Bag of Bonds, are not applicable

to crystals.

The work in this thesis uses primarily the SOAP representation, as it is a versatile and gen-

erally applicable framework for describing both two- and three-body correlations in periodic

and non-periodic structures, and has seen great success in predicting molecular proper-

ties [90], recognizing structural motifs [90, 91], and constructing machine-learning-based

interatomic potentials [32–36, 92].
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2.1.2 Smooth Overlap of Atomic Positions
The SOAP approach generates a feature representation for a structure from an atomic density

constructed by describing each atom i with an individual Gaussian density g (r−ri ) [84–89].

Following the notation of Refs. [86–89], the atomic density associated with an environment A j

centered on atom j within a structure A can be written as [86, 88]〈
r
∣∣A j

〉= ∑
i∈A

fc (ri j )g (r− ri j ) |ai 〉 , (2.1)

where ri j = ri − r j , ri j = ‖ri j‖, fc is a smooth cutoff function describing the spatial limits of

the environment around atom j , and |ai 〉 is an attribute representing the species of each atom.

The atomic environment corresponding to a single “species channel” can be written as a sum

over only those atoms of a particular species a [86–88]〈
ar

∣∣A j
〉= ∑

i∈a
fc (ri j )g (r− ri j ), (2.2)

where i ∈ a indicates all atoms i in structure A having species a, so that the representation of

the environment can additionally be represented as a sum of contributions from individual

atomic species. An atomic environment
〈

r
∣∣A j

〉
constructed in this way can be made transla-

tionally invariant through Haar integration over translations [86–88], and a description of the

whole structure can be represented as a sum over these atom-centered environments [88],

|A〉 =∑
j

∣∣a j
〉⊗ ∣∣A j

〉
. (2.3)

In practical situations, it is convenient to expand the density in a basis of radial functions Rn(r)

(for example, Gaussian-type orbitals or polynomials in the discrete variable representation

[93]) and spherical harmonics Y l
m(r̂), where r̂ = r/‖r‖, to avoid convergence issues based on

the discretization of the continuous, real-space representation. The density coefficients of

such an expansion are [86–88]

〈
anl m

∣∣A j
〉= ∫

drRn(r)Y l
m(r̂)

〈
ar

∣∣A j
〉

. (2.4)

Similar to incorporating translation invariance, (ν+1)-body rotationally invariant represen-

tations of the environment, denoted
∣∣∣A(ν)

j

〉
, can be constructed from Haar integration over

rotations [86–88] and simplified into summations over the density coefficients arising from

averaging a tensor product of ν environment descriptors over the SO(3) rotation group [86–88].

A two-body rotationally invariant representation (referred to as the radial spectrum) can thus

be written as [88]〈
an

∣∣∣A(1)
j

〉
= 〈

an00
∣∣A j

〉
, (2.5)

and is analogous to the radial distribution function for each pair of atomic species composing

each atom-centered environment. Similarly, a three-body rotationally invariant representation
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(the SOAP power spectrum) for A j can be written as [86–88],

〈
ana′n′l

∣∣∣A(2)
j

〉
= 1p

2l +1

∑
m

(−1)m 〈
anl m

∣∣A j
〉〈

a′n′l (−m)
∣∣A j

〉
. (2.6)

The SOAP power spectrum can be viewed as a “template” or “stencil” comprising two line

segments of lengths r and r ′ sharing a vertex at the location of atom j and being separated

by an angle θ [88]. The power spectrum is the result of integrating over all rotations and

configurations of this template within the atomic density centered at the shared vertex of the

two line segments.

In a similar fashion, it is possible to recover the real-space atomic density [88] from the

radial spectrum,〈
ar

∣∣∣A(1)
j

〉
=∑

n
Rn(r)

〈
an

∣∣∣A(1)
j

〉
(2.7)

and the power spectrum,〈
ara′r′ω

∣∣∣A(2)
j

〉
= ∑

n,n′,l
Rn(r)Rn′(r′)Pl (ω)

〈
ana′n′l

∣∣∣A(2)
j

〉
, (2.8)

where ω= r̂ · r̂′ = cosθ. The transformation to a real-space representation can be employed

in the context of a machine learning model, where the coefficients, or weights, of the trained

model can be expanded into a real-space representation in the same way as the SOAP vectors,

making it possible to transparently correlate structural features with the model weights.

The complexity of the SOAP representation makes it relatively expensive to compute;

moreover, many of the SOAP spectrum features can be considered redundant with one another

to some degree. It can thus be useful to construct a “contracted” SOAP representation based on

an augmented set of radial basis functions that are constructed by computing the covariance

of the density coefficients for each species and angular channel. The eigenvectors of this

covariance are then used to project the radial basis functions [94], which can then be used to

compute features through a spline-based fit [93], reducing the computational expense of the

SOAP representation while retaining a high-quality radial basis. This procedure can be used to

reduce certain artifacts and improve interpretability in the real-space expansion.

2.2 Kernel Methods
Even if we choose a feature representation that accurately, completely, and uniquely describes

the input structures, it is still often the case that there exist complex, nonlinear relationships

between samples or between the features and prediction targets that are not immediately

apparent in the raw feature space. One way to transparently disentangle these relationships is

to apply a nonlinear transformation to each sample of the input data xi through a function φ

that maps the input data to a high- (or potentially infinite-) dimensional space where we can

then apply linear learning techniques. We denote the representation of each sample in the

high-dimensional space as φi =φ(xi ). Such a transformation can be advantageous, for exam-

ple, in classification exercises, where data that is not linearly separable in the original space

6
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may become linearly separable in the high-dimensional space [95]. However, working directly

in the high-dimensional space can be impractical, or even impossible where the dimension of

the space is infinite. We can make the problem of operating in the high-dimensional feature

space more tractable by framing the exercise of finding feature–target relationships in terms

of assessing the similarity between different samples [95]: when we make a prediction for

a particular feature vector, we are effectively comparing it against the training samples and

interpolating accordingly. One simple metric to quantify the similarity between two samples

is the dot product [95], which further allows us to reformulate the mapping xi 7→φ=φ(xi ) in

terms of a kernel function k that describes the similarity between two samples xi and x j in the

high-dimensional space [95],

k(xi ,x j ) =φ(xi )Tφ(x j ). (2.9)

In this way, we can avoid dealing directly with φ, and instead construct a function k that

operates on the original feature vectors xi and x j . The tradeoff is that not all functions can

be expressed in the form of Eqn. 2.9. Fortunately, the kernel functions that do admit such an

expression are given by Mercer’s theorem [96]: if the Gramian matrix K of a kernel function,

whose entries are Ki j = k(xi ,x j ), is positive definite, then the kernel can be expressed as a dot

product [95]. Common kernels include the polynomial kernel [95]

k(xi ,x j ) = (xT
i x j + c)d , (2.10)

and the radial basis function kernel [95]

k(xi ,x j ) = e−γ‖xi−x j ‖2
. (2.11)

Another commonly used kernel is the linear kernel, which is a special case of the polynomial

kernel with c = 0 and d = 1, so that φ(xi ) = xi . According to the Moore-Aronszajn Theorem

[97], each kernel has associated with it a unique vector space known as the reproducing kernel

Hilbert space (RKHS) H , wherein [95]

φ(·)T k(x, ·) =φ(x), ∀φ ∈H (2.12)

and k spans the RKHS [95]. Furthermore, the Representer theorem [98–100], states that the

minimum of a loss function in an RKHS corresponding to a given kernel can be expressed as a

linear combination of kernel values evaluated at the training points [95]. Therefore, we need

not operate directly in the high-dimensional RKHS or know the mapping φ(x) explicitly in

order to perform nonlinear learning exercises; we need only know the kernel function. The use

of this kernel construction will be applied to several of the algorithms presented in Chapters

3–5 and is used in several of the machine learning exercises presented in Chapters 6 and 7.

7
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2.3 Representative Atomic Environments
While kernel methods facilitate straightforward and transparent nonlinear data analyses, they

can be rather expensive to carry out on datasets with a large number of samples, as the number

of entries in the kernel matrix (for the training data) grows with the square of the number of

samples. To reduce memory requirements, it is possible to use the Nyström approximation

[101] to build a low-rank approximation to the full kernel matrix by using a subset of the

samples to serve as a set of representatives or a reference set. In the context of materials

applications, the reference set comprises representations of individual atomic environments.

Given that the kernel matrix is symmetric and positive semi-definite, it possesses an eigende-

composition K = UΛUT , where the eigenvalues, as the entries of the diagonal matrixΛ, are

real and non-negative. We can thus build a low-rank approximation K̂ to the full kernel matrix

K through an eigendecomposition of a smaller kernel matrix based on a subset of M of the N

total samples used to build the full kernel [101]. If we define K̂ = ÛΛ̂ÛT , then the quantities

Û and Λ̂, which are approximations to the eigenvectors and eigenvalues of K̂, can be written

in terms of the eigendecomposition of the kernel between the M representative points KM M

[101],

Λ̂= N

M
ΛM M (2.13)

Û =
√

M

N
KN M UM MΛ

−1
M M , (2.14)

whereΛM M and UM M are the eigenvalues and eigenvectors of KM M , and KN M is the kernel

matrix between the full set of N samples and the M representative samples. Therefore, we can

write the Nyström approximation as [101]

K ≈ K̂ = KN M K−1
M M KT

N M . (2.15)

Through the Nyström approximation, we can also compute an approximation to the RKHS

features, by noting that K =ΦΦT , so that K̂ =ΦN MΦ
T
N M , where

ΦN M = KN M UM MΛ
−1/2
M M , (2.16)

and the rows of the matrixΦ are the individual RKHS feature vectors φi .

The representative samples can be selected in a number of ways, e.g., randomly [101],

probabilistically [102, 103], iteratively [104], or through k-means clustering [105]. Farthest

point sampling (FPS) [106] is a particularly useful selection method in the context of the

Nyström approximation, as it yields a diverse subset of samples. In FPS, samples are selected

iteratively, with the goal of maximizing the distance between a new sample and those already

selected. In particular, the point to be selected is that with the largest minimum distance to

any of the samples that have already been selected. This can be achieved through the iteration
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[106],

sn+1 = argmax
xi∈X

[
min
s j∈Sn

d(xi ,s j )

]
Sn+1 = Sn ∪sn+1

where d(xi ,s j ) is the distance between the samples xi and s j , Sn is the set of previously selected

samples, and Sn+1 the set of selected samples with the newest point sn+1 added. The first

point is typically chosen at random. The FPS procedure can also be used to select a diverse set

of features and can be a relatively simple way to reduce the dimensionality of a dataset.

2.4 Structures and Environments
One final aspect in the application of machine learning to materials and molecules that

warrants discussion is that of property and model additivity. Based on the particular structure–

property relationships we wish to explore, we can take a local, atom-centered approach, or

a global, structure-based approach. For those global properties that can be expressed as a

sum of contributions from individual atomic environments, i.e., yA =∑
A j∈A yA j , we can make

equivalent predictions in linear models for the global property by summing over the model

predictions for the individual environments composing the global structure, or by training

and evaluating the model on global features that themselves are a sum over the individual

environment-based features, namely [107],

xA = ∑
A j∈A

xA j . (2.17)

An analogous procedure can be adopted for kernel-based models, where the kernel between

two structures can be expressed as the sum of the kernel values between the individual

environments composing the structures [14, 85, 87],

KAB = ∑
i∈Ai

∑
j∈B

k(xAi ,xB j ). (2.18)

One can similarly define a kernel between a structure and a set of environments by performing

the sum only over the environments in the structure of interest, i.e. [108],

KA j =
∑

i∈Ai

k(xAi ,x• j ), (2.19)

where the environment-based features x• j can come from multiple structures.
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3 Unsupervised Learning 1

Unsupervised learning generally involves learning the structure of the feature space in order to

make statements about how the underlying samples are related to one another. Unsupervised

learning comes in many different forms, with two of the most common categories being

clustering, or motif recognition, and dimensionality reduction. The following sections provide

an overview of the learning techniques in these two categories that are relevant to the work

presented in Chapters 6 and 7.

3.1 Motif Identification
Broadly speaking, unsupervised clustering techniques can be considered a means of recog-

nizing patterns, or motifs, within a feature space, where the goal is typically to subdivide the

feature space into distinct regions with each region corresponding to a separate motif. While

this is conceptually similar to supervised classification exercises, discussed further in Chapter

4, the main difference is that in clustering techniques the subdivision of the feature space is

made without the use of any auxiliary labels associated with the data.

Common clustering techniques include k-means [72–74], hierarchical clustering [72,

74], self-organizing maps (also called Kohonen maps) [74, 109], and mixture models [72–74].

The following subsection describes the Probabilistic Analysis of Molecular Motifs (PAMM)

algorithm [110, 111], which is used in Chapter 6 to identify hydrogen bonding and backbone

dihedral motifs in protein structures.

3.1.1 Probabalistic Analysis of Molecular Motifs
The PAMM algorithm is an automated and flexible clustering technique based on a Gaussian

mixture model that was originally developed to identify motifs in materials, but can easily be

applied to any domain.

Given a set of samples X, the PAMM algorithm builds an approximation of the probability

density P (x) in the feature space based on a kernel density estimation (KDE) [72–74] on a

1Sections 3.2.1–3.2.4 of this chapter are adapted with modifications under the Creative Commons Attribution
4.0 (CC BY 4.0) license from Helfrecht, B. A., Cersonsky, R. K., Fraux, G. & Ceriotti, M. Structure-Property Maps with
Kernel Principal Covariates Regression. Machine Learning: Science and Technology 1, 045021. doi:10.1088/2632-
2153/aba9ef (2020); all authors contributed to the writing of the manuscript from which the present text has been
adapted.
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Chapter 3. Unsupervised Learning

subset of the samples X′ selected through FPS (see Section 2.3 for a brief summary of FPS). In

principle, any kernel can be used for the density estimation, and one common choice is the

Gaussian kernel 2 [110, 111]

K (x;H) = 1√
(2π)D det(H)

exp

(
−1

2
xT H−1x

)
, (3.1)

where H is a matrix of kernel bandwidths and D the dimensionality of x, so that the approxi-

mate probability density at a point x′i is [110, 111]

P (x′i ) =
∑N

j=1 w j K (x j −x′i ;H j )∑N
j=1 w j

, (3.2)

where the individual kernels can be assigned weights w j . The bandwidth matrix H can be

chosen in a number of ways. The simplest approach is to construct H as a diagonal matrix

where the entries H j j are chosen manually or based on a Voronoi decomposition of the

sample points X′, in which case the bandwidth H j j associated with the point x′j within a given

Voronoi cell is set to the distance between the center of the parent Voronoi cell and the nearest

neighboring Voronoi center [110]. The bandwidth matrix can also be based on a local estimate

of the covariance around a given point through a heuristic such as Silverman’s Rule [111],

Hi =
(

4

Ni (Di +2)

)2/Di+4

Ci , (3.3)

where Ni , Di , and Ci are estimates of the local population, dimensionality, and covariance.

The local population Ni is defined as a sum of local weights [111]

Ni =
∑

j
ui j , (3.4)

where

ui j =
N w j∑

j w j
exp

(
− (x j −xi )T (x j −xi )

2σ2
i

)
(3.5)

and the σi are tunable localization parameters. The local covariance Ci is computed as a

(biased) weighted covariance from the weights ui j and the oracle approximating shrinkage

estimator [111, 112]. The local dimensionality Di is then estimated from the eigenvalue

spectrum of the local covariance [111]

Di = exp

(
−

D∑
k=1

ηk log
(
ηk

))
, (3.6)

2The use of the term kernel here is distinct from usage related to kernel methods discussed elsewhere in this
thesis. In the context of the KDE, the kernel refers to the function used to transform the discrete samples into a
continuous density.
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where ηk =λk /
(∑D

k=1 |λk |
)

and λk are the eigenvalues of the local covariance before applying

the shrinkage estimator. To reduce computational expense, the bandwidth for a point x j

falling within the Voronoi cell of a sample point x′i can be set to that computed for x′i .

Once the KDE on the sample points has been constructed, the sample points can be

divided into k clusters, for example, using the quick-shift algorithm [110, 111, 113]. After the

cluster assignments are made, the probability density of the samples in the feature space P (x)

can be approximated through a Gaussian mixture model, where the approximate density P̂ (x)

is constructed as a weighted sum of (normalized) Gaussians centered on the cluster modes µk

[110, 111],

P̂ (x) =
n∑

k=1
pkG(x;µk ,Ck ), (3.7)

where the covariance of cluster Ck is determined based on the value of the KDE evaluated

at the sample points x′i belonging to cluster k. The PAMM algorithm can be extended to

periodic feature spaces by replacing the Gaussian functions G in Eqn. 3.7 with a product of

one-dimensional von Mises distributions [111]. Given a mixture of Gaussians, the probability

that a given sample x belongs to a cluster k is [110, 111],

P̂k (x) = pkG(x;µk ,Ck )

P̂ (x)+ζ , (3.8)

which can be used to construct a “fingerprint” for each cluster. The parameter ζ acts as a

cutoff density for outlier configurations.

3.2 Dimensionality Reduction
Another common use for unsupervised learning is dimensionality reduction, where the aim is

to construct a new, condensed feature space (often referred to in the following as the latent

space) from the original set of features while minimizing information loss. There are a wide

variety of dimensionality reduction techniques, including locally linear embedding [114],

Isomap [115], stochastic neighbor embedding [116] and its successor t-distributed stochastic

neighbor embedding [117], and density-based spatial clustering of applications with noise

(DBSCAN) [118] and its extension HDBSCAN [119, 120]. The machine learning applications

presented in Chapters 6 and 7 make use of the principal component analysis (PCA) family

of methods in addition to sketch-map [121–123], and these methods are described in the

following subsections.

3.2.1 Principal Component Analysis
In principal component analysis (PCA) [124, 125], the aim is to reduce the dimensionality of a

centered feature matrix X (which contains the individual samples xi as rows) by constructing

a low-dimensional, orthogonal projection T = XPX T that results in minimal information loss

when X is projected into the low-dimensional space and back. This is equivalent to minimizing
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the loss

`= ‖X−XPX T PT X ‖2 (3.9)

with respect to PX T , with the additional constraint that PX T is orthogonal. This constraint

implies PT X = PT
X T , so that the loss can be rewritten as

`= Tr
(
X

(
I−PX T PT

X T

)
XT )

, (3.10)

or equivalently cast as a maximization of the similarity

ρ = Tr
(
PT

X T XT XPX T
)
. (3.11)

Because PX T and PT X are orthogonal, the similarity is maximised when PX T is the matrix of

eigenvectors of the covariance C = XT X that are associated with the nlatent largest eigenvalues.

Writing the eigendecomposition as C = UCΛCUT
C , where ΛC is the diagonal matrix of the

eigenvalues and UC is the matrix containing the corresponding eigenvectors as its columns,

the orthogonal projection T is

T = XÛC, (3.12)

where ÛC is the submatrix of UC containing the first nlatent columns of UC, that is, the eigen-

vectors corresponding to the largest eigenvalues of C.

3.2.2 Kernel Principal Component Analysis
One can also perform principal component analysis in the RKHS by substituting for X the

matrix of (centered) transformed RKHS featuresΦ. If we wish to avoid explicit computation

ofΦ, we can take advantage of the fact that the covariance C =ΦTΦ and the kernel K =ΦΦT

have the same (nonzero) eigenvalues and that the eigenvectors UK can be written in terms of

those of UC through the expression UK =ΦUCΛ
−1/2
C , so that the projections T may be written

in terms of the decomposition of the kernel matrix,

T = ÛKΛ̂
1/2
K = KÛKΛ̂

−1/2
K . (3.13)

This approach is known as kernel principal component analysis (KPCA) [126]. From inspection

of Eqn. 3.13, we can define the matrix PK T = ÛKΛ̂
−1/2
K . We can additionally approximate the

kernel from the latent space via the linear regression solution PT K = Λ̂1/2
K ÛT

K , and notice that

in the latent space the kernel K is approximated by TTT . If K is the linear kernel, KPCA reduces

to PCA.

3.2.3 Low-Rank Kernel Principal Component Analysis
We can also perform KPCA using a low-rank approximation to the kernel matrix K through the

Nyström approximation, where the covariance is constructed from the centered approximate
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RKHS featuresΦN M ,

C =ΦT
N MΦN M = UCΛCUT

C . (3.14)

The projections are then computed just as in standard PCA,

T =ΦN M ÛC = KN M UKM MΛ
−1/2
KM M

ÛC, (3.15)

so that PK T = UKM MΛ
−1/2
KM M

ÛC.

3.2.4 Multidimensional Scaling
A different approach to dimensionality reduction is that of multidimensional scaling (MDS)

[127]. In MDS, the latent space is chosen to preserve the pairwise distances of the original

feature space, which corresponds to the loss

`= ∑
i< j

(
d(xi ,x j )−d(ti ,t j )

)2 , (3.16)

where xi and ti refer to the full and projected feature vector of the i th sample and d is a general

distance function. In classical MDS, d is taken to be the Euclidean distance and a modified

loss is used,

`= ‖K−TTT ‖2, (3.17)

the minimization of which is equivalent to KPCA with a linear kernel (and thus standard PCA).

3.2.5 Sketch-Map
Sketch-map [121, 123] is an embedding method for dimensionality reduction that is based on

the same general idea as MDS and has been used to construct enhanced sampling methods

for molecular dynamics [122]. Rather than directly minimizing the differences between the

samplewise distances in the high- and low-dimensional spaces as in MDS, sketch-map aims to

minimize the differences between samplewise distances r in the high- and low-dimensional

spaces that are transformed through a sigmoid function s [121, 123],

s(r ;σ, a,b) = 1− (1+ (r /σ)a(2a/b −1))−b/a , (3.18)

where a, b, and σ are adjustable parameters. The sketch-map projection is thus determined

by minimizing the loss [121–123]

`=
∑

i< j
(
s(xi j ;σ, aX ,bX )− s(ti j ;σ, aT ,bT )

)2∑
i< j wi w j

, (3.19)

where wi and w j are individual sample weights, xi j = d(xi ,x j ) is the distance between points

xi and x j in the high-dimensional space, and ti j = d(ti ,t j ) is the distance between points ti

and t j in the low-dimensional space. The choice of the parameter σ is largely based on the
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length scale of the features that one wishes to emphasize in the embedding construction,

and should generally be chosen so that the inflection point of the sigmoid is placed at a

slightly smaller distance than where the first major peak occurs in a histogram of intersample

distances in the high-dimensional space [123]. Separate a and b parameters are typically used

for the high-dimensional space (subscript X ) and the low-dimensional space (subscript T );

the choice of these parameters is less critical, and Ref. [123] provides some heuristics for their

selection.

Once the low-dimensional projections ti have been determined through the minimiza-

tion, a new point x′k can be projected into the low-dimensional space by minimizing [121, 123]

`′ =
∑

i wi
(
s(x ′

i k ;σ, aX ,bX )− s(t ′i k ;σ, aT ,bT )
)2∑

i wi
. (3.20)

These samplewise minimization procedures can be computationally expensive for large num-

bers of samples; therefore, it can be advantageous to only compute the distances and projec-

tions for a small number of representative points. Farthest point sampling is again an effective

method for selecting the representative points [123].
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The goal of supervised learning is to assign a target quantity or label to an unlabeled sample

based on knowledge about a set of known (feature vector, target) pairs. When the targets can

take on a continuous range of (usually numeric) values, regression techniques are typically ap-

plied. When the targets are categorical, classification algorithms can be used to assign discrete

labels to the individual samples. Several classification algorithms, such as logistic regression

[72–74] and support vector machines [128] assign class labels based on the thresholding of

a continuous output. Other methods, such as linear discriminant analysis [72–74] can be

used for dimensionality reduction or as a simple classifier. Still other methods, including

decision trees [72–74] and k-nearest neighbors [72–74], can be applied to either regression or

classification. In Chapters 6 and 7 we make use of various regression techniques as well as

support vector machines. The relevant methods are described in the following sections.

4.1 Regression
Regression techniques are arguably the most familiar and straightforward supervised machine

learning methods. Given a set of samples X, we aim to build a model that is able to accurately

reproduce the the corresponding targets Y by minimizing the difference between the predicted

targets Ŷ and the actual targets Y. At the same time, we would like the model to be capable

of making accurate predictions for new inputs X′ that the model has never seen before. If

we stipulate that the model predict the known targets Y as accurately as possible, it is likely

that the model will not be as accurate in making predictions for unseen samples. To illustrate

this, suppose that we have a set of prediction targets yi perturbed by some additive random

noise εi normally distributed with mean zero, i.e., ỹi = yi +εi . If we train a model to achieve

perfect accuracy on the noisy targets ỹi , the predictions it makes for out-of-sample data will

be strongly influenced by the particular draw of the εi . Consequently, if we train an ensemble

of models by repeatedly re-rolling the εi and enforcing perfect predictions on the resulting

noisy targets ỹi , we will observe a large variance in the out-of-sample predictions among

1Sections 4.1.1–4.1.3 of this chapter are adapted with modifications under the Creative Commons Attribution
4.0 (CC BY 4.0) license from Helfrecht, B. A., Cersonsky, R. K., Fraux, G. & Ceriotti, M. Structure-Property Maps with
Kernel Principal Covariates Regression. Machine Learning: Science and Technology 1, 045021. doi:10.1088/2632-
2153/aba9ef (2020); all authors contributed to the writing of the manuscript from which the present text has been
adapted.
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the different models [72]. To address this issue, we can add to the regression loss function

a penalty on the norm of the regression weights, thus encouraging the weights to be small

and reducing the variance by introducing a bias. We must take care, however, that we do not

penalize the weights too harshly, as a large bias can also reduce the accuracy of our predictions

[72]. As a result, the magnitude of the penalty is typically left as a tunable parameter subject

to optimization during the model tuning process (see Appendix A). A penalty based on the

L2 norm of the weights is known as ridge or Tikhonov [129] regularization, and is perhaps

the most common form of regularization. Penalizing instead based on the L1 norm of the

regression weights forms the least absolute shrinkage and selection operator (LASSO) [130].

The LASSO tends to assign nonzero weight to only a subset of the features, and can be used

to mark certain features as important for predicting the targets. Elastic net regularization

[131] is a combination of L1 and L2 regularization. In the following, we focus solely on L2

regularization.

4.1.1 Ridge Regression
In linear regression, our goal is to determine a set of weights PX Y such that the difference

between the known targets Y and the corresponding predicted targets Ŷ = XPX Y is minimized.

This corresponds to minimizing the loss

`= ‖Y−XPX Y ‖2. (4.1)

In the case of L2 regularization with regularization parameter λ, the loss is modified to read

`= ‖Y−XPX Y ‖2 +λ‖PX Y ‖2. (4.2)

The minimum of the regularized loss with respect to PX Y yields the solution PX Y = (
XT X+λI

)−1
XT Y.

4.1.2 Kernel Ridge Regression
Kernel ridge regression (KRR) [104, 132] is an extension of linear ridge regression to the RKHS

and has been used successfully to build models for the prediction of atomic-scale properties

[4–9, 12, 27, 77]. Substituting the RKHS feature vectorsΦ for X in Eqn. 4.2 gives the regularized

loss

`= ‖Y−ΦPΦY ‖2 +λ‖PΦY ‖2, (4.3)

so that the optimal weights are

PΦY = (
ΦTΦ+λI

)−1
ΦT Y

=ΦT (
ΦΦT +λI

)−1
Y,

(4.4)

where we have used Eqn. 20 of Ref. [133]. Predicted properties Ŷ can then be evaluated from

the RKHS features, i.e., Ŷ =ΦPΦY . By using again the fact that K =ΦΦT , the regression weights

can instead be expressed in terms of the kernel matrix, PK Y = (
ΦΦT +λI

)−1
Y = (K+λI)−1 Y,
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so that PΦY =ΦT PK Y [72]. The predicted targets can the be written equivalently as

Ŷ =ΦΦT PK Y = KPK Y . (4.5)

4.1.3 Low-Rank Kernel Ridge Regression
A low-rank approximation to the kernel ridge regression solution can be achieved through the

application of the Nyström approximation [104, 108, 134]. To construct the low-rank solution,

we proceed as in standard KRR, but construct the loss using the Nyström approximation of

the RKHS featuresΦN M ,

`= ‖Y−ΦN M PΦY ‖2 +λ‖PΦY ‖2, (4.6)

for which the solution is

PΦY = (
ΦT

N MΦN M +λI
)−1
ΦT

N M Y

= (
ΦT

N MΦN M +λI
)−1
Λ−1/2

KM M
UT

KM M
KT

N M Y.
(4.7)

Once again, we can define a set of weights that are instead based on the partial kernel matrix

KN M ,

Ŷ =ΦN M PΦY = KN M UKM MΛ
−1/2
KM M

PΦY = KN M PK Y , (4.8)

from which we see that

PK Y = UKM MΛ
−1/2
KM M

PΦY

= UKM MΛ
−1/2
KM M

(
ΦT

N MΦN M +λI
)−1
Λ−1/2

KM M
UT

KM M
KT

N M Y.
(4.9)

By writing out explicitlyΦT
N MΦN M in terms of KN M we obtain [104]

PK Y = (
KT

N M KN M +λKM M
)−1

KT
N M Y. (4.10)

4.2 Classification
Classification techniques are typically used to assign discrete labels to a set of samples. While

a wide variety of classification algorithms exist, in the following we focus on the support vector

classifier, as it serves as the primary means of classification in Chapters 6 and 7.

4.2.1 Support Vector Machines
Support vector machines (SVMs) are a class of supervised methods that share many similarities

with perceptrons, the precusor to neural networks [128]. While SVMs can be used for both

classification and regression [135], the use of SVMs in this thesis is restricted to classification

problems. Hence, all future discussions of SVMs will refer exclusively to support vector

classification.

The goal of support vector classification is to classify points in the feature space by

dividing the feature space with a hyperplane xT w+b = 0. Points on the positive side of the
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hyperplane (xT w+b > 0) are given the designated label “+1”, while points on the negative

side of the hyperplane (xT w+b < 0) are labelled “−1”. The “easiest” such binary classification

problems are those cases in which the classes are linearly separable—that is, we are able to

classify perfectly the data by dividing the feature space with a single hyperplane. If the data

is linearly separable, however, it is often the case that there are multiple hyperplanes that

can perfectly separate the classes. In cases where there are many possible hyperplanes, how

do we know which one to choose? We can address this issue by introducing the concept of

the margin, which grants the hyperplane a “thickness”. By aiming to maximize the margin

surrounding the hyperplane while forbidding any samples from falling within the margin, we

consequently place the hyperplane at a location that maximizes the distances between the

hyperplane and the nearest samples. Such a placement ensures that the resulting classification

will generalize well to unseen samples [128]. This results in the optimization [73, 74],

min
w

1

2
‖w‖2 (4.11a)

subject to yi (xT
i w+b) ≥ 1 ∀i = 1, . . . , N . (4.11b)

However, linearly separable classification problems are rather rare in practical situations, and

in these cases it will be impossible to define a nonzero margin that does not contain any

samples. In order to accommodate situations where the data are not linearly separable, or

in problems that are linearly separable but we wish to allow for misclassifications to better

account for the presence of outliers, we can introduce slack variables ξi ≥ 0 and modify the

optimization problem of Eqn. 4.11 to read [73, 74],

min
w,ξ

1

2
‖w‖2 +C

∑
i
ξi (4.12a)

subject to yi (xT
i w+b) ≥ 1−ξi and ξi ≥ 0 ∀i = 1, . . . , N . (4.12b)

This is known as the soft margin SVM, where the regularization parameter C > 0 scales the

penalties imposed by the slack variables ξi , which serve as a measure for how strongly a

sample is misclassified. For samples that are correctly classified and lie outside the margin,

ξi = 0. Otherwise, ξi is proportional to the distance to margin boundary on the correct side

of the hyperplane, i.e., ξi = |yi − (xT
i w+b)|. For ξi > 1, the sample is misclassified, and for

0 < ξi ≤ 1, the sample is correctly classified, but lies inside the margin and is still penalized [72,

73]. Given this construction, we can more intuitively write Eqn. 4.12 as [72]

min
w,b

1

2
‖w‖2 +C

∑
i

max
[
0,1− yi (xT

i w+b)
]

. (4.13)

However, as Eqn. 4.13 is non-differentiable, it is typically easier to solve the optimization

problem of Eqn. 4.12 by minimizing the Lagrangian [73, 74],

L (w,b,α) = 1

2
‖w‖2 +C

∑
i
ξi −

∑
i
αi (yi (xT

i w+b)−1+ξi )−∑
i
µiξi , (4.14)
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Figure 4.1 – Schematic of an SVM on toy data, showing the decision boundary and select
points representing true positive (TP), false positive (FP), true negative (TN) and false negative
(FN) predictions. The background is colored according to the value of the decision function,
and misclassified points are shown with desaturated colors.

yielding w = ∑
i αi yi xi ,

∑
i αi yi = 0, and αi = C −µi , where αi ≥ 0 and µi ≥ 0 are Lagrange

multipliers. Through the Karush-Kuhn-Tucker conditions, the Lagrangian can be converted to

the dual form [73, 74],

L̃ (α) =∑
i
αi − 1

2

∑
i , j
αiα j yi y j xT

i x j (4.15)

and maximized with the constraints 0 ≤ αi ≤ C and
∑

i αi yi = 0 to obtain w and b. The

coefficients αi are only nonzero for points lying on the margin, which are known as the

support vectors. Once w and b are determined, the decision function (or confidence score)

f (xi ) = xT
i w+b for a sample xi can be computed and a class assignment made based on the

sign of f (xi ). The dual formulation also makes obvious how the SVM can be extended to

kernel methods. If the SVM is constructed in an RKHS, the dot product in Eqn. 4.15 is simply

replaced with a kernel function k(xi ,x j ) [72–74]. A schematic of a linear SVM on toy data is

provided in Fig. 4.1.

In the soft margin formulation, C is typically set using cross-validation. To understand

the effect of C on the margin, recall that even correctly classified points will be penalized if

they fall within the margin, as they have ξi > 0. Therefore, if C is large and the penalty for

violating the margin is high, the width of the margin will shrink to avoid penalties on correctly

classified examples. Conversely, if C is small and the penalty for violating the margin is low,

the αi are constrained to small values and the margin will be large.

While SVMs are powerful classification tools, they can generalize poorly if the there is a

strong imbalance in the class labels yi corresponding to the samples xi used to construct the
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model. In such cases, it is possible to define a class-specific penalty Ck that is applied to all

samples in to class k [136], so that samples belonging to the minority class(es) can be assigned

larger misclassification penalties.

Finally, we note that the discussion of SVMs above has been limited to binary classification

problems; to perform multi-class classification, where the samples xi can possess one of m

labels, one can construct an ensemble of binary classifiers according to the “one vs. one”

or “one vs. rest” schemes. In the “one vs. one” approach, m(m −1)/2 binary classifiers are

constructed, one for each unique pair of classes. The final class assignment for a sample is then

made based on the class that receives the most “votes” out of the m(m−1)/2 classifiers (though

the case in which multiple classes are tied for the most votes is ambiguous). In the “one vs.

rest” (also called “one vs. all”) approach, only m binary classifiers are constructed, each one

attempting to correctly distinguish the samples from class m from all other samples. The final

class assignment for a sample xi is made based on the class with the largest corresponding

decision function value f (xi ) [73]. While the “one vs. one“ approach requires a large number

of classifiers, each binary classifier involves only a subset of the samples. Conversely, the “one

vs. rest” approach trains fewer binary classifiers but each classifier must be trained on all of

the samples.
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5 Combined Learning 1

While the standalone unsupervised and supervised algorithms presented in Chapters 3 and

4 can be applied to great effect in informatics applications, a deeper understanding of the

available data can be acquired through combined, or hybrid, techniques that unify the su-

pervised and unsupervised learning paradigms. Such a unification can be achieved either

through algorithmic machinery that leverages both the regressors and regressor targets, or

through workflows that integrate supervised and unsupervised learning into a single pipeline,

where the outputs of one method are used as the inputs to another. This chapter will address

both approaches.

To begin, an overview of principal covariates regression (PCovR) [137–142] is provided,

serving as our primary example of a method that combines supervised and unsupervised

learning into a single algorithm; similar combined learning techniques include (kernel) par-

tial least squares [143–146] and (kernel) continuum regression [147, 148]. The central idea

underlying all of these methods is to generate a low-dimensional latent space from which we

can make regression predictions; the main distinguishing features of these approaches are in

the exact details of how the latent space is constructed.

This chapter concludes with a brief discussion of how supervised and unsupervised learn-

ing can be integrated into a single workflow to provide additional insight about relationships

within the data and to facilitate their interpretation.

5.1 Principal Covariates Regression
The aim of PCovR [137] is to construct a low-dimensional latent space that simultaneously min-

imizes the information loss incurred by projecting a set of samples X into the low-dimensional

space and the error in predicting the target properties Y from the latent space representation

T. This task is achieved by minimizing a weighted sum of the PCA and linear regression losses

(Eqns. 3.9 and 4.1), where the mixing parameter α is used to assign the relative importance of

1Sections 5.1–5.3 of this chapter are adapted with modifications under the Creative Commons Attribution 4.0
(CC BY 4.0) license from Helfrecht, B. A., Cersonsky, R. K., Fraux, G. & Ceriotti, M. Structure-Property Maps with
Kernel Principal Covariates Regression. Machine Learning: Science and Technology 1, 045021. doi:10.1088/2632-
2153/aba9ef (2020); all authors contributed to the writing of the manuscript from which the present text has been
adapted.
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Chapter 5. Combined Learning

Figure 5.1 – Schematic of the PCovR notation, showing the transformations between the input
features X, the latent space T, and the targets Y through the matrices P. Adapted from Ref.
[107] under CC BY 4.0.

the individual loss terms,

`=α‖X−XPX T PT X ‖2 + (1−α)‖Y−XPX T PT Y ‖2. (5.1)

To ensure that the unweighted magnitudes of two terms of the loss function are approximately

equal, we enforce that X and Y have been columnwise centered and subsequently scaled to

have a Frobenius norm of 1. The derivation that follows is based closely on the original formu-

lation of PCovR [137] with some notational differences that make transparent the relationship

between PCovR and the methods introduced in Chapters 3 and 4, as well as the extensions

described in Sections 5.2 and 5.3. A schematic of the notation scheme is presented in Figure

5.1.

PCovR can be formulated in one of two ways. The first, which we refer to as sample-space

PCovR, involves the diagonalization of a modified Gram matrix of the feature vectors and is

preferable when the number of features nfeatures is larger than the number of samples nsamples.

The second, which we call feature-space PCovR, is more suitable when nsamples > nfeatures, and

involves the construction and diagonalization of a modified covariance of the input features.

Both approaches yield the same latent-space projections and regression predictions.

Sample-space PCovR

Minimizing the PCovR loss in Eqn. 5.1 is most straightforward when we impose orthonormality

in the latent space and endeavor to find projections T̃ = XPX T̃ such that T̃T T̃ = I. If we define

PT̃ X = T̃T X and PT̃ Y = T̃T Y, we can rewrite the loss as

`=α‖X− T̃T̃T X‖2 + (1−α)‖Y− T̃T̃T Y‖2. (5.2)
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Rather than directly minimizing this loss, we can equivalently maximize the similarity

ρ = Tr
(
αT̃T̃T XXT + (1−α)T̃T̃T ŶŶT )

(5.3)

= Tr
(
αT̃T̃T XXT + (1−α)T̃T̃T XPX Y PT

X Y XT )
, (5.4)

where we have substituted Y with the regression approximation Ŷ = XPX Y = X(XT X)−1XT Y;

the similarity is invariant to this substitution as a result of the definitions of Ŷ, T̃, and the cyclic

properties of the trace. If we define the modified Gram matrix as

K̃ =αXXT + (1−α)XPX Y PT
X Y XT , (5.5)

we can more compactly write the similarity as

ρ = Tr
(
T̃T K̃T̃

)
, (5.6)

from which we can see that the similarity is maximized when the latent space projections

T̃ are the principal eigenvectors of the matrix K̃, i.e., T̃ = ÛK̃. We can additionally define a

set of latent space projections T that become consistent with those of linear-kernel KPCA

(and thus standard PCA and classical MDS) as α→ 1 by multiplying the orthogonal latent

space projections T̃ by the corresponding square roots of the eigenvalues of K̃ to give T =
T̃Λ̂1/2

K̃
= K̃ÛK̃Λ̂

−1/2
K̃

. The matrix PX T that transforms the input features X to the latent space

representation T is thus

PX T = (
αXT + (1−α)PX Y PT

X Y XT )
ÛK̃Λ̂

−1/2
K̃

, (5.7)

and we can similarly define a matrix PT Y corresponding to the regression weights for the

prediction of the targets Y from the latent space representation T,

PT Y = (
TT T+λI

)−1
TT Y =

λ→0
Λ̂−1/2

K̃
ÛT

K̃
Y. (5.8)

We can also construct the matrix PT X that reconstructs the original features from the latent

space by regressing instead on the original features, yielding

PT X = Λ̂−1/2
K̃

ÛT
K̃

X. (5.9)

Asα→ 0, the regression weights PX Y = PX T PT Y are those of the pure linear regression solution

in X as long as the number of latent space components is greater than or equal to the number

of columns of Y.

Feature-space PCovR

The optimal PCovR projections can also be determined by diagonalizing a modified covariance

matrix C̃ in place of the modified Gram matrix in Eqn. 5.5. Given that I = T̃T T̃ = PT
X T̃

XT XPX T̃ =
PT

X T̃
CPX T̃ , we can see that C1/2PX T̃ is orthogonal and thus rewrite the similarity function from
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Eqn. 5.6 as

ρ = Tr
(
PT

X T̃
C1/2C̃C1/2PX T̃

)
, (5.10)

introducing

C̃ = C−1/2XT K̃XC−1/2

= αC+ (1−α)C−1/2XT ŶŶT XC−1/2.
(5.11)

The similarity is maximised when the orthogonal matrix C1/2PX T̃ matches the principal

eigenvectors ÛC̃ of C̃, i.e. PX T̃ = C−1/2ÛC̃. In general PX T̃ PT̃ X = C−1/2ÛC̃ÛT
C̃

C1/2 is not a

symmetric matrix, and so it is not possible to define an orthogonal PX T such that PT X = PT
X T .

Similarly to sample space PCovR, we can obtain projections T that reduce to those of PCA,

linear KPCA, and classical MDS from the orthogonal projections T̃ by multiplying by the square

root of the eigenvalues of C̃, so that

PX T = PX T̃ Λ̂
1/2
C̃

= C−1/2ÛC̃Λ̂
1/2
C̃

, (5.12)

from which we can determine the matrices PT X and PT Y ,

PT X = Λ̂−1/2
C̃

ÛT
C̃

C1/2 (5.13)

PT Y = Λ̂−1/2
C̃

ÛT
C̃

C−1/2XT Y. (5.14)

5.2 Kernel Principal Covariates Regression
Principal covariates regression can be extended to nonlinear analyses through the use of

kernel methods. This can be achieved by substitutingΦ for X (and being centered and scaled

likewise) to construct the augmented kernel matrix

K̃ =αK+ (1−α)ŶŶT , (5.15)

which is similar to Eqn. 5.5 except that K is the kernel matrix corresponding to the RKHS

features Φ and Ŷ = K (K+λI)−1 Y is the kernel ridge regression solution for Y. A schematic

similar to that of Fig. 5.1 is provided for the KPCovR notation in Fig. 5.2. Just as in PCovR, the

unit variance projections T̃ are given by the principal eigenvectors ÛK̃ of K̃, with the modified

projections T = T̃Λ̂1/2
K̃

defined accordingly. The projections T thus approximate the features Φ̃

for the RKHS corresponding to the modified kernel K̃ = Φ̃Φ̃T .

Given that we typically wish to avoid explicit computation of the RKHS features, we can

determine the latent space representations by performing the projection directly from the

kernel matrix such that T = KPK T ,

PK T = (
αI+ (1−α) (K+λI)−1 YŶT )

ÛK̃Λ̂
−1/2
K̃

. (5.16)

We determine the matrix PT Y that enables predictions of properties from the KPCovR latent
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Figure 5.2 – Schematic of the KPCovR notation, showing the transformations between the
input kernel matrix K, the latent space T, and the targets Y through the matrices P. Adapted
from Ref. [107] under CC BY 4.0.

space T just as in the linear case (Eqn. 5.8). For completeness we can similarly define the

matrices PT X and PT K by regressing from T onto X and K, but these transformations are of

less practical utility.

5.3 Low-Rank Kernel Principal Covariates Regression
Just as it is possible to construct low-rank versions of KPCA and KRR, one can also use the

Nyström approximation to derive a low-rank version of KPCovR. This is accomplished by

performing feature-space PCovR on the Nyström approximations to the RKHS featuresΦN M =
KN M UKM MΛ

−1/2
KM M

, so that the covariance reads

C =ΦT
N MΦN M (5.17)

=Λ−1/2
KM M

UT
KM M

KT
N M KN M UKM MΛ

−1/2
KM M

, (5.18)

and can be used to define the modified KPCovR covariance

C̃ = αC

+ (1−α)C1/2 (C+λI)−1Λ−1/2
KM M

UT
KM M

KT
N M Y

×YT KN M UKM MΛ
−1/2
KM M

(C+λI)−1 C1/2.

(5.19)

We can thus define a matrix PΦT analogous to Eqn. 5.12,

PΦT = C−1/2ÛC̃Λ̂
1/2
C̃

, (5.20)

through which we can define the matrix PK T ,

PK T = UKM MΛ
−1/2
KM M

C−1/2ÛC̃Λ̂
1/2
C̃

, (5.21)
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and the matrix PT Y , noting the similarity with Eqn. 5.14 and removing the explicit dependence

on the approximate RKHS features,

PT Y =Λ̂−1/2
C̃

ÛT
C̃

C−1/2Λ−1/2
KM M

UT
KM M

KT
N M Y. (5.22)

The inverse transformation matrices PT K and PT X can again be defined through regressions

from the latent space projections T.

5.4 Generalized Convex Hull
It is a commonly used tactic to predict the thermodynamic stability of a multiphase material

or chemical system through a convex hull construction [149], where the most stable phase, or

mixture of phases, is that with the lowest Gibbs free energy. In these constructions, the Gibbs

free energy is usually represented as a function of the fractional composition of the system.

In materials discovery efforts, however, one is typically more interested in the relative

stability of many different materials rather than multiple phases of the same material. In such

cases, we can construct a convex hull that indicates which materials are the most thermody-

namically stable by abstracting the composition indicator to a general structural descriptor.

This was the approach taken by Anelli et al. in Ref. [150] in their generalized convex hull (GCH)

construction. The idea of the GCH is to iteratively build a convex hull in an abstract feature

space that reflects the probability that a particular structure lies on the convex hull, taking

into account any uncertainties in the computed energies and atomic structures.

At each iteration of the GCH construction, the error σGk in the (free) energy Gk relative to

the convex hull for a structure k is estimated as [150]

σGk = ε
√
σ−2

G

∑
i

gi (xk −
∑

x j∈H

wk j x j )2, (5.23)

where ε is the error in computed energies from a set of reference values for the dataset, H the

set of structures that lie on the current guess of the convex hull,σ2
G the variance of the structure

energies, wk j the coefficients describing the piecewise linear segments of the hull as a mixture

of adjacent vertices, and gi a function yielding the (ridge) regression predictions of the energies

based on changes in the features xk , which are typically taken to be a transformation of the

raw feature vectors through, e.g., KPCA. Similarly, uncertainties in the atomic structures are

calculated from small random displacements of the individual atoms in a number of reference

configurations [150],

σxk =
√

1

nsnr

nr∑
r

ns∑
s

(x(s)
r −xr )2, (5.24)

where nr and ns are the number of reference configurations and the number of random-

izations for each reference configuration r . xr denotes the features corresponding to the

configuration r , and x(s)
r the features of the s th randomization of the configuration r . Once

the uncertainties are obtained, the structural features and energies of each structure k are

28



5.5. Sequential Workflows

perturbed by the amounts σGk and σxk , and a new convex hull is constructed. Those con-

figurations that continue to appear on or near the convex hull after many successive error

estimations and perturbations are judged as having a higher probability of being stable. Given

these probabilistic measures of stability, the GCH procedure can be repeated multiple times,

gradually pruning away those structures with the lowest probabilities of being vertices until a

predetermined minimum probability threshold is surpassed [150]. The remaining configura-

tions are taken to be the vertices of the GCH.

5.5 Sequential Workflows
In addition to algorithms that combine supervised and unsupervised learning through a

unified loss function, such as PCovR-based methods, it is also sometimes useful to combine

supervised and unsupervised learning through sequential workflows. Perhaps the simplest

of these workflows are those employed by methods such as (kernel) principal components

regression [151–156] and clusterwise regression [157].

In principal components regression, one simply performs a regression analysis on the

principal components of the original regressor variables, and a subset or all of the principal

components may be retained for the regression. One typically wishes to retain the components

that are are most predictive of the targets or that are associated with the greatest regression

weight [158] which may or may not be the components associated with the greatest variance

[151]. The idea of applying principal component analysis to the predictor variables and using

the resulting components in other learning methods is quite general, as it can be used as a

preprocessing step for other algorithms.

The idea behind clusterwise regression is also rather simple: one partitions the feature

space through some clustering algorithm, and then applies linear regression independently to

each of the clusters. Thus for k clusters, k different regression models are constructed, each

tailored for a particular cluster. Like principal components regression, clusterwise regression

can be combined with other methods, including PCovR [159].

The general idea behind these kinds of workflows is to apply some learning algorithm,

supervised or unsupervised, on a set of data and pass the outputs to a different algorithm,

where they serve as the model inputs, additionally permitting the construction of specialized

workflows designed for a particular use case. This approach is used in Chapter 7, where the

decision functions from a support vector machine are used to define a PCovR-based feature

space on which a convex hull is constructed for the purpose of identifying synthesis candidates

from a large database of hypothetical zeolite frameworks.
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6 Structural Motifs in Proteins 1

6.1 Introduction
Understanding structure–property relationships in complex materials is often tied to the

understanding of local atomic motifs. This is particularly true for biopolymers, which ex-

hibit motifs at different length scales and whose shape largely determines their interaction

with other molecules, with proteins serving as the archetypal example. Interactions between

residues in the protein backbone give rise to a sequence of secondary structures, such as

α-helices and β-sheets, which further assemble into tertiary and quaternary structures. These

multiscale assemblies are primarily determined by hydrogen bonding and backbone dihedral

angle patterns, which can be considered as the “building blocks” of protein structure. Un-

derstanding the folding and assembly of biopolymers and predicting the structure of novel

macromolecules thus requires good knowledge of the hydrogen bonding and dihedral angle

motifs in these materials, including their structural characteristics, likelihood of occurring,

and how they interact to form larger patterns.

Consequently, much work has been dedicated to understanding and classifying hydrogen

bonds, ultimately producing several geometric and energetic criteria to identify their presence

or absence [161–170]. Likewise, examining the patterns of the backbone dihedral angles in a

macromolecule has found widespread use in chemistry, biology, and biophysics to aid in the

identification of protein secondary structure [171], often through the use of the Ramachandran

plot [172] to visualize the distribution of dihedral angles.

Such motif-based rationales have been successfully employed to identify the secondary

structure of proteins: the DSSP [173] and STRIDE [171] algorithms are two notable examples.

However, the identification of structural motifs in proteins is often based on a combination

of domain knowledge, human intuition, and—sometimes generous—approximations, and

may not be unique or readily applicable to different classes of macromolecules. Moreover,

motif definitions are typically based on assessments of specific structures or, in the case of the

hydrogen bond, focus only on a single subset of the atomic species that may be involved.

1This chapter is adapted with modifications under the Creative Commons Attribution 4.0 (CC BY 4.0) license
from Helfrecht, B. A., Gasparotto, P., Giberti, F. & Ceriotti, M. Atomic Motif Recognition in (Bio)Polymers: Bench-
marks From the Protein Data Bank. Frontiers in Molecular Biosciences 6, 24. doi:10.3389/fmolb.2019.00024 (2019);
BAH performed the data analysis and prepared figures, PG ran preliminary tests, and all authors contributed to the
design of the study and to the writing of the manuscript from which the present text has been adapted.
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In this context, a statistical framework that is capable of automatically identifying struc-

tural motifs and applicable to multiple domains without relying on heuristics would be ad-

vantageous. A purely data-driven definition of various motifs would be particularly useful

in the field of bioinformatics, where such motifs are used for structure prediction or in the

development of scoring functions for processes like protein-ligand docking. For example,

Rosetta, one of the most well-known energy functions, has been developed to predict the

structure of a protein given its amino acid sequence and local structural features such as

dihedral angles [174, 175].

Another situation where purely data-driven motif definitions would be advantageous is

in secondary structure classification. While several methods have been developed to classify

protein secondary structures [171, 173, 176–182], these methods tend to rely on amino acid

sequences, hydrogen bonding energies, geometrical criteria, or some combination thereof.

Machine learning techniques [183], and neural networks in particular [180, 181, 184–190] have

also been used to classify protein secondary structures based on a variety of features. Other

schemes have been developed to classify conformational patterns and secondary structure

using dihedral angles alone [182, 191], but there remains a lack of a truly agnostic method for

classifying (and predicting) secondary structures.

In this chapter, we demonstrate the utility of unsupervised machine learning in con-

structing a statistical definition of atomic-scale motifs. Given a descriptor of the atomic

environments, we construct a probability density of the feature space that is subsequently

partitioned using the Probabilistic Analysis of Molecular Motifs (PAMM) algorithm [110, 111],

which casts the probability density into a Gaussian mixture model (GMM), which we can use

to find the most probable motifs in the distribution. We construct the density distribution

using two different feature representations: one based on classical geometric descriptors such

as interatomic distances and dihedral angles, and another, more agnostic scheme that uses the

SOAP representation [84, 85, 192]. The motif “fingerprints” obtained through the partitioning

of the feature space probability density have a general definition and are transferable between

different systems. To illustrate this point, rather than selecting proteins of a given family or

with small variations in the sequence, we construct the data-driven motifs based on structures

from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB)

[64]. We compare the PAMM-based motifs to more “traditional” geometric and energetic

definitions of the hydrogen bond and to DSSP- and STRIDE-assigned secondary structures to

assess their similarity. We then use supervised learning to understand whether the differences

in secondary structure assignments are due to the identification of the motifs themselves or as

a result of a lack of descriptive power in the feature space.

6.2 Hydrogen Bonding Motifs
As a first benchmark of the application of automatic pattern recognition schemes to (bio)polymers,

we consider the case of the hydrogen bond (HB), for which we construct a data-driven def-

inition based on the PAMM scheme [110, 111] to identify modes in the probability density

corresponding to atomic patterns. As discussed in Section 3.1.1, the PAMM algorithm takes as

input a feature representation for which it constructs a kernel density estimation on a sparse
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grid obtained by subsampling the input data. A density-based clustering is then performed

to identify local maxima in the estimate of the probability density. Each identified cluster is

represented as a Gaussian mode, making it possible to define probabilistic motif identifiers

(PMIs), structural indicators, or “fingerprints”, that take a value between zero and one and

represent the degree of confidence by which a new local structure can be assigned to each

of the clusters. While there is no shortage of geometry-based HB definitions, and PAMM has

already been applied to the identification of HBs in water and ammonia [110, 193], the exercise

of identifying HBs in proteins offers a chemically diverse test case where there exist concrete,

domain-specific definitions for comparison.

6.2.1 Hydrogen Bond Data Selection
All of the structures used in the definition of the structural motifs, regardless of the underlying

descriptor used, were obtained from the RCSB PDB database on January 31, 2018 among those

for which experimental data is available. Note that the PDB contains redundant entries, i.e.,

protein structures with very similar sequences. These redundant structures were included

in our analyses, and so the resulting models are biased according to the redundancies of

the PDB. The downside of using experimentally determined structures as the basis of our

analysis is that the structural precision—particularly for hydrogen atoms—is limited and

varies greatly between PDB entries. Given that hydrogen positions are obviously central to the

definition of a hydrogen bonding motif, we included in our analysis only those protein crystal

structures obtained by X-ray diffraction with a resolution better than 1.2 Å where hydrogen

atom positions were available. Only 872 structures in the PDB met these requirements and

could be properly parsed. Given that each structure contains hundreds of hydrogen bonds,

this amount of data proved sufficient for our statistical analysis. From each protein structure,

we examined four different hydrogen bond flavors: (1) N – H···N, (2) N – H···O, (3) O – H···O,

and (4) O – H···N, considering only N, O, and H atoms with occupancy ≥ 0.95. Any oxygen and

hydrogen atoms belonging to water or other small molecules were excluded.

6.2.2 Geometry Descriptors
For the determination of hydrogen bonding motifs, we examined all triplets of atoms, for

which one atom (O or N) is considered as the putative donor, one atom (O or N) is considered

as the putative acceptor, and the third atom is the H atom taking part in the bond. We did

not use any additional criterion to identify which atoms could be part of a hydrogen bond,

which means that the analysis considers as putative hydrogen bonds also triplets in which

the three atoms are chemically bound or adjacent to one another in the backbone or in a side

chain. Most of the traditional definitions of hydrogen bonds would implicitly discard these

configurations; however, in the spirit of reducing the amount of domain-specific knowledge

implicit in the motif definitions, we have retained them to serve as a demonstration of the

robustness of a statistical, unsupervised approach for identifying distinct structural patterns.

Even in protein structures obtained from high-resolution X-ray diffraction, hydrogen

positions are often “refined”. In other words, each hydrogen atom is often fixed at a pre-

determined distance from the atom to which it is covalently bound [194, 195]. To ensure
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Figure 6.1 – Total probability density of dAH and dD A across all hydrogen bond flavors. The
distribution is peaked strongly at (dAH = 3.0, dD A = 2.25) as a result of common N−H···O
geometries in the protein backbone corresponding to N and O atoms in the same or directly
adjacent residues. Contours are equally spaced on a logarithmic scale. Reproduced from Ref.
[160] under CC BY 4.0.

that this artificial feature would not further bias the clustering, only the donor–acceptor and

acceptor–hydrogen distances were chosen as geometrical descriptors for each hydrogen bond.

Ignoring the donor–hydrogen distance does not limit the resolving power of a PAMM analysis,

but makes it impossible to automatically eliminate some configurations with very large donor–

hydrogen distances. For this reason, before proceeding with the clustering, we further filtered

the hydrogen bonds using the same geometric criteria that has been used in earlier studies

of hydrogen bonding in water [110, 193], which relies on all of the donor–acceptor, donor–

hydrogen, and acceptor–hydrogen distances (dD A , dD H , and dAH , respectively). Those triplets

for which dD H +dAH > 4.5 Å were discarded in addition to those in which dD H > dAH . The

latter refinement reduces redundancies when examining different hydrogen bond flavors, as a

given triplet with dD H > dAH in N – H···O is equivalent to that same triplet with dD H < dAH in

O – H···N; the donor and acceptor labels have just been interchanged. With these refinements,

we identified 418,865 N – H···N triplets, 918,014 N – H···O triplets, 42,650 O – H···O triplets, and

57,572 O – H···N triplets that were subsequently used to build the Gaussian mixture models.

The probability density of acceptor–hydrogen and donor–acceptor distances of the 1,437,101

donor–hydrogen–acceptor triplets across all four hydrogen bond flavors is shown in Fig. 6.1.

6.2.3 Clustering Parameters
To reduce the computational cost of the clustering procedure while ensuring adequate cover-

age of the (dAH ,dD A) feature space, we selected a sparse grid of 2,000 representative configu-

rations on which we computed a kernel density estimation of the probability distribution of

different motifs. The representative configurations were selected using FPS [106, 123]. The

KDE bandwidth and local scale factors were determined automatically as discussed in Ref.

[111]; the automatically determined bandwidth was scaled by a factor of 0.3 to account for the
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strong multi-modality of the distribution, while we found the automatic choice of quick-shift

distance to be appropriate. Clusters with weights less than 10−5 in the resulting mixture model

were discarded, as they were sparsely populated and did not meaningfully contribute to the

overall probability distribution and could be considered outliers.

6.2.4 Probabalistic Motif Indentifiers (PMIs)
For each hydrogen bond flavor, the PMI f (x) at a point x = (dAH ,dD A) is calculated as outlined

in Section 3.1.1 [110, 111],

f (x) = pHBG(x;µHB ,ΣHB )

P (x)+ζ , (6.1)

where pHB is the weight of the Gaussian G with mean µHB and covariance ΣHB describing

the cluster corresponding to the hydrogen bond, ζ is the background parameter, set to 10−5

for our purposes, and P (x) is the total probability density of the GMM,

P (x) =
N∑
k

pkG(x;µk ,Σk ), (6.2)

where N is the total number of clusters in the model.

For comparison, we used the following as the definition for the PMI of a distance–angle

geometry-based definition of the hydrogen bond:

f (x) =
1, dD A < 3.5 Å and dAH < 2.5 Å and dD H < 1.5 Å and ∠AD H < 30.0◦

0, else.
(6.3)

As another example, the DSSP [173] definition of an N – H···O hydrogen bond, which is

based on the distances d between the atoms participating in the C –– O bond of one residue

and the N – H bond of another residue, can also be used to construct a PMI. To construct the

DSSP-based PMI, we computed the required DSSP distances for all {N, H, C, O} quadruplets in

each protein for which all four atoms have occupancy ≥ 0.95, and mapped the quadruplet

to the (dAH ,dD A) space simply by taking dAH as the oxygen–hydrogen distance and dD A as

the nitrogen–oxygen distance. The DSSP hydrogen bonding dataset was based on the same

872 protein crystal structures used for our other HB analyses, but only 844 of these contained

valid (N – H, C –– O) pairs according to the criteria outlined in Sections 6.2.1 and 6.2.2. Hence,

the DSSP hydrogen bonding dataset included 552,281 potential N – H···O hydrogen bonds.

For each x = (dAH ,dD A), we computed DSSP HB PMI based on the joint probability

distribution

PHB (x) = P (x,EDSSP <−0.5 kcal/mol), (6.4)

where EDSSP is the DSSP electrostatic energy as defined in Ref. [173],

EDSSP = q1q2 f

(
1

dON
+ 1

dC H
− 1

dOH
− 1

dC N

)
, (6.5)
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where the factors q1 = 0.42e, q2 = 0.20e, and f = 332 gives the energy E in kcal/mol with d in

angstroms and e as the unit electron charge. Configurations with EDSSP <−0.5 kcal/mol are

considered by DSSP to be hydrogen bonds [173].

The DSSP-based PMI can then be constructed following Eqns. 6.1 and 6.2 by replacing

G(x;µHB ,ΣHB ) with the joint probability density PHB (x) and by defining the total probability

density as

P (x) = pHB PHB (x)+ (1−pHB )P (x,EDSSP ≥−0.5 kcal/mol). (6.6)

where the weight pHB is the fraction of (C –– O, N – H) pairs that have E <−0.5 kcal/mol.

In order to compare different HB definitions and to quantify how often they disagree in

identifying a local motif in the feature space as an HB, we introduce the quantity

δAB = 1

λ

∫
Ptot al (x) f A(x) fB (x)dx∫

Ptot al (x)
[

f A(x)+ fB (x)− f A(x) fB (x)
]

dx
, (6.7)

which is the probability that the PMIs A and B both identify the point x = (dAH ,dD A) as an HB

relative to the probability that either one or the other identify x as an HB. Ptot al (x) is the total

probability distribution of observing (dAH ,dD A) in the PDB dataset across all hydrogen bond

flavors. The numerator is thus the expected number of hydrogen bonds in the dataset that

are common to both A and B , and the denominator is the total expected number of hydrogen

bonds in the dataset (points x that are classified as hydrogen bonds by A only, B only, or both

A and B). The normalization factor λ is included to account for the fact that the PMIs f are

posterior probabilities rather than true probability distributions. Thus, λ is chosen such that

Eqn. 6.7 is equal to one when f A(x) = fB (x),

λ=
√√√√ ∫

Ptot al (x) f 2
A (x)dx∫

Ptot al (x)
[
2 f A(x)− f 2

A (x)
]

dx
·

∫
Ptot al (x) f 2

B (x)dx∫
Ptot al (x)

[
2 fB (x)− f 2

B (x)
]

dx
. (6.8)

6.2.5 Analysis of PMIs
Having outlined a data-driven, unsupervised definition of the hydrogen through the PMI and

a means of comparing different hydrogen bond definitions, we can begin to make assessments

of the relative merits of using unsupervised machine learning for identifying structural motifs

in complex materials. Serving as a benchmark for the analysis is the traditional distance–angle

hydrogen bond definition, the PMI of which is shown in Fig. 6.2(a) as the highlighted area

superimposed upon a contour plot of the the (dAH ,dD A) probability distribution including

all four HB flavors. The PMI for the distance–angle definition encompasses a large peak in

P (x) that indeed corresponds to hydrogen-bonded configurations, but it also includes a few

additional peaks. By inspection, we found that these additional modes are associated with

motifs in which the putative donor and acceptor atoms are part of the same amino acid residue

or where the H atom is not chemically bound to the donor. In practice, these geometries

would be discarded a priori because any practical application of the distance–angle definition

would likely take covalent bonding information into account; the specious geometries could
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Figure 6.2 – (a) Histogram of the acceptor–hydrogen and donor–acceptor distances across
all hydrogen bond flavors, plotted with log-spaced contours. The maximum at (dAH ≈ 2.1
Å, dD A ≈ 2.8 Å) corresponds to the typical H-bond range. Other maxima are associated with
other structural features, such as covalently bound groups on the side chains, geometries
in which the two electronegative atoms are in the same residue, or configurations in which
the hydrogen atom is not bound to the donor. The orange-shaded area corresponds to the
distance-angle PMI as defined in Eqn. 6.3. (b) Density plot of the PMI constructed using the
DSSP hydrogen bond definition with ζ= 10−5. The PMI is plotted on top of a histogram of
the distance features for N – H···O hydrogen bonds (discarding non-backbone groups, and
any triplet for which it is not possible to define a DSSP H-bond energy, e.g. due to partial
occupations), with log-spaced contours. DSSP identifies very clearly the H-bond peak, but
also picks up specious correlations corresponding to residues that are immediately adjacent
to one another (peak at (dAH ≈ 3.0,dD A ≈ 2.25)). Adapted from Ref. [160] under CC BY 4.0.

also be excluded by manually modifying the cutoff distances and angles in the PMI definition,

but this approach requires knowledge of the underlying probability distribution and thus

lacks transferability. Figure 6.2(a) thus underscores the complex heuristics and domain-

specific knowledge that is often necessary when using even well-established definitions to

recognize atomic-scale motifs, and serves as a warning of the risks one could incur when

blindly following these prescriptions in a different context than originally intended, e.g., where

assumptions of fixed chemical connectivity no longer hold.

Similar considerations apply to the DSSP definition for N – H···O HBs, whose correspond-

ing PMI is shown in Fig. 6.2(b). The DSSP definition follows more closely the main HB peak

of the distribution, as one would expect given that it is heavily fine-tuned for N – H···O bonds

between peptide groups. At the same time, DSSP also requires further heuristics to discard

specious correlations corresponding to N – H and C –– O in immediately adjacent residues,

where (dAH ≈ 3.0,dD A ≈ 2.25).

Contrast the distance–angle and DSSP HB PMIs to the top row of Fig. 6.3, which shows

the PAMM PMIs for each cluster in the GMMs, computed separately for each HB flavor. The

four distributions differ substantially from each other, and from the overall P (x) (Fig. 6.1),

while exhibiting multiple modes that are correctly identified by PAMM and assigned different

cluster indices. Some of these modes correspond to correlations between covalently bound

37

https://creativecommons.org/licenses/by/4.0/


Chapter 6. Structural Motifs in Proteins

Figure 6.3 – The top panels represent all the clusters identified by PAMM for each HB flavor.
The clusters are numbered in an arbitrary order, and the colors reflect the cluster that is
dominant in each region, as determined by its corresponding PMI (as defined in Eqn. 6.1,
computed with ζ= 10−5). The bottom panels highlight the PMI of the cluster associated with
the hydrogen bond. Reproduced from Ref. [160] under CC BY 4.0.

atoms, while others correspond to longer-range correlations. For each flavor, the cluster that

corresponds to the hydrogen bond is that with its center (mode) nearest to (dAH = 1.82 Å,

dD A = 2.74 Å) [110]. The corresponding PMIs, which are plotted in the bottom row of Fig. 6.3,

identify with great precision the region in the probability distribution that corresponds to

the HB, and eliminate automatically the specious configurations due to adjacent residues or

covalently bound groups without the need for additional heuristics.

A PAMM clustering of backbone-only N – H···N and N – H···O triplets is shown in Fig. 6.4.

No hydrogen bond cluster is evident in the N – H···N case, suggesting that the N – H···N hydro-

gen bonds we observe occur almost exclusively between amino acid side chains. Similarly, the

shape and location of the backbone-only N – H···O hydrogen bond PMI is very similar to that

of the total N – H···O hydrogen bond PMI, suggesting that the N – H···O hydrogen bonds are

predominantly those existing in the protein backbone. Note that the distribution for N – H···O
configurations in the backbone (Fig. 6.4) is different from the distribution in the DSSP def-

inition (Fig. 6.2(b)), which also considers backbone N – H···O geometries. This is because

the DSSP definition applies additional constraints on the types of “acceptable” geometries,

namely that the N and O atoms must be in different residues and that the H atom must be

bound to the N atom, again illustrating the importance of domain-specific knowledge in

heuristic-based definitions and their resulting lack of transferability.

Fig. 6.3 also shows that different HB flavors correspond to noticeably different regions of

the (dAH ,dD A) feature space. This suggests that a substantial fraction of molecular patterns

would be misclassified if one tried to transfer the HB definition from one flavor to another.

As shown in Table 6.1, the probability that two definitions yield the same classification, as

measured by Eqn. 6.7, can be as low at 50%. Fig. 6.6 provides a visualization of the over-
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Figure 6.4 – PAMM clustering for N – H···O and N – H···N backbone geometries with a back-
ground parameter ζ = 10−5, where the donor and acceptor atoms are a part of the protein
backbone only. Reproduced from Ref. [160] under CC BY 4.0.

lap between the PMIs of the different HB flavors. The agreement between the data-driven

PMIs and the conventional distance–angle definition is even poorer, as shown in Table 6.2

and in Fig. 6.5. It should be stressed, however, that this is largely due to the inclusion of

correlations that are usually discarded by additional heuristics: if one computes the PMI

similarity using a probability distribution Ptot al (x) that discards atoms in the same or nearby

residues, the probability increases substantially, particularly for N – H···N and N – H···O, as

these are the flavors responsible for the majority of specious hydrogen bond geometries (e.g.,

intra-arganine or intra-histidine N – H···N triplets and backbone N – H···O triplets with donor

and acceptor atoms in directly adjacent residues). The increase in PMI similarity is generally

less pronounced when comparing two different hydrogen bond flavors because these PMIs

are derived from a PAMM GMM, which automatically recognizes the specious geometries as

separate motifs. This example, although simple, demonstrates how one can use data-analytic

techniques to extract definitions of molecular motifs based on experimental structural data. It

also serves as a reminder of how heuristic definitions can lack transferability, and how their

apparent simplicity is often contingent on a considerable amount of prior knowledge and the

enforcement of additional conditions.

6.3 Secondary Structure Motifs
Having compared automatic, unsupervised motif definitions against more “traditional” defini-

tions for the case of the hydrogen bond in proteins, we apply a similar analysis for the case of

backbone dihedral angle and secondary structure patterns, for which the variety and complex-

ity of motifs is much greater. Secondary structure patterns play a central role in rationalizing

the structure and behavior of proteins, and there exist well-established definitions based on

the identification of HBs along the protein backbone, such as STRIDE [171] and DSSP [173].

There is, however, a need for definitions of secondary structure that are based on continuous

structural coordinates, for instance, to bias atomistic simulations or to perform structure

searches [196, 197]. As an example of how one can use an automatic, unsupervised scheme
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Table 6.1 – Probabilities that two PMIs corresponding to different hydrogen bond flavors agree
that a point x is a hydrogen bond (Eqn. 6.7). The superscripts (i ) and (i +1) correspond to
probabilities δAB where Ptot al (x) excludes donor–hydrogen–acceptor triplets in which the
donor and acceptor atoms are in the same residue (i ), or additionally in adjacent residues
(i +1).

PMI A PMI B δAB δ(i )
AB δ(i+1)

AB

N – H···N N – H···O 0.92 0.93 0.94
N – H···N O – H···O 0.57 0.63 0.74
N – H···N O – H···N 0.60 0.59 0.60
O – H···O N – H···O 0.55 0.61 0.71
O – H···O O – H···N 0.60 0.68 0.85
N – H···O O – H···N 0.57 0.57 0.58

Table 6.2 – Probabilities that the hydrogen bond PMI and the distance–angle definition agree
that a point x is a hydrogen bond (Eqn. 6.7). The superscripts (i ) and (i +1) correspond to
probabilities δAB where Ptot al (x) excludes donor–hydrogen–acceptor triplets in which the
donor and acceptor atoms are in the same residue (i ), or additionally in directly adjacent
residues (i +1).

Bond Type δAB δ(i )
AB δ(i+1)

AB

N – H···N 0.56 0.65 0.89
N – H···O 0.60 0.71 0.93
O – H···O 0.63 0.65 0.68
O – H···N 0.33 0.39 0.53
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Figure 6.5 – Comparison between the PAMM PMIs of the four hydrogen bond flavors and
the distance–angle hydrogen bond definition superimposed on a histogram of the acceptor–
hydrogen and donor–acceptor distances for the hydrogen bond flavor of interest. Contours
are equally spaced on a logarithmic scale. Reproduced from Ref. [160] under CC BY 4.0.

such as PAMM to provide a definition of secondary structure motifs, we compare PAMM-based

motifs against the DSSP and STRIDE secondary structure definitions 2. To this end, we con-

structed PMIs based on two different feature representations. The first representation is based

on the Ramachandran dihedrals [172], which provide a simple, local description of the protein

backbone and whose correlation to secondary structure has been long appreciated [189, 191,

198]. The second representation, based on the SOAP descriptor, provides a more detailed

(though abstract) description of the atomic environment surrounding each backbone residue

while requiring minimal chemical intuition and being transferable to different systems, as the

only required information is the positions of the atoms in the protein backbone.

6.3.1 Dihedral Angle Representation
Because the calculation of dihedral angles φ and ψ is not sensitive to hydrogen atomic posi-

tions, the PAMM analysis of dihedral angles included all experimental protein crystal struc-

tures from the RCSB PDB (as of January 31, 2018) obtained from X-ray diffraction with a

resolution better than 1.5 Å, totaling 12,708 structures and 4,275,677 residues from which

dihedral angles could be extracted using Biopython [199]. Note again that no measures were

taken to discard redundant structures from the PAMM analysis, hence the resulting mixture

model is biased according to the redundancies of the PDB. In addition to the two-dimensional

2The DSSP motifs were calculated using version 2.2.1 of the software; no version information was available for
STRIDE
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Figure 6.6 – Comparison between the PAMM PMIs of the four different hydrogen bond flavors.
The linestyle of the box enclosing the label of the hydrogen bond flavor corresponds to the
linestyle of the log-spaced contours of the underlying (dAH ,dD A) distribution for that hydrogen
bond flavor. Reproduced from Ref. [160] under CC BY 4.0.
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(φ,ψ) representation, we constructed representations based on chains of φ and ψ angles in

three and five consecutive residues, resulting in six- and ten-dimensional feature spaces.

6.3.2 SOAP Representation
The same 12,708 structures used to build the dataset of dihedral angles were also used for

the SOAP-based feature representation 3. Although SOAP is a powerful descriptor, the high

dimensionality of the SOAP vectors makes PAMM pattern recognition based on these descrip-

tors computationally intractable for large datasets. Therefore, we first performed a principal

component analysis (PCA) of the SOAP vectors with the aim of reducing the dimension of

the input space for PAMM while maintaining the most discriminating SOAP features of the

individual proteins. To accelerate this process, we used an FPS subset of SOAP components

to reduce the input space for the PCA while maintaining its span. In particular, we selected

100 random structures and computed the SOAP vectors for all of the Cα atoms in the selected

structures, with the local environment comprising all C, N, and O atoms within a cutoff radius

of 6.0 Å, which is large enough to incorporate information on several neighboring residues.

From this collection of SOAP vectors, we selected 200 SOAP components via FPS, using the

squared Euclidean distance between the SOAP vectors as the measure of separation [200]. The

SOAP vectors centered around all Cα atoms were then computed for all structures just as they

were for the random subset, but only the FPS components were retained and used to build

the PCA representation; all other components of the SOAP vector were discarded. To match

the dimensionality of the backbone-dihedral-based representations, we constructed separate

representations including the first 2, 6 and 10 PCA components of the reduced SOAP vectors.

The computation of the SOAP vectors was carried out using quippy [201], expanding the

atomic density using 12 radial basis functions and 9 angular functions. The cutoff transition

width and width for the atomic Gaussians was set to 0.5.

6.3.3 Clustering Parameters
Fingerprints of backbone dihedral angle motifs were computed using PAMM, where the

underlying KDE was based on 4,000 sample points in the (φ,ψ) feature space selected with

FPS. A scaling factor of 0.15 was applied to the KDE bandwidth, and a scaling of the quick-shift

threshold of 0.20 was employed, as we found that the values determined automatically based

on the heuristics discussed in Ref. [111] were smoothing excessively the distribution, resulting

in a loss of resolving power. We determined the optimal parameters by monitoring the number

of clusters and their robustness as assessed by a bootstrapping analysis. For the six- and

ten-dimensional representations we again used 4,000 sample points for the KDE but selected

a bandwidth scaling factor of 0.30 and set the quick-shift scaling to 0.80.

Fingerprints for the SOAP-based motifs were computed similarly, using 4,000 KDE grid

3The atomic positions of the proline of residue 2 in chain E of structure 3ADM are identical to the atomic
positions of residue 5 of the same chain. Overlapping atomic positions causes the SOAP representation to fail, and
so residue 2 of chain E in structue 3ADM was discarded (in addition to the nitrogen of residue 3, which has identical
coordinates to the nitrogen of residue 6). Therefore, 4,275,676 residues were included in our SOAP analysis. These
residues—common to both the dihedral angle and SOAP datasets—were used for the support vector machine
computations of Q3 and Q8 scores, discussed in Section 6.3.6.
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points and a quick shift parameter of 1.0. The KDE bandwidth was chosen to beσi = fs
p

Tr(Σ),

where Σ is the covariance of the data in the feature space and fs is 0.20, 0.50, and 0.80 for the

two-, six-, and ten-dimensional representations respectively. Similar to the case of the HB, we

discarded clusters with weights less than 10−5 for both the dihedral angle and SOAP GMMs.

6.3.4 Analysis of PMIs
The PMIs for each of the Gaussians in a PAMM GMM of the dihedral angles φ and ψ are

shown in Fig. 6.7. The PAMM dihedral angle clustering agrees well with those obtained

by Hollingsworth et al. [191] and Nagy and Oostenbrink [182], who have previously de-

veloped classification schemes based solely on dihedral angles. However, we observe like

Hollingsworth et al. that dihedral angle patterns do not necessarily correspond to established

secondary structure definitions, which is made clear upon comparison of Fig. 6.8, which

shows 100,000 randomly selected dihedral angle pairs colored according to their DSSP and

STRIDE secondary structure assignments, and the clusters presented in Fig. 6.7. For reference,

the DSSP and STRIDE secondary structure classifications are as follows: B , isolated β-bridge;

E , extended strand; G , 310-helix; H , α-helix; I , π-helix; T , turn; S, bend (DSSP only); C , loop,

irregular element, or none of the above (“coil”). We use an “X ” to signify an amino acid residue

for which no secondary structure was assigned.

As a first step towards understanding the lack of correspondence between the dihedral

angle motifs and conventional secondary structure definitions, we also examined the cluster

assignments in the six-dimensional feature space. To facilitate the visualization of this higher-

dimensional feature space, we applied the Sketch-map dimensionality reduction method

[121–123] using 500 landmark points and setting σ= 2.5, aX = bX = 4, and aT = bT = 2; the

resulting projection is shown in in Fig. 6.9. The Sketch-map projection corroborates our

earlier observations that, with the exception of the helices and strands, any given secondary

structure is distributed widely across the high-dimensional space. As will be discussed in

Section 6.3.6, the lack of correspondence between the dihedral angle motifs and established

secondary-structure classifications is not due to an intrinsic lack of resolving power, but to

the fact that dihedrals emphasize different kinds of structural correlations so that secondary

structure motifs are not associated with separate modes of the feature space.

6.3.5 Probability Distributions
To quantify the agreement (or lack thereof) between the PMIs and conventional secondary

structure definitions, we can use a framework based on the joint and conditional probability

distributions of the PAMM cluster assignments and DSSP and STRIDE secondary structure

classifications. Given that each point in the feature space x can be associated with a single

amino acid residue, it can be paired with a DSSP or STRIDE secondary structure classification

y and a PAMM cluster assignment A with probability p(A)(x). The joint probability distribution

P (A, y) can thus be constructed by summing the cluster probabilities over all points xy with

secondary structure y ,

P (A, y) = 1

N

∑
xy

p(A)(xy ), (6.9)
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Figure 6.7 – PAMM clustering of all calculated dihedral angles with ζ= 0. Cluster numbers
are placed at the mode of the cluster, and each cluster has been colored differently. The
isocontours of the total distribution are equally spaced on a logarithmic scale. Reproduced
from Ref. [160] under CC BY 4.0.
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Figure 6.8 – Collection of 100,000 randomly selected (φ,ψ) pairs, separated according to the
DSSP and STRIDE secondary structure classification of each pair. Solid contours correspond
to the distribution of the secondary structure of interest; dashed contours correspond to
the total distribution of all φ,ψ angles. Contours are equally spaced on a logarithmic scale.
Adapted from Ref. [160] under CC BY 4.0.

Figure 6.9 – Sketch-map representations of 100,000 randomly selected points in the six-
dimensional φ,ψ space. Each point is colored according to its PAMM cluster assignment and
middle residue DSSP or STRIDE secondary structure assignment. The lack of clear grouping
observed among secondary structures suggests that secondary structure cannot be assigned
based on dihedral angles alone. The points that are colored by their PAMM cluster are also
sized based on the cluster weight; points belonging to a cluster with higher weight are larger.
Adapted from Ref. [160] under CC BY 4.0.
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6.3. Secondary Structure Motifs

Figure 6.10 – Joint and conditional probabilities for the secondary structures obtained from
DSSP and the clustering of dihedral angles from PAMM, where A is the cluster assignment
and y the secondary structure classification. Reproduced from Ref. [160] under CC BY 4.0.

where N is the total number of residues considered. Based on the joint probability, we can

compute the marginals P (A) and P (y) and the conditional probabilities P (A | y) and P (y | A),

which provide equivalent information and make it easy to identify the correspondence—if

any—between the PAMM-based PMI and the conventional definitions.

One can summarize the ability of the automatic definition to reproduce the classification

given by STRIDE or DSSP by viewing the joint probability P (A, y) in the framework of the

Q3 (or Q8) accuracy score [186]. Given a particular clustering arrangement, one or more

clusters can be selected that individually correspond to strands (B ,E ), helices (G , H , I ) or coils

(C ,S,T ) by assigning each cluster A the secondary structure that maximizes P (y | A). Thus, for

sets of clusters E ,H ,C corresponding to strands, helices, and coils, the Q3 score is the sum

QE +QH +QC , where

QE = ∑
i∈E

(P (i ,B)+P (i ,E)) (6.10a)

QH = ∑
j∈H

(
P ( j ,G)+P ( j , H)+P ( j , I )

)
(6.10b)

QC = ∑
k∈C

(P (k,C )+P (k,S)+P (k,T )) . (6.10c)

Fig. 6.10 gives the joint and conditional probability distributions of the PAMM cluster

assignment and the DSSP secondary structure assignment. (The probability distributions

using the STRIDE secondary structure assignment are very similar to those using the DSSP

assignment, and can be found in Appendix B.)

Fig. 6.10 shows that no one secondary structure (labelled by y ∈ {B , C , E , G , H , I , S, T, X })

is confined to a single PAMM cluster (labelled by A ∈ {1, . . . ,11}), through the helices (G , H , I )

and strands (B ,E) are more strongly localized than the other secondary structures, with

A = 1, y = E and A = 3, y = H being by large the most probable mutual assignments. The
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joint probability distribution, however, is not easy to interpret because of the widely varying

populations of the different clusters. For this reason, Fig. 6.10 also shows the conditional

probabilities, which normalize the joint assignments based on the DSSP and PAMM marginals,

yielding P (A | y) and P (y | A), respectively. The distribution conditional on DSSP assignments

shows that a large fraction of E and H motifs are assigned to PAMM Clusters 1 and 3, while the

distribution conditional on PAMM cluster shows that disordered motifs are more evenly spread

across all of the clusters. This comparison suggests that conventional heuristics are consistent

with the actual distribution of structures in well-characterized proteins when it comes to

well-defined sheet and helical motifs. On the other hand—at least when seen through the

lens of the Ramachandran angles—DSSP bends, turns and coils are not clearly identifiable

with separate peaks in the observed probability distribution. There are nevertheless clusters

that are associated with clear peaks in the feature space that are not associated with helices or

strands. This suggests that “disordered” sections of proteins exhibit substantial order on the

scale of the conformation of individual residues, and that looking at the statistics and correla-

tions of these local motifs might be a better approach to characterize disordered polypeptides

than trying to fit them within existing categories.

One can further contextualize the probability distributions with the framework of the

Q3 or Q8 score. Assigning Cluster 1 to the “strand” classification, Cluster 3 to the “helix”

classification, and associating all other clusters with the “coil” designation (see Fig. 6.7)

yields a Q3 score of 0.70 relative to DSSP and 0.72 relative to STRIDE. The rather low value

of the Q3 score is comparable to the reported match scores of DISICL [182] (with our PAMM

PMI-based method performing better relative to DSSP but more poorly relative to STRIDE),

which is also based solely on backbone dihedral angles. However, the Q3 score of our cluster-

based secondary structure assignments is substantially lower than other methods that rely

on dihedral angles in addition to amino acid sequences [189, 198], or Cα distances [176]. In

this context, the underperformance of our method in classifying secondary structure could

be given two different justifications. One is that the traditional secondary structure motifs

are based on rather arbitrary thresholds, which recognize configurations as separate modes

even when there are no clearly distinct maxima in the distribution of atomic configurations,

regardless of the (reasonable) choice of input representation. Another is that our specific

choice of representation, i.e. pairs of backbone dihedrals, is insufficient to distinguish between

different motifs because of its excessive locality. The latter hypothesis is supported by the

large overlap of different DSSP motifs in dihedral space (Fig. 6.8), and can be tested by using

different feature representations as the input to a PAMM analysis.

As a means of including more non-local information into the model while relying on

a representation based purely on dihedrals, we also performed a PAMM clustering on the

dihedral angles of consecutive residues, comparing the cluster assignment to the DSSP and

STRIDE secondary structure classifications of the middle residue in the sequence. Just as in the

two-dimensional case, in six dimensions (three consecutive residues) and ten dimensions (five

consecutive residues) the helices and strands are localized to one or two clusters, while the

other secondary structures are distributed across several clusters. (The probability distribu-

tions for the six- and ten-dimensional clusterings are given in Appendix B.) As a consequence,
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Figure 6.11 – Joint and conditional probabilities for the PAMM clustering of the first two
principal components of the reduced SOAP vectors describing each residue of the protein
backbone, where A is the PAMM cluster assignment and y is the DSSP secondary structure
classification. Reproduced from Ref. [160] under CC BY 4.0.

the Q3 score is largely the same among the two-, six-, and ten-dimensional representations

(see Table 6.3). Moreover, we observe that the Q3 score can be sensitive to the choice of

clustering parameters; relatively small changes to the parameters can change the resulting

GMM such that the Q3 score increases or decreases by ≈ 0.05−0.10. For example, reducing

the quick shift parameter from 0.90 to 0.80 in the ten-dimensional case roughly doubles the

number of clusters and the Q3 score increases from approximately 0.68 to 0.73 for both DSSP

and STRIDE.

To further explore the hypothesis of an insufficiently descriptive feature space serving

as the reason for the discrepancy between the PAMM-based motifs and the conventional

secondary structure definitions, we additionally analyzed the joint and conditional probability

distributions for motifs in the SOAP feature space. Because each individual reduced SOAP

vector is based on an expansion around the Cα atoms, each vector corresponds to a single

residue and therefore can be associated with a DSSP- or STRIDE-assigned secondary structure,

just as the dihedral angle representations, and the probability distributions and Q scores can be

computed similarly. The joint and conditional probability distributions of the clustered SOAP

vectors in the 2D feature space and DSSP secondary structure assignment are given in Fig. 6.11.

(The probability distributions relative to the STRIDE assignments can be found in Appendix

B, as well as those for the higher-dimensional SOAP-based representations.) Compared to

the dihedral angle probability distributions, the distributions based on a clustering of the

SOAP vectors are more diffuse. Instead of the helices and strands being confined to one

or two clusters as with the dihedral angles, in the SOAP clustering the helices and strands

are divided among several clusters. However, from the perspective of the Q3 score, the

SOAP representation performs as well as the dihedral angle representations, with scores in

the range of 0.70–0.74 for the two-, six- and ten-dimensional representations based on the

principal components of the SOAP vectors. Fig. 6.11 shows that even with the more complete

49

https://creativecommons.org/licenses/by/4.0/


Chapter 6. Structural Motifs in Proteins

description of local atomic environments provided by the SOAP-based description, there still

exists a lack of correspondence between the motifs in the feature space and conventional

secondary structure definitions. The fact that increasing the complexity of the environment

descriptors does not improve the match between PAMM PMIs and conventional secondary

structure motifs suggests that the discrepancy is not due to lack of descriptive power, but to

the fact that conventional motifs are not reflected in the environment distributions observed

in the PDB.

6.3.6 Supervised classification
To substantiate the hypothesis that conventionally defined structural motifs are not entirely

representative of the structural space inhabited by the proteins of the PDB, we can train a

supervised classification model to recognize DSSP or STRIDE motifs, as the performance of

the classification model gives an indication as to whether or not our feature representations

can adequately describe the structural features composing conventional secondary structure

definitions. To perform this classification task we used a support vector machine (SVM) [128] as

implemented in the scikit-learn Python package [202] to perform multiclass classification

on the dihedral angle and SOAP-based representations, using as the classification targets the

DSSP or STRIDE secondary structure labels. For each SVM model, we employed a “one vs.

one” classification scheme [203] with regularization parameter C = 1.0 and a Gaussian kernel

having width γ = 1/N f , where N f is the number of features. Furthermore, the SOAP PCA

and dihedral angle data were scaled to have zero mean and columnwise unit variance before

building the SVM. Of the approximately 4.3 million residues present in our dataset, we selected

200,000 residues at random (excluding those that were not assigned a secondary structure

by DSSP or STRIDE) to train and evaluate the SVM. Of these 200,000 residues, 50,000 were

randomly selected to serve as the training set, and the remaining 150,000 served as the test set.

The Q3 and Q8 scores resulting from SVMs built on the reduced SOAP representation and the

dihedral angle representation at various dimensionalities are given in Table 6.3, and are seen to

improve systematically when the dimensionality of the representation is increased—contrary

to what we observed with a PAMM analysis.

Fig. 6.12 show the learning curves of the Q3 and Q8 scores relative to DSSP for the

multiclass SVM. Each point in each curve is an average score over five separate constructions

of the SVM, each time using a new random subset of 200,000 residues. As learning saturates

more quickly for the descriptors of lower dimensionality, the asymptotic (large train set size)

classification accuracy of the supervised model indicates the limit that can be achieved with a

given environment representation. Learning curves and tabulated Q3 and Q8 scores for SVM

classification of STRIDE secondary structures is given in Appendix B.

The improving Q3 and Q8 scores for the dihedral angles and reduced SOAP representa-

tions in the SVM models coupled with the lack of obvious improvement in the cluster-based

Q scores confirms that the limiting factor in the association between motifs is intrinsic to

unsupervised learning. The reference heuristics—the DSSP and STRIDE secondary structure

definitions—are simply not well-represented in the probability distribution of the data in the

feature spaces that we use.
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Table 6.3 – Q3 and Q8 scores relative to DSSP for PAMM PMI and SVM predictions of secondary
structure based on a PCA of SOAP vectors and dihedral angles at various dimensionalities. The
reported SVM scores are an average over five separate constructions of the SVM, each time
using a new random subset of 200,000 residues, with 50,000 of these serving as the training set.

PAMM PMI SVM

Representation Q3 Q8 Q3 Q8

φ,ψ (2D) 0.71 0.61 0.78 0.67
φ,ψ (6D) 0.74 0.63 0.87 0.80
φ,ψ (10D) 0.73 0.61 0.88 0.82

SOAP PCA (2D) 0.73 0.58 0.75 0.61
SOAP PCA (6D) 0.72 0.58 0.84 0.73

SOAP PCA (10D) 0.71 0.55 0.90 0.79
SOAP PCA (100D) — — 0.95 0.89

Figure 6.12 – Learning curves of Q3 and Q8 scores relative to DSSP for the multiclass SVM
based on backbone dihedral angles and a PCA of the SOAP representation with various degrees
of information content (i.e., the dimensonality of the descriptor). The Q scores are represented
in the learning curves as errors, i.e., 1−Q. Reproduced from Ref. [160] under CC BY 4.0.
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This simple example highlights both the difference in unsupervised and supervised learn-

ing methods while also emphasizing the importance of the choice of feature representation. A

supervised learning scheme is well-suited to adapt an existing motif definition to a different

representation of atomic environments, and—in the limit of a sufficiently large train set—

serves as proof of whether the chosen representation is sufficiently complete to achieve an

accurate classification. An unsupervised clustering model, on the other hand, is useful for

finding new patterns in feature space. Provided that the representation is complete, it also

can serve as validation for established pattern recognition heuristics, showing whether the

presence of well separate motifs is robust to the choice of structural representation.

6.4 Conclusions
The work presented in this chapter serves as a demonstration for how supervised and unsu-

pervised learning can be used together to provide a more complete picture of the structural

patterns present in materials. We began by showing that unsupervised learning techniques,

namely Gaussian mixture models, are a flexible, generally applicable means of identifying

motifs in materials. While conventional, heuristic-based motif definitions require additional

domain-specific knowledge in order to capture the relevant motifs and avoid the specious,

unsupervised machine learning approaches often “do the right thing” and automatically

highlight statistically meaningful patterns with only minimal prior knowledge of the feature

space.

We analyzed the differences between traditional and data-driven definitions of hydrogen

bonds and secondary structure in experimental protein structures from the Protein Data

Bank to show that there can sometimes be large discrepancies between the conventional

and unsupervised motifs. In the case of the hydrogen bonds, we found the discrepancy was

largely due to imprecision and the manual intervention required to discard specious motifs

from the traditional distance–angle definition. For the case of protein secondary structure, we

found notable mismatches between the modes in increasingly complex feature spaces and

the patterns prescribed by the DSSP and STRIDE secondary structure assignments. Using

support vector classification, we showed that, despite the lack of correspondence between the

conventional and data-driven motifs, the conventional secondary structure labels could be

predicted rather well using feature representations based on sequences of backbone dihedral

angles and a PCA of the SOAP representation, suggesting that such structural descriptions

capture the relevant features used to define conventional secondary structure motifs, and

that the conventional notions of secondary structure in proteins do not map directly to

modes in the structure space. The idea of using supervised learning to validate unsupervised

representations is pursued further in Chapter 7, where both approaches are combined in more

complex ways to appraise hypothetical zeolite frameworks for experimental synthesis.
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7 Exploration of Zeolite Structures 1

7.1 Introduction
In Chapter 6, we established how unsupervised learning could be used to identify statistically

important structural motifs in a database of protein structures, using supervised learning to

quantify how well the feature space is able to represent conventional motif definitions. In the

present example, we demonstrate how supervised and unsupervised learning can be used to

analyze classes of materials for which the prototypical motifs are more complex, varied, and

difficult to represent with a general feature space. In particular, we evaluate several structural

descriptors in their ability to serve as feature representations for machine learning predictions

of the molar volumes and energies of zeolite frameworks. We use the resulting insight to

construct a map of local atomic environments and to identify from a collection of hypothetical

zeolites those that show the most promise for experimental synthesis.

Zeolites are nanoporous, crystalline silica-based materials primarily composed of corner-

sharing SiO4 tetrahedra, and may include heteroatoms such as Al, Ge, and P isomorphically

substituted for Si sites. Because of their stable, porous frameworks and versatile structures

and compositions, zeolites have found applications in gas storage [205, 206] and catalysis [207,

208]. Databases of real [209, 210] and hypothetical [54–56, 58, 59, 211] zeolites have previously

been screened for applications-specific materials discovery efforts, such as carbon dioxide

capture [212], but without any robust metric regarding the synthesizability of candidate

structures, such screening exercises still leave much to be desired. To shed light on this, recent

work has considered assembly [213, 214] of various rings [215] and cages [216] inspired by

known or hypothetical zeolites. While such approaches are logical, enumerating zeolite sub-

structures through the lens of known rings and cages can leave out many conceivable local

silica environments not yet encountered, which may be synthesizable [211] and important for

1Sections 7.1 and 7.2, and their corresponding subsections, of this chapter are adapted with modifications from
Helfrecht, B. A., Semino, R., Pireddu, G., Auerbach, S. M. & Ceriotti, M. A New Kind of Atlas of Zeolite Building
Blocks. The Journal of Chemical Physics 151, 154112. doi:10.1063/1.5119751 (2019), with the permission of AIP
publishing; BAH performed the machine learning analyses and prepared the corresponding figures, RS and GP
performed preliminary analyses and input processing and computed the classical descriptors, and all authors
contributed to the design of the study and to the writing of the manuscript from which the present text has been
adapted. Section 7.3 and its corresponding subsections contain work currently in preparation for submission; for
this work, BAH performed the machine learning analyses and prepared figures, and all authors (Helfrecht, Semino,
Pireddu, Auerbach & Ceriotti) contributed to the design of the study.
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d4r mtnd6r sodlov mfi
Figure 7.1 – Examples of composite building units.

investigating disordered silica structures leading up to zeolite crystals.

Zeolite structures are currently understood in terms of their framework topologies, which

are idealized descriptions of the connectivity of the corner-sharing tetrahedra. These topolo-

gies are analyzed, in turn, by identifying rings that form each structure, where an “n-ring”

involves n alternating – Si – O – atomic units. At the time of this writing, there are 242 topolo-

gies (of which 230 are fully connected) of fully ordered zeolite materials in the database of the

International Zeolite Association (IZA) [210] and the accompanying Atlas of Zeolite Structure

Types [209]. In the IZA database there are 36 topologies that can be synthesized as all-silica

zeolites, i.e., that are polymorphs of α-quartz.

7.2 A Map of Zeolite Environments
At its core, the Atlas of Zeolite Structure Types is a dictionary of zeolites organized alpha-

betically by a set of arbitrarily assigned three-letter codes. Each entry includes information

about the basic structural motifs present in the framework known as composite building units

(CBUs), which often take the form of ring-like or cage-like objects centered on empty space.

(Some examples of CBUs are given in Fig. 7.1.) The present organization of the Atlas can be

very useful if one seeks structural information about a particular, known zeolite, but is less

useful if one seeks to discover other zeolites with structural features similar to a certain zeolite.

Furthermore, CBUs are often defined and identified by inspection and can be difficult to

systematically represent in a numerical form for computational discovery efforts. To address

these shortcomings, we develop a map of zeolite environments wherein nearby entries share

similar structural features. To construct this map, we define descriptions of local, Si-centered

environments in analogy with CBUs, using local geometric features in addition to the SOAP

representation. We focus on atom-centered descriptions as they facilitate the mathematical

reconstruction of zeolite frameworks and their properties through summations over atoms

instead of void spaces.

7.2.1 Data Selection
Our analysis of zeolite structures and subsequent mapping of local environments is based on

the Deem SLC PCOD database [56] (hereafter referred to as the “Deem database”), which con-

tains hypothetical zeolite structures that are no more than 30 kJ/mol Si higher in energy than

α-quartz as computed with the shell-model-based Sanders–Leslie–Catlow (SLC) forcefield

[217, 218] in the program GULP [219].
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Given that the Deem database contains a few hundred thousand hypothetical zeolites,

each zeolite contains several Si-centered environments, and that a given feature representation

can contain thousands of components and/or require significant computational resources,

computing and analyzing the full SOAP vectors of every environment in the database is

impractical, if not computationally intractable. Hence, we reduced the dimensionality of

the input space by considering a subset of 10,000 structures from the approximately 330,000

structures in the database. The set of 10,000 structures was selected at a fixed stride according

to ID number, which results in a diverse sampling of the spacegroups possessed by the

frameworks. In addition, we considered a subset of 1,000 stride-selected structures from the

Deem database to test whether our results are influenced by the size of our selected subset.

We found that the results for the 1,000-structure sample yield similar conclusions to those that

can be drawn for the 10,000-structure sample, indicating that our results are likely converged

with respect to the structural diversity in the Deem database, and thus that our results can

be generalized to the full database. In this chapter we focus on our findings based on the

10,000-structure subset; the results for the 1,000-structure subset can be found in Appendix C.

7.2.2 Environment Descriptors
In the context of zeolite structure analysis, the use of geometric descriptors for classifying and

rationalizing structure–property relationships is already well-established [209, 220–222]. The

choice of the representation for a given zeolite is often motivated by physical and chemical

understanding and intuition regarding which structural features are relevant to the study of

certain properties. For example, when investigating catalytic properties of zeolites, one may

consider correlating acid-site strengths with Si – O – Al angular distributions [223]. On the

other hand, when considering diffusion of guest molecules through zeolite frameworks, one

typically uses zeolite ring distributions to rationalize transport properties [224].

As the first step in constructing our map of zeolite environments, we must decide on

a numerical representation of the relevant structural features. Traditionally, the diversity of

zeolites is often characterized by distributions over descriptors such as Si – O – Si angles [225],

Si – Si near-neighbor distances, and ring sizes [54–56, 224]. We refer to these conventional

representations as classical descriptors to emphasize the difference between these zeolite-

specific descriptors and more generally applicable representations such as SOAP, against

which we benchmark their performance. Schematic representations of the four atom-centered

descriptors that we consider for analyzing local zeolite environments are given in Fig. 7.2, and

the descriptors themselves are described in detail in the following subsections.

Classical Descriptors

Our set of classical descriptors is based on three widely used representations of chemical

environments in zeolites, namely Si – O – Si angles, Si – Si distances, and connected rings. The

distance- and angle-based descriptions are local, atom-centered features, and are appropriate

for representing properties that can be safely decomposed into additive, local contributions.

For instance, bonding interactions in interatomic potentials are often expressed in terms

of bond angles and distances [226, 227]. The distance- and angle-based representations
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Figure 7.2 – Schematic depictions of the descriptors used to represent the hypothetical zeolite
structures. A simple representation of the corresponding feature vector is given below each
classical descriptor (those based on Si – Si distances, Si – O – Si angles, and ring counts). The
SOAP feature vector is more complex, and can be understood as a three-body correlation
function based on averaging over all rotations of a “template” consisting of two arms of length
r and r ′ separated by an angle ω within a local atomic density with cutoff radius rc .

characterize the local environment of each Si as a vector of the Si – Si distances or Si – O – Si

angles between the central reference Si atom and the four nearest-neighbor Si atoms, as the

structures we study are composed entirely of Si tetrahedra. In order to make these representa-

tions independent of permutations of the atom indices, the vector elements are arranged in

descending order.

Ring-based descriptors have the potential to capture correlations on longer length scales,

and consequently may be more suitable for characterizing the topology of a given framework

than distance- or angle-based structural representations. Zeolite frameworks can be described

in terms of rings according to various definitions; in order to be able to apply an automated

analysis to a large database of structures, we base our descriptor on two mathematically

rigorous definitions, namely King’s criterion [222, 228] and the shortest path criterion [222,

229–231], as implemented in the R.I.N.G.S. code [222, 232]. In both cases, we translate the

list of detected rings in a given zeolite framework into vectors of features xs associated with

local Si environments by counting the number of times the central Si atom appears in s-sized

rings (since O atoms are also present in the rings, the atom-by-atom ring size is 2s, but here

we adopt the frequently used convention of naming a ring by counting only Si atoms). For

example, the ring vector for a Si atom in silica-sodalite (which are all equivalent by symmetry)

is [0,0,0,2,0,4,0, . . . ,0], indicating that each Si atom is part of two 4-rings and four 6-rings. The

ring descriptors that we compute are effectively ten-dimensional vectors, ranging from 3-rings

to 12-rings: we find no rings smaller than size 3 and no rings larger than size 12. In the following

we focus on the shortest-path definition, which gave marginally better performance than

King’s definition when used as the basis for predicting framework properties. A comparison of

descriptors based on different ring definitions is given in Appendix C.

SOAP Descriptor

We additionally compute feature representations for local Si-centered zeolite environments

using the SOAP power spectrum representation (see Section 2.1.2). We consider two different
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representations, one employing a cutoff radius of 3.5 Å for the local environment, and another

employing a cutoff radius of 6.0 Å, corresponding roughly to the first and second Si-neighbor

distances, respectively. Both representations were computed with quippy [201], using 12

radial basis functions, a spherical harmonics band limit of 9, a cutoff transition width of

0.3, and an atomic Gaussian width of 0.3, which leads to SOAP vectors with approximately

3,000 elements. As noted in Section 7.2.1, such large descriptors can become unwieldy when

used in conjunction with large collections of atomic environments. Consequently, to reduce

the dimension of the feature representation, we selected the 500 most diverse SOAP vector

components with FPS based on a random selection of 2,000 structures from the 10,000-

structure subset. (The FPS components for the 1,000-structure subset were computed based

on the full set of 1,000 structures.) The squared Euclidean distance between SOAP vectors

was used as the distance metric for the FPS procedure [200]. The SOAP vectors were then

computed for all 10,000 structures in the subset, but only the FPS components were retained.

Each SOAP vector thus describes an atomic environment that comprises a central Si atom as

well as all of the surrounding Si and O atoms within the cutoff radius. Oxygen atoms were not

considered as environment centers. While we deal here with all-silica frameworks, the SOAP

representation is equally applicable to zeolite frameworks with heteroatoms.

7.2.3 Machine Learning of Zeolite Properties
To objectively assess the performance of a given structural descriptor, we compute the perfor-

mance of kernel-based regression models for predicting the molar volumes and energies of the

zeolite frameworks using the descriptor as the model input. As the descriptors have different

nominal size scales, we are also able to examine the degree of locality of each property, i.e.,

the correlation lengths that are required to determine the overall behavior of that particular

property.

While machine learning models based on kernel methods can be quite powerful, they

can also be computationally expensive, especially for very large datasets. When working with

large amounts of data, as we do here, it can be useful to employ a low-rank approximation to

the true kernel matrix built by considering the kernel between each environment and a set of

representative environments. To this end, we used approximate kernel matrices constructed

through the Nyström approximation to perform KRR and KPCA, applying the latter to further

reduce the dimensonality of the SOAP-based descriptors for more level comparisons with the

classical descriptors. Our low-rank kernel methods employ a Gaussian kernel and a set of

2,000 representative environments selected with FPS [106, 123, 200] 2.

In our regression models, we applied a scaling δ = M ×Var(yN )/Tr(KM M ) to the target

property vector yN and to each kernel matrix, and we included an additional regularization

2For some of the ring descriptors, the dataset contains fewer than 2,000 unique feature vectors, in which case
only the unique representations were considered as representative environments. Additionally, to reduce memory
requirements in determining the SOAP-based representative environments, the collection of structures in our
dataset was divided into batches of 1,000, and 2,000 environments were selected by FPS from each batch. These
selected environments were then concatenated into a single list from which 2,000 final environments were selected,
again by FPS.
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λ2IM M so that the solution to our low-rank KRR model is,

wM = (λ2
1δKM M +λ2IM M +δ2KT

N M KN M )−1δ2KT
N M yN , (7.1)

where λ1 and λ2 are regularization parameters, and yN is a vector containing the known

structural properties for the N structures. The kernel matrices KN M are constructed according

to Eqn. 2.19, where the entry corresponding to a particular structure is expressed as a sum

over the kernel values associated with its constituent environments. The parameter λ1 was

optimized jointly with the Gaussian kernel width via five-fold cross validation on the full set

of structures in the 1,000- or 10,000-structure subsets with the aim of minimizing the mean

absolute error (MAE) of the regression; λ2 was set to 10−16×σ, whereσ is the largest eigenvalue

ofλ2
1δKM M+δ2KT

N M KN M . The same fold split was used across all models. The Gaussian kernel

width for the KPCA decompositions of the SOAP-based descriptors was set to the optimized

width determined for the predictions of the molar volume. We further constructed regression

models for predicting the molar volumes and energies using as input various numbers of KPCA

components of the SOAP descriptors. For these models, hyperparameters were optimized

using 500 principal components (the same dimensionality as the full SOAP vector).

In our KRR models for which the target property is the framework energy, we additionally

subtracted the mean energy per atom across all frameworks from the total framework energies,

and learn the centered energies on a per Si basis. Conversely, the framework volumes were not

centered before serving as inputs to our machine learning models for predicting the volume

per Si atom.

Framework Properties

To visualize the performance of the SOAP-based and classical descriptors in representing

zeolite structure–property relationships, we present a series of learning curves showing the

MAEs for the property estimation exercises as functions of the number of training points.

Building learning curves for the prediction of molar volume and energy enables head-to-

head comparisons of the information content in the various structural descriptors and offers

insights into the completeness and directness of a representation for describing a particular

property or set of properties [8, 12, 78]. In particular, the value of the MAE for small training

set sizes indicates whether the most prominent components of a representation correlate

strongly with a given property. The asymptotic behavior for large training set sizes indicates

how complete a representation is: the saturation (flattening to zero slope) of a learning curve

indicates that the learning potential of the feature representation has been exhausted, and

that predictions will cease to improve as additional training samples are added; conversely,

a substantial slope indicates that the model still has sufficient information to improve its

learning as the size of the train set is increased.

We report learning curves based on five-fold cross validation, as our main goal is to

make predictions specifically for the hypothetical zeolites in the Deem dataset rather than

generalizing to all possible zeolite structures, in which case an independent test set may be

used to compute the learning curves. The learning curves employed the same fold splits as the
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Figure 7.3 – Learning curves of the classical and SOAP descriptors for predictions of (a) volume
per Si atom and (b) energy per mol Si. The error for each point in the learning curve calculated
as the average of a five-fold cross-validation procedure using the optimal regularization and
Gaussian kernel width. (c) and (d) re-plot the learning curves of the classical descriptors
alongside the SOAP-KPCA descriptors with similar dimensionality (i.e., the number of features
composing the representation). Adapted from Ref. [204] with permission of AIP publishing.

hyperparameter optimizations; at each iteration of the cross validation for each training set

size ntrain, the model was trained on ntrain samples randomly selected from the corresponding

train fold and the property MAEs were evaluated on the corresponding test fold.

Figures 7.3(a) and 7.3(b) show the learning curves for predictions of the molar volume

and molar energy, respectively, using the full classical and SOAP descriptors as described in

Section 7.2.2. All three classical descriptors, based on Si – Si distances, Si – O – Si angles, and

shortest-path ring counts, perform poorly at predicting both volume and energy, saturating at

MAEs above 3 Å3/Si atom and 2 kJ/mol Si, respectively. The ring-based descriptor is marginally

better at predicting volumes compared to the distance- and angle-based descriptors, but it

is the worst classical descriptor for predicting energies. This is likely because the ring-based

descriptor only describes the distribution of ring sizes in a framework and does not account

for distortions or other geometrical factors to which the lattice energy is sensitive.

Using the SOAP descriptor with a 6.0 Å cutoff results in the best volume predictions

for all training set sizes, with MAEs as low as 1 Å3/Si atom. This is probably due to the

fact that accurate predictions of overall framework densities require information on larger

spatial scales. The SOAP descriptor with a 3.5 Å cutoff performs only slightly better than the

classical descriptors in predicting volumes, but yields the best energy predictions among all

the descriptors for smaller training set sizes, indicating that relatively local correlations are
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sufficient for making estimates of lattice energy to within approximately 1 kJ/mol Si. This is

perhaps not surprising, since a substantial contribution to the zeolite lattice energy can be

accounted for through nearest-neighbor bonding geometries, and thus the 3.5 Å based model,

where only the first-neighbor tetrahedral information is included, yields reasonably accurate

energy estimates even when the training set has a modest size. However, the learning potential

of the 3.5 Å SOAP descriptor plateaus as the training set size approaches 1,000 structures. The

6.0 Å SOAP representation continues to improve at larger training set sizes, yielding energy

predictions with MAEs as low as 0.4 kJ/mol Si, even though it begins to saturate towards 8,000

training frameworks, as it cannot fully describe long-range electrostatic interactions; in order

to account for such interactions, a nonlocal feature representation such as LODE [233, 234]

may be required. Overall, Figures 7.3(a) and 7.3(b) show that the SOAP descriptor with a 6.0 Å

cutoff does an excellent job of accurately capturing zeolite energy and molar volume, while

the classical descriptors do not.

To investigate whether the improved predictive performance and learning ability of the

SOAP descriptor is a result of the intrinsic quality of the descriptor itself, or merely of the fact

that the SOAP representation incorporates more information through higher-dimensional

vectors, we compare the learning curves of the classical descriptors with those of the SOAP

descriptors whose dimensionality, i.e., the number of features composing the representation,

has been reduced through KPCA. Because the distance- and angle-based descriptors are

represented as four-element vectors (because of the tetrahedral coordination around Si) and

the ring vectors contain ten distinguishing elements (because the ring sizes in our data set

range between 3 and 12), we find it instructive to compare the classical descriptors with the

first four and ten principal components of the SOAP representations, shown in Figs. 7.3(c)

and 7.3(d). For predictions of the molar volume (Fig. 7.3(c)), the SOAP-KPCA descriptors

tend to perform better than the classical descriptors regardless of the dimensionality of

the representation, though the performance gain of the 3.5 Å SOAP-KPCA descriptors over

the classical descriptors is rather small or even nonexistent at large training set sizes. For

predictions of the molar energy (Fig. 7.3(d)), the ten-dimensional 3.5 Å SOAP-KPCA descriptor

performs the best, and the four-dimensional 3.5 Å SOAP-KPCA descriptor performs quite

similarly to the classical descriptors. The 6.0 Å SOAP-KPCA descriptors, on the other hand,

perform worse than the distance- and angle-based descriptors at comparable dimensionality,

but better than the ring-based descriptor. The behavior of 6.0 Å SOAP-KPCA can be attributed

to the fact that 6.0 Å SOAP considers a larger local environment, and therefore, a much larger

amount of information about the surroundings of a single Si atom. Because KPCA is not

guaranteed to select the correlations that are most relevant to the regression [151], achieving

accurate predictions requires the inclusion of a larger number of components in order to

ensure that the most important structure–property correlations are accounted for. Indeed,

in predictions of the molar energy, we find that the 3.5 Å SOAP representation outperforms

the 6.0 Å SOAP representation for a given number of principal components unless upwards of

300 components are included. (Learning curves for the SOAP-KPCA representations with a

larger range of principal components are provided in Appendix C.) Overall, we note that the

SOAP-KPCA models generally equal or surpass the performance of the classical descriptors
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at predicting the molar energies and volumes, even after dimensionality reduction. This

suggests that SOAP inherently contains more information about the local structure of a zeolite

framework than do the classical descriptors, and the more accurate property predictions

are not merely a result of the flexibility afforded by the higher dimensionality of the feature

representation.

Environment Property Contributions

Using the additive relationships for kernels between structures and environments outlined in

Section 2.4, the optimal weights wM (Eqn. 7.1) from our low-rank KRR models can be used to

“decompose” the known structural property values yN into contributions from the n individual

atomic environments ŷn across the whole dataset [108],

ŷn = KnM wM . (7.2)

This allows us to use the machine learning models described in Section 7.2.3 to examine

structure–property relationships on the scale of local atomic environments based on the

known properties of whole structures. For the purpose of this exercise, the KRR models are

trained on the full subset of 1,000 or 10,000 structures, and the property contributions are

computed for all environments in the subset.

In Fig. 7.4 we examine the relationship between the reference framework properties

and the decomposed environment properties. The middle panel of Fig. 7.4 shows a KDE in

volume–energy property space for the Deem frameworks and their constituent environments,

representing the probability that a particular framework or environment possesses a particular

combination of molar volume and energy. The distribution of environments in the volume–

energy property space is unimodal and reflects a continuum of property combinations. While

the distribution of environment energies is much broader than that of the frameworks, both

appear to share the low-energy “edge” highlighted by the thick red line to guide the eye. This

energy–density correlation has already been noted by Pophale et al. [56] in their description

of the Deem database, where they also note that the framework properties of real, known

zeolites tend to lie along this “edge” in the property space [235], which has been attributed to

the limitations of current solution-based synthesis approaches [236].

Given the broader distribution of environment properties compared to those of the

whole frameworks, it is instructive to examine how the environment properties manifest

themselves within a given framework. The atomic snapshots in the top and bottom panels

of Fig. 7.4 provide two notably different examples: the top panel shows the atomic structure

of the framework containing the median-energy environment in our 10,000-structure subset

(framework A), and the bottom panel shows the framework containing the highest-volume

environment (framework B). Framework A has a rather homogeneous structure, and as a

consequence the individual environments possess a smaller range of property values. In

contrast, framework B comprises environments with a wide range of property values that vary

smoothly throughout the atomic structure. There also exists a clear, qualitative correlation

between the local, Si-centered volumes and environments within framework B that is not as
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easily discernible in framework A as a result of its higher relative homogeneity. Finally, we

note that the highest-volume environment of framework A borders a very large pore, and that

the local volumes surrounding the pore decrease as one moves towards the ends of the pore

that have smaller radii of curvature and where the local atomic density is greater, serving as an

intuitive check on our decomposition of structural properties into local contributions.

The qualitative correlation between the environment properties and local structural

characteristics evident in Fig. 7.4 raises the question of whether such correlations can be

quantified. To answer this question, we take advantage of the the results of Fig. 7.3, which

shows that the SOAP descriptor is able to effectively account for the molar volume and energy

of zeolite structures, even when truncated through KPCA.

In Figs. 7.5(a) and 7.5(b), we show the the relative variances σ2
K PC A of the kernel principal

components (KPCs) and their Pearson correlation coefficients with the environment ener-

gies ρK PC A,E and volumes ρK PC A,V for the first 50 components of the 3.5 Å and 6.0 Å SOAP

descriptors, respectively. By construction, the KPCs are sorted in decreasing order according

to the level of variance in the original data that they can individually account for. For the 3.5 Å

descriptor, the first three components, highlighted with open circles, account for 52%, 13%,

and 6% of the total variance, together explaining 71% of the structural diversity encoded in

the SOAP vectors as measured by the component-wise variance. For the 3.5 Å descriptor, the

first component is the most descriptive by far, with the second component having a relative

variance of only 0.25.

In contrast, all three of the top components for the 6.0 Å descriptor capture a substantial

portion of the structural diversity, with relative variances all exceeding 0.6. More specifically,

the first component of the 6.0 Å SOAP descriptor explains approximately 24% of the variance;

the second and third components each account for an additional 18% and 16% of the variance,

respectively, so that 58% of the diversity is accounted for by the first three components. The

lower explained variance ratio for the first three components of the 6.0 Å descriptor compared

to the 3.5 Å descriptor can again be attributed to the fact that the “information content” of the

6.0 Å descriptor is larger and cannot be condensed as efficiently.

We can additionally examine the Pearson correlation coefficients between the KPCs

and the environment properties to quantify the correlations between the structural features

encoded in the SOAP vectors and the local volume and energy contributions. The Pearson

correlation coefficients for the 3.5 Å SOAP representation in Fig. 7.5(a) indicate that the

first component correlates reasonably well with both the energy and volume, but the next

few components show somewhat weaker correlations. The fourth and seventh components

then correlate rather well with the environment volumes, and the ninth component with the

environment energies, emphasizing the fact that even components with low relative variances

can be important in regression tasks [151]. Compared to the 3.5 Å SOAP representation, the

low-index components of the 6.0 Å descriptor more consistently exhibit stronger correlations

with the environment properties. Fig. 7.5(b) shows that KPCs 1 and 2 correlate strongly with

volume, while KPCs 2 and 3 correlate strongly with energy. Overall, Fig. 7.5 suggests that

a three-dimensional picture of structural diversity using the first three KPCs can reveal the

essential features of the Deem zeolite data set.
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Figure 7.4 – Kernel density estimation of all environments in the 10,000-structure sample in
energy–volume space (middle). Atomic snapshots of the frameworks containing the median-
energy (top) and highest-volume (bottom) environments are also provided; the locations of
these environments and their parent frameworks in the volume–energy property space are
denoted with closed and open circles, respectively. In the left half of each atomic snapshot,
the Si atoms are colored according to their volume contributions to the parent framework; in
the right half, each Si atom is colored by its energy contribution. Reproduced from Ref. [204]
with permission of AIP publishing.
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Figure 7.5 – Pearson correlation coefficients between the first 50 KPCs of the (a) 3.5 Å SOAP
representation and (b) 6.0 Å SOAP representation and the decomposed environment volumes
and energies in the 10,000-structure sample. The relative variance in the KPCs at each of
the first 50 components is also plotted. The correlation coefficients and relative variance of
the first three components are highlighted with open symbols. Adapted from Ref. [204] with
permission of AIP publishing.

7.2.4 Mapping Zeolite Environments
Through the results presented in Section 7.2.3, we have shown that a SOAP-based representa-

tion can be used to build models for accurate predictions of the molar volumes and energies

of hypothetical zeolites and that the same representation can be used to decompose structure-

wide properties into contributions from individual atom-centered environments that both

qualitatively and quantitatively correlate with local structural features. Consequently, we

can use the KPCA decomposition of the SOAP feature vectors to construct an intuitive map

of zeolite building blocks, analogous to the enumeration of CBUs in the IZA database [209,

210], and to the list of “natural building units” given by Blatov et al. [216]. The primary distin-

guishing feature of our approach is that we formulate our zeolite building blocks in terms of

atom-centered representations, allowing such environments to be averaged to yield macro-

scopic properties of overall frameworks such as molar energy and volume. In principle, any

set of atom-centered properties could be superimposed onto the map, though the existence of

correlations between the properties and the KPCA-based coordinate system is not guaranteed;

a map in which the projections correlate strongly with a set of reference properties can instead

be obtained, by construction, through PCovR (see Section 5.1).

Our SOAP-based map of zeolite environments is presented in Fig. 7.6, where the envi-

ronments are plotted in the space defined by the first three KPCs of the 6.0 Å SOAP feature

vectors 3. As a consequence of using the KPCs as the coordinate system of the map, the

environments are naturally organized so that the distance between them is related to their

structural similarity, and by extension (though to a lesser extent), their properties. The latter

attribute stems from the fact that the first few KPCs of the 6.0 Å SOAP representation correlate

with the local volumes and energies. In this way, our mapping scheme provides the possibility

of finding similar zeolite environments by identifying a point of interest and searching the

3An interactive version of the environment map for the 1,000-structure set is provided as an example system for
the interactive viewer chemiscope [237], available at https://chemiscope.org
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surrounding area.

Each point (environment) in Fig. 7.6 is colored according to its energy contribution and

is sized according to its volume contribution to its parent framework, and several environ-

ments are highlighted to provide examples of the “building blocks” present in the dataset. In

particular, we show the atomic structures of the lowest-, median-, and highest-energy environ-

ments as well as the lowest-, median-, and highest-volume environments. In each highlighted

structure, the atoms included within the 6.0 Å SOAP cutoff are shown in yellow (Si) and red

(O), while the rest of the zeolite framework is depicted as corner-sharing tetrahedra. Contour

plots showing the distribution of environments are projected onto the x y-, y z-, and xz-planes.

These contour plots reveal that the statistical distribution of zeolite environments is unimodal

and rather broadly peaked, indicating a remarkably uniform distribution of structural mo-

tifs. As such, we find no special region in the 3D KPC-space that is particularly well-stocked

with building blocks for making hypothetical zeolites; our collection of environments thus

represents a “continuum” of atomic substructures rather than discrete motifs. The broad dis-

tribution of environments shown in Fig. 7.6 further suggests that the algorithm for producing

these hypothetical zeolite frameworks [54, 56] has left no substantial gap in environment

space.

7.3 Candidates for Experimental Synthesis
The principal utility of the map in Fig. 7.6 is that the structural features plotted therein are

organized by their structural similarity, facilitating comparisons between the structures and

substructures present within the map. We can use this same idea in an effort to understand the

similarities and differences between the hypothetical frameworks in the Deem database and

the experimentally synthesized frameworks present in the IZA database and ultimately identify

hypothetical frameworks that may be synthesizable. Operating under the assumption that the

potentially synthesizable structures in the Deem database will exhibit structural similarities

with those frameworks in the IZA database, we must first determine whether the structural

space covered by the Deem frameworks overlaps with or wholly contains the structural space

defined by the IZA frameworks. If the two spaces are distinctly different, we cannot hope to

identify potentially synthesizable Deem frameworks through structural comparisons with

the IZA frameworks. If the IZA and Deem structure spaces do overlap, we can then make an

attempt to identify potentially synthesizable Deem frameworks based on our knowledge that

the frameworks contained in the IZA database have indeed been successfully synthesized. To

accomplish this task, we use a sequential workflow combining supervised and unsupervised

learning to identify a relatively small number of frameworks from the Deem database that

show the most promise as candidates for experimental synthesis. In particular, we use support

vector classification to distinguish the Deem frameworks from the IZA, and subsequently

construct a latent space based on a confidence measure of the classification. By constructing

a convex hull in this latent space, we are able to identify those hypothetical frameworks that

might be synthesizable.
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Figure 7.6 – A mapping of zeolite building blocks, where every 2,000-th environment of the
10,000-framework subset is plotted as a point in the three-dimensional space formed by
the first three kernel principal components of the SOAP representation using a 6.0 Å cutoff.
The points are colored and sized according to the energy and volume contribution of the
corresponding environment to its parent framework. The environments with the highest and
lowest energies and volumes are highlighted along with environments contributing energies
and volumes close to the median of the dataset. Note that there exist some (extreme) outliers:
the highest-energy environment contributes more than 380 kJ/mol Si, and the lowest below
–30 kJ/mol Si. The highest-volume environment contributes more than 90 Å3/Si atom, and
the lowest less than 30 Å3/Si atom. Energies falling outside the range of the scalebar are
assigned to the color at the nearest extreme of the colorscale. Environment centers are
indicated by the asterisks and their associated arrows; a dotted arrow signifies that the central
atom is hidden behind the foremost atom visible in the atomic snapshot. In each snapshot,
the atomic environment is represented as a ball-and-stick model; the surrounding zeolite
structure is represented as SiO2 tetrahedra. Overall, we see a remarkably uniform distribution
of environments. Reproduced from Ref. [204] with permission of AIP publishing.
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7.3.1 Data Selection
We search for potentially synthesizable frameworks in the entire Deem SLC PCOD database

[56], which contains 331,172 frameworks in total. As our reference known synthesized frame-

works, we use the all-silica analogues of the 230 fully connected frameworks in the IZA

database. We further group the IZA frameworks into four “cantons” according to their reported

reference composition as: (1) containing Si and O only; (2) containing Si and O, with potential

substitutions; (3) containing O but no Si, e.g., aluminum phosphates; (4) containing neither Si

nor O. Since not every framework in the IZA database has been synthesized with an all-silica

composition, we relax all of the IZA frameworks with GULP [219] using the SLC forcefield

[217, 218]. To ensure that the IZA and Deem frameworks are comparable in structure and

energy, we attempt to replicate the relaxation procedure used for the Deem frameworks in

Ref. [56]: we first attempt to optimize the IZA unit cell and atomic positions (both core and

shell) under constant pressure conditions, and if this optimization does not converge, we

perform from scratch a constant volume optimization. We additionally attempt to reproduce

the lattice energies for the Deem frameworks as reported in the Deem database by optimizing

only the shell geometries; we generally find success in this endeavor, with the MAE between

the database energies and the energies obtained from our optimizations less than 0.1 kJ/mol

Si. However, for five frameworks we find energy discrepancies of more than 10 kJ/mol Si, and

we consequently discard these frameworks from our analysis as we have no guarantee that

their structures and energies are compatible. A histogram of the energy errors is provided in

Appendix C.

As the SOAP descriptor proved to be successful serving as a feature representation for

the prediction of the molar volumes and energies of the Deem frameworks (Section 7.2.3),

we compute the SOAP representation for all of the IZA and Deem frameworks as in Section

7.2.2, with a few important differences. The first is that we now use the librascal [93]

package to compute the representation, which allows us to compute a high-quality radial

basis through a spline approximation, as outlined in Section 2.1.2. This high-quality basis

is constructed through a PCA decomposition of the density coefficients corresponding to

32 Legendre polynomials in the discrete variable representation, and we retain the top 8

components. As before, we use nine angular functions as well as a cutoff transition width of

0.3 and an atomic Gaussian width of 0.3. In contrast to the SOAP-based representation used

to construct the map of local zeolite environments, here we do not subselect components

from the SOAP feature vectors but rather use the full representation. The retention of all

features and the use of a high-quality radial basis allows us to examine in greater detail the

specific structural features that distinguish the IZA and Deem frameworks. For this same

reason we focus in the following on linear models in contrast to the kernel methods employed

in Section 7.2, allowing us to transparently examine the connection between those features

that a particular model implicitly marks as important and the structural characteristics to

which those features correspond. Our use of linear models thus allows us to define the SOAP

features for an entire structure as an average over its constituent environments, as described

in Section 2.4. In all of our models the training data are columnwise centered and are scaled

to have a Frobenius norm of
p

ntrain, with the test set centered and scaled relative to the train
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set. Where we use cross-validation to optimize hyperparameters, this preprocessing is done

independently in each iteration.

7.3.2 Comparison of Structure Space
As a first point of comparison between the hypothetical (Deem) and known synthesizable

(IZA) frameworks, we compute a PCA of the 6.0 Å SOAP features for the zeolite structures,

similar to the KPCA decomposition used to construct the map in Fig. 7.6, where instead of

examining local environments we use representations of whole zeolite frameworks. The PCA is

trained only on the subset of 10,000 Deem frameworks described in 7.2.1 so that the resulting

IZA projections locate the known synthesized frameworks relative to the structural space

defined by the Deem frameworks. Figs. 7.7(a)–(c) thus show histograms of the first three PCA

component values for the IZA and Deem frameworks, clearly indicating that the structural

space covered by the Deem frameworks encompasses that of the IZA frameworks, with the IZA

frameworks lying at the edge of the Deem structural space. This suggests that our search for

frameworks in the Deem database that share structural similarities with IZA frameworks could

be confined to a small portion of the structural space—the majority of the Deem frameworks

can immediately be discarded as unlikely to be synthesizable. However, just as we showed in

Chapter 6 that machine learning methods prove robust to the retention of specious hydrogen

bond configurations, we demonstrate in the following that we need not discard the obviously

hypothetical frameworks in order to find success in identifying synthesis candidates. At the

same time, due to the relative size of the Deem database, a large number of Deem structures

lie within the IZA structural envelope, making it difficult to pare down the Deem database to a

manageable number of potentially synthesizable structures based on a purely unsupervised

PCA mapping. We address both of these issues in Section 7.3.3, where we use supervised

classification techniques to more robustly compare the similarities and differences between

the IZA and Deem frameworks. Figs. 7.7(d) and (e) show histograms of the molar volumes

and energies of the IZA and Deem frameworks. Chemical intuition would indicate that the

potentially synthesizable Deem frameworks are those that are lowest in energy and have molar

volumes similar to those of IZA frameworks; however, such heuristics are blind to “unrealistic”

structures that have, for example, very low energy but highly distorted tetrahedra.

We can further quantify the coincidence of the IZA and Deem structural spaces by com-

paring the predictions of molar volume and energy for the IZA and Deem frameworks from

a ridge regression model again trained only on the subset of 10,000 Deem structures. The

regularization of the regression model was determined through a grid search using five-fold

cross validation to minimize the MAE on the validation set. The MAEs on the test set (the 230

IZA frameworks and 250 randomly selected Deem frameworks not in the train set) are pro-

vided in Table 7.1. Generally speaking, the predictions for the IZA frameworks are comparable

to those of Deem under the 6.0 Å SOAP descriptor, but are substantially worse (though not

unreasonable) for the 3.5 Å descriptor. Of particular note is the cantonal error breakdown: the

observed errors tend to increase from Canton 1 (only Si and O) to Canton 2 (Si, O, and other

species) to Canton 3 (O, no Si) as the frameworks become more compositionally dissimilar

to the Deem structures. Canton 4 contains only a single structure (RWY), the composition of
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Figure 7.7 – Histogram of values of the first three principal components of the power spec-
trum SOAP vectors of a subset of 10,000 Deem frameworks and all 230 IZA frameworks. The
histogram makes evident that the IZA frameworks are concentrated near the edge of the
structural space defined by the Deem frameworks. The PCA projection is defined only by the
10,000 Deem frameworks.

which contains neither Si nor O, and unsurprisingly makes for difficult predictions. Part of

this difficulty can be attributed to the fact that we compute the energy for RWY based on an

all-silica analogue of its experimental structure with a forcefield tuned for frameworks that

contain only Si and O. Indeed, we find that RWY has a much higher energy as computed by

GULP than any of the other IZA structures, and for this reason we omit it from our subsequent

analyses. A histogram of IZA energies as computed by GULP is given in Appendix C.

7.3.3 Synthesis Assessment Workflow
Having shown once again that the SOAP descriptor is capable of capturing the relevant struc-

tural features for making comparisons between the hypothetical Deem frameworks and the

known synthesizable IZA frameworks, while also demonstrating a need for a more sophisti-

cated approach for assessing the synthesizability of the Deem frameworks, we develop here a

sequential workflow combining various machine learning methods to better understand the

similarities and differences between the structures in the IZA and Deem databases with the ul-

timate aim of finding the synthesizable needles within the Deem haystack. A schematic of this

workflow is shown in Fig. 7.8, where we begin by computing the SOAP feature representations

and GULP energies of the frameworks.

Analysis of Classification Models

After computation of the SOAP vectors and energies, the entry point to this workflow is

support vector classification, where we attempt to distinguish the IZA frameworks from the
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Table 7.1 – Mean absolute errors (MAEs) for predictions of molar volume V (units Å3/Si) and
molar energy E (units kJ/mol Si) from a linear ridge regression model trained on a subset
of 10,000 structures from the Deem database and tested on an unseen set of Deem and IZA
structures. While IZA prediction errors can be 1.5–3× larger than for the Deem structures, the
volume and energy predictions are not unreasonable, particularly for the all-silica structures
and for the models based on the 6.0 Å SOAP representation.

3.5 Å 6.0 Å

ntest V E V E

Deem 250 2.81 0.65 1.10 0.19
IZA 230 5.30 0.92 1.70 0.18

IZA1 36 4.54 0.98 0.96 0.14
IZA2 125 5.17 0.88 1.57 0.15
IZA3 68 5.38 0.94 1.91 0.23
IZA4 1 44.28 2.02 30.52 1.97

PCovR

SVM

Convex
Hull

Decision
Functions

SOAP
Descriptors

Energies

Projections

Predicted
Cantons

Candidate
Structures

Figure 7.8 – Schematic of the SVM-PCovR-CH infrastructure. The GULP energies and SOAP
descriptors are computed for each framework, and the SOAP descriptors are used as input to
both SVM and PCovR models. The decision functions resulting from the SVM classification
are additionally used as input to the PCovR model, where they are combined with the SOAP
features to develop a latent space projection that serves as the basis for a convex hull (CH)
construction using the GULP energies as a measure of thermodynamic stability. The structures
near the convex hull can then be compared against the SVM classification predictions and
corresponding decision functions to create a hierarchy of synthesis candidates.
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Deem based solely on their SOAP feature vectors. To understand how different structural

features impact the classification, we construct an ensemble of SVM models, each based

on a different SOAP representation or subset of SOAP features corresponding to different

atomic correlations. In particular, we examine both 3.5 Å and 6.0 Å SOAP representations

to understand the spatial scale of the features most relevant for the classification as well as

representations including only two-body correlations (the radial spectrum) or additionally

three-body correlations (the power spectrum). For the radial spectrum representations, we

build classification models based on only Si – O correlations, only Si – Si correlations, and

both Si – O and Si – Si correlations. For the power spectrum representations, we examine

separately Si – O – O correlations, Si – O – Si correlations, Si – Si – Si correlations, and all possible

combinations thereof. For brevity, we label these models by omitting mention of the central

Si atom common to all studied correlations and by using a “+” to denote a combination of

correlations. For example, we use “OO+OSi” to label a model trained jointly on Si – O – O

correlations and Si – O – Si correlations, and we use “Si” to label a model trained only on Si – Si

correlations. We additionally consider both the binary (“IZA vs. Deem”) and multi-class

cantonal (“IZA1 vs. IZA2 vs. IZA3 vs. Deem”) classifications, where in the multi-class case we

employ a “one vs. rest” classification scheme.

For each classification task, the SVM is trained jointly on one half of the IZA frameworks

(excluding RWY) and the 10,000-structure subset of Deem frameworks. Given that the Deem

database contains a number of structures identical to those in IZA, we remove from the

analysis those Deem structures we determine to be identical to IZA frameworks to avoid

pairs of contradictory training labels. To find the Deem frameworks that are identical to IZA,

we simply compute the Euclidean distance between their full 6.0 Å SOAP power spectrum

representations to determine a cutoff distance for judging two frameworks as identical. A

histogram of these distances is provided in the Appendix, from which we conclude that

structures within a distance of 5×10−6 from one another in SOAP space can be considered

identical.

As a consequence of the class imbalances in our selected train set, which contains ap-

proximately 100 IZA frameworks and 10,000 Deem frameworks, the SVM is implicitly biased

towards classifying samples as “Deem”: for instance, the model can achieve 99% accuracy on

the train set by trivially predicting all of the samples as Deem. To address this issue, we employ

class weighting so that the SVM regularization is defined class-wise, where class k has regular-

ization Ck =C nsamples/(nc nk ), where nsamples is the total number of samples, nc the number

of classes, nk the number of samples belonging to class k, and C is a hyperparameter we opti-

mize through a stratified two-fold cross-validated grid search to maximize the class-balanced

accuracy on the validation set. For consistency with the class weighting, the centering of the

input SOAP features (relative to the train set) is performed using a weighted mean, where all

of the samples of a given class are weighted by nsamples/(nc nk ) and subsequently normalized

such that the sum of all sample weights is equal to one.

Once the SVM models are trained, they are evaluated on a held-out test set comprising

the remaining ≈100 IZA frameworks and ≈320,000 Deem frameworks. For each model we

compute the predicted classes for the test set as well as the decision functions, which provide
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a measure of how close a given sample is to the separating hyperplane and can be interpreted

as a way to quantify the confidence level of a particular prediction. A histogram of the two-

class “IZA vs. Deem” decision functions is shown in Fig. 7.9(a) for the full 6.0 Å SOAP power

spectrum, illustrating that the model is clearly able to distinguish the two classes, as evidenced

by the separate peaks corresponding to the IZA and Deem structures. Of particular note is that

the decision function values for the Deem frameworks appear normally distributed, likely as a

consequence of the uniform coverage of the structure space as mentioned in Section 7.2.4.

The individual bars of the histogram are colored according to whether the corresponding

classifications are true positives (TP), true negatives (TN), false positives (FP), or false negatives

(FN), with Deem serving as the positive class and IZA as the negative class. The performance

of the classification can be quantified through a receiver operating characteristic (ROC) curve

[72, 74], shown as the line in Fig. 7.9(b). The ROC curve tracks the rate of false positives

F PR = F P/(F P +T N ) and the rate of true positives T PR = T P/(T P +F N ) as the decision

boundary is swept through the decision space as illustrated by the green arrows. A perfect

classifier has (F PR = 0,T PR = 1), so that the closer the area under the ROC curve (AUC ) is to

one, the more accurate the classifier. A random guess corresponds to an ROC curve for which

F PR = T PR at every point. In principle, the Pareto optimum of the ROC curve corresponds

to the F PR and T PR of the classification model for which it is constructed, illustrated by

the green dot in Fig. 7.9, with which we can also associate a confusion matrix that tallies the

number of true/false positive/negative classifications. Following our assumption that the

most synthesizable Deem frameworks will exhibit structural similarities with IZA frameworks,

we can narrow the search space by examining those Deem structures that are misclassified, i.e.,

the false negatives. However, this is not a particularly effective approach on its own, as even

though approximately 90% of the IZA and Deem structures are classified correctly, this still

leaves several thousand misclassified Deem frameworks, far too many to be of much practical

use for identifying synthesis candidates.

Assessment of Stability

Up to this point, we have only considered the structural similarity between the IZA and Deem

frameworks as an indicator of synthesis potential. To additionally account for thermodynamic

stability, we construct a convex hull in a latent space based on the SVM decision functions. As

the latent space we use two-component PCovR projections of the IZA and Deem frameworks,

using the SOAP feature vectors as the predictor data and the SVM decision function values as

the prediction targets. We train the PCovR models using the same training data as the SVM

models, again accounting for class imbalance, though in a slightly different manner than for

the SVM. In the PCovR models, we handle class imbalance by replicating the minority class

(IZA) samples to achieve (approximate) class parity. We have chosen this approach instead

of undersampling the majority class (Deem) or creating synthetic minority class examples

using a technique such as SMOTE [238], as undersampling to achieve class parity would

reduce the training set to ≈200 structures in the two-class case, and render the problem

intractable in the four-class case, as the IZA canton populations are themselves imbalanced

with the least populated class in the train set including less than 20 frameworks. Creating
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Figure 7.9 – (a) Histogram of decision function values and (b) corresponding ROC curve for the
“IZA vs. Deem” SVM classification based on a 6.0 Å SOAP power spectrum representation as
the decision function boundary is swept through the SOAP space. The inset of (b) also shows a
confusion matrix for the two-class “IZA vs. Deem” classification using the full power spectrum
SOAP vectors. The superscript † indicates predicted class labels.

synthetic IZA examples is also undesirable, as it distorts our baseline for the classification

by introducing hypothetical frameworks into the “IZA” class, which is meant to exclusively

contain experimentally synthesized structures. We optimize the PCovR mixing α and the

regularization through a two-fold cross-validated grid search just as for the SVM (and using

the same fold splitting), with the aim of minimizing the class-balanced PCovR loss (Eqn. 5.1)

on the validation set, which does not contain replicated samples. Here again we preprocess

the predictor and target data by centering relative to the column means of the train set and

scaling by the Frobenius norm of the train set divided by the square root of the number of

training samples.

The resulting PCovR latent space thus encodes the structural information of the IZA and

Deem frameworks through (1) the raw SOAP features, and (2) the decision function values,

which are proportional to the distances of the samples to the separating hyperplane in the

SOAP feature space. In other words, the latent space arranges the frameworks along a mixture

of the directions for which the variation in structural features as encoded by the SOAP vectors

is the greatest, and the directions that correlate with synthesis conditions as encoded by the

canton assignments.

To more robustly identify those frameworks from the Deem database that share structural

similarities with IZA frameworks and that are more likely to be stabilizable, we apply a convex

hull—similar in spirit to the generalized convex hull described in Section 5.4, but instead using

a deterministic construction—to a two-component PCovR projection for our held-out test

set of ≈ 100 IZA frameworks and ≈ 320,000 Deem frameworks, using the GULP-calculated

energies as the stability metric.

73



Chapter 7. Exploration of Zeolite Structures

A visualization of the resulting convex hull construction is presented in Fig. 7.10(a),

which shows the two-component PCovR projections of the IZA and Deem frameworks for

which the four-class decision function values have been used as the property targets. Each

framework is represented as a single point, colored according to its two-class “IZA vs. Deem”

decision function value. The true IZA frameworks are represented as squares, and the true

Deem frameworks are represented as circles. The size and transparency of the points indicate

how close the corresponding framework is to the convex hull along the energy direction:

larger, more opaque points lie closer to the hull, and the frameworks that serve as vertices

for the convex hull are highlighted with thick black outlines. In this representation, the

Deem frameworks that are most likely to be synthesizable are those that lie close to the

hull and present as IZA (the large, opaque, red circles). Atomic snapshots are provided for

five such structures that also have molar volumes greater than 60 Å3/Si in addition to two

IZA frameworks (SBN and MTN) for reference. Eighteen Deem frameworks serve as hull

vertices and are also misclassified as IZA; these frameworks are thus the most promising Deem

frameworks for experimental synthesis according to our methodology. We can expand our

pool of synthesizable candidates by considering those frameworks, for example, within some

cutoff distance from the hull along the energy axis, and having a decision function value less

than some specified value. We can set these cutoff values in a number of ways, including

basing them on the hull distances and decision functions of the IZA frameworks. For instance,

there are approximately 11,700 Deem frameworks in the test set that are closer to the hull

than the furthest all-silica IZA framework in the test set (6.18 kJ/mol Si) and have decision

function values less than that of the test-set all-silica IZA structure that is the “most Deem”

(decision function value 0.53). Since this is a rather large pool of structures, we choose to rank

the frameworks, taking the top 50 Deem frameworks that are closest to the hull that are also

misclassified as IZA (having decision function values < 0). These 50 structures are enumerated

in Appendix C, where for each candidate we also provide the four-class cantonal predictions

and the closest IZA framework in the SOAP feature space, which suggest the composition(s)

at which each framework may be synthesizable. Synthesis candidates for a particular target

application can be identified through a secondary, property-based filtering. For instance, if a

more porous zeolite is desired, one can extract those zeolites possessing molar volumes above

a certain threshold and subsequently rank them according to their distance from the hull and

decision function value.

Figs. 7.10(b)–(d) give a high-level, statistical overview of the convex hull representation.

Figs. 7.10(b) and (c) are histograms of the PCovR projections of the IZA and Deem frameworks,

similar to Figs. 7.7(a)–(c), and show that the first component is organized according to the

two-class “IZA vs. Deem” classification, while the second component is roughly organized

according to the four-class cantonal classification. Fig. 7.10(d) shows a histogram of the

distances between the frameworks and the final convex hull, indicating that the IZA frame-

works largely appear close to the hull, much more so than the Deem frameworks. By virtue

of the proximity of the (known to be synthesizable) IZA frameworks to the convex hull, this

observation suggests that our convex hull construction in the PCovR latent space places those

frameworks that are most likely to be stabilizable near the convex hull.
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Figure 7.10 – (a) First two components of the PCovR projection based on the four-class cantonal
decision functions with points colored according to the two-class IZA vs. Deem decision
function. Each point represents a single framework and is sized and given an opacity according
to its (energy) distance to the convex hull. Points become smaller and more transparent as
their corresponding frameworks increase in distance to the hull. (b) Histogram of the energy
distance to the convex hull for the IZA and Deem frameworks. (c)–(d) Histograms of the PCovR
component values for the IZA cantons (excluding Canton 4, RWY) and Deem.

75



Chapter 7. Exploration of Zeolite Structures

Table 7.2 – AUC for the two-class “IZA vs. Deem” SVM models based on the SOAP power
spectrum.

Power Spectrum

OO OSi SiSi OO+OSi OO+SiSi OSi+SiSi OO+OSi+SiSi

3.5 Å 0.931 0.943 0.940 0.937 0.958 0.941 0.950
6.0 Å 0.966 0.964 0.959 0.964 0.970 0.966 0.966

Table 7.3 – AUC for the two-class “IZA vs. Deem” SVM models based on the SOAP radial
spectrum.

Radial Spectrum

O Si O+Si

3.5 Å 0.930 0.862 0.932
6.0 Å 0.948 0.866 0.948

Analysis of Structural Features

Having identified several candidate Deem frameworks that might be experimentally synthesiz-

able based on the convex hull, the question of why these structures appear to be synthesizable

has yet to be explored. As the convex hull construction relies in large part on the prediction out-

comes of the SVM model, we analyze the ensemble of classifiers described earlier in order to

determine which structural features are most important for the decision-making process and

thus for distinguishing the Deem frameworks from the IZA frameworks. As a first approach,

we compare the performance of classifiers trained on SOAP representations with different

cutoffs (3.5 Å and 6.0 Å) to determine the length scales of the most distinguishing features,

on SOAP representations including only two-body or additionally three-body correlations to

understand the required body order to make accurate classifications, and on subsets of the

SOAP features corresponding to individual atomic correlations to find those that are the most

different between the Deem and IZA frameworks. The ROC curves for the ensemble of these

models for the “IZA vs. Deem” classification is shown in Fig. 7.11. Generally speaking, all

of the models perform quite well, with only small differences in the associated AUC scores,

which are given in Tables 7.2 and 7.3. The clear exceptions are the radial spectrum (two-body)

models accounting for only Si – Si correlations, suggesting that information on the oxygen

atoms is required in order to most accurately distinguish the Deem frameworks from the IZA.

The 6.0 Å models also tend to perform better than their 3.5 Å counterparts, indicating that the

inclusion of information past the first-neighbor shell can help fine-tune the classifications.

We can more intuitively visualize these results using confusion matrices, shown in Fig.

7.12 for the two-class case. (The four-class “IZA1 vs. IZA2 vs. IZA3 vs. Deem” case is provided

in Appendix C.) The entries of the confusion matrix are colored according to the proportion

of structures with a particular ground truth label (rows) having a particular predicted label

(columns), with the interior text enumerating the absolute number of such (true label, pre-
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Figure 7.11 – Receiver operating characteristic (ROC) curves for the two-class “IZA vs. Deem”
classification exercise where subsets of the power spectrum or radial spectrum were used for
the SVM training and classification. The power spectrum features yield better predictions
than the radial spectrum, with Si-O-Si correlations being particularly important for the classi-
fication. (a) provides the results for models using a 3.5 Å SOAP representation, while (b) gives
results for the models based on a 6.0 Å SOAP representation.
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Figure 7.12 – Confusion matrices from the two-class SVM classifications where subsets of
the power spectrum or radial spectrum were used for the SVM training and classification.
The matrix entries are colored according to the proportion of the true labels that have been
predicted as a particular class, while the interior text gives the absolute number of such classi-
fications. The models correctly classify approximately the same number of IZA frameworks,
differing mainly in the number of misclassified Deem frameworks. The superscript † indicates
predicted class labels.

dicted label) pairs. With the exception of the Si-only radial models, all of the classifiers tend to

correctly classify around 100 of the 115 IZA frameworks in the test set; where the models differ

most substantially is in the number of misclassified Deem frameworks they produce, ranging

from more than 60,000 for the 6.0 Å Si-only radial model to slightly more than 8,000 for the

6.0 Å power spectrum model including Si – O – O and Si – Si – Si correlations. To ensure that

the classification predictions are due to genuine structural differences between the IZA and

Deem frameworks, we also build SVM models trained on the Deem frameworks in our train

set but with the class labels assigned at random. We find that the SVM is unable to predict the

arbitrarily assigned labels, suggesting that the classification behavior we see is due to genuine

structural differences between the frameworks. The confusion matrices for these “dummy

models” are given in Appendix C.

While the analysis of the ROC curves and confusion matrices provide support for making

general conclusions about the structural features in the IZA and Deem frameworks that

are the most important for making classification decision, they do not provide the atomic-

level resolution that would be most useful in developing an intuitive understanding of the

similarities and differences between the hypothetical and synthesized frameworks. To develop

this intuition, we construct real-space representations of the SVM model weights and the

SOAP feature vectors as outlined at the end of Section 2.1.2, so that we can determine which

physical features of the frameworks are most important to the SVM decision-making process.

For this exercise we restrict our analysis to the radial spectrum models; even though they do

not perform as well as the power spectrum in classifying the frameworks, they still result in

reasonably accurate models while being conceptually simpler to visualize and understand,

as the real-space radial density encoded by the SOAP vectors is simply the radial density

function. Representations of the SVM “brains” for the radial spectrum models are thus shown

in Fig. 7.13, where the subplot columns correspond to the 3.5 Å (left) and 6.0 Å (right) radial

spectrum models, and the rows correspond, top to bottom, to SVM models trained on only
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Si – O correlations, Si – Si correlations, and both Si – O and Si – Si correlations. The latter is split

into two rows, where the top shows only the Si – O correlation contributions and the bottom

shows only the Si – Si contributions. In each panel, the class-weighted average radial SOAP

density (of the frameworks in the train set) ρ(r ) is plotted alongside the “cumulative decision

function” for 50 randomly selected frameworks (25 IZA, 25 Deem) from the test set. The

background of each panel is colored according to the real-space representation of the SVM

weights w(r ). For a given framework with radial density ρ(r ), the SVM makes a classification

based on an integral of the product w(r )∆ρ(r ) plus a bias term b, where ∆ρ(r ) = ρ(r )−ρ(r ).

Hence, the cumulative decision function F (r ) can be defined as

F (r ) = b +
∫ r

0
dr ′w(r ′)∆ρ(r ′), (7.3)

and shows what the classification decision would be if the representation was truncated at a

distance r . F (r+
c ), where r+

c is distance at which the radial density of the representation con-

verges to zero past the SOAP environment cutoff, is thus the final decision function value. Note,

however, that F (r ) is merely a representation of the SVM decision-making process and does

not depict how the SVM actually makes the classification decisions for the zeolite frameworks.

Nonetheless, the cumulative decision function serves as a more intuitive representation for

highlighting the structural features that are the most important to the decision-making process.

More specifically, the distance at which the cumulative decision functions for IZA F (r )I Z A and

Deem F (r )Deem diverge most significantly is the length scale of the structural features that

best distinguish the two classes. Consider the example of the 6.0 Å radial model trained only

on Si – O correlations, shown in Fig. 7.13(e). There is a clear divergence of the F (r ) for IZA and

Deem at r ≈ 3 Å, corresponding to the onset of the density from the second-neighbor O atoms,

suggesting that these are the correlations most influential in the “IZA vs. Deem” classifications.

In other words, the SVM model picks up on small differences in the tails of the density of

the second-neighbor O atoms, and uses this information as the main determining factor in

the classification. We can understand how these density differences affect the decision by

examining the SVM weights at the location of the F (r ) divergence. Since the decision function

is based on the product w(r )∆ρ(r ), the background weights can be interpreted as a “gradient”

on which the density lies. More specifically, since F (r+
c ) > 0 defines a “Deem” classification

and F (r+
c ) < 0 defines an “IZA” classification, if at a given r the product w(r )∆ρ(r ) is positive,

the decision moves towards “Deem”; if the product is negative, the decision moves towards

“IZA”. With this in mind, we observe in Fig. 7.13(e) that at the divergence of the F (r ) at r ≈ 3

Å, the weights are positive; thus, if a framework exhibits a depletion of density in the region

(∆ρ(r ) < 0), it will likely be predicted as “IZA”. From a structural perspective, then, if we wish

to find Deem frameworks with IZA-like structural features, we should search for frameworks

with slightly larger average second-neighbor Si – O distances.

Another interesting observation that can be drawn from the cumulative decision func-

tions is the negligible contribution that Si – Si correlations give when Si – O correlations are

available. To arrive at this conclusion we examine the bottom two rows of Fig. 7.13, which

show the cumulative decision functions for the 3.5 Å and 6.0 Å models trained on both Si – O
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Figure 7.13 – The class-averaged SOAP-reconstructed radial atom density ρ(r ) =
1
2

(
ρ(r )Deem +ρ(r )I Z A

)
is plotted alongside the cumulative decision function F (r ) for 25 ran-

dom IZA and 25 random Deem frameworks. The plot background is colored according the
the value of the SVM weights w(r ), where the large magnitude weights have been saturated in
color to more clearly show sign changes. The environment cutoff for the SOAP representation
is indicated by the vertical dashed line; the SVM decision boundary F (r+

c ) = 0 is given by the
horizontal dashed line. For (c)–(d) and (g)–(h), the subplots are labeled to indicate the rele-
vant contributions in models based on multiple correlations. For instance, the label “O∗+Si”
denotes the Si – O correlation contributions to the classification decisions of an SVM model
based on both Si – O and Si – Si correlations.

and Si – Si correlations; the top panels show contributions from only Si – O correlations while

the bottom panels show contributions from only Si – Si correlations. As such, the value of

F (r+
c ) for the Si – O correlations (Figs. 7.13(c) and 7.13(g)) are not the final decision function

values; instead, the value of F (r+
c ) for the Si – O correlations is carried over to F (0) in the Si – Si

correlations, so that the values of F (r+
c ) in the Si – Si correlations (Figs. 7.13(d) and 7.13(h))

are the final decision function values for the combined (Si – O)+(Si – Si) correlation models.

By representing the models in this way, the individual correlation contributions to the final

decision function become clear. Notably, F (r ) is rather flat in the Si – Si correlation models and

sign changes are rare. Consequently, we can conclude that Si – Si correlations play a negligible

role in the decision-making process when Si – O correlations are available.

Taking together the the accuracy metrics (ROC curves and confusion matrices) of the SVM

model ensemble and our analysis of the SVM “brain” for the radial spectrum, we can conclude
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that information on the O atoms is essential for distinguishing the IZA frameworks from the

Deem frameworks, with the most important features for making the distinction being the low-

r density tail of the second-neighbor O atoms. While two-body correlations are sufficient to

distinguish IZA from Deem with 80–90% class-balanced accuracy, The inclusion of three-body

correlations further improves the resolving power of the SVM models, as does increasing the

length scale of the correlations that are included in the local atomic environments.

7.4 Conclusions
By building upon the concepts introduced in Chapter 6, we have developed here an approach

for visualizing local atomic environments in zeolite frameworks in a way that transparently

encodes structure–property relationships. The resulting map is based on a KPCA latent space

of atom-centered SOAP environments to which we attributed molar volume and energy con-

tributions through supervised machine learning. We extended this mapping approach to

the materials discovery task of identifying potentially synthesizable frameworks contained

in a database of hypothetical all-silica zeolite structures. To this end, we augmented the

latent space through PCovR, using predictions from supervised classification models to em-

phasize the directions in the feature space most relevant for distinguishing the hypothetical

frameworks from those that have been synthesized. We subsequently applied a convex hull

construction to the PCovR latent space to identify the frameworks that are the most ther-

modynamically stable. As a result of this procedure, we could straightforwardly identify the

most promising hypothetical frameworks for experimental synthesis as those that lay close

to the hull and were misclassified as synthesized frameworks. We concluded by examining

the decision-making process of the classification models to understand which particular

structural features are most responsible for distinguishing the hypothetical frameworks from

the synthesizable. Altogether, this sequential workflow serves as a demonstration of how

supervised and unsupervised machine learning can be combined in sophisticated ways to

uncover structure–property relationships and to perform materials discovery tasks that yield

more robust results than supervised or unsupervised learning alone. Since its constituent

techniques are application agnostic, the workflow is also adaptable to different materials

systems, particularly where there exist sufficient data to identify patterns in properties and

structural characteristics between known and hypothetical materials.
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8 Conclusions

Over the past several years, machine learning methods have become common analysis tools

in chemistry and materials science. While most applications of machine learning in these

fields tend to apply supervised and unsupervised techniques in isolation, this thesis takes

a different perspective by considering the added benefit of combining both supervised and

unsupervised learning in a variety of ways, ranging from the simple, longstanding approach of

using unsupervised dimensionality reduction methods as a preprocessing step for supervised

learning, to the construction of more complex workflows and the examination of correlations

between unsupervised representations and supervised predictions.

After showing that unsupervised clustering techniques can provide a means for con-

structing transferable definitions of hydrogen bonding motifs in protein crystal structures, we

applied the same clustering methodology to examine patterns in dihedral angle sequences

and local atomic environments along the protein backbone. While we found moderate corre-

spondence between the data-driven motifs and the most well-defined secondary structures

(α-helices and β-strands), we found a general lack of alignment between the motifs and the

secondary structure assignments at large. Through the use of support vector classification,

we were able to show that the lack of correspondence between the identified motifs and

conventional secondary structure definitions were not a result of deficiencies in the feature

representation, but because the conventional, heuristic-based classifications are not wholly

reflected in the statistical distribution of structural features of the protein structures.

As an additional example of combined supervised–unsupervised machine learning, we

built a map of local, atom-centered structure–property relationships in a collection of hy-

pothetical zeolite frameworks. We constructed this map by using kernel ridge regression to

predict the molar volumes and energies of the frameworks and subsequently decomposing

the predictions into contributions from the individual environments composing the structure.

As the “coordinate system” of the map we used the first few principal components of the

environment feature vectors, as they were shown to correlate with the volume and energy

contributions. The resulting map thus naturally orders the zeolite environments by their

similarity in structure and properties. A map exhibiting even stronger structure–property

connections can be constructed through methods like (kernel) principal covariates regression,

which yield tunable low-dimensional latent spaces that explicitly include contributions from

the feature space representation and target predictions.
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Having shown that machine learning can be used to compare local structure in hypo-

thetical zeolites, we set out to make comparisons between hypothetical frameworks and

frameworks that have been experimentally synthesized with the ultimate aim of finding the

needle-in-a-haystack hypothetical structures that are most promising for experimental synthe-

sis. To this end we once again employed support vector classification, this time to distinguish

the experimental frameworks from the hypothetical. The support vector machine decision

function values, which serve as a measure of the confidence of the corresponding classification

predictions, were used to construct a principal covariates regression latent space on which a

convex hull construction was applied to identify the most stabilizable structures. Through this

workflow chaining supervised, unsupervised, and hybrid methods, we were afforded several

criteria with which we could identity the most suitable candidates for experimental synthesis

among the hypothetical zeolite frameworks.

Through these examples, we have shown that combining both supervised and unsu-

pervised machine learning through workflows and hybrid models can help to form a more

complete picture of structural motifs, materials properties, and the connections between

them in large databases of complex materials. Consequently, the work presented here suggests

that more widespread adoption of methodologies that utilize multiple paradigms of machine

learning will permit deeper understanding of complex relationships and processes in and

among materials and molecules, facilitating the discovery of novel structures and properties

and further driving technological innovation.
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A Preprocessing and Model Tuning

A.1 Model Construction
Machine learning models are constructed by exposing the model to a set of example (input,

output) pairs that serve to condition, or train the model to predict the outputs for inputs it has

never seen before. To this end, when applying a machine learning technique to a particular

set of data, the data is typically split into a training set and a test set. The training set is used

to condition the model and to optimize any hyperparameters (see section A.1.1), while the

test set is used to evaluate the model and quantify how well the model is expected to perform

on unseen data. It is advisable to keep the training and test sets completely separate, as

incorporating some (or all) of the test set samples, features, or other characteristics (such as

the mean) into the training data allows information from the test set to “leak” into the model

so that it can “cheat” and give an overly optimistic assessment of its predicted performance on

truly novel data, since it has information about the overall collection of data rather than that

confined to the train set [72–74, 239].

A.1.1 Cross Validation
Many machine learning models include—either explicitly or implicitly—tunable parameters,

such as the regularization or kernel width. It is common practice to determine these hyperpa-

rameters by constructing an ensemble of models using different combinations of hyperparam-

eters, selecting as the optimal parameters those corresponding to the best-performing model

based on some metric. If the data are plentiful, a subset of the training data, often called the

validation set, can be set aside for evaluating models during hyperparameter selection. In

such cases, the ensemble of models is fitted on the remaining training data, and the perfor-

mance of each model is evaluated on the validation set. The performance of the model with

the optimal hyperparameters can then be trained on the samples in the combined training

and validation sets and assessed based on the held-out test [72]. If, however, the dataset is

small enough to make a three-way split of the samples impractical, the optimization of the

hyperparameters can be performed using a different approach known as cross validation,

which is a useful method for optimizing hyperparameters with an efficient use of the available

data. In k-fold cross validation [72–74], one of the most popular approaches, the training set

is divided in to k equally sized (to the extent possible), non-overlapping “folds” . k models are

then constructed, each one tested on a different fold and trained on the remaining k −1 folds.
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This makes it possible to optimize the hyperparameters in a way that increases the likelihood

that the resulting hyperparameters will generalize well to unseen data. When k is equal to

the number of samples in the training set, this is known as leave-one-out cross validation.

Data preprocessing should generally be carried out separately within each of the k folds to

ensure that the model has access to and is trained on exclusively the information in its k −1

training folds. The samples belonging to each fold can be selected at random, or they can be

constructed using a stratification procedure. In the classification context, this means that the

folds are selected such that each one contains approximately the same class proportions as

the full training set [72]. In the regression context, stratification entails dividing the sorted

target properties into nsamples/k “buckets”. Each fold then contains one sample from each

“bucket” [4].

A.1.2 Centering and Scaling
In both linear and kernel methods, it is occasionally recommended (or required) to center

and scale the feature data before training the machine learning model. However, how the cen-

tering and scaling is carried out depends on the particular model and feature representation.

Centering the feature data in linear methods involves subtracting the feature values averaged

over the training set from the samples in both the training and test sets. In regression models,

a similar centering is performed for the targets. Scaling the features can either be performed

on globally or on a per-feature basis, with the most appropriate choice being dependent on

the particular feature representation. If the features are unrelated, perhaps possessing very

different scales, scaling features individually is advisable; however, if the features are related

and the relative magnitudes of the features carry information about the sample, then any

scaling should be applied globally. Scaling is typically done by dividing the (centered) features

in the test and train sets by the Frobenius norm of the feature matrix X of the training set or by

a measure of the variance of X, e.g., the trace of the covariance or the featurewise variances.

The prediction targets should be scaled using the same rationale. Centering and scaling is of

particular importance in PCovR-based methods, as imbalanced scaling of the features and

targets can bias the model.

In kernel methods, an appropriately centered and scaled kernel is defined as the dot

product of the centered and scaled RKHS features. However, we can obtain a properly prepro-

cessed kernel matrix without explicitly computing the RKHS features and instead act directly

on the kernel. The kernel centering operation can be expressed for the N ′×N kernel matrix

K′ as K′−K, where the “kernel mean” K is [126],

K = 1N ′N K+K′1N N −1N ′N K1N N (A.1)

where 1N ′N is an N ′×N matrix with each element equal to 1/N, and K is the N ×N kernel

matrix between the samples in the training set. Normalizing the RKHS features Φ by their

Frobenius norm is equivalent to normalizing the kernel by its trace.

When using approximate RKHS features from a Nyström approximation, the centering

and scaling takes a form analogous to the centering of the full kernel, but instead the approxi-
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mation to the RKHS is centered. Equivalently, the kernel between a set of input samples and

the representative samples K′
N M is centered and scaled such that the low-rank approximation

of the full kernel is appropriately preprocessed. This amounts to subtracting 1N N KN M from

K′
N M (i.e., subtracting the column means on KN M ), with KN M being the kernel between the

training set samples and the representative samples. Normalizing the approximate RKHS

features by their Frobenius norm is equivalent to dividing K′
N M by

√
Tr

(
KN M K−1

M M KT
N M

)
after

KN M has been centered.
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B Protein Secondary Structures 1

B.1 Probability Distributions
Fig. B.1 is the STRIDE analog to the DSSP dihedral angle probability distribution presented

in the Section 6.3.5. Figs. B.2–B.5 are the DSSP and STRIDE probability distributions in six

and ten dimensions. The higher dimensional dihedral angle spaces are formed by considering

the dihedrals from consecutive residues. In all cases, the helices and strands are represented

primarily by one or two clusters, while the other secondary structures tend to be spread across

several clusters.

Fig. B.6 is the STRIDE analog to the DSSP SOAP probability distribution presented in

Section 6.3.5. Figs. B.7–B.10 are the DSSP and STRIDE probability distributions in six and

ten dimensions. The higher dimensional SOAP spaces are formed by considering additional

principal components of the collection of SOAP vectors after reducing the number of features

via farthest point selection. In contrast to the dihedral angle representations, clustering based

on the SOAP representation does not result in the strands and helices being clearly confined

to one or two clusters, particularly in the two- and six-dimensional cases.

B.2 Supervised Classification
Table B.1 provides the computed Q3 and Q8 scores for the dihedral angle and SOAP represen-

tations associated with the STRIDE secondary structure classification, similar to Table 6.3 in

Section 6.3.6 that uses the DSSP assignments. Fig. B.11 shows the learning curves of the Q3

and Q8 scores for the support vector classification of the STRIDE secondary structure labels.

1This appendix is adapted with modifications under the Creative Commons Attribution 4.0 (CC BY 4.0) li-
cense from the supplementary material of Helfrecht, B. A., Gasparotto, P., Giberti, F. & Ceriotti, M. Atomic Motif
Recognition in (Bio)Polymers: Benchmarks From the Protein Data Bank. Frontiers in Molecular Biosciences 6, 24.
doi:10.3389/fmolb.2019.00024 (2019); BAH performed the data analysis and prepared figures, PG ran preliminary
tests, and all authors contributed to the design of the study and to the writing of the manuscript from which the
present text has been adapted.
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Figure B.1 – Joint and conditional probabilities for the secondary structures obtained from
STRIDE and the clustering of dihedral angles from PAMM, where A is the cluster assignment
and y the secondary structure classification. Reproduced from Ref. [160] under CC BY 4.0.

Figure B.2 – Joint and conditional probabilities for the clustering of dihedral angles from
PAMM for three consecutive residues (a six-dimensional φ, ψ space), where A is the PAMM
cluster assignment and y is the DSSP secondary structure assignment of the middle residue.
Reproduced from Ref. [160] under CC BY 4.0.
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B.2. Supervised Classification

Figure B.3 – Joint and conditional probabilities for the clustering of dihedral angles from
PAMM for three consecutive residues (a six-dimensional φ, ψ space), where A is the PAMM
cluster assignment and y is the STRIDE secondary structure assignment for the middle residue.
Reproduced from Ref. [160] under CC BY 4.0.

Table B.1 – Q3 and Q8 scores relative to STRIDE for PAMM PMI and SVM predictions of
secondary structure based on a PCA of SOAP vectors and dihedral angles at various dimen-
sionality. The reported SVM scores are an average over five separate constructions of the SVM,
each time using a new random subset of 200,000 residues, with 50,000 of these serving as the
training set.

PAMM PMI SVM

Representation Q3 Q8 Q3 Q8

φ,ψ (2D) 0.72 0.61 0.77 0.65
φ,ψ (6D) 0.74 0.62 0.86 0.76
φ,ψ (10D) 0.73 0.62 0.89 0.81

SOAP PCA (2D) 0.74 0.60 0.76 0.65
SOAP PCA (6D) 0.72 0.60 0.85 0.75

SOAP PCA (10D) 0.71 0.58 0.90 0.80
SOAP PCA (100D) — — 0.95 0.88
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Figure B.4 – Joint and conditional probabilities for the clustering of dihedral angles from
PAMM for five consecutive residues (a ten-dimensional φ, ψ space), where A is the PAMM
cluster assignment and y is the DSSP secondary structure assignment of the middle residue.
Reproduced from Ref. [160] under CC BY 4.0.
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B.2. Supervised Classification

Figure B.5 – Joint and conditional probabilities for the clustering of dihedral angles from
PAMM for five consecutive residues (a ten-dimensional φ, ψ space), where A is the PAMM
cluster assignment and y is the STRIDE secondary structure assignment of the middle residue.
Reproduced from Ref. [160] under CC BY 4.0.
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Figure B.6 – Joint and conditional probabilities for the PAMM clustering of the first two
principal components of the reduced SOAP vectors describing each residue of the protein
backbone, where A is the PAMM cluster assignment and y is the STRIDE secondary structure
classification. Reproduced from Ref. [160] under CC BY 4.0.

Figure B.7 – Joint and conditional probabilities for the PAMM clustering of the first six principal
components of the reduced SOAP vectors describing each residue of the protein backbone,
where A is the PAMM cluster assignment and y is the DSSP secondary structure classification.
Reproduced from Ref. [160] under CC BY 4.0.
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B.2. Supervised Classification

Figure B.8 – Joint and conditional probabilities for the PAMM clustering of the first six principal
components of the reduced SOAP vectors describing each residue of the protein backbone,
where A is the PAMM cluster assignment and y is the STRIDE secondary structure classifica-
tion. Reproduced from Ref. [160] under CC BY 4.0.
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Figure B.9 – Joint and conditional probabilities for the PAMM clustering of the first ten principal
components of the reduced SOAP vectors describing each residue of the protein backbone,
where A is the PAMM cluster assignment and y is the DSSP secondary structure classification.
Reproduced from Ref. [160] under CC BY 4.0.
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B.2. Supervised Classification

Figure B.10 – Joint and conditional probabilities for the PAMM clustering of the first ten
principal components of the reduced SOAP vectors describing each residue of the protein
backbone, where A is the PAMM cluster assignment and y is the STRIDE secondary structure
classification. Reproduced from Ref. [160] under CC BY 4.0.
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Figure B.11 – Learning curves of Q3 and Q8 scores relative to STRIDE for the multiclass SVM
based on backbone dihedral angles and a PCA of the SOAP representation with various degrees
of information content (i.e., the dimensonality of the descriptor). The Q scores are represented
in the learning curves as errors, i.e., 1−Q. Reproduced from Ref. [160] under CC BY 4.0.
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C Zeolites 1

C.1 Ring-Based Descriptors
In terms of predicting the molar volume and energy, both King’s definition and the shortest

path definition perform very similarly. Fig. C.1 show the learning curves for the ring descriptors

built on the 1,000- and 10,000-structure samples. Two variations of the rings descriptor are

examined. The “Distribution” (“Dist.”) variant is the descriptor described in Chapter 7: the

s th element of the feature vector for a given Si-centered environment is the number of rings

of size s that include the central Si. The “Binary” (“Bin.”) variant is a binary version of

the “Distribution” representation: the s th element of the feature vector is 1 if the central Si

participates in at least one ring of size s and is 0 otherwise. As noted in Chapter 7, the FPS of

the ring descriptor often results in fewer than 2,000 unique environments. In these cases, only

the unique feature vectors serve as representatives in the learning models. Consequently, the

models based on the “binary” variants of the King and shortest path ring descriptors use 109

and 53 representatives for the 1,000-structure sample, and 239 and 94 representatives for the

10,000-structure sample, respectively; the model for the “distribution” variant of the shortest

path ring counts in the 1,000-structure sample uses 763 representatives. The “distribution”

shortest path descriptor for the 10,000-structure set uses 2,000 unique representatives.

C.2 Results for the 1,000-Structure Subset
C.2.1 Learning Curves
Fig. C.2 shows the learning curves for the classical and SOAP descriptors for the 1,000-structure

subset, analogous to Fig. 7.3. The learning curves of the 1,000-structure subset are similar to

the results of the 10,000-structure subset for the first 1,000 training points.

1Sections C.1–C.3, and their corresponding subsections, of this appendix are adapted with modifications from
the supplementary material of Helfrecht, B. A., Semino, R., Pireddu, G., Auerbach, S. M. & Ceriotti, M. A New Kind
of Atlas of Zeolite Building Blocks. The Journal of Chemical Physics 151, 154112. doi:10.1063/1.5119751 (2019), with
the permission of AIP publishing; BAH performed the machine learning analyses and prepared the corresponding
figures, RS and GP performed preliminary analyses and input processing and computed the classical descriptors,
and all authors contributed to the design of the study and to the writing of the manuscript from which the present
text has been adapted. Section C.4 contains work currently in preparation for submission; for this work, BAH
performed the machine learning analyses and prepared figures, and all authors (Helfrecht, Semino, Pireddu,
Auerbach & Ceriotti) contributed to the design of the study.
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Figure C.1 – Learning curves for the ring-based descriptors from the sample of 1,000 structures
for predicting the (a) volume per Si atom and (b) the energy per mol Si. (c)–(d) show the
corresponding learning curves for the 10,000-structure subset. Adapted from Ref. [204] with
permission of AIP publishing.

C.2.2 Property Correlations
Fig. C.3 shows the volume and energy correlations with the 3.5 Å and 6.0 Å SOAP-KPCA

representations for the 1,000-structure subset.

C.3 Learning Curves on SOAP-KPCA Descriptors
Figs. C.4 and C.5, show the learning curves for the prediction of zeolite volume per Si atom

and energy per mol Si using the SOAP-KPCA representation with different numbers of princi-

pal components. As the number of principal components composing the representation is

increased, the prediction becomes more accurate.

In the case of predicting the volume per Si atom, a SOAP-KPCA representation including

50 principal components performs similarly to a representation using all 500 of the FPS-SOAP

components (marked in the graph as “Original”). In the case of predicting the energy per

mol Si, upwards of 100 principal components are required to match the prediction accuracy

of the representation containing all 500 FPS-SOAP vector elements. The convergence of the

prediction accuracy to that of the full FPS-SOAP vector as more information (more principal

components) are included into the KPCA representation also serves as a validation of the

method: the KPCA-based representation can emulate the diversity of the SOAP vector and

thus the local chemical environment.

A comparison can also be made between the prediction accuracy of the SOAP-KPCA

representation and that of a classical descriptor with comparable information content (di-

mensionality). In this paradigm, a four-component SOAP-KPCA representation would contain
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Figure C.2 – Learning curves of the classical and SOAP descriptors for predictions of (a) volume
per Si atom and (b) energy per mol Si in the 1,000-structure subset. The error for each point in
the learning curve calculated as the average of a five-fold cross-validation procedure using the
optimal regularization and Gaussian kernel width. (c) and (d) re-plot the learning curves of
the classical descriptors alongside the SOAP-KPCA descriptors with similar dimensionality
(i.e., the number of features composing the representation). Adapted from Ref. [204] with
permission of AIP publishing.
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Figure C.3 – Pearson correlation coefficients between the first 50 KPCs of the (a) 3.5 Å SOAP
representation and (b) 6.0 Å SOAP representation and the decomposed environment volumes
and energies in the 1,000-structure sample. The relative variance in the KPCs at each of the
first 50 components is also plotted. The correlation coefficients and relative variance of the
first three components are highlighted with open symbols. Adapted from Ref. [204] with
permission of AIP publishing.
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Figure C.4 – Learning curves for the SOAP-KPCA descriptors of various dimensionalities for
(a)–(b) predicting the volume per Si and (c)–(d) the energy per mol Si in the 10,000-structure
sample. The curves in (a) and (c) are based on SOAP descriptors with a cutoff radius of 3.5 Å,
while those in (b) and (d) are based on SOAP descriptors with a cutoff radius of 6.0 Å. Increasing
the amount of information embedded into the descriptor (increasing the number of principal
components) results in better property predictions. Adapted from Ref. [204] with permission
of AIP publishing.

roughly the same amount of information as the Si – O distance and Si – O – Si angle descriptors;

a ten-component SOAP-KPCA representation would contain approximately the same amount

of information as the ring-based descriptor, as ring sizes in our dataset range from 3 to 12.

When comparing the different representations in this manner, one finds that the performance

of the classical descriptors is comparable to, or slightly worse than, the performance of a 3.5 Å

SOAP-KPCA descriptor including less than five principal components. The same is true for

a comparison of volume predictions with the 6.0 Å SOAP-KPCA descriptor. In some cases, a

SOAP-KPCA descriptor comprising only a single principal component outperforms one or

more of the classical descriptors in predicting framework volumes or energies.

C.4 Synthesis
Fig. C.6 shows a histogram of the computed energies of the IZA frameworks from GULP [219],

using the procedure described in 7.3.1. The energy of the framework RWY is much higher than

any of the other frameworks on account of its reference composition containing neither Si

nor O atoms. Considering that our GULP calculations use the SLC forcefield, tailored for Si – O

interactions, the high reported energy is perhaps due in part to this compositional mismatch.

Consequently, we discard RWY from our analyses involving IZA frameworks.

Fig. C.7 shows a histogram of the differences between our calculated energies and
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Figure C.5 – Learning curves for the SOAP-KPCA descriptors of various dimensionalities for
(a)–(b) predicting the volume per Si and (c)–(d) the energy per mol Si in the 1,000-structure
sample. The curves in (a) and (c) are based on SOAP descriptors with a cutoff radius of 3.5 Å,
while those in (b) and (d) are based on SOAP descriptors with a cutoff radius of 6.0 Å. Increasing
the amount of information embedded into the descriptor (increasing the number of principal
components) results in better property predictions. Adapted from Ref. [204] with permission
of AIP publishing.
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Figure C.6 – Histogram of IZA energies as computed with GULP. The computed energy for the
framework RWY is considerably higher than all of the other frameworks.
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Figure C.7 – Histogram of errors representing the discrepancy between our GULP calculations
of the framework molar energy for the approximately 330,000 structures in the Deem database
of hypothetical zeolites. Structures with energy discrepancies larger than 10 kJ/mol Si are
highlighted with their ID number.

the provided reference values for the frameworks in the Deem database. We are generally

able to reproduce the database energies, but there are a few structures for which the energy

discrepancy is quite high. We discard these structures, which have energy errors of more than

10 kJ/mol Si, from our subsequent analyses.

Fig. C.8 provides a histogram of the Euclidean distances between the IZA and Deem

frameworks based on the 6.0 Å full power spectrum SOAP representation. We use this his-

togram to determine a cutoff for determining whether a given IZA framework exists in the

Deem database. As the distribution of distances shows two peaks, with one at very small

distances and the other at much larger distances, we select the cutoff for declaring identical

structures to fall between the two peaks. We believe 5×10−6 to be a reasonable choice, so that

a Deem framework at or closer than this distance to an IZA framework is considered identical

to the IZA framework and is removed from subsequent analyses in order to avoid providing

contradictory inputs to the classification models.

Fig. C.9 shows the histogram of decision functions, ROC curve, and confusion matrix for

the two-class “IZA vs. Deem” support vector classification based on the SOAP power spectrum

representation using an environment cutoff of 3.5 Å, similar to Figs. 7.9(a) and (b). The results

of the classification on the 3.5 Å representation are generally similar to those of the 6.0 Å

representation.

The confusion matrices of the four-class “IZA1 vs. IZA2 vs. IZA3 vs. Deem” cantonal

classification for the ensemble of SVM models is shown in Fig. C.10, serving as an extension of

the two-class case in Fig. 7.12 in Section 7.3.3. The SVM models have some difficulty accurately

distinguishing between the different IZA “cantons”, but still perform substantially better than

a random guess.

To verify that the SVM classifications of IZA and Deem structures are based on genuine

differences between the frameworks, we compute confusion matrices for a set of “dummy”
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Figure C.8 – Histogram of Euclidean distances between the frameworks in the Deem database
of hypothetical zeolites and the IZA structures. The distance is computed using the full power
spectrum SOAP vectors of the 6.0 Å representation. The distance cutoff for declaring structures
as “identical” is 5×10−6.
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Figure C.10 – Confusion matrices from the four-class SVM classification where subsets of
the power spectrum or radial spectrum were used for the SVM training and classification.
The matrix entries are colored according to the proportion of the true labels that have been
predicted as a particular class, while the interior text gives the absolute number of such
classifications. While the classifier often correctly classifies the Deem frameworks as such, it
has more difficulty distinguishing between the IZA subcategories. The superscript † indicates
predicted class labels.

models, shown in Figs. C.11 and C.12. The dummy models are trained on the Deem frame-

works in our train set (described in 7.3.3), but the target two- and four-class labels are assigned

randomly. As evident from Figs. C.11 and C.12, in neither the two-class nor the four-class case

is the SVM able to learn the random class distinctions, indicating that in the “IZA vs. Deem”

confusion matrices of Figs. 7.12 and C.10 there are genuine distinctions between the IZA and

Deem frameworks beyond random noise that the SVM picks up on in order to differentiate the

classes.
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Figure C.11 – Confusion matrices from a two-class SVM classification where subsets of the
power spectrum or radial spectrum were used for the SVM training and classification. The
matrix entries are colored according to the proportion of the true labels that have been
predicted as a particular class, while the interior text gives the absolute number of such
classifications. The classification is trained on a subset of Deem frameworks that are assigned
random class labels. The superscript † indicates predicted class labels.
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Figure C.12 – Confusion matrices from a four-class SVM classification where subsets of the
power spectrum or radial spectrum were used for the SVM training and classification. The
matrix entries are colored according to the proportion of the true labels that have been
predicted as a particular class, while the interior text gives the absolute number of such
classifications. The classification is trained on a subset of Deem frameworks that are assigned
random class labels. The superscript † indicates predicted class labels.
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Table C.1 – List of the 50 Deem frameworks that are closest to the convex hull that have a
two-class decision function value F less than zero. For each candidate, its Deem database ID
is given, in addition to its (energy) distance from the hull Ehull , two-class decision function
value F , predicted four-class canton, and the closest IZA framework in SOAP space alongside
its ground-truth assigned canton and its distance from the corresponding Deem framework D .
The candidates are sorted by their two-class decision functions.

No. ID Ehull F Canton Closest IZA (Canton) D

(1) 8283748 0.00 -4.57 IZA2 VET (IZA1) 1.96×10−3

(2) 8162069 0.00 -3.90 IZA3 VET (IZA1) 2.09×10−3

(3) 8054476 0.00 -3.55 IZA2 SBN (IZA3) 2.41×10−4

(4) 8214845 0.00 -3.20 IZA2 NAT (IZA2) 7.01×10−5

(5) 8330882 0.00 -2.94 IZA1 MEP (IZA1) 4.58×10−4

(6) 8330992 0.00 -2.85 IZA2 STF (IZA1) 6.56×10−4

(7) 8315377 6.18×10−2 -2.58 IZA3 AWW (IZA3) 3.99×10−4

(8) 8315376 0.00 -2.53 IZA3 AWW (IZA3) 3.84×10−4

(9) 8261336 1.22×10−1 -2.46 IZA2 THO (IZA2) 2.33×10−4

(10) 8122541 2.20×10−1 -2.38 IZA2 POR (IZA3) 3.22×10−4

(11) 8158735 0.00 -2.14 IZA2 THO (IZA2) 4.40×10−4

(12) 8252698 3.26×10−1 -1.70 IZA3 AWW (IZA3) 4.36×10−4

(13) 8095665 1.74×10−1 -1.59 IZA2 PTT (IZA2) 1.50×10−4

(14) 8324141 1.57×10−1 -1.50 IZA2 PTT (IZA2) 2.49×10−4

(15) 8321610 1.18×10−1 -1.44 IZA2 PTT (IZA2) 3.18×10−4

(16) 8318169 3.17×10−1 -1.40 IZA2 ATT (IZA3) 3.86×10−4

(17) 8323694 0.00 -1.35 IZA2 FRA (IZA2) 2.58×10−4

(18) 8227811 7.87×10−2 -1.32 IZA1 IHW (IZA1) 4.88×10−4

(19) 8322800 1.88×10−1 -1.28 IZA3 FRA (IZA2) 3.83×10−4

(20) 8327194 2.64×10−1 -1.25 IZA2 FRA (IZA2) 7.85×10−5

(21) 8322701 0.00 -1.25 IZA3 FRA (IZA2) 3.32×10−4

(22) 8320027 0.00 -1.25 IZA2 PHI (IZA2) 6.67×10−5

(23) 8322704 2.73×10−1 -1.22 IZA3 GIU (IZA2) 3.90×10−4

(24) 8170208 3.13×10−1 -1.20 IZA3 AWO (IZA3) 4.19×10−4

(25) 8327193 0.00 -1.19 IZA2 FRA (IZA2) 4.89×10−5

(26) 8323749 1.49×10−1 -1.13 IZA2 FRA (IZA2) 2.86×10−5

(27) 8156062 0.00 -1.08 IZA3 PON (IZA3) 4.74×10−4

(28) 8129131 2.48×10−1 -1.07 IZA1 EWO (IZA2) 4.49×10−4

(29) 8186781 2.37×10−1 -1.00 IZA2 SEW (IZA2) 3.93×10−4

(30) 8116170 2.08×10−2 -0.98 IZA2 SIV (IZA3) 3.26×10−5

(31) 8068062 3.49×10−2 -0.98 IZA2 PHI (IZA2) 7.46×10−5

(32) 8116169 1.85×10−2 -0.96 IZA2 SIV (IZA3) 6.87×10−6

(33) 8306691 0.00 -0.95 IZA2 MWF (IZA2) 1.36×10−4

(34) 8238942 0.00 -0.92 IZA1 EWO (IZA2) 4.69×10−4
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(35) 8049770 2.97×10−1 -0.90 IZA3 AWO (IZA3) 4.11×10−4

(36) 8119960 1.99×10−3 -0.88 IZA3 AWO (IZA3) 4.69×10−4

(37) 8233794 0.00 -0.79 IZA3 AWO (IZA3) 4.69×10−4

(38) 8169309 1.84×10−1 -0.64 IZA1 EWO (IZA2) 4.70×10−4

(39) 8011377 1.50×10−1 -0.52 IZA3 MSO (IZA2) 5.32×10−4

(40) 8073591 2.05×10−1 -0.48 IZA3 AWO (IZA3) 3.01×10−4

(41) 8168455 1.63×10−1 -0.46 IZA3 PSI (IZA3) 6.43×10−4

(42) 8097252 2.80×10−1 -0.46 IZA3 AWO (IZA3) 3.03×10−4

(43) 8192981 3.20×10−1 -0.44 IZA3 SFG (IZA2) 6.29×10−4

(44) 8243388 2.93×10−1 -0.43 IZA3 AWO (IZA3) 2.08×10−4

(45) 8076933 2.69×10−1 -0.42 IZA2 GIS (IZA2) 3.20×10−4

(46) 8118604 2.50×10−1 -0.37 IZA3 AWO (IZA3) 3.07×10−4

(47) 8129304 1.65×10−1 -0.36 IZA1 EWO (IZA2) 4.99×10−4

(48) 8050438 2.92×10−1 -0.26 IZA3 AWO (IZA3) 5.08×10−4

(49) 8125875 2.97×10−1 -0.16 IZA3 MSO (IZA2) 4.81×10−4

(50) 8073492 1.64×10−1 -0.13 IZA3 AWO (IZA3) 2.72×10−4
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D Computational Tools

The data analysis and and visualization for the work presented in this thesis was performed

in Python [240, 241] with the aid of the SciPy [242], NumPy [243–245], scikit-learn [202],

Atomic Simulation Environment (ASE) [246], Biopython [199], and Matplotlib [247] packages

in addition to Wolfram Mathematica 11.1 [248]. Atomic structure snapshots were created with

OVITO [249], VESTA [250], or Visual Molecular Dynamics (VMD) [251] with the Tachyon [252]

rendering utility.
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