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Abstract
To meet the net-zero emission target by 2050, Switzerland must install between 34 and 50 GW

of distributed photovoltaic (PV). The inherent challenge with such an extensive integration of

stochastic generation is to provide the flexibility for balancing supply and demand. Otherwise,

grid reinforcements or PV generation curtailment are required. Both have a cost that can be

reduced by using flexibility. Most of the PV capacity will be installed on rooftops. As the need

for flexibility will mainly come from districts, this thesis investigates how to promote flexibility

of PV systems for their large-scale deployment in low-voltage grids.

First, we investigated how the citizens’ and consumers’ behavior can balance supply and

demand. Our findings from a field trial highlight that the households’ reaction to remunerative

incentives is low but still observable. In contrast, new PV adopters, under an inherent moral

and remunerative incentive, show a significant consumption behavior change. We evaluated

that the households’ potential for shiftable energy is around 18%. A 20% increase in the PV

penetration can be achieved using this flexibility. Second, technical measures such as batteries,

heat pumps, electric heaters, and PV power curtailment can effectively contribute to the

systems’ flexibility and mitigate network impact. We proposed strategies to promote flexibility

and mitigate grid impact. In particular, we showed that variable volumetric tariffs promote

large storage used for trading energy and increase the grid stress. In contrast, capacity and

block rate tariffs reduce heat pumps’ capacity, increase storage capacity to lower consumption

peak, and increase PV curtailment to reduce injection peak. The consequence is an overall

grid stress reduction. We also showed that aggregating individual systems to form energy

communities negatively impacts the grid but increases their profitability. Finally, flexible PV

systems can be harvested by distribution network operators to keep the network in a safe state.

We investigated the cost of exploiting distributed flexibility compared to grid reinforcement

cost. The former is profitable for moderate PV penetration until a break-even point where the

latter becomes the most economical option.

Along with answering the central question of promoting PV systems flexibility, we provided

an analytical tool to disaggregate households’ smart meter measurements into appliance

categories. We also provided two approaches to use smart meter data in the context of network

impact studies while coping with privacy-preserving regulation.

Keywords: photovoltaic, flexibility, electricity tariffs, electrical network, demand-side man-

agement, battery, heat pump, grid impact
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Résumé
Pour atteindre l’objectif de neutralité carbone d’ici 2050, la Suisse doit installer entre 34

et 50 GW de capacité photovoltaïque (PV). Le défi inhérent à un tel taux de pénétration

d’énergie intermittente est de fournir la flexibilité pour équilibrer la demande et la production.

Autrement, il est nécessaire de procéder à des renforcements du réseau ou à la réduction

volontaire de la production PV. Ces actions sont couteuses et doivent être évitées autant que

possible. La majeure partie de la capacité PV devra être installée sur les toits. Puisque les

besoins en flexibilité viendront essentiellement des quartiers, cette thèse étudie comment

promouvoir la flexibilité des systèmes PV pour atteindre leur déploiement à grande échelle

dans les réseaux basses-tensions.

Premièrement, nous avons évalué comment le comportement des citoyens et consommateurs

peut équilibrer la production et la consommation. Notre essai sur le terrain montre que

la réaction des ménages à une incitation financière est faible, mais observable. A l’opposé,

les nouveaux propriétaires d’installation PV montrent un changement significatif de leur

comportement de consommation grâce à la double incitation financière et morale. Nous avons

évalué que le potentiel d’énergie déplaçable est d’environ 18%. Une augmentation de 20%

du taux de pénétration PV peut être atteinte en utilisant cette flexibilité. Deuxièmement, des

mesures techniques, comme des batteries, des pompes à chaleur, des chauffages électriques

et la réduction de la production PV peuvent contribuer à la flexibilité du système et limiter

l’impact sur le réseau. Nous avons présenté des stratégies pour encourager la flexibilité et

limiter celui-ci. En particulier, nous avons démontré que des tarifs variables encouragent

les propriétaires à installer de plus grandes batteries. Cependant, avec ces tarifs, celles-ci

augmentent la pression sur le réseau. A l’inverse, des tarifs capacitifs ou progressifs réduisent

la taille des pompes à chaleur, augmentent la capacité de stockage pour réduire les pics de

consommation et réduisent davantage la production PV pour limiter les pics d’injection. Il

en résulte une réduction globale de la pression sur le réseau. Nous avons également montré

que l’agrégation de systèmes individuels pour former des communautés énergétiques a un

léger impact négatif sur le réseau, mais augmente la rentabilité de celles-ci. Pour finir, les

systèmes PV flexibles peuvent être exploités par les gérants de réseaux de distribution pour les

aider à exploiter le réseau dans un état acceptable. Nous avons évalué le coût d’exploitation

de la flexibilité distribuée comparée aux coûts de renforcements réseau. Celle-ci peut être

rentable pour des pénétrations PV modérées jusqu’à un certain point où le renforcement

réseau devient plus économique.

En répondant à la question centrale sur l’encouragement de la flexibilité des systèmes PV,
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Résumé

nous avons également proposé un outil d’analyse. Cet outil permet de désagréger les mesures

fournies par des compteurs intelligents en des catégories d’appareils électriques. Nous avons

aussi présenté deux approches pour exploiter les données des compteurs intelligents dans le

contexte d’étude d’impact sur le réseau tout en respectant la règlementation sur la protection

des données.

Mots-clés : photovoltaïque, flexibilité, tarif d’électricité, réseau électrique, gestion de la de-

mande, batterie, pompe à chaleur, impact réseau
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Introduction

“Our house is on fire. I am here to say, our house is on fire.” said Greta Thunberg at the 2019

World Economic Forum in Davos. Nevertheless, we have not yet failed. This thesis aims to add

a little stone to the most crucial challenge humanity has ever faced: climate change.

Motivation

The Swiss Federal Council decided on 28 August 2019 that Switzerland should not emit more

greenhouse gas (GHG) than it can absorb naturally or with technical means by 2050. This

carbon neutrality target should limit the global temperature increase by 1.5 °C. By doing so,

Switzerland joins a growing list of states with net-zero emission targets, including France,

Germany, Sweden, Denmark, and the United Kingdom. All sectors of our fossil-fuel addict

society emit GHG. In 2019, the largest sources were buildings (heating, and appliances, with

11 MtCO2eq), transport (15 MtCO2eq), and industry (heat and process, 12 MtCO2eq)). The

GHG emissions per sector from 1990 to 2019 are reported in Figure 1. The emission reduction

in these sectors can be achieved by, amongst other solutions, electrification [Sugiyama, 2012].

For instance, in the buildings sector, a growing share of the heat demand could be covered

by efficient power-to-heat technologies such as heat pumps. Such technologies essentially

improve the energy efficiency of heat production. Similarly, electric engines instead of internal

combustion in the transport sector allow a significant decrease in primary energy needs. For

electrification to result in real GHG emission reduction, the decarbonization of the power

sector is required. In other words, zero-carbon electricity must be produced to power our

lights, electric vehicles, heat pumps, machines, or any other appliances.
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Figure 1 – Greenhouse gas emission by sector, adapted from [FOEN, 2021]

The massive integration of renewable energy sources is the pillar of the power sector decar-

bonization [Child et al., 2019]. Recent reports from the International Energy Agency show a

growing share of renewable energy in the global electricity generation mix [IEA, 2019]. This

growth is driven by a constant drop in the cost of these technologies, as highlighted in Figure 2.

Solar and wind energy have the most rapidly decreasing cost between 2010 and 2019. In

particular, solar photovoltaic (PV) cost has been divided by five in less than ten years to reach

an average generation cost at 6.8 cts/kWh (USD) in 2019. The PV generation can be even lower

than 2 cts/kWh for large plants in sunny countries1.

Figure 2 – Levelized cost of energy for utility-scale renewable generation technologies adapted
from [IRENA, 2020]

1In 2021, Saudi Arabia draw a world record low bid of 1 cts/kWh https://www.pv-magazine.com/2021/04/08/
saudi-arabias-second-pv-tender-draws-world-record-low-bid-of-0104-kwh/

2

https://www.pv-magazine.com/2021/04/08/saudi-arabias-second-pv-tender-draws-world-record-low-bid-of-0104-kwh/
https://www.pv-magazine.com/2021/04/08/saudi-arabias-second-pv-tender-draws-world-record-low-bid-of-0104-kwh/


Introduction

Solar energy is available everywhere. On average, between 800 and 2700 kWh/m2 of solar

energy can be harvested yearly. In Switzerland, this value lies typically between 1000 and

1300 kWh/m2, i.e., equivalent to the energy content of one barrel of oil per year and square

meter. Hence, there is a high potential for cheap, clean, and widely available solar energy.

Distributed renewable energy sources are given by multiplicating small (kW range) to medium

scale (MW range) renewable energy-based generation plants. Their penetration, defined as

their energy production compared with the energy demand at any specified scale, is critical

for the transition toward a zero-carbon power sector.

In this work, we will primarily focus on photovoltaic energy, although some of the concepts

and modeling approaches could also apply to other distributed renewable energy sources.

The main issue with the massive integration of renewable energy is its intermittent and

stochastic nature. Figure 3 illustrates the global horizontal irradiance (GHI) for a particular

autumn day in Neuchâtel. The irradiance can drop from 630 to 160 W/m2 in just 5 minutes,

then rise again by 500 W/m2 in 5 minutes. These variations are difficult to predict and can

cause numerous energy infrastructure challenges. In particular, according to [Viral and

Khatod, 2012], the main limitations of PV integration (but could also apply for any distributed

intermittent generation) in the current electrical network are:

reverse power flow If the generation becomes locally higher than the load, the power will flow

from the network end-nodes to the local district transformer. It becomes a significant

issue if the reverse power exceeds the transformer limits.

voltage levels Again, if the generation becomes locally higher than the load, the voltage can

rise and even over-pass the voltage limits impose by voltage disturbance standards

[Markiewicz and Klajn, 2004].

frequency control With the increasing penetration of distributed generation, the amount of

inertia available on the network gets lower as fewer conventional rotating generators

(with heavy turbines and alternators) are used simultaneously. The inertia can be seen

as the network’s ability to damp frequency fluctuations by absorbing or injecting kinetic

energy [Tielens and Van Hertem, 2016].

harmonics and power quality For grid-connected PV installation, an alternative current con-

verter is a mandatory component. To generate a sinusoidal output current, converters

use pulse-width modulation through MOSFETs transistor [Enslin and Heskes, 2004].

To limit harmonics, some low-pass filters are used at the output. However, studies

[Enslin and Heskes, 2004, Poosri and Charoenlarpnopparut, 2016] have shown that

when reaching a high PV penetration level (above 50%), the total harmonic distortion

can approach the 5% limits of the IEEE standard [Blooming and Carnovale, 2006].

3
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Figure 3 – Measure of the global horizontal irradiance on an autumn day

To overcome these issues, three approaches can be undertaken. The first is to prevent or

restrict distributed renewable generation penetration and stick with conventional generation.

This is not compatible with GHG emission reduction targets. The second approach is to

undertake grid reinforcement,i.e., replacing grid components (transformer and lines) with

larger and stronger ones to sustain the duty. This is feasible but with a particular cost that we

will consider avoidable. Finally, the remaining option, and the one we will investigate in this

work, is to increase the distributed generation’s flexibility.

In this work, we consider that flexibility is the ability to change the amount of power a

given energy system consumes or produces. A PV plant, if not supplemented by any com-

plementary technologies, is not flexible as the instantaneous weather condition determines

its production. A PV inverter with the ability to curtail the PV generation and reducing the

production is already a source of flexibility.

Flexibility is sometimes also referred to as the ability to balance generation and demand

[Cruz et al., 2018, Eid et al., 2019, Olivella-Rosell et al., 2018, IRENA, 2018]. In contrast, others

define flexibility as the ability to provide a quick response to the renewable energy source

unpredictability [Goutte and Vassilopoulos, 2019, Kondziella and Bruckner, 2016] or to time-

shift some events [Zhang et al., 2020]. Network flexibility sometimes refers to the network’s

ability to adapt and reconfigure (topologically) to answer unexpected events [Cruz et al., 2018].

These considerations are outside the scope of this thesis. This work’s primary focus is on

flexibility as adding controllability at a fraction of hour-scale.

This thesis aims to provide insights and critical contributions for promoting flexi-

bility of PV systems and their integration in the electrical network.

The remaining part of this introduction will present the current Swiss framework, in light of a

transition toward net zero-emission by 2050, some basic concepts about PV systems, and the
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scientific contributions to the field. To understand how far this goal is from the current status,

we must also understand the current Swiss energy needs, production means, and distribution

infrastructures.

The Swiss energy context

The primary energy consumption of Switzerland lies around 800 PJ (230 TWh). About 2/3 of

our needs are covered by fossil fuel, while 25% is covered by electricity, the rest comes from

biomass and waste incineration. We use energy for three primary services. The first and larger

one (45%) is heat production, i.e., the heating of buildings, hot water, and hot process in the

industry. The second is transportation (38%), i.e., the movement of humans or goods. The

rest of our energy needs is for our daily activities and manufacturing (besides heat demand).

Figure 4 summarized our energy needs and how they are supplied.
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Figure 4 – Energy demand (primary, from [Infras et al., 2020] supply (final consumption, from
[SFOE, 2019a])

The electricity share is strongly expected to rise in the coming years, despite energy efficiency

measures. In the 2050 energy perspective of the Swiss Federal Office for Energy [SFOE, 2021],

the total electricity demand is expected to reach 71 TWh. To cover this demand, hydropower

plants are expected to produce 45 TWh, and PV production should reach 34 TWh using mostly

distributed PV. Additionally, 8 TWh are generated by wind, biomass, and geothermal. About

3 TWh of renewable energy are curtailed. The difference between production and consump-

tion is the loss in transmission lines (5 TWh)and pumped-hydro storage (8 TWh).
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Figure 5 – Electricity production forecast to 2050. Source: [SFOE, 2021]

There are political propositions to produce 50 TWh of electricity using PV [Nordmann, 2019].

Such a high PV penetration cannot be achieved without flexibility. The authors of [SFOE, 2021]

foresee that Switzerland should account for 16 GW of flexible capacity (hydro, pumped-storage,

biomass feed combined cycle power plant) to cover a maximum of 11 GW peak demand. They

also claim that demand flexibility is also essential and can be achieved using distributed

storage, power-to-heat, and power-to-gas technologies.

Looking at the renewable energy generation trend from 2009 to 2019 [SFOE, 2019b] and the

activated energy for control purposes [Swissgrid, 2021] reported in Figure 6, these claims

seem reasonable. Indeed the need to control energy to cope with unexpected events in the

generation or consumption side decreases both in absolute value and relative to the total

energy consumption. Simultaneously, the variable renewable energy has known a drastic

increase since 2009 to reach 4% of the electricity demand.
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The challenge with a large PV penetration might not be at the large scale but rather at a local

scale. To bring the energy from the producer to the customer, several levels of infrastructure

are needed. The electrical network can be decomposed into the transmission lines and the

distribution lines. A very high voltage is required to minimize losses to transport energy.

Typically the transmission lines are composed of very high voltage (220-380 kV) lines. They

are operated by the transmission system operator (TSO) to ensure that the energy supply and

demand are balanced at all times. It activates, when needed, some control reserve capacity

(namely large power capacity) to adjust in case of an unexpected event. The TSO is responsible

for keeping the voltage and frequency of the electrical network within a given tolerance.

Figure 7 illustrates the different network levels. The distribution system operator (DSO) is

responsible for the infrastructure to distribute energy to the end customers. Typically, the

low-voltage grids (level 7) are maintained by the DSO. The DSO can also operate medium to

high voltage lines up to level 3. His role is to provide reliable access to the energy infrastructure.

As such, the DSO is responsible for planning grid maintenance, expansion, and reinforcement

when needed. According to the Swiss electricity provision act, the DSO charges the end

customers for the network operation, maintenance, balancing, and investment cost in a given

area 2. The so-called grid tariff must be uniform for a given customer segment and voltage

level.

In this framework, this thesis focuses on the consequences of a large-scale deployment of

PV systems in low-voltage grids. It aims at mitigating any resulting increase in the grid

maintenance, investment, and operating cost. Distributed PV (as opposed to large central-

ized PV power plants) will mostly be integrated into low-voltage networks. Thus, all inherent

challenges, over-voltage, line ampacity breaking, reverse-power flow, are potentially concen-

trated at this network level.

Figure 7 – The seven grid level, from the transmission system (level 1, 220-380 kV) to the
distribution system (level 7 < 1 kV)

The energy production and distribution infrastructure maintenance are separated from the

retail energy business. In other words, one company is responsible for the distribution in-

frastructure, the DSO. Another company is responsible for generating electricity, and a third

2art 5,6,14 and 15 LApEl https://www.fedlex.admin.ch/eli/cc/2007/418/fr
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company is buying energy from the producer to sell it to the end customers. This is the energy

retailer (ER). In a fully liberalized energy market, any customer should contract any ER to

ensure its supply. This is currently not the case in Switzerland for small customers (if their

consumption is below 100 MWh/year). A new regulation should come soon, but a complete

liberalization of the energy market is still under debate. Under the current regulation, the

DSO has to buy renewable energy from the producer. In this framework, self-consumption is

allowed, i.e., the direct consumption of a generation’s share. For PV systems, this is currently

the primary business model. The PV energy generated is first consumed locally to avoid

withdrawing energy from the grid, the remaining energy being sold to the DSO, and providing

extra revenue.

This thesis primarily focuses on the residential sector and assumes that the customers are

tied to the DSO and ER, which form, in most cases, a single entity.

To illustrate the electricity tariff structure, Table 2 reports examples of electricity tariff extracted

from the Federal Electricity Commission (Elcom)3 for Romande Energy as ER and DSO. The

local tax applies to the Rolle district (as an example).

Table 2 – Example of electricity tariffs, network tariffs, taxes, and feed-in tariffs for three
customers categories

Unit H41 H62 C73

Network

cts/kWh

9.68 (46%) 5.62 (36%) 3.95 (27%)

Energy 7.73 (37% 6.21 (40%) 6.99 (48%)

Local tax 1.32 (6%) 1.32 (9%) 1.32 (9%)

Federal tax 2.30 (11%) 2.3 (15%) 2.3 (16%)

Total cts/kWh 21.03 (100%) 14.56 (100%) 18.28 (100%)

Feed-in cts/kWh 8.164 7.25

1 H4: small residential customers with annual consumption <

4’500 kWh/year
2 H6: small residential customers with annual consumption <

25’000 kWh/year
3 C7: large commercial customers with annual consumption of

500’000 kWh/year, a fixed fee also applies
4 assuming a PV capacity < 30 kW
5 assuming a PV capacity < 3’000 kW

This section presented the Swiss context and some basic definitions of the structure of the

Swiss energy system. The following will now presents some fundamental principles about PV

systems.

3https://www.strompreis.elcom.admin.ch/
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Photovoltaic technology

The photovoltaic effect is the generation of an electric current or voltage when a particular

material is illuminated. The phenomenon, extensively described in [Shah, 2020], occurs when

the incoming light’s energy is high enough to drive the separation of an electron-hole pair, as

illustrated in Figure 8. Without going too much into the details, the power extracted from a

solar cell is proportional to the irradiance (instantaneous power of the incoming light normal

to the solar cell plane) and the illuminated area. This section aims to provide the basic model

of a PV system.

Figure 8 – The photovoltaic effect: generation of an electron-hole pair by absorption of an
incoming photon

A PV module is the assembly of a collection of solar cells, with essentially two relevant char-

acteristics: the nominal power and the power temperature coefficient. The nominal power

is defined as the maximum power extracted from a module under standard test conditions,

i.e., 1000 W/m2, 25 °C, and a normalized light spectrum (AM1.5G for completeness). We will

denote the nominal power of a module by P mod. The power temperature coefficient η models

the variation of the maximum power as a function of the cell’s temperature. For crystalline

solar cells, the maximum power decrease when the cell temperature increase. Thus, this

coefficient is negative.

Outside the Earth’s atmosphere, the solar irradiance is around 1300 W/m2 (measured in the

horizontal plane, it is called horizontal extra-terrestrial irradiance, E H I ). Due to absorption in

the atmosphere, only a fraction of this energy reaches the ground. It is usually decomposed

between a direct component (DN I , direct normal to the sun irradiance) and diffused com-

ponent (D H I , diffused horizontal irradiance). Weather stations measure the combination of

D H I and DN I projected on a horizontal plane. It is called the global horizontal irradiance

(G H I ). The instantaneous generation of a PV module depends on the solar irradiance coming

in the plane of the modules (denoted GT I for global tilted irradiance), which is the sum of a

direct and diffused component (BT I and DT I , respectively). The basic principle is to translate

the global and diffused horizontal irradiance into the module tilted plane. The power output
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is calculated using the following set of equations derived from [King et al., 2004]:

Modules output power P PV = P mod · GT I

1000
·
(
1+η∗

(
T cell −T ref

))
(1a)

Cell temperature Tcel l = Tmod +GT I /1000∗∆T 4 (1b)

Module temperature T mod =GT I ·exp(a +b ·W S)+T amb 4 (1c)

Global Tilted Irradiance GT I = BT I +DT I (1d)

Diffused tilted irradiance DT I = D H I ∗
(

A∗Rb + (1− A)∗ (1+cos(β))

2

)
5 (1e)

with (1f)

A = DN I

E H I
5 (1g)

Rb = cos(θ)

cos(δ)
5 (1h)

Beam tilted irradiance BT I = DN I ·cos(θ) (1i)

Direct normal irradiance DN I = G H I −D H I

cos(δ)
(1j)

Angle of incidence cos(θ) = cos(β)cos(δ)+ sin(β)sin(δ)cos
(
φ−γ)

(1k)

where T ref is the standard condition temperature (25 °C).∆T is the temperature difference

between the cells and modules at 1000 W/m2 and typically depends on the mounting (open-

rack or insulated back). W S is the wind speed, a,b empirical coefficients. T amb is the ambient

temperature. Angles β and γ are the tilt and azimuth of the modules, and the angles δ and φ

are the solar zenith and azimuth angle as illustrated in Figure 9.

Figure 9 – Illustration of the solar and modules angle

4Cell and module temperature model from [King et al., 2004]
5Diffuse irradiance transposition model from [Hay and Davis, 1978]
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The sun position can be calculated as a function of time using the algorithm proposed by

[Reda and Andreas, 2004]. In contrast, the diffuse and global horizontal irradiance (D H I ,

G H I ) are obtained from weather station measurements. A slightly more advanced model is

implemented in the PVLIB toolbox from the Sandia National Laboratory [Stein et al., 2016] and

will be used all along with this thesis for PV generation simulation.

Using Equations 1a to 1k allows simulating the PV generation of a single module with given

orientations along time. These equations can apply to any set of modules having any orienta-

tions. The simulation of a complete PV system can be achieved by summing the individual

modules’ generation. PVLIB integrates advanced models for inverters and module properties

mismatch.

The current business model of distributed PV is to reduce the energy bill by covering a given

share of its consumption with its PV generation. This action is referred to as self-consumption.

Denoting P loadthe uncontrollable electric load of a PV system, P impthe net power withdrawn

from the grid, and P expthe excess of PV generation injected into the grid such that the energy

balance of Equation 2 holds. The instantaneous self-consumption ratio sct as the share of the

PV generation directly consumed by the load:

Energy balance P imp
t −P exp

t = P load
t −P PV

t (2)

Power withdrawn from the grid P imp
t = P load

t − sct P PV
t (3)

Power injected to the grid P exp
t = (1− sct )P PV

t (4)

Total PV generation P PV
t = P PV

cap ·Yt (5)

with Yt = GT It

1000
·
(
1+η∗

(
T cell

t −T ref
t

))

Note that Equation 5 slightly redefines the initial module-based definition from Equation 1a.

Both definitions are entirely equivalent, but we prefer using the second one in this case to

introduce the notion of PV capacity, which is simply the cumulative power of all installed

modules.

The profitability of an energy system can be measured by its Net present value (NPV ), which

discounts the future saving from the PV system compared with a no investment case. The

system is profitable if the NPV is positive, as highlighted in Equation 6. In more detail, the

original operating cost of an energy system is calculated by integrating the product of load and

instantaneous energy tariff as in Equation 7 (to keep the definition as general as possible, let

us assume it is time-varying). The new operating cost takes advantage of the self-consumption

to reduce the imported energy and increase the revenue from exporting energy to the grid

(Equation 8). In this example, we account for an annual maintenance cost proportional to the

investment cost by a factor m (Equation 9). The investment cost is simply proportional to the

installed PV capacity by a factor C PV which is the PV specific cost in CHF/kW (Equation 10).

11
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Net present value of a PV system: NPV =−I +
L∑
y

−M PV
y −OPE X y +OPE X 0

y

(1+ r )y ≥ 0 (6)

Original operating cost: OPEX0
y = OPEX0 =∑

t
P load

t c imp
t T S (7)

New operating cost: OPEXy = OPEX =∑
t

(
P imp

t c imp
t −P exp

t cexp
t

)
T S (8)

Annual PV maintenance cost M PV
y = M PV = mI (9)

Total investment cost I =C PV ·P PV
cap (10)

where subscript y denote the cost for a particular year, L is the system lifetime, r the discount

rate, and T S is the integration time step.

Integrating Equations 3 to 5 and 7 to 10 into Equation 6 leads to a condition on the profitability

of the system as:

−P PV
cap ·C PV −

N∑
y=1

γP PV
cap ·C PV

(1+ r )y −

L∑
y=1

(
P load

t − sct Yt ·P PV
cap

)
· t s · c imp

t −
(
(1− sct ) ·Yt ·P PV

cap

)
· t s · cexp

t

(1+ r )y +

N∑
y=1

P load
t · t s · c imp

t

(1+ r )y ≥ 0

which can be simplified to derive a strict condition on the maximum PV specific cost for the

investment to remain profitable as:

C PV ≤
∑L

y=1
1

(1+r )y

1+m
∑L

y=1
1

(1+r )y

·∑
t

Yt T S
[

cexp
t + sct · (c imp

t − cexp
t )

]
(11)

From this equation, we can interpret that the maximum PV specific cost is a weighted average

of the average energy value lying between the retail and feed-in tariffs (c imp and cexp hereafter

referred to as import or export price). The weights are the instantaneous energy yield (in

kWh/kW) and the instantaneous self-consumption sct . Simplifying further by assuming a

constant import and export tariff, we can introduce the definition of the self-consumption as

the ratio between the amount of energy self-consumed and the total PV generation:

SC =
∑

t sct ·P PV
t ·T S∑

t P PV
t ·T S

=
∑

t sct ·Yt ·T S∑
t Yt ·T S

(12)
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which simplifies even further Equation 11 into:

C PV ≤
∑L

y=1
1

(1+r )y

1+γ∑L
y=1

1
(1+r )y︸ ︷︷ ︸

Annuity factor

·
Annual energy yield (kWh/kW)︷ ︸︸ ︷∑

t
Yt T S ·

[
cexp +SC · (c i mp − cexp )

]
︸ ︷︷ ︸

Upper bounds for the cost of PV energy

(13)

In summary, the specific PV cost has an upper bound to ensure the profitability of the invest-

ment, which is the product of :

• the annuity factor represents the financial conditions. If the interest rate rises or the

time horizon decreases (system lifetime L), this annuity factor decreases, tightening the

system’s profitability constraint.

• the annual energy yield represents the local PV performance. It is directly influenced

by the local climate (insulation, temperature), and the module’s performance. One can

also include system performance, degradation, and failures.

• the upper bound for the cost of PV energy lies between the grid import and export

price. For a pure producer (no self-consumption), this PV energy cost must be lower

than the export tariff to be economically viable. Achieving a 100% self-consumption

allows having a cost of PV energy just below the import tariff. This quantity is often

called the levelized cost of PV electricity (LCOE).

A comparison between the actual specific cost of Swiss PV installation [Planair et al., 2020]

and the upper bound calculated using Equation 13 is drawn in Figure 10. Three specific

cases are considered. The bold line is the reference condition (1000 kWh/kW, an interest

rate of 3%, import tariff of 20 cts/kWh, export tariff at 10 cts/kWh, a maintenance cost of

5% of the investment cost per year, and self-consumption of 40%. The values are reported

in Table 3). Two additional lines with + and o markers are pictured, one for optimistic and

pessimistic conditions, as defined in Table 3. This figure should be read as follow. For a given

time horizon to recover the investment (read on the upper x-axis, can be the system lifetime,

let us take 20 years), the maximum acceptable specific cost under the reference condition is

1940 CHF/kW. The minimum installed capacity in Switzerland to reach such a price are above

10-15 kW (lower x-axis). Second example - a PV installation of 15 kW costs between 1200 and

2400 CHF/kW. In such conditions, the installation is profitable for all self-consumption ratios

between 0 and 100% self-consumption ratio under a time horizon of 15 years. Last example -

a self-consumption ratio of around 25-30% is accounted for in the residential sector. Under

such conditions and a system lifetime of 30 years, a minimum capacity of 5-10 kW is required

to guarantee the investment’s profitability. The cost data presented in Figure 10 does not

include any subsidies (unique retribution or tax reduction). Those are paramount to ensure

the profitability of most of the reported PV installations.
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Figure 10 – Dots: PV specific cost as a function of the installed capacity (lower x-axis, source:
[Planair et al., 2020]). Lines: maximum PV specific cost as a function of the financial time hori-
zon (upper x-axis) for optimistic, pessimistic, and reference condition and their SC variation,
indicated on the right axis.

Table 3 – Reference, optimistic and pessimistic condition values of Figure 10

Unit Reference Optimistic Pessimistic

Interest rate % 3 0 7

Energy yield kWh/kW 1000 1300 900

Import tariff cts/kWh 20 24 13

Export taiff cts/kWh 10 13 5

Maintenance cost %/year 5 0 5

Self-consumption % 40 100 0

These preliminary results highlight that the current business model of PV systems heavily

depends on the tariff and self-consumption. New PV modules can typically reach a lifetime

above 25 years which implies that the specific cost of PV should be lower than 3’000 CHF/kW.

In light of these results, the challenge of bringing flexibility to PV systems must account for

the profitability condition. For instance, any incentives aiming to promote flexibility shall

conserve the systems’ profitability through a more attractive tariff. Similarly, technical means

to increase self-consumption shall increase the system’s NPV , keeping the other parameters,

namely solar insulation, system lifetime, and interest rate constant. In light of these consid-

erations, how can we increase the flexibility of PV systems, ideally in a cost-effective way, to

accommodate the network operating constraints and allow a high PV penetration? This brings

us to formulate the critical contributions of this thesis and research questions.
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Contributions to the field and research questions

This thesis aims to provide critical contributions to increase the integration of PV energy in

low-voltage grids. As highlighted in this introduction, the main challenge with the increasing

PV penetration at the district scale is that the unbalance between the load and demand can

lead to voltage rise, line ampacity breaking, and transformer overloading, which may create

damage to the network and the connected loads.

The main objective of this work is to reduce the stress on low-voltage distribution

networks induced by a high penetration of distributed PV by promoting PV systems’

flexibility.

The energy transition implies a significant change in humans’ relation to energy. The power

sector is shifting from a centralized, dispatchable, and mostly fossil-based generation system

to a stochastic, intermittent, and renewable one. In recent decades, the DSOs’ role has to

ensure that the network has sufficient capacity to meet the demand and uncertainties. With

the gradual replacement of conventional generation by renewable energy sources, there is an

increasing uncertainty on the supply side. This is where demand-side management (DSM)

can play a role. An early definition of DSM was presented by [Gellings, 1985]:

“Demand-side management (DSM) is the planning and implementation of those electric utility

activities designed to influence customer uses of electricity in ways that will produce desired

changes in the utility’s load shape”

Focusing specifically on the residential sector, and the households’ consumption behavior,

DSM and load shifting have shown promising results to delay investment in additional genera-

tion capacity and increasing penetration of renewable energy sources, namely PV [Pina et al.,

2012]. This motivates the interest in household flexibility to raise consumption awareness and

acceptance of technical flexibility measures. There is still an open question about quantifying

the households’ flexibility potential and its contribution to the system flexibility. We formulate

our first research question as:

Research Question A)

What could be the households’ contribution to the PV system flexibility?

This thesis contributes to the field by proposing an analytic tool to quantify this potential

from energy measurements. Besides, we attempt to quantify the flexibility by conducting

a field experiment to incentivize households to shift their energy and compare this with

the estimated potential. This is novel in Switzerland, and such comparison using in situ

analysis never attempt. A third key contribution to this research question is investigating the

consumption pattern change of new PV adopters. While the residential sector’s flexibility has
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been widely discussed, the focus on new PV adopters and their change in consumption habits

brings novel insights to the field.

The requirements for flexibility in the power sector [IRENA, 2018] primarily enforce technology

coupling roles, such as storage, power-to-heat, and power-to-gas. Such technologies form the

second family of flexibility options and will be referred to as technical flexibility. The literature

often tackles the combination of these technologies with PV systems from a control point of

view [Mulder et al., 2013, Srivastava et al., 2019, Babacan et al., 2017], but there is a lack of

research about building up this flexibility.

Research Question B)

How to build cost-effective technical flexibility that reduces the grid impact?

This question implies a definition of the cost-effectiveness that we define as the total cost

of ownership of a PV system. Besides, the notion of grid impact should be clarified. First,

we contribute to the field by proposing an integrated convex optimization problem to solve

simultaneously the design and operation of a PV system with other ancillary technologies

(namely electrochemical storage and power-to-heat). Second, we propose design policies to

impose (in a coercive way) design rules on PV systems, and investigate their cost-effectiveness.

Finally, we contribute to the field by proposing remunerative schemes that enable flexibility by

promoting investment in (more) flexible technologies. To contribute to the second part of the

research question, namely the grid impact, we investigated how design rules and electricity

tariffs potentially modify the grid impact. The interest and focus on tariffs as a lever for

enabling flexibility and converting into a positive impact for the grid is, to the best of our

knowledge, novel.

The need for flexibility at the district scale is growing with the PV penetration. Nevertheless,

it is not clear yet how this flexibility can be harvested. While most studies propose to use

centralized flexibility assets to maintain the network in a desirable state [Massucco et al.,

2021, Hashemipour et al., 2018], we focus more on how distributed flexibility sources can be

used in a coordinated way, with minimum impact on the PV systems owner profitability to

achieve the same goal. There is, however, a lack of research about how flexibility can benefit

grid operation.

Research Question C)

How can flexible distributed PV systems contribute to mitigating the network expansion

cost?

We contribute to this question by evaluating how behavioral and technical flexibility allows

to mitigate the grid impact and propose methodologies to assess the economic benefits. We
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contribute to the flexibility value definition, which is one of the challenges of the current

energy system research field.

Overall this doctoral work resulted in four peer-reviewed publications as main or co-author,

two articles in preparation, and several collaborations with the Industrial Process and Energy

Systems Engineering laboratory of EPFL in the context of the SCCER-FURIES project.

Publications

• Holweger, J., Dorokhova, M., Bloch, L., Ballif, C., and Wyrsch, N. (2019). Unsupervised

algorithm for disaggregating low-sampling-rate electricity consumption of households.

Sustainable Energy, Grids and Networks, 19:100244

• Sánchez, C., Bloch, L., Holweger, J., Ballif, C., and Wyrsch, N. (2019). Optimised Heat

Pump Management for Increasing Photovoltaic Penetration into the Electricity Grid.

Energies, 12(8):1571

• Bloch, L., Holweger, J., Ballif, C., and Wyrsch, N. (2019). Impact of advanced electricity

tariff structures on the optimal design, operation and profitability of a grid-connected

PV system with energy storage. Energy Informatics, 2(1):16

• Holweger, J., Bloch, L., Ballif, C., and Wyrsch, N. (2020a). Mitigating the impact of

distributed PV in a low-voltage grid using electricity tariffs. Electric Power Systems

Research, 189:106763

• Holweger, J., Ballif, C., and Wyrsch, N. (2021a). Assessing the cost of distributed flexibility

versus grid reinforcement in low-voltage networks. Manuscript in preparation

• Holweger, J., Bloch, L., Ballif, C., and Wyrsch, N. (2021b). Privacy-preserving methods

for smart meters based network simulations. Manuscript in preparation

Reports

• Bloch, L., Holweger, J., Wyrsch, N., Tommasi, H., and Girardin, L. (2017). SCCER JA-

RED - Description of the multi-energy demonstration system in the RE demo site -

Deliverable 1.2.1. Technical report, École Polytechnique Fédérale de Lausanne, EPFL
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Outline of the thesis

Chapter 1 contributes to answering Research Question A) by proposing an algorithm to disag-

gregate the households’ electric consumption measurements into categories of appliances

and evaluate the shiftable energy potential.

Chapter 2 aims to extend the knowledge about households’ flexibility by presenting the

results of a field trial and compare them with the potential estimated using the proposed

disaggregation method. Besides, the new PV adopters’ flexibility is also discussed. This

complements Research Question A).

Chapter 3 introduces our fundamental models for technical flexibility. It consists in an inte-

grated optimization problem to solve the design and operation of a PV system with storage

and power-to-heat technologies. Contributions to Research Question B) are also presented

regarding how design rules can increase technical flexibility in a cost-effective way.

Chapter 4 contributes to Research Question B) by investigating how advanced electricity

tariffs impact the design and operation of PV systems, thus, their flexibility. Also, it provides

contributions to Research Question C) by investigating the resulting flexibility impact on a

low-voltage grid.

Chapter 5 contributes to Research Question C) by investigating how behavioral and technical

flexibility allows reaching or increasing the PV penetration in low-voltage grids. A contribution
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to the estimation of the flexibility value is also proposed.

Chapter 6 finally proposes critical insight about the decarbonization of Switzerland and the

path toward a high distributed PV penetration to reach net-zero emission by 2050.
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1 A disaggregation method for
household’s smart meter analytics

Understanding households’ energy consumption composition is critical for proposing cus-

tomer services such as energy efficiency measures or assessing flexibility potential (ability

to adapt its power demand). Non-intrusive load monitoring is a technique to disaggregate

households’ whole house power measurements and retrieve the original appliances’ power. In

this chapter, we propose a disaggregation method suited for low-resolution measurements

provided by smart meters.

Part of this section has been published in the following work:

Holweger, J., Dorokhova, M., Bloch, L., Ballif, C., and Wyrsch, N. (2019). Unsupervised

algorithm for disaggregating low-sampling-rate electricity consumption of households.

Sustainable Energy, Grids and Networks, 19:100244

1.1 Introduction

To evaluate the households’ flexibility potential, one needs to estimate the fraction of their

energy consumption that could be shifted in time. This quantity is a valuable flexibility metric

for better understanding how to design demand-side management programs and understand

how to harvest this flexibility source. For this purpose, non-intrusive load monitoring (NILM)

techniques seem promising to measure, potentially in situ, the flexibility potential. NILM has

been defined by [Hart, 1992] as:

“A non-intrusive load monitoring determines the energy consumption of individual appliances

turned on and off in an electric load”

In other words, the problem is to disaggregate, from a whole house load measure, all individual
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appliances’ consumption curves. In mathematical form, this can be expressed as:

P t =∑
m

P t
m +εt

Problem: find an estimate P̂ t
m of P t

m

(1.1)

where P t is the aggregated power signal of a house over time t , P t
m corresponds to the power

signal of the mth appliance, and εt is the measurement noise.

Regardless of the end goal of such a technique, NILM is a widely addressed topic. The research

community has proposed different approaches to disaggregation. Researchers have classified

the algorithms into several categories: high and low frequency, supervised and unsupervised,

residential and industrial, and others.

One categorization technique is based on the frequency of the aggregated power measure-

ments. As proposed in [Esa et al., 2016], low-frequency measurements correspond to sampling

rates of 1 Hz and lower, while high-frequency measurements require data of typically a few kHz

to half a MHz. The principle is to measure voltage and current at sufficiently high sampling

rates and identify individual appliances’ signatures as in [Liang et al., 2010]. These methods are

usually based on transient analysis of a power signal, i.e., on extracting a transient waveform’s

shape and length. Although high-frequency approaches are highly promising, it is currently

not cost-effective to implement such sensing capabilities and data transmission requirements

in smart meters [Wang et al., 2018].

In contrast, methods requiring a significantly lower sampling frequency are typically based

on steady-state features such as measuring the instantaneous power signal at a low sampling

rate, as described by [Zoha et al., 2012]. Both active and reactive power can be used as

appliances’ feature, although active power is the most characteristic feature. Nowadays, most

smart meters transmit signals in intervals of 5, 10, or 15 minutes or longer. In an extreme

case of divining appliances’ consumption with little information, [Birt et al., 2012] attempts

to disaggregate the power signal received from smart meters at a one-hour sampling rate.

They create a regression model on the external and internal temperatures to separate the

consumption of heating and cooling systems from the rest of the load. [Zhao et al., 2018]

tackle the disaggregation problem on both 15-min and 1-hour electrical measurements using

the supervised K Nearest Neighbours algorithm. [Zhao et al., 2018] extract features from

time-of-use profiles of particular appliances and propose a method to select the most valuable

features per device. Validation on three publicly available datasets has shown the ability of

such an algorithm to disaggregate up to 62% of the daily energy consumption. In [Batra et al.,

2016], the proposed methodology uses even less information since only monthly bills are used

to disaggregate the end-use energy consumption into categories (e.g., fridge, lights, washing

machine, etc.). Batra et al. do this by relating, using carefully selected features, a household

equipped with a single smart meter system to a set of K neighboring homes equipped with sub-

meters at the appliance level. The consumption of a particular appliance in a test household

is predicted by averaging the consumption of the corresponding K sub-metered devices. In
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the following, low-frequency measurements refer to sampling rates lower than 1 sample every

5 minutes. Note that this slightly contradicts the notion of [Zoha et al., 2012].

Another way to categorize disaggregation algorithms is to split them into supervised and un-

supervised, as suggested in [Faustine et al., 2017]. In a supervised method, the disaggregation

of an unknown power signal is preceded by a training phase, where the algorithm ”learns” to

recognize individual appliances’ power signals from the aggregated signal based on available

labeled data. An unsupervised method does not require such preliminary treatment as it

deals with unlabeled data and can directly perform the disaggregation. In both cases, the

approaches were adopted from the field of machine learning.

One of the ’classic’ supervised techniques of this field is to build an artificial neural network to

train an algorithm to create a non-linear estimator of the disaggregated power measurements

[Wang, 2003]. Neural networks have been used successfully in [Ruzzelli et al., 2010, Kelly

and Knottenbelt, 2015a, Biansoongnern and Plangklang, 2016]. An event-based method is

another approach to disaggregate real-power measurements but requires a relatively high

granularity level (typically with a sampling frequency in the range of seconds). A method

based on a decision tree was proposed by [Liao et al., 2014] and was used in [Stankovic et al.,

2016] to disaggregate 8 s real-power measurements. Similar to computer vision and image

processing techniques [Mairal et al., 2009], dictionary learning through sparse coding was

proposed by [Kolter et al., 2010] and was tested on a low-sampling-frequency dataset (one-

hour time interval). An upgraded version using powerlets as words for dictionary learning

was developed in [Elhamifar and Sastry, 2015]. A more recent approach [Singh and Majumdar,

2017] extends the discriminative sparse coding method by decomposing a problem into

multiple sub-problems. A similar technique using extended formulation is the Sum-to-k

constrained non-negative matrix factorization (S2K-NMF), tested by [Rahimpour et al., 2017].

This method claims the advantage of enabling whole-building disaggregation at a low sampling

frequency.

Unsupervised methods, instead, are not concerned with extracting functional dependencies

between the data and target variables. Therefore, the preceding training stage of learning

from labeled data is absent, and algorithms are directly applied to the dataset of interest. A

review of unsupervised methods for load disaggregation can be found in [Bonfigli et al., 2015].

One standard unsupervised method is the factorial hidden Markov model (FHMM) discussed

in [Zoha et al., 2013, Kim et al., 2011]. This method can also be applied in a supervised

way, as in [Batra et al., 2014, Bonfigli et al., 2017]. The most significant drawback of most

unsupervised methods is their requirement of a relatively high sampling frequency (typically

higher than 1/60 Hz). This makes it difficult and costly to collect the necessary input data for

these algorithms, thus creating obstacles towards implementing such solutions in the real

world.

All the methods mentioned above basically perform analysis and transformation of the power

signal. An alternative or complementary approach is to investigate the power signal’s un-
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derlying graph structure [Kumar and Chandra, 2017a]. This is typically described as graph

signal processing (GSP). Successful implementation of such algorithms for disaggregation

was performed in [Kumar and Chandra, 2017a, He et al., 2016, Kumar et al., 2016, Kumar and

Chandra, 2017b]. In [Zhao et al., 2016], a GSP approach was used to perform unsupervised

disaggregation.

The drawback of supervised methods is the need for labeled data, which are often not public or

generalizable. Therefore unsupervised methods are more appropriate for general study. The

unsupervised methods presented above require either high sampling frequency measurements

(smaller or equal to 5 minutes) or do not allow to disaggregate several categories of appliances

but rather one versus the others such as in [Birt et al., 2012]. Therefore there is a need for

an unsupervised disaggregation algorithm designed for a low sampling rate and able to get

information on all household’s appliances.

In this work, we propose an unsupervised methodology to estimate a household’s energy

consumption for selected appliance categories based on their characteristics and active power

measurements at a low sampling rate (15 min). The method relies only on general information

about households and measurements of their energy consumption. Although our proposed

methodology does not yet consider space heating or cooling (as the latter is not common in

central Europe), it tries to reach a finer level of detail by splitting the load into categories. The

categories are formed by grouping appliances together according to their most common usage

related to household’s activities.

The novelty of this methodology consists in proposing a hybrid approach, which lies between

load simulation and load disaggregation. Additionally, we use general household data that

were not previously considered for NILM purposes. Table 1.1 summarizes the input features

of selected reference algorithms and highlights the original input features required by our

algorithm - inhabitants’ age groups, employment status, and appliance usage frequency. These

features define the household profile. It can be acquired easily through surveys and might

be used as well for social science experiments or customer services purposes. Therefore,

our methodology can be defined as an unsupervised person-centric load disaggregation

algorithm. The proposed methodology is an essential analytical tool to address this thesis’

Research Question A) about the households’ flexibility potential.

The following section will describe the methodology for disaggregating households’ whole

house load measurement at a sampling rate of 15min, then compare this algorithm with

state-of-the-art disaggregation methods. We use three datasets collected in central Europe to

test our proposed algorithm and benchmark it. Additionally, we propose specific performance

metrics to compare the algorithms.
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Table 1.1 – Summary of the input features for the selected references

Ref. S/Ua ∆t Input features1

[Liang et al., 2010] Sb 1 s P , Q, harmonics, instantaneous admittance

waveform, current waveform, instantaneous

power waveform, eigenvalues, switching

transient waveform

[Zhao et al., 2018] S 1 h P , Q, appliance list

[Batra et al., 2016] S 1monthc P , house area, #rooms, #occupants, temper-

ature

[Ruzzelli et al., 2010] S 1 min P , RMS current, RMS voltage, Peak current,

peak voltage, sampling rate, power factor,

state

[Kelly and Knottenbelt, 2015a] S 6 s P , appliance power time series of pre-

defined window length for model training

[Biansoongnern and Plangklang,

2016]

S 1 s P , Q

[Liao et al., 2014] S 1 s - 1 min P

[Kolter et al., 2010] S 1 h P

[Elhamifar and Sastry, 2015] S 1 s P

[Singh and Majumdar, 2017] S 10 min P

[Rahimpour et al., 2017] S 30 s P

[Zoha et al., 2013] S 3 s P , Q, appliance list

[Bonfigli et al., 2017] S 1 min P , Q, individual appliance power signal for

model training

[Kumar and Chandra, 2017b] S 3 s P

[Birt et al., 2012] U 1 h P , temperature, multiple-linear fit2

[Kim et al., 2011] U 3 s P , appliance list2, states distribution model2,

power distribution model2

[Zhao et al., 2016] U 1 min P , database of appliance signatures2

Proposed algorithm U 15 min P , house heating system type (electric or

not), appliance list and usage frequency, in-

habitants number and age, nominal power

per appliances2, activity probability2

a S: supervised, U: unsupervised
b the proposed method could also be applied in an unsupervised manner
c disaggregation done at a one-month resolution and training at 15min
1 for supervised algorithms, input features are used for both training of the model and

disaggregation. All of them require the appliance power time series.
2 input parameters of the unsupervised models
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1.2 Algorithm

The algorithm introduced in this section is called the device usage prediction (DUE) algorithm.

The algorithm requires three main inputs:

• a generic time-of-use survey, in order to extract the activity probability

• the characteristics of the household as listed in Table 1.1

• the households whole house load measurements

The following sections will present the methodology’s main steps, starting with a refresher on

Markov models.

1.2.1 Activity chain modeling

A Markov chain describes a stochastic process in which a system may have multiple states x ∈ S.

The probability of switching from state Si to S j is described as ai , j = p(x t = Si |x t+1 = S j ). The

resulting matrix ai , j is called the transition matrix. The initial condition for the first element of

the chain is described by the initial probability distribution πi = p(x0 = Si ). A hidden Markov

model (HMM) states that the system is observed through a set of external variables y that can

have multiple states Ok (the external variable can also be continuous) linked to the system

states by the relation bk,i = p(y t = Ok |x t = Si ). This matrix is called the emission matrix

[Rabiner, 1989].

In the proposed methodology, an activity chain is modeled as a Markov process. The transition

matrix and initial probability distribution also depend on two main external features. One

is related to the type of day D ∈ [weekday, Saturday, or Sunday]; the other is related to the

household’s characteristics, namely, the employment state E ∈ [full-time, part-time, student,

retired, unemployed] and the age group G ∈ [teenager, adult active, senior active, senior

inactive] of the inhabitants. Hence the transition matrix and initial probability distribution

are functions of D , E , and G .

The 2005 Netherlands time-of-use survey [Sociaal en Cultureel Planbureau, 2005] was chosen

as a representative data source to extract the activity probability. Although it is questionable

if the behavior of Dutch citizens is representative of the behavior of all central Europeans,

it seems like a reasonable assumption, and this limitation could be overcome by the use of

similar surveys of other countries such as the 2014-2015 UK time-of-use survey [Gershuny

and Sullivan, 2017].

A time-of-use survey provides a diary of activities, in which individuals record what activity

was done at each time of the day. In the Dutch time-of-use survey, the reported activities were

divided into a set of 14 activity states S, summarized in Table 1.2.
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From the diaries, it is possible to extract an activity event table in which each event i is de-

scribed by an activity si ∈ S, that is performed by an individual who belongs to an employment

group ei ∈ E and age group gi ∈ G , a start time t 0
i ∈ T , an end time t 1

i ∈ T and a type of day

di ∈ D . T is the time discretization of a day (here, the day is discretized at a 5-min resolution).

For each employment group e∗ ∈ E , age group g∗ ∈G , and type of day d∗ ∈ D , the computation

of the initial state (activity) probability distribution is described by Equation 1.2:

πe∗,g∗,s∗ =
∑

i (δe∗,g∗,t 0,i ·δs∗,i )∑
i (δe∗,g∗,t 0,i )

∀s∗ ∈ S

where

δe∗,g∗,t 0,i =
1, if ei = e∗∩ gi = g∗∩ t 0

i = 00:00

0, otherwise

δs∗,i T =
1, if si = s∗

0, otherwise

(1.2)

To compute the coefficient of the transition matrix, a transition event table is derived from the

activity event. Each transition j is defined by two activities s0
j , s1

j ∈ S, at time t j ∈ T defined

such that for a transition from the activity event k to the activity event l , t j = t end
k = t st ar t

l . As

for the activity event table, the employment and age group e j and g j is reported. Similar to the

initial probability distribution calculation, for each group e∗ ∈ E , g∗ ∈G and for each type of

Table 1.2 – List of possible activity states and related possible appliances used

Activity Appliances

Cleaning vacuum, TV, stereo, lights
Using a computer TV, stereo, PC, laptop, printer, lights
Cooking stove, oven, microwave, kettle, TV, stereo, lights
Washing dishes dishwasher, TV, stereo, light
Eating coffee maker, microwave, kettle, TV, stereo, lights
Do the homework TV, stereo, PC, printer, laptop, lights
Playing a game TV, stereo, gaming console, lights
Laundry washing machine, tumble dryer, TV, stereo, lights
Music stereo, PC, tablet, laptop, lights
Outdoor ∅
Sleeping ∅
Watching TV TV, DVD player, PC, tablet, laptop, lights
Showering hairdryer, TV, stereo, lights
Working ∅
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day d∗ ∈ D , the coefficient of the transition matrix is computed as described by Equation 1.3:

ae∗,g∗,s1∗,s2∗,t∗ =
∑

j (δe∗,g∗,t∗, j ·δs1∗,s2∗, j )∑
j (δe∗,g∗,t∗, j ·δs1∗, j )

∀s1∗, s2∗ ∈ S ∀t∗ ∈ T \[00:00]

where

δe∗,g∗,t∗, j =
1, if e j = e∗∩ g j = g∗∩ t j = t∗

0, otherwise

δs1∗,s2∗, j =
1, if s1

j = s1∗∩ s2
j = s2∗

0, otherwise

δs1∗, j =
1, if s1

j = s1∗

0, otherwise

(1.3)

The generation of an activity chain is performed by generating random integers where each

integer value corresponds to the activity state x t ∈ S. The probability distribution is given

either by the transition matrix A or by the initial probability distribution π. Similarly, the

activation duration is generated using a discrete probability distribution. The sequence for

generating the activity chain is depicted in Figure 1.1.

The algorithm to generate a random integer from a given discrete probability distribution

f (n),n = 1...N (corresponding to one column of A) is the following:

xrand = find first n such that

(
ε≤ F (n)∑N

i=1 f (i )

)
(1.4)

with F (n) being the cumulative probability distribution, i.e., F (n) =∑n
i=1 f (i ), and ε a pseudo

uniformly distributed random number (ε ∈ ]0,1[) from the MATLAB rand() command.

The following will describe how the input parameters π and a are used to break down the

house’s power measurement into eight categories. Each category consists of a group of

appliances, as presented in Table 1.3.

1.2.2 Algorithm’s main steps

As presented previously, the basic idea is to find an estimate P̂ t
m of P t

m from the total power

signal P t as stated in Equation 1.1. The approach chosen here is to link the observed power

signal P t with each household inhabitant’s activity chain. The main workflow is presented

in Figure 1.2 and can be described as the following. For a given household, knowing its

characteristics and a given measured power signal L(t ), the algorithm takes each day separately

and performs a sequence of actions:
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Start

End

Initialize initial state 
 as random state

from the emission
matrix

x(1)

t = 1

Set activity duration  according
to the duration probability

distribution

d(t)

t = min(t + d(t),TendDay)

Set activity state 
as a random state
using the transition

matrix

x(t)

t < TendDay

Set  x vector with
constant time-step

yes

Figure 1.1 – Generation of random activity
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1. Filter out the standby consumption by identifying the minimum power over the con-

sidered day. P̂ t
st andby = mint (P t )∀t ∈ T where T is the time domain of the considered

day. This definition of standby results in a constant part of the fridge consumption to

standby. Thus, the fridge consumption recognition steps only deal with the variable

part of the fridge consumption.

2. Filter out the fridge. The typical periodic signal (considered over all nights of the load

curve) is extracted for the first day. This is assumed to be the fridge’s consumption

pattern. Then, each subsequent day, the fridge signal is synchronized with the measured

power signal before filtering out. The seasonal variations of the fridge consumption

are taken into account by daily capture of the signal pattern. The fridge consumption

pattern is removed from the power signal for the following steps.

3. Detect the peaks using the method from [Billauer, 2012]1. A peak in a vector v can

be seen as the highest point between two valleys. In other words, a peak and valley

are defined by a thresholds δ= vpeak − vvalley. The method goes through v and records

moving maximum. When the difference between the previous maximum and the current

element is greater than the thresholds, this means that the previous maximum is a local

peak. The inverse method applies to local valleys. After each local peak/valley is found,

the moving maximum/minimum is reset to the current value.

4. If any peak indicates that someone is at home for this day, infer the power signal (includ-

ing lights) generated by each person. This procedure is described in the next paragraph.

The methodology to infer the power signal generated by each person in the household can

be summarized as follows. An activity chain is generated for each person in the household,

then a corresponding power signal is estimated. The procedure is repeated until the difference

between the measured and simulated load curves is smaller than a given tolerance. The

workflow of this process is depicted in Figure 1.3.

1http://www.billauer.co.il/peakdet.html
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Someone at home ?
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Create household  
object 

Day = 1 

Pre-Treatment
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No 
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Figure 1.2 – General workflow of the proposed methodology
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Error = +∞
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L
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L

End

End

Generate a random
activity sequence

Recognize load
profile
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Optimize activity
chain

i = i + 1

i = 1
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= , i = 1...ti tnew0
i Nadult

 ∀ > endDayti
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Figure 1.3 – Methodology to infer the individual power signal of a teenager (left) and adult
(right)
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The inhabitants of the household are treated separately in this step. Teenagers (10 to 18 years

old) are considered to have unpredictable activity chains and are treated independently, as

depicted in Figure 1.3. Adults, the main energy consumers of the households, are considered

together in the optimization step. If any power peaks are detected in the considered daily load

curve, all inhabitants are assumed to be at home. No partial occupancy is considered here,

although this could be an option for further improvements.

The following sections will detail the sub-processes mentioned in Figures 1.2 and 1.3, namely,

the ”pre-treatment”, procedure from Figure 1.2, and the standby and fridge consumption

recognition. Then the optimize activity chain and the recognize load profile process from

Figure 1.3 will also be presented.

A "Pre-treatment" process

The pre-treatment process consists in filtering out the standby consumption and fridge con-

sumption (as shown in Figure 1.2). Retrieving the standby power from the aggregated load

curve is straightforward. The minimum value of the current day’s load is considered the

standby consumption. This value is then subtracted from the aggregated power signal, as

shown in Figure 1.4.

Start

L=Household  
load curve for  

the day 

 Standby = min(L)

 L = L − Standby

End

Figure 1.4 – Standby filtering

Filtering out the fridge consumption pattern involves a few more steps. The main workflow

is represented in Figure 1.5. On the first call (i.e., for the first considered day), a filter is

applied to extract all nights of the dataset. The night starts at 02h30 and ends at 05h00. The

resulting samples are further clustered based on the mean power consumption (using simply

the MATLAB hist command). The mean power of the largest cluster is then considered to be

the mean power consumption of the fridge during the night. At the end of this procedure, the

actual fridge nominal power is estimated and saved in the household inventory according to
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the following expression:

Pfridge New = Pfridge Old ·
fridge mean power

Pfridge Old ·β2
(1.5)

where Pfridge Old is the default nominal fridge power, and β2 is the fridge’s duty cycle during

the night. Both are reported in Table 1.3.

Finally, the fridge cycle is adjusted by minimizing, for the cycle start time and the cycle length,

the sum of the squared error between the measured power signal at night (Lnight) and the

simulated power signal (Lfridge).
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Start

End

L=Household  
load curve 

 L = L − Lf ridge

 Generate a load curve
with fridge cycle 
=Lf ridge

Adjust fridge cycle start to
match current night load curve 

If first time called

 Filter L to keep only night consumption
(between 2h30 -> 5h00) and keep the most

usual ones 

=Lnight

 f ridgeMeanPower = mean(Lnight)

Update fridge nominal power in
the household properties  

Yes

No

Figure 1.5 – Fridge filtering flow chart

B The ”Optimize activity chain” process

This process aims at identifying a possible activity for a given household inhabitant, consider-

ing the available energy budget for the respective time frame and the characteristics of this

person. This process is divided into three steps:

1. First, a list of possible activities and their corresponding probability of occurrence

are defined. In other words, this step selects transition matrix a (or initial probability
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distribution π, if it corresponds to the first element in the chain) according to the type

of day d , the employment state of the person e and the person’s age group g . The whole

list of possible activities is summarized in Table 1.2.

2. Secondly, an activity is selected based on the probability of this activity occurring (i.e.,

the transition matrix or the initial probability distribution), as well as the duration of this

activity based on the duration probability distribution corresponding to this activity.

3. Finally, the compatibility between the chosen activity and the measured load curve

is evaluated. If the measured load power is low (relative to the mean power level of

the inventory of household appliances), the selected activity cannot be an activity that

requires high-power appliances and vice versa. This step applies only to adults. For

teenagers, it is assumed that the activity chain is random.

Our method relates the energy usage to the activities within it by assuming the appliance

usage probability per activity and the power demand per device. The activity chain could

be used as an additional output of the algorithm, but this is not the central scope here and

would require a particular caution for the analysis. This is an opposite approach from the one

used by [Stankovic et al., 2016], who employed a supervised NILM method and individual

appliance monitoring to actually correlate the activity chain from the disaggregated energy

consumption.

C The "Recognize load profile" process

At this stage, an assumption on a single inhabitant’s activity and the duration of that activity

has been formulated. Based on this hypothesis, this process aims to infer the possible power

signal of each appliance category sequentially. As shown in Figure 1.6, the appliance category

recognition sequence is organized so that the most energy-consuming activities are treated

first. The Light category is an exception, as it is treated after the Heating category. This is

because lighting has a weak correlation with the type of activity but a strong correlation with

the occupancy.

The standard procedure for each of these steps is the following:

1. Identify the period in which the activities that correspond to the category were detected.

2. For each appliance that belongs to this activity and exists in the household inventory,

check if the energy budget and time budget are sufficient to run the appliance. Note

that at every iteration of this step, the order of devices is set randomly to not always start

with the same appliance. The list of appliances that belong to each activity is presented

in Table 1.2.

3. If the energy budget and time budget are sufficient, set the device as used and simulate

the corresponding power signal. If the house has several appliances of the same type,
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a power signal is generated for each appliance. Based on the NILM wiki2 and field

experience, the nominal power, probability, and duration usage for each appliance

have been reported in Table 1.3. These reference values should be updated with the

appliances’ market evolution and the introduction of more efficient devices.

Start

End

L=household load curve 
x=activity state chain

Recognize heating

Add lighting

Recognize cooking

Recognize
housekeeping

Add entertainment

Add ICT

Figure 1.6 – Workflow to infer each category of appliance in the aggregated power signal

The following provides more details about each sub-process of Figure 1.6. At the start of the

process, the aggregated load curve and activity chain for the considered person are the two

main input arguments. Each sub-process also includes a device state vector that is not always

2http://wiki.nilm.eu/appliance.html
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explicitly mentioned for clarity. This state vector prevents the use of the same appliance by

two people simultaneously and hence an overestimation of the consumption of this category.

Additionally, when several of the same appliances are in the house, the state vector helps to

consider that a similar appliance might be already in use when simulating a new device power

signal.

"Recognize Heating". The current version does not consider yet central electric heating. Only

a hairdryer is explicitly extracted.

L=household load curve 
x=activity state chain

Find  such that [ , ]t0w t1w x([ , ]) = showert0w t1w

− >= 5mint1w t0w No

NoL(t)dt > ∗ 60s ∗ 2∫
t1
w

t0
w

Phairdryer

= 0Lhairdryer([ , ]) =Lhairdryer t0w t1w Phairdryer

End

L = L − Lhairdryer

Figure 1.7 – Recognize Heating sub-process

The first step consists in detecting a period [t 0
w t 1

w ] where the activity corresponds to Shower,

then check that the duration of this activity is at least 5 min. The core of this process, depicted

in Figure 1.7, is to check that enough energy is consumed between t 0
w and t 1

w for the hairdryer

to run. Finally, the corresponding power signal Lhairdryer is generated and subtracted from the
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aggregated load curve L.

"Add Lighting". As light is not strictly related to activity but rather to occupancy, this sub-

process occurs at the beginning of the "recognize load profile" process.

L=household load curve 
x=activity state chain

Find  such that 
 

 

tlight
<tlight tsunrise
&
>tlight tsunset

 

where  takes value 1 for the first person (p=1) then takes value
0.25 for the next person (p>1)

( ) = {LLight tlight
δ(p)Plight

0

if

if

x( ) = activetlight

x( ) = rest or outtlight
δ(p)

End

L = L − LLight

Figure 1.8 – Add Lighting sub-process

As the first condition (in Figure 1.8), lighting is assumed to be on only before sunrise and

after sunset. tsunrise and tsunset are calculated for each day using an approximate equation of

time. Lighting is assumed to be on only for active people. When people are resting or out of

the house, the lighting is off. These "no-light" activities are (with respect to Table 1.2), Sleep,

Outdoor, and Work. To avoid overestimating light consumption, a damping variable δ(p) is

introduced. It takes the value of 1 if p = 1 (first person) then 0.25 for each additional person.

"Recognize Cooking". As shown in Figure 1.9, the first step is to detect periods corresponding

to this category’s possible activities. The cooking-related activities are: Cook and Eat. Then,

a loop on all possible appliances (see Table 1.2) is performed. At each iteration, a random

appliance usage duration D is selected according to the mean appliance usage duration

(reported in Table 1.3). If the length of the activity period is long enough and the power

budget is satisfied (condition max(L([t 0, t 0 +D(d)]) ≤ P (d), with P (d) the nominal power of

the appliance d), the power signal for the selected appliance is generated. A Boolean value

γ ∈ [0,1] sets the power signal to 0 with probability 1−βi , i = 1..3 according to three different

conditions. These conditions correspond to the actual probability of usage of each particular

appliance. In this case, it is the probability of usage during breakfast, lunch, and dinner time.
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This is also reported in Table 1.3 under footnote 1.

L=household load curve 
x=activity state chain

Find  such that [ , ]t0 t1

x([ ]) = cookingt0t1

 
 where   is a random binary  variable such that 

  

 

 
and  is the nominal power of the appliance 

([ , +D(d)]) = {Ld t0 t0
P(d)γ

0

if

otherwise

max(L([ , +D(d)])) ≤ P(d)t0 t0

γ = [0, 1]

p(γ = 1) =

⎧

⎩

⎨
⎪

⎪

β1

β2

β3

if

if

if

< 10h30t0

10h30 ≤ < 15h00t0

≥ 15h00t0

P(d) d

 
 

 

d = 1

= 0Lcooking

 
 

= +Lcooking Lcooking Ld

L = L − Ld

d = d + 1

d >= NcookingDevice

End

Set device duration 
 

with  a random
number

D(d) = τ(d) ∗ 2 ∗ ϵ
ϵ ∈]0, 1[

No

− ≥ D(d)t1 t0No

Yes

Figure 1.9 – Recognize Cooking sub-process

The final step consists in subtracting the generated appliance power signal Ld from the
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aggregated load curve L.

"Recognize Housekeeping". First, the activity period is extracted as previously, and a loop on

all appliances that might be used by the Housekeeping activities is performed. These activities

are (according to Table 1.2) Clean, Wash dishes, and Laundry. The compatibility between the

activity duration and the appliance duration is checked before generating the appliance power

signal Ld . Here again, the power budget is checked by comparing the nominal appliance

power P (d) with the maximum power of the load L. The activation Boolean variable γ is

used to consider the probability of usage of each individual appliance. In the general case,

probability β1 and β2 correspond to the likelihood of using the appliance if it is the first time

the appliance is used or if it was already used during the current day. In the tumble dryer case,

it can be used only right after the washing machine with probability β1 and only once a day

(β2=0). The corresponding conditions are given in footnote 9 of Table 1.3.
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L=household load curve 
x=activity state chain

 
 where   is a random binary  variable such that 

  

 

 
and  is the nominal power of the appliance 

([ , + D(d)]) = {Ld t0 t0
P(d)γ

0

if

otherwise

max(L([ , + D(d)])) ≤ P(d)t0 t0

γ = [0, 1]

p(γ = 1) = {
β1

β2

if

if

first time used in the day

second time used in the day

P(d) d

 
 

d = 1
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 = +Lhkg Lhkg Ld
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d >= NhousekeepingDevice

L = L − Lhkg

End

Yes

Find  such that [ , ]t0 t1

x([ ]) = housekeepingActivitiest0t1

Set device duration 
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Yes

No

Figure 1.10 – Recognize Housekeeping subprocess
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"Add Entertainment". As entertainment appliances, which are defined in Table 1.2, can

be used simultaneously with almost any other activity, some specific adaptation has been

made in this sub-process (see Figure 1.11). The probability of using a particular appliance is

defined according to whether the activity is specifically to use this appliance. For instance,

considering TV, if the activity is explicitly Watch TV, the usage probability β1 is equal to 0.9.

This probability is not 1 because this activity could be achieved on other appliances such as

a laptop or smartphone. However, if the current activity is Clean, the TV can be on in the

background with probability β2 = 0.1. Moreover, a state vector Γ tracks the on/off state of each

appliance. If more than one item of the same appliance are in the household inventory and

the first item is already on (Γ([t 0, t 0 +D(d)],d) = 1), the probability of usage of the next item

is β3. Finally, a particular condition is formulated for households that do not own a TV. The

activity Watch TV can still occur, but the TV can be replaced by a PC or laptop with a specific

probability of usage (see Table 1.3, footnote 4). At the end of the iteration, the state vector Γ is

updated with the activation variable γ.
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=household load curve 
=activity state chain 
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Figure 1.11 – Add Entertainment subprocess
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"Add ICT". Figure 1.12 is similar to the previous one, with one major exception. The proba-

bility of usage depends on either the state Γ of the computer appliances (PC and laptop) or

whether the activity is Work or Homework.
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L=household load curve 
x=activity state chain 
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 where   is a random binary  variable such that 
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Figure 1.12 – Add ICT subprocess
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Table 1.3 – Appliance per category and nominal power, parameters of usage, and duration

Category Appliance PNominal (W) β1 β2 β3 τ (min) Note

Cooking

coffee maker 800 0.8 0.7 0.5 3 1

microwave 1250 0.3 0.5 0.4 5 1

kettle 1800 0.3 0.5 0.8 2 1

oven 2400 0.1 0.3 0.4 50 1

stove 500 0.5 1.0 1.0 30 1

Entertainment

TV 124 0.9 0.1 0.5 20 2

TV box 20 1.0 2

DVD player 80 0.1 0.0 0.0 0 2

PC 110 0.5 0.1 0.2 30 3 4

laptop 55 0.5 0.2 0.4 20 3 4

tablet 7 0.4 3

stereo 100 0.9 0.2 0.5 20 2

gaming console 180 0.3 0.0 0.1 80 2

Fridge

fridge (with a freezer) 94 0.3 0.3 25 5

fridge (without a freezer) 66 0.3 0.3 25 5

freezer alone 62 0.5 0.5 63 5

Heating

hairdryer 600 0.2

boiler 2000 8

heat pump 1000 8

Housekeeping

washing machine 406 0.5 0.4 60 6

tumble dryer 2500 0.5 0.0 60 9

dishwasher 1131 0.4 0.0 34 6

vacuum 2000 0.5 0.2 10 6

ICT printer 23 0.1 0.1 5 4

Light lighting 137 0.25 7

Standby modem (and similar) 8 8.0 10
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Table 1.4 – Note of Table 1.3

Note Comment

1 β1,2,3 probability of usage for respectively breakfast, lunch, dinner. These

values can be set to 0 according to the households habits (namely number of

lunch and dinner at home), if provided, as presented in Table 1.5.

2 β1 probability of usage when the activity is Watching TV, β2 probability of

usage for other activities, β3 probability of use if one is already used (for an

additional person).

3 β3 probability of usage when it is used as a replacement for TV. This is used if

no TV is reported in the appliance ownership table, as presented in Table 1.6.

4 β1 probability of usage when the activity is Using computer, β2 probability of

usage when the activity is Working or Do the homework

5 β1 duty cycle during the day, β2 duty cycle at night, τ is the duration of the

active cooling phase.

6 β1 probability of usage once during the day,β2 probability of usage additional

times. This probability can be set to 0 according to the households habits

(namely usage of the washing machine per week), as provided in Table 1.5.

7 β1 PNomi nal is used for the first person in the house, PNomi nal ∗β1 is used

for each additional person.

8 Presently our algorithm only accounts for hairdryers.

9 β1 probability of usage right after washing machine. This probability can be

set to 0 according to the household habits if provided, as reported in Table 1.5.

10 The modem (or internet router) is in the Standby category for the obvious rea-

son that it is always on. Its power consumption is assumed to be independent

of occupancy and the inhabitants’ activities.

The presented unsupervised algorithm needs to be validated against state-of-the-art algorithm

to assess the performance and validity. The following will present the validation methodology.

1.3 Validation methodology

To assess the validity and performance of our DUE algorithm with respect to other methods

of the field, this section will present a selection of NILM algorithms and representative per-

formance metrics. To obtain a confidence interval on the selected metrics, the tests were

performed successively on different datasets.

The following set of algorithms was chosen to benchmark the performance of the DUE algo-

rithm:

• Combinatorial optimization (CO) [Hart, 1992]
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• Factorial hidden Markov model (FHMM) [Kim et al., 2011]

• Graph signal processing (GSP) [Kumar and Chandra, 2017a, He et al., 2016]

• Discriminative disaggregation via sparse coding (DDSC) [Kolter et al., 2010]

1.3.1 Selected state-of-the-art algorithms

A Combinatorial optimization

Combinatorial optimization (CO) is a well-studied benchmark algorithm presented by Hart

[Hart, 1992]. Assuming a linear model for each appliance i = 1...M , a Boolean switch pro-

cess a(t) = ai (t), i = 1...M identifies which of the appliances are "on" and "off" at time t .

Therefore, the aggregated power load at time t is the sum of all the individual power loads of

the appliances that are "on" at that time. Naturally, a combinatorial optimization problem

emerges in order to minimize the difference between the predicted and observed power:

â(t) = minai |P t −∑n
i=1 ai Pi | , where â(t) = âi (t) is a matrix representing the estimated "on"

or "off" state of an appliance in time and Pi represents the nominal power of appliance i .

The learning phase will construct a power basis Pi from the disaggregated signal. The dis-

aggregation phase will solve the problem for all ai (t) at every time step. This approach is

computationally intractable, as the algorithm’s complexity grows exponentially with the num-

ber of appliances. Thus one cannot solve the problem exactly. Additional difficulties of this

method include detecting simultaneous appliance state changes and a lack of complete infor-

mation about the individual power loads. Therefore, a switch continuity principle was adopted

that supposes that only a small number of appliances can change state simultaneously.

For this study, the CO algorithm was implemented through the Non-Intrusive-Load-Monitoring-

Toolkit (NILMTK) 3 [Batra et al., 2014].

B The factorial hidden Markov model

The factorial hidden Markov model (FHMM) is another benchmark algorithm provided in

the NILMTK [Batra et al., 2014]. Considering that the only observable value is the aggregated

power measurement P t , each appliance’s individual power load is modeled separately as

HMM with hidden states xi (t ) representing the status of the appliance. The use of a FHMM

over HMM reduces the parametric complexity when modeling time series generated by the

interaction of several independent processes — in our case, several appliances [Kim et al.,

2011, Kolter and Johnson, 2011]. In order to build the model, four main components need to

be defined:

• Finite set of hidden states

3http://github.com/nilmtk/nilmtk
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• Transition matrix a, which represents the probability of changing a state

• Emission matrix b, which indicates the probability of emitting an observation

• Initial distribution of probabilities among the states π

The learning phase consists in building both matrices a and b, and the disaggregation phase

aims at finding hidden states such that the probability of observing the signal P t is maximized.

In other words: x̂ t
i = maxx p(P t |x t

i ) The DUE algorithm is not a derivation of the FHMM since

it relies on a try-and-fail method rather than an optimization problem.

C Graph signal processing

Graph signal processing (GSP) is a novel supervised concept for load disaggregation, which is

neither state- nor event-based. The methodology’s success for applications such as filtering,

clustering, classification, convolution, and modulation [Kumar and Chandra, 2017a, Kumar

et al., 2016] inspired researchers to develop a solution to the NILM problem. The approach

relies on the regularization of graph signals, assuming that if the signal is piecewise smooth,

then the total graph variation is generally small. [He et al., 2016, Stankovic et al., 2014] The

proposed GSP methodology has several advantages over conventionally used algorithms:

short training periods [He et al., 2016], reliable performance in the presence of noise, unknown

or uncommon appliances [Zhao et al., 2016], the ability to handle different sampling rates,

including every 15 minutes [Kumar and Chandra, 2017a, Kumar et al., 2016] and the use of

active power alone [Kumar and Chandra, 2017b].

The algorithm’s basis lies in constructing an undirected graph G using aggregated power

measurements, where each vertex V corresponds to a load sample. The weights W of the

edges connecting the vertices reflect the degree of similarity between nodes [Stankovic et al.,

2014]. The overall sequence of the algorithm’s main steps can be summarized as follows under

the formulation proposed in [Kumar and Chandra, 2017a, Kumar et al., 2016]:

• Learn the weights W from aggregated power data using a Gaussian kernel weighting

function.

• Construct the graph G using W and compute the respective graph Laplacian L.

• Define graph signals s, where s equals the appliances’ ground truth (GT) during the

training period and equals zeros during the testing period.

• State an optimization problem of minimizing the smoothness term ||sT Ls||22.

• Evaluate signal s∗ as a solution to the optimization problem.

• Subtract the disaggregated signal s∗ from the aggregated power measurements.
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The procedure described above has to be repeated sequentially for each appliance, starting

from the highest-consuming one. The GSP approach for this study was implemented in

MATLAB using the Graph Signal Processing Toolbox [Perraudin et al., 2014].

D Discriminative disaggregation via sparse coding

Discriminative disaggregation via sparse coding (DDSC) is the application of the source

separation problem to the NILM problem. The algorithm’s idea is to train models separately

to find approximate representations for each appliance in the form of X = B A, where B is the

set of basis functions, also called a dictionary, and A is a sparse activations matrix. Therefore,

the objective function of the method is minA
1
2 ||X −B A||2F +λ||A||1 subject to A,B ≥ 0 The

training phase will learn the dictionary Bi for each appliance (i = 1...n) from the individual

appliance signal Xi by solving the equation minAi
1
2 ||Xi −Bi Ai ||2F +λ||Ai ||1 for Ai and Bi

sequentially. Then the disaggregation will solve for A using the aggregated signal X [Kolter

et al., 2010, Elhamifar and Sastry, 2015, Leijonmarck, 2015, Yu et al., 2016].

One method to decompose the aggregated signal into a sparse combination of dictionary

elements is non-negative sparse coding [Hoyer, 2012]. When this approach was utilized for

solving the NILM problem, many improvements to the method emerged. [Kolter et al., 2010]

proposed to discriminatively optimize basis functions in order to minimize disaggregation

error. [Elhamifar and Sastry, 2015] incorporated additional priors such as device sparsity,

knowledge of cooperating devices, and temporal smoothness, and [Singh and Majumdar,

2017] extended the approach to multiple layers of dictionary learning for each device.

This method is potentially suited for low-sampling rate datasets, as demonstrated in [Kolter

et al., 2010], in an attempt to disaggregate meter readings at 1h intervals. For the current study,

the DDSC algorithm was implemented in PYTHON based on the representation in [Kolter et al.,

2010, Leijonmarck, 2015].

1.3.2 Test datasets

Instead of testing on a single dataset as it is usually done in the literature, we propose a broader

experiment by testing on several datasets. The underlying objective is to get a confidence

interval on each of the selected performance metrics. Our requirements for the datasets are

the following:

• Each dataset must consist of households with information about consumption at the

appliance level

• Each household must be located in Europe as the time-of-use survey [Sociaal en Cul-

tureel Planbureau, 2005] was collected in Europe

• There must be a sufficient description of the characteristics of each inhabitant
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To emulate data acquired from smart meters (considered here as average power over a particu-

lar time interval), all datasets were down-sampled to a 15-min sampling rate, keeping the real

power only. The resulting power signal is hence the average real power over each 15-min time

interval. To be consistent for the disaggregation, the appliances’ power signals were aggre-

gated according to the categories presented above to create the reference ground truth. The

reference whole-house power measurement is defined as the sum of the sub-measurements to

ensure energy conservation. This implies that the noise is not considered since averaging the

power measurement on a 15-min time window should minimize its influence. Additionally,

as the DUE algorithm disaggregates the whole house energy consumption, the noise should

be included in one of the categories, most likely, the standby. Moreover, the datasets’ meta-

data was used to complete the household information requirements as briefly described in

Table 1.1.

Three publicly available datasets were selected: ECO[Beckel et al., 2014a], SMARTENERGY.KOM

[Alhamoud et al., 2014] and UK-DALE[Kelly and Knottenbelt, 2015b]. The following section will

briefly present these datasets.

A The ECO dataset

The dataset was made by ETH Zurich [Beckel et al., 2014a, Beckel et al., 2014b] and collected

during eight months (from the beginning of July 2012 to the end of January 2013) from six

households in Switzerland. Registered measurements represent a new level of detail, com-

prising the voltage, current, and phase shift between voltage and current readings for each of

the three phases. This makes the dataset useful for algorithms that require both active and

reactive power. The sampling rate of 1 Hz distinguishes this dataset from others in the field,

together with the information provided about the households’ occupancy. For this study, we

used House n°2 from June 1st to October 30th, 2012.

B SMARTENERGY.KOM dataset

Initially, this dataset was developed to propose energy-savings recommendations based on

detecting the users’ activities [Alhamoud et al., 2015]. The collection of energy consumption

data by the appliances is complemented by the measurement of motion (i.e., occupancy),

temperature, and brightness in the environment. The dataset accounts for more than 42

million data points for two households, and it is the first dataset to combine power and

environmental sensors’ measurements with user feedback [Alhamoud et al., 2014].

The data from Apartment n°1 were collected for 82 days, while Apartment n° 2 participated in

the experiment for 60 days. For both of the deployments, there are nine respective activities

that should be recognized, such as sleeping, watching TV, eating, ironing, reading, etc. For the

following, we used the Apartment n°1 from March 5th to June 25th, 2013.
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C UK-DALE,

This open-access dataset for NILM research is the first out of the UK with a high temporal

resolution. To the best of our knowledge, this public dataset covers the longest period in

Europe, from December 2012 to April 2017, for the latest release [Kelly, 2017].

The dataset records the active power demand from appliances and the whole-house apparent

power for the five households that participated in the data collection. The sampling rate

for both the main power and for the power of individual appliances is six seconds. Distinct

from other public datasets for load disaggregation, UK-DALE contains metadata as well. These

additional data files include the type of ownership, the number of inhabitants, inhabitants’

characteristics, the heating type, and any energy improvements made to the house. This

information was fed into the proposed algorithm to complete the households’ characteristics.

UK-DALE is included in the NILMTK [Kelly, 2017, Batra et al., 2014] framework. For testing,

we used the House n°1 during the period from April 2014 to April 2015. We chose this house

because it was the most documented one because a large share of appliances’ consumption

data is available.

For each dataset, the metadata is used to complete the household characteristics as provided

in Table 1.5. The appliance list is provided in Table 1.6.

1.3.3 Metrics

To evaluate the performance of the proposed algorithm, it is necessary to define appropriate

metrics that are consistent with the ultimate goal of this work. Typical performance metrics

are based on event detection and come from classification algorithms literature [Faustine

et al., 2017]. The accuracy is defined as the algorithm’s ability to detect whether an appliance

is on or off (see Equation 1.6).

ACC = Correct matches

Total possible matches
(1.6)

However, this metric is not appropriate for appliances that are in one state most of the time

(like a TV is mostly off). To correct this, researchers often use the F measure [Faustine et al.,

2017] defined in Equation 1.9.

Precision = TP

TP+FP
(1.7)

Recall = TP

TP+FN
(1.8)

F = 2×Precision×Recall

Precision+Recall
(1.9)

where TP = True Positive, FP = False Positive and FN = False Negative.
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Table 1.5 – Household information, assumed or retrieved from dataset metadata

ECO SMARTENERGY.KOM UK-DALE

Household composition
Total number of people 2 1 4
Number of children (<10 y.o) 0 0 0
Number of teenagers 0 0 2

Employment state
Person 1 full-time full-time full-time
Person 2 full-time full-time
Person 3 student
Person 4 student

Age
Person 1 senior active senior active senior active
Person 2 senior active senior active
Person 3 teenager
Person 4 teenager

Houshold habits
Usage of the washing ma-
chine per week

0 1 1

Usage of the tumble dryer
per week

0 0 0

Usage of the dishwasher per
week

0 0 4

Usage of the computer normal normal occasional
Usage of the TV occasional occasional occasional
Usage of the stereo high normal high
Usage of gaming console high normal high
# lunch at home per week 7 7 7
# dinner at home per week 7 7 7

House information
Electric heating No No No

Beckel [Beckel et al., 2014a] used the root mean square error of the mt f th appliance signal as

defined in Equation 1.10.

RMSEm =
√

1

T

∑
t

(
P̂ t

m −P t
m

)2
(1.10)

With this last metric, the comparison between appliances having a high difference in power
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Table 1.6 – Number of appliances owned for each household

ECO SMARTENERGY.KOM UK-DALE

Coffee maker 1 1 1
Microwave 0 0 1
Kettle 1 1 1
Oven 1 1 1
Stove 1 1 1
TV 1 1 1
PC 1 1 1
Tablet 0 0 0
Stereo 1 1 1
DVD 0 1 1
Gaming console 1 1 0
TV box 0 0 1
Laptop 0 0 0
Fridge (with Freezer) 1 0 1
Freezer 0 1 0
Fridge(without freezer) 0 0 0
Hairdryer 0 0 1
Boiler 0 0 0
Heat pump 0 0 0
Washing machine 0 0 1
Tumble dryer 0 0 0
Dishwasher 0 0 1
Vacuum 0 0 1
Printer 1 1 1
Lighting 1 1 1
Modem 1 1 1

consumption (i.e., a stove and an internet box) is problematic. For this reason, a derivation of

the root mean squared error called the Normalized Disaggregation Error (NDEm) [Liu et al.,

2018, Kolter et al., 2012, Dong et al., 2013] defined in Equation 1.11, normalizes the squared

error of a single appliance by the total energy of the signal. Very similarly, [Parson et al., 2012]

and [Beckel et al., 2014a] used a Normalized Error in the total Energy Assigned (NEEAm) as

defined in Equation 1.12.

Normalized Disaggregation Error: NDEm =
∑

t
(
P̂ t

m −P t
m

)2∑
t
(
P t

m
)2 (1.11)

Normalized Error in the total Energy Assigned: NEEAm =
∑

t |P̂ t
m −P t

m |∑
t P t

m
(1.12)
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[Makonin and Popowich, 2015] used an Estimation Accuracy (ESTACC), derived from [Kolter

and Johnson, 2011] and [Johnson and Willsky, 2013], of the appliance power signal or across

all appliances as in Equations 1.13 and 1.14 respectively.

Estimation accuracy per cat. ESTACCm = 1−
∑

t |P̂ t
m −P t

m |
2 ·∑t P t

m
(1.13)

Estimation accuracy ESTACC = 1−
∑

t
∑

m |P̂ t
m −P t

m |
2 ·∑t

∑
m P t

m
(1.14)

In this thesis, we choose the Estimation Accuracy as a reference metric to compare the disag-

gregation performance since it is a popular metric in recent literature. The root mean squared

error would not be appropriate because it is impossible to use it for multiple appliance com-

parisons for the reason explained above. Finally, the original benchmark performed with the

normalized disaggregation error has shown similar trends as what will be discussed in the

following section. So this metric was given away for clarity reason. Also, because our method-

ology aims to infer the energy share by category of appliances as defined in Equation 1.15, the

Energy Share Error per category is defined in Equation 1.16.

Energy share per category Ŝm =
∑

t P̂ t
m∑

t
∑

m P̂ t
m

(1.15)

Energy Share Error: ESEm =
∑

t P̂ t
m∑

t
∑

m P̂ t
m

−
∑

t P t
m∑

t
∑

m P t
m

(1.16)

Note that in the following, the index m corresponds to an appliance category as defined in

Table 1.3.

1.4 Results and discussion

We compared our proposed method’s performance to the four standard algorithms of the

NILM literature presented above. Testing was performed using the three datasets (presented in

Section 1.3.2) to evaluate all algorithms’ performance. As described in Section 1.3.3, relevant

metrics in the context of flexibility estimation are the Energy Share Error per category and

the Estimation Accuracy. Additionally, the execution times for training and testing were also

compared.

Each test was conducted by dividing the dataset into a training period and a testing period.

The length of the training period is approximately two times the length of the testing period.

As our proposed algorithm does not require any training, it was tested on the testing period
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only. The duration of the training and testing periods for different datasets is reported in the

following table:

Table 1.7 – Testing and training periods for the three datasets

Training period Testing period

from to days from to days

ECO 2012-06-01 2012-09-30 121 2012-10-01 2012-10-30 29
SMARTENERGY.KOM 2013-03-05 2013-05-19 75 2013-05-19 2013-06-25 37
UK-DALE 2014-04-01 2015-04-01 365 2015-04-01 2015-07-01 91

The Energy Share Errors for each category, as defined in Equation 1.16, are reported in Table 1.8.

”NA” means that this category was not measured in the respective dataset. In the GSP columns,

all values corresponding to the UK-DALE dataset are NAs because this algorithm was not run

on this dataset. Indeed, the complexity of the GSP algorithm increases non-linearly with

the length of training and testing periods. Therefore it is more appropriate for short training

periods, as shown in [He et al., 2016]. Although various strategies have been tested, we have

not been able to find a satisfying implementation of the GSP algorithm that would allow

performing disaggregation on a large dataset. A comparison of the performance for each

dataset for this metric is shown in Figure 1.13. A positive error means an overestimation

of the energy share. The Energy Share Error is highly dependent on both the dataset and

the observed categories. Surprisingly, the Energy Share Error is especially high for the ICT

category in the SMARTENERGY.KOM dataset. This may be due to the unusually high share

of energy consumed by this category (about 40%, whereas it is below 20 % in the other two

datasets). The estimation of light consumption is too high for the DUE algorithm for the ECO

and SMARTENERGY.KOM datasets. One has to consider that the datasets are often incomplete,

i.e., they do not represent the whole and real power consumption of a house. Authors of

such datasets choose the appliances to be monitored depending on their capabilities while

neglecting the appliances that were too difficult or impossible to monitor. This is also why no

Housekeeping is present in the SMARTENERGY.KOM dataset. As the DUE algorithm is based

on surveys and statistics, it always assumes that all categories are present in the house, thus

explaining these differences.

Table 1.8 – Energy Share Error per category (in %) (ECO, SMARTENERGY.KOM, UK-DALE)

CO FHMM DUE DDSC GSP

Cooking ( 17, 7, 7) (1 , -2, 0) ( 2 , 6, -1) ( 2, -5, -6) ( 1, -2 , NA)
Entertainment (-25, -4, 2) (-15 , 6, 2) (-20 , 11, 17) (-12, -2, 4) ( 9, -6, NA)
Fridge ( -9, -9, -1) ( -4, -8, 0) ( 2, 12, 2) ( 3, -8, 3) ( -1, 2, NA)
Heating ( NA, 7, -5) ( NA, 2, 1) ( NA, -2,-12) ( NA, 27, 4) ( NA, -2, NA)
Housekeeping ( 4, NA, -2) ( 1, NA, 1) (-12, NA,-17) ( -9, NA,-17) ( -5, NA, NA)
ICT ( 6,-19, -4) ( 5, -2, -2) ( 6,-35, -5) ( 19,-29, 1) ( -4, 0, NA)
Light ( 7, 14, -3) ( 13, 3, -7) ( 22, 6, -4) ( -3, 4, -2) ( -4, 0, NA)
Standby ( NA, 3, 6) ( NA, 0, 40) ( NA, 1, 20) ( NA, 13, 12) ( NA, -1, NA)
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1.4. Results and discussion

The global uncertainty (here defined as the error on the energy share) is in the range of 20% for

all algorithms except the DUE as depicted in Figure 1.14. The uncertainty is lower on average

for the supervised algorithms, especially for the FHMM. The excellent performance of the

GSP algorithm has to be counter-balanced because this algorithm has not been tested on the

UK-DALE dataset. Considering that not all categories were present in each of the two other

datasets, only a few data points were extracted to present these metrics.
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Figure 1.14 – Energy share uncertainties across all datasets

The Energy Share Error per category is a global metric that does not consider temporal accu-

racy. To focus on this aspect, the Estimation Accuracy is more appropriate. The Normalized

Disaggregation Error could serve as an equivalent metric. However, the Estimation Accuracy

metric is more commonly seen in the recent literature, explaining its usage in the present

benchmark. Moreover, the following outcomes would have been similar if the Normalized

Disaggregation Error had been used.

The Estimation Accuracies for each category are reported in Figure 1.15. Negative values

indicate a poor disaggregation result, occurring when the sum of the absolute errors is larger

than two times the signal’s energy. The y-axis has been intentionally cropped between -2

and 1 for the sake of comparison across datasets. All algorithms experienced negative values

for this metric but not always on the same categories. Looking specifically at categories

that seem easier to disaggregate (all Estimation Accuracy are larger than zero), the DUE

algorithm performs similarly compare to the other algorithms. Considering that the DUE

algorithm relies only on statistical information to infer the power signal of each category,

the temporal accuracy, especially for categories linked to short-duration activities like ICT

and Entertainment, is challenging to catch in an unsupervised way. Some extreme negative

values are difficult to explain (for instance, the disaggregation of cooking in the ECO by the CO

algorithm). As regards with the Standby category, the poor performance of the DUE algorithm

can be explained by the fact that DUE considers standby as a constant load, while in the

ground truth, it is not constant and considered as any other appliance by the other algorithms.
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Figure 1.15 – Estimation Accuracy

One has to remember that forecasting a constant zero power signal leads to an Estimation

Accuracy of 0.5. This is typically achieved by the DUE algorithm for the Heating category on

the SMARTENERGY.KOM. This is the drawback of this metric. It is easy to interpret a value

close to one as a good performance, but it is hard to interpret the quality of an algorithm that
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produces an Estimation Accuracy close to zero or even negative.

To summarize, careful analysis of the Energy Share Error and the Estimation Accuracy shows

that the DUE algorithm performs similarly to other algorithms, although its temporal accuracy

suffers from the statistical approach. As this algorithm’s goal is to be used by a utility on a

large number of households, it must have an acceptable computational cost in addition to

a reasonable accuracy. The following section aims at comparing the algorithms taking into

account these considerations.

The execution time is reported in Table 1.9. As expected, execution time scales with the

dataset’s length (in terms of both training and testing periods). The CO algorithm, which has

the lowest complexity, is always the fastest to execute, as also reported by [Manivannan et al.,

2017]. One should keep in mind that the GSP algorithm was not tested on the UK-DALE dataset

due to the algorithm’s characteristics. Namely, GSP performs training and disaggregation

in a single step (for each category of appliances) by constructing a graph and solving the

optimization problem. This step requires much computational effort. Hence the execution

time becomes too long compared with other algorithms. For short datasets, the DUE algorithm

has an execution time comparable to those from FHMM and DDSC. However, these algorithms

scale poorly with the dataset’s length (or require advanced parallelization techniques, which

were not implemented here). Due to its sequential nature, the DUE algorithm’s execution time

increases linearly with the length of the dataset.

Table 1.9 – Execution time

ECO SMARTENERGY.KOM UK-DALE

training testing training testing training testing
121 days 29 days 75 days 37 days 365 days 91 days

CO 2s <1s <1s <1s <1s 9s
FHMM 17s 7s 13s 88s 58s 1h
DUE 59s 45s 6min
DDSC 42s <1s 19s <1s 5min 6s
GSP 9h 4h NA

Figure 1.16 depicts the global Estimation Accuracy (defined in Equation 1.14 as a function of

the total execution time, i.e., the sum of the testing time and training time, if any. FHMM is

the best compromise as the gain in accuracy according to this metric is significant, although

the execution time is one order of magnitude greater than the DUE for the longest dataset

(UK-DALE).

These results confirm the fact that supervised algorithms perform better than unsupervised

algorithms. Although the disaggregation uncertainty is generally higher for the DUE than for

the best supervised algorithm, it falls within the same range. The Estimation Accuracy is used

to assess both the magnitude and temporal accuracy of the algorithm on the dataset and shows

that DUE performs averagely with respect to other algorithms. For large-scale disaggregation
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Figure 1.16 – Estimation Accuracy versus execution time

of households’ energy consumption, it is not always possible to monitor all households at

the appliance level as it was done in [Hakell et al., 2015]. Similarly, there is not always a set

of reference houses with power consumption data at the appliance level (as in [Batra et al.,

2016]), on which training can be achieved before performing disaggregation of whole-house

power consumption. In the case where the only available information is the households’

characteristics and smart meter measurements, the DUE algorithm can disaggregate the

energy consumption with an uncertainty range comparable to supervised NILM algorithms

and does not suffer from computational limitations.

As the whole-house power signal is assumed to be the sum of each category’s sub-signal, the

resulting synthetic power measurement does not correspond precisely to the actual whole-

house power measurement. Each dataset covers a certain number of individual appliances,

which were grouped to form the categories. For UK-DALE, about 20 appliances were moni-

tored, while for two other datasets, this number is approximately 10. In all cases, this is not

representative of complete coverage of the electric power consumption of a house. As a result,

this might lead to some errors in the DUE. By design, it assumes that the input power measure-

ment, as the whole-house power consumption, represents the complete household energy

activities. Hence, providing partial electric power information of the household activities

might significantly impact the performance of the algorithm. However, it is challenging to

evaluate this claim, as to our knowledge, no dataset has a complete coverage of all appliances

used by a household over several weeks.

1.5 Conclusion

This chapter presented a non-intrusive appliance load monitoring method for low-resolution

smart meter data. The device usage algorithm (DUE) split the whole house energy measure-

ment into eight categories of appliances. The method is based on generating an activity

chain using a Markov model while adapting the transition probability by restricting possible

activities according to the power budget for the next time step. The algorithm is a hybrid
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between a load simulator and a non-intrusive load monitoring algorithm that disaggregates

whole-house power measurement at a very low sampling rate.

A benchmark of this method highlights that its performance is comparable to the four selected

state-of-the-art algorithms: the factorial hidden Markov model, combinatorial optimization,

discriminative disaggregation via sparse coding, and graph signal processing. The results show

better performance on average for the state-of-the-art algorithms as all of them are supervised

and were trained on each dataset before being tested. Emphasizing that our device usage

estimation method is unsupervised, its prediction uncertainties typically remain under 20%.

The DUE can sustain large datasets without suffering from computation burden. The time

to disaggregate increases linearly with the dataset size. The main advantage of the proposed

algorithm is the absence of a training requirement.

A potential application of this method is to propose disaggregation as a service to end cus-

tomers. The only requirements are an appropriate smart-metering infrastructure and house-

hold information that can easily be obtained from a customer survey. Utilities and energy

retailers easily reach those requirements. A more research-oriented application is the eval-

uation of the customers’ potential for shiftable energy. Using distribution system operator’s

smart meter data and their ability to reach end customers to send them a survey, the determi-

nation of the household flexibility potential is one of the goals of the FLEXI 2 project that will

be described later on.

The following chapter will present how this method has been used in the framework of the

FLEXI 2 project.
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2 Experimental determination of the
households demand flexibility

This chapter presents the results of a field trial aiming to assess the households’ flexibility

potential. First, we submitted a panel of households to time of use tariffs and evaluated

their reaction using a dedicated flexibility score. Second, we compare their response with

their potential by applying our disaggregation algorithm to determine this flexibility potential.

Finally, we analyzed the consumption pattern change of new PV adopters.

Part of this section has been published in the following work:

Perret, L., Chevillat, Y., Wyrsch, N., Bloch, L., Holweger, J., Weber, S., and Péclat, M.

(2019). Flexi 2 Déterminer le potentiel de flexibilisation de la demande d’électricité des

ménages. Technical report, Fedral office for energy

2.1 Introduction

The increasing PV and renewable energy penetration emphasize the need for flexibility in order

to balance energy demand and supply. Demand-side management (DSM) and load shifting are

potential solutions to delay investment in additional generation capacities [Pina et al., 2012].

[Denholm and Margolis, 2007] evaluate the requirements for reaching 50% of PV penetration

and highlights the role of DSM and load shifting to avoid storage capacity investment. [Boogen

et al., 2017] investigate the impact of demand-response (DR) on Switzerland’s electricity

demand, showing that DSM programs mainly reduce household consumption by about

5%. [Srivastava et al., 2019] highlight how DR programs’ implementation helps increase

the customers’ awareness and raise attractiveness in smart-appliance. Similarly, [Yilmaz

et al., 2020] highlight that households that would accept to have some of their appliances

controlled remotely by their distribution system operator (DSO) are the ones that have the

most attention to their energy supply (not only the electricity tariff but also the energy origin,

for instance). Hence, there is a correlation between promoting behavioral change and the

residential sector’s acceptance of technical measures that would technically increase their
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flexibility. This motivates the interest in behavioral flexibility as it significantly raises the

attractiveness and acceptance of flexibility measures.

Many attempts to quantify experimentally potential for household flexibility and demand-

response have been conducted recently. A pilot study in Norway where 40 households were

equipped with remote load control for heating devices and peak hour reminders was presented

by [Saele and Grande, 2011]. They showed a response of about 1kW average power thanks to

the concurrent effect of the remotely controllable load and the real-time information provided

to the households. The work of [Filippini, 2011] aims to quantify the price elasticity of Swiss

households. A real-time pricing study conducted by [Allcott, 2011] shows that households

reduce their energy consumption during peak hours but do not necessarily increase their

consumption during off-peak hours. On the opposite, the findings of [Torriti, 2012] show

that the introduction of time-of-use tariffs increases global energy consumption by 13% and

specifically during the evening peak hour. The authors point out the low awareness of the

customers to explain this counter-intuitive result. Another study specifically focused on wet

appliances (such as dishwashers, tumble-dryer, etc.) has been conducted in [Staats et al.,

2017], showing a limited impact of DSM on the overall energy consumption. Similarly, a

study on the potential of flexibility coming from the heating needs has been conducted in

[Kepplinger et al., 2016] and [Darby, 2018]. The latter highlights some interesting research

questions related to the policy condition to enable households to benefit from this flexibility.

Obviously, practical experiments rely mostly on the current status of the regulation, market,

and technology and are often limited by these factors. The work of [Hinterstocker et al., 2017]

evaluates the households’ potential for load shifting under a two-rate electricity tariff and

questions the efficiency of this tariff model compared with a capacity-based tariff. From a

theoretical point of view, understanding how and when energy could be potentially shifted is

essential. This knowledge allows for better policy, energy pricing, and technological bottle-

neck assessment. This kind of research is performed using a model-based approach.

From a technical point of view, [Paetz et al., 2013] modeled the household electric system,

including electric mobility and storage capability. The model was also validated using an

experiment in a smart-home laboratory. The study highlights the complex task of providing

comprehensive information to households so that their acceptance and understanding of

a DSM program enable a good response. It highlights the difficulties of forecasting flexibil-

ity. A data-driven attempt to forecast the flexibility using neural networks is presented in

[Ponocko and Milanovic, 2018]. However, data-driven approaches do not provide any gain

of understanding of the underlying phenomenon that enables flexibility. Alternatively, the

methodology proposed in [Roje et al., 2017] tries to model flexibility by employing a Markov

model. This method allowed authors to simulate the behavior of a household equipped or not

equipped with a DSM interface. The specificity of this study is that the validation experiment

was conducted on an isolated network relying on both renewable energy sources and fossil fuel.

They highlight how a well-adjusted DSM program can enable savings of fuel consumption.
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So far, only remunerative incentives are considered. From the classification of [Callahan,

2004, Koenig, 2011], there are two other types of incentives. Coercive incentives result from a

physical force used if the desired behavior is not achieved and moral incentives. The latter

is of interest for behavioral flexibility. The household’s behavior change after installing a

PV system is not widely studied. A survey in Texas from 2011 [Rai and McAndrews, 2012]

investigates the decision-making and behavior change of PV adopters. The authors report an

increase in electricity consumption awareness while not being able to measure the behavior

change. [Hondo and Baba, 2010] reports that new PV owners generally change their behavioral

behavior and tend to push others to do so after installing a PV system. Differences exist

between early PV adopters (before grid parity) and new PV adopters (after grid parity), as

reported by [Wittenberg and Matthies, 2018]. Their study primarily focuses on energy saving

that is explained for the early adopter by increasing energy consumption awareness, while for

new adopters, it is the load shifting activities that drive energy saving. The work of [Sekitou

et al., 2018] confirms this finding. However, none of the mentioned studies evaluated the

households’ intraday load-shifting effort.

The purpose of the FLEXI 2 experiment is to quantify the household energy demand flexibility

potential. This chapter presents this thesis’ essential contribution to Research Question A).

For this purpose, two specific time-of-use (TOU) tariffs were used. The first tariff leveraged on

the first FLEXI project [Perret et al., 2015] and consisted in lowering the price of electricity lower

(bonus) between 11:00 and 15:00. To compensate, the electricity price was slightly increased

(malus) during the rest of the day. Although the time window for the low rate could be chosen

arbitrarily, it corresponds to the hour of higher PV production in Switzerland. The second

TOU tariff was based on the weather forecast. The sunshine hour forecast for the next day

was used to determine whether a low rate or a high rate should apply during three different

periods of the day (10:00 to 13:00, 13:00-16:00, and 16:00-19:00). In other words, for a given

period, if the solar irradiation was high enough, the electricity price was lowered (by the same

bonus as for the first tariff). As for the first tariff, the electricity rate was increased during the

rest of the day by the same malus. The households subject to this treatment were informed by

SMS (short message system) every day at 17:00 of the next day’s low rate periods. The house-

holds’ reaction to these two treatments is measured by analyzing the intraday consumption

patterns. This is possible because the local energy retailer La Goule has been an early adopter

of smart-metering technology. Combining those consumption measurements with detailed

surveys is one of the outstanding achievements of this project, making such a dataset quite

rare in Switzerland.

A dedicated analysis on new PV adopters was conducted, which adds relevant information

to answer the Research Question A). Using the smart meter data, the consumption behav-

ior change of new PV owners was observed. This allows studying the effect of moral and

remunerative incentives on the households flexibility.

Section 2.2 presents the data treatment and some statistical analysis. One outcome of this

experiment is the treatment of these data that happens to be not so trivial. The details of the

pre-treatment of the smart meter data are given in Section 2.2.1. To build up the experiment
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and select the households, the survey collects various socio-demographic information about

the households. Besides, the phone numbers were requested to contact the households

(mandatory for the second tariff). The survey and some statistical information about the

household structure are given in Section 2.2.2. The complete methodology to design the

experiment and analyze the results is provided in Section 2.3. In particular, the design of the

treatments (Section 2.3.1) and analysis method (Section 2.3.2) are detailed. The results of the

project are summarized in Section 2.4.

2.2 Available data

2.2.1 Smart meter measurements

The smart meter data from 630 households between August 2013 and March 2018 were

provided by the energy retailer and DSO La Goule. As La Goule was one of the pioneers to

deploy smart metering technology, the reliability of the data acquisition and transmission

system was a great challenge (keeping in mind that for their entire network, the number of

data points to transmit is around 350’000 per day). The first step of this work consists in

pre-processing these data to make them plausible and reliable for research purposes. The

early installed smart meters sample the electric consumption at a 1-hour resolution while the

more recent ones have a resolution of 15 min.

Each data point contains four essential information:

• The installation number, a number identifying the electric installation being metered (a

house or a flat)

• The date and time of the measure

• The quantity of energy consumed between the last measure and the current one

• The value of the ”index” at the last measure and the current measure. The difference

between these two indexes should be equal to the quantity of energy consumed

In the following, Ei ,t denotes the quantity of energy consumed by the i th household between

time t −1 and t . These time series are often not continuous as missing data points, measure-

ment errors, and inconsistencies happen. An example of such a time series is pictured in

Figure 2.1.
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Figure 2.1 – An example of a smart meter measurement with missing data, suspected mea-
surement error, and inconsistent data

As Figure 2.1 shows, significant periods without data can happen for unknown reasons. Fig-

ure 2.2 pictures the availability of the data. A black dot represents each missing data point.

The first task is to clean up the dataset to remove incorrect or implausible data and then fill

the missing data before performing further analysis. The exact procedure for cleaning and

filling up missing data is described in the following.

Figure 2.2 – Original data availability map. The time series are stacked vertically ( time-
synchronized). A data point is represented by a black pixel, if it is missing, a white one
otherwise.

For all households except the PV owner, a data point is considered valid if it fulfills the following

condition:
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• Ei ,t > 0, it is very unlikely that the consumption is exactly 0 even at 15min resolution.

• Pi ,t = Ei ,t

∆T <
10kW if ∆T = 0.25 h

8kW if ∆T = 1 h
as none of the households are equipped with heavy

electric appliance such as electric boiler or heat pump (this is a mandatory condition

see Section 2.2.2).

The maximum admissible power depends on the sampling rate as a longer integration interval

flatten high power peak. The thresholds of 10 and 8 kW have been defined by studying the

power histogram of the dataset.

To fill the missing data point, a dedicated procedure is defined. Each household load mea-

surement is considered separately. We consider the valid data ratio as the ratio between the

number of valid data points in the time series and the number of time steps between the

beginning and the end of the time series. For instance, at 15 min resolution, a one-day time

series has 96 time steps. If the time series has only 94 data points, the valid data ratio is 98%.

A household load measurement is assumed to be valid if the valid data ratio is at least 50%. If

this ratio is below the threshold, it is discarded.

The basic principle to fill the missing data is to select three neighboring portions of the time

series that correspond to the desired portion of missing data (a portion can be a sequence

of data points of length ≥ 1). Each portion should correspond in time (hour of the day) and

the day of the week to the missing portion. The selected portions are then averaged to fill

the missing data portion. Two additional criteria play a role in the selection of the portion.

The first aims to keep the occupancy state. If the household’s occupants are assumed to be at

home just before the missing data period, the three selected portions must also correspond

to the periods where people are assumed to be at home. The second criterion matches the

electricity rate. If the electricity rate for the current households corresponds to the low rate

(bonus) during the missing data period, the three selected portions should also correspond to

the time of low electricity rate. For instance, let us assume no data are available for a particular

household from Monday 13 march between 13:00 and 14:30, that the occupants are assumed

to be at home during this time, and that the electricity rate is low during these hours. We look

for three time series portions, corresponding to a Monday between 13:00 and 14:30 when

people are at home with a low electricity rate to fill the target missing data period.

As it is often impossible to fulfill all the criteria (day of the week and time, occupancy state,

electricity rate), the algorithm will first ignore the occupancy state, then the electricity rate

criterion to fill the missing portion. The filling algorithm is graphically represented in Fig-

ure 2.3. To determine the households’ occupancy state, the considered day’s maximum power

is compared to the mean daily maximum power. If the considered daily maximum is above

1/3 of the mean daily maximum, the households’ occupants are assumed to be at home. This

is, again, graphically represented in Figure 2.4.
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Figure 2.4 – Household’s occupancy state estimation

Figure 2.5 qualitatively compares the number of missing data points at the end of the cleaning

and the filling process. Unfortunately, some technical issues arose starting from 2017, which

caused the large unavailability of valuable data.
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(a) Right after cleaning

(b) After cleaning and filling

Figure 2.5 – Data availability map

2.2.2 Surveys

To build up the control and treatment groups, a survey was performed among La Goule’s

customers on a dedicated website http://www.flexi-goule.ch. The original survey is available

in Appendix A. The questions in the survey allow us to acquire the following information:
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• Dwelling type (single-family house, or apartment)

• Type of ownership (owner or tenant)

• Number of rooms, bathrooms, or other (numerical)

• Housing footage

• Number of people in the household and their age

• Employment status (full-time worker, part-time worker jobless, etc.)

• Household type (family or couple, single-parent family, apartment-sharing, single)

• Education level

• Income

• Heat source for space heating (direct electric, fuel, gas, heat pump ...)

• Heat source for domestic hot water (same as above)

• List of appliances. The users tick what they own from a list of appliances. For some of

them, they can mention how many they own.

• Consumption habit (for instance, number of dishwasher per week)

• Fraction of low consumption light bulb

• Degree of environmental concern. The users were asked how they are concerned with

particular statements about the environment, climate, and economy.

Figure 2.6 pictures the variety of households and dwelling types. Significant differences can be

observed between single-family houses with footage of around 200 m2 for annual consump-

tion of 3000 kWh and apartments that are smaller (100 m2 typically) and consumption just

below 2000 kWh. In this dataset, the number of inhabitants seems to have a negligible effect

on energy consumption. As highlighted by Figure 2.7, most single-family houses are owned by

the households, while most apartments are rented. The age is the one of the person who filled

the survey. As pictured in Figure 2.8, most of the participants are above 50 years old. Finally,

Figure 2.9 highlights that an average household holds two people with a monthly income of

around 6000 CHF/month, which is close to the Swiss median salary[FSO, 2020].
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Figure 2.6 – Annual consumption (2015) vs. house footage. The size of the point indicates the
number of inhabitants and the color is the dwelling type.
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Figure 2.7 – Distribution of the housing size as a function of the dwelling type and ownership
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Figure 2.9 – Number of households per income group and household size

A dedicated survey was sent to the PV owners to acquire some information about their PV

system: The nominal PV capacity, roof orientation, and availability of any production mea-

surement were requested. The original survey is reproduced in Appendix B. This group of

households is referred to as the PV group.

For all households except the PV owner, dedicated interventions were designed. The following

section provides some details about the design of these treatments.

75



Chapter 2. Experimental determination of the households demand flexibility

2.3 Methodology

2.3.1 Interventions

Two interventions (or tariffs) were used in this experiment. For both of them, the electricity rate

was changing along the day. The main difference between the two interventions is that in the

first tariff, the high and low rate hours are the same every day, as for the second intervention,

the low rate hours change every day depending on the weather forecast. The two tariffs were

based on the standard single electricity rate of La Goule at the time of the experiment (2017-

2018). For the standard rate, the price of a kWh is 27.45 cts/kWh. The low rate corresponds to

a reduction (bonus) of 15 cts/kWh, while the high rate is an increase (malus) of 4 cts/kWh. For

the first treatment, hereafter referred to as T1, the low rate hours are determined according to

the mean daily irradiance pattern as pictured in Figure 2.10a. Between 11:00 and 15:00, 50% of

the global daily irradiance is received. For this reason, this time window was chosen as the low

rate period (see Figure 2.10b).
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Figure 2.10 – Treatment T1

The bonus and malus were calibrated so that an average household, if it did not change its

consumption pattern, did not make any gain or lose. This treatment has the advantages of

being repetitive. Hence it is expected that it would be easier for the households to adopt new

habits. In the real world, it would also be easier for the DSO to implement it.

The second treatment, hereafter referred to as T2, consists in a variable tariff that was com-

municated to the participants one day in advance by SMS, and that depends on the weather

forecast of the considered day. Depending on the sunshine forecast (provided by https:

//www.meteoblue.com), the low rate hours were activated or not. This approach is more real-

istic than the first treatment because the low rate period actually corresponds to the period of

high irradiance (and potentially PV generation). In more detail, three activation periods were

possible, 10:00 - 13:00, 13:00 - 16:00, or 16:00 - 19:00 (only possible during the summertime).

For each possible period, if the sunshine was ”good enough” a low rate period was activated.
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This statement was translated into a specific criterion that was compatible with the meteo

blue API. As an example, Figure 2.11 pictures the actual global irradiance and corresponding

tariff for three consecutive days. The bonus and malus were kept the same as for treatment 1.

The limitation of this approach is obviously linked with the accuracy of the weather forecast.

As highlighted by Figure 2.11a or 2.11c, the weather forecast could lead to the activation of

only one low rate period or even no period at all, while the irradiance was actually still fairly

high. The households were advised of the next day’s low rate periods at 17:00 by SMS.
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Figure 2.11 – Treatment T2
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The households were split into three distinct groups:

• A control group, which received no information about the experiment except, and

subject to the standard electricity tariff.

• A group receiving treatment 1, referred to as group 1, will follow the tariff T1.

• A group receiving treatment 2, referred to as group 2, will follow the tariff T2.

Each group should be statistically similar. Hence, the age of the people who filled the survey

and the annual consumption were used to split the households into the three groups, making

sure that the distributions of the two mention features are the same in each group. The survey

was carried out from April 2016. Between this date and July 2016, only 44 people answered

the survey. Those were split into three groups and are referred to as the first wave, which

started the experiment on the 1st July 2016. After more intensive communication, 48 additional

households were recruited at the beginning of September 2016. These households are the

second wave that started the experiment on the 1st October 2016. Because the number of

participants was still too low, it was decided to recruit, just by informing them by mail, 500 new

participants who did not complete any survey. Those are referred to as wave 3. It is important

to note that participating in the experiment was risk-free for the participant. Indeed, if the

energy bill under the new tariff (T1 or T2) was higher than the bill with the standard tariff, the

household was required to pay the standard bill. The participants from this 3rd wave were not

recruited in treatment 2 because the latter required a mobile phone number which was not

available. The experiment starting date for each wave and the number of households in each

treatment group are indicated in Table 2.1.

Table 2.1 – Distribution of the households into the groups and waves

Wave Experiment start
Group

Total
C T1 T2 PV

1 01.07.2016 14 (9) 15 (10) 15 (10) - 44 (29)

2 01.10.2016 16 (14) 16 (12) 16 (4) 48 (30)

3 01.01.2017 253 (192) 252 (197) - - 505 (389)

Total 283 (215) 283 (217) 31 (14) 38 (31) 635 (477)

Following the exposure of the framework of the FLEXI 2 experiment, the following section

presents the methodology to evaluate the behavior change according to the different treat-

ments.
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2.3.2 Analysis

Two main metrics are used in this analysis. The first metric consists in the daily energy

consumption (see Equation 2.1. The second is the ”Flexi score”. The score is defined as the

ratio between the mean power during a low-rate period and the mean power during the

corresponding day (see Equation 2.2). Both metrics are evaluated daily. Recalling the notation

of Section 2.3.1, those metrics are given as follow:

Daily energy consumption: E d ay
i ,d =∑

t
Ei ,tδt ,d (2.1)

Flexi score: Si ,d =

∑
t Ei ,tδ

f lexi
i ,t ,d∑

t δ
f lexi
i ,t ,d ∆T

E d ay
d
24

=
P

f lexi
i ,d

P
d ay
i ,d

(2.2)

where δt ,d is one if time step t fall during day d , and δ
f lexi
i ,t ,d , if time step t fall during a low-rate

period of the day d 1. As a reminder, Ei ,t is the consumption (in kWh) of the i th households

during the interval [t −1, t ) and ∆T is 0.25 h.

The flexibility score and the daily energy consumption can be calculated for any household

and any day in the pre-treatment and treatment periods. The difference between these

metrics during those two periods somehow defines the behavior change. By comparing

this behavior change with the control group (that did not receive any treatment), we can

evaluate the treatment’s effect. The treatment and pre-treatment periods are given in Table 2.2.

All recruitment waves did not start the experiment simultaneously, so their corresponding

pre-treatment and treatment periods are not the same.

Table 2.2 – Treatment and pre-treatment periods

wave
pre-treatment treatment

start end start end

1 01.07.2015 30.06.2016 01.07.2016 30.06.2016
2 01.10.2015 30.09.2016 01.10.2016 30.09.2017
3 01.01.2016 31.12.2016 01.01.2017 31.12.2017

To evaluate the theoretical potential for households’ flexibility, we applied the device usage

estimation (DUE) algorithm (presented in the previous chapter) to disaggregate the load

measurements into the eight appliance categories defined in Table 1.3. We define three

flexibility levels, not shiftable, hardly shiftable, or easily shiftable, and link them with the

appliance category in Table 2.3.

1the subscript i just remind that the low-rate periods depend on the treatment. It does not strictly depend on
the household
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Table 2.3 – Appliance flexibility degree

Category Flexibility level

Cooking not shiftable
Entertainment hardly shiftable
Fridge not shiftable
Heating hardly shiftable
Housekeeping easily shiftable
ICT hardly shiftable
Light not shiftable
Standby not shiftable

This allows defining a theoretical performance metric, corresponding to a Flexi score where

all possible shiftable energy has been moved to the low-rate periods. It is assumed that the

easily and hardly shiftable energy is moved (if not already present) into the low-rate period.

This translates as:

Shiftable energy outside a low-rate period: E shi f t
i ,d =∑

t

(
E easi l y

i ,t +E har dl y
i ,t

)
·
(
1−δ f lexi

i ,t ,d

)

Theroretical Flexi score: S theo
i ,d =

∑
t

(
Ei ,tδ

f lexi
i ,t ,d

)
+E shi f t

i ,d∑
t δ

f lexi
i ,t ,d ∆T

E d ay
d
24

(2.3)

keeping in mind that Ei ,t = E easi l y
i ,t +E har dl y

i ,t +E not
i ,t

with E easi l y
i ,t ,E har dl y

i ,t ,E not
i ,t the easily, hardly and not shiftable energy, respectively 2.

For the PV owners’ analysis, a different metric is used. Because the households did not face

any variable tariff, there is no low-rate period, but instead favorable periods, when their

PV system produce energy in which there is an incentive to shift the energy. Thus, it is

impossible to define a common period for all households and thus calculate any Flexi score. A

possible metric could be to use self-consumption (see definition in Equation 2.4). However,

self-consumption depends on the PV capacity compared with the consumption intensity (a

small PV capacity coupled with a large consumer will lead to a high self-consumption, for

instance). The same applies to self-sufficiency (see definition in Equation 2.5). We defined

the normalized self-consumption (Equation 2.6), which normalizes the daily PV generation

with the daily consumption to cope with this issue. In other words, the self-consumption

of a particular day is calculated assuming that the daily PV generation is equal to the daily

consumption. This is illustrated in Figure 2.12.

2The assumption Ei ,t = E
easi l y
i ,t +E

har dl y
i ,t +E not

i ,t does not always hold using the DUE algorithm of Chapter 1.
Indeed the sum of the disaggregated power is sometimes smaller than whole-house consumption.
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Self-consumption: SCi ,d =
∑

t min(Pi ,t ,Gi ,t )δt ,d∑
t Gi ,tδt ,d

(2.4)

Self-sufficiency: SSi ,d =
∑

t min(Pi ,t ,Gi ,t )δt ,d∑
t Pi ,tδt ,d

(2.5)

Normalized self-consumption: N SCi ,d =∑
t

min(
Pi ,t∑

t Pi ,tδt ,d
,

Gi ,t∑
t Gi ,tδt ,d

)δt ,d (2.6)
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Figure 2.12 – Normalized self-consumption. Area A is the consumption uncovered by the PV
generation. Area B is the PV surplus, and area C is the normalized self-consumption.

Thanks to the smart meter data, it is possible to evaluate the PV owners’ behavior change by

comparing the change in consumption patterns before and after installing the PV system with

a control group (without any PV installation). However, a few more preparation are needed to

achieve this goal. For PV systems in self-consumption schemes (which is the case for all PV

owners of this experiment), the actual consumption and the PV production are not monitored

separately. Indeed, smart meters measure the energy flow going both ways in each interval bin.

To retrieve the actual consumption, one needs to estimate the PV generation, as illustrated in

Figure 2.13.

Using the survey sent to the PV owners (see Appendix B), the installed capacity, roof orientation,

and tilt are known for each system. The PV generation Gi ,t is simulated using the irradiance

data from Fahy weather station 3 (this weather station is located in the distribution area of

the DSO La Goule) using the PVLIB toolbox 4. The load or real consumption is retrieved by

applying Equation 2.7.

3data from idaweb https://gate.meteoswiss.ch/idaweb/
4PVLIB for MATLAB available at https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
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what we have

what we would like

simulationestimation

Figure 2.13 – Smart meter measurement illustration. The top row assumes a real power signal
of two steps. The smart meter only provides the energy (hence average power) of the last
two time steps (15 min in reality) represented by the import and export curve of the bottom
row (red square). By simulating the generation (blue square), we can deduce the average
consumption (yellow square), which should match the original load and generation (green
square).

Estimated PV owner’s load Pi ,t = max
(
0,P i mp

i ,t +Gi ,t −P exp
i ,t

)
(2.7)

where P i mp
i ,t and P exp

i ,t are the imported or withdrawn and exported or injected power respec-

tively. Compared to the households without PV system, the notation Pi ,t = Ei ,t

∆T corresponds to

P i mp
i ,t because a consumption means withdrawing power from the grid.

The quality of the actual load estimation heavily depends on the accuracy of the PV generation

simulation. Using the provided formulation, an over-estimation of the PV generation will lead

to an over-estimation of self-consumption. To illustrate this, Figure 2.14 shows two cases. In

the first case, the simulated PV generation is close to a ground truth PV production (both are

simulated data, but an error has been introduced using two different weather stations). In the

second case, the PV simulation differs from the reference one. From this figure, it is clear that

the PV simulation errors lead to an overestimation of the consumption during PV production

hours. For this reason, the analysis is restricted to clear sky days.

Using the presented methodology, the following section will describe and discuss the results

of this experiment.
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Figure 2.14 – Importance of the PV simulation accuracy on the inferred consumption

2.4 Results

2.4.1 Time-of-use treatments

One qualitative way to visualize the households’ reaction to their respective treatments is to

look at the mean daily consumption profile. However, using the latter would emphasize high

consumption households compared with those with very low consumption. For this reason,

we instead have a look at the way the energy is distributed along a day and take the median of

these profiles. The normalized power is defined as:

P∗
i ,h = Pi ,tδt ,h∑

h Pi ,tδt ,h

24

(2.8)

with δt ,h = 1 if time step t falls during hour h.
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The hourly profiles are reproduced, separately, in Figure 2.15, for the three recruitment waves.

As their analysis periods are not the same (recalling Table 2.2), it would not be coherent to cross-

compare the pre-treatment, treatment, and control groups on the same graph. This figure

highlights a poor reaction from the T1 households, despite a slight increase of the normalized

power during the low rate period for the 2nd wave (see Figure 2.15b). All households (including

the control group) seem to have lowered their consumption during the evening. This decrease

is slightly more pronounced for the T1 group.
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Figure 2.15 – Daily normalized power profile for Treatment 1
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The two performance metrics (Flexi score and mean daily consumption) are reported for the

first wave of the T1 group in Figure 2.16. Comparing the trajectory of each T1 household on

this figure gives an idea of the potential behavior change that the households experienced. It

is interesting to note the median metrics’ variation (plotted as a large cross for the T1 group

and circle for the control group). Indeed, it is the variations of the metric that is relevant to

assess the behavior change. The relative variation of the daily consumption and Flexi score are

reported in Figure 2.17. For all waves, most T1 households are in the upper part of the graph,

indicating an increase in the Flexi score. Some also experienced an increase in the average

daily consumption, which is coherent with the findings of [Torriti, 2012]. The control group,

which faces the same weather condition, is relatively evenly spread in the four quadrants of

the graph. In the 3rd wave’s case, most of the control group (54%) decreased their Flexi score

while 53% of the T1 group increased their score. Most households of both groups reduced their

energy consumption. Despite an apparent low reaction of the households subject to treatment

1, a closer look highlights that the treatment has a small positive effect on the consumption

pattern compared with the control group.
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Figure 2.16 – Average Flexi score vs. average daily consumption for T1 wave 1
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Figure 2.17 – Flexi score relative variation vs. daily consumption relative variation. Only the
households of the T1 group are plotted. The fraction of households from the T1 and control
groups in each quadrant are indicated in the box.

The second treatment is slightly more tricky to analyze because, contrary to the first one,

which is a regular time-or-use (every day the same low rate period), three different low-rate

periods can be activated. Table 2.4 represents the eight possible day types according to the

activation of the low-rate periods.
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Table 2.4 – Treatment 2 day type according to the low (L) and high (H) rate period in the day

10h-13h 13h-16h 16h-19h

type 0 H H H
type 1 L H H
type 2 H L H
type 3 H H L
type 4 L L H
type 5 L H L
type 6 H L L
type 7 L L L

The treatment 2 day types distribution is pictured in Figure 2.18. As the number of households

for this treatment is small (10 and 4 for the first and second recruitment waves, respectively),

it has been decided to use a shorter common analysis period and to treat both waves together.

Hence, in the following, the analysis period is restricted to the period from October 1st to June

30th (2015 for the pre-treatment, 2016 for the treatment). As Figure 2.18 shows, for most of

the days, no low rate period is activated (type 0). The second more frequent day type is type 4,

when the low-rate period occurs from 10:00 to 16:00. The third more frequent case (during

the treatment phase) is type 7 with all low-rate periods activated. The daily normalized power

profile for those three day types are pictured in Figure 2.19. Again it is difficult to notice a

significant change in how the energy is consumed throughout the day.
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Figure 2.19 – Daily normalized power profile for Treatment 2 (wave 1 &2 on the period from
October 1st to June 30th)

Following a similar approach than the first treatment, the first wave metrics are plotted one

against the other in Figure 2.20. Looking at Figure 2.21, again, most T2 households increase

the Flexi score and reduce their consumption compared with the control group who is more

evenly spread in the four quadrants of the graph. Despite the apparent poor households’

reaction, the treatment seems to have a small positive effect in terms of both Flexi score and
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consumption awareness. Communication of the tariff information by SMS required that

the households of this group agreed to give their phone number. This may imply that the

households of this treatment group were the most interested or motivated ones.
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Figure 2.20 – Average Flexi score vs. average daily consumption for T2 wave 1, median per
period and group are also indicated

2.4.2 Comparing the experimental and theoretical household flexibility

The DUE algorithm (cf. Chapter 1) is applied to the first and second-wave households (those

who fulfilled the survey). The FLEXI 2 datasets of the first and second recruitment waves

contain the whole house smart meter measurements and the households characteristics (see

Section 1.2). The disaggregation of the energy consumption into the eight appliance categories

(stand-by, heating, fridge, light, entertainment, cooking, housekeeping, and ICT) allows ex-

tracting the mean fraction of the total energy consumption per category pictured in Figure 2.22.

The disaggregation has been performed from July 2015 to the end of the FLEXI 2 project. The

analysis in this section only corresponds to the period before starting the experiment, hence

from July 2015 to July 2016. One may note that the standby consumption can reach up to 50%

of the total energy consumption. This number should be read keeping in mind that in this

study, Standby consumption is defined as the daily minimum power consumption. It is not

precisely what is commonly defined as the appliances’ standby consumption.
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Figure 2.21 – Flexi score relative variation vs. daily consumption relative variation. Only the
households of the T2 group are plotted. The fraction of households from the T2 and control
groups in each quadrant are indicated in the box.

Standby
Heating

Fridge
Light

Entertainment
Cooking

Housekeeping ICT
0

10

20

30

40

50

60

Fr
ac

tio
n 

of
 th

e 
to

ta
l c

on
su

m
pt

io
n 

(%
)

Figure 2.22 – Fraction of the total consumption (59 households) per category

The daily category mean consumption pattern is also pictured in Figure 2.23a. The ”cooking”

category dominates midday and evening consumption. Housekeeping, which is a flexible

category according to Table 2.3, is the most important during the midday hours. Most of the

light consumption occurs during the evening, which does not have a high flexibility potential.

Recalling the relation between the flexibility level (Table 2.3) and the appliance category, the

daily mean power profile by flexibility level is represented in Figure 2.23b.
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Figure 2.23 – Mean hourly consumption disaggregation

The latter highlights that most of the available flexibility occurs during the midday or evening.

Assuming that both the ”hardly” and ”easily” shiftable power could be shifted in time, the

mean flexible power along the day is pictured in Figure 2.24. This picture also represents the

95% confidence interval of the flexible power at each time of the day for all studied households.

One may note that the deviation from the mean power can be pretty significant.
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Figure 2.24 – Total shiftable power (hourly). The shaded area represents the 95% confidence
interval.

Table 2.5 summarize the share of the energy consumption according to its shiftability potential.

It distinguishes between weekdays and weekends. This highlights that the potential of shiftable

energy is slightly higher during the weekend and is between 1% and 18%, depending on the

effort that a household can/will make.
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Table 2.5 – Shiftable energy fraction potential for all households

Energy fraction Weekdays Weekends

Easily shiftable 0.92% 1.05%

Hardly shiftable 15.34% 17.13%

Not shiftable 83.74% 81.82%

To conclude this section and use the results of the potential of shiftable energy, Figure 2.25

shows the achievement level of the two treatment groups (for the control group) and for the

first and second waves (keeping in mind that no households of the third wave have filled

the survey, hence the disaggregation of their smart meter data into categories could not be

achieved). The achievement level is defined as the ratio between the measured Flexi score

and the theoretical Flexi score (see Section 2.3.2)5). In all cases, the median achievement level

increases from the pre-treatment phase to the treatment phase.
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Figure 2.25 – Achievement level

5Careful reader may have noticed that the achievement level can be greater than one. In some cases, the
disaggregation is not perfect, leading to the total disaggregated energy being smaller than the measured energy
(see Section 2.3.2
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2.4.3 Results of the PV owners analysis

The PV owners have a moral and financial incentive to shift their energy. In this section,

the claims stating that the PV owners change their consumption behavior after installing

PV modules on their roof will be verified. As mention in Section 2.3.2, for each participant,

the PV generation has been simulated. A comparison of the self-consumption and mean

daily consumption before the installation and after the installation is presented in Figure 2.26.

For the period before installing the PV modules, the PV generation is simulated using the

same properties (capacity, orientation, and tilt) as for the post-installation period. The self-

consumption before the PV installation, reported in Figure 2.26a, ranges from 7% to 40%.

These are typical values for single-family houses or farms with quite a large roof. The self-

consumption during the post-installation period is larger than during the pre-installation

period for all owners. However, most PV owners seem to have increased their consumption

(see Figure 2.26). This is linked to the over-estimation of both the self-consumption and total

energy consumption introduced by the method to retrieve the load from the smart meter

measurements’ import and export power. Indeed, any PV generation estimation error results

in a load estimation error. As the load is bounded by 0 (the load cannot be negative), it results

in an overestimation of the total consumption. See Section 2.3.2 for detailed explanations.

A small study to quantify these errors has been performed using a dedicated case study

(with known consumption and PV production). In more detail, the PV generation is scaled

to emulate a PV capacity estimation error. For each error’s magnitude, the resulting self-

consumption value is compared with the one of the reference systems. Similarly, the average

daily consumption, calculated using the biased PV generation, is compared with the reference

value. The results are summarized in Figure 2.27. If the PV capacity is assumed correctly,

the self-consumption error ranges from 3% up to 13%. In the most extreme case of a 20%

overestimation of the PV capacity, the self-consumption error can reach more than 20%. As

this study relies on the exactness of the data from the surveys, it is worth mentioning the range

of uncertainty that wrong or inaccurate information can lead to. The mean error on the energy

consumption is around 17%.
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Figure 2.26 – PV owner self-consumption and averaged daily consumption
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Figure 2.27 – Error on self-consumption and daily consumption

Keeping these considerations in mind, the normalized self-consumption (NSC) variation

distribution for the PV owner and control households is pictured in Figure 2.28. As discussed

in the methodology section and quantified above, the PV generation simulation’s inexactness

can lead to an overestimation of self-consumption and normalized self-consumption. To put

more confidence in the results, the NSC variation distribution is plotted for the clear-sky only

days. In both cases, the NSC increases more significantly for the PV owner than for the control

group. Despite the impossibility to quantify precisely its magnitude, these results highlight a

significant behavior change of the PV owners.
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Figure 2.28 – Normalized self-consumption distribution

2.5 Conclusion

The shift from a centralized energy system to decentralized renewable energy production

induces a significant change in the way we use and perceive energy. This change in perception

is desirable because it can induce behavior changes and increase the acceptance of new

technologies. Demand-side management is one possible approach to encourage behavior

change and activate the flexibility of the residential sector.

In the first part of this chapter, we presented the FLEXI 2 experiment. This project is typically

demand-side management to promote a change in consumption behavior among households

by offering remunerative incentives. The incentives were time-of-use tariffs. Two different

treatments were attempted. The first was using a constant time-of-use tariff (every day the

same), while the second offered a variable one. The opportunity offered by the deployment of

smart meters also brings some challenges regarding data quality and availability.

In the second part, we provided a methodology to assess the potential for shiftable energy

from households. The methodology consists in using a non-intrusive load monitoring algo-

rithm specially developed for this aim. The algorithm disaggregates the whole-house power

measurement (provided by smart meter data at a low resolution of 15 min) into categories of

appliances. Those are assigned three flexibility levels ranging from ”not shiftable” to ”easily

shiftable”. Using this methodology on the FLEXI 2 smart meter measurements highlights that

up to 18% of the total energy consumption could be shifted in time. This represents an average

power between 50 and 150 W per household, which is 10 times smaller than what [Saele and

Grande, 2011] reported.

The last part of this chapter provided the results of the FLEXI 2 experiment. It showed that

the households had a low but still perceptible reaction to the price incentives, whatever the
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treatment they received. There are two possible reasons for this poor reactivity. One is the

lack of communication between the households and the DSO. The second is the low potential

gain compared with the behavioral effort. In a preliminary phase, it was planned that the

households could monitor in near-real-time their consumption and their progress regarding

their flexibility through a dedicated web app. This was discarded for technical and budget

constraints. More active feedback to the households allows for better results regarding the

participants’ reactivity and awareness[Paetz et al., 2013, Koroleva et al., 2019].

Although all PV owners reported having no interface to track real-time their PV production,

their behavior change seems to be more pronounced. The subtle combination of a moral

and a financial incentive effectively triggers behavioral flexibility from the residential sector.

Table 2.6 summarizes this chapter’s essential results.

This paves the way for a global reflection on the accessibility of a more extensive set of

households to PV technology. Indeed, the PV owners were all the owners of their homes. As

about half of the FLEXI 2 participants, around 60% of the Swiss population are tenants of

their home. This raises the question of how to make those people participate in the energy

transition. Future research should focus on the effect of the moral and remunerative incentives

induced by allowing tenants to invest in a remote PV plant.

Now that the potential and practical households’ flexibility has been assessed and quantified,

the following chapter will investigate the contribution of large appliances to PV systems’

flexibility.
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Table 2.6 – Results summary

Unit Treatment group Control group

Fraction of households having increased their Flexi score ...
... receiving the constant time-of-use
tariff (T1) for wave 1,2, and 3

% 50/50/53 45/44/46

... receiving the variable time-of-use
tariff (T2) for wave 1, and 2

% 50/75 49/51

Flexibility achievement level for households ...
... receiving the constant time-of-use
tariff (T1) for wave 1, and 2

% 61/57 57/53

... receiving the variable time-of-use
tariff (T2) for wave 1, and 2

% 74/69 70/69

Median increase of the normal-
ized self-consumption ratio when
installing PV (clear sky day only)

- 0.17 0.07

Share of energy ... unit weekdays weekends

... easily shiftable % 0.92 1.05

... hardly shiftable % 15.34 17.13

... not shiftable % 83.74 81.82
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3 Technical flexibility at the building
level

Technical flexibility is required to integrate a large share of variable renewable energy in the

power sector. In this chapter, the basic PV system model is presented. Two ancillary technolo-

gies are considered, electrochemical storage and power-to-heat. The technical flexibility is

compared with the behavioral one. To dig more into the real deployment of such flexible tech-

nologies we propose a heuristic heat pump control algorithm that is compared with optimal

control. Finally, we evaluate the effect of design regulation that aims to impose minimum

technology size on the flexibility, grid impact, and systems’ profitability.

Part of this section has been published in the following work:

Holweger, J., Bloch, L., and Wyrsch, N. (2020b). SCCER-FURIES - Definition of optimal

control of DHW for self-consumption strategies. Technical report, École Polytechnique

Fédérale de Lausanne

3.1 Introduction

The increasing need for flexibility cannot be fulfilled without technical measures. As shown in

the last chapter, behavioral flexibility may provide up to 400 W of reserve capacity in the most

optimistic case, which is too low compared with a kW scale domestic PV installation. Technical

measures have a much higher potential, as we will see in this chapter. For the residential

level, several approaches can be explored to trigger this flexibility. One of them is to use smart

appliances as suggested in [Srivastava et al., 2019] and [Yilmaz et al., 2020]. Smart appliances

can be any appliances, from the most common one, dishwasher, tumble-dryer, wash-machine,

coffee machine, smart plugs, to the biggest and most advanced ones, like electrochemical

storage, power-to-heat technologies, or power-to-X. The common denominator, and required

criterion to become a ”smart” appliance, is to be smart enough to decide or be told what to do

and when. A smart steam iron would be smart if it can decide when to heat up according to

some criterion concerning any provided information (your wardrobe state ?). A smart Hi-Fi

would turn on and play your favorite song when you come back from work because your home
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manager (being Alexa© or something else) told it to. The concept of devices’ controllability is

key for the technical flexibility to be activated. This chapter aims to investigate the contribution

of technical measures to system flexibility compared with behavioral flexibility and how

different policies can impose flexibility. It provides some element of answers to Research

Question B) and C).

Regarding the notion of cost-effectiveness embedded in Research Question B), it is finally

related to the optimization of energy systems. This problem can be solved from two perspec-

tives: The first is the operation of the system, and the second is its design, namely the size of

its components. In [Babacan et al., 2017], a convex optimization problem is formulated to

provide the optimal scheduling of a battery co-located with an existing residential PV system.

The authors proposed a formulation to integrate the monthly capacity charges in the objective

function. [Pena-Bello et al., 2017] used a genetic algorithm to optimize the daily operation of a

battery to minimize the daily electricity bill. This approach takes advantage of the non-linear

solver to analyze different battery usage strategies. The authors showed that in Switzerland,

at the current battery price level, such a system is never profitable for self-consumption and

load shifting applications.[Zhang and Tang, 2019] recently also used a genetic algorithm to

solve the optimal scheduling of a battery and PV system.

[Mulder et al., 2013] implemented a simple rule-based algorithm to solve the operation of

a battery combined with PV and optimized the size of the PV and battery capacity using a

combinatorial approach (namely evaluating the net present value for a given set of combi-

nation). The focus of this study is related to the influence of the (flat) import and export

tariff on the optimal size of a PV and battery system. A convex programming approach is

used in [Wu et al., 2017] to find the optimal size and daily operation of a battery for a given

installed PV capacity under a given feed-in power limit. The above literature does not include

a thermal model. This is due to the nature of the control problem, which becomes non-linear

due to the principle of power-to-heat technologies such as heat pumps (HP). Indeed, the

coefficient of performance (COP) depends on the water supply temperature and other factors

like the HP part-load efficiency [Salpakari and Lund, 2016, Verhelst et al., 2010, Fischer et al.,

2016, Vrettos et al., 2013]. Nonlinear optimal control problems are often addressed using

different nonlinear programming solvers, minimizing targets such as energy costs [Anvari-

Moghaddam et al., 2015, Zhao et al., 2015], HP power consumption [Verhelst et al., 2010], and

user discomfort [Anvari-Moghaddam et al., 2015]. However, studies conducted in [Verhelst

et al., 2010, Anvari-Moghaddam et al., 2015, Zhao et al., 2015] presented results only over

one-day periods, restricted by the time-consuming mathematical background of these solvers.

This gives a motivation to simplify the original control problem into a linear model since linear

programming solvers can guarantee global convergence and require lower computational

efforts. Investigations conducted in [Girardin, 2012, Stadler et al., 2016] performed linear

programming and mixed-integer linear programming (MILP) techniques using linear COP

expressions with correction factors based on the theoretical Carnot cycle efficiency. Perfor-

mance maps given by manufacturers were also used in [Verhelst et al., 2010, Vrettos et al.,

2013, Fischer et al., 2014, Verhelst et al., 2012]. In [Verhelst et al., 2012, Bianchi, 2006, Halv-
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gaard et al., 2012, Wimmer, 2004], a linear COP was also assumed by considering the water

supply temperature constant to find the optimal operation of HPs coupled with underfloor

heating systems. Likewise, [Beck et al., 2017] employed a MILP strategy with a constant COP,

assuming that heat source and sink temperatures are constant. These considerations can

be supported by long HP operation cycles and smooth water supply temperature changes

induced by underfloor heating or building large thermal inertia.

The integrated optimization of the PV and battery sizing and energy management can be

solved following two kinds of formulations: either non-linear programming techniques or

convex (linear or quadratic) programming. A non-linear approach is used in [Ansari et al.,

2016] to include the formulation of the voltage support to the grid. Using a similar method,

[O’Shaughnessy et al., 2018] includes (among others) a non-linear model of the air condition-

ing. A linear model is used in [Lauinger et al., 2016] to provide a general decision-making tool

for large energy systems. In [Deetjen et al., 2018], the authors included a linear model of a

chiller, thermal energy storage, and micro-turbine generator to study the optimal component

sizing with different time-of-use electricity rate structures. Similarly, a two-stage formulation

is proposed by Talent et al. [Talent and Du, 2018] to solve first the optimal design according

to the estimated net present value of the system, and second the energy management to

minimize the electricity bills.

The papers mentioned above present a broad overview of the current state-of-the-art on

operational research. This chapter will combine a few of the mentioned concepts to provide

a complete model of a PV energy system with essentially two ancillary technologies, electro-

chemical energy storage, and power-to-heat to fulfill the space heating (SH) and domestic hot

water (DHW) demand. This model will be used in the framework of a MILP formulation to

obtain the optimal size and operation of the system. We contribute to the research field by

proposing a new combined design and operation optimization of PV, battery, and power-to-

heat technology. Besides, we propose a novel view on the comparison between behavior and

technical flexibility. Second, we investigate how to design policies that can impact the systems’

financial profitability and their operation. Finally, we contribute to the energy management

control field by proposing a novel heuristic HP control algorithm.

This chapter is organized as follows. In Section 3.3, we will provide keys results to compare

the obtained technical flexibility with the behavioral flexibility discussed in Chapter 2. We

will provide in Section 3.5 key findings on the imposition of design rules forcing to deviate

from this optimal design and their economic and operational impacts. Finally, Section 3.4 will

propose a novel, simple, efficient heuristic control algorithm for PV and HP systems.
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Chapter 3. Technical flexibility at the building level

3.2 Modeling technical flexibility

In this work, a generic PV system, pictured in Figure 3.1, is composed of:

• PV modules spread on one or more roofs

• An electrochemical energy storage element referred to as the battery (batt)

• An air-water heat pump (HP)

• An auxiliary direct electric heater (EH)

The PV provide energy to the system is uncontrollable and can be curtailed. The battery acts

as the main energy storage technology. The HP and EH are dedicated to both the SH and

DHW heating (which can act as storage, as we’ll see later on). When needed, the system can

exchange power with the electrical grid (including charging and discharging the battery).

Figure 3.1 – A basic sketch of the system under study

The system’s power balance is described in Equation 3.1 and must be satisfied for all time

steps.

P load
t︸ ︷︷ ︸

uncontrollable load

−
PV gen.︷ ︸︸ ︷

P PV
t +P cur

t +P cha
t −P dis

t︸ ︷︷ ︸
battery

+
power-to-heat︷ ︸︸ ︷
P hp

t +P el
t =

grid exchange︷ ︸︸ ︷
P imp

t −P exp
t ∀t ∈ T (3.1)
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3.2. Modeling technical flexibility

where P loadis the uncontrollable load, P PVis the total PV generation, P curis the curtailed PV

generation, P char,dis are the battery charging and discharging power, P hp,el are the power

drawn by the HP and EH, and P imp,exp are the power imported from and exported to the grid.

The PV system’s modeling equations are described in Equations 3.2a to 3.2c. Several PV

configurations can be considered, represented by different roofs or technologies, for instance.

For each technology, the power generation of one module is pre-calculated and stored in the

matrix P modof size [T ×N ]. The resulting sum is the total PV production (Equation 3.2a). The

system can curtail up to the total PV generation (Equation 3.2c).

PV generation at time t P PV
t =

N∑
i=1

P mod
t ,i ·nmod

i (3.2a)

Area constraints for all roofs ∈ J
N j∑

i=1
nmod

i · Amod
i < Aroof

j ∀ j ∈ J (3.2b)

Curtailment constraint P cur
t < P PV

t (3.2c)

where N is the number of PV configuration, P mod
t ,i is the power output of one module of the

i th configuration, nmod
i is the number of installed modules of the i th configuration, J is the

number of roofs,N j is the number of configuration for the j th roof, Amod
i is the module area,

and Aroof
j is the roof area.

The battery model is derived from [Heussen et al., 2010] and [Stadler et al., 2016]. Although

the model could be valid for any electricity storage system technology, we consider a lithium

manganese oxide (LMO) battery. Even though LMO batteries are mostly used for mobility

purposes, we use them to exemplify the calendar aging and cycle degradation impact in a

post-processing step, using a model from [Xu et al., 2018]. The battery is modeled as a non-

ideal storage in Equations 3.3a to 3.3f. The initial and final state of charge constraints to be

equal in Equation 3.3c and introduce a cyclic condition. The charging and discharging power

abounded by the C-rate CRdis,cha in Equations 3.3e and 3.3f. It should be operated within the

given bounds of the state of charge SOCmin and SOCmax, according to Equation 3.3d.

Battery energy balance E bat
t+1 = (1−α) ·E bat

t +ηchaP cha
t+1 ·T St − 1

ηdis
P dis

t+1 ·T St (3.3a)

Initial state E bat
0 = SOCinit ·E bat

cap (3.3b)

Final state E bat
T = E bat

0 (3.3c)

State of charge limit SOCmin ·E bat
cap ≤ E bat

t ≤ SOCmax ·E bat
cap (3.3d)

Max charging power P cha
t < CRcha ·E bat

cap (3.3e)

Max discharging power P dis
t < CRdis ·E bat

cap (3.3f)

where E bat
t is the energy stored in the battery at time t , E bat

capis the battery capacity, T Sis

the simulation time step, α is the self-discharge coefficient, ηcha,dis are the charging and
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discharging coefficient, CRcha,dis are the charge and discharge C-rate, and SOCinit,min,max are

the initial, minimum, and maximum state of charge.

The thermal model is based on the electrical-thermal analogy. The reference circuit is pictured

in Figure 3.2. The circuit consists of a HP and EH providing heat to a SH circuit, which has its

thermal inertia (equivalent capacitance) and transfers its heat (Equation 3.4c) to the building.

The latter gains heat from the solar irradiance (through windows, Equation 3.4e) and loses

heat in the surrounding environment (Equation 3.4d). This is represented in the heat balance

equation of the building (Equation 3.4a). The building temperature is constrained by applying

reasonable bounds (Equation 3.4f) to ensure a fair approximation of the occupants’ comfort

while guaranteeing the optimization feasibility. The initial temperature must also be specified

in Equation 3.4h.

C
sh

C
b

Q̇
su

n

Rsh Rb

Q̇
h

p
→

sh
Q̇

el
→

sh

T sh T b T amb

Figure 3.2 – Equivalent electrical circuit of the building and space heating circuit
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3.2. Modeling technical flexibility

Building thermal balance C b · T b
t −T b

t−1

T St
= Q̇sh→b

t −Q̇ loss,b
t +Q̇sun

t

(3.4a)

Space heating thermal balance C sh · T sh
t −T sh

t−1

T St
=−Q̇sh→b

t +Q̇el→sh
t +Q̇hp→sh

t

(3.4b)

Heat gain from the space heating circuit Q̇sh→b
t = T sh

t −T b
t

Rsh
(3.4c)

Heat loss in the surrounding environment Q̇ loss,b
t = T b

t −T amb
t

Rb
(3.4d)

Heat gain from the sun Q̇sun
t = I0,t Asun

0 (3.4e)

Building temperature constraints T b
min ≤ T b

t ≤ max(T b
max,T amb

t ) (3.4f)

Space heating temperature constraint T sh
min ≤ T sh

t ≤ T sh
max (3.4g)

Initial building temperature constraint T b
0 = T b

init (3.4h)

Initial space hating temperature constraint T sh
0 = T sh

init (3.4i)

where, C b,C share the building and SH circuit thermal equivalent capacitance, T b
t and T sh

t

are the building and SH temperature at time t , Rband Rshare the building and SH thermal

equivalent resistance, I0,t is the global horizontal irradiance, Asun
0 is this horizontal equiva-

lent building window area, T b
min,max and T sh

min are the temperature lower and upper bounds,

T b,sh
init are the initial temperatures, T ambthe ambient temperature, and Q̇hp,el−→sh are the heat

provided by the HP and EH to the SH circuit.

To fulfill the DHW demand (Q̇DHW
t ), the hot water tank acts as a thermal reservoir supplied

by the HP and EH (see the thermal balance in Equation 3.5a). The tank heat loss depends

on the tank temperature (Equation 3.5b), and the surrounding temperature, T room
t , which is

assumed as constant à 20 °C. This assumption allows reducing the building model complexity

as it does not require modeling the tank’s room interaction with the surrounding environment

and the rest of the building. The temperature in the tank is bounded (Equation 3.5c). The tank

heat loss is not considered as heat gain for the building. Hence, the tank is a non-ideal storage
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which improves the convexity of the problem.

Tank heat balance C tank ·
(
T tank

t −T tank
t−1

)
T S

= Q̇el→tank
t +Q̇hp→tank

t −Q̇ loss,t
t −Q̇DHW

t

(3.5a)

Heat loss from the tank Q̇ loss,t
t = T tank

t −T room
t

R tank
(3.5b)

Initial tank temperature constraint T tank
0 = T tank

init (3.5c)

Tank temp. constraint T tank
min ≤ T tank

t ≤ T tank
max (3.5d)

where Q̇DHWis the DHW load at time t , T tank
t , C tankand R tankare the tank temperature (at time

t), capacitance and resistance, T roomis the room temperature in which the tank is located,

T tank
init,min,max are the initial, minimum and maximum tank temperature, and Q̇hp,el−→tank are

the heat provided by the HP and SH to the tank.

To provide the required heat in both the SH circuit and the DHW tank circuit, the HP and

EH consume electric power as described in Equations 3.6a and 3.6b. The coefficient of

performance (COP) is derived from the Carnot definition and assumes constant hot and cold

source temperature (both for the SH and tank side, Equations 3.6c and 3.6d). The maximum

input power demand defines the unit’s capacity for both the HP and the EH ( Equations 3.6e

and 3.6f).

Electric power for the HP P hp
t = Q̇hp→sh

t

COPsh
t

+ Q̇hp→tank
t

COPdhw
t

(3.6a)

Electric power for the EH P el
t = Q̇el→sh +Q̇el→tank

t

ηel
(3.6b)

COP for space heating COPsh
t = qcarnot · T H,sh

T H,sh −T amb
t

(3.6c)

COP for the DHW tank COPdhw
t = qcarnot · T H,tank

T H,tank −T amb
t

(3.6d)

HP capacity constraint P hp
cap ≥ Q̇hp→sh

t

COPsh
t

+ Q̇hp→tank
t

COPdhw
t

(3.6e)

EH capacity constraint P el
cap ≥ Q̇el→sh +Q̇el→tank

t

ηel
(3.6f)

where ηel is the EH efficiency, qcarnot is the HP Carnot efficiency, T H,sh and T H,tank are the hot

source temperatures of the SH and DHW tank, respectively.

All parameters, variables, and their respective units are defined in Table 3.1.
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3.2. Modeling technical flexibility

Table 3.1 – Variables definition. The decision variables are indicated with a ? in the V columns.
The rest are parameters.

Variables Set Units V Descriptions

T
IM

E T N - number of time steps

T S RT+ s time steps

S
Y

S
T

E
M

P imp RT+ W ? imported power (from the grid)

P exp RT+ W ? exported power (to the grid)

P load RT+ W uncontrollable electricity consumption

P cur RT+ W ? curtailed power

T amb RT+ K ambient/external temperature

c imp RT+ CHF/J import electricity tariff

cexp RT+ CHF/J export electricity tariff

L N years system lifetime

r R - discount rate

P
V

N N - number of PV configurations

J N - number of roofs

nmod NN - ? PV configurations, number of units

bmod {0,1}N - ? PV configurations, presences

bpv {0,1} - ? PV installation, presence

cPV
F R+ CHF PV fixed cost

cmod RN+ CHF/W PV configurations, specific costs

P mod
nom RN+ W PV unit nominal powers

P PV
t RT×N+ W PV configuration unit generations

Amod RN+ m2 PV configuration areas

Aroof RJ
+ m2 roofs areas

γPV R - annual maintenance specific cost

B
A

T
T

E
R

Y

E bat RT+ J ? energy stored in the battery

E bat
cap RT+ J ? battery capacity

α {0,1} - self-discharge coefficient

ηcha,dis {0,1} - charge and discharge efficiency

SOCinit {0,1} - initial state of charge

SOCmin,max {0,1} - minimum and maximum allowable state of charge

CRchar,dis R+ W/kWh charge and discharge C-rate

cbat R+ CHF/J battery specific cost

cbat
F R+ CHF battery fixed cost

cbat
o R+ CHF/J battery operational cost

Lbat N - expected battery lifetime
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Table 3.1 – (continued)

Variables Set Units V Descriptions

H
P

P hp
cap R+ W ? HP electric nominal power

P el
cap R+ W ? EH nominal power

P hp RT+ W ? HP electric power

P el RT+ W ? EH power

Q̇hp RT+ W ? HP thermal power

COP RT+ W HP coefficient of performance

qcarnot R+ - Carnot non-ideality factor of the HP

St RT+ HP starting up

Rt RT+ HP running

cstart R+ CHF HP start cost

crun R+ CHF/s HP run cost

chp R+ CHF/W HP specific cost

cel R+ CHF/W EH specific cost

ηel R+ - EH efficiency

D
H

W

Q̇hp→tank RT+ W ? HP thermal power to tank

Q̇el→tank RT+ W ? EH thermal power to tank

Q̇DHW RT+ W DHW thermal power consumption

T tank RT+ K ? tank temperature

T room R+ K room temperature (constant)

T H,tank R+ K hot source temperature of the DHW circuit

T tank
min,max R+ K hot water tank service temperature range

C tank R+ J/K thermal equivalent capacitance of the DHW tank

R tank R+ K/W thermal equivalent resistance of the DHW tank

B
U

IL
D

IN
G

Q̇hp→sh RT+ W ? HP thermal power to space heating

Q̇el→sh RT+ W ? EH thermal power to space heating

Q̇sh→b RT+ W thermal power from the space heating to building

T b RT+ K ? building temperature

T sh RT+ K ? space heating temperature

T H,sh R+ K hot source temperature of the space heating circuit

T b
min,max RT+ K building comfort temperature range

T sh
min,max RT+ K space heating service temperature range

C sh R+ J/K thermal equivalent capacitance of the SH circuit

C b R+ J/K thermal equivalent capacitance of the building

Rsh R+ K/W thermal equivalent resistance of the space heating

Rb R+ K/W thermal equivalent resistance of the building

A0 R+ m2 equivalent horizontal building opening surface
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To evaluate the technical flexibility, we need to evaluate the optimal size of each component

modeled in the previous section and their optimal operation. This statement should turn into

a mathematical optimization problem. Mixed-integer linear programming (MILP) is the most

appropriate approach to solve such kind of problem. It allows finding the unique and optimal

solution to the optimization problem, recalling that all equations of the previous section are

linear. This approach is particularly suited for this application.

A generic MILP problem is formulated as follows:

min
x,y

f T x + g T y

where x ∈R and y ∈N
subject to: Ax +B y < b

Aeq x +Beq y = beq

where f T and g T are the objective function coefficient vectors for the continuous and discrete

decision variable x and y , respectively.

For our case, the objective function is to minimize the total expense over a given period,

as defined in Equation 3.7. In this case, the total annualized cost (TOTEX , Equation 3.8) is

the sum of the annual operating cost (OPEX) and the annualized investment cost (CAPEX).

The latter is defined in Equation 3.10, with R being the capital recovery factor (defined in

Equation 3.11) as a function of the annual discount rate, r , and the system lifetime, L. The

ratio L/Lbat is an approximation representing the expected number of replacements of the

battery over the entire system lifetime in the investment costs.

min TOTEX

for nmod,E bat
cap,P hp

cap,P el
cap

P cur,P cha,P dis

Q̇hp→sh,Q̇hp→tank

Q̇el→sh,Q̇el→tank

subject to: Equations 3.1 to 3.6f

(3.7)

TOTEX = OPEX+R ·CAPEX (3.8)

OPEX = oxge +oxbo +oxpm (3.9)

CAPEX = cxPV + L

LBAT
·cxbat +cxhp +cxel (3.10)

R = r · (1+ r )L

(1+ r )L −1
(3.11)
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The OPEX comprises three parts (Equation 3.9): First, the costs associated with the exchange

of energy with the grid. Second, the battery operation expenses consist of a cost, cbat
o , pro-

portional to the discharged energy of the battery. This parameter allows for reducing the

intensity of usage of the battery, thus limiting the battery degradation (evaluated within a post-

processing step). It can be considered as a tuning parameter of the model. Finally, the annual

PV maintenance costs are proportional to the PV capacity. These costs are approximated by a

fraction γPV of the PV capital cost. The definitions are given in Equations 3.12a to 3.12c.

Grid exchanges oxge =
T∑

t=1

(
P imp

t · c imp
t −P exp

t · cexp
t

)
(3.12a)

Battery operation oxbo =
T∑

t=1
P dis

t · cbat
o ·T St (3.12b)

PV maintenance oxpm = γPV ·cxPV (3.12c)

Finally, the CAPEX is composed of the PV, battery, HP, and EH investment costs. The defini-

tions of these costs are given in Equations 3.13a to 3.13d, where the unit cost of a configuration

is proportional to the nominal power of a module, P mod
nom,i , and the price per watt, cmod

i . A fixed

cost of installing PV, cPV
F , is also considered if the Boolean variable bpv is equal to 1. Similarly,

the cost of a battery is proportional to its capacity, E bat
cap, and the specific cost (per J), cbat, while

the fixed cost, cbat
F , is considered only if a battery is purchased (bbat equal to 1). To account for

the battery lifetime (Lbat) shorter than the system lifetime (L), the number of battery replace-

ment is introduced with L
LBAT . The Boolean variables bpv and bbat need to switch from 0 to 1

when the number of purchased modules
∑N

i=1 nmod
i or the battery capacity E bat

cap is greater than

zero. This is ensured in linear integer programming by adding the constraints formulated in

Equations 3.14a and 3.14b, in which G is a sufficiently large number. The investment cost for

the HP and EH, given in Equations 3.13c and 3.13d, are proportional to their capacity (P hp,el
cap )

and specific cost ( chp,el in CHF/Wel)

PV capital expense cxPV =
N∑

i=1
nmod

i ·P mod
nom,i · cmod

i +bpv · cPV
F (3.13a)

Battery capital expense cxbat = E bat
cap · cbat +bbat · cbat

F (3.13b)

HP capital expense cxhp = P hp
cap · chp (3.13c)

EH capital expense cxel = P el
cap · cel (3.13d)

110



3.3. Comparing technical flexibility and behavioral flexibility

Battery investment Boolean variable E bat
cap −G ·bbat ≤ 0 (3.14a)

PV investment Boolean variable nmod
i −G ·bpv ≤ 0, i = 1...N (3.14b)

3.3 Comparing technical flexibility and behavioral flexibility

In this section, we applied such an optimization problem to the FLEXI 2 case study. As a

reminder, the FLEXI 2 project consists in proposing two kinds of tariffs to a panel of households.

Tariff T1 is a regular time-of-use tariff with the electricity rate lower between 11.00 and 15:00.

Tariff T2 depends on the solar irradiance forecast, which can activate three low rate periods if

enough solar hours are present. The three low rate periods are 10:00 to 13:00, 13:00 to 16:00,

and 16:00 to 19:00 only during summertime.

For the estimation of the technical flexibility potential, we define an optimization problem

aiming to optimize the size and operation of generic non-ideal storage. Although the approach

is based on a battery, it could be applied to any storage technology that could be modeled

using Equations 3.3a to 3.3f. We restricted the generic optimization problem, defined in

Equation 3.7, to the following one without PV and thermal model:

min T OT E X

subject to: Equations 3.1 to 3.3f

Equations 3.14a and 3.14b

imposing no PV panel: nmod
i = 0 i = [1...N ]

no power-to-heat: P x = 0 x = [hp,el]

using the definitions in: Equations 3.8 to 3.13d

(3.15)

The parameters of the optimization problem (reported in Table 3.2) have been selected keeping

this aspect in mind and do not consist of relevant parameters for a particular electrochemical

storage technology but are rather an indication of what a good storage technology may look

like.
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Table 3.2 – Parameter of the optimization problem

Parameter Units Value Remark

c imp
t cts/kWh 31.45 or 12.45 depends on the time and the

considered tariff (T1 or T2)

T S s 900

R - 1/25 assuming no interest rate

cbat
o cts/kWh 5

cbat CHF/kWh 150

cbat
F CHF/kWh 0

ηcha,dis - 0.94

SOCmin,max - [0.2,0.8]

CRcha,dis kW/Wh 1

α - 0.04

P load W extracted from the FLEXI 2 smart

meter measurements

Solving this optimization problem for each households of the FLEXI 2 experiment allows to

compare the flexibility score achieved by the households (Equation 2.2) with its potential

based on the disaggregation of their consumption (see Chapter 1) and the technical flexibility

score obtained using the results of the optimization problem:

Mean daily power: P
day
i ,d =

∑
t P imp

i ,t δt ,d∑
t δt ,d

Mean power during low rate period: P
flexi
i ,d =

∑
t P imp

i ,t δ
f lexi
i ,t ,d∑

t δ
f lexi
i ,t ,d

Flexi score: Si ,d = P
flexi
i ,d

P
day
i ,d

(3.16)

reminding δt ,d = 1 if time step t is in day d , and δ
f lexi
i ,t ,d = 1 if time step t is during a low rate

period of day d for the i th household (here subscript i denotes the household index for the

sake of coherence with the previous chapter). Note that in the definition of the optimization

problem, the household load consumption (in this chapter P load) is uncontrollable.

In addition to the Flexi score, two other indicators are used in this analysis:

• The return on investment, defined as OPEX0−OPEX
CAPEX

• The battery autonomy ratio, defined as
E bat

cap

mean daily consumption
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3.3. Comparing technical flexibility and behavioral flexibility

where OPEX0 is the annual operating cost without the storage, i.e., OPEX0 =∑
t P load

t ·c imp
t ·T St .

The ratio between the battery capacity and the mean daily consumption, referred to as the

battery autonomy ratio, gives the fraction of the mean daily consumption that could be covered

by discharging the battery.

The storage capacity is plotted against the mean daily consumption in Figure 3.3a. The

general trend indicates that the battery size scale linearly with the consumption and that

larger batteries are installed when households face a regular time-of-use tariff (T1 has every

day a low rate between 11:00 and 15:00) compared with the irregular T2. The battery autonomy

ratio is pictured with the return on investment in Figure 3.3b. Again larger battery autonomy

ratio is obtained with the T1 group. It also observed much higher profitability, which is linked

to the fact the number of low rate periods for the second treatment is lower than for the first

one.
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Figure 3.3 – Left: storage size vs. mean daily consumption. Right: return on investment vs.
battery autonomy ratio

The comparison between the theoretical (obtained from the consumption disaggregation

without considering any storage), achieved, and technical Flexi scores are available in Fig-

ure 3.4. Behavioral flexibility could theoretically increase the power, during the low rate period,

up to 3 times the daily average power (corresponding to a theoretical Flexi score of 3). In

contrast, the household achieved a Flexi score half-smaller. Technical flexibility is much more

efficient, allowing to increase the power during a low rate period up to 6 times the average daily

power (corresponding to a Flexi score of 6). The duration of the low rate period changes every

day for treatment 2, explaining why the Flexi scores are smaller than the treatment 1 scores.
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While these results do not question the pertinence of the technical flexibility, it is not meant

to minimize the significance of behavioral flexibility, which can contribute to PV systems’

flexibility. This analysis could not be made on the PV owners because the disaggregation of

their consumption was not possible as none fill up the survey. However, it would be interesting

to evaluate and compare the theoretical, technical, and achieved flexibility for this specific

households group.
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Figure 3.4 – Theoretical, achieved, and technical Flexi score for the control and treatment
groups (considering the period during the experiment)

This section compared the technical flexibility potential with the behavioral flexibility po-

tential. The results obtained in this section are heavily influenced by the storage technology

cost assumptions of 150 CHF/kWh, which can be reached for electrochemical storage in the

automotive industry but not yet for the residential sector. Besides, the market penetration of

standalone battery technologies may be too slow to help Switzerland to reach its decarboniza-

tion target. The use of power-to-heat technologies is a more pragmatic approach, and the

results shown in this section are encouraging.

The electrification of the buildings’ heating system and the increasing usage of heat pumps

offer a great opportunity for a cheap flexibility source. Thus, it is crucial to have quickly

deployable energy management algorithms. The following will describe our contribution to

this aspect.
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3.4. A heuristic heat pump control algorithm

3.4 A heuristic heat pump control algorithm

To fill the gap between energy system optimization and their real-life application, simple and

efficient control algorithms are required. This section presents a heat pump (HP) heuristic

control algorithm (HCA) and compares its performance with the optimal control.

The building energy management problem has attracted a wide range of research aiming

to address this problem from various perspectives or using different techniques. Regarding

thermal and electrical supply management, the first category is to use a convex formulation to

get the absolute optimal solution. For instance, mixed-integer linear programming (MILP)

can be used as in [Shiba et al., 1995, Ashouri et al., 2013, Harb et al., 2016, Beck et al., 2017]

to determine the optimal size and operation of the components (i.e., of the HP, PV, battery,

and thermal energy storage). This technique requires, however, linear or at least quadratic

objective and constraint functions. The second approach is to use meta-heuristic optimization

[Verhelst et al., 2010, Alimohammadisagvand et al., 2016, Renaldi et al., 2017, Angenendt et al.,

2019]. Meta-heuristics typically focus on quickly getting a feasible (non-linear constraints

are admissible) solution, but their optimality, in general, needs to be demonstrated. The

advantage of using such a technique is to allow any kind of non-linearities in the input model.

These first two categories are focused on the formulation of an optimization problem and how

to solve it. The energy management problem can also be tackled from a control perspective.

Model predictive control is a well-known approach extensively used to solve energy manage-

ment problems [Collazos and Maréchal, 2008, Vrettos et al., 2013, Zhao et al., 2015, Kuboth

et al., 2019, Stadler et al., 2018]. This technique can be extended using dynamic optimization

like in [Bastida et al., 2019]. This approach suffers from an extended complexity inherent to

the fact that very accurate models are usually used and that the definition of the objective

function is not so straightforward. The influence of the objective function formulation (de-

spite aiming at the same conceptual goal) can indeed widely change the resulting operation

[Verhelst et al., 2010]. For instance, instead of using the comfort temperature as hard bounds

(often used in MILP approaches), a comfort penalty is integrated into the objective function

[Anvari-Moghaddam et al., 2015]. The difficulty with such a method of combining heteroge-

neous metrics in the objective function is to find the appropriate weights so that the solution

is a good trade-off between the various objectives.

Our approach for the HP control is to use a heuristic approach similar to [Riesen et al., 2017,

Sánchez et al., 2019]. This approach has been recently identified [Schulz et al., 2020] as more

appropriate in a short-term range due to the difficulty of the industry to embrace complex

and emerging control methods like reinforcement learning [Rahimpour et al., 2020, Yan et al.,

2020].

The proposed algorithm extends the basic formulation of [Sánchez et al., 2019] to encompass

the control algorithm around a single indicator. The indicator puts in relation a possible action

(like increasing the electricity fed to a HP) with the corresponding gain in operating expense

and the heat production gain. Our heuristic control algorithm (HCA) evaluates this indicator
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as often as needed and chooses the action which minimizes this indicator. Such an approach

is novel because it does not require any parameters tuning and achieve a close-to-optimal

control trajectory.

3.4.1 Description of the algorithm

The HCA’s objective is to optimize the HP power consumption P hp
t to meet the DHW and

building heating needs while minimizing the OPEX . This power consumption profile is dis-

cretized with a power increment ∆P hp. The algorithm’s main steps, shown in Figure 3.5, are

first to initialize temperatures, optimize the HP operation to meet the DHW needs, and finally,

a second optimization is performed to meet the building heating demand.

initialize tank, building
and space heating

temperatures
START

optimize heat
pump usage to

meet DHW needs

optimize heat
pump usage to
meet building

heating demand

END

Figure 3.5 – Main steps of the HCA

The HCA, detailed in Figure 3.6, is used to optimize the HP usage to meet first the DHW, and

second, the building heating demand. For the following, the word tank can be exchanged

by building, as the approach is the same for both. At the beginning of the process, both HP

and EH power profiles are set to zero. A first heat balance of the tank is carried out (thanks to

Equations 3.4a to 3.6f), enabling to obtain the temperature profile of the tank over the entire

time horizon. An indicator is then computed (Equation 3.17) for every possible increase of the

HP electric power. If the tank temperature drops below the minimum temperature, a period P

is defined, corresponding to the period during which the HP power should be increased to

maintain the tank temperature in a given range [T tank
min ,T tank

max ]. If the HP is not already used

at nominal power during the period P , then the HP power P hp
theat

is increased by a power step

∆P hp at the time theat corresponding to the minimum of the indicator. If the HP was already

at maximum power during the period P , then the EH is used instead. A new heat balance is

carried out to assess the tank’s temperature rise from theat to the end of the time horizon. If

the tank temperature is still too low, the loop starts again.
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Figure 3.6 – Optimal HP and EH control

The HP indicatorΩhp
t gives the cost of the produced heat. In other words, it is the ratio between

the OPEX increase and thermal energy production increase due to the rise of the HP electricity

consumption by ∆P hp.

Ω
hp
t = ∆OPEXt

∆Qt
(3.17)

Here, the OPEX is the sum of two contributions. The first part, given by the power exchange
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with the grid, considers the import c imp
t and export cexp

t electricity tariffs.

OPEXt = OPEXgrid
t +OPEXhp

t (3.18a)

OPEXgrid
t =

(
P imp

t · c imp
t −P exp

t · cexp
t

)
·T St (3.18b)

OPEXhp
t = cstart ·St + crun ·Rt ·T St (3.18c)

The second part, OPEXhp
t , depends on the HP operation and represents the wear of the com-

pressor. It consists of two parts, a cost for each start-up of the HP and a second, proportional

to the HP running time. The switching cost comes from the fact that switching on and off a

HP causes mechanical wear and should be minimized. The running cost internalizes the HP

has a finite lifetime, measured as the total operating hours. The running and starting costs

are calculated by dividing the HP cost by 100’000 hours and 50’000 switchings respectively

[Defalin SA, 2016]. The running Rt and starting St states are defined as followed.

Rt =
1 if P hp

t > 0

0 otherwise
(3.19)

St =
1 if Rt−1 = 0∩Rt = 1

0 otherwise
(3.20)

Finally, the ∆OPEXt is given by the OPEX difference when considering an increase of the HP

power consumption by a power step ∆P hp. This increase of the power consumption as an

influence on the OPEXgrid
t through Equation 3.1 and obviously on OPEXhp

t since Rt and St

depend directly on P hp
t .

∆OPEXt = OPEXt (P hp
t +∆P hp)−OPEXt (P hp

t ) (3.21)

The denominator of the indicator is based on the heat generated by the HP, Q̇hp
t , defined as :

Q̇hp
t (P hp

t ) = P hp
t ·COPt (P hp

t ) ·T St (3.22)

Thus a variation of the heat generation driven by an increase of the HP consumption ∆P hp

can be expressed as :
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∆Q̇hp
t = Q̇hp

t (P hp
t +∆P hp)−Q̇hp

t (P hp
t ) (3.23)

=
(
(P hp

t +∆P hp)) ·COPt (P hp
t +∆P hp)−P hp

t ·COPt (P hp
t )

)
·T St (3.24)

In this work, the COP formulation, as defined in Equations 3.6c and 3.6d, was also imple-

mented in the HCA. In this way, the COP is a parameter that does not depend on any decision

variable. However, this is a simplistic assumption. Usually, the COP depends on the hot source

temperature and the part-load ratio of the HP. The following formula gives an example of a

non-linear formulation that could be easily implemented in the HCA.

COPnonlin

(
T amb

t ,T H
t ,P hp,n

t

)
= COPlin

(
T amb

t ,T H
t

)
· fc

(
P hp,n

t

)
(3.25)

with T H , the tank T tank or building T b temperature. The linear part of the COP is only a linear

function of the external temperature T amb and hot source temperature T H .

COPlin

(
T amb

t ,T H
t

)
= d0 +d1 ·T amb

t +d2 ·T H
t (3.26)

and fc is the dependence of the HP efficiency on its part load ratio, here expressed with a

sixth-order polynomial function extracted from [Genkinger and Afjei, 2011] (reproduced in

[Sánchez et al., 2019]).

fc

(
P hp

t

)
=

6∑
n=1

an ·
(
P hp,n

t

)n
(3.27)

Where P hp,n
t is the normalized HP power.

P hp,n
t = P hp

t

P hp
cap

(3.28)
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3.4.2 Reference design and optimal control definition

The reference design is obtained by derivation of Equation 3.7 and simply constraining the

battery capacity to 0. The optimization problem is then given by:

min T OT E X

subject to: Equations 3.1 to 3.6f

and E bat
cap = 0

using the definition in: Equations 3.8 to 3.13d

(3.29)

The solution to Equation 3.29 provides a reference value for nmod
i ,P hp

cap, and P el
cap(distinguished

from the optimization variable by the subscript ”ref”). The solution to this problem also

provides an optimal solution to the control problem. To ensure a fair comparison of the

HCA and optimal control in a reasonable computing time, both MILP and HCA are run on

shorter representative periods. This implies that the boundary conditions are the same for

both algorithms. The MILP run on these periods only minimize the OPEX and force the PV,

HP, and EH capacity to their reference values. In more details:

min OPE X

subject to: Equations 3.1 to 3.6f

and E bat
cap = 0

nmod
i = nmod

i ,ref

P hp
cap = P hp

cap,ref

P el
cap = P el

cap,ref

using the definition in: Equations 3.9 and 3.12a

(3.30)

3.4.3 Benchmark

To benchmark the HCA performance, this algorithm is applied to several representative build-

ings. The methodology for selecting the set of representative buildings is described below. For

each building in this set, typical periods are determined using time-series clustering based

on the irradiance, temperature, electrical load, and DHW consumption. Then for each of

these periods (and each building), the HP operation is solved using both the HCA and MILP

formulation. Finally, key performance metrics are computed based on the operation results.

This process is graphically summarized in Figure 3.7. The following will describe in more

detail each of these steps.
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Figure 3.7 – Workflow of the benchmark process

The cantonal buildings registry (RCB) or its federal version (RegBL)1 gives standard informa-

tion about all the buildings in the canton (or Confederation for RegBL), like footprint area,

number of levels, construction or renovation year, number of housing, etc. The RCB divides

the buildings into six categories:

1010 provisional building

1021 single-family house

1025 multi-family building

1030 multi-family building with annex activities (like shops)

1040 building with partial usage for housing

1060 non-residential building

1https://www.housing-stat.ch/fr/accueil.html
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Inspired by [Girardin et al., 2010], the building category, footprint area, the number of levels,

number of housing, and the renovation year are combined with the SIA norm 2024 [SIA, 2015]

to extract:

1. an estimation of the electrical, heat, and domestic hot water demand

2. the building’s physical properties (heat transfer coefficient, i.e., thermal resistance,

thermal capacity, etc. (see Table 3.1)

From the solar roof 2 data, the roofs’ characteristics (area, azimuth, and tilt) are also known for

each building. From this dataset of buildings, the most representative buildings are extracted

for each building category. The k-medoids [Kaufman and Rousseeuw, 2009] algorithm is used

to perform the clustering on the following set of features:

• number of housing

• number of levels

• renovation year

• height

• footprint area

• the ratio between the annual PV potential (extracted from solar roof ) and the annual

electricity demand

• the total heat demand (including DHW)

The number of medoids (representative building) is a parameter of the clustering. Finally,

for all medoids, electrical and DHW load profiles are allocated using the annual energy de-

mands. The electric profiles come from a load profiles database acquired during the FLEXI

and FLEXI 2 projects (see Chapter 2 and [Perret et al., 2015, Perret et al., 2019]). The DHW load

consumptions are generated from daily samples extracted from [Roux et al., 2018, Booysen

et al., 2019]. For these representative buildings, the PV, HP, and EH capacities are optimized

simultaneously as their operations for one full year by solving the MILP problem depicted in

Equation 3.29. To investigate the operational behavior of the HCA, typical periods have to be

defined.

Following a similar approach, the selection of typical periods for a particular building consists

in choosing a few representative period samples from a set of time-series samples. This

2https://www.uvek-gis.admin.ch/BFE/sonnendach
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approach, discussed in detail in [Kotzur et al., 2020], aims to mitigate the complexity of energy

systems, by reducing the time dimension and number of variables. This partitioning of long

time series into representative shorter samples is now a well-accepted technique [Suciu et al.,

2018, Hoffmann et al., 2020, Cetinkaya et al., 2020]. The first step is, hence, to cut the time

series into samples. In this work, each time-series sample is one week long. There are thus,

52 time-series samples for a particular building. Each sample consists of a T S ×F matrix,

where T S is the length of the time series (corresponding to one week in this case), and F is

the number of considered features. For the latter, we choose the electrical load P load, the

DHW demand Q̇DHW, the horizontal global irradiance G H I , and the ambient temperature

T amb. Again, the k-medoids [Kaufman and Rousseeuw, 2009] algorithm is used to extract four

representative weeks from the 52 available.

Once the design of a particular building in terms of technology capacity and the corresponding

typical weeks are defined, the system operation is simulated. First, a reference operation is ob-

tained by solving the MILP of Equation 3.30. Then the HCA is run. The relevant performance

metrics can be computed for each typical week and each representative building.

The performance metrics are defined for each building k ∈ [1...K ] and each typical period

p ∈ [1...P ]. For easing the notation, the subscript k, p are dropped. The operator
∑

denotes

the operation
∑T S

t=1.

Operating cost OPEX =∑
(P imp

t · c imp
t −P exp

t · cexp
t )T St (3.31a)

Heat generation Qu,s =
∑

Qu,s
t ·T St ∀u ∈ [hp,el], s ∈ [sh,tank] (3.31b)

HP running time ratio HPrun =
∑

Rt ·T St∑
T St

with Rt defined in 3.19 (3.31c)

HP switch on per day HPswitch =
∑

St∑
T St /(24 ·3600)

with St defined in 3.20 (3.31d)

Temperature deviation ∆T̄ =
∑∣∣T b

t −T ∗∣∣
T S

with T ∗ = 19 ° C (3.31e)

The time needed for both algorithms to simulate the operation for a typical week is also

recorded.
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3.4.4 Case study

The cantonal building registry of the canton of Vaud has been used as the building dataset.

Five representative buildings are extracted for each of the following categories

• Single-family house (cat 1021)

• Multi-family building (cat 1025)

• Non-residential building (cat 1060)

The resulting 15 representative buildings are pictured in Figure 3.8. In this figure, the exergy

demand Bk (defined in Equation 3.32), which represents the equivalent mechanical energy

demand, is plotted versus the floor area: the building footprint times the number of levels.

The size of the disc represents the PV potential capacity.

Bk =
T∑

t=1

[
P load

k,t +Q̇DHW
k,t

(
1− T ∗

T dhw

)
+Qsh

k,t

(
1− T ∗

T sh
k

)]
T St ∀k = 1...K (3.32)

where T ∗ = 19+273 K, T dhw = 60+273K, and T sh
k depends on the year of construction of the

building, and vary between 35 and 50 °C.

As highlighted in Figure 3.8, single-family houses are relatively small compared with multi-

family and non-residential buildings. Non-residential buildings can have a small building

footprint but a high exergy demand, while multi-family buildings have the exergy demand

scaling linearly with the building footprint. The reason behind this is that non-residential

buildings have an energy consumption that is uncorrelated with their building footprint

(such as industrial sites or shopping malls), while residential buildings energy demand scale

typically with the living surface (the larger the surface, the more people and the higher the

energy needs). The use of the exergy demand in this figure is simply to aggregate the electric

consumption, the heat need for SH, and the DHW consumption in one metric.

The buildings’ PV-related data are summarized in Table 3.4. The buildings’ thermal parameters

are summarized in Table 3.5. The costs for PV and HP are estimated for 2030 using the

approach reported in [Bloch et al., 2019], while the HP and EH cost comes from [Fischer et al.,

2016] and [Householdquotes, 2020]3. A standard flat tariff is considered (constant import and

export rate at 21.02 and 8.16 cts/kWh respectively). The cost parameters and other standard

parameters are reported in Table 3.3.

3https://householdquotes.co.uk/electric-combi-boilers/
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Figure 3.8 – Systems size given by their exergy consumption and buildings footage. The size of
the disc indicates the PV potential capacity.
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Table 3.3 – PV, HP, and system parameters

Parameter Unit Value
P

V

cPV
F CHF 10’050

cmod CHF/W 0.83

P mod
nom W 315

P PV
t W 1

Amod m2 1.6

γPV - 0.5%

T
H

E
R

M
A

L

Ū tank W/m2K 1.0

qcarnot - 0.8

ηel - 0.99

chp CHF/W 1.5

T amb K 2

T H,tank ° C 90

T b
min,max ° C > 19

T sh
min ° C 5

T tank
min,max ° C 59-85

S
Y

S
T

E
M

T - 3

T S s 900

L years 25

r - 3%

c imp cts/kWh 21.02

cexp cts/kWh 8.16

P load W 4

Q̇DHW
t W 4

1 Simulated using PVLIB for each configuration according to the modules

parameters
2 Extracted from weather data from meteo-suisse4.
3 35040 for the design phase and 672 per periods for the simulations
4 Allocated for each building from a source of real measurement
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Table 3.4 – Building PV parameters

P PV
cap,pot Aroof # PV configurations # roofs

kW m2 - -

H
O

U
S

E

1 28 211 5 5

2 29 215 4 4

3 19 141 2 2

4 23 180 6 6

5 29 225 6 6

M
U

LT
I

F
A

M
IL

Y 6 26 195 6 6

7 34 262 8 8

8 43 314 4 1

9 28 216 6 6

10 96 716 3 3

C
O

M
M

E
R

C
IA

L 11 50 381 23 14

12 110 803 4 1

13 38 287 2 2

14 45 337 2 2

15 24 181 2 2

127



Chapter 3. Technical flexibility at the building level

Table 3.5 – Building thermal parameters

C b C sh U b* U sh* U tank* T H,sh T sh
max Ksun V tank** Floor area

kWh
K

kWh
K

W
K

W
K

W
K ° C ° C m2 L m2

H
O

U
S

E

1 4.1 0.5 170 849 3.6 75 70 8 470 369

2 4.5 0.4 207 616 2.9 75 70 10 341 268

3 3.4 0.1 208 237 1.6 75 70 10 131 103

4 3.1 0.1 153 291 2.3 60 55 5 237 186

5 2.8 0.1 142 399 2.8 60 55 5 325 255

M
U

LT
I

F
A

M
IL

Y 6 4.2 0.3 160 718 3.6 65 60 6 467 250

7 4.9 0.2 182 616 5.3 60 55 5 819 438

8 9.0 1.3 307 3115 9.6 65 60 12 2026 1084

9 4.7 0.5 175 1207 5.1 65 60 7 785 420

10 21.6 3.8 658 9325 20.0 65 60 26 6064 3245

C
O

M
M

E
R

C
IA

L 11 11.7 0.7 490 2320 2.6 60 55 20 277 1128

12 25.8 2.1 977 6821 5.2 60 55 39 814 3316

13 6.1 0.1 284 403 0.8 60 55 11 48 196

14 7.7 0.3 344 487 0.9 75 70 20 61 247

15 6.2 0.5 276 789 1.3 75 70 16 98 400

* Rx = 1/U x

** C tank = ρcpV tank with ρ = 1 kg/L, cp = 4.18 ·103 J/kg

3.4.5 Results

The designs obtained from the MILP are summarized in Figure 3.9. Note that the optimal PV

capacity for each building appears to correspond to its maximum potential capacity reported

in Table 3.4. For the single-family house and multi-family building, the HP capacity is larger

than the EH. There is an apparent economic interest in investing in a HP rather than in an EH

because, for every unit of electricity sent to the HP, one gets a lot more heat from the HP than

from the EH. However, for rare peaks of DHW demand, it might be advantageous to invest in

an EH because the specific investment cost is much lower. So for systems that may suffer from

large heating peaks, it might be interesting to have a larger electrical capacity. For instance,

non-residential buildings have significantly larger EH capacities.
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Figure 3.9 – PV, HP, and EH capacity given by the MILP

The operation is simulated for each typical week and each representative building. An ex-

ample of the operation from the MILP and the HCA is represented in Figures 3.10 and 3.11,

respectively. One may note that the MILP and HCA’s operations are very similar. A closer

look at Figure 3.11 highlights that the temperatures of the SH circuit and the hot water tank

are higher than those given by the MILP (Figure 3.10). This means that the HCA generally

generates more heat than the MILP, as shown in Figure 3.13 for the SH, and Figure 3.12 for the

DHW.
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Figure 3.10 – Three-day operation example resulting from the MILP optimization
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Figure 3.11 – Three-day operation example resulting from the HCA

The heat generated from the EH is negligible compared with the heat generated by the HP

both for the SH and DHW as shown in Figures 3.12 and 3.13, respectively, even for the non-

residential category where larger EH capacities are observed. This confirms the hypothesis

that the EH only supports large peaks of heat demand. In Figures 3.12 and 3.13, the minimum

heat required is also indicated. Three aspects can explain the difference between the minimum

and actual heat generation. First, one should consider the tank heat loss. Second, the objective

function is not to minimize the amount of heat consumed, but to minimize the operating
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cost. Finally, for the HCA only, the algorithm’s non-optimality might induce this larger heat

generation. The question arises if the HCA keeps the building warmer.
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Figure 3.12 – Heat generation for DHW. Qhp→tank is the heat generated by the HP, Qel→tank is
the heat generated by the EH (too small to be visible), QDHW is the DHW heat consumption.
The left bars correspond to the MILP, and the right ones to the HCA.
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Figure 3.13 – Heat generation for space heating. Qhp→sh is the heat generated by the HP,
Qel→sh is the heat generated by the EH (too small to be visible), Qsh is minimum building heat
consumption. The left bars correspond to the MILP, and the right ones to the HCA.

The mean temperature deviations are reported in Figure 3.14. Keeping in mind that those

are the sum of the absolute temperature deviations from a target comfort temperature, the
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HCA suffers from higher temperature deviations. They reach up to 2.5 ° C (absolute value),

which can be quite significant from the user’s perspective. Nevertheless, these temperature

deviations can come from the fact that the external temperature and solar gain can significantly

increase the building temperature. Assuming that the MILP provides an optimal building

temperature, the temperature deviations, in this case, reach up to 2 ° C. In conclusion, the

difference between the HCA and MILP is not so significant. Another aspect that may explain

the higher temperature deviation of HCA is that the latter considers the running and switching

cost of the HP.
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Figure 3.14 – Mean temperature deviations ( ° C).

The HCA takes into account the HP running time and aims to minimize it. In contrast, the

MILP does not take into account this aspect in the objective function. Similarly, the MILP does

not take into account the switching costs. Those are not integrated into the MILP objective

function because this would require 2T additional Boolean decision variables and drastically

increase the solving time. This leads to a much higher running time for the MILP than for the

HCA, as highlighted in Figure 3.15. It might also explain why the HCA has a higher temperature

deviation than the MILP. The MILP also has much higher switching per day than the HCA, as

depicted in Figure 3.16, for the reason just explained. The switching and running costs are

virtual costs that help to moderate the HP operation. The real cost of a HP is the investment

cost that may be amortized on a shorter lifetime due to more intensive use. This aspect has

not been further investigated. The only measurable cost is the operating cost.
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Figure 3.15 – HP running time ratio
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Figure 3.16 – Number of HP switching on per day

The operating costs for the 15 buildings and 4 periods (sorted by the ascending MILP OPEX

value) are pictured in Figure 3.17. The blue line, representing the HCA, is very close to the

MILP, showing very similar financial results in grid exchange. The total operating cost per

building summed across all typical periods is reported in Table 3.6. The difference between

the MILP and the HCA going between 20 cts/day up to 2.55 CHF/day, for an OPEX ranging

between -20 CHF/day and 20 CHF/day. The difference can even favor the HCA (the OPEX of

the HCA is smaller than the MILP one). Despite the very tiny difference, these surprising results

come from the fact that no constraints are applied to the HCA’s space heating temperature. It
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happens that the HCA chooses to over-heat the SH circuit, self-consuming a little bit more PV

energy, while the MILP would stop heating before breaking the temperature upper-bounds.
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Figure 3.17 – OPEX value for all buildings and periods sorted by MILP OPEX

Table 3.6 – OPEX comparison (CHF/day)

MILP HCA ∆

Si
n

gl
e-

fa
m

il
y 1 -3.02 -2.77 0.26

2 -4.63 -4.37 0.27

3 -3.72 -3.55 0.17

4 -4.69 -4.52 0.17

5 -5.29 -5.11 0.19

M
u

lt
i-

fa
m

ily

6 -7.36 -7.24 0.12

7 -5.27 -5.07 0.20

8 -1.16 -0.44 0.71

9 -2.47 -2.19 0.28

10 19.53 22.08 2.55

N
o

n
-r

es
id

en
ti

al 11 -9.50 -9.53 -0.03

12 -22.96 -22.98 -0.02

13 5.57 5.68 0.12

14 -5.09 -4.80 0.29

15 -2.51 -2.31 0.19

Finally, the simulation times are reported in Table 3.7. The MILP problem is solved via GUROBI

[Gurobi Optimization, 2019], a very efficient solver, whereas the HCA is a heuristic algorithm.
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For this reason, the simulation times are much higher for the HCA than for the MILP. However,

the HCA can perform the control of a HP in a very short time compared with the period’s

length (one week). Moreover, the HCA can cope with all non-linear energy system models,

making it suitable for a real implementation. Finally, the MILP requires advanced software

to solve the optimization problem that is not required by the HCA. Indeed the HCA could be

implemented on a simple micro-controller as a state machine.

Table 3.7 – Running time (s)

Min Max Median Mean

MILP 0.07 0.23 0.12 0.13

HCA 15.76 686.35 121.53 172.30

The results obtained in this section assume an optimal design for each of these buildings.

However, regulations and technical constraints can make the decision-maker deviate from

what was defined as optimal design. These regulations aim to achieve a particular goal,

such as heat demand reduction. In turn, they can affect the technology size and the system

profitability. The next section will investigate how a few selected regulations can affect the

system operation and its profitability.

3.5 Impact of regulations on components size and profitability

In this section, we investigate the impact of three design regulations on the optimal design of

PV systems. To lower the PV systems’ impact on the grid, these regulations aim at increasing

the storage capacity without any operational constraints. Compared to the HCA benchmark

presented in the previous section, we consider this time the battery model, and test three

design regulations:

• For each kW of installed PV capacity, a battery capacity of 0.75 kWh is installed.

• The building SH circuit provides thermal inertia corresponding to a time constant of

24h.

• The domestic hot water tank volume corresponds to 14 days of hot water consumption.

Noting that for a PV cost of 830 CHF/kW in 2030 (as assumed in the previous case study),

all considered buildings have interest in covering their roofs. Hence, studying the effect

of imposing the full coverage of all buildings’ roofs with PV is not relevant in this context.

Such a rule would not affect the final systems’ design. However, with the other selected

regulations, the optimal PV capacity may be impacted. It is worth investigating the impact of

these regulations on the PV capacity, second the system profitability, and third the intensity of

the grid interaction.
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The optimization problem, recalling the standard notation of this chapter, and including the

regulation constraints, can be written as:

min T OT E X

subject to: Equations 3.1 to 3.6f

using the definition in: Equations 3.8 to 3.13d

(3.33)

For the 15 representative buildings presented in Section 3.4, the design and operation are

solved sequentially for five distinct scenarios:

• A reference scenario, solving the problem of Equation 3.33, without additional con-

straints.

• A large DHW tank scenario, solving the problem of Equation 3.33, adjusting the size of

the DHW tank to comply with the requirements of Equation 3.36.

• A large SH inertia scenario, adjusting C shso that it complies with the requirements of

Equation 3.35.

• A large storage scenario, solving the problem of Equation 3.33 with the battery size

constraints of Equation 3.34.

• A scenario mixing all three regulations.

The process is graphically summarized in Figure 3.18. From the optimization point of view, the

regulation on the SH circuit and DHW tank capacities do not introduce any new constraint,

but rather update the parameter values (see Equations 3.35 and 3.36).

Battery size regulation E bat
cap ≥ ebat ·

N∑
i=1

nmod
i P mod

nom,i (3.34)

Building space heating circuit inertia C shRsh = τsh (3.35)

DHW tank volume V tank = D ·V DHW
(3.36)

where ebat = 0.75 kWh/kW, τsh = 24h, D = 14, and V
DHW

is the mean daily hot water consump-

tion computed from Q̇DHW as follow:

V
DHW = 1

Ndays

∑T
t=1 Q̇DHW

t T St

ρcp (T DHW,H −T cold)

with Ndays number of days, ρ = 1 kg/L, cp = 4.18 kJ/kg, T DHW,H = 60 °C, and T cold = 10 °C.
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Figure 3.18 – Workflow of the methodology

The performance metrics aim to reflect the ultimate goals of this study. Recalling that the

representative buildings can be quite different in terms of size, PV potential capacity, and

magnitude of the consumption, the performance metrics aim to eliminate the magnitude of

the raw number to allow comparison across the buildings. The performance indicators are

the following:

• The PV hosting ratio, PVhost, is the ratio between the installed PV capacity and the

maximum PV capacity that could be installed on the system’s roofs (Equation 3.37a).

• The battery to PV capacity ratio, E bat∗
cap , is the ratio between the battery capacity in kWh

and the PV capacity in kW (Equation 3.37b).

• The self-consumption, SC, is the share of the PV production directly consumed by the

building (Equation 3.37c).

• The self-sufficiency, SS, is the share of the consumption covered by the flexible PV

system (Equation 3.37d).

• The internal rate of return, IRR, is a financial metric of the system’s profitability. It

corresponds to the interest rate at which the net present value (NPV ) is zero after the

system lifetime (Equation 3.37f).
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• the heat consumption is the total heat generated by the power-to-heat technologies and

consumed by the system (Equation 3.37h).

• the grid usage, defined for import GUimp or export GUexp, is the ratio between the maxi-

mum power at import or export and the maximum electrical demand (Equation 3.37i).

The mathematical derivations of those metrics are given below.

PV hosting ratio PVhost =
∑N

i=1 nmod
i P mod

nom,i∑N
i=1 nmod

max,i P mod
nom,i

(3.37a)

Battery to PV capacity ratio E bat∗
cap =

E bat
cap∑N

i=1 nmod
i P mod

nom,i

(3.37b)

Self-consumption SC =
∑

t

(
min(P tot

t ,P exp
t −P imp

t +P tot
t )

)
∑

t P PV
t

(3.37c)

Self-sufficiency SS =
∑

t

(
min(P tot

t ,P exp
t −P imp

t +P tot
t )

)
∑

t P tot
t

(3.37d)

Total electrical demand P tot
t = P load

t +P el
t +P hp

t (3.37e)

Internal rate of return IRR = r such that
L∑

y=1

C Fy

(1+ r )y = 0 (3.37f)

Cash flow C Fy = CAPEXy +OPEXy −OPEX0
y (3.37g)

Heat consumption heat cons. =∑
t

∑
u∈{hp,el},s∈{sh,tank}

Q̇u→s
t ·T St (3.37h)

Grid usage GUimp,exp = maxt P imp,exp
t

maxt (P load
t +P heat

t )
(3.37i)

where P heat
t is the minimum electrical power requires to heat the building and provide the

DHW assuming a unitary efficiency. This is calculated by solving a simple optimization

problem aiming to minimize the sum of the electric power consumed by the EH (and assuming

ηel = 1).

The PV hosting ratio, self-consumption, self-sufficiency, and battery to PV capacity ratio

distributions for all 15 buildings and the five scenarios are reported in Figure 3.19. As noticed,

the PV price is low enough to enable full coverage for all buildings. For this reason, PVhost is

equal to 1 for all systems and scenarios except for the large storage scenarios. Indeed the

battery is not profitable and no systems install a battery. In the large storage scenario, which

imposes a battery size of 0.75 kWh per kW of PV, the constraint linking the battery and PV

capacity limits the latter because installing more PV requires installing a greater unprofitable

battery. However, lowering the PV capacity and adding a battery increase self-consumption

and self-sufficiency. The high self-sufficiency compared with the self-consumption indicates

a fairly high PV penetration.
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Figure 3.19 – PV hosting ratio, self-consumption, and self-sufficiency distributions for all
scenarios

As shown in Figure 3.20a, increasing the DHW tank slightly lowers the need for power-to-heat

capacity (both HP and EH). However, increasing the inertia of the SH allows getting rid (except

for one system) of the EH by completely replacing this technology with a slightly larger HP. In

Figure 3.20b, the metrics are normalized by their values in the reference scenario, allowing us

to see the variations. Although the standard deviation is quite important, the IRR is slightly

decreased when increasing the thermal inertia. This is especially more significant when

increasing the SH circuit inertia. This regulation also increases the total heat consumption

except for a few systems (still looking at Figure 3.20b). However, increasing the DHW tank

volume requires more total heat consumption. Indeed the amount of water to keep hot is

larger. Hence the loss is more significant in magnitude. In general increasing thermal inertia

allows reducing the grid usage. However, this is very building-specific as increasing the SH

thermal inertia increases the grid usage by more than 20% for some buildings while it reduces

by up to 60% for an extreme case. Most of the considered systems have lowered their grid

usage.
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Figure 3.20 – Analysis of the regulations on thermal storage

The IRR, GUimp, and GUexp, normalized by their value under the reference case, are plotted in

Figure 3.21. This figure highlights that increasing the thermal inertia does not affect the GUexp,

meaning that the thermal storage does not help to lower any PV power peak. However, adding

a battery drastically increases the GUimp. It is interesting to distinguish the GU when import

or export, but from a network cable perspective, the ampacity limit is the same regardless of

the current direction. Hence imposing storage will drastically increase the maximum current

flowing through the line feeding the building. From an economic perspective, forcing storage,

because it is by definition sub-optimal, lowers the profitability and the IRR of the systems 5. In

this sense combining all regulations has a significant impact as it lowers the IRR. However, all

these systems remain profitable as the IRR are positive (an unprofitable system would have a

negative IRR).

5As we will see in Chapter 4, these statements also depend on the electricity tariff.
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Figure 3.21 – Internal rate of return and grid usage metrics for all scenarios

This works highlights the fact that imposing batteries as a tool for naively gaining flexible

power may have a detrimental effect on the system’s profitability and reducing the stress on

the distribution grid. Increasing the DHW tank and SH inertia helps to reduce the maximum

import power while increasing the total heat consumption.

3.6 Conclusion

In this work, we propose a generic model of a PV system, considering curtailment, electric

storage, and power-to-heat as ancillary flexibility technologies. We first investigate how

technical flexibility (from a generic storage technology) compares with behavioral flexibility.

Technical solutions may increase flexibility (measured by the Flexi score) by a factor of three

compared with behavioral flexibility. To practically deliver this flexibility, we proposed a

heuristic control algorithm (HCA) for managing a heat pump with a PV system. The HCA

does not consider batteries, only a heat pump, as it is the most readily accessible source

of flexibility in the residential sector. Our HCA is based on an indicator that relates, for all

possible actions, the variations of the operating cost, and the variation of the produced heat.

The algorithm’s primary objective is to keep the temperature state variable in the imposed

bounds. This ensures comfort in the building and the appropriate service temperature for the

domestic hot water (DHW). A set of 15 building models was built to have a representative case

study, and we benchmark this algorithm against the optimal control. We also used four typical

periods of one week to simulate the HCA’s behavior and compare it with the MILP one. Under

the assumption of a perfect forecast, the HCA’s performance is close to the optimal control.

This perfect forecast assumption allows a true comparison of the algorithm performance
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with optimal control. A real (imperfect) forecast leads to decreasing the HCA performance,

but the influence of the forecast algorithm on the energy management control economic

performance is minimal [Bloch, 2020]. Under perfect forecast, the differences between the

HCA and MILP operating costs are negligible. The temperature deviations can sometimes be

significant but stay in the same range as the MILP (recalling that no cooling is allowed, mostly

due to the external temperature). The HCA, because it includes the running and switching

costs of the HP, uses the HP more carefully, hence having a lower running time and number

of switchings than the MILP. This should positively impact the lifetime of the HP in a real

application. Although the HCA’s computing time is much larger than the MILP, the HCA has a

low computing burden when considering that we simulated one week of operation at 15 min

time resolution. This makes the HCA suitable for a real deployment in a solar controller. Using

the same case study of 15 representative buildings, we investigated the impact of regulations

on their design, operation, and financial profitability. The results highlight that imposing

a battery has several drawbacks as it significantly penalizes profitability while drastically

increasing the intensity of the exchange with the grid. The main findings of this chapter are

summarized in Table 3.8.

An alternative to design regulations is to set up the economic framework to influence the

systems’ design. In particular, tariffs have a significant influence on how the system will be

designed and operated. The following chapter investigates this particular topic and elaborates

on the PV systems’ grid impact.
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Table 3.8 – Technical flexibility results summary

Flexibility score comparison (median)

Achieved Theoretical Technical

(-) (-) (-)

Constant time-of-use tariff (T1) 1.3 2.1 5.5

Variable time-of-use tariff (T2) 1.2 1.8 3.4

Heat pump control performance (average)

OPEX Comp. time Temp. dev

(CHF/day) (s) (°C)

Heuristic control algorithm (HCA) -22 172 2.06

Optimal control (MILP) -25 0.13 1.15

Difference 3 172 0.91

Design regulation effect

PV hosting Profitability IRR Grid impact

∆(%) ∆(%) ∆(%)

large DHW tank 0 -3 0

large SH intertia 0 -2 +3

large storage -7 -15 +139

all combined 0 -22 126
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4 Using electricity tariffs to trigger
flexibility

The economic framework has a significant impact on the adoption of PV and flexible technolo-

gies. In particular, tariffs have a prominent role in promoting investments in larger storage

and power-to-heat technologies. This has major consequences on the grid impact. This

chapter presents critical results on the impact of tariffs on PV systems’ design and their grid

impact. Besides, we discuss how the energy sector can use smart meter measurements in a

privacy-preserving way.

Part of this section has been published in the following works:

Bloch, L., Holweger, J., Ballif, C., and Wyrsch, N. (2019). Impact of advanced electricity

tariff structures on the optimal design, operation and profitability of a grid-connected

PV system with energy storage. Energy Informatics, 2(1):16

and

Holweger, J., Bloch, L., Ballif, C., and Wyrsch, N. (2020a). Mitigating the impact of

distributed PV in a low-voltage grid using electricity tariffs. Electric Power Systems

Research, 189:106763

4.1 Introduction

The increasing usage of the grid, proportional to the maximum power exchanged, is one of the

barriers to reach a high penetration of residential PV. Additionally, PV owners’ current business

model is to reduce their electricity bill thanks to self-consumption [Kubli, 2018], which raises

social equity issues. Indeed the current tariff structures do not allow the network operator

to recover grid costs from PV owners yet. At least, any compensation mechanism to recover

grid cost from the PV production may reduce the attractiveness of PV investment [Huber et al.,

2018]. To address these issues, carefully tailored demand-side management measures must

be implemented to promote flexible PV energy systems while not penalizing PV technologies.

As a tool, energy retail tariffs and grid fees could enable this flexibility. Regarding retail energy
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tariffs, we can distinguish four different pricing strategies [Dutta and Mitra, 2017]:

Flat rate A common electricity tariff strategy, flat rate consists of a price proportional to the

energy exchanged (i.e., in CHF/kWh). By definition, this tariff is constant through time.

Time-of-use Also common for larger residential consumers. A lower energy rate (CHF/kWh)

typically applies during the night. In general, time-of-use tariffs have a variable rate

according to the time of the day.

Critical peak pricing Similar to the time-of-use tariff, critical peak pricing sets a higher energy

price (CHF/kWh) during periods of high demand, typically cooking time, on an everyday

basis. An extension of this pricing policy is variable peak pricing which may consider

daily variations of both the peak hours and the tariffs.

Real-time pricing The energy tariff is indexed with the spot energy market prices, for instance.

Hence the energy tariff can vary on a 15- or 60-min basis.

Although network charges for the residential sector are mixed with the retail energy price in

the form of a volumetric cost (CHF/kWh), alternative grid fees also exist [Azarova et al., 2018]:

Fixed charges A fixed annual price may depend on the power capacity of the connection

point independent of both the energy consumption and the used power capacity.

Capacity based grid costs are paid on a monthly (or yearly) basis and based on the maximum

measured power (CHF/kW). Usually, the capacity tariff is time-independent, but it can

vary on a seasonal basis.

Block rate tariff An energy tariff (CHF/kWh) that varies according to the (averaged) power

over a 15-min period. The energy tariff usually increases with the power interval, thus

forming blocks. More details are given in Section 4.2.1.

In the early adoption of residential photovoltaics, feed-in tariffs’ design was disputed to ensure

a fair price for both the PV producer and the government. A high feed-in tariff incentivizes in-

vestment in distributed generation and transfers market price risk from investors to consumers

[Devine et al., 2017]. [Ayompe and Duffy, 2013] analyzed various feed-in tariffs and proposed

multiple (even continuous) tariffs at which household investment becomes profitable. They

showed how current feed-in tariffs are often above the PV levelized cost of electricity, thus are

over-subsidizing PV electricity. Appropriate tuning of the feed-in tariffs over a group of house-

holds limits this effect. The decreasing of the PV cost correlates with increasing PV penetration,

thus sparking the need to re-think grid tariffs. [Huber et al., 2018] acknowledged this issue

by claiming that the current way grid costs are charged promotes grid costs’ desocialization.

As predominantly wealthy households can invest in PV installations and equip their house

with storage, their electricity consumption from the grid decreases until they become net

146



4.1. Introduction

energy producers. In this way, their participation in covering the grid costs decreases, while

lower-income households will have to cover a larger share of the grid costs. In [Bonbright et al.,

1961], some basic guidelines of utility rate structure are stated. The most relevant of these

requirements for energy distribution is that grid fees should be understandable and publicly

acceptable. It should guarantee the minimum revenue to recover the investment cost in a

"fair-return standard", discourage any wasteful use of the infrastructure, and ensure "fairness

(...) in the apportionment of total costs of service among the different consumers".

Most of the adopted volumetric grid charge schemes (cost and revenue are proportional to

the exchanged energy, as defined in [Hinz et al., 2018]) do not entirely satisfy this last rule.

[Simshauser, 2016] showed that in terms of peak demand, PV owners have a grid usage sim-

ilar to standard consumers. He proposed integrating a demand tariff (proportional to the

maximum peak demand of a year), showing how such a tariff avoids an indirect subsidy to

PV owners. [Schittekatte et al., 2018] have shown that high enough capacity-based charges,

whose cost is proportional to the peak exchanged power, as defined in [Hinz et al., 2018], can

over-incentivize investment in PV and batteries and might lead to inequity between passive

consumers and prosumers. The risk described in the latter paper is that individual invest-

ment decisions might lead to over-investment in distributed renewable energy sources, which

might cause an increase in the total system costs. In a world pushing toward decarbonization,

incentivizing distributed renewable energy sources is a crucial lever. [Kubli, 2018] argues that

promoting the diffusion of distributed PV comes with the promotion of self-consumption,

hence reducing the volumetric exchange with the grid. The capacity-based tariff allows for

appropriate re-allocation of the grid costs while promoting self-consumption. Still, it causes a

re-distribution of the grid costs among consumers and prosumers.

However, one has to distinguish between grid fees and energy supply costs—the first aims

to cover the distribution infrastructure cost. The second should represent the availability

of a particular amount of energy at a specific time, given the overall demand. In most of

the following reviewed papers, network charges are often considered together with energy

supply charges. While the most adopted energy pricing mechanism is a simple flat rate

(which includes grid fees in a volumetric way), the review [Dutta and Mitra, 2017] proposes an

overview of dynamic pricing mechanisms. According to the authors, the primary motivation

for introducing dynamic pricing of electricity is to avoid an unnecessary peak load that has to

be covered by expensive production reserve capacity. In this way, time-of-use (TOU) and real-

time pricing [Ashouri et al., 2015] are practical pricing mechanisms to encourage consumer

demand to respond to a given price signal. The design of such a dynamic tariff is, however,

not straightforward. This challenge is addressed by [Soares et al., 2019], who proposed a

bi-level optimization approach to design TOU pricing while maximizing the retailer profit and

modeling the reaction of a set of consumers to those prices.

Many authors also studied the impact of various network tariff schemes on the different

stakeholders’ revenues (or expenses). Starting with the grid operator, [Young et al., 2016]

explored the impact of various PV penetration levels and energy efficiency measures (modeled

as energy savings) on individual households’ contribution to the network cost. The extension

147



Chapter 4. Using electricity tariffs to trigger flexibility

of this work conducted by the same authors [Young et al., 2019] aims at modeling the impact of

the use of residential batteries on the network revenue under various considered storage and

PV capacity and under different tariff structures. The authors show that aiming to maximize

self-consumption with a PV and battery system is beneficial for the network because it reduces

the peak demand, thus the network cost.

Regarding the impact of grid tariffs on household energy bills, [Azarova et al., 2018] analyzed

the effect of 11 hypothetical network tariffs on the energy bills of 765 households. Thanks to

an appropriate investigation of the households’ socio-economic data, the authors observed

which socio-economic groups might benefit or suffer from different tariff structures. The

authors highlighted the rising risk of inequity between consumers and prosumers with a

relatively higher income. Focusing more specifically on the potential benefits to residential PV

owners, [Darghouth et al., 2016] investigated how the evolution of the wholesale market design

impacts the market price of electricity and, in turn, the bill savings of PV owners. Their work

shows the trade-off between having an efficient market design and supporting distributed

PV. [Ren et al., 2016] analyzed the financial benefit of a PV and battery system under nine

different tariff scenarios combining three network components (fixed charges, capacity-based,

and peak demand) and three retail energy components (flat, time-of-use, and critical peak

price). The highest bill savings are achieved with capacity-based and critical peak price

energy rates. [Borenstein, 2017] analyzed the effect of rebates and tax incentives on the net

present value of US residential PV installations, showing that wealthier households get higher

profitability from their PV installations than lower-income families due to their larger system

sizes, higher consumption, and lower interest rates. As emerging business models arise, such

as flexibility providers and aggregators of distributed energy storage systems to provide grid

services, [Govaerts et al., 2018] studied the strategic operation of an aggregator of residential

PV and energy storage systems under various distribution tariffs. The best profitability of a

flexibility aggregator against an energy retailer is achieved under a capacity-based tariff. In

the papers mentioned above, the authors used pre-defined scenarios of the system design. In

other words, the authors performed a parametric analysis such as in [Schibuola et al., 2016],

but no optimization to find the most appropriate design of the considered energy systems

according to any financial metrics.

In this work, we use the capability of the PV system model presented in Chapter 3 and expand

the objective function to include more advanced energy tariffs. This chapter investigates how

tariff impacts the design of flexible PV systems and to which extent they can contribute to

moderate the stress on the grid. In this sense, the chapter directly contributes to answering

Research Question B) and provides good foundations to answer Research Question C) about

mitigating gird reinforcement costs.

This chapter is divided into three parts. Section 4.2 investigates the impact of tariffs on the

design and operation of a system with PV, battery, and power-to-heat units. This part aims

to extend the objective function presented in Chapter 3 to include more advanced tariff

structures. Before up-scaling this analysis to a whole network, the building loads and grid

loads should be known. The roll-out of smart meters offers opportunities to use the actual

148



4.2. Impact of tariffs on the design of a flexible PV system

loads in the network for energy planning studies, but faces privacy issues. We address this issue

by proposing, in Section 4.3, two methods to use smart meter data in a privacy-preserving way.

The last part of this chapter (Section 4.4) aims to evaluate how tariffs can mitigate the stress

on the grid of distributed PV and power-to-heat units.

4.2 Impact of tariffs on the design of a flexible PV system

To enable flexibility, technologies such as power-to-heat and battery energy storage are needed.

The latter is particularly promising to increase the flexibility of PV systems. However, the eco-

nomic viability of this technology is still under debate and depends strongly on the underlying

electricity tariff structure [Milis et al., 2018].

This work aims to study the impact of the most up-to-date tariff structures provided by the

literature on the optimal operation and design of a grid-connected residential PV-battery

and heat pump system. First, an integrated optimization of both the component sizing and

control, based on mixed-integer linear programming (MILP), is proposed. Then, appropriate

performance metrics are defined, allowing us to assess how tariff structures can mitigate

grid usage and prevent excessive power injection or withdrawal while preserving financial

sustainability for the investor and user comfort.

4.2.1 Methodology

The methodology to optimize the system’s design and control is based on the linear model

introduced in Chapter 3. The system is composed of PV arrays, a battery, a heat pump, and its

ancillary electric heater. As a reminder, the optimization’s objective function is to minimize the

total expense over a given period. In this case, the total annualized cost (TOTEX , Equation 3.8)

is the sum of the annual operating cost (OPEX , Equation 3.9) and the annualized investment

cost (CAPEX ,Equation 3.10). The operating costs are composed of the maintenance costs, the

battery operational cost, and grid exchange costs.

A The optimization problem

The contribution of this chapter is to extend the grid exchange components (Equation 4.1a)

of the objective function to include new tariff structures. In particular, three kinds of tariff

structure are defined: a volumetric tariff, a capacity tariff (the cost is proportional to the

maximum power, evaluated monthly on both import and export), and a block rate tariff where

the volumetric tariff depends on the power level at which the energy is exchanged. Volumetric

tariffs are simply the product of the energy imported (or exported) and the corresponding

import and export tariff (c imp,exp
t as depicted in Equation 4.1b). Note that a tariff can be

constant in time, periodic over a day (or even a week), or even fully time-dependent. A capacity-

based tariff is defined in Equation 4.1c where the maximum power P max
m is determined based

on constraints given in Equation 4.2, in which δm,t is a Boolean variable that takes the value
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one if the time t falls in month m, 0 otherwise.

Grid exchange oxge = ∑
g=[vol,pow,block]

oxge
g (4.1a)

Volumetric tariff oxge
vol =

T∑
t=1

[
P imp

t · c imp
t −P exp

t · cexp
t

]
·T St (4.1b)

Capacity tariff oxge
pow =

M∑
m=1

P max
m · cpow (4.1c)

Block rate tariff oxge
block =

T∑
t=1

max
k=1...K

(
P imp

t ·aimp
k ·T St +bimp

k

)
−

T∑
t=1

min
k=1...K

(
P exp

t ·aexp
k ·T St +bexp

k

)
(4.1d)

P imp
t < δm,t P max

m (4.2a)

P exp
t < δm,t P max

m (4.2b)

The block rate tariff is built by setting a tariff ak between a power range [pk−1, pk ]. It is created

from a set of linear functions of slopes ak and intercepts bk . The parameters bk can be found

by the continuity of the function OXblock
ge in pk :

b1 = 0 (4.3a)

bk = (ak−1 −ak ) ·T S ·pk−1 +bk−1 ∀k > 1 (4.3b)

An illustration of a three-block tariff is provided in Figure 4.1.

Note that the constraints formulated in Equation 4.1d are linears as the function mink=1...K

and maxk = 1. . .K turns into a set of K linear inequalities as:

y = min
k=1...K

fk (x) −→ y ≤ fk (x) ∀k = 1. . .K

y = max
k=1...K

fk (x) −→ y ≥ fk (x) ∀k = 1. . .K

To wrap up, we define the optimization problem as the minimization of the total cost of

ownership (TOTEX) subject to the aforementioned definitions, including the new tariffs
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Figure 4.1 – Block rate tariff obtained by fixing the following tariff : a = (0.16,0.34,0.66) CHF/kWh
for the power ranges ([0-2],[2-4],[4-∞]) kW with a time step of 15 min.

structure and subject to the linear modeling equations developed in the previous chapter:

min TOTEX = OPEX+R ·CAPEX

where: OPEX = oxge +oxbo +oxpm

CAPEX = cxPV + L

LBAT
·cxbat +cxhp +cxel

and the definition in Equations 4.1a to 4.1d

subject to: Equations 3.1 to 3.6f

(4.4)

B Case study and scenario definition

To perform this study, a single-family house was selected in the Rolle area (Switzerland, the

house’s actual location is known from the author). It has essentially four roofs’ orientation,

and the total area is about 200 m2. A top view of the house is pictured in Figure 4.2. The

building has an electric demand of about 5 MWh per year and a heat demand of 11 MWh,

including 2.8 MWh for domestic hot water. The details of the roofs are reported in Figure 4.2.

The physical buildings’ characteristics are extracted from the cantonal building registry, and

the [SIA, 2015] norms, and reported in Table 4.1.

The PV and battery cost have been extracted from various market studies [IRENA, 2016, IRENA,

2017] and calibrated using the Swiss market data [SFOE, 2018]1. The costs for the reference

year 2030 are extrapolated using the approach described in [Bloch et al., 2019]. As heat pumps

and electric heaters are mature technologies, we assume that their cost is not expected to

change significantly in future years. The heat pump cost was extracted from [Fischer et al.,

2016], while the electric heater cost comes from [Householdquotes, 2020]. An electric load and

1https://www.suisseenergie.ch/page/fr-ch/calculateur-solaire
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tilt ( ) azimuth ( ) area (m2)

25 355 25
29 85 11
25 175 25
29 265 11
35 355 51
36 175 50
42 265 13
42 85 13

Figure 4.2 – Illustration of the house from map.geo.admin. Colors indicate suitability for solar
energy. The table gives the orientations and area of each roof.

domestic hot water demand profile from another house (with similar size and characteristics)

were used in this study. The system lifetime is assumed to be 25 years, and the interest rate 3%.

All parameters are summarized in Table 4.1.

We investigate the system’s optimal design and operation under five different tariff scenarios,

inspired by the most up-to-date literature but never used in this context. The first and reference

scenario is an actual tariff applied by the utility Romande Energy. It is a standard flat rate

tariff in Switzerland with an energy rate of 21 cts/kWh (including grid fees and tax) [Romande

Energie, 2019]. The second scenario is a fictive solar tariff that incentivizes households to

consume more during midday when PV production is predominant. The third is a mirror of

the continuous intraday price from the European power exchange spot market ( EPEX2). The

fourth is composed of a capacity-based tariff to cover the grid cost while constant volumetric

tariffs are applied for the energy exchange. The last scenario consists of a block rate tariff.

Each scenario’s tariff is adjusted so that the grid cost and the energy retail cost (or revenue)

are identical to the reference case when using the reference scenario’s optimal design and

operation. As no grid charge is defined for the spot market scenario, the EPEX market price

is scaled so that the total cost of importing energy from the grid would stay the same when

using the reference scenario system design. The same applies to the export price, which is the

EPEX price scaled so that the export revenue would stay the same as for the reference scenario.

Similarly, the block rate tariff does not contain any grid charge. The power threshold values

and the tariff are scaled so that the total import cost remains approximately identical. The

import/export tariff and grid charges are summarized for all scenarios in Table 4.2. The value

indicates the tariff (per kWh) between the power interval specified in brackets for the block

rate tariff. The negative value for the export price suggests that the system earns less money

2https://www.epexspot.com/en/market-data/intradaycontinuous/intraday-table/-/CH
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Table 4.1 – System and building parameters. Note that U = 1/R.

Param. Unit Value Param. Unit Value

S
Y

S
T

E
M T - 35040 L years 25

M - 12 Lbat years 9
T S s 900 r - 0.03

P
V

N - 8

B
A

T
T

E
R

Y

SOCinit - 0.7
J - 8 SOCmin,max - 0-0.7
cPV

F CHF 10’049 α 1/day 0.04
cmod CHF/W 0.83 ηcha,dis - 0.98
P mod

nom W 315 CRchar,dis 1/h 1
Amod m2 1.63 cbat CHF/kWh 182
γPV - 0.5% cbat

F CHF 0
cbat

o CHF/kWh 10−6

H
P chp CHF/W 1.5

E
H

cel CHF/W 1.2
qcarnot - 0.8 ηel - 0.99

B
U

IL
D

IN
G C b kWh/K 14

S
H

C sh kWh/K 1
U b W/K 181 U sh W/K 524
T b

min °C 19 T sh
min °C 5

T sh
max °C 70

T
A

N
K T tank

min °C 59
T sh

max °C 100
V tank L 291
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per additional kW above 4 kW feed to the grid than for lower injection power, corresponding to

a negative slope of the third segment of the block rate tariff illustrated in Figure 4.1. It does not

mean that the system is paying for injecting power above 4 kW unless the system is injecting

at a power above 14.3 kW. To separate the effect of adding PV and batteries on the grid from

the only presence of power-to-heat devices, we added a sixth scenario, in which no PV and

battery is allowed. In this case, only the heat pump and electric heater size and operation are

optimized. This scenario considers the same tariff as for the reference one. It only provides

reference heat pump and electrical heater capacity values and their operation.

Table 4.2 – Scenarios and tariff structures

Scenario Import (cts/kWh) Export (cts/kWh) Grid charges

Reference 9.26 8.16 11.76 cts/kWh

Solar tariff
11h-15h 4.48 7.13 11.76 cts/kWh
15h-11h 9.35 9.26 11.76 cts/kWh

Spot market EPEX scaled by 4.08 EPEX scaled by 1.62 -

Capacity 10.51 8.16 1.45 CHF/kW/month

Block rate tariff
16 [0-2]kW 15 [0-2]kW

-34 [2-4]kW 9 [2-4]kW
66.66 [4-∞]kW -4.67 [4-∞]kW

Thermal only 9.26 no PV or battery 11.76 cts/kWh

C Performance indicators

To assess the performance of the design and operation resulting from the optimization, a set

of performance indicators is defined in Table 4.3. Some of them have been used earlier in this

work but are mentioned here for completeness.

4.2.2 Results

The design and control optimization for each scenario is obtained by solving the MILP prob-

lem described in the previous section. The optimization problems are solved using GUROBI

[Gurobi Optimization, 2019] with an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz processor

with 8 Cores and 32GB of RAM. The optimization runtimes are about half an hour for the

volumetric tariffs, whereas it takes about one hour to solve the capacity and 2 hours for the

block rate scenarios. The only sizing of the heat pump and electric heater takes approximately

7 min.

Figure 4.3 illustrates the operation under the block rate tariff scenario. Both PV curtailment

and the battery are widely used to minimize the cost. The amplitude of the grid exchange is

minimal, and the import and export powers are likely to match with the power threshold of

the block rate tariff (i.e., 2000 or 4000 W).
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Table 4.3 – Performance indicators

Indicator Description Formula or symbol

PV hosted capacity Ratio between the installed PV capac-
ity and the potential PV capacity of
the roof

PVhost =
∑N

i=1 nmod
i ·P mod

nom,i

PVpotential

Energy curtailed ratio Fraction of the total PV production
curtailed

PVcurt =
∑

t P cur
t∑

t P PV
t

Battery autonomy ratio Ratio between the installed battery
capacity and the mean daily energy
consumption

Batauto = E bat
cap

mean daily energy

Battery lifetime simulated battery lifetime using the
degradation model of [Xu et al., 2018]

Bat life

Net present value of electricity The net present value of the system
for electricity provision, including in-
vestment and maintenance cost, bat-
tery replacement and cost of exchang-
ing power with the grida

NPVel =∑L
y=1

cxPV
y +cxbat

y +oxpm
y +oxge

y

(1+r )y

Net present value of heat The net present value of the system
for heat provision, cost of electricity
for generating heatb

NPVheat =∑L
y=1

cxhp
y +cxel

y +oxheat

(1+r )y

Levelized cost of energy The NPV of the PV and battery invest-
ment divided by the discounted elec-
tricity consumption

LCOE = NPVel∑L
y=1

∑
t P tot

t ·T St
(1+r )y

Levelized cost of heat The NPV of the power-to-heat invest-
ment divided by the discounted elec-
tricity consumption

LCOH = NPVheat

∑L
y=1

∑
t

(
Q̇

hp
t +Q̇el

t

)
·T St

(1+r )y

Discounted payback period The time until the system achieves
more savings (or revenue) with re-
spect to a case where no investment
was made

DPP

Self-consumption Share of the PV production directly
consumed by the system

SC =
∑

t

(
min(P tot

t ,P exp
t −P imp

t +P tot
t )

)
∑

t P PV
t

Self-sufficiency Share of the load provided by the PV
production

SS =
∑

t

(
min(P tot

t ,P exp
t −P imp

t +P tot
t )

)
∑

t P tot
t

Grid usage ratio Ratio between the maximum import,
export power, and the maximum load,
including power-to-heatc

GUimp,exp = maxt P imp,exp
t

maxt P imp
thermal,t

Relative heat need Ratio of the total heat generated and
the minimum building heat demand

Q ′ =
∑

t

(
Q̇hp

t +Q̇el
)

∑
t Q̇heat

t

a The investment costs at y = 1 are defined in Equation 3.13. For the battery replacement, only
the variable part is kept when computing cxbat.

b oxheat is the cost of buying electricity for heat generation purposes, evaluated according to the
corresponding tariff scenarios.

c The maximum power maxt P imp
thermal],t refers to the ”thermal only” scenario, which only considers

the thermal model and discards investment in PV or battery technologies.
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Figure 4.3 – Operation with the block rate tariff

All performance indicators defined in Table 4.3 have been evaluated for each scenario. Fig-

ure 4.4 shows the indicators related to the system design, Figure 4.5 shows those associated

with the operating performance, and Figure 4.6 shows those related to economic performance.

Due to the low cost of PV and the limited roof area, the maximum PV hosted capacity is

reached for all cases but the block rate scenario (and the thermal only scenario, of course).

The three first scenarios are based only on an energy tariff that does not give any incentive to

curtail the PV generation. However, a few exceptions occur with the spot market tariff when

prices are going negative and lead to PV generation’s curtailment. In contrast, the block rate

tariff scenario gives a financial incentive to curtail the PV generation when the total cost of

exporting energy is too small. This leads to an energy curtailed ratio of 17%. Curtailment could

also happen under the capacity tariff, but in this case, it is maybe more economical to convert

it to heat. This requires thus a larger heat pump or electric heater capacity. As the latter is

cheaper, there is an economic interest in producing heat (even with low efficiency) using this

technology. The capacity-based tariff does not seem to encourage investment in the battery.

Conversely, the solar and spot market scenario with higher tariff variations makes the use of

a battery more profitable. All tariff scenarios lead to a heat pump capacity higher than for

the thermal only scenario. Conversely, the higher electric heater capacity is observed for the

thermal only scenario. The sizing of those capacities is only demand-driven for the thermal

only scenario. As heat is cheaper to produce with a heat pump than an electric heater, the

heat pump’s optimal size is reached when it can cover almost all heat demands. The relatively

large electrical heater covers the extreme peak demands. While for the other scenarios, the

heat pump and electrical heater sizing are cost-driven. In those cases, the heat pump can be

used as an additional flexibility tool to increase self-consumption, bringing more incentives to

invest in a larger heat pump (and equally reducing the electric heater). The only exception to

this explanation is the capacity scenario for the reasons explained above.
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Figure 4.4 – Design metrics

As the PV capacity is smaller under the block rate scenario, self-consumption is the highest,

as shown in Figure 4.5a. In these figures, horizontal (and possibly shaded bar) indicate the

metric’s value for the same design but without a battery. Figure 4.5a shows how much self-

consumption is gained by investing in a battery. The solar and spot market tariff variations

during the day also push to increase self-consumption. However, the spot market volatility

can sometimes encourage more intensive use of the battery, leading to higher grid usages.

Conversely, the battery is used to reduce the import grid usage under the block rate scenario.

Only this tariff scenario allows decreasing both the import and export grid usage significantly

using, as shown in Figure 4.3, a combination of PV curtailment and storage to flatten the grid

exchanges. The relative heat needs are above one for all scenarios. This value is minimal

for the thermal only scenario and accounts for the tank loss (we assume the tank does not

dissipate its heat in the building). For all other scenarios, this metric somehow indicates the

transfer of flexibility to power-to-heat.

As regards the economic performance indicators, the investment costs are quite similar.

The block rate scenario being more dissuasive for PV induces slightly less total investment.

Obviously, the PV and battery investments are more significant than only the heat pump and

electric heater. All the advanced tariff scenarios show a higher revenue and a lower system

LCOE than the loads-only scenario. The added value of the battery is pictured in Figure 4.6d

(shaded area indicates the value obtained without the battery, it is displayed only for this figure

for the sake of clearness). The greatest added value of the battery is observed for the block rate

scenario. The levelized cost of heat accounts only for the discounted heat pump and electric

heater investment costs. Hence the variations are much more minor than for the LCOE. It is

cheaper for all advanced tariff scenarios (solar, spot market, capacity, and block rate), showing
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Figure 4.5 – Operation metrics

that the additional capacity contributes to reducing the cost of generating heat in all cases.

4.2.3 Discussion

The results highlight the profitability of investing in PV in all scenarios, while the benefit of

investing in a battery is emphasized by dynamic prices that create a revenue opportunity.

Simple capacity-based tariffs do not provide sufficient incentives to invest in a battery system

if the maximum exchanged power is mostly determined by the PV injection power, which can

be easily curtailed. Compared with a case with only power-to-heat units adequately sized,

the grid usage at import is lowered by about 5 % by introducing PV while the grid usage at

export increases by about 10%. The addition of a capacity-based tariff helps to moderate the

grid usage, while a real-time pricing scheme from the EPEX intraday spot market significantly

increases it. The main contributor to this usage is the battery, which, contrary to all others

scenario, actually increase the grid usage because it is used for trading energy and not only

for self-consumption purposes. The block rate tariff shows a very positive impact on the

grid usage but penalizes the PV hosting. Indeed, as the marginal cost of exporting energy

decreases with the export power, it reduces the attractiveness of installing a high PV capacity.

By nature, this tariff prevents the overuse of the grid. A combination of the spot market tariff

with a block rate tariff would be worth investigation, although it brings additional complexity.

While volumetric tariffs are easy to understand and design for a distribution system operator,

capacity tariffs already decrease accessibility for non-expert consumers. Regarding the block

rate tariff, although our results show promising opportunities for demand-side management
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Figure 4.6 – economic metrics

and network management, there is a lack of knowledge on how to properly design such a tariff.

This section provided an in-depth presentation of the impact of tariffs on the optimal design

and operation of a PV, battery, and power-to-heat system. We showed the complementarity or

competition between the battery and power-to-heat technology and provided key insight to

promote flexible PV systems. However, the framework of this study was just a single building.

The following will show how these concepts apply to a more extensive set of buildings and how

they impact the network. But before doing so, one must build realistic test cases. In particular,

electric demand profiles are vital data that may be difficult to obtain. The following section

will address this problem and propose two approaches to create realistic test cases for energy

planners.

4.3 Methodologies for creating realistic test cases for energy plan-

ners

To assess the impact of distributed generation on distribution grids, the following general data

are required.

• grid topology

• building characteristics

• weather conditions

• electric and heat demands
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Whereas the three first elements can be found for most distribution grids in Switzerland, both

electric and heat demands profiles are rarely available. Regarding electricity consumption, a

few distribution system operators (DSO) have already replaced conventional meters with smart

meters measuring the load at a resolution of 15 min. The use of the standard demand profiles

(from SIA norms) is not a viable option since these profiles aggregated at the distribution grid

level result in massive electricity demand peaks due to the lack of variances. This section aims

to provide solutions to cope with this issue.

4.3.1 Load profiles allocation

The basic idea of the load profile allocation is to choose, from a sufficiently large load pro-

files dataset, the most appropriate load according to some knowledge of the network and

consumers’ characteristics. The first stage consists in selecting these load profiles according

to their annual consumption magnitude. The loads are allocated to network locations ac-

cording to prior knowledge of the consumers’ annual consumption while ensuring the total

network consumption is matched. A second stage is to deform the allocated load profiles so

that the resulting load at the transformer is close enough to the measured transformer load,

still keeping the annual energy consumption close to the original one. Thus, the developed

methods consist in a two-stage optimization. In the first phase, a load profile is allocated to

each meter. All profiles are tuned in the second phase to match potential additional network

measurements. In particular, the sum of all the profiles should be as close as possible to the

profile at the transformer (which is in most cases known).

A First stage optimization

The first stage optimization problem’s overall idea is to consider the grid as a graph, formed

by a set of nodes N , among which the set NL ⊂ N of nodes has unknown load profiles. The

set NK ⊂ N contains measured load profiles. The root note (or transformer) is denoted as

NP ⊂ N . The reference dataset of load profiles is considered as virtual nodes J . Any load

profile is assumed to be measured on the same time-span T . Finally, for each node n ∈ NL

and j ∈ J we define a load category hn ∈ H . The sets’ definitions are given in Table 4.4. The

problem can be defined as connecting each node in NL to a single node in J of the same load

category (as pictured in Figure 4.7). The difference between the allocated annual energy of

the reference load profile, E var
n , and the one from the meter (assumed to be known for every

node), E ref
j , should be smaller than a given tolerance εE . In other words, the decision variable

βn, j if greater than 0, allocates and scales the load profile j to the node n to have the allocated

annual energy E var
n close up to tolerance εE of the measured annual consumption of the node

E ref
n . The optimization’s objective is to have the minimum scaling of the available load, i.e.,

βn, j ≈ 1∀ j ∈ J . As pictured in Figure 4.7, a single available load profile may be allocated to

more than one node in NL . A parameter of the optimization problem kh restricts the number

of allocations for each load category. Most likely, the size of NL will be much larger than the

size of J . Thus, each load will be allocated more than once in the network.
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NP

NL NK

J

Figure 4.7 – Illustration of the first stage allocation

Table 4.4 – Networks topology and sets

Set Subset of Description

N - network nodes

H - load category

NP N transformer node with measured load profiles

NL N nodes with unknown load profiles

N h∈H
L NL nodes subset per load category

NK N nodes with known load profiles

J virtual nodes representing available load profiles from the dataset

J h∈H J available load profiles subset per load category

T - time
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The problem can be mathematically described as follow:

The original allocated load E org
n = ∑

j∈J h

αn, j E ref
j ∀n ∈ N h

L ,h ∈ H (4.5a)

The scaled allocated load E var
n = ∑

j∈J h

βn, j E ref
j ∀n ∈ N h

L ,h ∈ H (4.5b)

Scale is an allocation αn, j =
0, if βn, j = 0

1, otherwise
∀n ∈ N h

L , j ∈ J h ,h ∈ H (4.5c)

Node must have one load
∑

j∈J h

αn, j = 1 ∀n ∈ N h
L ,h ∈ H (4.5d)

Constrained number of alloc.
∑

n∈N h
L

αn, j ≤ kh ∀ j ∈ Jh ,h ∈ H (4.5e)

Annual energy error constr. εE
2 ≥ 1− 2 ·E var

n

E ref
n

+
(
E var

n

)2(
E ref

n
)2 ∀n ∈ NL (4.5f)

And the optimization problem formulated as:

min
∑

n∈NL

(
E org

n
)2 −2 ·E org

n ·E var
n + (

E var
n

)2

for βn, j

subject to: Equations 4.5a to 4.5f

(4.6)

Minimizing the objective function of Equation 4.6 implies having βn, j as close as possible to 1

∀ j ∈ J . Besides, having the constraints applied on subset N h
L and performing restricted sum

over J h ensure the load category match without introducing any additional binary variable.

All parameters and decision variables are described in Table 4.5.

B Second stage optimization

The second optimization aims to tune the allocated load profiles to match the resulting power

profile at the transformer node, P var
NP ,t with the measured one P ref

NP ,t , i.e., having the relative

difference between both under a given tolerance εP . For this, a time step scale parameter

defined as γn,t can deform any allocated load profile P org
n,t . Additionally, the constraints on the

annual energy consumption still apply. The optimization problem’s goal is to deform as little

as possible the load profiles, hence having γn,t ≈ 1∀n ∈ N L , t ∈ T .
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In mathematical forms, the problem translates as the following:

Original load profile from 1st stage P org
n,t = ∑

j∈J
αn, j P ref

j ,t ∀n ∈ NL , t ∈ T (4.7a)

Deformed load profile P var
n,t = γn,t P org

n,t ∀n ∈ NL , t ∈ T (4.7b)

Resulting load at transformer P var
NP ,t =

∑
n∈NL

P var
n,t +

∑
n∈NK

P ref
n,t ∀t ∈ T (4.7c)

Allocated energy consumption E var
n = ∑

t∈T
P var

n,t ·T St ∀n ∈ NL (4.7d)

Annual energy error constr. εE
2 ≥ 1− 2 ·E var

n

E ref
n

+
(
E var

n

)2(
E ref

n
)2 ∀n ∈ NL (4.7e)

Power error at transformer constr. εP
2 ≥ 1−

2 ·P var
NP ,t

P ref
NP ,t

+
(
P var

NP ,t

)2

(
P ref

NP ,t

)2 ∀t ∈ T (4.7f)

Finally, the second stage optimization problem is defined as:

min
∑

n∈NL

∑
t∈T

(
P org

n,t

)2 −2 ·P org
n,t P var

n,t +
(
P var

n,t

)2

for γn,t

subject to: Equations 4.7a to 4.7f

(4.8)
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Table 4.5 – Variables and parameters definition. Column S indicates first stage or second stage
optimization variables.

S Set Dimension Unit Description

P
A

R
A

M
E

T
E

R
S

P ref
n,t R+ (NP ∪NK )×T W measured load

E ref
n R+ NL ∪NK J measured annual consumption

hn H NL ∪ J - load category

kh N+ H - maximum allocation per category

εE R+ - relative tolerance on energy

εP R+ - relative tolerance on power

T St R+ T s timesteps

D
E

C
IS

IO
N

V
A

R
IA

B
L

E
S E org

n 1 R+ NL J original annual consumption

E var
n 1,2 R+ NL J scaled annual consumption

βn, j 1 R+ NL × J - annual scale

αn, j 1 [0,1] NL × J - allocation variable

γn,t 2 R+ NL ×T - timestep scale

P org
n,t 2 R+ (NL ∪NP )×T W originally allocated load profiles

P var
n,t 2 R+ (NL ∪NP )×T W allocated load profiles

4.3.2 Smart meter anonymization

An alternative approach to providing reliable cases study for grid planners is to use the actual

smart meter data. The roll-out of smart meters in modern distribution networks offers oppor-

tunities for large dataset acquisition. However, to use smart meter data, the DSO’s customers

must give explicit consent, as stated by the Swiss data privacy law 3:

“If the consent of the data subject is required for the processing of personal data, such consent is

valid only if given voluntarily on the provision of adequate information. Additionally, consent

must be given expressly in the case of processing of sensitive personal data or personality

profiles”

Such explicit consent is, however, difficult to acquire. To comply with the law but still use

these sensitive data, anonymization shall be guaranteed. In other words, the link between

the data owner and the data shall be unequivocally broken, such as one should not be able to

retrieve the original data owner from the processing of its data.

In our case, a smart meter, being identified by a unique identifier, is linked to a customer by its

location (either a spot in the network or a physical building address). The link between the

smart meter identifier, building address, and the network location (referred to as ”a bus” in the

following) is critical to perform network analysis or energy system optimization as presented

in this thesis.

3Federal Act on Data Protection (Status as of 1 March 2019), art.4 al 5
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This work proposes a smart meter anonymization method for network analysis (SMANET). The

approach considers that the link between the smart meter id (i ) and its network location (b) is

known from the DSO metering service. Still, it cannot be communicated to the planners or

any other third party for analysis purposes without the data owner’s explicit consent. However,

the smart meter measurements and network topology are available for the DSO network

planning service. The basic idea of this method is to group smart meter measurements

according to some characteristic features and provide, for each group, the network location list

corresponding to the group’s smart meters. In the graphical example of Figure 4.8, the meter

id 1, 2, and 3 are grouped in A. They are located in network locations a, b, and c, respectively.

From the network planner perspective, the only information accessible is that i = 1, 2, and 3

are in the same group as b = a, b, and c. It can arbitrarily choose to allocate the smart meter

measurements 1 to the location a, b, or c, etc. The underlying assumption is that the smart

meter measurements 1, 2, and 3 are electrically similar because they are in the same group.

Hence inverting i = 1 and 2 at b = a should have a minor impact on any further analysis

performed by the network planner.

3 c

2 b

1 a

A

3 c

2 b

1 a

A

hidden link allowed  allocations

metering service 
perspective

network planner
perspective

smart meter

network location

Figure 4.8 – Graphical description of the SMANET method

The workflow for setting up an anonymous allocation of smart meter data into a designated

network is the following. The network planner receives the smart meter measurements

Pi ,t . The first task is to extract K ≥ 1 relevant features Xi ,k k = 1...K for each measured load.

The second task is to group the smart meters according to their features. The grouping,

more commonly known as clustering, has one additional constraint compared with standard

clustering methods. The number of clusters is not known in advance, and the population size

inside a cluster is pre-determined. Such a task is referred to as partitioning in the literature.

The population in each cluster should be more or less equal (balanced partitioning). At this

stage, the metering service takes over and provides the list of buses for each meter group.

Finally, the network planner randomly takes one permutation of this bus list to allocate each

meter to a bus. This process is graphically pictured in Figure 4.9.
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Network planner

Metering service

Localize each group i.e 
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clusters of equal
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Figure 4.9 – Workflow of the SMANET method

The critical step in this process is to form groups of an equal number of elements. In the

following, we investigate partitioning techniques and propose a suitable algorithm to perform

the partitioning of the smart meter measurements into equal-size groups.

A Integer programming formulation of the partitioning problem

A generic formulation of the partitioning problem can be formulated using integer program-

ming (IP). For a given dataset D of N records and the similarity matrix D[N ×N ]. An element

Du,v ∈ [0,∞) is a measure of the similarity between element u and v . We assume that this

similarity measure respects the identity of indiscernibles (Du,u = 0), is symmetric (Du,v = Dv,u)

and respects the triangle inequality (Du,v +Dv,w ≥ Du,w ). Typically such similarity metrics

can be the Euclidian distance. Let xu be a vector of K characteristics features. The similarity

between two elements can be calculated as Du,v =
√∑K

k=1

(
xv,k −xu,k

)2. In the following, we

will consider such a similarity measure but any other similarity measure respecting the space

metric properties is suitable.

The balanced partitioning problem consists in splitting the dataset into NC clusters in which

the numbers of records per cluster are equal for all clusters. One can deduce the prior relation-

ship between the number of records per cluster and the number of clusters as:

m ≤ N

NC
< m +1 ⇒ m =

⌊
N

NC

⌋
where b.c is the floor function.

Let now see the dataset as a graph G where S is the set of edges that connect pairs of records

(u, v). To keep the full generality, let assume that the graph is coarse, i.e., some pairs (u, v)

are not connected ((u, v), (v,u) ∉ S. The edge weights are given by the similarity matrix D.

The partitioning problem can be seen as connecting the records, or nodes of G to form an
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independent subgraph of G containing between m and m +1 element. The selection of an

edge between two records is represented by variable δu,v :

δu,v =
1 if records u is in the same cluster as v

0 otherwise
(4.9)

The variable gc,u keeps track of the belonging of records u to cluster c as :

gc,u =
1 if u belong to cluster c

0 otherwise
(4.10)

Using these definitions, we can formulate the balanced partitioning problem with the following

constraints:

G being coarse implies: gc,u + gc,v ≤ 1 ∀(u, v) ∉ S (4.11a)

Each node must be in a cluster
NC∑
c=1

gc,u = 1 ∀u = [1...N ] (4.11b)

Constraints cluster size m ≤
NC∑

u=1
gc,u ≤ m +1 ∀c = [1...NC ] (4.11c)

u ∈ c and v ∈ c ⇔ δu,v = 1 gc,u + gc,v −xu,v ≤ 1 ∀(u, v) ∈S (4.11d)

u ∈ c and v ∉ c ⇔ δu,v = 0 gc,u + (1− gc,v )− (1−xu,v ) ≤ 1 ∀(u, v) ∈S (4.11e)

The optimization problem can be written as:

min
∑

(u,v)∈S
δu,v ·Du,v

for δu,v

subject to: Equations 4.11a to 4.11e

(4.12)

Figure 4.10a illustrates the results of partitioning a fully connected graph of 22 nodes into 7

clusters of 3 records. The partitioning into 3 records using such formulation is replicated for

graphs with sizes ranging from 4 to 31 elements. For each problem, the time for solving is

recorded and pictured in Figure 4.10b. This illustrates the issue with such formulation. The

computation time increases exponentially with the graph size. One can estimate that solving

problems containing about 100 records would be in the range of 108 years. There is hence a

need for a faster partitioning method.
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(a) llustration of graph partitioning, red edges are form-

ing the final 5 clusters

S

(b) Solving time

Figure 4.10 – Graph partitioning with integer programming

B Graph spectral partitioning

In modern computational science, graph partitioning is mainly used for balancing load and

minimize scientific computation time [Schulz, 2015] (for instance, to solve a sizeable compu-

tational fluid dynamic problem in parallel, the discretized space domain is split into smaller

pieces to be individually solved on several cores). Another application concerns route plan-

ning[Schulz, 2015]. Graph clustering is a particular application that aims to reveal intrinsic

graph structure[Schulz, 2015].

Graph spectral partitioning is precisely described in [Schulz, 2015] as the connection between

cuts in a graph and its second smallest eigenvalue. To understand this relation, we must

remind a few properties of a graph. Let G be a graph of n nodes and (i , j ) ∈ S, its set of edges.

Three matrices are associated with such a graph. First, the adjacency matrix A of a weighted

graph is defined as follow:

Ai , j =
0 if i = j

wi , j otherwise

Assuming the edge weight wi , j represents some sort of distance between two nodes, the

adjacency matrix referred to the similarity matrix presented above. Second, the degree matrix

is a diagonal matrix, where each element on its diagonal is the number of edges connecting

this particular node:

Di , j =
deg (i ) if i = j

0 otherwise

Note that deg (i ) =∑
(i , j )∈S δi , j =∑

j δi , j With: δi , j = 1 if i is connected to j , 0 otherwise. Finally,

the Laplacian matrix is defined as :

L = D − A
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The Laplacian matrix has a few interesting properties. It is positive semi-definite and symmet-

ric for an undirected graph.

Let’s now assume we perform a cut in G in order to have two distinct graph G1 ⊂ G ,G2 ⊂
G ,G1 ∩G2 =; represented by:

xi =
1 if i ∈G1

−1 if i ∈G2

The quadratic form of xT Lx gives:

xT Lx =∑
i

∑
j
δi , j x2

i −
∑

i

∑
j

wi , j xi x j (4.13)

At this stage, note that:

x2
i = 1

xi = x j ⇒ xi x j = 1 (i , j ) is an uncut edge

xi =−x j ⇒ xi x j =−1 (i , j ) is a cut edge

We can rewrite Equation 4.13 as:

xT Lx = ∑
i

∑
j
δi , j︸ ︷︷ ︸

number of edges in G

− ∑
(i , j )uncut

wi , j +
∑

(i , j )cut
wi , j (4.14)

Hence maximizing Equation 4.14 is equivalent to finding a cut that split G into two most

distant parts. Due to the Laplacian matrix properties, this is equivalent to finding the highest

eigenvalue and using the corresponding eigenvector to perform the cut (detailed derivations

are given in [Schulz, 2015]). The spectral graph partitioning algorithm can be written as:

Algorithm 1: Spectral graph partition (SGP)

input :G a weighted graph

output :G ′ =G1 ∪G2 with G1 ⊂G ,G2 ⊂G distinct graphs, G1 ∩G2 =;
L: laplacian of G ;

v,λ eigenvectors and associated values of L;

Get the maximum eigenvalue and associated vector: vmax,λmax = maxλλ ;

m = median(vmax);

Construct cut vector x as: xi =
1 if vmax

i >= m

−1 if vmax
i < m

;

G1,G2 = cut(G , x);

G ′ =G ′ =G1 ∪G2 ;

return G ′
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A graphical example of a single cut through a graph using the graph partitioning algorithm is

pictured in Figure 4.11.

x

Figure 4.11 – Illustration of a single cut in a random graph, represented by its nodes (black
dots) and edges (gray and red lines)

This approach can be used to successively cut the original graph into smaller partitions until

the size of a sub-graph is smaller than 2k for k the desired graph size. The resulting clusters

will have a size between k and 2k −1 as illustrated in Figure 4.12. For k > 2, this can leads to

significant unbalance. To further reduce the imbalance, an IP formulation could be used when

the next graph to cut has a relatively small number of nodes.

1 graph of [22] nodes 2 graphs of [11, 11] nodes 4 graphs of [6, 5, 6, 5] nodes 6 graphs of [3, 3, 5, 3, 3, 5] nodes

Figure 4.12 – Illustration of successive (from left to right) graph spectral partitioning

C Recursive graph spectral partitioning

The graph spectral partitioning has low complexity and ensures more or less balanced clusters

when applied successively. On the opposite, the IP formulation of the graph partitioning

problem provides the most optimal balancing of the graph partitioning, but the computational

complexity makes it unusable for large graphs. To gain the best of the two worlds, we propose
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the following recursive graph spectral partitioning (RGSP) algorithm:

Algorithm 2: Recursive spectral graph partition (RSGP)

input :G a weighted graph,k the desired partition size

output :G ′ =⋃J
j=1 G j with G j a set of distinct graphs

G j ⊂G ,Gl ∩Gk =; l ,k = [1...J ] l 6= k

[G1,G2] = SGP(G): cut of G using spectral graph partition (Algorithm 1) ;

G ′: an empty graph ;

for i in [1,2] do

Ni : number of nodes in Gi ;

if 3k ≤ Ni < 4k then

G ′
i : apply IP formulation to partition Gi (Equation 4.12) ;

else if Ni ≥ 2k then

G ′
i = RSGP(Gi );

else

G ′
i =Gi ;

end

G ′ =G ′∪G ′
i ;

end

return G ′

The comparison of the partitioning of the 22 nodes graph into clusters of 3 records using SGP,

RSGP, and IP is presented in Figure 4.13. In terms of unbalance (
∑

g Ng −k, with Ng the g th

partition size), the proposed RSGP algorithm lies in between the successive SGP algorithm

and the IP optimization (RSGP’s unbalance is 4 vs. 6 for SGP, and 1 for IP). However, the

RSGP computing time does not increase exponentially with the number of nodes, as shown in

Figure 4.14.

(a) clusters obtained with succes-

sive SGP: 3 clusters of size 3 and 3

clusters of size 5

(b) clusters obtained with RSGP: 2

clusters of size 3 and 4 clusters of

size 4

(c) clusters obtained using IP: 6

clusters of size 3 and 1 cluster of

size 4

Figure 4.13 – Comparison of the partitioning on 22 nodes with the SGP, RSGP, and IP methods
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S

Figure 4.14 – Computation time comparison

Hence, the RGSP algorithm is suitable to partition large datasets into small groups of equal

size and fulfill the requirements for grouping smart meter measurements for anonymization

purposes. So far, the definition of the smart meter features (the record attributes) has not

been discussed. Indeed the features selection depends on the ultimate goal of the study, as it

will determine which load characteristics are significant and what is the similarity definition.

Provided that the selected smart meter features (i.e., load characteristics) best reflect the

analysis’s end goal, the RSGP allows to reasonably assume that any replacement of one smart

meter by another in the same group will provide similar results. In this section, we assume

that the smart meter data are used for ”network analysis” in general. For this specific end-use,

we will discuss what are the most appropriate features.

4.3.3 Benchmark methodology

At this stage, we provided two methods for creating a real test case for network analysis:

• The load profiles allocation technique

• the load profiles anonymization technique

To validate these two approaches and compare their performances with respect to the final

application, we solve the load-flow equation on six low-voltage networks of the Rolle area

using reference loads. This set of loads are provided by smart meter measurements from

Romande Energie. The locations of these loads are not known, but has been attributed for the

purpose of this study. The load-flow problem allows us to calculate the buses voltage (Vb,t b ∈
Bus set), lines current (Il ,t l ∈ line set), and the power at the sub-station (transformer power

P trafo
i i = [1...6]) at all time t ∈ T . The load-flow is then solved using the loads resulting from

both the load allocation technique and the anonymization technique. The performances of

the two methods are measured using dedicated key performance indicators:
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Voltage magnitude mean square error MSEvm =
T∑

t=1

B∑
b=1

(
Vb −V ref

b

)2

B
(4.15)

Maximum transformer loading error EmaxTRL =
P trafo

max −P trafo,ref
max

P trafo,ref
max

(4.16)

Maximum line loading error EmaxLNL =
Imax − I ref

max

I ref
l ,t

(4.17)

Minimum voltage error EminVM = Vmax −V ref
min

V ref
min

(4.18)

where subscript min, max denotes the minimum/maximum over the time and element index

(b for the buses, l for the lines, i for the transformers), superscript ref indicates the reference

case values.

A Reference case

The DSO Romande energy deployed 600 smart meters in the Rolle area. Those data are not

accessible for privacy reasons, as explained above. In this work, we assume that if at least

3 customers are metered by the smart meters for a given location in a network, aggregating

the consumption to a single virtual smart meter is enough to preserve individual customers’

privacy. This is typically the case for multi-family buildings. Those virtual meters have

been located in their exact network location in the reference case (39 loads). In case two or

more meters measure the same customers’ consumption, they are also considered as one

single smart meter and aggregated together (their location in the network is, however, not

known). All other smart meter measurements have been allocated in the networks by using

an estimation of building consumptions based on SIA norms. Finally, meters that appear

to measure consumption and production (a PV system in a self-consumption scheme) have

been discarded. Over the initial 600 smart meters, 257 consumption profiles (referred to as the

smart meter measurements) are used in the reference case. The loads cover six low voltage

networks, as shown in Figure 4.15.
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transformer

consumption
 0 - 8 (MWh)
 8 - 20 (MWh)

 20 - 35 (MWh)

 35 - 50 (MWh)

 50 - 125 (MWh)
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4513
4756
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Figure 4.15 – Map of the six networks and reference loads annual consumption

B Load allocation database and parameters

For the load allocation method, a database of smart meter measurements is required. The

loads are split into three categories, Apartment, House, and Not residential (hereafter Not res.).

The loads’ database gathers smart meter measurements from a large set of non-residential

sites, the FLEXI [Perret et al., 2015], and FLEXI 2 [Perret et al., 2019] projects presented in

Chapter 2. The number of loads in the database has to be compared with the number of loads

present in each network and category, as reported in Table 4.6. The parameter kh , representing

the maximum number of allocation of a load in a particular network, is obtained by dividing

the number of loads in the network by the number of loads in the database for a given category.

All measurements have a resolution of 15 mins and cover one year. The energy and power

tolerances for the allocation (εE and εP ) are set to 5 and 1%, respectively.
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Table 4.6 – Number of load per category (Not res. is not residential) and median annual
consumption for each network (TR#, left side) and each database source (src. , right side)

Network Database

TR # Category # load Median cons. (MWh) # load Median cons. (MWh) Src.

37
16

Apartment 13 11.2 38 3.3

F
L

E
X

I

House 15 5.4 46 4.4

Not res. 22 11.6 1 22.4

41
78

Apartment 9 20.2 44 2.1

F
L

E
X

I
2

House 51 4.5 48 4.2

Not res. 6 10.0

45
13

Apartment 18 4.1

N
o

tr
es

.

House 3 3.7

Not res. 9 11.0 3 407

47
56

Apartment 3 4.3

House 28 5.4

Not res. 18 9.9

47
69

Apartment 4 4.2

House 26 4.9

Not res. 14 12.5

75
75

Apartment 2 65.9

House 11 4.9

Not res. 5 5.1

C Smart meter anonymization method

As stated in the reference case description, Romande Energy provided the 257 smart meter

measurements located in the six sub-networks. To mimic a real case, the measurements’ true

locations are unknown except for the measurements grouping three or more customers (39

loads in total). For all other loads, the smart meter anonymization (SMANET) technique should

be applied. The first step is to define the features of the loads. In a primary approach, the

energy (Ei =∑
t Pi ,t ·T St ), and maximum power (P max

i = maxt Pi ,t ) are used as input features

for the partitioning (the features are pictured in Figure 4.16a. The second step is to perform

the partitioning using the recursive spectral graph partitioning method. For this step, the

features are normalized to have zero mean and unity variance before calculated the distance

matrix D. The target group size is set to three records. The resulting groups are pictured in

Figure 4.16b.
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A

(a) energy and maximum power distribution

A

(b) resulting groups colored by group id

Figure 4.16 – Smart meter measurements features and results of the partitioning

D Features choice for SMANET

In a second approach, we intend to measure the impact of the feature choice on the load flow

solution’s accuracy. To do so, we defined five partitioning scenarios:

Energy and maximum power These are the same features as define just above, hereafter

shortened ”E + max P”.

Energy Only the annual energy consumption is considered.

PCA From a set of features proposed by [Beckel et al., 2012], we perform a principal compo-

nent analysis (PCA) and keep the first N components that explain 99% of the dataset

variance.

Affinity Again, the Energy and maximum power are used as input features, but instead of

the distance matrix, the affinity matrix is provided (Ai , j = 1/Di , j ). This implies in the

formulation of the RGSP to find the partitioning with the largest intra-cluster variance.

One group instead of grouping the records by three, all records (except those measuring more

than three customers) are put in a single group.

The resulting four additional partitioning scenarios are pictured in Figure 4.17. In these figures,

we kept the projection on the Energy - max Power plane. This can lead to unnatural cluster

representations as for the PCA scenarios (Figure 4.17b). Note that for the Energy scenarios

(Figure 4.17a), the clusters are formed by vertical slicing of the dataset.
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A

(a) Energy

A

(b) PCA

A

(c) Dummy

A

(d) One group

Figure 4.17 – Four additional partitioning scenarios. Measurements with more than three
customers are marked with a ×.

As described in the workflow of the SMANET methodology Figure 4.9, the final stage is to

randomly select one permutation of the buses per group and allocate each load to its bus.

In this second part, to account for this method’s stochastic nature, the load flow problem is

solved 200 times each time with a new permutation of the buses-loads assignment.

To test the validity of the method, Romande Energy kindly agrees to participate in this ex-

periment. To mimic a real application of this methodology, Romande Energy used the true
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location of the load to get a reference solution of the load flow problem. Then, they applied

the presented methodology and run 200 times the load flow simulation for each partitioning

scenario.

4.3.4 Results

A Load allocation and SMANET comparison

The voltage error distribution across all times and all buses in the six networks are pictured in

Figure 4.18. Both the allocation and the SMANET method give errors mostly below 0.002 pu,

which are already sufficient for most network studies. The SMANET process seems to provide

slightly smaller errors. These minor errors can be explained by the fact that during a large

portion of the year, the active power demand is small compared with the network capacity

(during the night, for instance), leading to a local voltage close to 1 pu.

E

Figure 4.18 – Voltage error

To balance this effect, one must look at what is happening at the transformer nodes. The

transformer’s active power is plotted for the six networks for a particular day in Figure 4.19.

This figure shows how the second stage optimization of the allocation method improves

transformer state estimation accuracy compared with the first stage obtained power (blue

dots). By definition, the maximum power deviation at the transformer should be smaller than

1%. For this reason, the allocated (stage 2) curve is very close to the true one. The resulting

power at the transformer obtained with the SMANET method also leads to very good results.

The quality of this method also lies in the fraction of the network loads that are given by the

measure of more than the required three customers. In other words, for a network where

all loads are multi-family buildings with more than three apartments, all loads’ locations

are known, and the network state estimation is very accurate (and there is no need for the

anonymization methodology).
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Figure 4.19 – Active power at the transformer nodes

Despite the good voltage accuracy for both methods, the local power allocated to a given

network location (bus) is closer to the SMANET method than with the allocation method

(Figure 4.20). The illustrative example of Figure 4.20b shows that the SMANET benefits from

the network location knowledge in some cases. It also happens that by chance (1 out of 3), the

load allocated to this bus is the actual original load of this bus.
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Figure 4.20 – Example of active power at two buses

Finally, the key performance indicators are reported in Table 4.7. Again thanks to prior

knowledge of the load locations, the SMANET method is slightly more accurate. The minimum

voltage estimation error is below 3 % for both methods. The maximum transformer loading

is underestimated by 19% for the SMANET methods versus 1.23 % for the allocation methods.

The advantage of the allocation method on this metric is the constraints on the transformer’s

power that should be below 1% in this case. The additional 0.23% comes from the fact that no

prior knowledge of the grid losses is used in the allocation (the transformer’s power is assumed

to be the sum of the network loads, neglecting the line losses). The accuracy of the SMANET

methods also depends on the loads’ final allocation, i.e., for a given bus, out of the three loads

belonging to the corresponding group, which one is attributed to the bus. Besides, the loads’

intra-group similarity is critical to have accurate network state estimation. In the following,

this is discussed by evaluating the five partitioning scenarios and running, for each scenario,

200 times the load-flow simulation.
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Table 4.7 – Performance indicators

allocation SMANET

MSEvm 6.33 ·10−7 3.20 ·10−7

EmaxTRL 1.23 % -18.90 %

EmaxLNL 1.83 −5.46 ·10−5

EminVM -2.76 % 0.16 %

B Features influence on SMANET accuracy

As mentioned, to have a clear overview of the SMANET accuracy, the load flows are solved

several times with a new load-bus assignment. The key performance indicators are recorded

for each iteration. Figure 4.21 pictures the mean square error value (calculated for all buses

at all time for all iterations until the i th iteration, and normalized by its value at the 200th

iterations). This figure shows the convergence of the mean square error for all partitioning

scenarios.

I

Figure 4.21 – MSE convergence

The voltage magnitude error (across all time, buses, and iterations) is plotted in Figure 4.22.

Again the error is mostly smaller than 0.002 pu. Except for the Dummy and One group scenar-

ios, the three other scenarios provide similar accuracy from this perspective.
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V

Figure 4.22 – Error on voltage magnitude

The mean square error of the voltage magnitude and its standard deviation (across iterations)

are reported in Table 4.8. Again no significant differences are observed between scenarios,

except for the Dummy and One group scenario that gives slightly larger MSE.

Table 4.8 – Mean squared error of the voltage magnitude for the five partitioning scenarios

E + max P Energy PCA Affinity One group

Mean 2.02 ·10−8 1.70 ·10−8 2.02 ·10−8 2.24 ·10−8 3.92 ·10−8

Std 7.66 ·10−9 6.84 ·10−9 9.05 ·10−9 7.18 ·10−9 1.68 ·10−8

4.3.5 Discussion

In this work, two methods to use smart meters for network analysis are proposed. The first

method is based on an allocation approach. First, the allocation is formulated as a mixed-

integer problem to allocate loads from a database to the network locations based on the

annual energy demand difference. Second, an adjustment stage deforms the original loads to

match the power at the transformer. For estimating the transformer load, this method is the

most appropriate.

The second method aims to anonymize the smart measurements extracted from a given set of

networks by grouping the smart meter loads by three and linking this group to a set of three

network locations (buses). The final load-bus allocation is achieved by randomly assigning a

load to a bus in the considered group. This method could allow for stochastic analysis of the

network stage (by randomly permuting the assignment). It could improve the quality of the
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network analysis but at a higher computational burden.

Although both methods provide very similar results in terms of network state estimation

accuracy, the SMANET approach should be preferred as soon as smart meter data are available

inside a given network. When this is not the case, the allocation of smart meter measurements

from an external network is a suitable solution. The allocation and SMANET approach could be

combined. For the network locations where smart meters are installed, the SMANET approach

could be used. For the network location where no smart meter is currently set up, smart meter

data acquired outside the considered network(s) could be allocated to these locations. In such

a case, it would be better to use load profiles from another network than just re-using the one

measured in the network to avoid simultaneous peaks. If it is not possible, the second stage

optimization of the allocation method should reduce this issue by deforming the loads.

Considering realistic loads in a network is a prerequisite to perform robust network analysis

and energy planning study. The following section will use the allocated loads’ method to study

the effect of electricity tariffs on the network state facing high PV penetration.

4.4 Mitigating the impact of distributed PV using electricity tariffs

The decarbonization of Switzerland has essentially two requirements. First, provide clean and

affordable electricity, which is known to imply massive investment in PV systems. Second,

it needs the electrification of the building heating systems. Reaching the full PV potential in

urban environments could lead to a system in which a significant fraction of the energy should

be curtailed to cope with the network operating constraints. Optimal PV placement and

orientation can moderate this issue by lowering the injection peak [Middelhauve et al., 2021],

but their choice is mostly profit-driven. Similarly, the complete electrification of the building

heating system may require investment in network reinforcement to ensure that the lines are

suitably sized to distribute higher power. Although a central control of the heat pump is already

widely used by DSOs (for load shedding during peak hours), PV curtailment is a promising

solution. However, it could raise concerns about intrusiveness and discourage (potential)

prosumers. An alternative approach to central control is to propose novel electricity pricing

mechanisms that could help to mitigate the impact of distributed PV systems on the grid while

allowing building owners to make profitable investments. This work aims to evaluate which

advanced electricity tariff creates the best trade-off between these two objectives.

In this work, we investigate the effect of five different tariff scenarios on network operation

when optimizing the design and operation of all buildings connected to that network, using

the methodology developed in Chapter 3 and used in Section 4.2. The scenarios consider pure

volumetric electricity tariffs, a mix of volumetric and capacity-based tariffs, or a block rate

tariff. The optimization is run for a set of buildings in a sub-network of Rolle (Switzerland).

The buildings’ characteristics are known from a geographical information system and the

Swiss building norms. The resulting loads and generations at each injection point allow for

solving the load flow problem over a whole year to extract the voltage level and line loading
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Figure 4.23 – Process workflow

distribution. Finally, these distributions are compared with a reference case to assess the effect

of the selected tariffs.

4.4.1 Methodology

A General workflow

The methodology to assess the impact of distributed PV on a low-voltage grid consists in a

two-step process, which is sequentially repeated for each tariff scenario. First, the design

and operation of each building energy system are individually optimized using the MILP

formulation of Equation 4.4 with the corresponding grid exchange cost. After each building

optimization, the performance of the considered building is assessed. Once all buildings have

been optimized, the load flow problem is solved for a distribution grid using the building-grid

power exchanges resulting from the first step. Finally, the impact on the grid is assessed by

evaluating dedicated grid performance metrics. The workflow of this process is illustrated in

Figure 4.23. The first scenario (s = 1) serves as a reference scenario. The other scenarios’ tariff

parameters are calibrated such that the revenue of the DSO stays as close as possible to the

revenue of the reference case. In this section, we do not distinguish between revenues for grid

maintenance and energy retail.

B Case study and scenario definition

The case study is a district of Rolle. In particular, a low-voltage network and all related

buildings connected to this network (exceptions are buildings with no known consumption

or building characteristic data) are considered for this work. A map of the sub-network is
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Figure 4.24 – Annual energy demand (heat assumed generated with a COP of 4) and PV
potential capacity. Circles with the same size indicate a PV penetration of one.

pictured in Figure 4.24. This figure also shows the PV potential and annual energy demand

with orange dashed and yellow circles. The map is made so that if the circles have the same

size, it indicates a PV penetration close to one. The building size is determined by its floor area,

which is approximated by the building footprint times the number of levels. The distribution

of building floor area is pictured in Figure 4.25.

For each building in this network, the building and its roof characteristics are extracted from

the cantonal registry of building 4 and a geographical information system (namely solar roof 5).

The electric load profile is obtained using the allocation method presented in Section 4.3.1. The

annual energy demand was obtained from Romande Energy, and the power at the transformer

is measured using Depsys Grid Eye6 devices. The buildings’ minimum temperature is assumed

to be 19 °C. This is also the initial temperature. The tank’s minimum temperature is 59 °C,

and the initial temperature is 60 °C (the nominal temperature for domestic hot water is 60°C

according to the [SIA, 2015] norms). All other parameters that are building dependent are

reported in Appendix C, Table C.1. The PV price, battery, corresponds to the estimated price

of 2030 (using the method in [Bloch et al., 2019]). There is a fixed cost for PV of 10’049 CHF

and a variable cost of 83 cts/W. The battery cost is 182 CHF/kWh without a fixed installation

cost. The HP and EH costs are 1.5 and 1.2 CHF/W, respectively. All parameters are reported in

Table 4.9.

4https://www.housing-stat.ch/fr/accueil.html
5https://www.uvek-gis.admin.ch/BFE/sonnendach
6https://www.depsys.com/solutions/
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Figure 4.25 – Distribution of the building floor area

Table 4.9 – Technology and cost parameters

Param. Unit Value Param. Unit Value

S
Y

S
T

E
M T - 35040 L years 25

M - 12 Lbat years 9
T S s 900 r - 0.03

P
V

N - 8

B
A

T
T

E
R

Y

SOCinit - 0.7
J - 8 SOCmin,max - 0-0.7
cPV

F CHF 10’049 α 1/day 0.04
cmod CHF/W 0.83 ηcha,dis - 0.98
P mod

nom W 315 CRchar,dis 1/h 1
Amod m2 1.63 cbat CHF/kWh 182
γPV - 0.5% cbat

F CHF 0
cbat

o CHF/kWh 10−6

H
P chp CHF/W 1.5

E
H

cel CHF/W 1.2
qcarnot - 0.8 ηel - 0.99

O
T

H
E

R T b
min °C 19

T tank
min °C 59

T sh
max °C 85
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In this study, we defined five tariffs scenario:

reference a standard flat volumetric tariff. c imp = 21.02 cts/kWh and cexp = 8.16 cts/kWh.

solar a volumetric double tariff. The low rate tariff applies from 11:00 to 15:00 every day (local

time). The ratio between the high and low rate is fixed to 1.57.

spot market a volumetric variable tariff. It is based on the continuous intraday price from

the EPEX market data7).

capacity a mix between a volumetric and a capacity-based tariff.

block rate a piecewise linear cost function where the cost of buying/selling energy depends

on the power at which it is exchanged.

In addition to these five scenarios, we consider two side scenarios, derived from the reference

one, that help to compare the results:

only loads we consider neither PV nor battery, but instead, the optimization consists in sizing

the heat pump and electric heater under the reference tariff scenario.

full PV this scenario just imposes all roofs being covered with the maximum PV potential, no

battery, and again optimize the heat pump and electric heater capacity.

The tariff parameters are calculated based on the results of the reference scenario. Neverthe-

less, these parameters are reported in Table 4.10.

7EPEX price for 2018 https://www.epexspot.com/en/market-data/intradaycontinuous/intraday-table/-/CH
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Table 4.10 – Tariff scenarios

Scenario Description Tariff (CHF cts/kWh)

Reference
c imp

t : 21.02

cexp
t : 8.16

Solar

c imp
t∈11h:15h : 14.61

cexp
t∈11h:15h : 7.15

c imp
t∉11h:15h : 23.05

cexp
t∉11h:15h : 11.24

Spot market
c imp

t : EPEX*3.9867

cexp
t : EPEX*1.6547

Capacity

c imp
t : 14.12

cexp
t : 11.52

cpow: 5.41 CHF/kW/month

Block rate

Power (kW) a IMP
k aEXP

k

0 to 1 13.93 13.27

1 to 2 15.33 11.87

2 to 4 17.15 10.05

4 to 6 19.51 7.68

6 to 8 22.59 4.60

8 to 10 26.59 0.61

C Performance indicators

The following list defines the performance metrics for the design and operation and the grid

usage.
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PV hosting ratio PVhost =
∑N

i=1 nmod
i P mod

nom,i∑N
i=1 nmod

max,i P mod
nom,i

(4.19a)

Total electrical demand P tot
t = P load

t +P el
t +P hp

t

PV penetration PVP =
∑

t P PV
t∑

t P tot
t

(4.19b)

PV curtailement PVcurt =
∑

t P cur
t∑

t P PV
t

(4.19c)

Battery autonomy ratio Batauto =
E bat

cap

mean daily consumption
(4.19d)

Self-sufficiency SS =
∑

t

(
min(P tot

t ,P exp
t −P imp

t +P tot
t )

)
∑

t P tot
t

(4.19e)

Relative heat need Q ′ =
∑

t

(
Q̇hp

t +Q̇el
t

)
∑

t Q̇heat
t

(4.19f)

Discounted payback time DPP = L such that
L∑

y=1

C Fy

(1+ r )y = 0 (4.19g)

Cash flow C Fy = CAPEXy +OPEXy −OPEX0
y

Grid usage GUimp,exp = maxt P imp,exp
t

maxt P imp
only loads

(4.19h)

where Q̇heatis the minimum heat to fulfill for both space heating and domestic hot water

demand, the OPEX0 is the operating cost assuming no investment is made (assuming all heat

demand is provided by an electric heater), and P imp
only loads is the maximum import power under

the ”only loads” scenario, which only solves the optimization for the heat pump and electric

heater capacity (and their operation).

In addition to these metrics, we use normalization of the PV, battery, heat pump, and electric

heater capacities with the building floor area. The corresponding metrics are denoted PV cap’,

Bat cap’, HP cap’, and EH cap’ respectively. The floor area is defined as the building footprint

area multiplied by the number of levels.

4.4.2 Results

The computation time statistics are reported in Section 4.4.2. The optimization time range

between 2.4 up to 321 minutes (5 hours and 21 minutes). The most computational intensive

scenario is the block rate scenarios with a median computing time just above 100 min. Solving

the load flow problem is performed in 7 minutes for all scenarios, which is negligible compare

with the 8 to 80 hours of optimization time.
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Table 4.11 – Computation time statistics

Scenario
Building optimization Load flow

min max median total
[min] [min] [min] [h] [min]

Reference 3.7 57.3 13.6 11.8 6.6
Solar 2.4 41.6 11.3 8.8 6.6
Spot market 2.4 43.6 13.1 10.2 6.8
Capacity 31.8 147.2 90.4 60.6 6.6
Block rate 43.5 321.2 103.9 81.2 6.6

The normalized technology capacities are reported in Figure 4.26. The block rate leads to

smaller PV capacity. As the marginal cost of exporting electricity decreases as a function of

the export power (see Table 4.10), most of the time , high PV capacity systems will export

energy at high power and sell energy at an unprofitable rate. Variable volumetric and capacity

tariffs promote larger batteries, while the block rate scenario causes only slightly larger battery

capacity than the reference scenario. Most systems have no electric heater in the reference

solar and spot market scenario. However, capacity and block rate tariffs induce larger electric

heater capacity, which compensates for reducing heat pump capacity for those scenarios.
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Figure 4.26 – Normalized technology capacities for all tariff scenarios

Figure 4.27 shows only the median, 25th and 75th quantile of each metric for each scenario.

Instead of the floor area normalized PV and battery capacity, the PV hosting and battery

autonomy ratio are used. This highlights that the 60 W/m2 median value for the PV capacity

corresponds to the maximum hosting capacity. As suggested, dynamic volumetric scenarios

have a higher battery autonomy ratio. The median battery size increase from 5% of the daily

consumption (recalling the definition of the battery autonomy ratio, Equation 4.19d) up to
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25% for the solar and spot market scenarios. From an operational point of view, this increase

of flexibility capacity (observed for all technology compared to the reference case) induces

an increase in the grid usage for volumetric tariffs. In contrast, it induces a decrease in grid

usage (both import and export) for block rate and capacity tariffs. The discounted payback

time, which accounts for the time to recover all investment (including the heat provision

technologies), ranges from 7 to 10 years. This is quite optimistic because investing in heat

pumps strongly reduces electricity consumption compared with using purely restive heating.
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Figure 4.27 – Metrics as defined in Equation 4.19, in parallel coordinates. Solid lines are the
median, dashed lines are the 75th percentile, and dotted lines are the 25th percentile.

The battery size tends to increase with the PV penetration, according to Figure 4.28, for

volumetric-based tariffs. However, this is not so clear for the capacity-based and block rate

scenarios. A previous work, considering only PV and batteries [Holweger et al., 2020a], shows

that the battery autonomy ratio increases for PV penetration from 0 to 1.5 and decreases at

higher PV penetration. This can also be seen in Figure 4.28. For all scenarios, the battery size

helps to increase self-sufficiency, as highlighted by Figure 4.29.
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Figure 4.28 – Battery autonomy versus PV penetration
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Figure 4.29 – Self-sufficiency level against the battery autonomy ratio

The relative heat need in Figure 4.30 compares the actual heat production and the minimum

theoretical heat consumption. In this figure, the only loads scenario is plotted to highlight

that the relative heat need ranges from 1.05 to 1.5. It essentially represents the tank losses.

Indeed in this scenario, the objective function pushes to minimize the cost of providing heat.

This metric increases when adding PV (full PV and reference scenarios), which implies that

the building and tank are used as storage in a sub-optimal way (from the heat consumption

perspective) to improve the objective functions. It is, even more, the case for the solar, spot

market, capacity, and block rate scenarios (although the latter has a much smaller installed PV

capacity).
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Figure 4.30 – Relative heat consumption

As highlighted in Figure 4.27, the grid usage intensity is dominated by the export. This can

be explained in two ways. First, there are cases where an excess of PV production is injected

into the grid. Second, there are cases where there are substantial price incentives to inject

into the grid. The latter can typically explain why the spot market scenario has much higher

grid usage for export than the reference scenario. On the opposite, block rate and capacity

scenario have much smaller grid usage. The reason lies in the PV curtailment pictured in

Figure 4.31 as a function of the PV penetration. For capacity and spot market scenario, the PV

curtailment increase with the PV penetration. This is easily explained for the capacity tariff

as the export power can be cheaply reduced by curtailment. For the spot market scenario,

curtailment occurs when prices on the EPEX market are negative. No curtailment is observed

for the other scenarios.
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Figure 4.31 – Ratio of energy curtailed and PV penetration. In the inset, the bars are the weekly
ratio of energy curtailed (left axis) and lines the weekly minimum cexp (right axis).
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To complete this analysis, Figure 4.32 pictures the gird usage for export against import. This

allows splitting the systems in essentially three categories as a function of their grid usages.

Starting from the top left quadrant, where GUexp > 1 and GUimp < 1, there are the energy

exporters. Their use of the grid is dominated by their max export power. The energy traders

increase grid usage both at import and export. Most of the systems under the variable tariff

(solar and spot market) fall into this category. Finally, the low grid users have GUimpand

GUexp<1. Most systems under the capacity and block rate scenario are in this category. These

observations lead to conclude that energy tariffs allow to shape customers’ paradigms and

strongly impact the way their system interacts with the grid.
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Figure 4.32 – Export grid usage ratio vs. import

Regarding the grid impact analysis of this study, Figure 4.33 shows the load duration curve

measured at the transformer for all scenarios (including the full PV and only loads scenario).

The cumulated installed PV capacity for each scenario is represented as a colored dot on the

y-axis. The block rate reduces the total installed capacity to two-third of the potential capacity

(from 1500 kW to 1000 kW). The other scenarios have almost the maximum PV potential

capacity (this is why only the blue dots corresponding to the full PV case are plotted). All

scenarios, including the only load scenarios, overload the 400 kW transformer capacity either

when power is brought from the high-voltage side to the low voltage side (negative value) or,

conversely, during excess PV production. Hence, the complete electrification of the building’s

heating systems requires grid reinforcement. The spot market scenario is the most demanding

from the transformer perspective. In contrast, both capacity and block rate scenarios reduce

stress on the transformer even when the network consumes energy (see the right inset).

This observation is confirmed by Figure 4.34. The line loading level is just below 60% in

the worst case, indicating that the lines are well oversized compared with the transformer.

Despite the slight difference between scenarios, one may note that the spot market has higher

line loading than the reference. This converts into higher voltage deviation, as pictured in
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Figures 4.35a and 4.35b. In these figures, we distinguished the situation when there is local

excess (when above 1 pu) or deficit (when below 1 pu) of energy. Again one can note that solar

and spot market scenarios induce higher voltage deviation.

0 2000 4000 6000 8000 10000 12000 14000 16000
Hours

-1000

-500

0

500

1000

1500

Ac
tiv

e 
po

w
er

 a
t t

ra
ns

fo
rm

er
 (k

W
) reference

solar
spot market
capacity
block rate
full pv
only loads

0 20 40
500

1000

1500

8730 8740 8750 8760
-1000

-800

-600

-400

Figure 4.33 – Load duration curve at the transformer. Dots on the vertical axis indicate the
total installed PV capacity per scenario. The nominal transformer capacity is 400 kW. Negative
values indicate power flow from the high-voltage toward the low-voltage side.
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Figure 4.35 – Voltage deviation distribution

To conclude this analysis, the systems LCOE is plotted in Figure 4.36. It highlights that all

systems but one (in the full PV scenario) are highly profitable, as their LCOE is below the

21.06 cts/kWh threshold (which corresponds to the reference retail electricity rate), repre-

sented by the horizontal dashed line. The only unprofitable system suffers from over-investing

in PV. All tariff scenarios have LCOE smaller than the reference scenario, indicating that

these tariff structures allow, assuming optimal control, better profitability for the customers.

Conversely, this implies a loss in the DSO net revenues, as highlighted in Figure 4.37. The DSO

revenues are the sum of the grid exchange cost across all systems. However, the block rate

scenario, despite having a median LCOE smaller than the reference median LCOE, turns to

have approximately the same or even slightly higher net DSO revenue. Despite the calibration,

which ensures that the DSO’s revenue remains the same, assuming the systems’ design and

operation are the reference scenario one, the net DSO revenues vary significantly from one

scenario to another. The capacity tariff almost cut by half the DSO revenues compare to the
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reference one. However, when comparing the only load scenario and the full PV or reference

scenario, the latter cut almost by three the DSO revenues only with the addition of PV. This is

related to the fact that less energy is sold to the end customers. The chosen methodology does

not allow yet to split the share of the revenues allocated to the grid maintenance and energy

retail.
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Figure 4.36 – Levelized cost of electricity demand per scenario
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Figure 4.37 – Net revenue for the distribution system operator

4.5 Conclusion

In this chapter, we discussed the opportunity offered by electricity tariffs to promote flexible

PV systems and how tariffs change customers’ consumption paradigm and impact the grid

stress state. To do so, an in-depth analysis was conducted on a single system to define the

tariff structures and relevant key performance indicators properly. Three tariff structures
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were considered: volumetric, capacity-based, and block rate tariffs. From these structures,

four tariff scenarios were defined in addition to a reference scenario (using a standard tariff

from Romande Energy) and a thermal-only scenario that aims to provide reference values

for the heat pump and electric heater capacities. The four additional scenarios consider two

time-of-use electricity tariffs, one mix of a capacity-based and volumetric tariff, and one block

rate tariff. The investment in PV arrays promotes larger power-to-heat capacities to increase

self-consumption using thermal inertia. The batteries’ profitability comes from the variability

of the electricity prices. However, variable volumetric tariffs increase the grid usage intensity.

The contribution of the battery to lower the levelized cost of electricity is relatively small. The

uncontrollable electric load should be known to up-scale this analysis to a more extensive set

of buildings in a low-voltage network. In energy planning studies, the loads are often synthetic

or generated from standard norms, but rarely actual loads from smart meters are used.

In the second part of this chapter, we proposed two methods to use smart meters for energy

and network analysis. The first method considers a smart meter load profiles database and

allocates them to the buildings at given network locations according to their (annual) energy

consumption. Then, the assigned loads are deformed to match the low-voltage transformer

active power measurements. The load profiles database consists of smart meter measurements

either from the considered network or any other appropriate source.

The second method is a smart meter anonymization procedure we called SMANET. Even if

a network were fully monitored by smart meters, the energy or grid planners would not be

allowed to access these data for privacy-preserving reasons. Thus, one way to make these data

available is to anonymize them. The allocation method presented above is an appropriate

anonymization approach but relies on a potentially external load database and does not take

advantage of any knowledge of the actual loads’ locations. The SMANET’s basic principle is to

partition the loads (i.e., smart meter measurements) into small equal-size groups. For each

group, the list of network locations corresponding to the loads is given in a randomized order.

This allows a randomized loads-locations assignment, that preserves the load’s anonymity

(the exact location is not provided). In this work, we assumed that grouping loads by three

is enough for privacy preservation. The task of finding the optimal partitioning of a set of

records is not trivial. Hence, a method called recursive graph spectral partitioning (RGSP) was

proposed. Both the allocation and SMANET methods were tested to assess whenever using

such a load case would affect the network analysis results. It turns out that both provide good

results in terms of voltage estimation. The allocation, by formulation, provides any arbitrary

accuracy of the transformer load.

Once an appropriate test case of network loads was defined, it was possible to investigate the

effect of tariffs on the design and operation of PV systems and their impact on a low-voltage

grid.

The final part of this chapter presented how tariffs can mitigate the impact of distributed PV

in a low-voltage grid by promoting flexibility and reasonable use of the grid. The insights

obtained from this chapter’s first part (at the building level) are confirmed in this broader

study (at the grid level). Variable volumetric tariffs promote larger batteries and power-to-heat
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capacities but also increase the stress on the grid. A capacity-based tariff changes the usage

of the battery from energy trading to consumption peaks reduction. Injection peaks can be

reduced either using the electric heater (which is a cheap, flexible capacity) or curtailment.

The grid usage was effectively mitigated under the capacity and block rate scenarios. The

latter also reduces the total PV capacity. This section’s general conclusion is that tariffs can

determine the intensity customers interact with the grid, thus mitigate voltage deviations, and

lines or transformers loading. The main findings of this chapter are summarized in Table 4.12.

Regarding the stress on the grid, all scenarios still violate at some point the transformer loading

limit. Therefore, there is still a need for DSOs to balance between grid reinforcement and

direct control of the system flexibilities. This aspect will be discussed in the following chapter.
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Table 4.12 – Impact of tariffs, summary

Flat volumetric Constant import and export tariff
Design impact: PV capacity depends on LCOE and self-consumption.

Battery capacity is a compromise between cost and self-
consumption gain.
Heat is mostly provided by a heat pump (sized according
to the demand).

Grid impact: Mostly influenced by the installed PV capacity

Variable volumetric Import and export tariff change along with time
Design impact: Minor influence on the PV capacity.

The battery is used for trading energy. It charges when
electricity is cheap , and discharge to avoid expensive
energy import.
The heat pump and electric heater might be oversized
to use as effective flexibility sources.

Grid impact: Strongly increased by the battery usage, causing signifi-
cant peak power as tariff changes.

Capacity-based Charge according to the monthly maximum exchanged
power. Can include a volumetric part.

Design impact: PV capacity can be reduced if the PV penetration is so
high that curtailment becomes too significant.
Battery capacity fostered to cut import peak.

Heat pump capacity is reduced. Electric heater size in-
creased to cover the extreme heat demand situation.

Grid impact: Effective reduction of the grid usage intensity.

Block rate Import rate increases with power.
Export rate decreases with power

Design impact: PV capacity can be reduced for large systems as the feed-
in rate is lower for high export power.
The battery , heat pump and electric heater capacity are
also reduced

Grid impact: Overall reduction of the line loading and voltage devia-
tion. Transformer maximum loading is also reduced at a
similar level to the capacity tariff, but the load duration
curve is flatter.
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5 Harvesting flexibility from a DSO
perspective

As the power sector is shifting from centralized to distributed generation, flexibility is required,

especially in low-voltage grids. This chapter presents how distribution system operators can

harvest the flexibility available in the network from distributed flexible PV systems. Both

behavioral and technical flexibility are potential sources to delay grid reinforcement and

increase PV penetration. In this context, we present how energy communities increase the

available flexibility. We also present how ideal behavioral flexibility could increase the PV

hosting capacity. Finally, a discussion on the flexibility value is proposed.

Part of this work was reported in:

Holweger, J., Bloch, L., and Wyrsch, N. (2018). SCCER-FURIES - Determination of the

flexibilisation potential of the electricity demand. ReEL D114b. Technical report, École

Polytechnique Fédérale de Lausanne

5.1 Introduction

The deployment of distributed PV generation forces the distribution system operators (DSOs)

to change their mission. In a centralized energy system, DSOs have to provide the infrastruc-

ture to deliver the energy requested by the end customers. In a distributed generation-based

energy system, their role is to provide the infrastructure to allow the exchange of power inside

the network and with the transmission grid. This is the necessary condition for a reliable

access to energy for the end customers. The DSOs have to cope with the evolution of the

energy demand and the deployment of distributed generation that may induce additional

stress on their networks. The network has now to sustain any peak exchange regardless of

the direction. This increases the complexity of maintaining the grid in a safe operating state.

According to [Viral and Khatod, 2012], the main challenge with the increasing penetration

of distributed generation is to keep the voltage level within acceptable bounds, as given by

the voltage disturbance standard EN50160 [Markiewicz and Klajn, 2004], and to ensure that
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the lines and transformers loading limits are not exceeded. Several approaches addressing

this challenge are considered. Voltage regulation mechanisms can be applied either at the

transformer (on-load tap changer) to directly influence the voltage level in the whole network

[Agalgaonkar et al., 2014, Hashemipour et al., 2018], or locally using the inverter’s reactive

power capability [Viral and Khatod, 2012, Olivier et al., 2016, Olivier, 2018, Prionistis et al.,

2021], as pictured in Figure 5.1. While it is already common practice to adjust the power factor

of PV inverters (once and for all), dynamic adjustment of the reactive power by remote-control

should become the standard for residential (< 1 MW) inverters in Europe [Bründlinger, 2020].

To increase the direct consumption of locally generated electricity, batteries [Massucco et al.,

2021], power-to-heat [Hidalgo-Rodriguez and Myrzik, 2018], or any other flexible technologies

can be used to help to operate the network safely. These uses of flexible technologies compete

with grid reinforcement. Indeed, if the network cannot sustain the required load, grid reinforce-

ment is the ultimate and costly way to avoid blackouts [Vu, 2018, Gupta et al., 2021]. Hence, the

cost of implementing and using batteries, power-to-heat technologies, and remote-controlled

inverters has to be balanced with the grid reinforcement costs. The underlying assumption is

that the DSO has to pay for these flexible technologies or grid reinforcement. As shown in the

previous chapter, distributed flexibility sources can be encouraged by appropriate economic

and moral incentives. The technical and behavioral flexibility that prosumers will adopt while

investing in a PV system could be harvested by the DSO to maintain a safe network operation.

There is a lack of research in understanding what are the benefits of distributed flexibility

compared to grid reinforcement and how to valorize it or reward prosumers for providing it.

Figure 5.1 – Inverter active and reactive power (PQ) capability diagram from [Yang et al., 2015]

This chapter will propose some solutions and guidelines for DSOs to harvest the available

distributed flexibility. In particular, we will investigate how energy communities can provide

adequate support for enabling a high PV penetration with great flexibility to mitigate grid

impact and possibly delay or minimize grid reinforcement. This concludes our contribution

to Research Question B) about cost-effective flexibility. As energy communities are a motor

for social innovation and citizen participation, we will investigate how behavioral flexibility

can be harvested to increase the network maximum PV penetration and how this is econom-
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ically competitive compared to PV generation curtailment. Finally, we will investigate how

distributed (technical) flexibility can be harvested to maintain the network in safe operating

conditions and reward this flexibility taking into account the avoided grid reinforcement cost.

This chapter forms our essential contribution to Research Question C) about mitigating grid

reinforcement costs.

5.2 Using energy community and spatial aggregation to enhance

flexibility

Since 2018, Switzerland allows the creation of energy communities [Swissolar, 2019]1. While it

is not strictly restricted to PV systems, the main goal is to encourage investment in distributed

renewable energy by allowing parties to group in a single entity, share the investment, and

self-consume locally produced energy. Under the current Swiss regulation, two types of energy

communities are considered. The first type of energy community is not a legal entity but

rather a service that allows a multi-family building owner to sell directly the locally produced

energy to its tenants2. The minimum requirement is that the electricity is not sold at a higher

price than what the tenants could get when purchased from the local energy retailer. This

concept is a service for billing and counting energy relying on the principle that energy will

be consumed locally. The second type of energy community is building owners, their parcel

being adjacent (or possibly separated by a road or a river), that group under a single legal

entity and determining a single connection point with the distribution network. All energy

will be accounted for and charged based on the metering of this connection point. The subtle

difference between both concepts is out of the scope of this thesis. The fundamental principle,

common for both cases, is that energy communities are groups of energy systems co-located

at the same place charged based on the metering of the energy exchange with a single grid

connection point.

What remains unclear is if and how a DSO can use energy communities to limit its network

stress under a high PV penetration. Hence, the purpose of this work is to investigate how

aggregating energy systems to form energy communities can be profitable from the participant

perspective, how it impacts the stress on the grid, and offer distributed flexible capacity.

5.2.1 Methodology

The proposed methodology aims to define community scenarios in a low-voltage grid and

study the impact of the aggregation of PV-battery energy systems, under several tariff scenarios,

on the system’s design, and the grid impact. The communities are formed by aggregating

buildings according to their proximity from a grid perspective, i.e., the distance of the lines

1In french, "regroupements dans le cadre de la consommation propre" art 17 LEne https://www.fedlex.admin.
ch/eli/cc/2017/762/fr.

2Under such circumstances, end-customers stay clients of the DSO and may choose to stay out of the energy
community according to LApEl https://www.fedlex.admin.ch/eli/cc/2007/418/fr
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connecting one building to another, hereafter referred to as line-distance. In this work, the

Swiss regulatory framework allowing to form energy communities in particular proximity

location conditions are ignored (for instance, the continuity of the parcel, which is part of the

Swiss energy ordinance OEne art. 14 al.23 are not considered). This aggregation is achieved

by applying a clustering method on the building-to-building line distance matrix. Several

community scenarios are generated by varying some clustering parameters, as described

later on. Each community scenario u has a number Bu of systems (one or several aggregated

buildings). For each system, the optimal battery size and operation are solved using the

mixed-integer linear programming formulation described in Chapter 3.

Once all systems’ design and operation are solved, the performance indicators and the grid

impact indicators are calculated after solving the load flow problem. The sequence, system

optimization - load flow and performance indicators calculation, is repeated for all community

and tariff scenarios as pictured in Figure 5.2. The scenario with all systems being individual

(no aggregation, hereafter referred to as ”individual systems”) and under the reference tariff is

considered as the reference design and operation. To not bias the systems’ profitability when

changing the tariff, the latter is calibrated using this reference case.
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Yes END

No

: number of system for this
community scenario. 

system 
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MILP, solve battery size and
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Figure 5.2 – Methodology workflow

3https://www.fedlex.admin.ch/eli/cc/2017/763/fr#art_14
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A Buildings aggregation

The building aggregation is performed by applying clustering on the line-distance matrix D ,

i.e., the line-distance to connect one building to any other building by following only the

existing electrical line. Representing the network as an undirected graph G = (V ,E) with the

building point of connection to the grid as the graph vertices (V ) and the lines are the graph

edges (E ). The line-distance matrix Di , j is built by finding the shortest path length to connect

vertex i to j for all (i , j ) ∈ E . This is achieved by applying the Dijkstra algorithm [Dijkstra,

1959]. The clustering is performed by applying the DBSCAN [Ester et al., 1996] algorithm. This

algorithm’s basic principle is to group the set of closely packed points in a high-density region,

marking as outliers point lying in low-density areas.

Figure 5.3 – Illustration of the principle of the DBSCAN algorithm

The algorithm essentially defines three types of points, as illustrated in Figure 5.3. :

a core point from which at least nmin points (including itself) are within its boundary, formed

by a radius of size ε such as the red and green points.

a non-core but reachable point that has less than nmin core points in its boundary, like the

blue point.

outliers non-core points that are not reachable like the yellow point.

After labeling each point in the dataset, clusters are formed by connected points. In the

example of Figure 5.3, the red and blue points form a cluster, the green ones a second, while

the orange point is an outlier.

This algorithm is used to aggregate the buildings. Fixing different values for the boundary

radius (ε) leads to different aggregation levels, i.e., small ε will lead to a higher number of

clusters of small size (smaller aggregation level), while high enough ε will lead to all buildings

forming one single cluster. To define the community scenario, the following procedure is

performed:
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1. Initialize, iteration k = 1, εk = ε0 À max(D) and nmin = 2.

2. Run the DBSCAN algorithm and store the element cluster index g k
i i = 1...B (B being

the total number of buildings). Store the number of buildings per cluster N k
g , g = 1..Gk ,

with Gk the number of clusters for this iteration.

3. Update εk+1 = r ·εk with r < 1.

4. Iterate on k and return to the clustering step until the number of clusters corresponds

to the number of buildings (Gkend = B).

At each iteration, the parameter r decreases the boundary radius, thus increases the number

of clusters. If r is close to (but smaller than) 1, the number of community scenarios can be

pretty high, with several systems being very similar. Thus to reduce the number of community

scenarios, we applied an additional k-medoid clustering step on the median and standard

deviation of the number of buildings per cluster N k
g . This step returns a vector of U indices

ku ,u = 1...U corresponding to the selected DBSCAN clustering iteration. We make sure that

the community scenario with all buildings labeled as independent systems (k = kend) and all

buildings grouped in the same cluster (k = 1) are in the selection.

B System optimization and tariff structure

As the purpose of this study is to evaluate how energy communities can act as a tool for DSO

to mitigate the impact of a high PV penetration, we assumed for each building that any roof

with a surface greater than 10 m2 is fully covered with PV. Smaller roofs are not covered. This

simplifies the optimization as the number of modules to be installed is not a decision variable.

The optimization problem can be summarized as follow:

min TOTEX = OPEX+R ·cxbat

where: OPEX = oxge +oxbo

cxbat = E bat
cap · cbat +bbat · cbat

F

oxbo : see Equation 3.12b

oxge : see the definitions in Equations 4.1a to 4.1c

subject to: Equations 3.1 to 3.3f

(5.1)

As a reminder, the total PV production is the sum of roof-based PV production as P PV
t =∑N

i=1 P mod
t ,i ·nmod

i (Equation 3.2a). Although the buildings are aggregated into an energy com-

munity, the local PV production of a given roof P mod
t ,i ·nmod

i is injected at its original network

injection point regardless of the community. The same applies to the uncontrollable load

P load
t . However, the installed battery inject or withdraw power at the most upstream injection

point of the community. This implies assuming that for each community, a single (or none)
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battery with a capacity E bat
capwill be installed in the building connected to the closest injection

point to the transformer. The optimal location of the battery is not discussed in this work.

In this work, we consider only two tariff structures: Volumetric tariff (see Equation 4.1b in

which the parameters are the import and export tariff along the time (c imp
t ,cexp

t ) and a capacity

tariff (Equation 4.1c), which applies a capacity component cpow to the monthly maximum

exchanged power. The capacity component aims to cover the grid maintenance cost. The

energy retail tariff and tax are included in the volumetric component. In the case of a purely

volumetric tariff, the import tariff can be similarly split between the tax c tax, the cost for the

grid cgrid
t , and the energy retail price cbuy

t . The cost for exporting energy never internalizes any

tax or grid cost and is, thus, equal to the energy retail cost csell
t . Keeping this in mind, we follow

a slightly different approach than in Sections 4.2 and 4.4 to calibrate the tariff parameters as

detailed below.

For a purely volumetric tariff, the calibration follows these steps:

• The volumetric tax c tax is kept identical.

• The grid maintenance revenues are conserved, i.e., C grid,old =∑
b
∑

t P imp
b,t cgrid,new

t .

• The revenue from buildings buying energy is conserved i.e., C buy,old =∑
b
∑

t P imp
b,t cbuy,new

t .

• The cost from buildings selling energy is conserved i.e., C sell,old =∑
b
∑

t P imp
b,t csell,new

t .

• The new overall costs for importing and exporting energy are c imp
t = c tax + cgrid,new

t +
cbuy,new

t and cexp
t = csell,new

t respectively.

Note that C grid,old, C buy,old, and C sell,old are the sum of the grid and energy retail (buying or

selling) contributions of all buildings calculated using the reference tariff and each building

import and export power.

In the case of a capacity tariff, the calibration follows the same steps as above except that

the grid maintenance costs are conserved by applying C grid,old = ∑
b
∑

m P max
m cpow,new, with

P max
m being the maximum monthly power exchanged (in the framework of mixed-integer

programming, this refers to Equation 4.2). Tariff scenarios are calibrated only for the first

community scenario (all systems being independent) and then applied to all other community

scenarios.

C Performance indicators

The performance metrics aim to reflect the effect of aggregating systems on their design,

operation, economic viability, and network impact. The indicators are split between the ones

describing the system’s performance and the ones representing the network impact. The
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following performance indicators are related to the system’s design. They are defined for each

system. To ease the notation, subscript b has been dropped.

Battery autonomy ratio Batauto =
E bat

cap

building mean daily energy
(5.2a)

Cumulative energy stored E stored =∑
b

∑
t

P cha
t ·T St (5.2b)

# of daily cycles Batcycles = E stored

E bat
cap ·# simulated days

(5.2c)

Investment cost CAPEX = cxPV +cxbat (5.2d)

System net present value NPV =
L∑

y=1

cxPV
y +cxbat

y +oxpm
y +oxge

y

(1+ r )y (5.2e)

Levelized cost of electricity LCOE = NPV∑L
y=1

∑
t P load

t ·T St

(1+r )y

(5.2f)

Internal rate of return IRR = r such that NPV = 0 (5.2g)

The network impact indicators are related to the network state variable obtained by solving

the load flow problem. Those are: the bus voltage magnitude Vi ,t i ∈ B, B being the set of

network buses, the line current Il ,t l ∈ L, L being the set of network lines, and the active

power at the transformer P trafo
t (positive is power flowing outward the network). We thus

define the following grid impact indicators:

Min. and max. bus voltage V min,max
i = min

t
/max

t
Vi ,t (5.3a)

Fraction of overloaded lines F ol−lines =
∑

l δ
ol
l

|L| (5.3b)

δol
l =

1 if maxt Il ,t > I max
l

0 otherwise

Network self-consumption SC =
∑

t

[
min

(∑
b P load

b,t ,P trafo
t +∑

b P load
b,t

)]
∑

b
∑

t P PV
b,t

(5.3c)

Network self-sufficiency SS =
∑

t

[
min

(∑
b P load

b,t ,P trafo
t +∑

b P load
b,t

)]
∑

b
∑

t P load
b,t

(5.3d)
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5.2.2 Case study

This analysis is performed on the Rolle area’s low-voltage grid already presented in Section 4.4.

We choose U = 5 community scenarios where the number of clusters, hereafter referred as

communities, ranges from B u = 42 (each building are independent) to B u = 1 (all building

forms a single community). The resulting community scenarios are pictured in Figure 5.4. A

careful reader might note that in Figure 5.4a, there might be two or more adjacent buildings

with the same color. The reason comes from our conception of a building as an energy system

connected to a single network injection point. The geographical information system used to

produce these maps might consider a slightly different definition.

(a) 42 individual buildings (com-

munity scen. 1)

(b) 29 communities (community

scen. 2)

(c) 7 communities (community

scen. 3)

(d) 3 communities (community

scen. 4)

(e) 1 community (community

scen. 5)

Figure 5.4 – Community aggregation scenarios. Each community has its own color.

The number of buildings per community is plotted in Figure 5.5 as a function of the aggregation

level (represented by the number of communities for each community scenario). For instance,

the first scenario, corresponding to all buildings being independent systems, consists of 42

communities with one building. The variance in the number of buildings between clusters can

be pretty significant when the aggregation level increases. For instance, the 4th community

scenario consists of 3 communities of 1,18 and 23 buildings. This community size imbalance

should not affect the outcomes of this study, as from a modeling point of view, they are
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perfectly equivalent energy systems, their available PV capacity and energy consumption

being different.
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Figure 5.5 – Distribution of the number of buildings per community

We define three tariff scenarios: the first serves as a reference. It is a standard flat volumetric

tariff. The second is the variable volumetric tariff mirroring the variation of the spot market

price (same as in Section 4.4). The third is a capacity-based tariff with a volumetric component,

hereafter referred to as capacity tariff. A block rate tariff was initially considered in this study

but was found to be irrelevant in this system aggregation context for the following reasons.

First, using the calibration approach, which distinguishes the grid maintenance cost from

the energy retail cost, was hardly applicable to a block rate structure. Second, a block rate

structure assumes a certain energy price for a given power level. With the combination

of several buildings, up to the whole network, the average power at which the energy is

exchanged increases. Thus, there are risks that the block rate structure ends up being seen

from the optimization problem as a simple flat volumetric tariff with a high import rate and

very low export rate. This raises numerous questions about the construction and versatility of

a block rate that is out of this work’s scope. Therefore, it was decided not to consider a block

rate structure in this context.
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Table 5.1 – Tariff scenarios

Scenario Description Tariff (CHF cts/kWh)

Reference
c imp

t : 21.02

cexp
t : 8.16

Spot market
c imp

t : 2.69 + EPEX*3.2928

cexp
t : EPEX*1.5830

Capacity

c imp
t : 11.95

cexp
t : 8.16

cpow: 3.32 CHF/kW/month

For each building in this network, the roof characteristics come from a geographical informa-

tion system (namely solar roof 4). The electric load profile is obtained using the allocation

method presented in Section 4.3.1. Except for the thermal part, which is not considered in this

study, the buildings and roofs parameter corresponds to the one described in Appendix C, Ta-

ble C.1. The PV and battery costs are the ones estimated for 2030 using the method presented

in [Bloch et al., 2019]. The cost and technical parameters are summarized in Table 5.2.

Table 5.2 – System, PV and battery parameters

Param. Unit Value Param. Unit Value

S
Y

S
T

E
M T - 35040 L years 25

M - 12 Lbat years 9

T S s 900 r - 0.03

B
A

T
T

E
R

Y

SOCinit - 0.7 CRchar,dis 1/h 1

SOCmin,max - 0-0.7 cbat CHF/kWh 182

α 1/day 0.04 cbat
F CHF 0

ηcha,dis - 0.98 cbat
o CHF/kWh 10−6

P
V cPV

F CHF 10’049 cmod CHF/W 0.83

P mod
nom W 315

4https://www.uvek-gis.admin.ch/BFE/sonnendach
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5.2.3 Results

From the design perspective, recalling that the installed PV capacity is set at its maximum

potential, the battery size is the only free design variable. The total installed battery capacity

(sum of all communities’ battery capacity) is reported in Figure 5.6. The number of installed

batteries is also reported on the right axis. While the number of batteries is always equal to the

number of communities, we see two different trends for the total installed battery capacity.

The spot market tariff promotes larger battery capacity (as reported in Chapter 4). The battery

capacity increases with the aggregation level while it reduces for the reference and capacity

scenario. Interestingly, in the first community scenario (42 community), the total installed

battery capacity is more significant for the capacity scenario than for the reference scenario,

while it is the opposite when reaching a high aggregation level (with only one system). This is

due to the battery usage that differs between the reference and capacity scenario. In the first

one, the battery helps increase self-consumption while reducing the import or export peak

power for the second. When aggregating loads, such import peaks become less significant and

are easily covered by the total PV generation.
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Figure 5.6 – Total installed battery capacity and number of batteries (right axis)

The distribution of battery autonomy ratio reported in Figure 5.7 emphasizes that the battery

is used for different purposes at the system level. Indeed, for the reference scenario, the

median decrease from 0.2 to 0.035 for the last community scenario, the spread decreasing

simultaneously. For the spot market scenario, the median stays slightly above 0.3 for all

community scenarios. The battery size is proportional primarily to the energy demand of

the community in this case. For the capacity scenario, the battery autonomy ratio being

influenced by the maximum peak demand rather than the annual energy consumption, the

median decreases as for the reference, but the variance stays much larger. To better understand

this change of battery usage paradigm, one should look at the battery operation.
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Figure 5.7 – Distribution of battery autonomy ratio

The cumulative energy stored in the batteries (Figure 5.8) shows a similar trend to the total

installed battery capacity (Figure 5.6). However, the values are three orders of magnitude

higher, indicating a high number of charging-discharging cycles. The average number of daily

cycles per day is plotted in Figure 5.9. It is below 0.8 for the reference and decreases with the

aggregation level. Conversely, the daily cycle number increases for the capacity and ends up

at approximately one cycle per day. This number is much higher for the spot market scenario,

but its medians vary around 1.5 cycles per day. From these observations, we can deduce

that the battery usage becomes less intensive for the reference tariff as the aggregation level

increases. It stays approximately constant for the spot market scenario and increases for the

capacity tariff as smaller batteries are used to limit all demand peaks.
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Figure 5.8 – Cumulated energy stored in the batteries
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Figure 5.9 – Mean number of daily cycles distribution

From an economic perspective, the total investment costs are similar when comparing tariff

scenarios, as highlighted in Figure 5.10. Most of the capital expenditure is on PV installations

and a small part on the battery. The aggregation of the buildings reduces the total capital cost.

This is explained by the fact that the fixed cost cPV
F is applied precisely once per community.

This is a direct consequence of the optimization problem modeling choices. A more appro-

priate choice would have been to decrease the variable cost cmodwith the installed capacity

(being known in advance as we fixed it to the maximum) as economies of scale. However, a

more detailed model of PV module price and batch discount is outside the scope of this work.

It can be reasonably assumed that the fixed cost covering the administrative and engineering

costs is applied only once for a community and does not scale with the system’s size.
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Figure 5.10 – Total investment costs

The benefits of lowering the total investment cost directly affect the levelized cost of electricity
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(LCOE), as shown in Figure 5.11. In most cases, the LCOE is below 0.2 CHF/kWh, which is

approximately equal to the reference retail energy tariff. A few communities may experience a

LCOE above this value for the capacity scenario. As the number of communities decreases

and the aggregation level increases, all communities experience a LCOE in the range of

0.1 CHF/kWh. This figure also highlights that building aggregation may significantly impact

the overall cost of energy of individuals building owners. For instance, when all 42 buildings

are independent, negative LCOE can be encountered, indicating a highly profitable investment.

If these systems group with others to form a larger community and the grid exchange costs

are purely shared on an energy basis, their profitability will decrease. This observation is also

highlighted in Figure 5.12. The internal rate of return (IRR) might decrease for some buildings

owner when aggregating. This statement depends highly on how the costs and benefits are

shared inside each community. The metrics here only reflect the global performance. This

issue was acknowledged by [Abada et al., 2020], who studied the energy community’s stability.

An energy community is stable if any participant leaving the community will lower his profit.

We do not consider this aspect in this study.
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Figure 5.11 – Levelized cost of electricity served
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Figure 5.12 – Internal rate of return

The impact of aggregation on the bus voltage deviation (reported in Figure 5.13) is much

smaller than the impact of the tariff itself from the grid perspective. However, for the spot

market tariff, which has a highly negative impact on the grid, the aggregation of the buildings

benefits to the grid voltage level as the minimum bus voltage increase and the maximum bus

voltage decrease with the aggregation level. However, Figure 5.14 highlights that the fraction

of overloaded lines increases with the aggregation level. This is because larger batteries are

installed at their respective injection point without considering the grid capabilities to sustain

such a load. If such installations would be made in practice, one should choose either a more

appropriate battery location and a more optimal community grid connection point or retrofit

the lines.
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Figure 5.13 – Bus voltage
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A

Figure 5.14 – Fraction of overloaded lines

The network-level self-sufficiency and self-consumption are barely affected by the aggregation

level, as shown in Figure 5.15. A slight decrease in self-consumption and self-sufficiency can

be observed for the reference and capacity tariff, while the opposite trend is observed for the

spot market scenario.

A

Figure 5.15 – Self-consumption (SC) and Self-sufficiency (SS) at the transformer level

Finally, the load duration curves at the transformer are plotted in Figure 5.16. In more detail,

Figure 5.16b shows only the load duration curve for the first community scenario, while Fig-

ures 5.16a and 5.16c shows all tariffs and community scenarios. As highlighted in Section 4.4,

the tariffs impact more significantly the load duration curve. However, the aggregation level

tends to increase the loads both when the network is injecting and consuming power for the
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spot market scenario.
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Figure 5.16 – Load duration curve

5.2.4 Discussion

Energy communities are now a well-known concept. Their role in the energy transition is

defined as a motor for social innovation [Caramizaru and Uihlein, 2019], reducing energy

poverty and providing ground for smart-technology innovation. Energy communities are

well coupled with the concept of microgrid, which describes the underlying infrastructure for

the distribution of energy [Aghamolaei et al., 2020]. Our work investigated the impact of the

aggregation of systems (the most basic system being a single independent building) on their

design, operational performances, and impact on the network’s operational state.

The formation of energy communities is performed based on the inter-building distance.

Instead of the geographical distance, the line length is used as a distance metric. As the line

length is a Euclidian distance, the resulting line distance respects the fundamental metric

properties, particularly the triangle inequality. However, clustering does not need a true metric

as a similarity measure [Chang et al., 2016, Ackermann et al., 2010], but this is desirable for

our problem to make sure the clusters are formed based on their geographical properties. A

distance metric based on the line impedance would first not necessarily respect the triangle

inequality criterion, second not ensure that the resulting community groups consist of geo-

graphically close buildings. We could have embedded the line properties and any building

features such as energy consumption, PV potential, or socio-demographic information in a

new clustering problem. However, the complexity of such a problem would be challenging.

Besides, energy communities are entities formed by neighbor citizens and driven by a com-

mon interest in sharing resources. Therefore, the assumption that energy communities are

formed according to their geographical proximity seems reasonable.

From a DSO perspective, the outcome of this work can be summarized in the following
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statements. First, individual grouping customers to form energy communities does not

mitigate the grid stress. At best, the impact of a high PV penetration is the same at any

aggregation level. Second, the impact of a high PV penetration is more efficiently mitigated

using electricity tariffs than forming energy communities. Finally, energy communities can

favor more flexibility of the PV system if the appropriate tariff is applied. Variable tariffs, for

instance, offer economic incentives to increase the storage capacity, which is itself favored

by the aggregation of systems. There is, however, an opposition between two counteracting

facts. Under variable tariffs, system aggregation increases the network’s flexibility, but their

usage increases the grid’s stress. There is, however, a case in which this situation could be

favorable. Assuming a few energy communities contain a sufficient storage capacity, the cost

for deploying remote control of these flexible assets would be lower than the deployment of

remote control for plenty of small individual assets.

The interest of energy communities also relies on the social interaction that the community

members may have [Caramizaru and Uihlein, 2019, Bauwens et al., 2016, Geels et al., 2017]. If

directed toward energy conservation [Geiger et al., 2019] or self-consumption, such interac-

tion may have an interesting effect on the community performance. The following section

investigates how DSOs can harvest these behavioral changes to increase the PV penetration in

low-voltage grids.

5.3 Potential of ideal behavioral flexibility to increase the PV

penetration in a low-voltage grid

A vital issue for the fast deployment of PV in a low-voltage grid is the mismatch between the

load and instantaneous PV generation that may create a high reverse power flow. Namely, as

high PV generation occurs during the day while the load remains low, the power flow can be

reversed from the low-voltage grid to the medium-voltage one and can break the transformer

capacity limit.

Demand-side management is a promising solution to increase the penetration of solar energy

in a low-voltage network. As presented in Chapter 3, the principle is to encourage customers

to shift their load toward high PV generation periods in exchange for a financial reward.

As experienced in this thesis, time-of-use tariffs can be used as an incentive. We denote

”ideal behavioral flexibility” the people’s theoretical ability to intentionally shift and change

consumption habits under a financial or moral incentive. It contains any household appliance

except the ones explicitly considered as technical flexibility sources (batteries and power-to-

heat). Although all those appliances could be automated, we still consider it as the households’

consumption behavior. The open question is: does the grid benefit from this flexibility in the

context of increasing PV penetration?

In this work, we aim to evaluate how ideal behavioral flexibility can increase the network PV

hosting capacity. To this end, we leverage on the previous results of the theoretically available
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flexibility presented in Section 2.4.2.

5.3.1 Methodology

The general idea of the methodology is to obtain the available shiftable energy (or power)

in the network at any point in time and use it to cut the excess PV generation to keep the

power at the transformer within its capacity limit. The reference PV generation is calculated

by assuming all roofs are covered with PV. We define a scaling factor n > 0, which linearly

scales this PV generation profile (n = 1 corresponds to the generation with all roofs covered).

The maximum value of n, such that the available flexibility can successfully keep the overall

injection power below the transformer capacity, give the maximum PV generation, thus PV

penetration. To do so, we assume:

1. The PV generation is the sum of the generation of all available roofs and can be scaled

by any real number n ∈R+.

2. The network PV hosting capacity is limited only by the reverse power flow at the trans-

former. Line ampacity and bus voltage constraints are not considered.

3. The ideal behavioral flexibility can be freely shifted during the day, making sure the daily

energy consumption is conserved.

More precisely, the power at the transformer for a given scale n is given by:

Pt = Lt −n ·Gt ∀t ∈ T (5.4)

where Lt is the total network load, and Gt the total PV generation (assuming all roof covered).

Negative values of P are injection power to the upper grid level and correspond to excess PV

generation. The maximum value of n ensuring that the injection power will be below the

transformer capacity limit, i.e., Pt > P lim ∀t ∈ T (P lim < 0), is given by:

n0 = min
t

Lt −P lim

Gt
(5.5)

Using the aforementioned assumptions, we can split Lt between its unshiftable Ut and

shiftable St component (Equation 5.6) in order to bring the available shiftable power St

inside a target period where we have the injection power exceeding the transformer capacity.

The third assumption constrains the daily energy consumption to be conserved (no inter-day

load shifting). Introducing the daily load Ld ,h , available shiftable power Sd ,h generation Gd ,h ,

and injection power Pd ,h for all days d ∈ D, and hours h ∈ H , we update the original load by

adding flexibility as:
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Original load Ld ,h =Ud ,h +Sd ,h (5.6)

Power at the transformer Pd ,h = Ld ,h −n ·Gd ,h (5.7)

Target period δd ,h =
1 if Pd ,h < P lim

0 otherwise
(5.8)

Optimal distribution of the shiftable energy eh = δd ,hPd ,h∑
h′ δd ,h′Pd ,h′

(5.9)

New load with flexibility Lflex
d ,h =Ud ,h +eh ·

(∑
h′

Sd ,h′

)
(5.10)

Using this new load Lflex
d ,h the maximum value of the PV generation scale for the considered

day is given by:

nd = min
h

Lflex
d ,h(n)−P lim

Gd ,h
(5.11)

At this stage, an iterative process is needed as nd depends on a guess value of n. This can

be easily solved by any gradient-free optimization algorithm, given the fact that the search

interval is bounded (n0 is the lower bounds. If n0 < 1, an appropriate upper bounds for n is

1). In our case, we obtained the final value of nd using the golden-section search algorithm

[Forsythe et al., 1977].

The final value of the PV generation scale is given by taking the minimum of the nd :

n∗ = min
d

nd (5.12)

To give some perspective to this value, some additional metrics are calculated as follow:

PV penetration PVP =
∑

d ,h Lflex
d ,h

n ·∑d ,h G∗
d ,h

(5.13)

PV self-consumption SC =
∑

d ,h min(Lflex
d ,h ,G∗

d ,h)∑
t G∗

d ,h

(5.14)

PV self-sufficiency SC =
∑

t min(Lflex
d ,h ,G∗

d ,h)∑
t Lflex

d ,h

(5.15)

with G∗
d ,h = n∗ ·Gd ,h

Note that for low insulation day, the PV generation can be low, or even null, which results in

222



5.3. Potential of ideal behavioral flexibility to increase the PV penetration in a
low-voltage grid

no excess PV generation. In such case, the target period in which the shiftable power will be

shared (previously defined in Equation 5.8) is slightly redefined as:

δd ,h =


1 if (P∗

d ,h < P lim) else

1 if Ld ,h <G∗
d ,h

0 otherwise

(5.16)

recalling P∗
d ,h = Ld ,h −G∗

d ,h .

5.3.2 Case study and available shiftable power

The presented methodology is applied to the Rolle low-voltage network introduced in Sec-

tion 5.2.2. The loads are assigned using the allocation method presented in Section 4.3.1.

The disaggregation algorithm presented in Chapter 1 has been applied to the initial load that

served for the allocation to extract the share of shiftable power. As the device usage prediction

algorithm gives at each point in time the amount of easily, hardly, and not shiftable energy

(converted into power), we considered the shiftable power as being the sum of the easily and

hardly shiftable power. This gives a representative idea of the theoretical available flexible

power. As the allocation process described in Section 4.3.1 involved some scaling (possibly

intraday) of the original loads to generated the final allocated load, we assumed that the share

of shiftable energy is conserved at all points in time. Thus, the original shiftable power is

scaled as the corresponding original load.

The PV generation was simulated assuming a full coverage of all roofs with an area greater than

10 m2 and an annual irradiance greater than 1000 kWh/m2. The resulting total PV capacity

available is 1250 kW and generates approximately 1500 MWh per year. In comparison, the

total consumption of the network is 720 MWh. The transformer has a nominal capacity of

400 kW.

5.3.3 Results

Applying this methodology, the maximum PV generation scale from Equation 5.5 gives n =
0.353, (P lim =−400 kW), which corresponds to a PV penetration of 73%.

The worst day in terms of reverse power flow at the transformer is reported in Figure 5.17. The

reverse power just reaches the transformer capacity limit in the afternoon.
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Figure 5.17 – Load L and generation G during the day with the highest reverse power flow

Using the theoretical shiftable power, the PV generation can be further scaled up to a new value

of n = 0.424, corresponding to a PV penetration of 87%. This is possible under the assumption

that the amount of shiftable energy is moved into the period of high injection preventing the

reverse power at the transformer to go below -400 kW, as illustrated in Figure 5.18. This figure

also highlights that the shiftable power is reduced relatively homogeneously either before or

after the target periods. To achieve these results, households must be aware of the foreseen

requirements to increase their consumption, delaying any energy-intensive morning activities

and anticipating the evening activities. This condition relies on the assumption of having,

first, a good communication canal with the households, second, a good forecast of both load

and PV generation. Besides, such a perfect synchronization between the PV generation and

flexible load seems unrealistic without technical measure, which challenges the assumption

that this flexibility is purely behavioral.
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Figure 5.18 – Load L and generation G during the day with the highest injection

To get an estimation of the value of ideal behavioral flexibility, we defined an average cost of

the electricity consumed. It takes into account the cost of importing energy, the gains from

selling excess PV energy, the average price of a kWh of PV production (the levelized cost of PV

energy, LCOEPV), and normalizes by the total network consumption:

C = E imp · c imp −E exp · cexp +E PV ·LCOEPV

E load
(5.17)

where E PV is the total PV generated energy (for a given scale n), E imp,exp are the total imported

and exported energy (at the transformer level, for the same scaling), and E load is the total

network energy consumption.

Re-using the simple flat tariff from Romande Energy with c imp = 21.02 cts/kWh, cexp = 8.16 cts/kWh,

and assuming a levelized cost of electricity using 2030 price of 15 cts/kWh, the average cost

of electricity can be calculated either at the maximum PV penetration (PVP) without taking

flexibility into account, or at the increased one thanks to the flexibility. These costs and the PV

penetration, self-consumption, and self-sufficiency are reported in Table 5.3 for both cases.

Table 5.3 – Scores without and with the flexibility

PVP SC [%] SS [%] C [cts/kWh]

Without flex 72.6 49.8 36.1 20.7

With flex 87.3 (+20%) 49.6 (-0.4%) 43.1 (+20%) 20.9 (+0.9%)

These results highlight that ideal behavioral flexibility allows for a relative increase of the

225



Chapter 5. Harvesting flexibility from a DSO perspective

PV penetration by about 20%. The decrease in self-consumption is negligible, but the in-

crease in self-sufficiency is remarkable. The average cost of electricity also increases by about

0.2 cts/kWh and indicates that with the foreseen PV price of 2030, it will not be economically

interesting to achieve such a high penetration. Note that the optimal PV capacity, considering

the ideal behavioral flexibility, has not been investigated in this work.

A LCOE sensitivity analysis is performed to see the effect of the PV cost on the profitability

of ideal behavioral flexibility. The average electricity price normalized by the import tariff

( C
c imp is plotted against the PV LCOE normalized by the export price ( LCOEPV

cexp ) in Figure 5.19.

Three different curves can be observed in this figure, the blue curve shows the case without

flexibility, at a PVP of 73%, the red curve with flexibility, at a PVP of 87%, and the yellow curve

at the same penetration level but using curtailment instead of flexibility. From this graph,

several insights are gained: First, curtailing without flexibility becomes profitable if the PV

LCOE drops significantly compared with the export price. Second, it will always be more

interesting to use flexibility (assuming it is free) than curtailment. Finally, the increase of PV

penetration gained by ideal behavioral flexibility becomes profitable only if the PV LCOE gets

smaller than 1.8 times the cost of exporting energy in this case study. The thin vertical dashed

line represents the ratio LCOEPV

cexp calculated for the PV 2030 price and shows that such a high PV

penetration is not profitable.

1 1.2 1.4 1.6 1.8 2

LCOE / cexp

0.7
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Figure 5.19 – Electricity cost evolution normalized by the import tariff c imp as a function of the
LCOE normalized by the export tariff cexp. The thin vertical line indicates the situation with
the 2030 price. The thick dash lines just represent the threshold for flexibility profitability.

5.3.4 Discussion

In Chapter 2, we investigated the potential for load shifting of households and commented

on how to trigger the available flexibility potential. This section pushed the reflection to
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investigate how a DSO can benefit from this flexibility to increase the PV penetration in a

low-voltage grid. To this end, the theoretical shiftable power extracted from the disaggregation

of the household load using the method presented in Chapter 1 is used. We investigated

if the shiftable power could be coordinated to lower reverse power at the transformer and

avoid transformer capacity breaking. The results highlight that a 20% relative increase of

PV penetration is possible. The underlying assumption that households may move freely

their energy to match with the PV generation is optimistic and need further discussions. For

instance, even at a network scale, it is hard to ensure a perfectly synchronized load shifting to

match the excess PV generation. Similarly, some load shifting activities may induce energy

conservation, as highlighted by the field trial results presented in Section 2.4 (the opposite

is also possible). This, however, should not affect the PV hosting capacity but may have a

significant effect on the self-consumption and self-sufficiency metric.

The sensitivity analysis on the PV LCOE allows us to outline that flexibility is a better choice

than curtailment. However, the profitability of the resulting high PV penetration depends on

the ratio between the PV LCOE and the export power. If this ratio is lower than 1.2, the 83% PV

penetration becomes profitable despite the curtailment. However, using flexibility enables

one to reach profitability much sooner (at a ratio LCOEPV

cexp = 1.78). The value of the flexibility

underlay here in the gain of time for the PV price to reach the break-even point to enable such

high PV penetration.

This work primarily focused on ideal behavioral flexibility, without taking into account the

technical flexibility coming from storage that may be a large source of flexibility. Besides, the

findings set the basement for further research on the value of flexibility. To address these

aspects, the following section investigates how DSOs can use remote-controlled technical

flexibility assets to avoid grid reinforcement.

5.4 Harvesting the flexibility of PV systems

The line ampacity breaking, reverse power flow, and voltage rise can be easily mitigated by

curtailment of the excess of PV (or other renewable-based) generation. However, this solu-

tion has a cost and is often considered as something to avoid as most as possible. Besides

on-load tap changer and PV inverter reactive power capabilities, a third possibility is to add

electrochemical storage to inject or absorb active power and thus mitigate the local energy

surplus [Hashemipour et al., 2018]. The optimal placement of such storage assets for voltage

regulation is also a current research question addressed in [Yong et al., 2018], for instance.

When addressing the voltage-regulation problem, one cannot neglect either the line ampacity

constraints or the transformer capacity constraints. However, the cost of generation or the

cost of exchanging energy is not always explicitly integrated within the optimization problem

formulation.

Another branch of the literature focuses more specifically on the optimal economic dispatch

of distributed generation (including PV or other renewable-based generation and storage).
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Such a problem is often referred to as the optimal power flow problem. As an example, [Hlalele

et al., 2020] investigate the optimal dispatch plan under renewable generation constraints, i.e.,

the renewable-based generation cannot be freely curtailed. Similar constraints are considered

in [Drabecki, 2019], which included the knowledge of existing stakeholders contracts that

constraints the minimum and maximum generation at some specific network location. In

[Nazari-Heris et al., 2019], the total cost of exchanging energy between microgrids is consid-

ered as the objective function of the optimal power flow problem. The authors consider that

the DSOs’ role is to regulate microgrids interactions to ensure their supply of energy and a

safe network operation.

If no solution of the economic dispatch plan or optimal power flow problem can be found,

or that such solution would lead to an inappropriate amount of energy being curtailed, the

final solution is to perform grid reinforcement. However, grid reinforcement costs are not

straightforward to estimate, as demonstrated in [Scheidler et al., 2018, Vu, 2018]. These

costs directly drive the need for flexibility in an active distribution network. Several works

investigated how a flexibility market can be created [Cruz et al., 2018, Jin et al., 2020]. Different

pricing schemes are proposed to encourage participation in such markets and ensure fair

retribution of the benefits [Mamounakis et al., 2019, Tsaousoglou et al., 2019]. In this literature

study, the demand for flexibility and its value is often considered as an input parameter. The

pricing mechanism is often similar to the retail-energy market, i.e., placing energy-based price

bids [Olivella-Rosell et al., 2018].

The present work aims to complement the above literature by comparing the cost of the

required flexibility with the cost of grid reinforcement. A new capacity-based pricing for

flexibility is also proposed. Critical periods are defined when the network constraints are

violated and call for flexibility. The DSO acts as a central dispatch planner and exploits

the available flexibility to resolve the violation while maximizing the PV generation. This is

formulated as an optimal power flow problem. The estimated reinforcement cost needed to

avoid network constraints violations is compared to the cost for the prosumers to provide this

flexibility.

5.4.1 Methodology

This study aims to compare the cost of providing flexibility to resolve network constraints

violations with the cost of grid reinforcement in the framework of increasing PV penetration.

To this end, the methodology consists of the following procedure:

1. The systems’ optimal design and operation are obtained for a given PV penetration level.

2. The resulting grid power exchanges are inserted in a load flow problem simulation to

evaluate the network constraints violations.

3. One or several consecutive violations of the network constraints are considered as

intervention periods (IPs). The IPs are augmented with one 15-min time step before
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and after the violation periods. This ease the optimization problem. Also, if the time

between two consecutive IPs is shorter than 1h, the IPs are merged. For each IP, an

optimal power flow problem is formulated to maximize the total PV generation and

resolve these violations.

4. The resulting modified grid exchange profile is used to calculate the sum of the systems’

operating costs (OPEXopf).

5. The cost of providing the required flexibility is defined as the difference between the

OPEX after the DSOs intervention (OPEXopf) and the original one (OPEX0).

6. The cost of providing flexibility is compared with the grid reinforcement cost estimated

from the initial load flow.

This procedure is repeated for several PV penetration levels and available flexibility capacity

scenarios.

A Flexibility assets determination

For a given PV penetration level, the flexibility asset capacities are determined by solving

an optimization problem and minimizing each PV system’s total cost of ownership. In this

work, we considered that the PV system flexibility could be provided by either active power

curtailment, inverter reactive power capability, and the absorption or injection of active

power using electrochemical storage. Hence, the optimization aims to find the appropriate

battery capacity for each system, given an energy tariff. At the same time, the system’s optimal

operation is extracted.

The corresponding optimization is the same as the one proposed in Section 5.2. In this work,

we consider only a variable volumetric tariff. Hence the optimization problem of a given

system design can be formulated as:

min TOTEX = OPEX+R ·cxbat

where: OPEX = oxge +oxbo

cxbat = E bat
cap · cbat +bbat · cbat

F

oxbo : see Equation 3.12b

oxge =
T∑

t=1

(
P imp

t · c imp
t −P exp

t · cexp
t

)
subject to: Equations 3.1 to 3.3f

(5.18)
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B Load flow and optimal power flow problem and intervention periods

The resulting grid exchange profiles (P imp −P exp) of all systems considered in a given net-

work are used to solve the load-flow problem and extract potential violation of the network

constraints. As a reminder, the load flow problem can be formulated as:

Active power Pi ,t =Vi ,t

n∑
k=1

Vk,t
(
Gi k cos(θi ,t −θk,t )+Bi k si n(θi ,t −θk,t )

)
(5.19a)

Reactive power Qi ,t =Vi ,t

n∑
k=1

Vk,t
(
Gi k si n(θi ,t −θk,t )−Bi k cos(θi ,t −θk,t )

)
(5.19b)

Line impedence Yi k =Gi k + j Bi k = 1

Ri k + j Xi k
(5.19c)

Line current Ii k,t = Yi k
(
Vi ,t −Vk,t

)
(5.19d)

where P,Qi ,t are the active and reactive power bus injection at bus i ∈ B, Vi ,t is the voltage

magnitude, θi is the voltage angle,and Ri k , Xi k (i k) ∈ L are the line resistance and reactance

respectively, j being the imaginary number.

The load flow equations (Equations 5.19a to 5.19d) are valid for all considered time step t ∈ T

which are considered independent.

The PV system are colocated with the load and battery at buses i ∈S⊂B. We consider only the

active power injection, which is possible only at these buses. For all other buses, the active and

reactive power is equal to zero at all times. The injection power at the system bus is deduced

from the solution of the optimal design and operation problem (Equation 5.18) as :

Pi ,t = P exp
i ,t −P imp

i ,t ∀i ∈S, t ∈ T (5.20a)

Pi ,t = 0 ∀i ∉S, t ∈ T (5.20b)

Qi ,t = 0 ∀i ∈B, t ∈ T (5.20c)

The voltage network constraints can be defined as the following:

Voltage constraints V low <Vi ,t <V up (5.21a)

Line ampacity limit Ii k,t < I max (5.21b)

Transformer capacity Str
t =|Vn0,t · In0n1,t | < (5.21c)

where V low,up are the voltage lower and upper bounds, I max is the line rated current, n0 is the

transformer low-voltage side node, Str
t is the transformer apparent power, and Str,max is the

rated transformer capacity.
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An intervention period (IP) is a set of consecutive time steps when one or more network

constraints (Equations 5.21a to 5.21c) are not satisfied. During this IP, the DSO can use

the available flexibility to resolve the violations and keep the network safe. To this end, we

formulate an optimal power problem (OPF) aiming to maximize the whole PV generation and

constraining the DSO to minimize the effect of its intervention on the system’s future operation.

Namely, a constraint is applied to the battery state of charge so that the grid exchange profile

after the IP is not disturbed. This constraint ensures that at the end of the IP, the state of

charge corresponds to the one extracted from the original optimal operation (solution of the

optimization defined in Equation 5.18):

Battery state of charge constraints E bat,OPF
i ,t = E bat

i ,t for t =
[

IPstart, IPend
]

i ∈S (5.22)

where E bat,OPF
i ,t is the battery energy decision variable of the OPF problem and E bat

i ,t of battery

energy extracted from the solution of Equation 5.18, and IPstart,end are the first and last IP time

step. Note that there can be any number P of IPs, which are independent OPF problems.

The OPF formulation is derived from POWERMODELS [Coffrin et al., 2018], which contains

a battery model slightly different than the one exploited in this thesis: The battery energy

balance (Equation 5.23a) is the same as the one considered in Chapter 3 (Equation 3.3a),

except no self-discharge is considered here. The energy stored in the battery is constrained by

upper and lower bounds (Equation 5.23b). Equation 5.23c ensures no simultaneous charge

or discharge of the battery. The battery, through its inverter, is allowed to inject or absorb

reactive power (Equations 5.23d and 5.23e). It also considers a constant power loss (active and

reactive) P,Q loss
i . The bus reactive power injection is constrained by Equation 5.23f. Finally,

the maximum charge or discharge power is constrained by the maximum apparent injection
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power (Equation 5.23g) and the maximum injection current (Equation 5.23h).

E bat
i ,t+1 −E bat

i ,t = T S

(
ηchaP cha

i ,t+1 ·−
1

ηdis
P dis

i ,t+1

)
(5.23a)

E bat
min ≤ E bat

i ,t ≤ E bat
max (5.23b)

P dis
i ,t ·P cha

i ,t = 0 (5.23c)

P bat,bus
i ,t + (P dis

i ,t −P cha
i ,t ) = P loss

i +Ri ∗|I bat
i ,t |2 (5.23d)

Qbat,bus
i ,t = j ·Qbat

i ,t +Q loss
i ,t +Xi ∗|I bat

i ,t |2 (5.23e)

Qbat,min
i ≤Qbat,bus

i ,t ≤Qbat,max
i (5.23f)√

P bat,bus
i ,t

2 +Qbat,bus
i ,t

2 ≤ Sbat,max (5.23g)

|I bat
i ,t | =

√
P bat,bus

i ,t

2 +Qbat,bus
i ,t

2

Vi ,t
≤ I bat,max (5.23h)

where E bat is the battery stored energy, P dis,cha is the battery charging and discharging power,

ηdis,cha, its corresponding efficiencies, E bat
max,min corresponds to the min and max state of charge,

P,Qbat,bus are the active and reactive power bus injection, P loss,Q loss are constant power loss,

Qbat is a slack reactive power variable bounded by upper and lower bounds, Qbat,max and

Qbat,min , R and X are the injection resistance and reactance, and I bat is the injection current.

Combining the storage flexibility with the PV systems and their inverter capabilities, the bus

injection power constraints can be written as follow:

Active power at system bus Pi ,t = P PV
i ,t −P cur

i ,t +P bat,bus
i ,t −P load

i ,t ∀i ∈S, t ∈ T (5.24a)

Reactive power at system bus Qi ,t =QPV
i ,t +Qbat,bus

i ,t ∀i ∈S, t ∈ T (5.24b)

Active power at all other bus Pi ,t = 0 ∀i ∉S, t ∈ T (5.24c)

Reactive power at all other bus Qi ,t = 0 ∀i ∉S, t ∈ T (5.24d)

Curtailment limit P cur
i ,t ≤ P PV

i ,t ∀i ∈S, t ∈ T (5.24e)

Inverter reactive power −qmax
r ·P PV

i ,t <QPV
i ,t < qmax

r ·P PV
i ,t ∀i ∈S, t ∈ T (5.24f)

where P load
i ,t is the uncontrollable load, QPV

i ,t is the PV inverter reactive power injection, and

qmax
r is the inverter reactive power capability measured in VAr/W.
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Finally, the formulation of the OPF problem can be written as:

min
P cur

i ,t ,P cha
i ,t ,P dis

i ,t ,Qbat,bus
i ,t ,QPV

i ,t

∑
i∈S,t∈[

IPstart...IPend
]−

(
P PV

i ,t −P cur
i ,t

)
where: P PV

i ,t is calculated in Equation 3.2a

and the number of installed modules is fixed

subject to: load flow equations: Equations 5.19a to 5.21c

storage constrains: Equation 5.22

storage model: Equations 5.23a to 5.23h

bus power balance: Equations 5.24a to 5.24d

PV inverter flexibility: Equations 5.24e and 5.24f

(5.25)

The objective function is to maximize the net PV generation, which is equivalent to minimizing

the curtailment. The formulation above is closer to the traditional literature’s formulation

[Chatzivasileiadis, 2018, Coffrin et al., 2018, Hlalele et al., 2020].

C Cost assessment

Once a satisfying solution is obtained for all IPs, the resulting total operating cost is calculated

with the modified grid exchange power and compared with the original operating cost:

New OPEX OPEXOPF
i = ∑

i∈S

T∑
t=1

(
P imp,OPF

i ,t · c imp
t −P exp,OPF

i ,t · cexp
t

)
(5.26)

Original OPEX OPEX0
i =

∑
i∈S

T∑
t=1

(
P imp

i ,t · c imp
t −P exp

i ,t · cexp
t

)
(5.27)

Cosf of flexibility provision ∆OPEX =∑
i

OPEXOPF
i −OPEX0

i (5.28)

where, again, superscript OPF denotes the variable’s value obtained by solving Equation 5.25

on all IPs. The values of these variables outside the IPs are the ones of the initial optimal design

and operation problem (Equation 5.18). This is ensured by the continuity of the battery’s state

of charge of Equation 5.22.

The difference between these two operating costs defines the cost for flexibility provision

(Equation 5.28). This cost is finally compared with the cost of grid reinforcement estimated
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using the solution of the load flow:

Total annualized reinforcement cost Creinf = Rgrid · (Creinf,line +Creinf,trafo
)

(5.29a)

Line reinforcement cost Creinf,line =
∑

(l )∈L
δl · c line ·dl (5.29b)

Transformer reinforcement cost Creinf,trafo = δtr · c trafo ·
(
max

t
Str

t

)
(5.29c)

Line reinforcement needed δl =
1 if maxt Il ,t > I max

0 otherwise
(5.29d)

Transformer reinforcement needed δtr =
1 if maxt Str

t > Str,max

0 otherwise
(5.29e)

Annuity factor Rgrid = r grid · (1+ r grid)Lgrid

(1+ r grid)Lgrid −1
(5.29f)

where c line is the cost of replacing a line per unit of length, dl is the line length, c trafo is the cost

of replacing a transformer per unit of capacity.

D Other performance indicators

In addition to the operating costs, which determines the cost of providing the flexibility, a

few other performance indicators are defined in order to have a better understanding of the

flexibility requirements and how it is delivered (in the following, operator
∑

p =∑P
p=1 is the

sum of over all IPs, and
∑

t =
∑T

t=1 is the sum over all time steps):

Intervention period duration ∆IPp = IPend
p − IPstart

p p = 1...P (5.30a)

Total intervention time TIP =∑
p

(
IPend

p − IPstart
p

)
(5.30b)

Cumulative energy stored E stored = ∑
i∈S

∑
t

P cha
t ·T St (5.30c)

Mean battery absolute deviation ∆P bat =
∑

i∈S
∑

t

∣∣∣P bat,OPF
i ,t −P bat

i ,t

∣∣∣
|S|T (5.30d)

with P bat = P cha
i ,t −P dis

i ,t

PV inverter cosφ cosφi ,t =
P PV,OPF

i ,t −P cur,OPF
i ,t√(

P PV,OPF
i ,t −P cur,OPF

i ,t

)2 +QPV
i ,t

2
(5.30e)
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5.4.2 Case study

We applied the presented methodology on the CIGRE low-voltage grid [CIGRE et al., 2009]. This

is a simplified model of a three-phase European low-voltage grid, as pictured in Figure 5.20.

Such a case study is a standard, representative case open for the research community. We

consider the load and generation are balanced on the three phases to meet the above OPF

formulation. In the original set-up, no PV generation or storage is present in the network,

and only a daily profile is given for the load. Hence, we adapted this case study and assumed

each load is a physical building with some roofs potentially covered by PV modules. We

arbitrarily picked some loads from the FLEXI [Perret et al., 2015] and FLEXI 2 [Perret et al.,

2019] projects and inserted them in the network. The buildings’ characteristics (especially

the roof area and orientation which determines the PV capacity and generation profile) are

picked from the solar roof database 5. The buildings are matched with the load according

to their annual energy consumption estimated using the [SIA, 2015] norm. We assumed a

time-of-use electricity tariff with a low rate during the night and weekend and a high rate

during the day, as reported in Table 5.4. We estimated the cost of the battery for 2030, using

the approach of [Bloch et al., 2019], is equal to 182 CHF/kWh. The transformer cost is assumed

to be 60 CHF/kVA, and the line replacement cost 70 CHF/m [Zhang et al., 2013]. The lifetime

of the grid components lifetime is assumed to be the same as the one of the transformers,

estimated at 30 years by [Behi et al., 2017]. We assumed that only the PV inverter can provide

reactive power up to 0.4 VAr/W [Bründlinger, 2020]. All parameters and corresponding values

are reported in Table 5.5.

5https://www.uvek-gis.admin.ch/BFE/sonnendach
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Figure 5.20 – Illustration of the CIGRE Low-voltage network adapted from [CIGRE et al., 2009]

Table 5.4 – Tariff

Hours Tariff (cts/kWh)

c imp

Mon-Fri 06h-22h 23.92

Mon-Fri 22h-06h 15.16

Sat-Sun all-day 15.16

cexp 8.16
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Table 5.5 – System, PV, and battery parameters

Param. Unit Value Param. Unit Value
S

Y
S

T
E

M T - 35040 L years 25

M - 12 Lbat years 9

T S s 900 r - 0.03

B
A

T
T

E
R

Y,
IN

V
E

R
T

E
R SOCinit - 0.7 CRchar,dis 1/h 1

SOCmin,max - 0-0.7 cbat CHF/kWh 182

α 1/day 0.04 cbat
F CHF 0

ηcha,dis - 0.98 cbat
o CHF/kWh 10−6

P loss MW 0 R Ω 0

Q loss MVAr 0 X Ω 0

Qbat,min,max MVAr 0 qmax
r MVAr/MW 0.4

N
E

T
W

O
R

K

V low,up pu 0.95-1.05

Str,max kVA

R0-R1:500

I max kA 1 I0-I1:150

C0-C1:300

r grid - 0.03 c trafo CHF/kVA 60

Lgrid years 30 c line CHF/m 70

The annual energy demand, maximum PV capacity, and corresponding battery capacity

(obtained by solving Equation 5.18, with this maximum PV capacity and tariff) are reported in

Table 5.6. The total annual energy demand is about 1000 MWh/year. The maximum installed

PV and battery capacity is 1500 kW and 263 kWh, respectively. To evaluate the effect of an

increasing PV penetration on the cost of providing flexibility and grid reinforcement, the PV

capacity is slowly increased from 10% up to 100% of the maximal capacity (determine by

the roof area). In this way, we define eight PV penetration scenarios. For each scenario, the

number of modules is adjusted to prevent unrealistically small installation. In more details,

the minimum number of modules that can be installed is determined as:

nmod
i ≥ R · cPV

F

Gi
· c imp −R ·P mod

i · cmod (5.31)

where R is the annuity factor defined in Equation 3.11, cPV
F the fixed cost of an installation,

Gi =∑
t P PV

i ,t ·T St with P PV
i ,t the modules generation power, P mod

i is the module nominal power

and cmodis the PV variable cost.

The meaning of Equation 5.31 can be interpreted as the minimum number of modules to

reach a LCOEPV below the import tariff c imp (taken as 23.92 cts/kWh).

The resulting scenarios are reported in Figure 5.21. In this figure, the PV hosting ratio (define

as the ratio between installed capacity and the maximum PV capacity) is also represented and
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the PV network hosting ratio, which compares the installed PV capacity with the transformer’s

capacity. As we have three transformers, the reference transformer capacity is the sum of the

capacity, i.e., 0.95 MVA.

Table 5.6 – Systems data

Annual demand PV max capacity Battery capacity

(MWh) (kW) (kWh)

R1 598.97 447.09 141.13

R11 6.09 8.19 2.89

R15 6.13 6.30 2.18

R16 5.58 24.89 2.48

R17 5.29 44.74 2.30

R18 19.82 64.27 4.71

I2 2.88 6.93 1.21

C1 360.34 678.35 87.96

C12 5.89 19.53 1.39

C13 11.73 40.64 4.83

C14 7.02 53.25 3.69

C17 5.84 17.64 2.37

C18 6.56 18.90 3.10

C19 7.34 36.86 2.65

C20 3.59 10.08 1.09

Total 1053.08 1477.69 263.97

Figure 5.21 – PV hosting and PV network hosting ratio (left axis) and number of installed sys-
tems (right axis, maximum is 15 systems). The red dashed lines are the selected PV penetration
scenarios. The numbers indicated in red are the scalings used to vary the PV capacity.
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Finally, for each of the eight PV penetration scenarios, the load flow, and OPF problem are

solved without considering the storage capacities. As a consequence, to cope with the grid

constraints, only curtailment can be used. This will provide an additional comparison point

for assessing the cost of flexibility provision.

5.4.3 Results

The solution of the load flow problem provides the essential information for the flexibility

requirements. Figure 5.22 illustrates a particular day of the 100% PV capacity scenario. The

blue curves in Figure 5.22a are the load-flow problem results for both the max transformer

loading (over the three transformers) and the maximum bus voltage (over the entire set

of buses). As one observed, both transformer loading and bus voltage violate the network

constraints (represented with the horizontal black dashed line). Hence, there is a need for a

DSO intervention to remotely control the PV inverters and batteries available in the network.

Figures 5.22b and 5.22c illustrate the operation of one particular system. As one can see in

Figure 5.22b, the PV generation is relatively high, and the battery is used to charge from PV

energy at the end of the day to discharge and reduce the grid exchange during the evening,

especially just before 22:00 when electricity is still at its high rate. The results of the OPF

(Figure 5.22c) highlights that the DSO has to curtail a significant fraction of the PV energy

while using the battery to limit curtailment at its minimum. Note that the operation at the

end of the day (and in the morning) is precisely the same as the original. This is due to the

constraints on the state of charge that ensure the operation’s continuity and limit any future

impact of the DSO intervention. This constraint is graphically illustrated in Figure 5.23. The

original state of charge (in blue) and the "after OPF" state of charge coincide during the whole

day except during the IP, where the battery is used to self-consume PV energy and avoid a

small fraction of curtailment. As a result, the "after OPF" transformer loading and bus voltage

(in orange) in Figure 5.22a stay nicely below their upper limits.
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(a) transformer loading level and bus voltage
T

(b) original system operation
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(c) after OPF system operation

Figure 5.22 – Illustration of the network and one system active power along a day, for the 100%
PV capacity scenario
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S

Figure 5.23 – State of charge evolution during a day. Note how the state of charge after the OPF
comes back to its originally scheduled value.

The IPs length for the eight PV penetration scenarios and the case with or without storage are

compared in Figure 5.24. A tiny difference can be observed between these two cases. An IP

can reach up to 10 h, with a mean value reaching more than 4 h at the highest penetration

scenario. The total intervention time for the case with storage is also indicated, increasing

linearly from a 70% PV penetration ratio and reaching almost 1400 h at 160% PV penetration.

I

T

Figure 5.24 – Duration distribution (left axis). Averages are indicated with a square and outliers
with a diamond. The total intervention time is on the right axis.

Table 5.7 summarizes the type of network constraints violations for each PV penetration. The

use of storage slightly reduces the amount of time but not the magnitude of the maximum

violations. Network violations occur starting with a PV penetration of 70%, with transformer

overloading. No current ampacity breaking has been observed. Bus over-voltage occurs

starting at a PV penetration of 120%.
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Table 5.7 – Summary of the network violations. Differences between the case with and without
storage are indicated in bold.

Transformer overloading Bus over-voltage

time (h) max (%) time (h) max (pu)

w/o storage w/ storage w/o w/ w/o w/ w/o w/

P
V

p
en

et
ra

ti
o

n

0.11 - - - - - - - -

0.39 - - - - - - - -

0.70 5 5 110 110 - - - -

0.86 44 44 134 134 - - - -

1.02 175 173 158 158 - - - -

1.19 530 523 186 186 30 29 1.06 1.06

1.36 804 799 215 215 442 439 1.07 1.07

1.58 1060 1044 246 246 850 846 1.09 1.09

To understand how much DSO is using the battery, Figure 5.25 highlights the difference

between the cumulative energy stored with the original operation and after DSO intervention.

The difference becomes significant from a PV penetration around 1. The mean battery deviated

power is relatively stable to 4 kW.

The DSO can also use the PV inverter reactive power capabilities. Figure 5.26 pictures the

distribution of the cosφ of the PV inverter for the maximum PV penetration scenario. Mostly

the there is no reactive power injection except for a particular system with a cosφ regularly

close to 0.93.

Figure 5.25 – Cumulative energy stored (left axis) and mean battery deviated power (right axis)

242



5.4. Harvesting the flexibility of PV systems
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Figure 5.26 – Distribution of the cosφ value during intervention time

The last resource for coping with grid constraints is PV production curtailment. This is also

the objective function of the OPF problem. Table 5.8 reports the value of the energy curtailed

for the case with or without storage and the PV production. The ratio of energy curtailed

represents at most 8% of the PV annual production (at the maximum PV penetration). Using

storage allows a significant reduction of the amount of energy to curtail.

Table 5.8 – Energy curtailed and PV production

PV penetration Energy curtailed (MWh) Generation (MWh)

w/ storage w/o storage

0.11 0 0 115

0.39 0 0 409

0.70 0 0 742

0.86 0 1 907

1.02 0 8 1076

1.19 3 32 1253

1.36 14 77 1435

1.58 49 139 1660

Although the PV curtailment is small, the DSO intervention’s financial impact, namely the cost

of flexibility provision, has to be compared with the cost of grid reinforcement. Figure 5.27

highlights that the cost of providing flexibility is smaller when using storage than without it

(the latter corresponds to the curtailment cost). As the grid reinforcement cost is quite difficult

to predict, the grid reinforcement cost is scaled and reported to the transformer’s specific

cost. The bold black dashed line corresponds to a reference transformer value of 60 CHF/kVA.

Any colored dashed line shows the reinforcement cost scaled between 0.2 (12 CHF/kVA) and
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2 (120 CHF/kVA). This allows estimating in which penetration level range is the distributed

flexibility competitive with grid reinforcement. In this case, curtailing is competitive until

PV penetration between 0.9 and 1.2 while adding storage in the flexibility port-folio allows

being competitive until a PV penetration of 1.2 or further. Distributed flexibility is readily

competitive until reaching the maximum PV capacity assuming a grid reinforcement cost

above 90 CHF/kVA

Figure 5.27 – Total cost of flexibility

Recalling that optimal design and operation ensure the battery’s profitability under a given

tariff, the flexibility cost corresponds to the compensation by the DSOs for having controlled

the PV systems. A small margin can serve as additional compensation to bring acceptance for

such policy and cover any additional cost for remote control or additional battery degradation

(which was not estimated here). In the following, we investigate two possible mechanisms,

one energy-based reward, and one capacity-based reward.

The flexibility cost margin is the difference between the cost of grid reinforcement and the cost

of flexibility. Hence, it corresponds to the benefits made by DSO for avoiding grid reinforce-

ment. To redistribute these benefits to the customers, one could imagine having energy-based

or a capacity-based flexibility cost, i.e.:

C flex,margin =Creinf −∆OPEX (5.32)

C flex,value
energy = C flex,margin∑

i
∑

t∈⋃
p I Pp

(P cha,OPF
i ,t +P cur

i ,t ) ·T St

(5.33)

C flex,value
capacity = C flex,margin∑

i PV cap
i +E bat

cap,i ·CRdis
i

(5.34)
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where PV cap
i is the installed PV capacity and E bat

cap,i ·CRi is the battery rated power capacity

(i.e., maximum charge and discharge power, assuming equal).

The evolution of the energy-based flexibility value with increasing PV penetration for a case

with or without storage and varying grid reinforcement cost is plotted in Figure 5.28. Due to

the discontinuous nature of the grid reinforcement cost, at low PV penetration, an energy-

based flexibility reward would lead to a high cost and then decreases with the PV penetration.

The energy-based flexibility value would indeed reduce to an insignificant value at high PV

penetration, raising some concerns about the viability of such schemes. Indeed as the need

for flexibility involve more and more energy to be either curtailed or shifted by the battery, and

the flexibility being more and more reduced as the cost of providing flexibility increase, the

resulting energy-based flexibility value decreases very quickly. The alternative capacity-based

flexibility value is reported in Figure 5.29. As one can observe, this reward scheme offers a

wide range of conditions in which the flexibility value is positive and substantial. The case

without storage offers a sharp drop as observed for the energy-based flexibility value for a

similar reason. However, considering storage enables a flexibility value of about half of the

grid reinforcement cost between 70% and 100% PV penetration.

E

Figure 5.28 – Flexibility cost margin normalized by the shifted energy
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Figure 5.29 – Flexibility cost margin normalized by the installed PV capacity

5.4.4 Discussion

In this work, the PV penetration was used as a reference metric to compare the hosted PV

capacity with the network capacity. The choice of this metric relies on the assumption that

networks are designed to sustain the maximum consumption power. In this particular case, as

the network is composed of three substations, it is most appropriate to use the PV penetration

than the ratio between the PV capacity and the sum of the transformers’ capacity. The latter

could be a relevant metric as well.

The results highlight that flexibility is profitable over grid reinforcement when the PV pen-

etration approaches 50% until about 110%. Although an upscaling of these numbers is not

straightforward, it gives some perspective on the economic advantage of distributed flexibility

over grid reinforcement in the context of the Swiss energy transition. In 2050, it is expected

that Switzerland will consume 76 TWh of electricity covered, amongst others, by 34 TWh of

PV. This is a PV penetration of ”only” 45%. Thus the current study contributes to ensuring the

feasibility of this goal from a system integration point of view. Nevertheless, it is by far relevant

to focus on what is happening at higher PV penetration, which can typically occur in rural or

suburban areas. Hence, such study should replicate on different network topology ranging

from dense urban to rural areas. One could expect that grid reinforcement might quickly be

the best option in rural areas as flexibility would be more appropriate in an urban context. Our

findings contrast with those of [Gupta et al., 2021], who do not explicitly consider flexibility

in their deployment scenario for PV, heat pumps, and electric vehicles. Our approach differs

in two ways. First, smart active power curtailment is considered. Second, the battery size is

optimized according to each systems leading to a network with 0.2 kW (or kWh) of battery

power (or energy, in our case) capacity per kW of PV paid by the building owners, while [Gupta

et al., 2021] consider a battery power capacity equal to the PV capacity paid by the DSO. Thus,

our findings complement the work of [Gupta et al., 2021] and by adding that the 11 Billion CHF
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needed for grid reinforcement can be lowered. For the share of the low-voltage networks,

those with a PV penetration above 45%, might benefit from the flexibility and reduce the total

cost for grid reinforcement. To converge to a coherent assessment of the Swiss situation, our

approach should be extended with electric vehicles and heat pumps.

In this work, we proposed to remunerate flexibility by compensating for the additional cost

induced by the DSO intervention. By definition, this quantity is positive as the decision

variable deviates from the optimal control trajectory. In an actual implementation, under

the no-storage case, this assumption is realistic as the most optimal control of a PV system

is to always inject at the maximum available generation power. Under a storage scenario,

this optimal control assumption is questionable but could be the ground for a fair posterior

calculation of the flexibility compensation. In more details, let us assume that for a particular

day, the DSO had to activate the charging of a battery to ease the network from excess PV

generation. The next day, knowing precisely the past PV generation and load, the DSO could

calculate the optimal battery control trajectory and pays the difference in operating cost

between the optimal control version and the actual operating cost of the considered day.

To redistribute the avoided grid flexibility cost, the most adopted approach is an energy-

based remuneration scheme [Mamounakis et al., 2019, Olivella-Rosell et al., 2018, Jin et al.,

2020], but our results show that such a flexibility value decreases very quickly with the PV

penetration. Hence, using such compensation schemes, and giving that the avoided cost

(about 1000 CHF/year) being small compared with the total expense for energy provision

(1 GWh/year times 0.21 cts/kWh is about 200’000 CHF/year), the energy-based flexibility value

would not be an appropriate signal to foster acceptance of DSO controlled assets. However, a

capacity-based compensation scheme presents more advantages. Under such a mechanism,

the value of flexibility is more constant while distributed flexibility stays competitive compared

to grid reinforcement. Its value corresponds to a one-time payment of 30 CHF/kW of installed

PV and battery capacity if the DSO is allowed to control this system. This is a 10% percent

additional subsidy to the 290 CHF/kW6 of the unique retribution from the current Swiss PV

encouragement scheme. This could potentially cover the additional cost of a remote controller.

This flexibility value is a compensation for letting the DSO control the battery and does not

consist in a mandatory contribution to the profitability of the battery. Indeed, the battery

size is determined by an optimization problem that does not take into account future income

from the DSO’s intervention. There is still an open question on the quantification of the

DSO-induced battery degradation. Especially at high PV penetration, the DSO’s interventions

increase the number of cycles (or the total energy stored) by about 15% at a penetration of

120%. This is still moderate but may raise concerns as larger PV penetration leads to a more

significant increase in the battery DSO usage.

The flexibility provision cost, defined as the difference between an original and new OPEX ,

heavily relies on the tariffs. This opens the path of new research questions about the interaction

between the tariff structure (which impacts the system’s design and operation, thus the grid

6Appendix 2.1, ch2.3 of OEneR
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reinforcement needs and flexibility requirements) and the cost of providing the flexibility.

In particular, capacity-based tariffs and block-rate tariffs may be particularly interesting as

their ability to reduce the grid’s stress can be conjugated with harvesting the particularly high

battery capacity they incentivize.

5.5 Conclusion

This chapter aims to propose solutions and guidelines for distribution system operators

(DSOs) to harvest the distributed flexibility offered by PV systems. Distributed PV systems

offer new opportunities for DSO to delay investment in grid reinforcement. As a general

outline of this work, we can state a few recommendations for DSOs. First, the constitution

of energy communities is beneficial from a PV deployment perspective as it allows to reduce

investment costs and increase the social welfare of the communities. In contrast, it does not

bring any advantages from the grid perspective and even slightly increases the grid’s stress

without offering more flexibility capacity. However, there is an advantage of grouping flexible

assets into fewer, larger capacities. From a grid management perspective, there is more gain

in offering suitably tailored electricity tariffs that reduce the stress on the grid and promote

additional flexibility capacity, in the forms of batteries, for instance, than encouraging energy

communities. Seconds, ideal behavioral flexibility may be an excellent opportunity for DSOs

to increase the PV penetration up to 20% theoretically. Although this concept is challenging to

put into practice and might show being unreliable, behavioral change in consumption habits

helps and, as such, is worth being promoted. Third, there is a case for distributed flexibility as

a competitive alternative to grid reinforcement. In the path toward a high PV penetration in

our low-voltage grids, leveraging the available flexibility is an excellent opportunity to delay

grid investment. It implies a compensation mechanism to ensure no pejoration of the PV

systems’ financial stability. We propose a simple mechanism where the DSO compensates

the economic loss implied by the remote control of the energy management. The remote

control cost can be covered by the benefits of avoiding grid-reinforcement costs and can be a

one-time contribution to the PV systems investment.

More precisely, this chapter started with an investigation of the effect of aggregating systems

to form energy communities on the grid stress. We compared several community scenarios,

from no-aggregation (all individual buildings) to one large energy community for the whole

network under three tariff scenarios. For each case, the optimal battery size and operation

were determined while PV was assumed to be fixed at its maximum to ensure a maximal PV

penetration. The results highlight that energy communities have a negligible negative effect

on the grid impact, which can be compensated by electricity tariffs. The major advantages of

forming energy communities are the reduction of the total investment cost and the reduction

of the flexibility assets that can be controlled by DSOs.

Then we investigated to which extend ideal behavioral flexibility can increase the network PV

hosting capacity. We used the device usage prediction algorithm to disaggregate households’
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smart meter measurements and get the shiftable energy potential. Their loads were allocated

into a low-voltage network. The maximum PV hosting capacity of the network was determined

by ensuring that the maximum reverse power flow of the transformer did not exceed its

capacity. The shiftable power was freely moved into the critical periods to reduce excess PV

generation peaks. An iterative process allowed to extract the maximum PV hosting capacity,

which can be increased by 20% by harvesting ideal behavioral flexibility.

Finally, we looked at the value of the flexibility in a framework where the DSO can control

the flexible assets, namely batteries, of distributed PV systems, to maintain a safe network’s

operation. We evaluated the cost of providing the required flexibility to keep the network in

safe operating bounds by calculating the difference between the original operating cost given

by optimal control and the operating cost associated with the DSO interventions. The cost of

providing flexibility was compared with the grid reinforcement cost. Any positive difference

between them is referred to as the flexibility value. We highlighted that distributed flexibility is

profitable until a PV penetration of 100-145% depending on the grid reinforcement costs.

To summarize the essential findings of this chapter, we compare the behavioral and technical

flexibility provision cost with the grid reinforcement cost under different PV penetration in

Table 5.9. The costs are normalized by the total network consumption to allow a comparison.

A capacity-based reward mechanism, to encourage PV system owners to provide such remote-

controlled flexibility, was found to be more adapted than an energy based reward mechanism.

This statement contrasts with the demand-side management remuneration schemes that were

proposed at the beginning of this thesis. Indeed a remunerative incentive to foster household

flexibility usually takes the form of energy-based remuneration schemes (variable tariffs, for

instance). The interesting alternative capacity-based remuneration schemes could be applied

to a household demand-side management program. As an idea, households could propose

a particular capacity they can reduce (or increase). They are paid if they have been able

to achieve the proposed power reduction or increase respectively during a particular event.

These reflections close the loop of this thesis and lead to the conclusion.
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Table 5.9 – Cost of flexibility summary

Unit Behavioral1 Technical 2

PV penetration (%) 73a 87 70a 145 158

PV capacity (kW) 440a 530 650a 1360 1480

Consumption (MWh) 720 1060

Flexibility provision cost* (cts/kWh) 0b 0b ≈ 0 0.26 0.43

Avoided grid reinforcement cost† (cts/kWh) 0 0.14 0.01 0.26 0.36

Flexibility profitability (yes/no) yes yes no

1 Study realized on the Rolle case study
2 Study realized on the CIGRE test case
* = ∆OPEX

Consumption
† = Creinf

Consumption
a Estimated maximum PV penetration without requiring flexibility
b Ideal behavioral flexibility is assumed to be free in this analysis
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6 Conclusion

“Solving the climate crisis is the greatest and most complex challenge that Homo sapiens have

ever faced. The main solution, however, is so simple that even a small child can understand it.

We have to stop our emissions of greenhouse gases.

Either we do that or we don’t.” [Thunberg, 2019]

Summary

This thesis aims to contribute to global climate change mitigation by proposing significant

contributions to foster a large penetration of renewable energy, particularly photovoltaics (PV).

As distributed PV is expected to be one of the pillars of the energy transition, flexibility re-

quirements will increase, especially at the district scale. Under high unbalance between local

generation and demand, low-voltage grids may experience over-voltage, line ampacity, and

transformer capacity breaking. To cope with this challenge, this thesis aims to provide insights

to promote PV systems flexibility and use these assets to mitigate the grid impact of large-scale

deployment of PV systems and delay grid reinforcement.

In Switzerland, most of the distributed PV will be installed on roof-tops. The consequence of

the generation decentralization is to enforce the households and the private sector’s role as

distributed energy producers. The households’ ability to adapt their power demand is, thus,

of primary relevance. We investigated, in Chapter 1, the household’s flexibility potential by

proposing an analytic method to disaggregate the smart meter consumption measurements

into appliance categories. The device usage prediction (DUE) algorithm is based on a Markov

model of the household activity chain, which infers, based on the power measurements,

which activities are occurring, and which appliances are activated. We benchmarked this

algorithm against four state-of-the-art algorithms. The DUE being an unsupervised algorithm,

it performs similarly from a disaggregation perspective but does not suffer from an exponential

increase of the computation time with the dataset’s size.
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In Chapter 2, this algorithm was used to disaggregate a panel of households’ smart meter

measurements to evaluate their flexibility potential. This potential was compared with their

reactions to time-of-use tariffs in the context of a field experiment. Two groups of households

were submitted to two different treatments. First, a time-of-use tariff with a low rate during

11:00-15:00 was applied. The second tariff consisted in a low rate, applied either between

10:00 and 13:00,13:00-16:00, or 16:00-19:00. The decision to activate low rate periods relied on

the weather forecast and depended on solar insulation during these periods. If enough solar

insulation was expected, a low rate period was scheduled for the corresponding period. The

households were informed by SMS one day in advance of the activation of the low rate periods.

The households’ reaction was measured using a dedicated score comparing the average power

during low rate periods with the average daily power. The variation of this score and the mean

daily consumption variation were compared with a control group (receiving no incentive or

information). The observed behavior change is low but still perceptible. A significant fraction

of the households receiving the incentives increased their flexibility score compared with

the control group. The achieved flexibility potential, assessed by comparing the measured

flexibility score with a theoretical score using the disaggregation tool DUE, lies between 30

and 90%.

The flexibility potential of new PV adopters was also assessed in Chapter 2. In the context of PV

systems in self-consumption schemes, the challenge is that smart meters do not measure the

households’ consumption but the net exchange of energy with the grid. Hence, a dedicated

methodology was proposed to estimate the actual households’ consumption from smart

meter measurements and simulated PV generation. The drawback of this method is that it

overestimates the PV self-consumed energy. A quantification of this error was performed

to have a critical view of the results. To minimize the effect of this bias, the analysis was

also restricted to clear-sky days only. Instead of the self-consumption ratio, we proposed

a normalized self-consumption (NSC) metric that allows comparing systems with various

PV penetration (or PV size) on a comparable basis. The results highlighted a significant

consumption behavior change for PV adopters compared with the control group.

The behavioral flexibility potential was compared, in Chapter 3, with the technical flexibility.

There is no doubt that any technical measure, particularly storage, can multiply by three

the average power demand during a particular period of interest compared with behavioral

flexibility. The model presented in Chapter 3 considers either storage (electrochemical) and

power-to-heat (namely, heat pumps and electric heater). This model can be translated into

a linear optimization problem. The decision variables are the design variable (PV capacity,

storage size, power-to-heat capacities) and the system’s operation ones (ultimately the import

and export power, constraints by the power balance, and technology constraints). This model

was used to assess the effectiveness of design regulation to enforce PV systems flexibility. The

results highlighted that imposing a minimum battery size per PV capacity unit can deteriorate

PV adoption, grid impact, and financial consequence.

A heuristic heat pump control algorithm (HCA) was proposed in Chapter 3. The algorithm
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is based on optimizing an indicator that compares the variation, by a given action, of the

operating cost with the heat produced. Besides the proposition of this novel, practical, and

easily implementable algorithm, a comparison between this algorithm and the optimal con-

trol closes the gap between energy planning (which concerns the design of energy systems

and some estimation of their operation) and the energy management problem. This work

highlighted that the proposed control algorithm performs similarly to the optimal control.

One of the primary results of this thesis was presented in Chapter 4. The electricity tariff

is a relevant lever to promote PV systems flexibility and mitigate the impact of a large PV

penetration. At the building level, the system design and operation were studied to understand

how it adapts to advanced tariff structures. The battery usage changes from ”increasing self-

consumption” to ”energy trading” when switching from a flat to a variable tariff. In contrast,

the battery is used to cut consumption peak under capacity tariffs. The addition of PV increases

the heat pump capacity, but it is marginally affected by a tariff change, except for the capacity

tariff. The electric heater capacity is adapted to the heat demand and complements the heat

pump capacity. We also introduced a block rate tariff in which the energy tariff depends on

the power level at which it is exchanged. In particular, the energy rate increases with the

import power. Conversely, the export tariff decreases when the export power increases. In

our example, this tariff significantly penalizes the PV penetration. Nevertheless, the design of

block rate tariffs is challenging, and other designs might mitigate this effect. More specific

research is needed on that matter. These results are up-scaled to a low-voltage network hosting

about 40 buildings with a PV potential of 1.5 MW. The conclusions at a single building level are

easily transposed to a large set of buildings. For buildings with a significant PV penetration,

curtailment and electric heaters are used under capacity tariffs to cut peak export power. The

tariff strongly impacts the grid usage intensity. Indeed, variable tariffs lead to more intensive

grid exchanges, which turn into more significant voltage deviations, line, and transformer

loading. Again a block rate tariff promotes smaller PV installation, thus reduce the impact

on the grid. In contrast, a capacity tariff allows installing the full PV potential (as for all other

volumetric tariffs) and significantly reduces the grid impact.

To up-scale the study from a single building to a whole network case, appropriate building

load scenarios are needed. Smart meter measurement could be particularly suitable, but the

privacy-preserving consideration does not allow direct use of such a precious data source. We

addressed this challenge, in Chapter 4, by proposing two approaches for using smart meter

data while hiding to the final data user, the customers’ location, thus respecting its privacy.

The first approach is based on the allocation of smart meter measurements (possibly obtained

in a different network). Those are normalized to match the annual energy consumption

at the building level (either known or estimated from a static approach) and deformed so

that the grid load’s aggregation meets the transformer active power measurements. The

second approach relies on the assumption that substituting any load by one presenting similar

electric characteristics will produce relevant results from a grid impact perspective. Thus,

we proposed a smart meter anonymization technique for network analysis (SMANET) that

groups load measurements by three according to their electrical characteristics. The three
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grid locations are provided on a group basis, hence guaranteeing privacy preservation. The

two approaches were tested in a reference case study. The results highlight that both methods

have specific advantages and drawbacks. In particular, the SMANET method allows a better

accuracy on the local voltage deviation than the allocation, while the latter shows a greater

accuracy regarding transformer loading. The feature selection for the grouping phase of the

SMANET approach has little influence on its performance.

In Chapter 5, we described how a distribution system operator (DSO) could harvest the

available flexibility potential. First, we showed that the aggregation of systems to create energy

communities is not an effective approach to mitigate the impact of a large PV penetration

compared to electricity tariffs. Furthermore, the system aggregation may lead to more severe

voltage deviation and peak transformer loading. Second, we showed that behavioral flexibility

could significantly contribute to the maximum network PV hosting capacity. Finally, we

showed how distributed flexibility could be harvested to resolve grid network constraint

violations by allowing a DSO to control curtailment and storage in the available PV systems.

The resulting over-cost induced by the controlled system’s non-optimal trajectory is paid to

the system owner and represents the flexibility cost. This cost was then compared with grid

reinforcement. We showed that the value of flexibility, defined as the benefits of applying such

scheme instead of grid reinforcements, represents about half the cost of grid reinforcement,

i.e., about 30 CHF/kW.

Thus, we contribute to addressing the challenge of integrating a high PV penetration by

promoting flexibility for PV systems in the following way:

• We showed that behavioral flexibility has low but measurable effectiveness. However,

it may raise customers’ interest in their energy consumption and drive energy savings.

We highlighted how households’ shiftable energy could match local PV production

(Chapter 2) and increase the PV network hosting capacity (Section 5.3).

• We proposed a disaggregation algorithm suitable for low smart meter measurement

resolution (15 min), providing valuable insights for DSO and energy retailer customers

(Chapter 1).

• We showed that tariffs are promising tools to promote systems flexibility (Sections 3.5

and 4.2). They offer some economic advantages over design regulations.

• We demonstrated how tariffs define customers’ interactions with the electrical network

and mitigate the impact of a high PV penetration (Section 4.4).

• We proposed two approaches to exploit smart meters data for network planning pur-

poses while coping with privacy preservation regulations (Section 4.3).

• We showed that aggregating systems to form energy communities does not contribute

to mitigating grid impact (Section 5.2).
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• We proposed an approach to estimate the flexibility value and a remuneration scheme

for the distributed flexibility (Section 5.4).

6.1 Policy recommendations for the promotion of distributed PV in

Switzerland

This thesis presented evidence that PV systems flexibility is a vital component for successfully

integrating a large share of renewable energy in Switzerland. This section aims to contribute

to future energy-related political debates to translate the findings into concrete actions.

6.1.1 Citizen involvement in the energy transition

Switzerland has a direct democracy. The citizen’s political involvement is high and strategic

decisions can be influenced through democratic instruments, such as popular federal initia-

tives and referenda. This emphasizes that the energy transition cannot be achieved without

the citizen’s strong support and participation. So many aspects of the Swiss CO2 emission

are related to citizen behaviors and choices. As depicted in the Swiss energy perspective for

2050 [SFOE, 2021], the massive integration of renewable energy must receive wide acceptance.

In this respect, PV energy already enjoys good support from the population. However, only a

minor fraction of the population has access to this technology. Only one third1 of the Swiss

households owns their dwelling. This means that only this share can decide to invest and

install PV if their financial means are sufficient. Self-consumption communities only concern

tenants of buildings whose owners have environmental concerns.

There is a bias in the access to distributed renewable energy. First, it is currently only for the

wealthiest who can invest either for their own use or for their tenants as a long-term financial

investment. There is a need to provide broader access to PV technology for the following

reasons. First, it emphasizes redistribution of wealth created by local energy production, thus

enforcing a more social energy transition. Second, it unlocks the households’ flexibility poten-

tial by fostering energy consumption/production awareness. Thus, it promotes investment

and acceptance of flexible technologies.

In this context, the creation of energy communities is particularly relevant. This thesis showed

that such spatial aggregation does not significantly impact the network compared with a

case without aggregation. However, energy communities can leverage social innovation to

promote energy conservation and behavioral flexibility. An innovative business model could

consider the community as a cooperative, with shareholders sharing a fraction of the initial

investment cost, the rest being covered by external funding. The cost and benefits shall be

shared to promote adequacy between the demand and local energy production and energy

conservation.

1https://www.bfs.admin.ch/bfs/en/home/statistics/construction-housing.html
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These recommendations can also encourage the acceptance of other renewable energy sources.

In particular, most wind energy projects experienced a low acceptance in Switzerland. Pro-

moting citizen involvement by constituting citizen-owned energy communities to invest in

wind energy has a great potential to increase the acceptance and chance of success to harvest

the potential of this energy source.

6.1.2 Comments on the current Swiss framework

Decarbonization scenarios for Switzerland imply to install typically between 34 and 50 GW of

PV capacity by 2050 [SFOE, 2021, Nordmann, 2019]. The current Swiss energy and electricity

provision laws include a few mechanisms to promote renewable energy source investments.

The future revision of the energy and electricity provision law includes a complete liberal-

ization of the retail energy market, including for small customers. This future regulation

includes a base energy provision mechanism constituted of 100% Swiss and renewable energy.

This deregulation offers vast opportunities for local energy markets, which would enable

peer-to-peer energy trading. Those can be beneficial to offer universal access to cheap PV

energy.

The provision of flexibility as a service by end-customers is at least considered in the new law

project, though no instrument to promote such flexibility is described. There is currently a

high risk that this flexibility cannot be harvested due to a lack of technical measures to ensure

that DSO can access these opportunities. Future grid codes might include guidelines and

minimum specific requirements for the flexibility of PV systems. Allowing peak shaving can be

an appropriate measure to delay grid investments, but it should be remunerated to maintain

the PV systems’ financial profitability. The federal electricity commission could propose a base

mechanism to regulate such compensation, for instance, following the principles presented in

this thesis.

6.1.3 Toward 50 GW PV capacity in Switzerland

To reach 50 GW PV capacity by 2050, Switzerland should install about 34 GW on buildings

(single-family, multi-family, commercial, and industrial buildings), 5 GW on agricultural

land, another 5 GW on public service space (public transport station, highway-side, etc.)

and a remaining 6 GW on other ground [Nordmann, 2019, Swissolar, 2020] ([Remund et al.,

2019], account for about 3GW in the alps). According to Swissolar2, 460 MW were installed

in 2020, pushing the total installed PV capacity to 3 GW. The newly installed PV capacity is

about 300 MW/year (average 2013-2019). To reach 50 GW by 2050, we should install about

1500 MW/year.

To reach such a pace, we should make sure the PV installations cover the whole suited roof

2https://www.swissolar.ch/fr/services/medias/news/detail/n-n/rekordzubau-bei-der-schweizer-photovoltaik-2020/
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area. Figure 6.1 shows the yearly installed PV capacity 3(blue bar) and the PV potential that

could have been installed on the corresponding roofs, assuming a module efficiency of 17%

and only roofs with more than 1000 kWh/m2/year irradiance4. This figure highlights that

only 40% of the potential is covered with PV. Hence, there is an urgent need to encourage a

complete coverage of the roof’s potential when new installations are planned. However, the

current economic context and PV cost make it hardly profitable to install a large PV plant in a

self-consumption scheme. Moreover, most DSOs or installers do not encourage complete roof

coverage. For these reasons, there must be incentives for all actors (from private households

to energy companies) to make sure most of the available space is covered with PV. The current

pitfall is that those small- to mid-size installations will surely last until 2030-2040, making the

unexploited roof area out of reach for future PV installation. It is indeed unlikely that building

owners will upgrade their installation except maybe for covering other non-exploited roofs.

Y

Figure 6.1 – Yearly installed capacity and the corresponding roof potential (assuming a module
efficiency of 17% and only roofs with an irradiance > 1000 kWh/m2)

To ensure that a large installation is also cost-effective, virtual energy communities can provide

a suitable business case even in self-consumption schemes. Virtual energy communities

should allow anyone, tenants, companies, or public entities, to co-invest in a large PV plant

in their neighborhood, which will then cover their energy needs. Participants in such virtual

energy communities should pay only a fraction of the electricity tariff grid share when they self-

consume the PV production. Using such a mechanism allows decoupling the PV investment

from the energy market, and leverage on a social acceptance of clean, affordable, and local

3Only the installation with capacity above 30 kW or in feed-in remuneration at cost scheme or that volunteer
for the source of electricity certification, integrated or attached on rooftops, source: https://opendata.swiss/en/
perma/e5a00bdb-5022-4856-ad4a-d1afe7bf38b0@bundesamt-fur-energie-bfe

4Method and data from solar roof https://opendata.swiss/en/perma/b614de5c-2f12-4355-b2c9-7aef2c363ad6@
bundesamt-fur-energie-bfe
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energy.

Another reason that may prevent the roll-out of large PV installations is the financial aspect.

The initial investment cost and capital cost may discourage building owners from covering

their entire roof. The financial challenge can be harvested by cheap access to capital. One or

more dedicated institutions (public pension funds, national bank) can provide this to offer the

financial condition to drive distributed PV investments.

The Swiss Federal Office for Energy assumed a PV penetration of about 45% by 2050 (34 TWh

PV generation to cover 76 TWh of national consumption). Assuming this penetration occurs

mainly in residential and district scales, our findings emphasize the feasibility of this target,

provided that flexibility encouragement mechanisms exist.

6.2 Conclusions and perspectives

This thesis highlights the role of the residential sector in providing part of the required flexibil-

ity to integrate a large share of PV energy in low voltage grids. This section presents the main

messages and perspectives.

First, despite the low households’ reaction to time-of-use tariffs, their potential flexibility is

still significant. Our results highlighted that PV adopters have a more significant consumption

behavior change. Hence, there is an unexplored gap to evaluate how remunerative and moral

incentives can be combined and offered to any households (including those with no access

to PV) to foster this new flexibility potential. For instance, allowing households to co-invest

in a neighbor PV plant, and remunerating them according to their self-consumption level

could create the incentive to more significantly change consumption habits. In addition, such

a scheme would offer broader access to PV energy, even for tenants, and greater inclusion

of citizens in the energy transition. To push even further the harvesting of the household

behavioral flexibility, DSOs could offer a direct flexibility service by asking people to increase

or suddenly lower their consumption by direct notification on their mobile phone. Despite

the low households’ flexible capacity compared with technical means, such a measure would

open the acceptance for more intrusive demand-side management measures and increase

the citizen role in the decarbonization of the power sector.

To promote the flexibility of PV systems, tariffs are a promising tool to enable an economically

viable deployment of flexible technologies such as storage, thus promoting larger flexible

capacities. In particular, variable tariffs are particularly effective to foster larger battery sizes

but should be used with care, as the usage of those batteries may significantly impact the

network. In comparison, capacity-based tariffs allow the installation of large batteries, espe-

cially for systems with prominent consumption peaks, and reduce grid stress. Finally, block

rate tariff is a promising grid structure as it strongly reduces the grid usage intensity, but its

complexity may raise concerns about its acceptance. However, such a structure is already in

use in the water supply. The only remaining blocking point is a solid theoretical background
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on designing such an electricity tariff, keeping in mind such a structure can be detrimental for

the PV deployment. There is currently a lack of research in this field.

Distributed flexibility has the potential to be harvested by DSOs to deal with punctual network

constraint violations. The most straightforward approach is active power curtailment, but

its cost can be higher than grid reinforcement. Providing the conditions that allow owners

to invest in flexible technologies, such as batteries, reduces the cost of providing flexibility.

It could enable DSOs to use such flexibility instead of grid reinforcement, as it can be a

competitive solution, depending on the network capacity and PV penetration. The role of

power-to-heat in this context should also be evaluated and probably increase the overall

profitability of distributed flexibility. There is some methodological challenge that should be

addressed in such case. In particular, providing a generic distributed flexibility model allowing

to skip the modeling of individual technologies (battery, heat pump, and electric heater)

should be addressed. To enforce our conclusion on the profitability, one should evaluate, from

a social welfare perspective, the overall cost of an increasing PV penetration (including grid

reinforcement, cost of flexibility, and overall cost of electricity) to evaluate the best economic

strategy according to the network topology, and geographical situation.

Our findings highlight that a capacity-based remuneration scheme for enabling remote-

control flexibility assets is the most appropriate. It would consist in a one-time payment

contribution of about 30 CHF per kW of installed PV and battery capacity. Further research

should be conducted to increase the robustness of this number, especially for a wider vari-

ety of network topologies. As the grid charges are calculated according to the total network

maintenance and investment cost of a DSO entire operating area, such remuneration scheme

should be estimated similarly, i.e., considering the grid reinforcement and flexibility cost of

the same operating area.

Such a scheme also promotes larger installation, which can be achieved by aggregating systems

into energy communities. In such a way, the installed PV capacity and battery capacity are

more significant, and the DSO needs to control only a few medium-capacity assets instead

of a large number of small ones. This also fosters the role of citizens as investors in the

energy transition. The negligible negative network impact of energy communities is here

balanced by the economic advantage given by the reduction of the investment cost (including

remote-control cost). The flexibility cost competitiveness of energy communities compared

to individual systems deserves further investigation.

Future work should consider the impact of additional flexibility sources such as the sector

coupling between electricity, heat, and gas network at the district scale. In addition, further

research should focus on the long-term evolution of distributed PV, flexibility sources, and

network investment. In particular, a clear road map for implementing 50 GW PV capacity and

the requirements for flexibility and grid reinforcement at the district scale should be produced.
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6.3 Summary for distribution system operators and policymakers

Recommendation I:

Promoting consumer behavior change regarding the adequacy between their consump-

tion and local PV generation is worth considering. It paves the way for energy savings

and the acceptance of more flexible technologies.

Recommendation II:

Non-intrusive load monitoring can be a valuable service to provide insights on flex-

ibility potential and energy savings. It can be performed offline from smart meter

measurements by distribution system operators.

Recommendation III:

Electricity tariffs can effectively complement regulations to foster PV system flexibility.

Variable energy tariffs are particularly effective in encouraging larger storage capacity

but should be treated with care as it increases the grid stress. Capacity tariffs promote a

more reasonable exchange with the grid.

Recommendation IV:

Block rate tariffs may be the ultimate tool to encourage flexibility of PV systems. Still,

it should be mainly designed according to the energy system size (PV capacity and

consumption power intensity).

Recommendation V:

Distributed flexibility is more economical than simple curtailment of the PV production

and should be favored over grid reinforcement when it makes the most sense.

Recommendation VI:

Encouraging energy communities allows securing investment in large PV plants to

cover the community needs. It also lowers investment costs and aggregate flexibility.

A mechanism to encourage flexibility is a one-time subsidy of 30 CHF/kW to install

remote control. By doing so, energy communities will have a positive impact on the

grid and PV deployment.
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Bienvenue au questionnaire du projet Flexi 
Le projet Flexi est une étude scientifique qui vise à déterminer la flexibilité de la demande d’électricité. 
L'objectif est de savoir dans quelle mesure la consommation peut être déplacée vers le milieu de la 
journée, afin d'utiliser au mieux l'énergie photovoltaïque qui est produite pendant cette période. 
Planair, l’EPFL et l’Université de Neuchâtel sont les partenaires du projet, qui bénéficie également 
du soutien logistique de La Goule (votre fournisseur d'électricité) et du soutien financier de l’Office 
Fédéral de l’Énergie. 

Pour répondre au questionnaire en totalité, il faut compter environ 5 minutes. Vous avez la possibilité 
d'interrompre le questionnaire et d'y revenir. Vos réponses seront sauvegardées. 

Nous vous remercions d'avance. 

Informations relatives au traitement des données : 
• Les informations collectées au travers de ce questionnaire et les consommations d'électricité

(ci-après : les données) seront traitées de façon strictement anonyme et confidentielle.

• Les données seront utilisées uniquement pour des analyses scientifiques menées par des

chercheurs académiques.

• Les données relatives à la consommation d'électricité ne seront pas traitées en temps réel.

• Les participants peuvent en tout temps demander l'effacement de leurs données.

• En fin d'étude, seules des données anonymisées seront conservées.
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Vous habitez... 

o un appartement

o une maison

Vous êtes... 

o locataire

o propriétaire

Votre logement comprend... 

0 1 2 3 4 5 ou plus 

Pièces 
o  o  o  o  o  o  

Salles de 
bain / 
toilettes o  o  o  o  o  o  

Autres (p. 
ex.: cave, 
grenier, 
véranda, ...) 

o  o  o  o  o  o  

Quelle est la surface habitable de votre logement ? 

__________________ m2 
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Comment le chauffage de votre logement fonctionne-t-il ? 
Plusieurs réponses possibles. ▢ Électricité▢ Mazout▢ Gaz▢ Pompe à chaleur▢ Chauffage à distance▢ Bois▢ Autre (précisez) : ________________________________________________▢ Je ne sais pas

Comment l'eau de votre logement est-elle chauffée ? 
Plusieurs réponses possibles. ▢ Électricité▢ Mazout▢ Gaz▢ Pompe à chaleur▢ Chauffage à distance▢ Bois▢ Autre (précisez): ________________________________________________▢ Je ne sais pas.
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Parmi les appareils suivants, lesquels possédez-vous ? 
Ne pas tenir compte des équipements collectifs de l'immeuble. 

Cuisine ▢ Réfrigérateur▢ Congélateur séparé du réfrigérateur▢ Cuisinière électrique▢ Four traditionnel▢ Four micro-ondes▢ Lave-vaisselle▢ Robot cuisine▢ Bouilloire électrique▢ Machine à café▢ Mixer▢ Presse-agrumes électrique

Appareils ménagers ▢ Lave-linge▢ Sèche-linge▢ Aspirateur▢ Fer à repasser▢ Humidificateur / évaporateur / aquarium

Multimédia ▢ Télévision 265



▢ Box TV▢ Lecteur DVD▢ Console de jeux vidéo▢ Chaîne hifi / radio / dock station▢ Cadre photo numérique▢ Ordinateur fixe▢ Ordinateur portable▢ Modem internet▢ Tablette▢ Téléphone fixe (y.c. sans fil)▢ Téléphone portable▢ Imprimante / scanner

Salle de bain ▢ Sèche-cheveux▢ Rasoir électrique▢ Brosse à dent électrique
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Combien des appareils suivants possédez-vous ? 

1 2 3 4 5 ou plus 

Télévision(s) 
o  o  o  o  o  

Console(s) de 
jeux vidéo  o  o  o  o  o  

Ordinateur(s) 
fixe(s) o  o  o  o  o  

Ordinateur(s) 
portable(s) o  o  o  o  o  

À quelle fréquence utilisez-vous les appareils suivants ? 

o Lave-vaisselle ______________________ fois par semaine

o Lave-linge ______________________ fois par semaine 

Quelle proportion d'ampoules basse consommation utilisez-vous dans votre domicile ? 

oMoins de 25%

o 25-49%

o 50-74%

o 75% ou plus
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Voici une série d'affirmations concernant l'environnement. Pouvez-vous indiquer dans quelle mesure 
vous êtes en accord ou en désaccord avec chacune d'entre elles ? 

Pas du tout 
d'accord 

Plutôt pas 
d'accord 

Partagé(e) 
Plutôt 

d'accord 
Entièrement 

d'accord 

Cela me préoccupe 
quand je pense aux 
conditions 
environnementales 
dans lesquelles nos 
enfants et petits-enfants 
devront probablement 
vivre.  

o  o  o  o  o  

Si les choses 
continuent ainsi, nous 
allons bientôt vivre une 
catastrophe écologique 
majeure.  

o  o  o  o  o  

Lorsque je lis dans le 
journal ou vois à la 
télévision des 
reportages sur les 
problèmes 
environnementaux, je 
suis souvent indigné(e) 
ou en colère.  

o  o  o  o  o  

Il y a des limites à la 
croissance 
économique, et notre 
monde industrialisé les 
a déjà dépassées ou 
n’est pas loin de les 
atteindre.  

o  o  o  o  o  

De nos jours, la plus 
grande partie de la 
population continue à 
se comporter de façon 
irresponsable vis-à-vis 
de l’environnement.  

o  o  o  o  o  

À mon avis, les 
problèmes 
environnementaux et 
leur impact sont 
présentés de façon très 
exagérée par les 
écologistes.  

o  o  o  o  o
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Les responsables 
politiques restent 
encore aujourd’hui 
beaucoup trop passifs 
par rapport à 
l’environnement.  

o  o  o  o  o  

Nous devrions tous être 
prêts à modérer notre 
train de vie pour 
protéger 
l’environnement.  

o  o  o  o  o  

Il faut absolument que 
des mesures soient 
prises en faveur de la 
protection de 
l’environnement, même 
si cela nuit à l’emploi.  

o  o  o  o  o  

Combien pensez-vous que coûte 1 kilowattheure (kWh) d'électricité en Suisse (en moyenne) ? 
Indiquez votre meilleure estimation. 

_____________________ centimes 
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Que pensez-vous des affirmations suivantes ? 

Vrai Faux Je ne sais pas 

La plus grande partie 
de l'énergie 
consommée dans un 
ménage suisse sert au 
chauffage.  

o  o  o  

Les émissions de CO2 
jouent un rôle crucial 
dans le réchauffement 
climatique.  

o  o  o  

Abaisser la 
température de 1°C 
permet de réduire la 
consommation 
d'énergie liée au 
chauffage d'environ 
6%.  

o  o  o  

Le charbon est une 
source d'énergie 
renouvelable.  o  o  o  

Les centrales 
hydroélectriques 
représentent 10% de la 
production totale 
d'électricité en Suisse.  

o  o  o  

Savez-vous que La Goule propose des prestations de centrale photovoltaïque clés en main ? 

oOui

oNon
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Combien de personnes y a-t-il dans votre ménage ? 

0 1 2 3 4 5 6 
plus de 

6 

Femmes 
(18 ans 
ou +) o  o  o  o  o  o  o  o  

Hommes 
(18 ans 
ou +) o  o  o  o  o  o  o  o  

Filles (< 
18 ans) o  o  o  o  o  o  o  o  

Garçons 
(< 18 
ans) o  o  o  o  o  o  o  o  
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Combien de personnes de chaque catégorie y a-t-il dans votre ménage ? 

0 1 2 3 4 5 6 
plus de 

6 

Travailleur 
plein-
temps 
(90-100%) 

o  o  o  o  o  o  o  o  

Travailleur 
temps 
partiel 
(50-80%) 

o  o  o  o  o  o  o  o  

Travailleur 
temps 
partiel (< 
50%) 

o  o  o  o  o  o  o  o  

Écolier / 
étudiant o  o  o  o  o  o  o  o  

Retraité 
o  o  o  o  o  o  o  o  

Sans 
emploi o  o  o  o  o  o  o  o  

Autre 
o  o  o  o  o  o  o  o  

Combien de personnes de votre ménage travaillent régulièrement de nuit ou le week-end ? 

0 1 2 3 4 5 6 
plus de 

6 

Nuit 
o  o  o  o  o  o  o  o  

Week-
end o  o  o  o  o  o  o  o  
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De quel type est votre ménage ? 

o Famille / Couple

o Famille monoparentale

o Co-location

oAutre

Quel est le niveau d'éducation le plus élevé dans votre ménage ? 

o École obligatoire

o Formation professionnelle élémentaire

o École de formation générale

oApprentissage (CFC)

oMaturité (gymnasiale ou professionnelle)

o Formation professionnelle supérieure

oHaute école spécialisée HES / HEP

oUniversité / EPF
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Quel est le revenu mensuel brut (en CHF) de votre ménage ? 

omoins de 2'000

o 2'000-3'999

o 4'000-5'999

o 6'000-7'999

o 8'000-9'999

o 10'000-11'999

o 12'000-13'999

o 14'000 ou plus

o Je ne souhaite pas répondre

o Je ne sais pas

Vous êtes... 

o une femme

o un homme
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Quel est votre âge ? 

omoins de 18

o 18-29

o 30-39

o 40-49

o 50-59

o 60-69

o 70 ou plus

Merci pour votre participation 

Le sondage auquel vous venez de participer fait partie d'un projet scientifique dont le but est 
d'analyser la flexibilité de la demande d'électricité. Les informations collectées au travers de ce 
questionnaire ainsi que vos consommations d'électricité seront traitées de façon strictement anonyme 
et confidentielle. Elles seront utilisées uniquement pour des analyses scientifiques menées par des 
chercheurs académiques. Pour signifier votre accord, veuillez s'il vous plaît cocher la case "lu et 
approuvé" ci-dessous. 

Dans le cadre du projet, votre ménage pourrait être sélectionné afin de participer à une expérience 
particulière, dans laquelle un numéro de téléphone portable serait utilisé pour vous transmettre des 
informations par SMS. Dans cette optique, nous vous prions de bien vouloir indiquer une adresse 
électronique et, le cas échéant, si vous seriez disposé-e à communiquer votre numéro de téléphone 
portable pour les besoins de l'expérience. 

Votre adresse électronique et votre numéro de téléphone ne seront utilisés que dans le cadre du 
projet scientifique en cours et ne seront en aucun cas transmis à des tiers. ▢ Lu et approuvé▢ Adresse électronique : ________________________________________________▢ Disposé-e à communiquer un numéro de téléphone portable pour les besoins futurs

de l'expérience. 
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Afin de pouvoir réaliser cette étude sur les habitudes de consommation électrique des ménages 
possédant une installation photovoltaïque, nous avez besoin de quelques renseignements 
supplémentaires concernant votre installation. 

*Obligatoire

Données personnelles

Prénom *1.

Nom *2.

Adresse *3.

Installation photovoltaïque

Précisions sur votre installation photovoltaïque

Date de l'installation

Exemple : 15 décembre 2012

4. 

Nombre d'orientations

Si votre installation couvre par exemple les faces est et ouest, veuillez choisir 2.
Une seule réponse possible.

1 2 3 4 5

5. 
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Puissance installée

Puissance installée des modules en W (exemple
: 3000W). Si vous ne savez pas, vous pouvez
préciser le nombre de modules (exemple :
10mod). En cas de multiple orientations, merci
de séparer les réponses par une virgule
(exemple E et W : 2000W,2000W)

6. 

Orientation

Azimut de l'orientation de votre installation, par
exemple 180 pour sud (0:N, 90:E, 135:SE,
180:S, 225:SW, 270:W). En cas de multiple
orientations, merci de séparer les réponses par
une virgule (exemple E et W : 90,270)

7. 

Inclinaison

Inclinaison de votre installation/toit (0:plat,
90:vertical). En cas de multiple orientations,
merci de séparer les réponses par une virgule
(exemple E et W : 20,35)

8. 

Disposez-vous du devis de votre installation photovoltaïque ?

Nous serions intéressé par la partie technique de ce document détaillant le nombre et type de
module, onduleur, etc. Si vous disposez de ce document, merci de l'envoyer par mail à
lionel.bloch@epfl.ch. De même si vous avez une photo de votre installation.
Une seule réponse possible.

Oui

Non

9. 

Données de production photovoltaïque

Nous avons besoin de ces données pour déterminer quel est la part de votre production que vous 
consommez.

Disposez-vous de l'historique de votre production solaire sous forme de fichiers ?

Si oui, merci de l'envoyer par mail à lionel.bloch@epfl.ch.
Une seule réponse possible.

Oui

Non

10. 
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Disposez-vous d'un portail pour permettant de visualiser votre production photovoltaïque
et accepter vous de nous en transmettre l'accès ? *

Si oui, nous reprendrons contact par mail.
Une seule réponse possible.

Oui

Non

11. 

Note

Remarque12.
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C Rolle buildings parameters

Table C.1 – Rolle buildings’ parameters

EGID Footage Aroof C b C sh U b U sh Asun
0 T sh

max U tank V tank

m2 m2 kWh/K kWh/K W/K W/K m2 °C W/K L

829040 1158 560 46 5.99 472 2663 23 70 7.8 1475

829041 291 505 33 0.65 653 599 26 55 2.7 308

829043 262 196 15 2.09 337 771 17 60 2.6 277

829044 165 125 7 0.28 96 258 3 55 2.1 210

829045 267 130 11 0.41 111 376 3 55 3.8 499

829046 156 139 9 0.27 133 244 4 55 2.0 199

829047 158 139 9 0.27 125 247 4 55 2.1 201

829048 267 144 11 0.41 111 376 3 55 3.8 499

829049 198 89 8 1.02 116 455 6 70 2.4 252

829050 474 132 19 0.81 211 741 7 55 4.3 604

829051 201 103 8 1.04 118 462 6 70 2.4 256

829052 201 99 8 1.04 118 462 6 70 2.4 256

829053 294 120 12 0.50 146 460 5 55 3.1 375

829054 201 109 8 0.34 118 314 4 55 2.4 256

829055 201 96 8 0.34 118 314 4 55 2.4 256

829056 201 96 8 0.34 112 314 4 55 2.4 256

829057 456 220 18 0.77 204 713 7 55 4.2 581

829058 130 52 8 0.55 88 374 3 60 2.3 243

829059 714 444 40 3.17 469 1408 27 70 5.0 755

829062 1125 250 27 4.76 262 3233 10 60 9.9 2102

829063 1100 226 26 4.66 242 3161 10 60 9.7 2056

829066 1544 411 46 2.36 411 2173 11 55 12.2 2885

829067 204 109 8 0.35 114 319 4 55 2.4 260

829080 844 208 25 1.29 248 1188 7 55 8.1 1577

829081 848 206 25 1.30 249 1193 7 55 8.2 1585

829082 1532 380 46 6.49 416 4402 17 60 12.1 2863

829691 372 196 15 1.92 179 856 9 70 3.7 474

829692 250 260 15 1.06 178 718 7 60 3.6 467
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Appendix C. Rolle buildings parameters

Table C.1 – (continued)

EGID Footage Aroof C b C sh U b U sh Asun
0 T sh

max U tank V tank

m2 m2 kWh/K kWh/K W/K W/K m2 °C W/K L

829693 1568 1146 88 6.96 852 3093 49 70 8.4 1658

829694 579 360 23 2.45 222 1664 9 60 6.3 1082

829695 422 278 25 1.79 236 1213 9 60 5.1 789

829696 333 142 13 1.41 145 957 6 60 4.4 622

829697 460 381 26 1.03 282 946 11 55 3.7 486

829698 184 126 11 0.95 181 423 9 70 2.3 234

829700 210 149 13 1.09 190 483 9 70 2.5 268

829713 228 201 14 1.18 181 524 9 70 2.6 291

3104398 327 183 13 0.50 119 460 3 55 4.3 611

3104405 246 303 10 0.42 102 385 3 55 2.8 313

3104571 720 327 29 1.10 285 1013 8 55 7.3 1346

3104580 270 151 11 0.46 149 422 5 55 3.0 344

280065226 465 226 19 2.41 233 1070 11 70 4.2 592

280082734 714 294 28 2.87 435 1159 15 55 5.8 948

280091601 753 257 30 1.15 288 1060 8 55 7.5 1407
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[Gupta et al., 2021] Gupta, R., Pena-Bello, A., Streicher, K. N., Roduner, C., Thöni, D., Patel, M. K., and

Parra, D. (2021). Spatial analysis of distribution grid capacity and costs to enable massive deployment

of PV, electric mobility and electric heating. Applied Energy, 287(October 2020):116504.

[Gurobi Optimization, 2019] Gurobi Optimization, L. (2019). Gurobi optimizer 8.1, reference manual.

[Hakell et al., 2015] Hakell, B., Fisher, G., and Hersey, A. (2015). Setting the Benchmark for Non Intru-

sive Load Monitoring : A Comprehensive Assessment of AMI-based Load Disaggregation. Technical

report, Pecan Street.

[Halvgaard et al., 2012] Halvgaard, R., Poulsen, N. K., Madsen, H., and Jørgensen, J. B. (2012). Economic

model predictive control for building climate control in a smart grid. In 2012 IEEE PES Innovative

Smart Grid Technologies (ISGT), pages 1–6. IEEE.

288



Bibliography

[Harb et al., 2016] Harb, H., Reinhardt, J., Streblow, R., and Müller, D. (2016). Mip approach for design-

ing heating systems in residential buildings and neighbourhoods. Journal of Building Performance

Simulation, 9(3):316–330.

[Hart, 1992] Hart, G. W. (1992). Nonintrusive appliance load monitoring. Proceedings of the IEEE,

80(12):1870–1891.

[Hashemipour et al., 2018] Hashemipour, N., Niknam, T., Aghaei, J., Farahmand, H., Korpas, M., Shafie-

Khah, M., Osorio, G. J., and Catalao, J. P. S. (2018). A linear multi-objective operation model for smart

distribution systems coordinating tap-changers, photovoltaics and battery energy storage. In 2018

Power Systems Computation Conference (PSCC). IEEE.

[Hay and Davis, 1978] Hay, J. E. and Davis, J. A. (1978). Calculation if the solar radiation incident on

inclined surfaces. In Proceedings first Canadian Solar Radiation Data Workshop, Toronto. Ontario,

Canada 1978.

[He et al., 2016] He, K., Stankovic, L., Liao, J., and Stankovic, V. (2016). Non-Intrusive Load Disaggrega-

tion using Graph Signal Processing. IEEE Transactions on Smart Grid, 9(3):1739–1747.

[Heussen et al., 2010] Heussen, K., Koch, S., Ulbig, A., and Andersson, G. (2010). Energy storage in

power system operation: The power nodes modeling framework. In 2010 IEEE PES Innovative Smart

Grid Technologies Conference Europe (ISGT Europe), pages 1–8. IEEE.

[Hidalgo-Rodriguez and Myrzik, 2018] Hidalgo-Rodriguez, D. I. and Myrzik, J. (2018). Optimal opera-

tion of interconnected home-microgrids with flexible thermal loads: A comparison of decentralized,

centralized, and hierarchical-distributed model predictive control. 20th Power Systems Computation

Conference, PSCC 2018.

[Hinterstocker et al., 2017] Hinterstocker, M., Schott, P., and von Roon, S. (2017). Evaluation of the

effects of time-of-use pricing for private households based on measured load data. In 2017 14th

International Conference on the European Energy Market (EEM), pages 1–6. IEEE.

[Hinz et al., 2018] Hinz, F., Schmidt, M., and Möst, D. (2018). Regional distribution effects of different

electricity network tariff designs with a distributed generation structure: The case of Germany.

Energy Policy, 113(November 2017):97–111.

[Hlalele et al., 2020] Hlalele, T. G., Naidoo, R. M., Zhang, J., and Bansal, R. C. (2020). Dynamic Eco-

nomic Dispatch with Maximal Renewable Penetration under Renewable Obligation. IEEE Access,

8(May):38794–38808.

[Hoffmann et al., 2020] Hoffmann, M., Kotzur, L., Stolten, D., and Robinius, M. (2020). A review on

time series aggregation methods for energy system models. Energies, 13(3):641.

[Holweger et al., 2021a] Holweger, J., Ballif, C., and Wyrsch, N. (2021a). Assessing the cost of distributed

flexibility versus grid reinforcement in low-voltage networks. Manuscript in preparation.

[Holweger et al., 2020a] Holweger, J., Bloch, L., Ballif, C., and Wyrsch, N. (2020a). Mitigating the impact

of distributed PV in a low-voltage grid using electricity tariffs. Electric Power Systems Research,

189:106763.

[Holweger et al., 2021b] Holweger, J., Bloch, L., Ballif, C., and Wyrsch, N. (2021b). Privacy-preserving

methods for smart meters based network simulations. Manuscript in preparation.

[Holweger et al., 2018] Holweger, J., Bloch, L., and Wyrsch, N. (2018). SCCER-FURIES - Determination

of the flexibilisation potential of the electricity demand. ReEL D114b. Technical report, École

Polytechnique Fédérale de Lausanne.

289



Bibliography

[Holweger et al., 2020b] Holweger, J., Bloch, L., and Wyrsch, N. (2020b). SCCER-FURIES - Definition

of optimal control of DHW for self-consumption strategies. Technical report, École Polytechnique

Fédérale de Lausanne.

[Holweger et al., 2019] Holweger, J., Dorokhova, M., Bloch, L., Ballif, C., and Wyrsch, N. (2019). Unsu-

pervised algorithm for disaggregating low-sampling-rate electricity consumption of households.

Sustainable Energy, Grids and Networks, 19:100244.

[Hondo and Baba, 2010] Hondo, H. and Baba, K. (2010). Socio-psychological impacts of the introduc-

tion of energy technologies: Change in environmental behavior of households with photovoltaic

systems. Applied Energy, 87(1):229 – 235.

[Householdquotes, 2020] Householdquotes (2020). Electric Combi Boilers: A Cost-Effective Way To

Heat Small Homes?

[Hoyer, 2012] Hoyer, P. (2012). Non-negative sparse coding. In Proceedings of the 12th IEEE Workshop

on Neural Networks for Signal Processing, pages 557–565. IEEE.

[Huber et al., 2018] Huber, J., Richter, B., and Weinhardt, C. (2018). Are consumption tariffs still up-to-

date? An operationalized assessment of grid fees. In 15th International Conference on the European

Energy Market, EEM, volume 2018-June, pages 1–5, Łódź, Poland. IEEE.
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