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Abstract 
 

 

Multi-photon microscopy is a developing imaging modality that provides markerless specificity 

for many organic molecules or structures and good penetration depth in tissues. Already, it has 

helped deepen our knowledge of lipid water interface, allowed to detect the microtubular structure 

of neurons or even image electric potential differences. Medically, second harmonic and two 

photon excitation fluorescence imaging can be used to detect cancerous tissues. Recently, it was 

shown that wide field multiphoton microscopy can lead to less photodamage than confocal 

microscopy and be more suitable for imaging dynamic processes. These advances have been made 

possible by the development of ultrashort laser sources. Multiphoton signal is highly sensitive to 

the intensity of the illumination, and ultrashort laser pulses can reach extremely high peak power 

(MW or GW), while the average power, and thus thermal damage, remain low (a few W). Ideally, 

the laser source for a multiphoton microscope should be as short as possible to better take 

advantage of this effect. Conversely, the ideal light source is also tunable in wavelength, so that 

different fluorescence excitation spectra can be probed and to improve penetration in tissues. Wide 

field multiphoton microscopy requires lower repetition rates than confocal microscopy (up to a 

few MHz compared to a few hundred MHz or more), but also higher pulse energy. The initial 

objective of this project was the creation of such a light source based on optical parametric 

amplification using a femtosecond fiber laser source. The desired output was pulses shorter than 

50fs with tunability from 700 to 1000nm. In this thesis, we assembled such a light source and 

tested it on a two-photon microscope.  

 

First, we implemented a new simulation tool for second order processes in bulk crystal. Second 

order processes include parametric amplification as well as second harmonic generation, which is 

also required before the parametric amplification itself. The simulation tool we designed provides 

great flexibility to test the effect of relevant parameters (geometry, thermal conditions and pulse 

properties). This tool became the basis of all further work. 
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Then, we analyzed the effect of two different parameters on the second harmonic generation 

process. We showed that chirping of the laser pulses prior to second harmonic generation can have 

a large impact when we attempt to maximize the conversion efficiency. This effect needs to be 

accounted for when designing a second harmonic generation setup. In further related research, we 

showed how a novel transverse parameter, a temperature gradient in the crystal, can be used to 

compensate for the pulse chirp, and even take advantage of it to either compress the second 

harmonic pulses or increase their bandwidth. 

 

Finally, we designed a parametric amplifier adapted to our laser source. Each part of the parametric 

amplification setup was tested and optimized. The setup was then integrated to a wide field two-

photon microscope. Using this parametric amplification light source, we imaged several samples 

by two-photon microscopy. Comparing this to images realized with the pre-existing light source 

showed the expected throughput increase.  

 

Keywords: Multiphoton microscopy, second harmonic, two photon excitation fluorescence, 

optical parametric amplification, nonlinear crystals, femtosecond lasers. 
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Résumé 
 

 

Les microscopies multi-photon sont une technologie qui s’est récemment développée et qui permet 

d’imager avec spécificité un certain nombre de molécules et de structures biologiques. Cette 

technologie a déjà conduit à des avancées dans le domaine des interfaces lipide-eau, permis 

d’imager la structure des microtubules dans les neurones et même des différences de potentiel 

électrique. Médicalement, des images combinant la microscopie par seconde harmonique et la 

microcopie par excitation à deux photons peuvent révéler la présence de cellules cancéreuses dans 

des biopsies. Récemment, la microscopie multi-photon à large champ d’illumination s’est avérée 

bénéfique en termes de photo-dommage, et elle est aussi mieux adaptée à l’observation de 

phénomènes dynamiques. Ces résultats ont été rendus possibles par les avancées en matière de 

sources laser à durées ultra courtes. Le signal d’un microscope multi-photon est très sensible à 

l’intensité de l’illumination, et des lasers femto-seconde peuvent fournir des pics de puissance très 

élevés (MW ou GW) tout en maintenant une puissance moyenne faible (de quelques W), et évitent 

donc de bruler les échantillons. La source laser idéale pour un microscope multi-photon devrait 

avoir des impulsions aussi courtes que possible pour profiter au mieux de cet effet. En même 

temps, le laser devrait être modulable en longueur d’onde pour pouvoir exciter différents 

fluorophores efficacement, et optimiser la pénétration dans les tissus. En configuration grand 

champ, le taux de répétition des impulsions lasers peut être nettement moindre qu’en géométrie 

confocale (passant de quelques centaines de MHz à quelques MHz maximum), mais l’énergie par 

impulsion est aussi plus importante. L’objectif initial de ce projet était la création d’une telle source 

laser par amplification paramétrique optique, le but étant de produire des impulsions de moins de 

50fs avec une longueur d’onde centrale pouvant varier de 700 à 1000nm. Au cours de cette thèse, 

nous avons assemblé et testé cette source laser. 

 

Initialement, nous avons implémenté un nouvel outil de simulation des processus d’interaction à 

deux photons dans les cristaux non linéaires. Ces processus incluent l’amplification paramétrique 

et la génération de seconde harmonique, qui est souvent une étape préalable lors de la fabrication 

d’un système tel que le nôtre. L’outil de simulation que nous avons créé nous laisse une grande 

flexibilité pour explorer l’effet des différents paramètres impliqués dans ces interactions 
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(géométrie, température, propriétés de la source laser), et a servi de base pour tous les résultats 

présentés subséquemment.  

 

Ensuite, nous avons exploré de manière plus approfondie l’effet de deux paramètres sur la 

génération de seconde harmonique. Premièrement, nous avons démontré que si la source laser 

présentait un « chirp », même faible, avant la génération de seconde harmonique, cela peut avoir 

un effet très large sur le procédé quand nous essayons de maximiser l’efficacité de la conversion. 

Cet effet doit être pris en compte pour concevoir des systèmes de génération de seconde 

harmonique efficaces. Deuxièmement, nous avons poursuivi cette ligne de recherche en 

introduisant un nouveau paramètre d’optimisation, un gradient de température dans le cristal. Lors 

de la génération de seconde harmonique avec une source ayant un « chirp », ce gradient de 

température peut partiellement compenser les effets négatifs, et nous permet aussi soit de 

compresser la seconde harmonique, soit d’élargir son spectre. 

 

Finalement, nous avons conçu et assemblé un système d’amplification paramétrique. Chaque étape 

du procédé a été testée et optimisée. Le système a ensuite été intégré à un microscope à deux 

photons avec un large champ d’illumination. Avec cette nouvelle source nous avons imagé 

différents échantillons et comparé le signal capturé par la caméra à celui obtenu avec la source 

laser précédente. L’amélioration du signal prédite par la théorie a bien été observée. 

 

Mots-clefs : microscopie multi-photon, seconde harmonique, excitation fluorescente à deux 

photons, amplification paramétrique optique, cristaux non-linéaires, lasers femto-secondes. 
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Chapter 1:  

Introduction 

 

1.1  MULTIPHOTON MICROSCOPY 
 

1.1.1 Principle of nonlinear microscopy 

 

Multi-Photon Excitation Microscopy (MPEM) is an imaging mode that became available with the 

advent of ultrashort laser sources, with the first nonlinear microscope reported in 1975 [1] (with a 

200ns pulse duration Nd:YAG Laser). MPEM images are produced by nonlinear interaction of 

light within a medium. Because nonlinear phenomena require high intensity, ultrashort lasers 

which provide high peak power but low average power are required, and the field developed when 

mode-locked lasers became available [2]. It has led to advances in biology, chemistry, 

nanoelectronics and physics. MPEM often relies on second order interactions, on which this work 

concentrates, though third harmonic imaging is also common [3], [4]. Two categories of nonlinear 

phenomena can be exploited in two photon microscopy: first, the nonlinear frequency conversion 

processes, in which 3 different frequencies ν1, ν2 and ν3 interact so that the energy is conserved: 

𝜈3 = 𝜈1 + 𝜈2 (1.1) 

Such interactions are governed by the second order susceptibility tensor 𝜒(2)(𝜈3, 𝜈1, 𝜈2). It is 

possible to demonstrate that because of symmetry, the tensor elements of  𝜒(2) are zeros when the 

medium is isotropic [5]. Unless there is a break in central symmetry, 𝜒(2) processes cannot take 

place. When two different laser wavelengths are available, this can be used to perform sum 

frequency microscopy (SFG) [6]–[8] (with incoming (𝜈1, 𝜈2) and collecting 𝜈3), but most common 

case is second harmonic generation, which is a degenerate situation in which 𝜈1 = 𝜈2. The 

mechanisms of SFG and SHG will be described further in section 1.3.   

 

The second type of two photon interaction used to perform microscopy is two photon excitation 

fluorescence (TPEF). TPEF relies on two photon absorption of the incoming laser, which excites 

the fluorophore (figure 1-1). The electronic energy level of the fluorophore is then relaxed to a 

lower, but still excited energy level via vibrational processes. Only then a new photon is emitted. 
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Unlike SHG or SFG, there is a non-optical process involved and the energy of the emitted photon 

is less than the energy of the two absorbed photons.  

 

Figure 1-1  Schematic representation of the energy levels for sum frequency generation 

(left) and two photon excitation microscopy (right).  

 

1.1.2 Second harmonic microscopy 

 

Second order non-linear interactions can occur only in non-centrosymmetric media, so they will 

be sensitive to interface properties, as the symmetry is broken at the interface between two media, 

or to non-centrosymmetric molecules and structures. Thus, second harmonic generation (SHG) 

microscopy is used to observe membranes [9], [10],  non-centrosymmetric organic molecules, such 

as collagen [11], [12], or structures such as microtubules in neurons [13]. The interaction of two 

photons with an electrostatic field will also result in a second harmonic photon being generated. 

This can be considered either as a modulation of the 𝜒(2) modulation by the electric potential or a 

third order 𝜒(3) interaction in which one of the frequencies is zero or nearly zero (neglectable 

compared to optical frequencies). Hence, second harmonic generation can also detect electric 

potential, for instance in neurons [14], [15].  

 

One of the main advantages of SHG or SFG microscopy is that it is inherently specific to certain 

molecules. Thus, it doesn’t require the use of photo-markers and complex treatment of samples. 

For instance second harmonic microscopy coupled with two photon autofluorescence is a 

promising alternative to hematoxylin and eosin (H&E) staining [16] for analysing tumour biopsies. 

H&E staining is a lengthy process (about 12h), while no particular sample preparation is required 

for SHG microscopy [17]. The specificity of SHG should be similar to H&E staining. 
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Convolutional neural networks can be used to classify the images [18], which can be difficult for 

medical professionals because they are not trained on this imaging modality. While markers are 

not necessary for many applications of multi-photon microscopy, nanoparticles such as KNbO3 

[19] that can serve as markers for SHG microscopy exist. Those can be used to observe some 

centrosymmetric media, or when the natural second harmonic signal is too weak. 

 

Other than its specificity, SHG microscopy has several advantages when compare with linear 

microscopy. First, it is often performed with a near infrared (IR) laser source , allowing for deeper 

penetration in tissue [20]. The maximum resolution is defined by the second harmonic wavelength, 

not the laser source wavelength, so it is smaller. Second, the SHG process is quadratically 

dependent on intensity. This means that signal drops dramatically out of the beam focus. Finally, 

second harmonic generation is a coherent and instantaneous process, unlike fluorescence. 

 

1.1.3 Two photon fluorescence microscopy 

 

Two photon fluorescence is based on incoherent absorption of two photons, unlike SHG and SFG 

which are coherent processes. The relaxation of the fluorescent molecule to the ground state is in 

part realized by producing a photon at the fluorescent wavelength, the rest of the energy being 

dissipated through non radiative processes (figure 1-1). Two photon fluorescence is often used in 

conjunction with SHG imaging [17], [21]. The absorption of both photons needs to take place 

nearly simultaneously (around 0,1 fs [22]). Like SHG, two photon absorption quadratically 

depends on the intensity. Therefore, the signal out of focus also drops very fast leading to better 

lateral and axial resolution. The excitation wavelength of many fluorophores is in the UV or in the 

blue range [23], so multi-photon fluorescence can increase penetration depth and reduce 

photodamage. The two photon and one photon excitation spectra are not necessarily the same [22]. 

Another consideration is the non-radiative processes that accompany fluorescence and multi-

photon fluorescence. This portion of the energy is transferred to the medium and can cause 

photobleaching. Because two-photon absorption is localised around the focus, photobleaching is 

reduced, though some higher order photobleaching mechanisms can also take place due to the high 

intensity [24].  
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Two-photon fluorescence gives access to some of the same imaging modalities as (linear) 

fluorescence microscopy. This includes fluorescence lifetime imaging microscopy [25]–[27] and 

stimulated emission depletion microscopy [28]–[30] which allows superresolution microscopy. 

Some naturally present molecules such as reduced nicotinamide adenine dinucleotide (NADH), 

which plays an important role for biochemical reactions in cells, exhibit fluorescence and can be 

detected by TPEF [31]. Two photon fluorescence already led to several advances in neurobiology 

for instance [32], [33] 

 

1.1.4 Confocal or wide-field multiphoton microscopy 

 

The idea of confocal microscopy was invented as early as 1957 [34] by Marvin Minsky, before 

the advent of the laser. In a modern confocal microscope, a laser beam is tightly focused on the 

sample by the objective of the microscope. Then the light coming back from the sample (due to 

scattering or fluorescence, in our case the second harmonic or TPEF signal) is imaged to a pinhole, 

before reaching a photodetector. The laser focus is scanned across the sample to acquire a full 

image. By contrast in wide field imaging, the whole sample is illuminated (or at least the section 

we want to image).  

  

Initially MPEM experiments were conducted using confocal scanning microscopy [9], [11], [13], 

[14](beam diameter of about 500 nm), but recent works often use wide field illumination [35], 

[36], with beam diameters around 100 𝜇𝑚. In wide field MPEM much lower repetition rates of a 

few hundred kHz are used, with pulse energies of 100nJ or more, compared to 100 MHz and less 

than 1 nJ for scanning microscopy. Yet a wide field approach can lead to two to three times higher 

throughputs [35], [37], while increased thermal diffusivity reduces the thermal damage and 

photobleaching [38]. It can also be better suited for dynamic studies as there is no need to scan the 

sample [39], [40]. Interferometric SHG allows to retrieve phase information [40]–[42], hence more 

information about the orientational organization of molecules. Good in depth resolution can be 

reached by implementing HiLo methods [37], [43]. The requirement for the source laser in wide 

field MPEM are of high pulse energies, short pulses and relatively low repetition rates.  
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1.1.5 Requirements for the laser source 

 

The common limitation to all non-linear microscopy techniques is intensity. In order to observe 

significant non-linear conversion, high intensities are required. But damage to the sample limits 

the average intensity. Therefore, very short pulses in the femtosecond or picosecond range are 

ideally suited for this application. They can reach extremely high peak intensities, while if the 

pulse repetition rate is low enough, the average power of the laser can be low. The shorter the 

pulse is the more advantageous this can be. A second requirement for the laser source will be 

tunability. It is necessary for sum frequency or difference frequency interaction, and also if we 

want to probe any non-linear interaction at resonance. Biological tissues usually have a long 

transmission length in the near infrared, so tuning the laser to optimize penetration in the tissues 

can improve resolution. 

 

1.2  ULTRASHORT LASERS 

 

1.2.1 Early lasers 

 

The first laser, or “light amplification by stimulated emission and radiation” was built in 1960 [44], 

though the principle of stimulated emission of radiation was proposed by Albert Einstein as early 

as 1916 [45]. In a laser medium, active ions are pumped to an excited state (using radiative or non-

radiative processes). Often the pump is another laser, with the initial laser being a semi-conductor 

laser diode pumped electrically [46]. A photon at the correct wavelength to bridge the bandgap 

can cause stimulated emission, via which the ion relaxes to a lower state by emitting a new photon 

with the same phase, direction and wavelength (figure 1.2, right). The initial photons are provided 

by spontaneous emission. This means their direction and phase are random.  
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Figure 1-2 Simplified representation of a laser cavity and energy level representation of 

stimulated emission in the gain medium for a 4 levels laser. 

 

The light is reflected back and forth in the gain medium by two mirrors (or fiber Bragg gratings 

for a fiber laser), with a portion of the light escaping on one side. This is the laser cavity (or more 

accurately resonator since it is open on the sides), out of which comes the laser beam. Even though 

spontaneously emitted photons have a random direction, only those aligned with the cavity will be 

significantly amplified by passing several times through the medium. For continuous wave 

operation there needs to be an equilibrium between the losses at the mirrors and the gain [47]. If 

the losses are higher than the gain, there can be no lasing. In order to produce pulses down to the 

nanosecond range, the losses of the cavity can be modulated, either passively or actively. This is 

called Q-switching. Passive Q-switching methods include the use of saturable absorber crystals 

[48], or self-focusing to modify the geometric configuration and thus the losses [49]. Q-switching 

can also be active, for instance using an acousto-optic [50] or electro-optic modulator [51]. 

 

1.2.2 Mode-locked lasers  

 

Q-switching is insufficient for picosecond or femtosecond laser pulses, for which an additional 

condition is needed: mode-locking. The theory of mode locking was proposed in 1964 for masers 

[52], though the principle is the same for lasers. Here the parameters of the cavity are chosen so 

that an ultrashort pulse can remain constant after a round trip, with a pulse emitted for each round 

trip. Again, mode locking can be achieved actively using an acousto-optic [53] or electro-optic 

[54] modulator synchronized with a resonator round trip. Active mode locking can typically 

achieve picosecond pulses [55], [56]. In that case, a pulse can pass through the modulator just 
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when the losses are low at each round trip. Such a pulse will be favored because it has fewer losses 

and so gets amplified more. When the laser is operating in the steady state, the pulse will deplete 

the excited energy level and so saturate the gain, meaning there is a negative gain for other 

radiation (due to losses). Two competing effects will determine the pulse duration: A shortening 

of the pulse because the edges experience slightly higher losses (we can assume a sinusoidal 

function for the losses), and pulse broadening due to chromatic dispersion and the limited 

amplification bandwidth. The pulse broadening and shortening effects can be calculated as a 

function of duration, and the equilibrium of the two will be the pulse duration. This is the 

Kuizenga-Siegman theorem [57]. 

 

 
Figure 1-3: Losses (red) and pulse intensity (blue) for active (top) and passive mode locking. 
𝜏𝑅 is the repetition rate, corresponding to a round trip through the resonator [58]. 

 

 

Passive mode-locking is typically achieved with saturable absorbers. If we assume a short pulse is 

already circulating, the losses will be small around the pulse peak because the absorber is saturated. 
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The leading wing of the pulse is significantly attenuated because it doesn’t saturate the absorber. 

For the tailing wing, if the absorber had time to recover, it is also attenuated. This is the difference 

between fast saturable absorbers, with a recovery time smaller than the pulse duration and slow 

saturable absorbers, with a longer recovery time. Passive mode locking can achieve much shorter 

pulse durations [59], [60] because the loss modulation is much sharper than electronically 

achievable. It might seem surprising that slow saturable absorbers are suitable for mode locking, 

as there is a positive gain for the pulse tail (figure 1-3). Noise just after the pulse should thus be 

amplified, leading to instability. However, because the leading wing suffers losses and the tailing 

wing is amplified, the pulse gets delayed after each round trip [61]. The noise background is not 

delayed so it doesn’t have much time where it gets amplified.  

 

Here we assumed a pulse was already circulating, but the time it will take for such a pulse to form 

and thus for the mode-locking to self-start is another important question. Typically, slow saturable 

absorbers help with self-starting [62], though it can also be achieved with fast saturable 

absorbers[63]. 

 

The repetition rate of a mode locked laser is determined by the resonator length. To reach higher 

repetition rates, it is possible to have several pulses propagating in the resonator with a delay. This 

is called harmonic mode locking [64]. On the other end, a lower pulse repetition rate but higher 

pulse energy might be desirable. In that case, more round trips would allow the pulse to be 

amplified more before it exits the resonator. This can be done by intruding an optical switch, which 

will determine when the pulse can exit the resonator, thus controlling the number of passes through 

the gain medium. This scheme is called a regenerative amplifier [65]. 

 

Finally, a last important product of mode-locked lasers is the frequency comb [66]. Due to the 

properties of the Fourier transform, the spectrum of a periodic pulse train is not continuous but 

composed of equidistant discrete peaks. The lines inside this frequency comb are separated by the 

pulse repetition rate, and because mode-locked laser produce ultrashort pulses, the frequency comb 

is particularly broad. Such a spectrum is particularly useful in spectroscopy [67], [68], and the 

discovery of the frequency comb was rewarded by a Nobel prize in 2005. For frequency combs, 

one important property of mode locked lasers is the carrier envelope offset [69]. The carrier 
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envelope offset is the time between the pulse envelope peak and the closest electric field peak 

(figure 1-4). Carrier envelope phase needs to be compensated for few cycle pulses [70], [71] or for 

attosecond pulse generation [72], [73], as the amplitude of the electric field will strongly depend 

on the carrier envelope offset. Unless the carrier envelope offset is compensated, it typically 

changes by a fixed value for each round trip through the gain medium. For a frequency comb, 

where there is not necessarily compensation of the carrier envelope offset, that means that the lines 

are shifted by a constant frequency, corresponding to the carrier envelope offset change per round 

trip. 

 

 
Figure 1-4: Electric field oscillations for a few cycle pulse, with the carrier envelope offset 

ΔTCEO of the electric field relative to the pulse envelope. 𝜈0 is the optical frequency of the 

pulse and ϕCEO the carrier envelope phase [69]. 

 

Because ultrashort pulse can be generated with mode-locking, the high peak intensity in the gain 

medium can cause detrimental nonlinear effects and damage. This limits the effective peak power 

of the pulses. The solution to reach higher peak power is chirped pulse amplification. 

 

1.2.3 Chirped pulse amplification 

 

Chirped pulse amplification for optical pulses was proposed in 1985[74] by Donna Strickland and 

Gérard Mourou and rewarded by a Nobel prize in 2018. The idea is to stretch the pulse by using a 
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dispersive element (the stretcher, either a grating pair or an optical fiber) before it is amplified. 

The pulse is then recompressed after amplification, with a large beam diameter so that damage or 

nonlinear effects cannot occur. Because the pulse duration during amplification is much longer, 

the peak intensity inside the amplifier remains lower and so the pulse can be amplified much more 

before detrimental effects start happening. By using chirped pulse amplification it becomes 

possible to reach TW [75]–[77] or even PW [78], [79] peak powers. The amplification is typically 

performed by laser (stimulated emission), but the concept also applies to optical parametric 

amplification, which is discussed in the next section.  

 

1.2.4 Fiber amplifiers  

 

Fiber lasers gained momentum only after the development of the first erbium doped fibres in the 

late 1980’s [80]. Femtosecond fibre lasers [81] are now a good alternative to solid state lasers as 

they are less sensitive to misalignment and generally cheaper. Erbium (Er) and ytterbium (Yb)[82] 

based fibre lasers are the most widely commercially available options, with central wavelength 

respectively around 1.55 and 1.05𝜇𝑚, though fibre lasers emitting further in the IR are also 

developed (around 2 𝜇𝑚 [83] or 3 𝜇𝑚 [84] for instance). A wider range of wavelength can be 

obtained by second harmonic generation and parametric amplification. 

 

Fiber amplifiers are practical for chirped pulse amplification as, for a fiber with normal chromatic 

dispersion, the chirp will be generated by propagating in the fiber. Asymptotically, pulses in a fiber 

amplifier with chromatic dispersion and Kerr effect will tend towards a parabolic shape [85], [86]. 

For a sufficient propagation length and a large amplification factor, the peak power and duration 

of such pulses only depends on pulse energy. The upchirp, meaning the rise in instantaneous 

frequency, of such pulses is also nearly linear, making compression much easier. 

 

1.2.5 Measuring ultrashort pulses 

 

The characterization of ultrashort laser pulses is a complex problem. Measuring the spectrum is 

easy, but without knowing the spectral phase, the temporal profile of the pulse remains unknown. 

If we could measure the spectral phase, the electric field envelope temporal profile, and thus the 
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pulse instantaneous power, could be retrieved. Knowing the spectrum, the transform limited pulse 

can be calculated, meaning the pulse temporal profile if there was no spectral phase. This is also 

the minimum achievable pulse duration for a given spectrum. Photodetectors are not suitable for 

measuring ultrashort pulses, because rise time is typically in the nanosecond range. Ideally the 

pulse could be characterized with a second well known shorter pulse (by cross correlation for 

instance), but one is rarely available 

 

The easiest method to find information on the pulse temporal behavior is autocorrelation [87]. 

Autocorrelation consists in separating the pulse in two with a semi-transparent mirror, then 

recombine the two pulses in a second order nonlinear crystal, so that the second harmonic is 

generated. For a short crystal, with low conversion efficiency, the second harmonic instantaneous 

power PSH is proportional to the power of each of the two incoming pulses. If one of the pulses is 

delayed by a known time 𝜏 (using a delay stage), the second harmonic pulse energy ESH
 is given 

by: 

𝐸𝑆𝐻(𝜏) = ∫𝑃𝑆𝐻(𝑡, 𝜏)𝑑𝑡 ∝ ∫𝑃0(𝑡)𝑃0(𝑡 + 𝜏)𝑑𝑡 (1.2) 

 

The autocorrelation is the dependence of the second harmonic signal (the second harmonic 

average power, meaning the pulse energy multiplied by the pulse repetition rate) on the delay 𝜏. 

For a Gaussian pulse, it is possible to demonstrate that the full width at half maximum (FWHM) 

of the autocorrelation 𝜏𝐴𝐶 is related to the FWHM of the pulse 𝜏0 by: 

 

𝜏𝐴𝐶 = √2 𝜏0 (1.3) 

 

This assumption is often used to estimate the pulse duration. However, there is no relationship 

between the autocorrelation and the pulse duration in the general case. Another property of the 

autocorrelation is that it is independent of the sign of the time, meaning two pulses that are 

symmetric in time will have the same autocorrelation. This can be remedied by third order 

autocorrelation (meaning autocorrelation using third harmonic generation [88], but the optical 

scheme is more complex and typically this requires higher peak intensity. In the case of a collinear 
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autocorrelator, there will also be interference in the autocorrelation trace. With interferometric 

autocorrelation the pulse duration and chirp can be calculated in a more general case [89]. 

 

Frequency resolved optical gating (FROG) [90] is a well-recognized method to retrieve the pulse 

profile and phase. The scheme is the same as for autocorrelation, but instead of simply measuring 

the second harmonic power, the spectrum of the second harmonic is acquired for each delay. This 

is enough information to completely reconstruct the electric field envelope. 

 

Alternatively, the pulse can be reconstructed with a dispersion scan (Dscan)[91]. In that case the 

laser beam goes through a transparent material with variable and controllable thickness, before 

being frequency doubled in a second order nonlinear crystal. The spectrum of the second harmonic 

is acquired for a range of material thickness. The dispersive properties of the material are known, 

and so it is possible to retrieve the pulse profile and phase from the dispersion scan measurement. 

Typically, convergence of the algorithm is much faster than with FROG, and the optical scheme 

is simpler as there is no need for beam splitting or delay stages. The effect of material dispersion 

increases for shorter pulses. Thus, this technique is well adapted for sub 50fs pulses, but for longer 

pulses the thickness necessary to have a significative effect of dispersion becomes a limiting factor. 

For such short pulses, a third characterization technique, called spectral phase interferometry for 

direct electric field reconstruction (SPIDER [92]) is also quite suitable. It relies on combining 

interferometrically two copies of the incoming pulse separated by a delay with a third stretched 

(by some dispersive material) copy and acquiring the spectrum. The interferometric modulation of 

the spectrum can be used to retrieve the spectral phase of the pulse. The advantage is the simplicity 

of the algorithm, but the optical scheme is more complex than for dispersion scan or FROG, and 

since the interferometric fringes need to be accurately resolved, the spectral resolution is a limiting 

factor for narrow bandwidth pulses (ie. for longer pulses). 
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1.3  SECOND ORDER NONLINEAR CRYSTALS 

 

1.3.1 Tunable laser source 

 

Optical parametrical generation (OPG) is the process of using a strong laser beam, called the pump, 

to amplify a weak signal using difference frequency generation. This method is used to make a 

laser tunable in wavelength. Indeed, laser amplifiers typically have a very small tunability range 

dependent on the material properties. For very high repetition rates (100 MHz) the crystal is 

enclosed in a cavity, the parametrical gain is higher than optical losses so that oscillations can take 

place, exactly like an ordinary laser. This is called an optical parametrical oscillator (OPO) [93], 

[94]. For lower repetition rates (up to a few MHz) there is no cavity, and the system is simply 

called an optical parametrical amplifier (OPA) [95]. The pump beam in an OPA needs to have a 

much higher intensity, but the final energy of the signal pulses is also much higher than for OPO. 

It also has the advantage of not requiring a cavity, which makes it much less costly. In both cases 

along with the amplified signal a third beam, called idler, is generated so that: 

 

𝜔𝑝 = 𝜔𝑠 + 𝜔𝑖      (1.4) 

 

Where 𝜔𝑝, 𝜔𝑠 and 𝜔𝑖 are the angular frequencies of pump, signal and idler respectively. This 

relation is the conservation of energy. The idler will be generated along with the amplified signal 

and can be used for tunability on a second wavelength range. If the wavelength to amplify is shorter 

than the source laser wavelength, you will need a shorter wavelength for the pump in the OPA. 

This can be achieved using the second harmonic of the source laser for instance. More complex 

tunable lasers also exist. It is common to use several stages of parametrical amplification to 

improve the conversion efficiency [96]–[99]. Furthermore SFG [100] or difference frequency 

generation (DFG) [101] can be used to reach wider wavelength ranges. OPA is just a specific DFG 

setup where the signal is weak. The physics of SHG and SFG are the same as for OPA, the only 

thing changing being which wavelength are present at the front end of the crystal. 

 

Parametrical amplification can be performed on quantum noise, amplifying the small quantum 

fluctuations at the wavelength selected by the phasematching conditions. While this method is 
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used to build tunable laser [102], it results in relatively poor stability, and the initial signal is so 

weak that several stages of amplification are often required. Therefore, supercontinuum generation 

(SCG) [103] is often preferred as a source of a weak signal to amplify. SCG results when the laser 

intensity in a medium is sufficient to cause self-focusing and plasma generation. Several effects 

can then take place (including four waves mixing, Raman scattering and second order nonlinear 

interactions), resulting in an extremely broad spectrum. Supercontinuum generation will be treated 

more in depth in chapter 5. 

 

OPA systems are not only a method to make an ultrashort laser source tunable, but also to generate 

even shorter pulses. The bandwidth of the output of an OPA is not determined by the pump 

bandwidth, but by the bandwidth of the seed and the crystal properties. Indeed, the output of an 

OPA is often much shorter than the pumping laser [95], [104]. The principle of chirped pulse 

amplification also applies to OPA, in which case it is called an optical parametric chirped pulse 

amplification (OPCPA) [105]–[107], so that higher intensities can be reached. Back conversion of 

the signal wavelength is often the limiting factor for OPCPA performance [108]. Novel approaches 

use materials with strong absorption at the idler wavelength to prevent back conversion. This is 

called quasi-parametric chirped pulse amplification (QPCPA) [109] and allows the use of longer 

crystals, increases the amplified bandwidth and can reach conversion efficiencies up to 40% [110]. 

 

A tunable femtosecond OPA is an ideal source for MPEM. The output signal should have a much 

shorter duration than the pump, so that nonlinear effects are more efficient (because of the high 

peak intensity) while photodamage should be limited, because it depends more on the average 

power (at least for thermal damage) which is low. The photodamage will also depend on the 

intensity, but not linearly [111]. 

 

1.3.2 Phasematching in nonlinear crystals 

 

Second order optical interaction involve 3 different electric fields of respective pulsations 1, 2 

and 3 such that: 

 

𝜔3 = 𝜔1 +𝜔2 (1.5) 
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This is imposed by energy conservation. SHG is a degenerate case where 1 and 2 are the same. 

However, there is a second condition imposed by momentum conservation: 

 

Δ𝑘 = 𝑘3 − 𝑘2 − 𝑘1 = 0 (1.6) 

 

Where ki is the wave vector of wave i. This equation can be rewritten as: 

 

𝑛3(𝜔3)𝜔3 = 𝑛1(𝜔1)𝜔1 + 𝑛2(𝜔2)𝜔2 (1.7) 

 

Where ni is the refractive index of the material for wave i. This phasematching condition will not 

be verified in most materials as there is either normal or abnormal dispersion. In practice the 

conversion remains efficient as long as the product of the phase mismatch Δk by the crystal length 

L is small. This is why the phasematching condition matters less in multi-photon microscopy 

samples, where the sources of nonlinear interaction are small. Here the aim is to convert a 

significant portion of the laser beam (or beams) energy, meaning we usually need relatively long 

(typically a few mm) crystals. 

 

1.3.2.1 Collinear phasematching in Birefringent materials 

 

One solution is to use birefringent crystals at a well-chosen angle. The general case is that of a 

biaxial crystal. The optical index for any of the waves will depend on the polarization. They are 

entirely defined by the index along the three main axis of the crystal X, Y, Z. By convention 

nX<nY<nZ.  The value of the index is given by the intersection of the electric displacement vector 

𝐷⃗⃗  with the index ellipsoid (Figure 1-5). The orientation of wave vector 𝑘⃗  is usually chosen in one 

of the optical planes (XZ plane in Figure 1-5). The intersection of the wave plane with the ellipsoid 

is an ellipse. The main axis of the ellipse corresponds to the ordinary and extraordinary 

polarizations, with respective refractive index no and ne. When operating in one of the optical 

planes, the ordinary index is one of the main indexes of the crystal (here nY). The extraordinary 

index ne depends on the angle, in this case the spherical coordinate 𝜙 (angel between 𝑘⃗  and 𝑍  ).  
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Figure 1-5: Refractive index ellipsoid for a birefringent crystal. The ordinary and 

extraordinary polarization directions, with the correspond electric displacement vectors Do⃗⃗ ⃗⃗   

and  De⃗⃗ ⃗⃗   respectively, are shown for a given wave vector k⃗  in the XZ plane, along with the 
ordinary and extraordinary indexes (no and ne respectively) and the walk-off angle. 

 

For instance, we can use 3 collinear waves, with the extraordinary polarization for wave 3 and 

ordinary polarization for waves 1 and 2. The phase matching condition becomes: 

 

𝑛𝑒(𝜔3, 𝜙)𝜔3 = 𝑛𝑜(𝜔1)𝜔1 + 𝑛𝑜(𝜔2)𝜔2 (1.8) 

 

Thanks to the additional degree of freedom 𝜙, equation 1.8 can have a solution for a large range 

of wavelengths. This case is called type 1 phase matching because only one of the 3 waves is in 

the extraordinary polarization. It is also possible to use type 2 phase matching, where two waves 

are in extraordinary polarization [95].  

 

This kind of phasematching is called critical phasematching and relies on adjusting the angle of 

the crystal. However refractive indexes are also temperature dependent and it is possible to use 
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temperature to satisfy phasematching condition. This is called non-critical phasematching [112], 

[113]. In that case the 𝑘⃗  vector is aligned with one of the main axes, and so the ordinary and 

extraordinary polarizations are along the other two axes. The advantage of this method is to avoid 

walk-off. Figure 1-5 we can observe that for the extraordinary polarization there is an angle 

between the normal to the ellipsoid and the electric displacement 𝐷𝑒⃗⃗ ⃗⃗ . The normal to the ellipsoid 

is the direction of the electric field. Because of this, the same angle will be found between the 

wave vector 𝑘⃗  and the Poynting vector. If the crystal length is too long the effect of walk-off can 

be important. 

 

We have so far discussed how to ensure the phasematching condition for a given set of frequencies 

(1, 2, 3). However ultrashort pulses require a significant bandwidth, so ensuring 

phasematching for the central wavelength is not always enough. Because of energy conservation 

there is only two independent frequencies. In the case of sum frequency or difference frequency 

generation, one of the pulses is usually narrowband. For instance, we can assume wave 3 to be 

quasi monochromatic, which is often the case for parametric amplification schemes. Also, in most 

cases only two waves are present at the start of the crystal. For a frequency shift 𝑑𝜔 of the first 

wave, the new set of frequencies becomes (1 + d, 2 - d, 3) and the phase mismatch is: 

 

Δ𝑘(𝑑𝜔) = 𝑘3(𝜔3) − 𝑘1(𝜔1 + 𝑑𝜔) − 𝑘2(𝜔2 − 𝑑𝜔) (1.9) 

 

With a first order approximation: 

 

Δ𝑘(𝑑𝜔) ≃ Δ𝑘(0) −
𝑑𝑘1
𝑑𝜔

𝑑𝜔 +
𝑑𝑘2
𝑑𝜔

𝑑𝜔 = Δ𝑘(0) +
𝑑𝜔

𝑐
(𝑛𝑔2 − 𝑛𝑔1) (1.10) 

 

Where ng1 and ng2 are the group indexes for waves 1 and 2. Similar relationships can be found in 

case we assume wave 1 or 2 to be quasi monochromatic (typically for SFG schemes) or in the 

degenerate case of SHG (since wave 1 and 2 are the same there is no need for any additional 

assumptions). In practice the energy conversion is efficient if k L is smaller than /2 [95], [114], 

with L the propagation length. This means we will be limited in terms of crystal length if we want 

conversion over a large bandwidth. We could imagine using both the temperature and the 
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orientation of the crystal to satisfy the phase matching condition as well as the proper group index 

relationship. However, except near some specific frequencies, it is not usually possible with 

practical temperature ranges [115].  

 

1.3.2.2 Non-collinear phasematching 

 

Alternatively, we can seek to cancel the first order term of k in d. For this we need an additional 

degree of freedom. It can be created by using a non-collinear interaction: 

 

 

Figure 1-6: Wave vector geometry required for noncollinear phasematching 

For a non-collinear geometry, the phase matching condition can be represented graphically (Figure 

1-3). We can define a non-collinearity angle  between 𝑘⃗ 1and 𝑘⃗ 3. The phasematching equation 

system will be: 

 

{
Δ𝑘𝑧 =  𝑘3 − cos(𝛼) 𝑘1 − cos(𝛽) 𝑘2 = 0

Δ𝑘𝑥 = sin(𝛼) 𝑘1 − sin(𝛽) 𝑘2 = 0
 (1.11) 

 

We can now look at what happens at (1 + d, 2 - d, 3) in the first order in d,  : 

 

{
Δ𝑘𝑧(𝑑𝜔) =  𝑘3 − cos(𝛼) (𝑘1(𝜔1) + 𝑛𝑔1

𝑑𝜔

𝑐
) − cos(𝛽) (𝑘2(𝜔2) − 𝑛𝑔2

𝑑𝜔

𝑐
) 

Δ𝑘𝑥(𝑑𝜔) = sin(𝛼) (𝑘1(𝜔1) + 𝑛𝑔1
𝑑𝜔

𝑐
) + sin(𝛽) (𝑘2(𝜔2) − 𝑛𝑔2

𝑑𝜔

𝑐
)

(1.12) 
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{
Δ𝑘𝑧(𝑑𝜔) = Δ𝑘𝑧(0) +

𝑑𝜔

𝑐
(cos(𝛽)𝑛𝑔2 − cos(𝛼) 𝑛𝑔1)

Δ𝑘𝑥(𝑑𝜔) = Δ𝑘𝑥(0) +
𝑑𝜔

𝑐
(sin(𝛼) 𝑛𝑔1 − sin(𝛽)𝑛𝑔2)

(1.13) 

 

We would like to cancel the first order terms described in equation system 1.13 as well as the zero-

order term in equation system 1.11. The orientation of the crystal can be changed, as well as the 

non-collinearity angles. This is only three degree of freedom for 4 equations. However, in a typical 

DFG setup we input only wave 1 (called the signal for a DFG setup) and 3 (called the pump). This 

means the angle  is completely free and will naturally maximize energy conversion. The value of 

 that ensures perfect phase matching is different for any d, so  will vary with the wavelength 

of wave 2 (called the idler). The angular dispersion of the idler will be given by:  

 

sin( 𝛽(𝑑𝜔) ) = sin(𝛼)
𝑘1(𝜔1 + 𝑑𝜔)

𝑘2(𝜔2 − 𝑑𝜔)
(1.14) 

 

The equations we have to satisfy using the angle  and the orientation of the crystal (or 

alternatively the temperature of the crystal [116]) are :   

 

{
 𝑘3 − cos(𝛼) 𝑘1 − cos(𝛽(0)) 𝑘2 = 0

cos(𝛽(0)) 𝑛𝑔2 = cos(𝛼)𝑛𝑔1
(1.15) 

 

Non-collinear phasematching is useful for second order interactions with very broadband pulses, 

and frequently used for sub-30fs pulse durations [117]–[119]. This advantage comes at the cost of 

introducing non-collinearity, meaning the effective interaction length in the crystal is limited by 

the beam diameters. Assembling a non-collinear setup is also more complex. Furthermore, for SFG 

and DFG one of the beams will be angularly dispersed, making it harder to use.  

 

1.3.2.3 Quasi-Phasematching 

 

We have so far discussed how to satisfy the phasematching condition in a birefringent crystal. 

However, not all the crystals that have a large nonlinear susceptibility (2) element display 
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birefringence, for instance gallium arsenide [120] is isotropic and can have a deff coefficient of 95 

pm/V (for comparison beta barium borate, a birefringent crystal often used for type 1 critical 

phasematching has a nonlinear coefficient of ~2pm/V). Also in some cases the largest element of 

the (2) is on the diagonal (for instance in lithium niobate the deff when all waves are polarized in 

the Z direction is 27pm/V, whereas it is limited to 4.35 pm/V for birefringent phase matching 

[121]). In those cases, it is preferable to use periodically poled crystals, for which the sign of the 

relevant (2) element alternates with a period . We choose  so that: 

 

Δ𝑘 Λ = 𝜋 + 2𝑚 𝜋 

 

Where m is an integer. Because we switch the sign of the effective nonlinear coefficient deff, the 

phase is effectively switched by . Thus, the interaction remains in average effective, albeit with 

a reduced factor of 
2

𝜋(1+2𝑚)
. Usually, m=0 to maximize efficiency. Because higher deff values can 

be reached using quasi-phasematching, the process can still be more efficient than for birefringent 

phasematching. Importantly, quasi-phasematching can also be used with slightly non periodic 

poling of the crystal. The most popular application is chirped quasi-phasematching, where the 

period is “chirped”, meaning  varies linearly in the propagation direction. We showed before that 

non-collinear phase matching in birefringent crystals adds a degree of freedom (the non-collinear 

angle), and so does chirping the poling period. This can affect the properties of the output and be 

used for compression in second harmonic generation for instance for instance  [122], [123], or 

allow a larger bandwidth [124]. Chirped quasi-phasematching is particularly suitable for chirped 

pulse amplification [125], [126]. Sometimes a noncollinear geometry is also used with quasi-

phasematching [127] instead of chirping the poling period. 

 

The main inconvenient of quasi-phasematching is the requirement for specifically designed 

periodically poled crystals, which are often not available “off the shelve”. This is especially true 

for aperiodic poling. Mostly, the periodic poling is achieved by ferro-electric domain engineering 

[128]–[130], though periodically poled gallium arsenide is produced by epitaxy [131]. 
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1.4  THIS THESIS 

 

In this thesis we develop a new tunable laser source for multiphoton emission microscopy. We 

study the theory of nonlinear energy conversion in birefringent crystals in order to optimize the 

laser parameters for this application. In the end, we successfully built an OPA source and 

integrated it to the microscope. This thesis is structured in the following way: 

• Chapter 1 gives a brief overview of two photon microscopy, followed by an overview 

of ultrashort laser sources required for this application. The last section details the 

theory of second order nonlinear processes which will be used throughout this thesis. 

• Chapter 2 describes the creation of a new simulation tool for second order nonlinear 

processes in crystal. This simulation tool covers several interacting optical effects in 

crystals and was thoroughly tested. The simulation tool provides the flexibility needed 

to model many different setups and is used extensively in the following chapters. 

• Chapter 3 looks more specifically into the limitations of high efficiency second 

harmonic generation. The effect of spectral phase, in particular group delay dispersion, 

is analyzed with simulations, and confirmed in experiments.  

• Chapter 4 looks into a novel parameter to control second harmonic generation in 

nonlinear crystals. After the negative effect of group delay dispersion was studied in 

the previous chapter, we now see how combining it with a linear temperature gradient 

in the propagation direction can improve conversion efficiency and provide control 

over the bandwidth and pulse duration of the second harmonic. 

• Chapter 5 describes the assembling and testing of an optical parametric amplification 

setup as a source for a two-photon microscope. The design is guided by simulation. 

The final system compares favorably to an existing femtosecond laser source. 

 

The list of published and submitted publications can be found at the end of this thesis. 
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Chapter 2: Numerical simulation of second 

order non-linear processes 
 

Second order nonlinear crystals are often used to produce new wavelength from a source laser. 

This category of effects covers second harmonic generation, sum frequency generation and 

difference frequency generation. The output depends on the properties of both the laser source 

and the medium in which the second order energy conversion takes place. While there are simple 

equations for theoretical situations such as thin crystals and low depletion of the laser source, 

those simplifications are rarely valid in practical setups. Here, we seek to develop a simulation 

tool for second order light interaction in crystals. This simulation tool, called “Wavemixer”, 

accounts for all significant effects that can affect the interaction such as linear propagation and 

self-phase modulation. The equations governing all relevant optical effects are discussed in this 

chapter. This tool is meant to let the experimentalist explore different parameters, such as crystal 

length, orientation, focusing conditions, temperature and many more. With this tool one can 

simulate all the commonly used setups for optical parametrical amplification, sum frequency 

generation and second harmonic generation, as well as test the effect of less well-known 

parameters. Accurate simulation results are important for designing highly efficient setups and 

provides a way to quickly test novel setups. Those results will be the basis of further work described 

in the next chapters. 

 

The simulation tool described in this chapter was programmed and tested by Pierre-Marc 

Dansette, with some advice from Audrius Zaukevičius. Audrius Zaukevičius also provided results 

from a different simulation tool he created, which were used for comparison and testing.  
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2.1   INTRODUCTION 

 
The high intensities that can be reached with ultra-short lasers make it possible to observe strong 

2nd order non-linear optics phenomena in crystals.  Those can be used to generate new wavelengths, 

with Second Harmonic Generation (SHG)[132]–[136] when a single wavelength is available, or 

with a second wavelength Difference Frequency Generation (DFG)[95], [137]–[140] and/or Sum 

frequency Generation (SFG) [141]–[143]. The fundamental equations governing all those second 

order non-linear optical phenomena are the same[95], [144], and the results will depend on the 

properties of the crystal. In order for the energy conversion to be efficient, phasematching, or in 

other words the conservation of momentum, is required. Real phasematching can be obtained by 

using an appropriate cut of a birefringent crystal [95], or alternatively quasi-phase matching [124], 

[145], [146] can be selected by carefully engineering periodically polarized non-linear crystals 

[130], [147]. Thus, simulation of second order non-linear processes is essential to the proper design 

of a tunable ultrashort laser system. There are existing software solutions to perform such 

simulations. However, they do not always offer sufficient flexibility [144], [148]. For instance, it 

is not possible to account for complex temperature profiles inside the crystal, to use real data on 

the laser pulse or beam as input. 

 

Here, we developed a new simulation tool for second order non-linear optics in crystals. We 

accounted for all other relevant optical phenomena, such as dispersion, diffraction and cross and 

self-phase modulation. Several versions of the software were created, from a 1D version which 

accounts only for temporal effects and assumes plane wave, to a 3D version which can take any 

beam shape as an input (at the cost of calculation speed). This software will let us select appropriate 

crystals for our optical scheme, calculate the expected outputs and study the influence of different 

parameters on SHG or DFG. 

 

2.2  OPTICAL EFFECTS IN NON-LINEAR CRYSTALS 

 

2.2.1 Second order energy conversion 

 

The main effect we are interested in is the nonlinear energy conversion between three waves at 

central frequencies (1, 2, 3) such that: 
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𝜔1 +𝜔2 = 𝜔3 (2.1) 

 

Let us consider the linearly polarized plane waves propagating in the z direction. We can describe 

the electric fields 𝐸𝑖⃗⃗  ⃗ for wave i by: 

 

𝐸𝑖⃗⃗  ⃗ = 𝑅𝑒(𝐸𝑖 𝑒
𝑗(𝜔𝑖𝑡−𝑘𝑖𝑧))𝑒𝑖⃗⃗  (2.2) 

 

Where Ei is the electric field complex envelope and ki the corresponding wave vector. We can 

apply the same principle to the nonlinear polarization 𝑃𝑖
𝑛𝑙  at i : 

𝑃𝑖
𝑛𝑙⃗⃗ ⃗⃗ ⃗⃗ = 𝑅𝑒(𝑃𝑖

𝑛𝑙  𝑒𝑗(𝜔𝑖𝑡−𝑘𝑝𝑧))𝑒𝑖⃗⃗  (2.3) 

 

Where kp is the wave vector of the nonlinear polarization.  By using the slowly varying amplitude 

approximation we have the following equation relating Ei and Pi
nl: 

 

𝑑𝐸𝑖
𝑑𝑧

= −𝑗
𝜇0𝑐𝜔𝑖
2𝑛𝑖

𝑃𝑖
𝑛𝑙𝑒𝑗(𝑘𝑖−𝑘𝑝)𝑧 (2.4) 

 

Where 𝜇0 is the vacuum permittivity and ni the refractive index of the crystal for i (in the 

appropriate polarization). In the case of a second order interaction the nonlinear polarization 𝑃3
𝑛𝑙 

at 3 is given by : 

 

𝑃3
𝑛𝑙 = 𝜖0 (𝑒3⃗⃗  ⃗𝝌

(𝟐)(𝜔1 + 𝜔2, 𝜔1, 𝜔2) ∶ 𝑒1⃗⃗  ⃗ 𝑒2⃗⃗  ⃗)𝐸1𝐸2 (2.5) 

  

The wave vector 𝑘𝑝 = 𝑘1 + 𝑘2. Similar equations can be written for 𝑃1
𝑛𝑙 and 𝑃2

𝑛𝑙. (2) is the second 

order susceptibility tensor. Because of symmetry rules [5] the tensor element is the same in all 

three equations. Further we will rather use the effective nonlinear optical coefficient deff : 

 

𝑑eff =
1

2
𝑒3⃗⃗  ⃗𝝌

(𝟐)(𝜔3, 𝜔1, 𝜔2) ∶ 𝑒1⃗⃗  ⃗ 𝑒2⃗⃗  ⃗ (2.6) 
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The deff tensor elements are known at reference values of (1, 2, 3) (for visibly transparent 

crystals it is often measure for SHG at 1064nm [149]–[151]) and the frequency dependence can 

be accounted by Miller’s rule[5]: 

 

𝑑eff 𝑎,𝑏,𝑐(𝜔1, 𝜔2, 𝜔3) = 𝑑eff 𝑎,𝑏,𝑐
𝑟𝑒𝑓 (𝑛𝑎

2(𝜔1) − 1)(𝑛𝑏
2(𝜔2) − 1)(𝑛𝑐

2(𝜔3) − 1)

(𝑛𝑎2(𝜔1
𝑟𝑒𝑓
) − 1)(𝑛𝑏

2(𝜔2
𝑟𝑒𝑓
) − 1)(𝑛𝑐2(𝜔3

𝑟𝑒𝑓
) − 1)

(2.7) 

 

Where a,b,c are the main axis of the crystal, 𝑑eff
𝑟𝑒𝑓

the known tensor elements and (𝜔1
𝑟𝑒𝑓
, 𝜔2

𝑟𝑒𝑓
, 𝜔3

𝑟𝑒𝑓
) 

the frequencies at which they were measured. All together this gives us a system of equations 

describing the second order interaction between the three electric field envelopes: 

 

{
  
 

  
 
𝑑𝐸1
𝑑𝑧

= −𝑗
𝜔1𝑑eff
𝑛1(𝜔1)𝑐

𝐸2
∗𝐸3e

−j Δk z

𝑑𝐸2
𝑑𝑧

= −𝑗
𝜔2𝑑eff
𝑛2(𝜔2)𝑐

𝐸1
∗𝐸3e

−j Δk z

𝑑𝐸3
𝑑𝑧

= −𝑗
𝜔3𝑑eff
𝑛3(𝜔3)𝑐

𝐸1𝐸2e
j Δk z

(2.8) 

 

 

Where Δ𝑘 = 𝑘3 − 𝑘1 − 𝑘2 is the wave vector mismatch (sometimes also called phase mismatch 

though not technically accurate). DFG, SFG and SHG are all described by this system of equations. 

We have now demonstrated the importance of the phase matching condition k=0. If the length L 

of the crystal is such that Δ𝑘 𝐿 ≫ 2𝜋 there will only be oscillation of the different waves’ 

amplitudes, with no significative transfer of energy. In the case of quasi phase matching (Section 

1.3.2.3) the deff coefficient changes sign periodically, meaning a  phase shift is introduced. This 

way the phase can remain between 0 and  and the energy transfer is efficient.   

 

The optical intensity Ii is given by [152], [153]: 

 

𝐼𝑖 =
1

2
𝑐𝜖0𝑛𝑖|𝐸𝑖|

2 (2.9) 
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Using this definition, the Manley-Rowe relationships on the variation of intensity of all three 

waves can be derived from the equation system [95]: 

 

1

𝜔1

𝑑𝐼1
𝑑𝑧

=
1

𝜔2

𝑑𝐼2
𝑑𝑧

= −
1

𝜔3

𝑑𝐼3
𝑑𝑧

(2.10) 

   

The different Ii are the intensities of the beam at frequencies i. simply states photon conservation. 

For instance, in SFG, a photon at 1 and another at 2 turn into a new photon at 3.  

 

Usually the phasematching condition is met, meaning k=0. In the case when depletion of two of 

the waves can be neglected the equation system 2.8 can be simplified. For instance, for SFG (or 

SHG) if we can neglect depletion at 1 and 2 (meaning E1 and E2 are constant), since at the start 

there is no 3rd wave, E3 linearly depends on z: 

 

𝐸3(𝑧) = −𝑗
𝜔3𝑑eff
𝑛3𝑐

𝐸1𝐸2z (2.11) 

 

By multiplying using equation we get the dependency of I3 in z: 

 

𝐼3(𝑧) =
2𝜔3

2𝑑eff
𝑛1𝑛2𝑛3𝑐3𝜖0

𝐼1𝐼2𝑧
2 (2.12) 

 

The condition to neglect depletion is valid as long as the crystal length L verifies: 

 

2𝜔3𝑑eff
𝑛1𝑛2𝑛3𝑐3𝜖0

𝐼1
0𝐼2
0𝐿2 ≪

𝐼1
0

𝜔1
,
𝐼2
0

𝜔2
 (2.13) 

 

Where 𝐼𝑖
0 is the initial intensity of wave i. Similarly, if we have DFG between wave 1 and 3 where 

depletion of both can be neglected, the intensity of wave 2 will quadratically increase with the 

propagation length in the crystal. However, for DFG it is more common to have a parametric 
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amplification setup were only wave 3 is strong and wave 1 is initially weak[95], [104], [154], 

[155]. If we can neglect the depletion of wave 3 (but not wave 1). Then from system 2.8 we get: 

 

{
 
 

 
 𝑑

2𝐸1
𝑑𝑧2

= −𝑗
𝜔1𝑑eff
𝑛1𝑐

𝑑𝐸2
∗

𝑑𝑧
𝐸3e

−j Δk z − 𝑗Δ𝑘
𝑑𝐸1
𝑑𝑧

𝑑𝐸2
∗

𝑑𝑧
= 𝑗

𝜔2𝑑eff
𝑛2𝑐

𝐸1𝐸3
∗ej Δk z

(2.14) 

 

 

So the second order differential on E1 and E2 are : 

 

{
 
 

 
 𝑑

2𝐸1
𝑑𝑧2

= 
2𝜔1𝜔2𝑑eff
𝑛1𝑛2𝑛3𝑐3𝜖0

𝐼3 𝐸1 − 𝑗Δ𝑘
𝑑𝐸1
𝑑𝑧

𝑑2𝐸2
𝑑𝑧2

=
2𝜔1𝜔2𝑑eff
𝑛1𝑛2𝑛3𝑐3𝜖0

𝐼3 𝐸2 − 𝑗Δ𝑘
𝑑𝐸2
𝑑𝑧

(2.15) 

 

We can define: 

 

Γ =  
2𝜔1𝜔2𝑑eff
𝑛1𝑛2𝑛3𝑐3𝜖0

𝐼3 (2.16) 

 

As long as √2 Γ > |Δ𝑘| the solution is in sinus hyperbolic and we have: 

 

𝐼1(𝑧) = 𝐼1
0 (1 +

Γ2

Γ2 −
∆𝑘2

2

sinh2( 𝑧√Γ2 −
∆𝑘2

2
)) (2.17) 

𝐼2(𝑧) = 𝐼1
0
𝜔2
𝜔1

Γ2

Γ2 −
∆𝑘2

2

sinh2( 𝑧√Γ2 −
∆𝑘2

2
) (2.18) 

 

Otherwise, the solutions are sinusoid and the intensities of waves 1 and 2 will simply oscillate. 

The amplification is maximum when ∆𝑘 = 0 and it depends exponentially on both the intensity of 
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the pump and the crystal length. In the case where ∆𝑘 = 0 the condition that the pump depletion 

is neglectable is verified if: 

 

1

𝜔1
sinh2( Γ𝐿) ≪

𝐼3
𝜔3

(2.19) 

 

Generally, we are interested in maximizing the conversion efficiency and the conditions to neglect 

depletion (both for SFG and DFG) are not met. There is no analytical solution without such 

assumptions and equation system 2.8 must be numerically solved. To find an analytical solution, 

we also neglected the contribution of linear phenomena as well as third order nonlinear effects 

such as self and cross phase modulation, which is not valid. 

 

2.2.2 Linear optics phenomena 

 

 

For a real laser beam we cannot use a plane wave approximation. For this section it will be easier 

to work in partial Fourier space (, kx, ky, z) where z is the propagation direction and kx and ky the 

components of the wave vector in x and y. The propagation equation will then be: 

 

𝑑𝐸

𝑑𝑧
= 𝑗√𝑘(𝜔, 𝑘𝑥, 𝑘𝑦)

2
− 𝑘𝑥2 − 𝑘𝑦2 𝐸 (2.20) 

 

This is the propagation equation without any approximations. All linear effects are actually 

contained in this simple equation. For an isotropic crystal there would be no dependence of k on 

kx and ky. We will work in the general case of a Biaxial crystal and x is the direction of walk-off. 

If we are using ordinary polarization k is given by: 

 

𝑘(𝜔) =
𝑛𝑜(𝜔)𝜔

𝑐
(2.21) 

 

Where no is the ordinary polarization index. This is true up to the second order in kx and ky. The 

ordinary polarization is aligned with one of the main axes of the crystal. Because of the symmetry 
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of the ellipsoid curve this means that there can be no odd order terms in kx and ky. It is often 

preferred to make a Taylor expansion of k on . We can write: 

 

𝑘(𝜔) =  𝑘(𝜔0) +
𝜕𝑘

𝜕𝜔
(𝜔 − 𝜔0) +

1

2

𝜕2𝑘

𝜕𝜔2
(𝜔 − 𝜔0)

2 +⋯ (2.22) 

 

Where 𝜔0 is the central frequency. This can be rewritten as: 

 

𝑘(𝜔) =  𝑘(𝜔0) +
1

𝑣𝑔
𝑑𝜔 +

𝐷

2
𝑑𝜔2 +⋯ (2.23) 

 

Where vg is the group velocity for the ordinary polarization, D the group velocity dispersion in 

s2/m and dω=ω-ω0. While this decomposition allows better understanding of the effect of 

different terms, it is not necessary. For most materials we have access to Sellmeier equations of 

the refractive index. Equation 2.23 is more convenient for discussing the role of dispersion, but 

equation 2.21 can be used in simulations because it requires no approximation on . The first order 

term will characterize the speed at which the pulse peak propagates in the crystal, while the second 

order term will cause the pulse to stretch. The group velocity and the group velocity dispersion 

can both be calculated easily by derivation of the refractive index from equations 2.21 and 2.22.  

 

The case of the extraordinary polarization is slightly more complex as we have to account for walk-

off. Because we are no longer operating along one of the main axes of the crystal, the refractive 

index will have a non-zero first order term in kx. As we operate within one of the main planes of 

the crystal, symmetry will still be verified in the y direction and there can be no odd order terms.  

 

𝑘2(𝜔, 𝑘𝑥) = (
𝑛𝑒(𝜔)𝜔

𝑐
)

2

+  𝐴(𝜔)𝑘𝑥 (2.24) 

 

Where ne is the extraordinary refractive index and A the first order term in . The zero-order term 

is the same as for the ordinary polarization, however ne is not one of the main indexes of the crystal. 

For instance, let us assume we are operating in the XY main plane of the crystal. In this work the 
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main axis system of the crystal will be denoted with upper cases and the system relative to the 

beam propagation (where z is the propagation direction) with lower cases. In order to meet phase 

matching conditions, we need to operate at a given angle 0 in spherical coordinates (with =90° 

in this case because we are in the XY plane). The ordinary index will simply be the main refractive 

index in the Z direction nZ and the extraordinary index will be: 

 

𝑛𝑒
2 =

𝑛𝑋
2  𝑛𝑌

2

𝑛𝑌
2 sin2𝜙0 + 𝑛𝑋

2 cos2 𝜙0
(2.25) 

 

We can also calculate the first order term of k in kx [156]: 

 

𝐴(𝜔) =  −𝑛𝑒
4
𝜔

𝑐
 

𝑛𝑋𝑛𝑌 sin(2𝜙0) (𝑛𝑋
2 − 𝑛𝑌

2) √
𝑛𝑋
2𝑛𝑌

2

𝑛𝑒2

𝑛𝑋
4𝑛𝑌

4
(2.26)

 

 

To simplify the equations the dependency of refractive indexes nX and nY are not explicitly shown. 

Usually the walk-off is simply calculated at the central frequency, however there is no technical 

reason to neglect the dependency in  as we usually have access to the Sellmeier equations for nX, 

nY and nZ. In practice that means there is also a small amount of angular dispersion of the 

extraordinary beam. The walk off angle  is given by: 

 

tan(𝜌) = −𝐴(𝜔0) (2.27) 

 

It would technically be possible to calculate the higher order terms in kx and ky [156], [157] though 

the effect should be quite small. Equations 2.20, 2.21 and 2.24 are sufficient to describe linear 

propagation. If we simply make a second order approximation in d, kx and ky the linear 

propagation is given by: 

 

𝑑𝐸

𝑑𝑧
= −𝑗𝑘𝑥 tan(𝜌) 𝐸 + 𝑗𝑑𝜔

1

𝑣𝑔
𝐸 − 𝑗

𝑘𝑥
2

2𝑘0
𝐸 − 𝑗

𝑘𝑦
2

2𝑘0
𝐸 + 𝑗

𝐷

2
𝑑𝜔2𝐸 (2.28) 

 



 31 

We already discussed the terms in kx, d and d2. The terms in kx
2 and ky

2 account for diffraction. 

Technically we should add a small corrective term to account for the second order components of 

k in kx and ky. We can see that Fourier space is particularly convenient to study linear propagation 

as this equation has a simple exponential solution in z. Importantly all linear terms only add 

spectral phase, and the spectrum is not modified by linear propagation. The decomposition of the 

propagation equation into its different contributor is more convenient than the more compact 

equation 2.20 for analyzing the role of different effects in the second order process. 

 

 The most obvious effect of group velocity will be different delays at different wavelength, 

meaning that it is not possible to keep the peak of all three pulses superposed after a certain length 

of crystal. If we consider how long two pulses will remain superposed, the effective crystal length 

is: 

 

𝐿𝑒𝑓𝑓 = 𝜏𝐹𝑊𝐻𝑀
𝑐

|Δ𝑛𝑔|
(2.29) 

 

Where FWHM is the full width at half maximum duration of the shortest pulse and Δng the group 

index difference between the two wavelengths. In practice the effective length can also depend on 

the signs of the different group index differences. For instance, in a DFG setup with a strong pump 

wave (wave 3 in equation system 2.7), if wave 1 is slower than the pump and wave 2 is faster, 

DFG will generate new photon at the leading edge of wave 1 and the tailing edge of wave 2. This 

shifts the peak of both pulses, respectively forward and backward, and means the interaction can 

remain effective long after the pulses should have lost superposition[95]. Conversely, when wave 

1 and 2 are both faster (or both slower) than the pump, this shift of the pulse peaks won’t be as 

efficient and Leff is a better approximation of the maximum usable crystal length. 

 

Similarly to group velocity, walk-off means that the beams will loose spatial superposition. In type 

I phasematching (where only one wave is in the extraordinary polarization) this shift applies to a 

single wave, while in type II phasematching two beams will walk-off, but always in the same 

direction. This makes beneficial effects such as we discussed for group velocity unlikely. The 

effective crystal length to maintain spatial superposition will be: 
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𝐿𝑒𝑓𝑓 =
𝑑

tan(𝜌)
(2.30) 

 

Where d is the beam diameter (of the smallest beam if they are not the same).  

 

Diffraction will cause an increase or reduction of the beam diameter. It is usually preferable to 

place the crystal at the beam waist to maximize the intensity and thus the efficiency of second 

order processes. As long as the crystal is much shorter than the Rayleigh length, the variations of 

beam diameter can be neglected. Similarly, the group velocity dispersion (GVD) will result in 

pulse stretching or compression. It is often preferred to operate with initially compressed pulses 

[136], [158] meaning that the initial spectral phase is flat (not  dependent) or as close as possible. 

This is called a transform limited (TL) pulse. In that case the GVD will cause stretching (with 

positive or negative chirp depending if we are in normal or abnormal dispersion mode). If we don’t 

want GVD to have a significative effect, we need: 

 

𝐿 ≪
𝜏2

𝐷
(2.31) 

 

Where  is the pulse duration. In some cases, in particular for quasi phase-matching, the initial 

pulses are strongly chirped [126], [140], [146], [159] in which case the added dispersion from the 

material can usually be neglected. 

 

We so far discussed temporal and spatial linear effects on the pulse. The effect on phase can also 

be significative, because they can introduce a phase shift between the three pulses in the 2nd order 

mixing process, resulting in lower conversion efficiency or even back-conversion.  

 

2.2.3 Cross and self-phase modulation 

 

Cross and self-phase modulation are third order nonlinear interactions. Unlike 4 waves mixing, no 

phasematching condition is required, thus this interaction will always happen. The third order 

nonlinear polarization for self-phase modulation is given by: 
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𝑃𝑛𝑙
(3) = 3𝜖0 (𝑒 𝝌

(𝟑)(𝜔,−𝜔,𝜔,𝜔) ∶ 𝑒  𝑒  𝑒 )|𝐸|2𝐸 (2.32) 

 

Where E is the electric field envelope, 𝑒  the unit vector of the electric field and 𝝌(𝟑) the third order 

nonlinear susceptibility. The factor 3 arises from the different permutations that would generate 

self-phase modulation. Similarly, when two different electric fields E and E’ are present the cross-

term polarization in  is given by: 

 

𝑃𝑛𝑙
(3) = 6𝜖0 (𝑒 𝝌

(𝟑)(𝜔,−𝜔′, 𝜔′, 𝜔) ∶ 𝑒′⃗⃗  ⃗ 𝑒′⃗⃗  ⃗ 𝑒 )|𝐸|2𝐸 (2.33) 

 

We note the factor 6, double than for self-phase modulation (SPM), because of the additional 

possible permutations. Even using crystal symmetry to reduce the number of independent tensor 

elements it is uncommon for all 𝝌(𝟑) elements to be measured as there can be up to 81 independent 

elements. For isotropic crystals we have only 2 different values of 𝝌(𝟑) elements :  𝜒0
(3)

 when all 

polarizations are the same, and  
1

3
𝜒0
(3)

when 2 waves have an orthogonal polarization to the other 

two (other tensor elements are zeros [160]). Unfortunately, we cannot use isotropic crystals 

because the 𝝌(𝟐) elements are all zeros (due to symmetry rules) and so they cannot be used for 2nd 

order interactions. However, the approximation of an isotropic crystal is often used because we 

lack information on the different values of the 𝝌(𝟑) elements. In that case, we will use a single 

nonlinear refractive index n2 with: 

 

𝑛2 =
3

4

𝜒0
(3)

𝑛
 (2.34) 

   

Therefore the effect of self-phase modulation is given by : 

 

𝑑𝐸

𝑑𝑧
= −𝑗

𝑛2𝜔

𝑐
𝐼 𝐸 (2.35) 

 

 



 34 

Where I is the intensity (see equation 2.9). As long as the intensity is low self-phase modulation is 

neglectable with typical n2 values of a few 10-20 m2W-1. However, with fs pulses the effect can be 

relevant even with a short crystal. Usually self-phase modulation in a crystal (or optical fibers) is 

characterized by the B integral [161]: 

 

𝐵𝑖𝑛𝑡 =
2𝜋

𝜆
∫ 𝑛2𝐼𝑚𝑎𝑥(𝑧)𝑑𝑧
𝐿

0

(2.36) 

 

Where Imax is the peak of intensity in the beam plane or the center of the beam (for gaussian beams), 

L the length of the crystal and λ the central wavelength. If Bint <<  the effect can be neglected. 

Self-phase modulation, also called optical Kerr effect, will cause stretching (if the initial pulse is 

unchirped or up-chirped) or compression (for down-chirped initial pulses) of the pulse because 

introduction of a time dependent phase term. Furthermore, the spectrum will also be stretched (or 

compressed for initially down-chirped pulses) and can exhibit strong oscillations if Bint is large (a 

few ) [162], [163]. This effect is often used in fiber lasers to increase bandwidth [164]. The other 

well-known effect of self-phase modulation is beam distortion, and in particular self-focusing 

[165], [166] which can also occur for large value of Bint. The variation of the effective refractive 

index along the beam causes lensing, which can result in extremely tight focusing and damage to 

the material.  

 

Self-steepening [167], [168] is also a known effect of SPM. The intensity dependence affects not 

only the effective refractive index, but also the effective group velocity. Usually this means an 

intensity dependent increase of the effective group index, meaning that the pulse peak is slowed 

down more than the rest of the pulse, so the tailing edge of the pulse steepens. This effect is 

particularly important for supercontinuum generation [169], [170], but can usually be neglected in 

(2) interactions, except for few cycles pulses [171]. 

 

Along with SPM, cross-phase modulation will also occur between the different waves. The effect 

of the intensity I2 of wave 2 on the electric field envelope E1 of the first wave is given by: 
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𝑑𝐸1
𝑑𝑧

= −𝑗𝑎
2𝑛2𝜔

𝑐
𝐼2 𝐸1 (2.37) 

 

 

Where a=1 when both electric fields have the same polarization, and a=1/3 when they have 

orthogonal polarization. This means that for 2 waves in the ordinary polarization (or in the 

extraordinary one), the effect of cross phase modulation is twice larger than self-phase modulation, 

and only 2/3 when the waves considered have different polarization. In a typical second order 

interaction setup, we have three different wavelengths, and need to consider the 3 terms of self-

phase modulation and the 6 terms of cross-phase modulation. In this work we define the following 

Bint for cross phase modulation: 

 

𝐵𝑖𝑛𝑡(2→1) = 𝑎
4𝜋

𝜆1
∫ 𝑛2𝐼2̃(𝑧)𝑑𝑧
𝐿

0

(2.38) 

With 𝐼2̃(𝑧) = 𝐼2(𝑥0, 𝑦0, 𝑡0, 𝑧) and  𝑥0, 𝑦0, 𝑡0 so that  

𝐼2(𝑥0, 𝑦0, 𝑡0, 𝑧)𝐼1(𝑥0, 𝑦0, 𝑡0, 𝑧) = max (𝐼2(𝑥, 𝑦, 𝑡, 𝑧)𝐼1(𝑥, 𝑦, 𝑡, 𝑧)) 

 

In other words, we chose to account for the effect of wave 2 on wave 1 where they exhibit the 

strongest superposition. We made this choice because the effect will be the strongest at the peak 

of I2, but if I1 is small there the overall effect on wave 1 will be small. To our knowledge there is 

no standard definition of Bint for cross-phase modulation. This will give us a definition similar to 

the standard one for SPM when we have superposed gaussian beams and pulses, but also account 

for a delay or a spatial shift between the two waves.  

 

Self and cross phase modulation are one of the limiting factors for second order nonlinear setups, 

because the efficiency is strongly intensity dependent, but they limit how tightly we can focus or 

how long the (2) medium can be without beam distortion, spectrum oscillation or even self-

focusing.  
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2.3  ALGORITHM 

 

Based on the equations described in the previous section, I programmed an application called 

“Wavemixer” that can simulate any second order interactions in crystals, provided with the 

appropriate input data. This allows us to explore novel scheme before actually building them and 

to choose the best setups prior to experiments. 

 

2.3.1 Dimensions 

 

The “Wavemixer” application currently has 4 different versions called 1D, 2D, 2Dcyl (for 2D 

cylindrical) and 3D. Those names refer to the number of dimensions used in the simulation. They 

are used to model second order phenomena with increasing physical accuracy at the cost of 

processing time. 

 

The simplest case we can simulate is that of 3 plane waves interacting. This means we only have 

to consider the dependence of the electric fields envelopes on time. The first version of 

“Wavemixer” is thus called 1D. Technically there could be a “0D” version for monochromatic 

plane waves, but due to the high intensities required for efficient second order processes, 

continuous wave lasers are not relevant. In practice there is also no (efficient) plane wave 

application of (2) crystals, but the simulation should be relatively accurate for nearly flat top super 

Gaussian beams as long as the beam diameter is relatively large (so that there is no effect of 

diffraction). In the 1D version the complex electric fields envelopes are stored in arrays 

corresponding to a time grid with a regular step. The changes are calculated for regular dz steps 

along the propagation direction, until the total crystal length is reached. 

 

The advantage of the 1D version is the speed of processing. The complexity will depend on the 

size of the time grid and the number of z steps, which is set as a power of 2 to optimize the 

processing speed of the Fourier transform operations. With the current version, running with 8GB 

1.6GHz RAM it takes 3.5 s to perform a simulation with 16 384 time steps and 100 z steps. The 

approximation of plane waves is not usually valid so the results of the 1D application are often 

very inaccurate. In particular the conversion efficiency (For SFG, DFG or SHG) are often 
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overestimated. This version is still a good first step when we want to find a range of appropriate 

parameters for setup (such as crystal length, peak intensity,…). The estimates it produces on Bint 

should be relatively accurate. In the case of parametric amplification, we can observe whether 

there will be a significant depletion of the pump pulse or even back-conversion of energy from the 

signal to the pump. Temporal effects will be simulated so we can check the impact of group 

velocities, GVD as well as the initial pulse durations and chirp. Some setups use strongly chirped 

pulses, with pulse durations up to a few hundred ps but transform limited duration (the duration if 

the pulse was perfectly compressed) of a few tens or hundreds of femtoseconds [99], [172], [173]. 

To simulate this, we require small time steps so that we can fit the spectrum (the smaller the time 

step the larger the spectral window in Fourier space) as well as a large time window, meaning 

100K or more steps. This is the typical case where it is better to perform all initial simulations with 

the 1D version and refine the results later with other versions. 

 

The 2D version makes use of a single spatial dimension in the beam plane, usually along the walk-

off direction, along with the time dimension. The electric fields are 2D matrices, with a 

corresponding regular time grid and regular space “x” grid. In the y direction, we assume we have 

a plane wave. The aim of this version is to simulate spatial effects such as walk-off and diffraction, 

while keeping computation times and memory requirements low. With this version, we can now 

simulate non-collinear setups, though the plane wave approximation for the second space 

dimension is not usually valid. Just like the 1D version, this is meant more for early simulations 

and finding out which parameters have a significant effect. Only for a noncollinear setup with large 

beams would the results be valid (in the collinear case the 1D version is faster). The estimated 

conversion efficiency is still usually inaccurate, as we assume constant intensity in y direction and 

second order processes are strongly intensity dependent.  

 

For a typical simulation with 2048 time steps, 64 space step (“x” grid) and 100 z steps, it takes 

about 22s. If a large number of time steps is required, simulation can become much more time 

intensive.  

 

The 2D cylindrical version makes use of cylindrical symmetry so that a more accurate simulation 

can be performed with a spatial “radius” grid and the time grid. In most practical cases the beams 
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have cylindrical symmetry. The only component of equation 2.27 that breaks cylindrical symmetry 

is walk-off. As long as the ratio of beam diameter to crystal length is much smaller than the walk-

off, it can be neglected (this is often the case). Consequently, unlike the 1D and 2D versions the 

results of the 2Dcyl version should be very accurate as long as we can neglect walk-off. 

Unfortunately, it is also impossible to simulate a non-collinear interaction with this version. Unlike 

other versions, the radius grid is not regular, but instead form the roots of a 0 order Bessel function. 

This is because the Fourier transform no longer works with cylindrical coordinates. Instead we use 

a Hankel transform[174] and this choice of grid lets us perform the discrete Hankel transform 

algorithm [175], [176]. This version of the application combines both computing speed and 

accuracy as long as the conditions for cylindrical symmetry are met. In fact, for the same 

simulation conditions as the 2D version (2048 time steps, 64 radius steps and 100 z steps) the 

calculation takes only 7s.  

 

Finally, we have the 3D version. In this version all electric fields are 3D matrices, with a 

corresponding time grid, and 2 space grids (in x and y) for the lateral dimensions. No 

approximation at all is required, but the counterpart is a higher requirement for computing time 

and memory. Any beam shape can be simulated, and all effects discussed in section 3.2 are 

accounted for. For a 1024 steps time grid, 64 steps x and y grids, and 100 z steps, the calculation 

time is 2mn and 20s. This is far from prohibitive but can become so as soon as the grid sizes 

increase. 

 

The current 4 versions of Wavemixer are well suited for all types of simulation, from quick pre-

calculations with the 1D and 2D versions, to fully realistic simulations with the 2D cylindrical and 

3D versions. 

 

2.3.2 Modified split step Fourier algorithm 

 

 

The actual simulation is performed using a modified split step Fourier algorithm[144]. The idea of 

such algorithm is to separate the linear parts of an equation, which are calculated in Fourier space, 

from the nonlinear part which is performed with a shift of a half step in real space. In our case the 
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modification arises from the treatment of SPM and CPM. We first convert all electric fields in real 

space (x,y,t) (for the 3D version; in other version there is just less coordinates) to Fourier space 

using fast Fourier transforms. We then perform a propagation step over a half step dz/2  

 

𝐸 (𝜔, 𝑘𝑥, 𝑘𝑦,
𝑑𝑧

2
) =  𝑒

−𝑗√𝑘2−𝑘𝑥
2−𝑘𝑦

2𝑑𝑧
2 E(ω, kx, ky, 0)𝑒

−
𝛼𝑑𝑧
2 (2.39) 

 

The first coefficient is a phase shift, arising from equation 2.19. The coefficient  is the absorption 

coefficient (in m-1) and in many crystals is neglectable. Afterwards, we perform an inverse Fourier 

transform to come back to real space (x,y,t) representations. We then account for the effect of 

phase modulation (self and cross) over a half step (using equations 2.35 and 2.37). We now have 

the real space representation of all electric fields after a half step of propagation. This is where we 

perform the first mixing step using the equation system 2.8. For this we employ a Runge-Kutta 

algorithm[177] applied to the equation system. This algorithm is used to perform derivation 

operations on a discrete step with 4th order in dz accuracy. Following the mixing step we alternate 

between full steps of linear propagation in Fourier space (equation 2.20) followed by the SPM and 

CPM steps in real space and mixing steps. After the final mixing step, we perform another half 

step of linear propagation and phase modulation. 

 

It would be possible to perform the phase modulation step along with the mixing in the Runge-

Kutta algorithm. But it would add complexity and the third order phase modulation is a small 

correction, not the main effect we want to study. Furthermore, we are already using an isotropic 

approximation for those effects even if it is not valid, because accurate measurements of all 

available (3) terms are not available. Self-steepening will not be accounted for by this algorithm, 

but it is usually neglectable. Multi-photon absorption is also not accounted for, because it is usually 

weak except near the UV (also dependent on the bandgap of the material [178]) and accurate 

coefficients are hard to find.  

 

2.3.3 Optimization 
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The current versions of Wavemixer have been optimized for computing speed as well as reducing 

unnecessary operations. When working with very large grids like in 3D, the number of operations 

to perform is very large. For instance, with a 1024 time step grid and 64x64 space grid, there are 

4 million elements per matrix representing an electric field, with 3 electric fields. For the linear 

step we need to perform a Fourier transform (the fast Fourier transform algorithm has a O(ln(n)n) 

complexity where n is the number of elements[179]), add a phase shift to each element (the phase 

shift per step can be calculated once for each (, kx, ky) combination as long as the crystal 

properties don’t change in the z direction) and perform an inverse Fourier transform. Then we need 

to shift the phase of each element for the phase modulation step. The mixing step requires 12 

multiplications operations on each element because of the use of a Runge-Kutta algorithm (we can 

neglect addition operations). So, for a 100 z steps we have about 1600 complex multiplication per 

element, and 200 calls of the fast Fourier transform function. 

 

The initial versions of Wavemixer made no use of parallel computing and each of the operation on 

elements of the E fields was performed with for loops. Early attempts to parallelize the “for” loop 

calculations in MATLAB resulted in only small improvements or even an increase in calculation 

time. Much better results were reached by using matrix products instead of for loops to perform 

elementwise operation, resulting on average in 10 times faster calculations. This is likely because 

the matrix products are already parallelized and optimized in most programming languages. The 

fast fourier transform operations are also already optimized for speed (and parallelized) in most 

programming languages. For the 2D cylindrical version of “Wavemixer” the Hankel transform is 

used instead of a Fourier transform for the radial coordinate. For a given number of radial steps 

this can be done by applying a square matrix to each array of the electric field (for each time step). 

The matrix needs to be calculated only once for the whole simulation. This means complexity is 

in n2 where n is the number of radial steps. While this is worse asymptotically than the fast Fourier 

transform algorithm, the 2Dcyl version is often faster than the 2D version for radial grids of less 

than 128 steps. 

 

The initial versions of “Wavemixer” would save the electric field after each mixing step, which 

allowed to plot the spectrum, intensity and other parameters at any position within the crystal. This 

is practical if we are not sure which crystal length is best suited for our application, as the 
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simulation can be performed on a long crystal and we can check where exactly adverse effects 

start to appear. Technically there is a small error because we are missing a half step of linear 

propagation and third order phase modulation, but this is a very small error. For the 3D version 

the memory requirements for this becomes too large, as we would have 3 matrices of 400 million 

elements with the grid given as an example earlier. The time to store this on hard storage would 

massively slow down the application. Thus, there is no saving after each step in the 3D version. 

Instead, after each step the conversion efficiency is calculated and its dependence with z can be 

plotted at the end of the simulations. For the 2D and 2Dcyl versions savings data at each step is 

optional and should be avoided when using large grids. In the 1D version the memory requirements 

are small even for large time grids, so electric fields are still saved at each z step. 

 

2.3.4 Input parameters 

 

The application is meant to simulate various second order nonlinear processes in crystals. The first 

step is to choose the crystal we will be working with (Figure 2.1, “material” tab), for instance LBO 

(Lithium Triborate) or BBO (Beta-Barium Borate) are commonly used for the near IR or visible 

range. A list of crystals is provided for which all the relevant data has been saved. Alternatively, 

it is possible to add new crystals, which can then easily be shared with anybody using the 

application. For each crystal we need the following data: 

- Is it a Biaxial or Uniaxial crystal?  

- The Sellmeier equation of the main optical indexes (2 for Uniaxial crystals and 3 for Biaxial 

ones) 

- The temperature dependence of the optical indexes. If this is not available, the effect of 

temperature cannot be calculated, and it is not possible to simulate non-critical phase 

matching 

- The effective nonlinear coefficient tensor Deff (meaning (2)/2) in pm/V 

- The nonlinear refractive index n2. A single value is provided like for an isotropic crystal, 

even if this approximation is not valid. This will be used as a default value. If more precise 

data is available for a specific polarization and propagation direction, it can be entered 

manually later. 

- References for the source of all this data  
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Figure 2-1: Initial selection options for the “Wavemixer” applications 

 

Secondly, we need to select the interaction we are interested in (Figure 2.1, “type of mixing” tab). 

This will determine what information is needed to start the simulations. For instance, in a SHG 

setup, there is only one wavelength entering the crystal (degenerate case where 1=2 in part 

2.2.1). In a parametric amplification scheme a strong pump beam (frequency 3 in part 2.2.1) and 

a weak signal beam (frequency 1 in part 2.2.1) are superposed in the crystal. Similarly, for SFG 

we need information on the waves at frequencies 1 and 2. There is also an option to have all 

three frequencies from the start of the crystal (with non-zero energy), though this is rarely the case 

in practical setups. Once we chose the interaction we are interested in, we need to choose the 

phasematching options (Figure 2-1, “phase matching” tab): Non-critical phasematching 

(collinear), critical phase matching (collinear) or non-collinear. Once this is done there is an option 

to calculate all phase matching conditions in the crystal where the deff coefficient is non-zero 

(Figure 2-1, “phasematching conditions” button), and then select the one we want to use.  

 

Finally, we need to provide information about the beams and pulses for all wavelength present at 

the start of the crystal (Figure 2-2). This means central wavelength, bandwidth, group delay 

Crystal selection 

Type of (2) interaction 

Phasematching type 

Calculates all possible 

phasematching 

angles/temperatures 
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dispersion, delay between pulses, beam diameters, distance between the center of each beam, 

distance from the crystal front to the beam waist… (section “data on the input waves” in figure 2-

2). For lower dimensions versions of “Wavemixer” less information is required. The beams and 

pulses can be Gaussian or super-Gaussian. Alternatively, measured spectra or beam profiles can 

be imported as well as results from previous simulations, which is useful for setups with several 

stages of amplification for instance[96]–[99]. This is done via the “import” buttons under the 

inputs for the different waves. We also need to indicate the crystal length and its temperature 

(except for non-critical phase matching). The phasematching condition will be calculated 

automatically, but we can introduce angular or temperature shifts to check the sensitivity to these 

parameters. The grid sizes can be chosen automatically for the given parameters or manually 

adjusted.  

 

Figure 2-2: Main simulation screen for the “Wavemixer” applications. Here the simulation is 
for DFG, so 2 input waves are required. All data on the beams and pulses as well as the crystal 
size and temperature are provided here. 

One of the advantages of “Wavemixer” over similar software [144], [148] is also the ability to 

model complex temperature profiles in the crystal. Temperature is one of the main parameters that 
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can strongly affect refractive indexes and therefore phasematching. Usually, the temperature of 

the crystal can be considered constant, but it can vary   

 

2.3.5 Outputs 

 

When the simulation ends, we have three electric fields matrices. From those intensity matrices 

can be calculated using equation 2.8. Integration over the space coordinates gives the power 

profile. The spectrum can be calculated by doing a Fourier transform of the electric fields along 

the time axis, and normalizing. The power and spectrum of all three waves is displayed on the 

main application screen (Figure 2.2). More graphs can also be plotted, for instance the beam profile 

(“Fluence” button), the phase, and so on. There is even an option to check the pulse properties at 

any point (x,y) in the beam (button “Display 3D”). By using “internal save” one of the complex 

electric field envelopes can be saved and used as an input in other simulations.  

 

The final energy ℰ𝑖 (to differentiate from electric fields) for each of the three wavelength is 

calculated by integrating over time and space. We can then define the energy conversion efficiency 

. For DFG the efficiency is: 

 

𝜂DFG =
ℰ2 + (ℰ1 − ℰ1

0)

ℰ3
0

(2.40) 

 

Where ℰ𝑖
0 represents the initial energy of wave i. For a SFG or SHG setup the conversion efficiency 

is: 

  

𝜂SFG =
ℰ3

ℰ2
0 + ℰ1

0
(2.41) 

 

The conversion efficiency is one of the main results of a second order setup. However, the output 

pulse and beam are also important. In particular the beam focusability is characterized by the beam 

quality parameter M2 [180]. For a Gaussian beam M2=1, and it increases the further the beam is 

from a Gaussian. The beam quality will affect the relationship between the divergence angle and 

the beam waist by modifying the Rayleigh length zR: 
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𝑧𝑅 =
𝑘𝑤0
2𝑀2

(2.42) 

 

Where w0 is the waist radius (1/e2) and k the wave vector at the central wavelength. The evolution 

of the beam diameter in the propagation direction is simply given by: 

 

𝑤(𝑧) = 𝑤0√1 +
𝑧2

𝑧𝑅
2

(2.43) 

 

Equation 2.43 is how beam quality is measured by performing a Z-scan[180]. The beam diameter 

is measured around the focal point of a lens and fitting the curves gives M2. The larger M2, the 

larger the beam waist is for a given focal length. Thus, large M2 can be a problem for microscopy. 

In our case we can calculate beam quality by using a mathematical formula[114]: 

 

𝑀2 =
𝑤𝑘
2𝑤2

2
(1 −

𝑤2𝑘2

𝑤𝑘
2𝑅2

) (2.44) 

 

Where w is the beam radius (at 1/e2), wk the angular width in m-1 (meaning the radius in fourier 

space) and R the radius of curvature. The radius of curvature can be calculated from the phase of 

the electric field.  

 

For each simulation the main results are summarized in the “numerical results” textbox (Figure 

2.2). This includes the conversion efficiency, the peak intensity for each wave as well as the total 

energy, the Bint values for self and cross phase modulation, the M2 values for each of the lateral 

space dimensions and the pulse duration. 

 

2.3.6 Validation 

 

In order to use the “Wavemixer” program we need to be absolutely sure that the results are valid. 

Validation of the results of “Wavemixer” was carried out in three different ways: Checking that 
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results match simple theoretical predictions in some specific cases, comparison with simulation 

results from SNLO [148] and another more limited simulation program created at EKSPLA. 

Finally, comparison to experiment. 

 

In section 2.2 we reviewed all the physical effects that were to be implemented in the “Wavemixer” 

program. First, by choosing n2 = 0 and canceling all linear propagation components, the 

implementation of the second order mixing was checked. When the crystal is short enough that 

depletion is neglectable, the results matched equation 2.12 for SFG and equations 2.17 and 2.18 

for OPA. Then we performed DFG simulations where either the pump or signal initial was set to 

0, also with n2 = 0, meaning there was no mixing and only linear propagation. We observed the 

predicted diffraction (equation 2.43), the excepted shift of the beam center due to walk-off for the 

extraordinary polarization, the expected group velocity and the expected stretching of the pulse 

due to GVD. Finally, linear propagation terms were removed and n2 set to non-zero (with still no 

mixing) to check that SPM was correctly implemented. The effects on self-focusing, the increase 

in bandwidth and the stretching of the pulse matched theory for the calculated Bint values. This 

means all the different components of the algorithm were checked to match theoretical results 

when an analytical solution exists. 

 

The second step is comparison with other simulation tools. For this we can check the whole 

application for different values of the input parameters. Good match was observed in SFG, SHG 

and OPA simulation. A self-consistency test was also made: if we perform DFG simulation in a 

2mm LBO crystal, save all the output results and import them as input in a “3 wave” simulation 

(simply meaning all 3 waves have non zero initial energy) in 2mm of LBO, we get the same results 

as if we directly propagated over 4mm. Some options are not available in other programs, such as 

a temperature profile varying with z in the crystal.  

 

The crystal properties were checked by calculating the phasematching conditions at known 

wavelength and temperature, as well as checking the refractive indexes, group indexes and deff 

coefficient (typically for SHG from 1064nm and 800nm for the visible/ near infrared range). If the 

results match, it is unlikely that there is a mistake in the Sellmeier equations. This also proves that 

the calculation of phasematching conditions work as expected. The calculation of the beam quality 
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parameter M2 was checked in 3 different ways. First, by checking that the value of M2 for some 

specific beam shapes. For a gaussian beam M2 should be 1 and for Hermite-Gaussian beams [181] 

M2 should take integer values depending on the Hermite-Gaussian mode. Second, by plotting the 

beam diameter dependence on z when the beam is propagated in free space (simulating a Z-scan) 

and checking that the curve matches the theoretical one for the calculated M2. Third, by studying 

the change of M2 due to SPM when there is no mixing and checking the dependence of M2 on Bint 

matches known results [182]. 

 

Finally, the last part of validation is experimental proof. Simulations were performed using 

experimental parameters for SH and two stages third harmonic generation setups (first a stage of 

SH and then SFG) with a good match. Overall simulation tends to overestimate the conversion 

efficiency by at least 10%. This is not surprising as the simulation assumes perfect condition 

(Gaussian beam, gaussian pulse, flat spectral phase…). It is possible to refine results by importing 

experimental data, in particular the pulse shape and phase obtained by Frequency Resolved Optical 

Gating (FROG)[183].Globally, the “Wavemixer” tool performs well and allows for choosing 

experimental parameters and relatively good estimation of the output parameters of a second order 

nonlinear setup.  

 

 

2.4  CONCLUSION 
 

In this work we developed a new simulation tool for second order non-linear interactions in 

crystals. We included all relevant linear and nonlinear effects in the algorithm. We use the optical 

properties of the chosen crystal to find the phase-matching condition and calculate the propagation 

of optical wavs in the crystal. The “Wavemixer” tool was successfully tested against theoretical 

results, other simulation tools and experiments. We can now use this tool to better design OPA, 

SHG or SFG setups and test novel approach, such as a temperature gradient in the crystal.  

 

The simulation tool Wavemixer that was created and tested here was used in all the following 

chapters to test the effects of several parameters on second order nonlinear interactions and to 

choose appropriate crystals and beam diameters for experiments and prototype systems. 
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Chapter 3:  

Peculiarities of Second Harmonic Generation 

with Chirped Femtosecond Pulses at High 

Conversion Efficiency 
 

Second harmonic generation is often used to provide a pump for an optical parametrical 

amplification setup. In most such schemes the conversion efficiency from the fundamental to the 

second harmonic wavelength should be as high as possible, while maintaining good spatial 

properties of the second harmonic beam. Because second harmonic generation is highly sensitive to 

intensity, the second harmonic generation will often be performed on a well compressed pulse so 

that the pulse power is maximal. Here we study the effect of small amounts of group delay dispersion 

and higher order dispersion on the second harmonic generation process. We demonstrate that the 

conversion efficiency and beam quality are highly sensitive to small changes in the spectral phase, 

even if the fundamental pulse is not significantly stretched. Ideally, reducing the beam diameter and 

shortening the crystal length can reduce the sensitivity of second harmonic generation to group delay 

dispersion, but photodamage and Kerr effect limit the peak intensity. The sensitivity to group delay 

dispersion should be a practical concern when designing a high conversion efficiency second 

harmonic generation setup, as group delay dispersion or higher order dispersion terms can rarely 

be perfectly compensated. 

This chapter is based on the article “Peculiarities of Second Harmonic Generation with 

Chirped Femtosecond Pulses at High Conversion Efficiency » published in Optics 

communications (volume 455, January 2020), by Pierre-Marc Dansette, Raimundas Burokas, 

Laurynas Vesely, Audrius Zaukevičius, Andrejus Michailovas and Nerijus Rusteika. Pierre-Marc 

Dansette performed all the simulations and the final experiments presented in this work. He was 

the main author of this work. Raimundas Burokas provided the initial experiments indicating a 

higher-than-expected sensitivity of second harmonic generation to group delay dispersion. 

Laurynas Veselys provided the source laser for the final experiments and advice. Audrius 

Zaukevičius helped Pierre-Marc Dansette create the simulation tool used in this article. Nerijus 

Rusteika and Andrejus Michailovas managed the project.
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3.1  INTRODUCTION 
 

Visible ultrashort pulse lasers are useful for a large array of applications, such as 

spectroscopy [184], non-linear microscopy [185] or micro-machining [186]. Because 

good broadband laser gain media in the visible range is not available, visible femtosecond 

pulses can be generated by frequency doubling of near infrared (NIR) femtosecond laser 

pulses. Furthermore broad tunability can be achieved by optical parametrical 

amplification or optical parametric generation when pumped with femtosecond visible 

pulses [140], [187]. Tunable femtosecond pulses in the 600-1300 nm spectral range are 

used in some bio-photonic applications [188]–[190].  

 

Several parameters are known to control the second harmonic generation (SHG) process 

for transform limited pulses (TL), such as the non-linear properties of the crystal, the 

pulse duration, the focusing conditions and the pulse energy [133], [134]. The importance 

of the spectral phase of the fundamental radiation for SHG was predicted by modelling [191] and 

observed in BBO and LBO crystals [192]. The spectral phase of the fundamental radiation was 

shown to be the main parameter governing the second harmonic (SH) pulse duration and its 

spectrum.  Recently it was shown that  SHG efficiency in BBO with 300 fs pulses from a Yb:KGW 

laser drops asymmetrically when the pulses are positively or negatively chirped [158]. It was also 

shown that the sign of the chirp affects efficiency asymmetrically for surface SHG [193] and SHG 

in plasma [194]. Lastly, quasi-phasematching with chirped gratings can be used in 

conjuncture with chirped pulses for frequency doubling [122], [146]. In this article we will 

expand the viewing of previous work on the effect of spectral phase and chirp [158], [191], [192] 

to further the analysis of the influence of group delay dispersion (GDD) and higher order 

dispersion on SHG efficiency and the resulting beam quality.  

 

3.2  NUMERICAL SIMULATION METHODS 

 

Simulations of the second harmonic generation (SHG) was performed using a split step Fourier 

method [144]. We used a full 3D grid in time and the lateral dimensions x and y of the beam (z 

being the propagation direction). The second harmonic crystal analyzed in this work was lithium 
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triborate (LBO), one of the most common nonlinear crystals used for SHG of ultrashort pulses 

[192], [195]. However most effects are expected to be similar in other nonlinear crystals. The 

phasematching conditions were calculated using Sellmeier’s equations for LBO [196]. The 

propagation step was performed in Fourier space: 

 

𝐸(𝜔, 𝑘𝑥, 𝑘𝑦, 𝑧 + 𝑑𝑧) =  𝑒
−𝑖√𝑘2−𝑘𝑥

2−𝑘𝑦
2  𝑑𝑧

E(ω, kx, ky, z) (3.1) 

 

Where 𝜔 is the frequency, 𝑘𝑥 and 𝑘𝑦 the wave vector components in x and y directions and k is 

the norm of the wave vector. E is the complex amplitude of the electric field envelope. The wave 

vector norm will depend on the principal refractive indexes of the crystal, nX, nY and nZ. Here 

(X,Y,Z) designate the principal coordinate system of the crystal, different from the coordinates we 

used previously (x,y,z), where z is the propagation direction, defined by angles θ and ϕ to the 

principal coordinate system. For type 1 phase matching in LBO crystal propagation is in the XY 

principal plane (θ=90o) and the wave vector in the ordinary polarization is given by: 

 

𝑘(𝜔) =
𝑛𝑜(𝜔)𝜔

𝑐
 (3.2) 

Where no is the ordinary refraction index, in here equal to nZ. For the extraordinary polarization 

direction: 

𝑘2(𝜔, 𝑘𝑥) =
𝜔2

𝑐2
𝑛𝑋
2(𝜔)𝑛𝑌

2(𝜔)

𝑛𝑌
2(𝜔) sin2𝜙𝑘𝑥 + 𝑛𝑋

2(𝜔) cos2 𝜙𝑘𝑥
(3.3) 

 

With  𝜙𝑘𝑥 = 𝜙0 − arcsin (
𝑘𝑥

𝑘(𝜔, 𝑘𝑥)
) (3.4) 

Where 𝜙0 is the phasematching angle [156]. Equation 3 can be developed to the second order in 

𝑘𝑥 : 

𝑘2(𝜔, 𝑘𝑥) = (
𝑛𝑒(𝜔)𝜔

𝑐
)

2

+  𝐴(𝜔, 𝑘𝑥)𝑘𝑥 +  𝐵(𝜔)𝑘𝑥
  2 (3.5) 

Where ne is the extraordinary refraction index, 𝐴(𝜔, 𝑘𝑥) is responsible for spatial walk-off and 
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𝐵(𝜔) for non-paraaxial diffraction : 

𝑛𝑒
2 =

𝑛𝑋
2  𝑛𝑌

2

𝑛𝑌
2 sin2𝜙0 + 𝑛𝑋

2 cos2 𝜙0
 (3.6) 

𝐴(𝜔, 𝑘𝑥) =  −𝑛𝑒
4
𝜔

𝑐
 

𝑛𝑋𝑛𝑌 sin(2𝜙0) (𝑛𝑋
2 − 𝑛𝑌

2) √
𝑛𝑋
2𝑛𝑌

2

𝑛𝑒2
−
𝑘𝑥2𝑐2

𝜔2

𝑛𝑋
4𝑛𝑌

4  (3.7)
 

𝐵(𝜔) =  𝑛𝑒
4
𝑛𝑌
4 sin2𝜙0 + 𝑛𝑋

4 cos2 𝜙0 − 𝑛𝑋
2𝑛𝑌

2

𝑛𝑋
4𝑛𝑌

4  (3.8) 

With k as defined above, the linear propagation accounts for full material dispersion, non-paraxial 

diffraction and spatial walk-off due to birefringence. The non-linear propagation step was 

performed in real space. For each dz step, self- and cross-phase modulation were accounted for 

using a zero order approximation: 

Ef(𝑧 + 𝑑𝑧) = 𝐸f exp (−𝑗
𝑛2𝜖0𝜔0
2

[𝑛𝑜(𝜔0)|𝐸f|
2
+
2

3
𝑛𝑒(2𝜔0)|𝐸SH|

2] 𝑑𝑧)

ESH(𝑧 + 𝑑𝑧) = 𝐸SH exp (−𝑗𝑛2𝜖0𝜔0 [
2

3
𝑛𝑜(𝜔0)|𝐸f|

2
+ 𝑛𝑒(2𝜔0)|𝐸SH|

2] 𝑑𝑧)

 (3.9) 

 

Where ω0 is the central frequency of the fundamental radiation, ϵ0 the vacuum permittivity, 𝐸𝑓 

and 𝐸SH the complex amplitudes (at z unless specified) of the fundamental and second harmonic 

radiations respectively. To lighten notations we left out the (x,y,t) dependence of the fields. This 

equation as well as equation 3.10 are applied to each position (x,y,t) in the grid.  n2 is the non-

linear refractive index  (for LBO  2.6 10−20 𝑚2/𝑊 [197]).  

  

The second harmonic generation is performed using a fourth order Runge-Kutta method [177], 

meaning we had a precision up to the fourth order on the z step. SH generation was characterized 

by the effective non-linear coefficient 𝑑eff calculated from the second order susceptibility matrix 

[149] and given by the following system of coupled equations: 
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{
 

 
𝑑𝐸f

𝑑𝑧
= 𝑗

ω0𝑑eff

𝑛𝑜(ω0)𝑐
𝐸f
∗𝐸SH

𝑑𝐸SH

𝑑𝑧
= 𝑗

2ω0𝑑eff

𝑛𝑒(2ω0)𝑐
𝐸f
2

(3.10) 

 

The algorithm starts with a half step of propagation (equations 3.1 to 3.8) performed in Fourier 

space (kx,ky,) , followed by a Fourier transform to come back to real space (x,y,t) and a half step 

of phase modulation (equation system 3.9). Then we iteratively perform a full step of non-linear 

mixing (equation system 3.10), a full step of propagation and a full step of cross and self-phase 

modulation. The last step consists in a full step of non-linear mixing, a half step of propagation 

and a half step of cross and self-phase modulation. This means the nonlinear mixing is performed 

with a half step shift in comparison to propagation and phase modulation. This method slightly 

diverges from a classic split step Fourier method, in which all non-linear phenomena – meaning 

the nonlinear mixing and the phase modulation – are calculated with a half step shift in comparison 

to the linear step – the propagation in Fourier space. However, we did not wish to implement a 

Runge-Kutta algorithm on both cross and self-phase modulation and the nonlinear mixing. This 

allows us to gain processing speed. Thus, we treated phase modulation with the linear part. We 

note that phase modulation depends only on intensity (equation 3.9).  For typical values of group 

velocity dispersion intensity varies only little due to propagation, but the SH intensity will initially 

increase exponentially with propagation length. Therefore, it is better to treat phase modulation at 

a half step shift with the nonlinear mixing. 

 

The input pulse at the fundamental wavelength was modelled using a Gaussian spectrum and 

introducing some spectral phase tailored with second, third and fourth order dispersion. The beam 

quality, defined as the focusability parameter M2, was calculated by applying an analytical formula 

[114] to the modelled beam after propagation : 

 

𝑀2 =
𝑤𝑘
2𝑤2

2
(1 −

𝑤2𝑘2

𝑤𝑘
2𝑅2

) (3.11) 

Where w and 𝑤𝑘 are respectively the beam radius and angular width, calculated by the 𝐷4σ [198] 

method, k is the wave vector and R the radius of curvature of the wave front [180]. The beam 
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focusability parameter depends only on the spatial properties of the beam, not on the temporal or 

spectral properties (such as GDD). It will not be affected by diffraction or spatial walk-off, but can 

be affected by cross and self phase modulation (Eq. 9) as well as the mixing process (equation 10) 

as those are intensity dependent. 

 

3.3  NUMERICAL SIMULATION 

 

We performed a set of simulations with transform limited Gaussian pulses with durations from 30 

fs to 1 ps (FWHM) and central wavelength of 1030 nm. The spatial beam profile was also assumed 

Gaussian and the beam diameter (1/e2) in the crystal was set at 300 µm. For this diameter the 

corresponding Rayleigh length in LBO was 110 mm, much longer than all crystals lengths 

considered in this work (0.8 – 15.9 mm). Though diffraction could be neglected, it was included 

in simulations anyway. Below we will present the results of numerical simulations exploring the 

effects of group delay dispersion (GDD) and higher order dispersion on SHG efficiency and SH 

beam quality for different pulse intensities, bandwidth and crystal lengths. 

 

3.3.1 Effect of peak intensity at the fundamental wavelength 

 

As a starting point in simulations, we chose Gaussian pulses with transform limited duration of 

300fs and the initial crystal length was set to be equal to the group velocity mismatch length (LGVM) 

between the pulses at the fundamental and SH. For LBO crystal at the chosen pulse parameters, 

this corresponds to 4.8 mm. The incident pulse peak intensity was varied from the lowest value of 

0.89 GW/cm2 to the highest of 89 GW/cm2, which corresponded to pulse energies from 100nJ to 

10J (Table 3.1, the first and the second columns). Additional modelling results are also presented 

in Table 3.1: Efficiency of the conversion to SH, accumulated non-linear phase  (B integral[161]) 

and the SH pulses focusability parameter M2. 
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Intensity 

(GW/cm2) 

Energy 

(J) 

B integral 

(rad) 

Efficiency 

(%) 

M2 

0.89 0.1 0.003 22 1 

1.77 0.2 0.009 35.8 1.01 

17.7 2 0.2 82.6 1.03 

44.3 5 0.58 90.9 1.05 

88.6 10 1.19 80.9 1.8 

 

Table 3-1: Peak conversion efficiency to the SH for different peak intensities of the 
fundamental wavelength beam obtained from the numerical simulation for 300fs pulses and 
4.8mm long LBO crystal. B-integral for SH pulses and M2 parameter for the SH beam obtained 
from the same simulation are also provided. 
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Figure 3-1: Numerical simulation results of SHG conversion efficiency as a function of GDD 
applied to pulses at the fundamental wavelength for different values of peak intensity (solid 
curves) and SHG efficiency dependence on GDD using a simple model disregarding depletion 
at the fundamental wavelength and phase effects (dashed curves), normalized so that the 
peak efficiency is the same as in numerical simulation. The pulse stretching factor (duration 
divided by TBW duration when GDD=0fs2) caused by GDD (bottom axis) is indicated on the 
top axis. 

 

A modeled dependence of SHG conversion efficiency on GDD of the pulses with different 

intensities is shown in Figure 3.1 by solid lines. The modelled range of GDD corresponds to a 

relatively small stretching of the pulse (up to 3 times time bandwidth (TBW) limited pulse 
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duration, see top axis). It is worth to note that the stretching dependence on GDD is non-linear (it 

becomes asymptotically linear for large values of GDD). For all pulse intensities, peak efficiency 

is achieved at GDD close to zero, with a slight shift to negative GDD when intensity is increased, 

up to GDD = -2500 fs2 at 88.9 GW/cm2. Peak conversion efficiency of 90.9% is reached at around 

44.3 GW/cm2 peak intensity of the fundamental radiation and decreases to 80.9% for the highest 

peak intensity within simulation conditions (table 3.1). This effect is well known as being caused 

by back-conversion of the energy of the SH pulse to the fundamental radiation [134], [199]. For 

all modeled intensities, efficiency falls down at both positive and negative GDD approximately 

symmetrically in respect to the peak. However, the drop rate vs introduced GDD dramatically 

depends on the intensity.  

 

One of the effects of GDD is to increase pulse duration. When the pulse at the fundamental 

wavelength is stretched we expect the SH conversion efficiency to drop. In order to estimate the 

role of pulse stretching on the SH conversion efficiency, we compare fully modelled efficiency 

dependence on GDD with the one which results from a simple model. In this model it is assumed 

the SH pulse energy is proportional to the integral of the squared peak intensity of the fundamental 

radiation [153]. 

 

∈𝑆𝐻∝ ∫𝐼𝑓
2𝑑𝑡  (3.12)  

   

Where 𝐼𝑓 is the peak intensity of the fundamental radiation and ∈𝑆𝐻 the energy at the second harmonic 

wavelength. This model accounts only for pulse duration change due to dispersion. This 

approximation is valid only if we can neglect the depletion of the fundamental radiation, which is 

clearly not the case at higher conversion efficiency, as well as if phase effects are ignored. Those 

approximation are not necessarily valid with the chosen simulation parameters, but this model 

provides a useful estimate of the expected effect of GDD in practical situations. For Gaussian 

pulses, conversion efficiency scales as an inverse of time bandwidth (TBW) limited pulse duration 

τ within this model. At very low peak intensity of the fundamental radiation (0.89 GW/cm2), we 

observe a good match between the simplified theoretical behavior (dashed curves) and the fully 

modeled curve of efficiency. For example, at 80 000 fs2 GDD pulse duration is stretched from 300 
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fs to 800 fs and therefore efficiency with this simple model falls ~2.7 times from the peak. Full 

model puts it at 2.5 times lower - quite a good match. When peak intensity is increased to 1.77 

GW/cm2, the drop of SHG efficiency vs GDD gets slower for the full model in comparison with 

1/τ simplified theory, which can easily be explained by the depletion of the fundamental radiation 

causing a flatter curve. However, at higher intensities, starting from 17 GW/cm2, this behavior is 

reversed: starting from 17 GW/cm2 conversion efficiency dependence on GDD becomes steeper 

in comparison to the simplified model.  At the highest intensities SHG efficiency manifest 

extremely fast drop around the peak. This behavior dramatically differs from results predicted by 

simplified model We note that at high fundamental radiation peak intensities (44.3 GW/cm2 or 

88.9GW/cm2) SH conversion efficiency reaches local minima for positive and negative GDD. The 

SH conversion efficiency increases for larger values of absolute GDD only until a certain point. 

For instance, at fundamental radiation peak intensities of 44.3 GW/cm2 a local maxima of 52.5% 

SH conversion efficiency is reached at ±165 000 fs2 of GDD. It then starts to decrease for larger 

amounts of GDD and asymptotically decrease as 1/GDD. Generally, the simplified model remains 

valid only in the asymptotic case when GDD tends to ±∞, where the assumption that fundamental 

depletion can be neglected remains valid. 
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Figure 3-2: Left axis: Dependence of peak SHG conversion efficiency on the peak intensity at  
the fundamental wavelength (red curve); Right axis : Dependence of the SHG conversion 
efficiency sensitivity coefficient on the peak intensity at the fundamental wavelength (blue 
curve). See explanations in the text. 
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To quantify this behavior we introduced a parameter α characterizing the sensitivity of the SHG 

conversion efficiency () to GDD variations. To calculate this sensitivity coefficient, a second 

order fit was performed on the relative SHG efficiency curve as a function of GDD near the peak. 

In figure 3.2, this coefficient is given relative to the GDD sensitivity of SHG conversion efficiency 

in a simplified model, when we neglect fundamental radiation depletion and phase effects. It 

characterizes the “sharpness” of the “SHG efficiency peak”. The absolute value of the sensitivity 

coefficient of SHG conversion efficiency to GDD in the simplified model is 4.02x10-8 %/fs4 for 

the chosen pulse duration (independent on intensity). This value was used throughout as a 

reference sensitivity and modeled sensitivity was normalized to it. The dependence of this 

normalized sensitivity parameter is shown in figure 3.2 alongside the peak SHG conversion 

efficiency dependence on the peak intensity of the fundamental radiation. At high intensities this 

parameter gets very large (sensitivity is ~120 times larger for 44GW/cm2 peak intensity than that 

in the simplified model) and can limit practical applications of SHG in actual femtosecond laser 

systems with such high conversion efficiency.  For example, a practical femtosecond laser system 

with chirped pulse amplification may have a GDD in stretcher or compressor of the order of 30ps2 

(or 3.107 fs2, corresponding to ~280 ps stretched pulse duration). The change of this dispersion by 

0.01% would correspond to a GDD change of 3000 fs2. This change would affect conversion 

efficiency only slightly (<0.5% change) at relatively low pulse peak intensity (< 10 GW/cm2), but 

for a pulse peak intensity around 40 GW/cm2 which corresponds to highest efficiency (~91%), this 

change would decrease efficiency by ~12%, which would be prohibitive for most practical 

applications.  
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Figure 3-3: Beam quality parameter M2 of the SH beam as a function of GDD applied to the 
fundamental wavelength pulse for different values of its peak intensity. 

Further, we investigated the dependence of the beam quality parameter (M2) on the introduced 

GDD. The response of the beam quality to GDD variations was quite unexpected (figure 3.3). 

Firstly, at the same low GDD value corresponding to efficiency peak (from 0 to -2500 fs2 

depending on peak intensity), the beam quality is very good (M2≤ 1.05) for all pulse intensities up 

to 44 GW/cm2 where absolute efficiency peaks. Only for the highest peak intensity of 89 GW/cm2 

beam quality gets significantly reduced (M2=1.8) at low GDD. At low peak intensity (below 20 

GW/cm2) M2 remains below 1.05 for all modelled values of GDD. However at 44 GW/cm2 beam 

quality rapidly worsens when GDD is changed from the value corresponding to the peak of 

efficiency. M2 reaches maxima of ~2.3 for GDD around ±30 000 fs2. For larger amounts of GDD 

M2 improves again. Similar M2 dependence is observed at lower intensities, though M2 increases 

to lower maximal values depending on intensity. At the highest modeled fundamental radiation 

peak intensity of 89 GW/cm2 M2 rises sharply to ~2.6 when small amounts of GDD are introduced, 

but then remains largely flat in the modeled range of  ±90 000 fs2 and starts improving for higher 

GDD. 

 

The dependence of M2 and SH conversion efficiency on GDD mirror each other. As the peak of 

efficiency gets narrower, the rise of M2 gets steeper too. We did not estimate the sensitivity 

parameter for M2, but it correlates very well with the sensitivity parameter for efficiency.  
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Figure 3-4: Numerical simulation results of energy conversion efficiency from the 
fundamental to SH wavelength as a function of crystal length for different values of GDD 
applied to the fundamental wavelength pulse. Pulse energy was kept at 5μJ in all cases. 

To better understand these dependences, we calculated the conversion efficiency as a function of 

propagation length in the crystal for different amounts of GDD (Fig 4.). At 44 GW/cm2 for the 

value of GDD corresponding to peak efficiency (GDD =-2500 fs2), efficiency increases along the 

crystal up to the maximal simulated length of 4.8 mm. However when GDD of -30 000 fs2 is 

introduced, at first efficiency increases with added crystal length up to 72% for a 2.7mm long 

crystal, and then starts decreasing down to 40% for the maximal modelled length of 4.8 mm. This 

indicates back conversion from the SH to the fundamental radiation. The length of crystal after 

which back conversion starts varies with the introduced amount of GDD. It is known that back 

conversion negatively affects beam quality, and its effect vary with intensity. Thus, both the 

behavior of M2 and of conversion efficiency is caused by back conversion. For the highest 

modelled peak intensity of 89GW/cm2 (not plotted), back conversion is observed even at the peak 

of efficiency. At GDD= ±30 000 fs2, there is actually a full cycle of conversion and back 

conversion: After a short length of crystal (2.1 mm) back conversion starts and efficiency starts to 

drop, and further on (after 3.9 mm) conversion restarts and efficiency increases again. This might 

explain the qualitative difference in the dependence of M2 and SH conversion efficiency on GDD 

that we observed for this peak intensity.  
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3.3.2 Effect of crystal length 

Due to the very high sensitivity of SH conversion efficiency of femtosecond pulses on GDD at 

high intensity, a natural question arises: Are there conditions when high conversion efficiency can 

be achieved in relatively broad GDD range with good beam quality? Trying to answer this 

question, we performed a set of simulation for different crystal lengths. We selected the peak 

intensity of the fundamental radiation so, that peak efficiency was close to 90% in all cases. The 

required intensities to achieve this peak conversion efficiency are tabulated in table 3.2 for 

different crystal lengths. At low conversion efficiency, disregarding phase effect and the depletion 

of the fundamental radiation, conversion efficiency should be proportional to L2If, where L is the 

crystal length and If is the peak intensity of the fundamental radiation. Thus, the required peak 

intensity to maintain the same SH conversion efficiency should vary as 1/L2. At high conversion 

efficiency those assumptions obviously do not hold and the required peak intensity scales at a 

lower rate with crystal length (Table 3.2).  For instance reducing crystal length 7.5 times (from 

6mm to 0.8 mm) requires the increase of peak intensity 34 times only (instead of 56 if the 1/L2 

dependence held). However, peak intensity scales much faster than 1/L. Therefore B integral, 

which is an integral of peak intensity multiplied by the non-linear refractive index n2 over the 

crystal length, increases for shorter crystal while SH peak conversion efficiency is kept at 90%. In 

practice it will limit the use of very short crystals for SHG. 

 

L 

 (mm) 

If 

(GW/cm2) 

E 

(µJ) 

B 

integral 

(rad) 

M2 

0.8 1063 120 2.14 1.31 

1.5 310 35 1.21 1.12 

3 88.6 10 0.71 1.06 

4.8 44.3 5 0.58 1.05 

6 31 3.5 0.51 1.06 

Table 3-2: Required fundamental radiation peak intensity If and corresponding pulse energy E 

required to maintain a 90% SH peak conversion efficiency for different nonlinear crystal lengths 
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L, for 300 fs pulse duration and 300 µm beam diameter. B-integral for SH pulses and M2 

parameter for the SH beam are calculated for the tabulated crystal lengths and intensities 
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Figure 3-5: Numerical simulation results of conversion efficiency from the fundamental to 
SH wavelength as a function of GDD applied to pulses at the fundamental wavelength for 
different values of the crystal length (solid curves) when the fundamental radiation peak 
intensity is chosen so that peak efficiency is close to 90%. Relative efficiency using a simple 
model disregarding depletion of the fundamental radiation and phase effects (dashed curve), 
normalized to the peak efficiency of 90% is presented for comparison 

The evolution of efficiency with GDD for the different combinations of crystal length and peak 

intensity is shown in figure 3.5. We notice that the sharpness of the efficiency peak decreases 

rapidly as the crystal length is reduced. For crystals of 1.5 mm or less the peak is even much less 

sharp than a 1/τ curve (the very simplified model described in section 3.1). For crystals shorter 

than 3 mm the curve is asymmetric for positive and negative dispersion, which may explain 

previous experimental observations of asymmetry with respect to GDD[158], [193], [194]. It is 

also notable that the shorter the crystal length is (and the higher the peak intensity) the more 

efficiency peak shifts to the negative GDD. For a 0.8 mm crystal the peak is reached at -10 000 

fs2. Both the asymmetry and the shift of the efficiency peak toward negative GDD are related to 

Kerr effect: switching off Kerr effect in simulations (n2=0) leads to symmetrical efficiency curves 

with a peak around 0 fs2. 

The calculated parabolic coefficient of relative sensitivity α (figure 3.6) drops from ~45 for a 6mm 

crystal to ~0.3 for a 0.8 mm LBO crystal. The values are indicated relative to the parabolic 
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coefficient α of the simplified model (when depletion and phase effects are neglected). This is a 

much more favorable situation for practical purposes, but we notice the required peak intensity 

also increases up to 1TW/cm2, which would be prohibitive due to surface damage of the LBO 

crystal with femtosecond pulses. Damage threshold, extrapolated from picosecond damage studies 

[200], should be of ~400GW/cm2 for 300fs duration pulses, assuming 1/√τ scaling of threshold 

damage peak intensity. However, accounting for the damage threshold of anti-reflection coatings 

on the crystal and the fact that practical SHG system with modern lasers should be operational for 

up to 1014 pulses (corresponding to 3 years of operation at 1MHz repetition rate) a reasonable 

practical limit (albeit somewhat arbitrary) for LBO crystal has to be set at ~100GW/cm2 for 300fs 

pulse duration.  At this peak intensity the relative sensitivity of the SH conversion efficiency on 

GDD parameter is ~5 with 3mm long LBO crystal, which is still quite high (~2% change in 

efficiency for 3000fs2 change in GDD). Thus, we could not find very favorable conditions to 

achieve 90% efficiency with 300fs pulses. Either the sensitivity to GDD is too large (for long 

crystals), or peak intensity is too high (for short crystal). 
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Figure 3-6: Left axis: Peak intensity of the fundamental radiation required for 90% or higher 
efficiency of the conversion to SH (red curve); right axis:   Dependence of the conversion 
efficiency sensitivity coefficient on the length of the crystal (blue curve). 

We performed a second set of simulations for the same crystal lengths but optimizing the peak 

efficiency to around 80%. To achieve this efficiency for different crystal lengths, required 

fundamental radiation peak intensity is given in table 3.3, along with corresponding pulse energy 
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(for the same 300fs pulse duration and 300m beam diameter) as well as calculated GDD 

sensitivity parameter α, B integral and M2 parameter. Firstly, somewhat unsurprisingly, the 

sensitivity of conversion efficiency to GDD is greatly reduced in comparison to 90% efficiency 

case. It still increases with crystal length, but for peak intensity of around 100GW/cm2 sensitivity 

parameter decreases from ~5 for 90% efficiency to 0.3 for 80%, corresponding to a 0.1% SH power 

change for a GDD change of 3000fs2 and ~1% for 10 000fs2, which is more than 3 times lower 

than predicted by 1/τ scaling. At 3mm crystal length a good compromise between fundamental 

radiation peak intensity (31 GW/cm2) and sensitivity to GDD (~0.6 times the sensitivity for 1/τ 

dependence) is achieved. In general, to optimize the crystal length for maximal practical second 

harmonic efficiency one should have a target efficiency as well as should know the allowed peak 

intensity on the crystal and the allowed sensitivity to GDD.  

 

L 

 (mm) 

If 

(GW/cm2) 

E 

 

(µJ) 

B 

integral 

(rad) 

α 

 

M2 

0.8 398 45 0.73 0.24 1.08 

1.5 115 13 0.39 0.3 1.03 

3 31 3.5 0.21 0.58 1.02 

4.8 14 1.6 0.16 1.25 1.03 

6 9.7 1.1 0.13 1.81 1.03 

Table 3-3: Required fundamental radiation peak intensity If and corresponding pulse energy 
E to maintain a conversion efficiency to SH of 80% for different crystal lengths, for 300 fs 
pulses and 300 µm beam diameter. B-integral for SH pulses, conversion efficiency’s 
sensitivity coefficient to GDD α (relative to the sensitivity when depletion and phase effects 
are neglected) and M2 parameter for the SH beam obtained from the same simulation are 
also provided 
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Figure 3-7: Beam quality parameter M2 of the SH beam as a function of GDD applied to the 
pulse at the fundamental wavelength for different values of the crystal length, when the 
fundamental radiation peak intensity is chosen so that the peak efficiency is ~90% 

The simulation results on dependence of beam quality parameter on GDD for different LBO crystal lengths 

at fixed SH efficiency of 90% are given in figure 3-7. For crystal lengths of 4 to 6mm behavior is very 

similar as in 4.8mm crystal length case described in section 3.1 (figure 3-3): M2 is very good (<1.1) at low 

GDD corresponding to the peak of SH conversion efficiency. M2 then rises for both negative and positive 

GDD and peaks at ~±30 000fs2. At this point the worst beam quality is observed for the longest crystal 

(6mm) at M2 = 2.5. For intermediate crystal length of 3mm the worst beam is at positive GDD of ~20 

000fs2 with M2 = 1.3. At negative GDD of -20 000fs2 M2 is ~1.2 showing significant asymmetry in regard 

of the sign of the chirp. We found that the main driver of the observed asymmetry is Kerr effect in the 

nonlinear crystal, as when a simulation was run at n2 = 0, asymmetry in respect to GDD sign disappeared. 

For the shortest crystal lengths of less than 2mm there is a single peak around 0 fs2. This is in line with what 

we would expect from simple self-phase modulation in nonlinear medium [182]. Indeed from numerical 

simulation we obtained a B integral of 2.1 rad for the shortest crystal (0.8mm) at the peak of 90% efficiency, 

which according to [182] should yield an M2 of 1.25, which is very close to M2 = 1.3 from numerical 

simulation. We also confirmed this by running a simulation of nonlinear propagation of only SH beam at 

the same B integral value (2.1 rad) and obtained beam quality parameter of M2 = 1.27 confirming the 

hypothesis that beam quality for short crystal length deteriorates primarily due to accumulation of nonlinear 

phase from self-phase modulation.   In the case of SHG in short crystals, the efficiency gets lower when 

GDD is introduced, following the reduction of B integral for stretched pulses. 
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3.3.3 Extension to different pulse durations with different bandwidth 

 

After investigating the effects of GDD on efficiency and beam quality of the SH in different 

combinations of intensity, crystal length and peak efficiency for 300 fs initial pulse duration of the 

fundamental radiation, an obvious question arises: can these observations be  generalized for 

different pulse durations? To answer to that we performed a set of simulations for different initial 

pulse durations 𝜏 (at GDD=0 fs2) between 30 fs and 1ps. We previously observed that sensitivity 

to GDD decreases when the crystal length is reduced and the fundamental radiation peak intensity 

increased to maintain high efficiency (section 3.2). The main practical limitation is the practical 

maximum peak intensity for the nonlinear crystal, which we previously estimated at ~100GW/cm2 

for a 300fs pulse duration.  The dependence of peak intensity damage threshold on pulse duration 

in subpicosecond regime is somewhat complicated - different studies provide different results 

[111], [201]. In most cases the dependence can be assumed to fall in between  1/√𝜏 and 1/ 𝜏.  By 

running additional simulations not shown here, we did not find a qualitative difference in the 

results between 1/√𝜏 and 1/ 𝜏 peak intensity scaling and therefore only analyze  1/√𝜏  case bellow. 

Assuming 1/√𝜏 scaling, maximal allowed peak intensity can be calculated for different pulse 

durations. We also optimized  the crystal length for each pulse duration so that SH conversion 

efficiency is maximized  (table 3.4).  

 

τ  

(fs) 

L 

(mm) 

If 

(GW/cm2) 

B 

int. 

(rad) 

𝜂𝑚𝑎𝑥 

(%) 

𝛼 

 

M2 

30 1.5 337 1.03 79.9 8.2 1.12 

100 2.3 183 1.09 87.8 31 1.12 

300 3.2 106 0.93 91.7 14 1.08 

1000 4.2 58.2 0.68 92.3 1.5 1.06 

 

Table 3-4: Crystal length L that maximize the SH conversion efficiency peak for different 
TBW limited pulse durations τ of the fundamental radiation with the fundamental radiation 
peak intensity If set at the estimated surface damage threshold. For a 30fs pulse duration, L is 
limited by the phasematching bandwidth. The peak of efficiency ηmax  is provided, along with 
B-integral (B int) for SH pulses, a relative sensitivity coefficient α to GDD and M2 parameter 
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for the SH beam obtained from the same simulation. To obtain α the absolute sensitivity is 
divided by the sensitivity parameter for the simplified model (when depletion and phase 
effects are neglected), which scales as τ4. 
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Figure 3-8: Numerical simulation results of SH conversion efficiency for different values of 
the initial TBW limited pulse duration τ of the fundamental radiation, when crystal length is 
chosen to maximize peak efficiency and the peak intensity of the fundamental radiation is set 
to the damage threshold. On the top axis, the pulse stretching ratio t/τ (pulse duration 
divided by the TBW limited duration) is shown, which corresponds to the normalized GDD 
shown on the bottom axis. 

A different criterium had to be used for the shortest (30fs) initial pulse duration, as the peak 

conversion efficiency keeps slowly rising with crystal length (up to 90%), even for crystals as long 

as 15mm. This behavior is unlike what we observed at longer pulse durations, where the peak of 

efficiency reaches a maximum, and then starts to decrease due to back conversion. But for a 30fs 

pulse, the group velocity mismatch length (LGVM) is ~0.5 mm, so after 1mm of crystal or more, 

pulses at the SH and fundamental wavelength are completely temporally separated. Because of 

this, there can be almost no back conversion. However, using extremely long crystals for very 

short pulses is unpractical, since the gain in efficiency with long crystal comes at the cost of longer 

SH pulses, which defeats the purpose of using very short pulses in the first place. Thus, we limited 

ourselves to a 1.5 mm crystal for a 30fs. For all other pulse durations the crystals are sufficiently 

short so that there is no problem of phase matching bandwidth. Indeed we note that for all 

considered parameters, at the peak of conversion efficiency the SH pulse duration when exiting 

the crystal was very close to the initial pulse duration of the fundamental radiation, what could be 
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expected for high conversion efficiency. We also calculated the TBW limited pulse duration of the 

SH, which varied from 16% shorter than the TBW limited pulse duration τ of the fundamental 

radiation for τ = 1ps, to 27% shorter for τ = 100fs.  

The SHG efficiency dependence on normalized GDD (divided by the square of the TBW limited 

pulse duration ) is shown figure 3-8. The choice of using normalized GDD scale levels the 

differences between pulses with different initial bandwidth. The stretching (as a fraction of TBW 

limited duration) associated with normalized GDD is the same for all bandwidths (figure 3.8, top 

axis). The sharpness of the efficiency peak increases with shorter pulse durations down to 100fs. 

For a fundamental radiation TBW limited pulse duration of 30 fs, the peak is less sharp (table 3.4), 

but peak conversion efficiency is significantly lower (80%). The SH conversion efficiency 

dependence on GDD always displays local minima, which are observed at larger normalized GDD 

values for shorter pulses. As, e.g., at GDD ≈ ±0.3 2 for a 1ps pulse, and at GDD ≈ ±12 for a 30 

fs pulse. SH conversion efficiencies at minima varies from 80% for a 1 ps pulse to 17% for a 30 

fs pulse. For larger amounts of added GDD, the efficiency reaches local maxima before dropping 

again.  

The behavior of the beam quality parameter (figure 3-9) is very similar to that was described in 

previous sections, with the value of M2 at local maxima increased when pulse duration shortened 

from 1ps to 100fs. For a 1ps pulse duration, beam quality remained relatively good for all modelled 

values of GDD, with M2<1.15. For a 30 fs pulse the maxima of M2 were reached at larger values 

of GDD (GDD ≈ ±0.72) than for longer pulse duration (GDD ≈ ±0.32), but their value is lower 

than for a 100 fs pulse (maximum M2 of 2.45 for a 100fs pulse duration and 2.12 for a 30 fs pulse). 

A possible explanation for this is the temporal separation between pulses at the fundamental and 

SH wavelength, due to group delay mismatch. Indeed, for a 30fs pulse LGVM is ~0.5 mm, 3 times 

shorter than the crystal length (1.5 mm). We saw previously that the worsening of beam quality 

and the drop in SH conversion efficiency when GDD is introduced comes from back conversion 

(section 3.1). However, since the pulses are no longer temporally well overlapped there can only 

be very little back conversion. As LGVM increases with pulse stretching, so there can still be back 

conversion when pulse are stretched. 
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Figure 3-9: Beam quality parameter M2 of the SH beam as a function of normalized GDD (i.e. 
GDD divided by the square of the initial TBW limited pulse duration τ) of  the pulse at the 
fundamental wavelength for different values of τ, when crystal length is chosen to maximize 
peak efficiency and the fundamental radiation peak intensity is set to the damage threshold. 

While SHG efficiencies of  60% are regularly achieved for pulses longer than 100 fs [146], [158], 

[202], achievable efficiency tends to drop for shorter pulses. Our numerical simulation clearly 

shows that it is indeed difficult to achieve practically high conversion efficiency for very short 

pulses. Peak efficiency drops because for very short pulse durations the crystal length is limited 

by the phasematching bandwidth and the fundamental radiation peak intensity is limited by the 

damage threshold of the nonlinear crystal. Furthermore, conversion efficiency is still very sensitive 

to GDD near the peak and can drop to only ~20% for stretched pulses (2 times or more).  

Generally, the sensitivity of SH conversion efficiency and SH beam quality parameter M2 on GDD 

is more problematic for very short pulses. For pulses of 1ps or longer it is possible to operate at 

the highest achievable peak efficiency and have a relatively low sensitivity to GDD. But for pulses 

of a few hundred femtosecond, the only way to obtain practically acceptable sensitivity to GDD is 

to operate at lower peak efficiency (i.e. use a shorter crystal or lower the fundamental radiation 

peak intensity). 
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3.3.4 Influence of higher order dispersion 

 

In many practical situations, the spectral phase of ultrashort pulses may not only possess a 

quadratic spectral dispersion term (linear chirp), but also higher order spectral dispersion terms 

due to imperfectly compensated dispersion, nonlinear effects, or both [203]. As quadratic spectral 

phase is the first expansion term in Taylor series, in our modelling we looked at the influence of 

higher order phase terms only as a contributing factor to the effects of linear chirp. Indeed, it is 

difficult to imagine a practical system (but it is definitely feasible to construct one) where only 

third or fourth order spectral dispersion terms would change, while GDD is constant. 

In this section, the initial conditions of simulation were chosen to be the same as in part 3.1: TBW 

limited pulse duration of the fundamental radiation was 300fs and the initial beam diameter was 

300 µm, with a 4.8 mm LBO crystal length and fundamental radiation peak intensity of 44.3 

GW/cm2 at GDD=0fs2.  
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Figure 3-10: Numerical simulation results of conversion efficiency from fundamental to SH 
wavelength as a function of GDD at the fundamental wavelength, for different values of TOD 
and TBW limited pulse duration τ of the fundamental radiation. Crystal length is set at 4.8 
mm and fundamental radiation peak intensity at GDD = 0 fs2 is 44.3 GW/cm2 in all cases 

At first, the effect of GDD when a large amount of third order dispersion (TOD), corresponding 

to a cubic spectral phase term, was investigated. TOD value of ±0.02 ps3 was chosen such, that 

initial pulse duration at GDD = 0 fs2 increased quite significantly (from 300 fs to 420 fs) but 
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temporal Strehl ratio [204], [205] relative to the Gaussian pulses of the same FWHM duration (420 

fs) was still high (92%). It indicated that pulses are still of good temporal quality. Energy of the 

pulses with cubic phase was increased to 7.3 µJ to keep the same peak intensity of 44GW/cm2.  

The evolution of SHG conversion efficiency versus GDD with and without cubic phase is shown 

Figure 3.10. We also plotted the dependence of efficiency on GDD for a 420 fs TL pulse with the 

same peak intensity (corresponding to 7µJ pulse energy). The obtained efficiency peak got 

smoother when TOD increased. The maximal efficiency also decreased.  The first conclusion is 

that the effect of the sign of TOD is relatively small: peak efficiency is lower for positive TOD 

(84% in comparison to 88.2%), sensitivity on GDD is slightly lower for positive TOD and the 

local minimum of efficiency at around GDD = ±100 000 fs2 is higher for positive TOD than for 

negative TOD (45% vs 38%). Around the peak of efficiency the dependence on GDD is very 

similar to that of a TL pulse of the same duration (420 fs). However, the minima of efficiency are 

lower and almost the same as for a 300 fs TL pulse (which has the same bandwidth). 

 

The evolution of beam quality depending on GDD for different amounts of TOD is shown figure 

3-11. In all cases M2 is close to 1 at the GDD corresponding to maximal SHG efficiency, then 

increases and reaches local maxima for positive and negative GDD. While those are reached 

respectively for ±30 000 fs2 and ±50 000 fs2 for 300 fs and 420 fs TL pulses, they are shifted to 

much larger GDD values (around ±80 000fs2) in the presence of TOD (positive or negative).  Close 

to GDD= 0fs2 the dependence on GDD in the presence of TOD is similar to that of a 420fs TL 

duration pulse, but maximal M2 values are similar to those for a TL pulse of the same bandwidth 

(300fs TL duration). 
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Figure 3-11: Beam quality parameter M2 of the SH beam as a function of GDD applied to the 
pulse at the fundamental wavelength for different values of TOD and TBW limited pulse 
durations. Crystal length is set at 4.8 mm and fundamental radiation peak intensity at GDD = 
0 fs2 was 44.3 GW/cm2. 

Finally, a numerical simulation of SHG with pulses subjected to fourth order spectral phase or, in 

other words, fourth order dispersion (FOD) was performed. Combined effects of FOD and GDD 

on SHG were modelled. Initial parameters were the same as in the previous case (with TOD), but 

a chosen amount of FOD was applied instead of TOD. The value of FOD was chosen so that a 

temporal pulse quality (Strehl ratio) would be ~90% and the same minimal pulse duration as in 

TOD case (420fs). FOD can be partly compensated by GDD [206], therefore to make a meaningful 

comparison a precompensation of FOD with GDD was performed. This precompensation was set 

at the value corresponding to maximal fundamental radiation peak intensity for a given amount of 

FOD. The amount of  FOD leading to a pulse duration of 420 fs after compensation was ±0.025ps4. 

Interestingly, relative Strehl ratio (pulse quality) of pulses stretched by TOD and FOD (after 

precompensation with GDD) is quite similar (93% and 89% respectively, table 3.5). 
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τ  

(fs) 

TOD 

(ps3) 

FOD 

(ps4) 

t 

(fs) 
𝜌  

(%) 

𝜂𝑚𝑎𝑥  

(%) 

α 

300 -0.02 0 420 93 88.3 4.7 

300 0 -0.025 420 89 82.9 0.97 

300 0 0 300 100 90.9 33 

420 0 0 420 100 91.6 4.5 

300 0 0.025 420 89 75.8 0.91 

300 0.02 0 420 93 84 2.4 

Table 3-5: Peak conversion efficiency to the SH for different amounts of TOD or FOD applied 
to the fundamental pulse of TBW limited pulse duration τ, at 44GW/cm2 fundamental 
radiation peak intensity in a 4.8mm LBO crystal. The ratio ρ of the peak power of the 
fundamental pulse at GDD=0 to the one for a Gaussian pulse with the same FWHM duration 
(Strehl ratio) is also provided. SH conversion efficiency sensitivity parameter α on GDD is 
calculated relative to the sensitivity for a simplified model (depletion and phase effect 
neglected) for TL pulse duration τ=300fs 

The SHG efficiency as a function of GDD when  ±0.025 ps4 of FOD is applied and precompensated 

with ±0.120 ps2 of GDD (negative GDD is used for positive FOD and vice versa) to optimize the 

Strehl ratio of the pulses at the fundamental radiation shown Figure 3.12. Peak SHG efficiency is 

reduced for both positive and negative FOD but more so for positive FOD. Efficiency dependence 

becomes asymmetric for positive and negative GDD: for positive FOD, efficiency drops faster for 

negative GDD, and slower for positive GDD. For positive FOD the situation is reversed. We note 

that the pulse duration and shape also varies asymmetrically with GDD when some FOD is applied. 

That could explain the asymmetrical conversion efficiency dependence observed in previous 

studies [158], [193], [194]. The sensitivity to GDD around the peak of efficiency is significantly 

reduced (table 3.5), even when compared to a TBW limited pulse of the same duration (420fs).  
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Figure 3-12: Numerical simulation results of efficiency of the energy conversion from 
fundamental to SH wavelength as a function of GDD applied to fundamental pulses for 
different values of FOD (also applied to the fundamental pulse). Precompensation was 
applied when FOD is non zero and GDD=0 fs2 corresponds to maximal fundamental radiation 
peak intensity. Crystal length is set at 4.8 mm, transform limited duration at 300 fs and 
fundamental radiation peak intensity at 44.3 GW/cm2. 

The beam quality evolution is given in figure 3.13.  The most notable effect of FOD  is introduction 

of asymmetry in the GDD dependencies. Positive FOD causes a large but asymmetric 

improvement of M2 in comparison to a 300fs pulse without FOD when positive GDD is introduced. 

The value of the M2 maximum for positive GDD drops from 2.3 to 1.6 ( in comparison to a 300 fs 

pulse with no FOD), while the M2 maximum value for negative GDD drops from 2.15 to 1.85. For 

negative FOD the opposite holds. We also notice that the maxima of M2 correspond to larger 

amounts of absolute GDD when FOD is introduced. For negative FOD the dependence of both M2 

and SH conversion efficiency on small amounts of positive GDD matches that of a 420 fs TL 

pulse. The reverse holds for positive FOD.  
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Figure 3-13: Beam quality parameter M2 of SH as a function of GDD for different values of  
FOD. Crystal length is set at 4.8 mm, transform limited duration at 300 fs and peak 
fundamental radiation peak intensity at 44.3 GW/cm2 

 

3.4  EXPERIMENTAL VALIDATION 

In the previous section through numerical simulations the effects of SHG with femtosecond pulses 

at different set of parameters were explored. We modelled the separate and cumulative effects of 

different order of spectral dispersion on both: the conversion efficiency from the fundamental to 

the SH wavelength for femtosecond pulses and the resulting SH beam focusability parameter M2, 

which describes the spatial beam properties. However, the ultimate proof of any theoretically 

obtained results is the experimental evidence. Therefore, we set to validate some of more 

interesting features of numerical simulations by experiment. 

The laser source was an experimental femtosecond fiber laser produced by EKSPLA, delivering 

pulses with a FWHM duration of 240 fs, with an average power of 3.3 W at 1MHz repetition rate 

and a central wavelength of 1030nm. A chirped fiber Bragg grating (CFBG) with a linear 

temperature gradient along the fiber was used in the laser to stretch the pulse [203]. This allowed 

to add a desired amount of second order dispersion, depending on the temperature gradient. The 

third and higher order dispersion added by the temperature gradient along the CFBG was 

negligible in this experiment. At the output of the laser, the pulses were compressed in a diffraction 

grating compressor. M2 beam quality parameter of the laser used in experiments was less than 1.1. 
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The laser beam was focused in the 3.7 mm long LBO crystal, available at the time, down to the 

diameter of 240 µm to generate second harmonic when the phase matching conditions are met. 

After separating fundamental and second harmonic radiations, both conversion efficiency and 

beam quality of SH were measured. As the pulses from the fiber laser were not transformed limited, 

an exact pulse intensity and phase data were required to compare experimental result and 

simulation. This characterization was performed with a home built second harmonic FROG 

(Frequency Resolved optical grating) autocorrelator. The reconstructed pulse and phase of the 

pulses at the fundamental wavelength used in SHG experiments are shown in figure 3-14. 
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Figure 3-14: Pulse temporal profile of intensity and phase at the fundamental radiation 

wavelength reconstructed from SH FROG measurement, for the case when temperature gradient 

on the CFBG was optimized for shortest output pulse duration from the laser 

The experiment was performed by varying temperature gradient on CFBG stretcher and measuring 

second harmonic power using a thermoelectric power meter and performing z-scan measurements 

of the beam diameter to evaluate M2 for several GDD values. As was mentioned about fourth order 

dispersion, even orders of spectral phase can partly compensate each other. Therefore, the GDD=0 

fs2 point was determined using two-photon absorption measurement with a photodiode. It 

corresponds to the peak of two-photon absorption (which should also correspond to the peak of 

second harmonic generation when depletion of the fundamental can be neglected, as described in 

our simplified model).  
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Figure 3-15: Efficiency of SHG as a function of GDD  measured with an experimental laser 
setup in 3.7 mm LBO crystal. The black curve is the values of experimental measurements. 
The dashed curve is obtained using a simplified model accounting only for the pulse 
stretching, while neglecting fundamental radiation depletion and phase effects (see section 
3.1) The red curve displays the simulation results using phase and amplitude reconstructed 
from FROG, accounting for 10% optical losses in the system. Simulation was performed 
without any fitting parameters. 

To compare the simulation and experimental results we used the parameters of the FROG 

reconstructed pulse (figure 3-14). These laser pulses were not Gaussian and the spectral phase 

could not be approximated by a parabola, which means that the pulses were not only chirped, but 

also possessed some higher order dispersion. A temperature gradient of the CFBG was set to 

minimize second order dispersion of the compressed pulse. Varying the temperature gradient 

allows to add or remove GDD.  

The measured SHG efficiency as a function of GDD is given in figure 3-15 (black curve) along 

with simulated curves. The peak intensity of the fundamental radiation assuming actual pulse 

shape on the crystal was ~46GW/cm2. The peak of efficiency was measured around 58%. We 

observed that efficiency drops sharply for positive GDD but much more slowly for negative GDD, 

indicating a significant amount of FOD (see figure 3.13). For GDD =30 000 fs2, efficiency drops 

to ~35%, while for GDD=-30 000 fs2 it drops to ~52% only. Part of this asymmetry may be 

explained by the asymmetric stretching of the pulse for positive and negative GDD. Indeed, the 

dashed curve, corresponding to the very simplified model presented in section 3.1, also features 

strong asymmetry. As one can see, the simplified model still does not match well with experiments. 
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The drop in efficiency for negative GDD is too sharp, while the effect of small amounts of positive 

GDD (below 10 000 fs2) is too small, leading to a much smoother efficiency peak. Conversion 

efficiency from the fundamental to SH wavelength starts dropping sharply for GDD values 

>10 000 fs2.  
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Figure 3-16: M2 quality parameter of the SH beam generated in a 3.7 mm LBO crystal as a 
function of GDD. The black curve is the experimental measurement. The red curve displays 
the simulation result using phase and amplitude reconstructed from FROG. 

When a full model numerical simulation was performed taking into account amplitude and phase 

of the real laser pulses (red curve), the calculated dependence of SHG conversion efficiency on 

GDD matched the experimental results quite well. The simulated curve displays the same slow 

decrease of efficiency for large amounts of negative GDD as observed in experiment. It also 

matches the sharp drop of efficiency for positive GDD. However, even when accounting for losses, 

it still overestimates the peak efficiency by ~10% and its sharpness. We attribute this to the fact 

that FROG technique is a very delicate method and the exact intensity and phase profile of the 

laser pulse may be somewhat different from what was retrieved from FROG data. This difference 

would obviously influence the modelled SH generation efficiency dependence on GDD in a minor 

way. Additionally, for the purpose of simulation, we assume the laser beam is Gaussian and its 

waist located at the front of the LBO crystal.  Any experimental deviation from those ideal 

conditions could affect the SH conversion efficiency dependence on GDD. 
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The measured dependence of beam quality parameter M2 on GDD is shown in figure 3-16 (black 

curve). It is worth noting a sharp rise of M2 for positive GDD, with a maximum value of 1.4 for 

GDD around 20 000 fs2. It corresponds to the same GDD at which sharp drop of SHG conversion 

efficiency was obtained (figure 3.15). Beam quality then slightly recovers for larger GDD. The 

beam quality is much better for negative GDD (<1.2 for all experimental GDD values). The 

dependence of M2 on GDD variations is fairly well reproduced in simulation, especially the 

asymmetry with respect to sign of GDD as well as a significant increase of M2 for positive GDD. 

This asymmetric dependence of both SH conversion efficiency an SH beam quality parameter on 

GDD matched the effect of a residual FOD (section 3.4). This could be explained by the fact that 

dispersion control of the experimental femtosecond laser allowed tuning GDD and TOD, but FOD 

was fixed by design. On the other hand, nonlinear effects in the fiber amplifier may also lead to 

higher order phase distortions, which cannot be compensated in the laser system.  

 

3.5  SUMMARY AND CONCLUSION 
 

In this article we presented the results of a study of the effects of GDD and higher order spectral 

dispersion on frequency doubling in LBO with different set of parameters of fundamental radiation 

pulses (peak intensity, transform limited duration) and nonlinear crystal length. We demonstrated 

that at high peak intensity for long crystals, when resulting conversion efficiency to SH is very 

high (~90%), even relatively small amounts of GDD can have a detrimental effect on SHG 

conversion efficiency, which can be up to a 100 times larger when compared to low conversion 

efficiency case. It can cause prohibitive instability of the SH pulses in both short and long term in 

practical systems, if GDD of the laser system fluctuates or drifts. Reducing the length of the 

nonlinear crystal helped to mitigate sensitivity to GDD, but then the peak intensity of the pulses 

needed to be increased to reach a high conversion efficiency and thus, would exceed the damage 

threshold of the nonlinear crystal surface, making this an impractical approach. 

 

For our knowledge, in this work for the first time the effects of GDD on the SH beam quality at 

high conversion efficiency regime were systematically studied. In particular, we observed that 

introducing moderate amount of GDD might considerably degrade SH beam quality, which is very 
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important and could have practical implications for femtosecond laser systems with tunable pulse 

duration and SHG.  

 

Numerical simulations of SHG conversion efficiency of transform limited femtosecond pulses 

with durations in range from 30 fs to 1 ps manifested, that B integral accumulated in the nonlinear 

crystal is the limiting factor to obtain very high conversion efficiency for the shortest pulses 

durations. Accumulated nonlinear phase results in significant degradation of the beam quality. 

 

Numerical simulations accounting for higher order spectral dispersion demonstrated that very high 

conversion efficiency could be obtained with lower sensitivity to non-compensated GDD if a slight 

degradation of the pulse temporal quality is acceptable. With cubic spectral phase (or TOD), 

conversion efficiency dependence on GDD is symmetric in respect to the GDD sign. However, 

introduction of fourth order spectral phase (or FOD) leads to strong asymmetry of SH conversion 

efficiency and SH beam parameter M2 in respect to GDD sign. 

Finally, experiment with femtosecond fiber laser demonstrated a good agreement between 

experimental results and numerical simulations, using full intensity and phase information of the 

laser pulse retrieved from FROG. Asymmetric behavior of SH conversion efficiency and beam 

quality parameter M2 was observed for applied positive and negative GDD, which is apparently 

caused by the uncompensated fourth order dispersion in the laser system or self-phase modulation 

in the fiber amplifier. This could also explain similar results presented in other studies.  

To conclude, a comprehensive set of numerical simulations of SHG of femtosecond pulses showed 

a rich behavior of conversion efficiency and beam quality of SH in respect to GDD, which was 

previously not reported in detail. 
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Chapter 4:  

Continuous Compensation of the Phase 

Mismatch by using Temperature Gradients 

for Second Harmonic Generation 
 

In the previous chapter, the effect of group delay dispersion on second harmonic generation for 

nearly compressed pulses was analyzed. Here, we look into a novel parameter that can interact 

with the group delay dispersion to provide better control of the output. We demonstrate that by 

applying a temperature gradient along the propagation direction in a long nonlinear crystal, the 

conversion efficiency and beam quality of the second harmonic of a stretched pulse improves 

significantly. Furthermore, depending on the sign of both the group delay dispersion and the 

temperature gradient, the bandwidth and duration of the second harmonic are significantly 

affected. With a well-chosen temperature gradient, it is possible to reach relatively high 

conversion efficiency (above 50%) and to compress the second harmonic pulse. Alternatively, it is 

also possible to maximize the bandwidth of the second harmonic (also at high conversion 

efficiency), though the pulse will be significantly stretched. A temperature gradient in a bulk 

nonlinear crystal is a promising transverse parameter, that adds a new degree of freedom in the 

design of second harmonic generation setups for ultrashort pulses. The effect is similar to chirped 

quasi-phasematching, but unlike the grating of a periodically polarized crystal it is an easily 

controlled parameter. 

 

This chapter is based on the article “Continuous Compensation of the Phase Mismatch by using 

Temperature Gradients for Second Harmonic Generation », in Optic Communications (published 

online, volume 484, 1st of April 2021), by Pierre-Marc Dansette, Maksim Eremchev and Andrejus 

Michailovas. The simulation work was performed by Pierre-Marc Dansette. Maksim Eremchev 

measured the dependence of the conversion efficiency, beam quality and second harmonic 

spectrum on temperature gradients. Pierre-Marc Dansette performed a second series of 

experiment including the measurement of the 4th harmonic power, so that all results came from the 

same setup and laser. The experimental results presented in the article came from Pierre-Marc 

Dansette. Andrejus Michailovas supervised this project.  
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4.1  INTRODUCTION  
 

Frequency doubling of an infrared ultrashort laser in a nonlinear crystal is a popular 

technique[133], [134], [158] to generate visible range radiation due to the lack of good broadband 

gain media for the visible range. The visible radiation can for instance then be used to pump a 

parametrical amplifier [140], [187] if broadband tunability is required.  

In a typical second harmonic generation (SHG) setup an important first step is to compress the 

fundamental pulse before it enters the nonlinear crystal. This is achieved by removing dispersion 

terms, in particular the group delay dispersion (GDD), with a prism compressor or chirped 

mirrors[207]. Indeed, the transform limited (TL) pulse duration is determined by the spectrum, 

and nonlinear terms of spectral phase will cause an increase in duration, and thus reduce the 

efficiency of all nonlinear processes. Furthermore, the dispersion will also affect the temporal 

phase profile, which has been shown to cause back conversion and thus also significantly affects 

SHG conversion efficiency[158], [191] as well as the second harmonic beam focusability [157]. 

Focusability is an important factor for nonlinear microscopy applications for instance[188].Yet 

this approach can have some drawbacks, as the large sensitivity to GDD at high energy conversion 

efficiency for nearly transform limited fundamental radiation pulses can cause instability[157], 

[158], [191]. The pulse duration of the second harmonic will typically be between 𝜏/√2 (at low 

conversion efficiency) and 𝜏 where 𝜏 is the input fundamental radiation pulse duration, yet because 

SH frequency bandwidth can be up to double that of the fundamental radiation, SH pulse durations 

as short as 𝜏/2 are theoretically possible. One technique allowing high conversion efficiency for 

second harmonic generation of a stretched fundamental pulse is the use of aperiodic quasi phase-

matching (QPM) grating crystals with a linear chirp. Depending on the QPM crystal period chirp, 

it can be used to generate nearly transform limited SH pulse[123], [208] or to improve the SH 

bandwidth[124], [209], allowing for shorter pulse duration once the SH pulse is compressed.  

The mechanism which take place in the case of chirped QPM should also apply to a linear change 

of the phase mismatch in the propagation direction. This can be achieved with a temperature 

gradient in the crystal, as long as the refractive indexes are sufficiently temperature sensitive. 

Advantageously the temperature gradient can be adjusted on a wide temperature range, while the 

period chirp of a periodically polarized crystal is fixed, though it can be thermally tuned too [210]. 

Lithium triborate (LBO), a crystal widely used for SHG and other nonlinear processes, is an ideal 
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candidate for this application. It can be used for non-critical phase matching. We will investigate 

the effects of temperature gradients on second harmonic generation with ultrashort pulses. 

 

4.2  NUMERICAL SIMULATION RESULTS 

 

4.2.1 Numerical simulation methods  

 

Numerical simulation is performed with a split-step Fourier method[144]. The effects of 

temperature changes affect the linear propagation, which is calculated in Fourier space with the 

full Sellmeier equations of LBO[196]. The formula for linear propagation includes walk-off and 

paraxial diffraction. Then, the nonlinear mixing is performed in real space, using a fourth order 

Runge-Kutta method. Cross and self-phase modulation are also accounted for, (with the nonlinear 

refraction index n2 = 2.6x10-20 m2/W for LBO)[197].  

The fundamental input beam is simulated as Gaussian with 1/e2 diameter of 500m (meaning a 

Rayleigh length of 760mm). Initial laser parameters :  the bandwidth of the fundamental pulse 

allows for a transform limited (TL) duration of 260fs (full width at half maximum, FWHM), which 

is typical for passively mode-locked Yb-doped fiber lasers [211]. The spectrum shape is Gaussian 

and positive or negative temporal chirp is introduced to stretch the pulse to a duration of 900fs. 

The crystal length is set at 30mm which is rather long for femtosecond pulses, and the crystal is 

cut at =90° and =0° corresponding to type I Non-Critical phase matching. The temperature at 

the center of the crystal is set at the phase matching temperature (here 194°C). A temperature 

gradient can be applied along the propagation direction, but the central temperature is kept the 

same. 

4.2.2 Results 

 

The refractive index of LBO is strongly dependent on temperature. Therefore, different 

temperatures will correspond to phasematching for different wavelength. The bandwidth of the 

pulse is 6nm, and the non-critical phasematching temperature for type I second harmonic 

generation in LBO will be 198°C at 1027nm, 194°C at 1030nm and 190°C at 1033nm. The phase 

mismatch Δk between the second harmonic and fundamental radiation is given by: 
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Δ𝑘 =
4𝜋

𝜆0
( 𝑛𝑒 (

𝜆0
2
, 𝑇) − 𝑛𝑓(𝜆0, 𝑇) ) (4.1) 

Where ne and no are the refractive indexes of LBO in the extraordinary and ordinary polarization 

respectively, 𝜆0 is the fundamental wavelength and T the temperature. At T=194°C and 1033nm, 

Δk = −0.083mm-1 and at 1027 nm , Δk = 0.083mm-1. This means that the maximum crystal 

length to amplify the whole bandwidth is 19mm. However, applying a temperature gradient in the 

propagation direction will mean that different wavelength will be phasematched at different point 

in the crystal. Another important property of the crystal is the group index difference Δng between 

the second harmonic and fundamental radiation. In this case Δng = 0.015, meaning that for a 

propagation distance of 30mm, the SH and fundamental pulse peaks will be shifted by about 

1500fs. However, because new SH photon will be generated near the fundamental peak, the delay 

between the 2 pulses at the exit of the crystal should be smaller. 

 

We simulated second harmonic generation using models described in [157] with a set of 

temperature gradients, varying from -1.5K/mm to 1.5K/mm (meaning 45K difference between the 

front and back of the crystal). The modeled SH energy conversion efficiency is shown Figure 4-1. 

We observe a symmetrical behavior of SH conversion efficiency with regard to the sign of the 

temperature gradient, as well as the sign of the chirp. Due to back conversion of the second 

harmonic radiation to the fundamental wavelength in the long nonlinear crystal, the efficiency is 

low when there is no gradient. When a temperature gradient is introduced, it improves and reaches 

maxima for positive or negative temperature gradients, before slowly decreasing towards 0%. The 

maximum conversion efficiency increases with the intensity of the fundamental beam, and the 

peak of conversion efficiency is reached for slightly larger temperature gradients when the 

intensity of the fundamental is higher. The temperature gradient corresponding to maximum 

conversion efficiency at 0.5GW/cm2 is ±0.4 K/mm, corresponding to 200°C and 188°C at the front 

or back of the crystal (depending on the sign). This is slightly more than the phasematching 

temperature for 1033nm and 1027nm, which is not necessarily surprising as 6nm is the full width 

at half maximum (FWHM) of the spectrum, and there is still some energy out of this wavelength 

range. When the temperature gradient is larger, there is no phasematched wavelength at the front 

and end of the crystal, so the crystal length is effectively reduced. Using an appropriate temperature 
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gradient it is possible to increase conversion up to three times in comparison with a constant 

temperature in the crystal. 

 

Figure 4-1: Modeled SH energy conversion efficiency dependence on the temperature 
gradient in a 30 mm long LBO crystal for different peak intensities of the fundamental 
radiation, as well as different signs of the initial chirp (250 fs TL pulse stretched to 900fs). 

We expect to observe a strong deterioration of the beam profile when there is back conversion. 

The SH beam quality parameter M2 [157], [212] variations with temperature gradients in the 

crystal are shown Figure 4.2. M2 is maximal (meaning the spatial properties of the beam are bad) 

for a constant temperature in the crystal (no temperature gradient) and improves for increasing 

temperature gradients. Once again the behavior of M2 is mostly symmetrical in respect to the sign 

of both the temperature gradient and the chirp, except for the highest modeled fundamental 

radiation intensity of 2.5GW/cm2, where the peak of M2 is significantly worse for a negative chirp 

than for a positive one. For increasing temperature gradients, M2 tends towards unity value, 

meaning a perfect gaussian beam. While from Figure 4.1 we observed that increasing the 

fundamental radiation peak intensity also increases the value of the maxima of efficiency, the beam 

quality also worsens. The ~55% peak SH conversion efficiency at 1GW/cm2 corresponds to 

M2~1.4 which is already relatively high, and the 66% peak SH conversion efficiency at 

2.5GW/cm2 corresponds to M2~1.7, which would be prohibitive for microscopy applications for 

instance. A compromise between the SH conversion efficiency and the beam quality needs to be 

found.  
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Figure 4-2: Modeled SH beam quality parameter M2 dependence on the temperature 
gradient in the LBO crystal for different peak intensities of the fundamental radiation, as well 
as different signs of the initial chirp (250 fs TL pulse stretched to 900fs). 

The FWHM pulse duration of the second harmonic radiation as a function of temperature gradient 

is plotted figure 4.3, also for different fundamental radiation peak intensities. This is the duration 

of the SH pulse jut after the LBO crystal without any compression. Unlike the SH conversion 

efficiency or the beam quality parameter M2, the pulse duration depends asymmetrically the sign 

of the temperature gradients but, applying a positive chirp and temperature gradient is the same as 

applying a negative chirp and temperature gradient. For a positive chirp and a positive gradient, 

the SH pulse duration is reduced compared to a situation with no gradient. It reaches a minimum 

for temperature gradients around 0.4 K/mm. For higher temperature gradients the duration slowly 

increases and tends to reach a plateau around 500fs. When chirp is positive and a negative 

temperature gradient is applied, the SH pulse can become much longer than in the absence of a 

temperature gradient. Maximum pulse duration of 2.2 ps is reached for a temperature gradient -0.4 

K/mm. For larger negative temperature gradients the SH pulse duration decreases. The SH pulse 

duration is mostly independent on the peak intensity of the fundamental radiation. We can also 

notice some sharp variations of the SH duration for large temperature gradients. Here the pulse 

duration is defined as the FWHM of the pulse, but for some temperature gradients the SH pulse 

presents several not fully separated small peaks. When the position and amplitude of those peaks 

changes it can cause a sharp change of pulse duration. For 2GW/cm2 fundamental intensity, self 

and cross phase modulation tends to smooth those peaks. 
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Figure 4-3: Modeled SH pulse duration at the output of the LBO crystal dependence on the 
temperature gradient for different peak intensities of the fundamental radiation as well as 
different signs of the chirp (250 fs TL pulse stretched to 900fs). 

The dependence of the SH pulse duration on the temperature gradient can be qualitatively 

understood. For a positive temperature gradient, the temperature at the front of the crystal 

corresponds to a longer wavelength. The SH is slower than the fundamental radiation (due to the 

group index difference). When the fundamental is positively chirped, the longer wavelengths are 

shifted towards the leading edge of the pulse. Because they are converted first, the SH peak starts 

in front of the fundamental pulse. As both pulses propagate in the crystal, the fundamental catches 

up, and the wavelength that correspond to Δ𝑘 = 0 are located later in the fundamental pulse. Thus, 

for a certain temperature gradient, the peak of SH will be superposed with the section of the 

fundamental pulse that is phasematched, so the conversion will be particularly efficient and the 

SH pulse will remain short. In this case for a 0.5K/mm temperature gradient, there will be 16mm 

between where the temperature is 190°C and where it is 198°C (phasematching for 1033nm and 

1027nm). The group index difference means the SH will be delayed by 800fs over that distance, 

which is almost the same as the pulse duration. It is lucky that the temperature gradient that allows 

for good compression of the SH also corresponds to the peak of conversion efficiency. 
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On the other end, for a negative temperature gradient, the conversion will start with the tailing 

edge of the fundamental pulse, and the SH being slower, new SH photon will always be generated 

in front of the current SH pulse. There cannot be efficient back conversion because the fundamental 

pulse will always be in front of the SH. The SH pulse will be extremely long as the delay due to 

group velocity mismatch (GVM) is added to the fundamental duration. Indeed, without a group 

velocity mismatch the SH pulse duration is √2 times shorter than the fundamental duration in the 

low conversion efficiency approximation, and if we add the delay of 1.5ps due to GVM, we can 

predict a 2.1ps SH pulse duration, which is the same as in figure 4.3. Admittedly, the low 

conversion efficiency approximation should not be valid in this case. For larger temperature 

gradients, we mentioned before that the crystal length is effectively reduced for SH generation, as 

the front and back end have very little effect. Therefore, delay between SH and fundamental gets 

smaller and the SH duration is shorter. When the sign of both the temperature gradient and chirp 

is changed, the situation is reversed, which we also observe in simulations. What is more surprising 

is that the conversion efficiency and beam quality are the same for a positive or negative chirp, 

because the mechanism is very different. 

 

In many practical cases a compressor (using prisms or gratings) is built after the nonlinear crystal 

to compress as much as possible the SH pulse. Most compressors only compensate for GDD 

(second order spectral phase in a Taylor expansion), though it is possible to also compensate for 

higher dispersion terms (higher order spectral phase terms) such as third[213] or even fourth order 

dispersion[214]. Here we simply calculated the Fourier transform of the SH pulse spectrum and 

measured its FWHM duration. This is the theoretical minimum for the pulse duration, when all 

dispersion terms have been compensated. The evolution of this transform limited (TL) pulse 

duration with temperature gradients in the crystal is shown Figure 4.4. The dependence of TL pulse 

duration on temperature gradient is completely asymmetrical with regard to the sign of the 

temperature gradient, but a negative chirp and temperature gradient has the same effect as a 

positive chirp and temperature gradient. For a positive chirp, the TL pulse duration increases for 

positive temperature gradients and reaches a peak at 0.4K/mm, before decreasing and reaching a 

plateau around 230 fs. Interestingly at 0.4 K/mm and for a fundamental peak intensity of 1 GW/cm2 

the SH pulse is almost perfectly compressed: the pulse duration is 281fs and the TL duration is 
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277fs. When a negative temperature gradient is applied to the crystal (still for a positive chirp), the 

SH TL pulse duration decreases and reaches a minimum at 0.8 K/mm. It then slowly rises for 

larger negative temperature gradients.  The higher the fundamental radiation peak intensity, the 

lower this minimum TL duration. At 2.5 GW/cm2 intensity the SH TL duration can be as low as 

140 fs. The theoretical minimum for the SH TL pulse duration is 125fs, because the bandwidth in 

frequency can be up to double that of the fundamental.  

 

Figure 4-4: Calculated SH transform limited (TL) pulse duration dependence on the 
temperature gradient in the LBO crystal for different peak intensities of the fundamental 
radiation. 

The effect of temperature gradient on SH bandwidth can also be explained qualitatively. In the 

case of a positive gradient and a negative chirp, the SH is always tailing the fundamental. Because 

the different spectral component are separated in time, they never interact with each other. Each 

spectral component is frequently doubled and conversion efficiency is high, so the SH bandwidth 

is nearly double that of the fundamental. On the other end, for a positive chirp the phasematching 

and the SH peak can temporally overlap for a temperature gradient of ~0.5K/mm. This means that 

conversion efficiency will be particularly high for wavelength that are already present in the SH 

pulse, and is what likely leads to a shorter SH bandwidth. 

We have now thoroughly investigated the effect of SHG in an LBO crystal with applied 

temperature gradients for a given value of the fundamental TL pulse duration (250fs), when the 

pulse is stretched 3.6 times (to 900fs). Would the effect be the same when the bandwidth is wider 
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or narrower (meaning when the Transform limited duration is resp. shorter or longer), or when 

different amounts of stretching are applied? The modeled SHG conversion efficiency for different 

values of the fundamental pulse duration is shown figure 4.5 on the left, and the effect of more or 

less stretching on the right. The larger the bandwidth (so the shorter the TL duration), the larger 

the temperature gradient required to maximize the conversion efficiency. For a given temperature 

there is phasematching is realized for a certain wavelength, thus, this is not surprising, as a large 

temperature gradient means a larger range of wavelength for which there will be phasematching 

realized within the crystal length. The peak of conversion efficiency decreases for large bandwidth 

but still remains above 40% even for a 100fs TL pulse duration of the fundamental radiation. A 

100fs TL pulse duration corresponds to a 16nm bandwidth (for a Gaussian spectrum). The 

phasematching temperatures for 1038nm and 1022nm frequency doubling are respectively 183°C 

and 205°C. To have these temperatures at the front and back end of the crystal we need a 

±0.7K/mm, very close to where the peaks of conversion efficiency are observed (±0.8K/mm). 

When the fundamental TL duration is kept the same but different amounts of chirp are applied 

(figure 4.5 right), there almost no effect on the peak of efficiency or asymptotic behavior unless 

there is no chirp at all (TL pulse). For a TL pulse we have a higher conversion efficiency without 

any gradient. However, the conversion efficiency and beam quality might become much more 

sensitive to small amounts of dispersion[157]. The effect of the temperature gradient on M2 is not 

shown here, as there is no significative change compared to figure 4.2: There is always a peak of 

M2 when there is no temperature gradient and it improves when a temperature gradient is 

introduced. The only exception is when the pulse is transform limited, in which case M2 is always 

good (smaller than 1.2). We note that the peak of efficiency for a fundamental radiation with 100fs 

TL pulse duration (stretched to 360fs) corresponds to M2~1.1. Thus, the intensity of the 

fundamental beam could be increased to get a higher conversion efficiency (like in figure 4.1) 

while keeping good beam quality. 
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Figure 4-5: Modeled SH energy conversion efficiency dependence on the temperature 
gradient in a 30 mm long LBO crystal for 1GW/cm2 intensity of the fundamental radiation. 
On the left, several pulse durations of the fundamental radiation are modeled for the same 
amount of relative stretching (3.6 times) using positive chirp. On the right, the TL duration  of 
the fundamental pulse is 250fs and different amounts of positive chirp are applied in order 
to stretch the fundamental pulse. 

In figure 4-6, we show the effect of the fundamental TL duration (left) and of the amount of 

chirping (right). When a negative temperature gradient is introduced the pulse duration tends to 

increase. For larger values of the fundamental TL duration (left) or of the stretching (right), the 

peak gets higher. For different values of the fundamental TL duration, the peak of efficiency for 

positive chirp corresponds to a shorter pulse duration than the one for negative chirp. 

Unfortunately, the maximum compression is not necessarily observed at the peak of efficiency. 

On the right we see that the amount of stretching affects the position of the shortest pulse duration. 

Therefore, using a temperature gradient to compress the SH pulse will work well only for certain 

values of the stretch. Using a different crystal length might be necessary for different amounts of 

dispersion. As we mentioned earlier, the temperature gradient that leads to a compressed pulse 

also corresponded to maximum conversion efficiency for a 260fs stretched to 900fs, but this is not 

necessarily the case. We deduced that the maximum SH pulse duration 𝜏𝑆𝐻 𝑚𝑎𝑥 should be: 

𝜏𝑆𝐻 𝑚𝑎𝑥 =
𝜏𝑓

√2
+
Δ𝑛𝑔𝐿

𝑐
(4.2) 

Where 𝜏𝑓 is the pulse duration of the fundamental radiation, L is the crystal length and c the speed 

of light in vacuum. We already calculated that the delay due to GVM is 1500fs. This formula is 
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relatively well verified for all considered fundamental durations and TL duration, except when 

there is no chirp. 

  

Figure 4-6: Modeled SH pulse duration dependence on the temperature gradient in a 30 mm 
long LBO crystal for 1GW/cm2 intensity of the fundamental radiation. On the left, several 
pulse durations of the fundamental radiation are modeled for the same amount of relative 
stretching (3.6 times) using positive chirp. On the right, the TL duration of the fundamental 
pulse is 250fs and different amounts of positive chirp are applied in order to stretch the 
fundamental pulse. 

Finally, the TL duration of the SH pulse dependence of temperature gradient was modelled for 

different values of the fundamental duration (Figure 4.7, left) and different amounts of stretching 

(Figure 4.7, right). For pulses with a large bandwidth (100fs TL duration) the dependence becomes 

more symmetrical, but in all cases the peak of efficiency for a negative temperature gradient 

corresponds to a shorter SH TL duration than the one for positive temperature gradients. When the 

fundamental bandwidth remains the same but the amount of chirp changes (right), the peak of SH 

TL duration is affected. We also observe that while having a TL fundamental lets us reach a higher 

conversion efficiency (figure 4.5), the bandwidth of the SH will be much shorter (450fs TL 

duration). The effect of negative temperature gradients on the SH TL duration is mostly unaffected 

by the amount of positive chirp. 
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Figure 4-7: Modeled SH TL duration dependence on the temperature gradient in a 30 mm 
long LBO crystal for 1GW/cm2 intensity of the fundamental radiation. On the left, several 
pulse durations of the fundamental radiation are modeled for the same amount of relative 
stretching (3.6 times) using positive chirp. On the right, the TL duration of the fundamental 
pulse is 250fs and different amounts of positive chirp are applied in order to stretch the 
fundamental pulse. 

 

4.3  EXPERIMENTAL RESULTS 

 

 
In the previous section we simulated the effect of temperature gradients in LBO for SHG. For well-

chosen temperature gradients we observed not only a large improvement of both the energy 

conversion efficiency to SH and the SH beam quality, but also reduction of either the SH pulse 

duration or of the TL pulse duration. We now proceeded to perform experimental measurements 

to confirm simulation results. Indeed, when using imperfectly Gaussian pulses and beams, as well 

as more complex phase profiles. 

 

4.3.1 Experimental setup 

 

 

We used a Femtolux 3 (Ekspla Ltd.) femtosecond Yb doped fiber laser with a TL pulse duration 

of 260fs and central wavelength of 1030nm as the fundamental radiation. A chirped fiber Bragg 

grating with temperature gradient imposed any desired amount of GDD on the fundamental 

radiation (positive or negative)[203]. The frequency doubling was performed in an LBO crystal of 

30 mm (as in simulation) placed in a specifically designed oven[215] that could impose two 

different temperatures on the front and back end of the crystal, thus creating any desired 
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temperature gradients. However, the design of the oven imposed a higher temperature at the back 

end than at the front end. Without rotating the oven (and changing the crystal position) it was not 

possible to impose negative temperature gradients. We could also not impose temperature 

gradients higher than 1.2 K/mm (which according to simulation was a large enough range: Figure 

4.1-4.4). Instead of rotating the oven we chose to stretch the fundamental radiation with positive 

or negative chirp alternatively, as simulation showed that using a negative chirp with a positive 

temperature gradient was equivalent to using a negative temperature gradient with a positive chirp. 

Furthermore, a second set of measurements where the oven was rotated so the temperature 

gradients were negative was also performed and confirmed this tendency. The fundamental 

radiation pulse was stretched to 900 fs as in simulation. The fundamental radiation beam diameter 

at the crystal was 500 m (1/e2 diameter) with a beam quality parameter M2~1.1.  

We performed measurement of the power of the SH beam (and so the energy conversion 

efficiency), the spectrum of the SH and the beam quality parameter M2 by performing a Z-scan on 

the SH beam. The spectrum of the SH was used to calculate a TL SH pulse duration by performing 

a Fourier transform. We also measured fourth harmonic conversion efficiency (frequency doubling 

of the SH pulse) in a low efficiency setting. This allows us to evaluate the SH pulse duration. 

 

4.3.2 Experimental results 

 

 

The measured SH energy conversion efficiency as a function of temperature gradient is shown 

Figure 4.8 for two different fundamental peak intensities. Like in simulation the application of a 

temperature gradient improves conversion efficiency up to a maximum. As expected, the behavior 

of SH conversion efficiency is very similar for positive or negative temporal chirp. The peak of 

conversion efficiency is observed at slightly higher values of the temperature gradient for negative 

chirp. At 2GW/cm2 fundamental radiation peak intensity, peak conversion efficiency is ~55% for 

either positive or negative temporal chirp. At 1GW/cm2, peak conversion efficiency is slightly 

higher for positive chirp (48%) than for negative chirp (45%). Those results are similar to 

simulation, even if the peak conversion efficiency is observed for stronger temperature gradients 

and is slightly lower.  
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Figure 4-8: Measured SH conversion efficiency dependence on the temperature gradient in 
the LBO crystal for different peak intensities of the fundamental radiation as well as different 
signs of the chirp parameter. Dashed curves are the simulation results for the same 
parameters. 

The variations of the beam quality parameter M2 of the SH (measured by Z-scan) with temperature 

gradients are plotted Figure 4.9. M2 improves with increasing temperature gradients and is slightly 

better for negative than for positive chirp. It is very high when no temperature gradients is applied. 

At 1GW/cm2 M2 drops below 1.5 for positive temporal chirp and 1.25 for negative temporal chirp 

for the temperature gradients that maximize the energy conversion efficiency (Figure 4.5). At 

2GW/cm2 and with a positive chirp M2 remains too high: the maximum of efficiency corresponds 

to M2~1.8. While operating at higher intensity of the fundamental radiation is tempting because it 

improves conversion efficiency, it would be impractical for applications requiring higher beam 

quality. There is a very good match between simulation and experimental results, though the 

measured M2 at 2GW/cm2 remains higher, possibly because the fundamental beam is not perfectly 

gaussian.  
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Figure 4-9: SH beam quality parameter M2, measured by Z-scan, dependence on the 
temperature gradient in the LBO crystal for different peak intensities of the fundamental 
radiation. Dashed curves are the simulation results for the same parameters. 

Next, we measured the SH spectrum. By performing a Fourier transform we can get a TL duration 

of the SH pulse. However, this duration might be difficult to achieve in practice, if there are 

accumulated large high order spectral dispersion terms (third order or higher). The dependence of 

this calculated TL SH duration on temperature gradients in the LBO crystal is shown Figure 4.10. 

The TL SH duration is shorter at 2GW/cm2 fundamental radiation intensity than at the lower 

intensity of 1GW/cm2. This might be in part due to self and cross phase modulation. For negative 

temporal chirp the TL duration decreases for increasing temperature gradients and seems to reach 

a plateau around 170 fs at 1GW/cm2 and 150fs at 2GW/cm2. For positive temperature gradients 

the TL duration slightly increases in comparison with a constant temperature in the crystal. At 

1GW/cm2 the SH TL duration is almost constant at ~300fs for temperature gradients between 0 

and 0.8 K/mm, and then becomes longer. At 2GW/cm2 it is much shorter, between 200 and 240fs. 

Like in simulation a positive temperature gradient with a positively chirped fundamental pulse 

results in a longer TL pulse duration, while a negatively chirped pulse with a positive gradient 

(which is equivalent to a negative gradient with a positively chirped pulse) results in a shortening 

of the SH TL duration. The measured TL pulse duration closely matches simulation results for 

negatively chirped pulses, but there is far more difference for positively chirped ones. The SH TL 

duration seems mostly independent of the temperature gradient and starts increasing for large 

gradients. In section 2, we described how for a specific temperature gradient the peak of the SH 
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would overlap in time the section of the fundamental pulse that was phasematched. Because of 

this there could be back conversion of the SH, different spectral components of the fundamental 

could interact, which can lead to a shorter SH bandwidth. This is a complex phenomenon, and the 

way it would be affected by a change in the fundamental spectrum or spectral phase is unknown. 

However, for a negative chirp, the SH is mostly temporally separated from the fundamental where 

there is phasematching, so there should be much less interaction after the initial conversion.  

 

Figure 4-10: Calculated SH transform limited (TL) duration dependence on the temperature 
gradient in the LBO crystal for different peak intensities of the fundamental radiation. TL 
duration was calculated using the measured spectrum of the second harmonic radiation. 
Dashed curves are the simulation results for the same parameters. 

The evaluation of the actual pulse duration is a more complex problem. Frequency resolved optical 

gating (FROG [183]) could be used to reconstruct the pulse. Alternatively, the autocorrelation 

trace provides an estimate of the pulse duration as long as the pulse is mostly gaussian. However, 

at 257nm (the wavelength of the fourth harmonic), we had no equipment available to perform these 

measurements. One of the main applications of ultrashort pulses is for nonlinear phenomena, as 

they are highly intensity dependent. Thus, measuring the efficiency of a nonlinear phenomenon 

also informs us on the pulse duration. From simulation results it appears the pulse shape can 

become non-Gaussian depending on the temperature gradient applied. Here we simply used a 2mm 

BBO crystal in order to frequency double our SH pulse. The acceptance bandwidth of for this 

crystal is 0.7nm, which is unfortunately shorter than the bandwidth of the bandwidth of the SH. In 



 97 

the low efficiency approximation, the relationship between the fourth harmonic generation 

conversion efficiency 𝜂4𝐻 and the SH pulse duration is given by: 

𝜂4𝐻 = 𝛼
𝐸𝑆𝐻
𝜏𝑆𝐻

∗ 𝑝 (4.3) 

Where 𝐸𝑆𝐻 is the energy of the SH pulse, p coefficient to account for the limited acceptance 

bandwidth of the crystal and  depends on the crystal properties, the geometry and the beam 

diameter. The coefficient p was calculated by dividing the integral of the squared SH spectrum 

over the acceptance bandwidth of the crystal and dividing by the integral over the whole SH 

bandwidth. Indeed, within the low conversion efficiency approximation, the spectrum of the 

frequency doubled radiation is the spectrum of the fundamental radiation squared.  Thus, to 

retrieve the SH pulse duration we need to calculate the proportionality coefficient . To do this we 

generated SH with a much shorter LBO crystal of 2mm (without any temperature gradient), leading 

to low efficiency conversion. Here the acceptance bandwidth is quite large (33 nm), so we don’t 

need a coefficient p. Since the fundamental pulse can be considered Gaussian, the SH pulse 

duration can be estimated as 𝜏𝑓/√2  where 𝜏𝑓 is the duration of the fundamental pulse (260fs). 

Similarly, we estimated the bandwidth of the SH and used it to calculate the coefficient p for this 

reference pulse. We then frequency doubled this SH pulse and measured the fourth harmonic 

power (the pulse energy multiplied by the repetition rate). Knowing the SH pulse duration along 

with the second and fourth harmonic powers (and so the SH pulse energy 𝐸𝑆𝐻 and the conversion 

efficiency 𝜂4𝐻), we calculated . Finally, we replaced the 2mm LBO crystal with our 30mm crystal 

and measured the second and fourth harmonic power for a set of temperature gradients. Because 

the geometry didn’t change, the coefficient  is still the same, and we calculated the SH pulse 

duration with equation 3. 
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Figure 4-11: Calculated SH duration dependence on the temperature gradient in the LBO 
crystal for different peak intensities of the fundamental radiation. The duration was 
calculated by using low conversion efficiency approximation (see above) 

The calculated SH duration is shown figure 4.11. An error bar was estimated for this measurement. 

First, we assume that there is a +/- 20% uncertainty on the value of the alpha coefficient (equation 

3). The proportionality relationship is valid only when 4th harmonic conversion efficiency is low 

(in our case it was always less than 10%), and the method used to evaluate  also has some inherent 

uncertainty, in part because the acceptance bandwidth of the BBO crystal is so short. The second 

source of uncertainty is the measurement of the 4th harmonic power, which lets us retrieve the 4th 

harmonic pulse energy (repetition rate is 1MHz). Here we estimated a measurement error of 0.2 

mW. This matters little when the 4th harmonic power is high (a few tens of mW), meaning when 

the pulse duration is short. When the 4th harmonic power is low (around 1mW), meaning the SH 

duration is long, this means a larger error window. Nevertheless, the calculated SH duration 

follows the expected behavior from simulation. When the chirp is positive, duration drops for a 

positive temperature gradient, and the pulse is relatively well compressed. At 1GW/cm2 the pulse 

duration drops to ~280fs (+/- 35fs) for a 0.5K/mm temperature gradient. When the chirp is negative 

the pulse can become extremely stretched (several ps), but from figure 4.10 we know this 

corresponds to a large bandwidth. The experimentally calculated SH durations at 1GW/cm2 are 

extremely similar to the SH pulse duration from simulations. At higher intensity of the fundamental 

radiation, there is a much larger divergence between simulation and experiments, which can mean 

an increasing influence of multiphoton processes on SH generation.  
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Experimental results match relatively well with the simulation results for conversion efficiency 

and beam quality. There is more difference for the pulse duration and bandwidth of the SH, though 

the experimental behavior is qualitatively reproduced. There are multiple possible source of error: 

The simulation assumes a Gaussian spectrum and no high order dispersion of the fundamental 

pulse, which is not necessarily completely true especially. In our case the chirped pulses are 

obtained by detuning a chirped fiber Bragg grating [203], which can lead to some higher order 

dispersion. The simulation also doesn’t include two photon absorption, which can lead to loss of 

SH power as well as modify the temperature profile in the crystal.  

 

4.4  CONCLUSION 
 

In this work we analyzed the effect of a temperature gradient for frequency doubling of a chirped 

IR femtosecond pulse in an LBO crystal. We first performed a numerical simulation of this effect, 

which showed how a temperature gradient in LBO can affect the SH radiation properties. In this 

study we present the results of frequency doubling of a chirped near IR femtosecond pulse in an 

LBO crystal with a temperature gradient. Globally we can distinguish two interesting situations 

depending on the objectives. On the one hand if we seek to avoid using a compressor before or 

after the nonlinear crystal, we can apply a positive temperature gradient and the SH pulse should 

be well compressed at the output. On the other hand, if our objective is to increase the SH 

bandwidth, and thus to compress the SH pulse to shorter duration, it is better to apply a negative 

temperature gradient. The resulting TL duration of the SH should be almost half that of the 

fundamental, the theoretical minimum. In both cases this can be achieved while enhancing the SH 

conversion efficiency and maintaining a good beam spatial profile. The results should apply to a 

relatively large range of chirps and fundamental bandwidth, though the crystal length might need 

to be selected to allow a better match between the minima of duration and TL duration with the 

maximum of conversion efficiency. This technique seems particularly well adapted when the 

fundamental bandwidth is large (100fs TL duration and shorter), as the sensitivity to the 

temperature gradient is low for the conversion efficiency, and an even larger bandwidth can be 

obtained for the SH. 
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Secondly, we performed experimental measurements to verify the predictions from simulation. 

The expected improvements of SH energy conversion efficiency and SH beam quality where 

observed, as well as the lengthening and shortening of SH TL duration for positive and negatively 

chirped fundamental pulses respectively (for positive temperature gradients) and the reverse effect 

for the SH pulse duration. 

The use of bulk nonlinear crystals with a temperature gradient, which generates a refractive index 

gradient, can be advantageous for the frequency doubling of chirped pulses. There is a strong 

similarity with periodically poled crystals where the period is chirped. While we cannot achieve 

the very high second order susceptibilities of some QPM crystals with LBO (which has an effective 

nonlinear coefficient of 0.85 pm/V for type I phase-matching), the use of a temperature gradient 

allows for great flexibility in design. We saw for instance that at different focusing conditions 

(fundamental peak intensity) the ideal temperature gradient can change. Here we investigated 

frequency doubling of pulses with a relatively low stretching (~3 times the TL duration) and 

highlighted several interesting effects. Just like in the case of QPM crystals, more complicated 

temperature profiles could also be used depending on the desired effect, with for instance 

periodical variations of temperature or parabolic temperature profiles. This novel technique can 

likely prove beneficial for parametric amplification. 
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Chapter 5:  

Assembling and testing of a parametric 

amplification source for Multi-Photon 

Microscopy 
 

The initial objective of this thesis was the construction of a new laser source based on optical 

parametrical amplification, to be used on a multiphoton microscope. Here we describe the design 

and properties of this laser source. The design was guided by simulation results. As can be 

expected, the output power is slightly smaller than predicted by simulations, because some ideal 

properties were assumed. The optical parametrical setup is composed of four distinct parts. First, 

a supercontinuum generation scheme which provides the seed to be amplified. Second, frequency 

doubling of the laser source so that it can be used as pump for the amplification. Third, the actual 

optical parametrical amplification, where the strong pump is used to amplify the weak seed signal. 

Fourth and last, the compressor so that the dispersion accumulated by the signal pulse can be 

removed.  

The new tunable ultrashort laser source was integrated to a multiphoton microscope at EPFL, and 

the performances for different samples were compared with the existing femtosecond laser source. 

The throughput is significantly increased thanks to the much shorter pulse duration and higher 

pulse repetition rate. The improvement is in line with theoretical expectations.  

 

The parametrical amplification setup described in the first section of this chapter was designed by 

Pierre-Marc Dansette and assembled together with Maksim Eremchev. Maksim Eremchev also 

did some of the experiments on supercontinuum generation in yttrium oxide and yttrium vanadate 

oxide. All microscopy experiments in the second half were performed conjointly by Pierre-Marc 

Dansette, Maksim Eremchev and David Roesel. The parametrical amplification design and 

assembling was supervised by Andrejus Michailovas, and the testing on the microscope by Sylvie 

Roke. 
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5.1  INTRODUCTION 

 

Second harmonic microscopy and two photon excitation microscopy have intrinsic specificity to 

several biological tissues [12], [13], [31], and can also be used with some markers [19], [189]. 

Because the illumination is done in the near infrared the penetration depth is increased. Also, both 

processes are quadratically dependent on the intensity, so only the focal region will produce signal. 

Furthermore, those modalities can easily be combined to more informative images [17]. Those 

properties make them extremely attractive imaging modalities. Their main limitation is that intense 

illumination is required, meaning that femtosecond lasers are well suited as sources, as the average 

power can be quite low (preventing thermal damage) but the peak powers can be in the MW or 

GW range. Furthermore, tunable light sources are advantageous to probe the excitation wavelength 

of fluorophores.  

 

Here we start with an Yb based fiber laser (1030nm central wavelength) with 260fs pulse duration 

but would like to achieve tunability and shorten the pulse duration. Our objective was to achieve 

a wide tunability range between 1000nm and 700nm in the visible and near infrared range, with 

pulses shorter than 50fs and pulse energy of at least hundred nJ. The output power of second order 

processes varies as 1/, where 𝜏 is the pulse duration, so the output signal should be higher for a 

given pulse power. Advantageously damage for ultrashort pulses is less sensitive to pulse duration 

[111], so shorter pulses should still allow for higher signal output while staying below the damage 

threshold. 

 

We note that the pulse duration we expect to achieve is much shorter than that of our source laser. 

Indeed, the parametrical amplification process can be used to amplify pulses with a much larger 

bandwidth than the pump radiation [95] (and so a shorter pulse duration when compressed). The 

main limitations for the bandwidth of the output of a parametrical scheme are the bandwidth of the 

weak input signal and the phasematching in the nonlinear crystal.   
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5.2  PARAMETRICAL AMPLIFICATION  

 

5.2.1 Initial laser source 

 

Our source laser is a Femtolux 3 [216] from Ekspla Ltd. This is an Yb doped fiber laser with a 

compressed pulse duration of 260fs at 1030nm, 1MHz repetition rate and 3.3W of maximum 

output power. This means each pulse has a maximum energy of 3.3J. The output beam is nearly 

Gaussian with a beam quality factor M2 of 1.1, though the pulse is not necessarily perfectly 

Gaussian (Chapter 3 section 4). The pulse compression is insured by a chirped fiber Bragg grating 

[203] and by detuning it is possible to introduce a desired amount of group delay dispersion (GDD) 

and increase the pulse duration. The repetition rate can be reduced with an optoacoustic element. 

It is also possible to increase the repetition rate beyond 1MHz, but the maximum output power 

remains 3.3W, meaning the pulse energy decreases. This is not advisable for use in second order 

nonlinear system such as Multi-photon microscopes, as the second harmonic energy depends 

quadratically on the fundamental pulse energy, and the increased repetition rate will only linearly 

affect the second harmonic power. Furthermore the use of too high a repetition rate can cause 

thermal damage to the samples [38]. 

 

5.2.2 Optical scheme 

 

In order to achieve the desired results, we will need to perform several nonlinear transformations 

with our initial laser. The optical scheme for the entire parametric amplification process is shown 

figure 5-1. 

 

The beam is initially split, with part of the energy is used for supercontinuum generation (SC 

generation) in a nonlinear crystal, here YVO4. SC generation is a process through which a very 

wide bandwidth (often octave spanning) but low energy pulse can be generated when a narrower 

bandwidth radiation is focused in matter (there can be supercontinuum in liquids [217], [218] and 

gases [219], [220] as well as crystals). Unlike all other processes described in this work so far, SC 

generation is not only a second order nonlinear phenomenon, but also includes high order nonlinear 

interaction, self-focusing (a third order effect), Raman scattering and plasma generation. The SC 
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radiation should include all of our tunability range. A portion will later be amplified by the optical 

parametric amplifier (OPA). 

 

Figure 5-1: Optical scheme for the complete parametrical amplification setup. Abbreviations 
used: WP=Waveplate; CuP=Cube polarizer; L=Lens; SP=Short pass filter; M=Mirror; 
DM=Dichroic mirror; SC= supercontinuum; YVO4=Yttrium orthovanadate; BBO= Beta-
barium borate; LBO=Lithium tri-borate. 

The portion of the beam that is not used for SC generation is frequency doubled in a BBO crystal 

(the central wavelength becomes 515nm). Phasematching for second harmonic generation is 

achieved by rotating the BBO crystal and the focal condition as well as the crystal properties are 

chosen to maximize conversion efficiency while maintaining good beam quality. The second 

harmonic beam can then be used as the pump at the optical parametrical amplification stage. For 

this the SH pulse needs to overlap the portion of the supercontinuum we want to amplify in time. 

Thus, we need a delay stage (mirrors M2 and M3). A dichroic mirror (DM3) lets us achieve spatial 

overlap of the SH and SC beams.  

 

The actual parametrical amplification process takes place in a lithium tri-borate (LBO) crystal. 

The weak SC radiation is amplified by OPA with the strong second harmonic. A complementary 

wavelength is generated, called idler. We do not make use of the idler in our case. The tunability 
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range of the signal corresponds to idler radiation between 1100 and 2000nm. While those could 

also be used in nonlinear microscopy [221]–[223], we are limited by the sensitivity range of our 

camera and could not make use of it. The central wavelength of the signal is determined by both 

the angle of the LBO crystal (we use critical phasematching once more) and the delay between the 

SC and SH. At this stage we seek to achieve a broad enough bandwidth, high pulse energy and 

good beam spatial properties.  

 

Finally, we need to compress the signal after the parametrical amplification. Indeed, the numerous 

optical elements add a significant amount of GDD, meaning the pulse duration is far from 

transform limited. The GDD can be removed with a prism compressor, the exact amount 

depending on the insertion of the second prism, which is placed on a translation stage. 

 

We will now examine more thoroughly each part of the optical parametric amplification setup. 

 

5.2.3 Supercontinuum generation 

 

Supercontinuum generation in bulk nonlinear crystals happens when the intensity of a laser 

radiation is sufficient to generate femtosecond filamentation [103], [224]. Femtosecond 

filamentation is a complex phenomenon caused by a combination of self-focusing, self-phase 

modulation and plasma generation cause by ionisation via multi-photon absorption. This filament 

generates a coherent very wide bandwidth beam, that can cover the visible range for instance. This 

can be used as the source signal in parametrical amplification. Because self-focusing is required, 

there is a threshold power for supercontinuum generation. For a gaussian pulse the power threshold 

for self-focusing is: 

 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
3.72 𝜆2

8𝜋 𝑛0(𝜆) 𝑛2
(5.1) 

 

Where  is the central wavelength of the laser, n0 the refractive index of the material and n2 the 

nonlinear refractive index. In our case the pulse is not necessarily Gaussian, so the coefficient 

might change slightly. Since we have a fixed pulse duration, for a given crystal we will look at the 
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pulse energy threshold instead of the power threshold. The higher the refractive index and 

nonlinear refractive index, the lower the threshold should be. 

 

The main process causing spectral broadening of the supercontinuum is self-phase modulation, 

governed by the nonlinear refractive index n2. Raman effect and four-wave mixing are also 

involved in the spectral broadening, to a lesser extent. While self-focusing on its own would 

indefinitely reduce the beam diameter, it competes with the diffracting effect of the plasma and 

losses from multiphoton absorption and ionisation. Thus, the intensity stabilizes at a certain level 

which is mainly determined by the bandgap Ug of the medium. The larger the bandgap, the higher 

the intensity and thus the broader the supercontinuum spectrum. Unfortunately the value of n2 also 

tends to diminish for larger bandgaps [225]. 

 

The process of supercontinuum generation in photonic fibres has been well studied [226]–[229] 

and the many interacting nonlinear effects involved can be simulated [226], [230], [231]. However, 

this is a very different process because of soliton formation. Because the supercontinuum breaks 

into several solitons in fibres, it would also be difficult to use as a source of signal for parametric 

amplification. 

 

The supercontinuum generation process in bulk crystal is not particularly efficient, with the SC 

energy often representing only a few percent of the energy of the input. Thus, we wish for the 

threshold energy to be as low as possible, so that we can keep more energy for second harmonic 

generation. When depletion of the pump can be neglected in OPA, the energy of the output signal 

depends exponentially on the pump energy and linearly on the input signal energy. While this 

approximation will no longer be entirely valid in our case (because at higher conversion efficiency 

the depletion of the pump can no longer be neglected), it shows that the priority should be to keep 

energy for pumping the OPA, not for the seed. We also cannot reuse the remaining pulse at 1030nm 

after SC generation, because its spatial and temporal properties are strongly affected by the many 

nonlinear processes. The second important characteristic of the SC for our application is its 

bandwidth. Indeed, we need it to cover all the tunability range of our OPA. Lastly, there should be 

no photodamage to the SC crystal. This is a problem as the requirement for SC generation is self-

focusing and generation of a plasma filament, so we have to operate near damage threshold. The 
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SC spectrum extends on both side of the input wavelength, but here we use only wavelength shorter 

than 1000nm. The remains of the input radiation and the IR part are removed with a short pass 

filter. 

 

Several candidate crystals were tested for our applications (figure 5-2). Here we will discuss the 

properties of the SC with a YAG (yttrium aluminium garnet), YVO4 (yttrium orthovanadate), Y2O3 

(yttrium oxide) and KGW (potassium gadolinium tungstate). The relevant properties for SC 

generation in those crystals are given table 5-1. Second order dispersion of the SC pulse is the 

product of GVD by the crystal length after the filament. Other optical elements will also contribute. 

The higher the dispersion of the SC, the more separated in time the different spectral components 

will be. This can reduce the bandwidth of the amplified signal after the OPA because only part of 

the SC overlaps the pump pulse in time. GVD also affects the SC generation as it quickly separates 

the different spectral components, limiting how long they can interact in the filament.  

 

Crystal n0 at 1030nm n2  

(10-20m2/W) 

Ug  

(eV) 

GVD at 800nm* 

(fs2/mm)  

YAG 1.82 [232] 6.2 [233] 6.5 [234] 98  

YVO4 1.96 [235] 15 [236] 3.8 [237] 286  

Y2O3 1.90 [238] 5.8 [239] 5.8 [240] 186  

KGW 2.06/2.01 ** [241] 11 [236] 4.05 [241] 293/256 ** 

Table 5-1: relevant optical properties of different nonlinear materials for supercontinuum 

generation. Refractive index n0, nonlinear refractive index n2 (both for the central 

wavelength of the laser), bandgap and GVD in the spectral region of interest (for the 

supercontinuum). * The group velocity dispersion calculated from the same Sellmeier 

equation as the refractive index ** refractive indexes ng and nm and corresponding GVD of 

KGW as the crystal we use is birefringent (b-cut) 
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Figure 5-2: Left: Optical scheme for testing supercontinuum generation in different 

crystals. The SC crystal is mounted on a translation stage so that the position of the 

filament can be shifted in the crystal. L1 is the focusing lens with f from 30mm to 75mm 

and L2 the achromatic collimating lens (f=30mm). SP is a 1000nm short pass filter. 

Several measurements can be performed on the output SC beam: Z-scan to calculate M2 

as well as spectrum and power measurement. Right: Photo of the supercontinuum and the 

optical elements with a YAG crystal. 

 

5.2.3.1 Yttrium aluminium garnet 

 

Supercontinuum was generated in a 5mm YAG crystal, towards the end of the crystal, and with a 

numerical aperture (NA) of 0.04 (focal length of 50mm with a 2mm collimated beam from the 

Femtolux3).  Several numerical apertures were tested, and this led to the best stability. The 

measured threshold for SC generation was 625nJ, which is a rather large portion our total pulse 

energy out of the femtolux laser (3.3J). Generating SC just above the energy threshold leads to a 

large instability, as the SC can vanish with small variations of the input pulse properties. It is only 

from 700nJ that the SC becomes stable enough for use in parametric amplification. From figure 5-

3 we see that the cut-off wavelength of the SC starts around 500nm and slightly increases with the 

input pulse energy. This is more than enough bandwidth to cover our whole tunability range. The 

spectrum has a large peak around 600nm and almost linearly decreases from 650 to 950nm. For 

an input energy of 2.6J we observe interference fringes in the spectrum near 900nm. This means 

that the energy is high enough for 2 plasma filaments to form. In our case, it is desirable for the 

spectrum to be as smooth as possible as the spectral features of the SC will be partially transmitted 

to the final amplified signal (though the OPA process can have a smoothing effect). 

 

L

2 

260fs 

@1030nm 

L

1 

SC 

Crystal 

S

C S

P stage 



 109 

 

Figure 5-3: Spectrum of SC with YAG for different input energy (at 1030nm, ~250fs) 
Additionally, we need the SC to be stable both on the short and long term. The total standard 
deviation of the power of the supercontinuum was 3.4% for 700nJ input energy over two 
minutes. This value might seem high, but the parametrical amplification tends to reduce 
energy variations when depletion of the pump is significant for the amplified signal because 
a higher initial signal energy will lead to more depletion of the pump and so lower conversion 
efficiency (and the opposite for a lower signal energy). 

Furthermore, the SC beam was then focused on a photodetector. This lets us separately detect each 

pulse, and we then measure the standard deviation of the photodetector signal for 400 pulses. It 

should be noted that the voltage variation measured from the Si based photodetector do not truly 

show the pulse shape, as there is a nanosecond rise and fall time for the photodiode current. Yet 

because we operate the photodiode in photoconductive mode [242], the dependence of the voltage 

on the peak intensity is linear. Thus, the standard deviation of the peak voltage should also be the 

standard deviation of the peaks measured with the photodiode. The measured standard deviation 

was only 0.7% for our whole SC bandwidth (after the short-pass filter). Bandpass filter with a 

bandwidth of 40nm were used to investigate the SC stability around 700, 800, 850 and 900nm. At 

900nm the standard deviation rose up to 0.88%, most likely because we have less SC power. 

Standard deviation also rose to 0.83% at 700nm, likely because we are closer to the spectral peak 

(600nm, see figure 5.3) which tends to be slightly unstable. For 800 and 850nm standard deviation 

was less than 0.3%. A very good pulse to pulse stability is actually an expected feature for SC 

generation [103]. The discrepancy between the standard deviation measured with the powermeter 

and the photodiode might be linked to the different times considered: two minutes in the first case 
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and 0.4ms (400 pulses) in the second. This means the variations of the SC are slower (possibly due 

to some thermal instability in the original laser pulse for instance)  

 

In order to evaluate the effect of long-term use, the power of the supercontinuum was then measure 

over 50h of continuous use and remained the same with a small increase of the standard deviation 

up to 5%. The increased standard deviation might indicate some small amount of damage to the 

crystal, but this is still very satisfying for our application. If the crystal becomes damaged it is 

possible to simply rotate it slightly so that the location of the filament changes, as long as the 

damage doesn’t occur too fast. 

 

Globally YAG was a good candidate as it exhibits good stability and a wide supercontinuum 

spectrum. The only negative point is that 700nJ necessary for a stable supercontinuum represents 

more than 20% of our energy budget. The good stability of the SC generated with YAG is not 

surprising as YAG is widely used for SC generation as a source of signal for parametric 

amplification[243], [244]. Because the product of n2 and n0 determines the energy threshold, the 

other crystals should have a lower threshold (see table 5-1). 

 

5.2.3.2 Yttrium orthovanadate 

 

The yttrium orthovanadate (YVO4) crystal we used was 4mm long, numerical aperture was 

NA=0.67, and the crystal was translated so the filament was towards the back end of the crystal. 

The energy threshold was measured at 180nJ, and the supercontinuum becomes reasonably stable 

(enough to perform measurements) after 220nJ. The SC spectra are shown figure 5-4 for different 

input pulse energies. Near the threshold (225nJ) the SC cuts off at ~740nm, which is too short for 

our application. If we increase pulse energy to 300nJ, the cut-off wavelength becomes 640nm, so 

the SC covers our whole desired tunability range. The shape of the spectrum is more dependent on 

the pulse energy than with YAG, with a very strong peak (ten times as intense as the rest of the 

SC spectrum) appearing around 650nm for 600nJ pulse energy for instance. Interference due to 

the formation of a second filament starts appearing for a 1.1 J pulse energy, though they are not 

as well defined as for YAG. The 300nJ and 350nJ spectra are quite nice for our application as they 
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are relatively flat from 700 to 900nm. The dip around 950nm is less favourable, but the SC 

generated with YAG was also much less energetic around 950nm than 700nm (figure 5-3). 

 

Figure 5-4: Spectrum of supercontinuum in YVO4 for different input pulse energy 

The next step was investigating the stability of the SC. With 350nJ input pulse energy the SC pulse 

energy (the portion above 1000nm wavelength) was 8nJ with only 0.5% standard deviation of the 

measured SC power (possibly even lower as this might come from the powermeter and not the SC 

generation itself). The standard deviation was similar when bandpass filters were used (as for 

YAG) to check the stability on different spectral ranges.  

 

 

Figure 5-5: Supercontinuum (black) and laser (red) power evolution over 63h of use. 
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Thirdly, the SC power was measured over 63h along with the laser power (figure 5-5). The average 

power of the SC was 8nJ, but here the normalised power is plotted for both the laser and the SC 

on the same graph. We can observe an early drop of the SC power that also correspond to a smaller 

drop of the laser power. Some of the other long scale changes (after 24h and towards the end of 

the 63h) also correspond to changes in the laser power. The laser properties probably varied due 

to thermal effects. The change may also affect pulse duration, which explains why the SC power 

drops faster than the laser power during the first 10 hours. Those might be due to the thermal 

conditions in the room for instance. There is no sign of damage to the crystal, which is our main 

concern. 

 

Finally, a Z-scan was performed on the SC beam. This means focusing the beam with a long focal 

length achromatic (because the SC is broadband) lens (200mm) and measuring the beam diameters 

in two orthogonal direction for different positions of the camera relative to the focus. By fitting 

the curves, the beam quality parameter M2 is calculated (the larger M2, the larger the divergence 

angle for a given focal diameter). Initially a very large M2 of more than 3 was measured, but by 

introducing an iris after the collimating lens (Figure 5.2), we can largely improve the beam quality 

without too large a loss of power (about 20%). Indeed, there is a cone of angularly dispersed light 

around the SC [103], yet the centre of the beam is not angularly dispersed. The beam quality was 

measured after 3 different bandpass filter centred around 700, 800 and 900nm respectively, with 

40nm bandwidth. At 800 and 900nm, an M2 of 1.1, which nearly corresponds to a Gaussian beam. 

At 700nm M2 is 1.5, which would be too high for our final output of the OPA. However, the signal 

and idler spatial properties mostly depend on the pump for the OPA (The second harmonic of our 

laser source) and not the seed. Thus, an M2 of 1.5 is still acceptable. It would mostly affect the 

focusing conditions inside the parametric amplification crystal and might reduce conversion 

efficiency, but the spectral density of energy is also higher at 700nm which should compensate. 

 

YVO4 is an excellent candidate for the SC generation as the source of a seed pulse for our OPA. 

The energy threshold of 180nJ is much lower than YAG (625nJ), and the pulse energy we found 

to provide satisfying stability of the SC is 350nJ, versus 700nJ for YAG. As long as we use an iris 

to select only the central part of the SC beam, the beam quality is quite good. Furthermore, the 



 113 

stability properties are exceptionally good and no damage was observed on a 63h of use period. 

With 350nJ initial energy we can get 4nJ of SC after the short pass filter and iris. 

 

5.2.3.3 Yttrium oxide 

 

The energy threshold for SC generation with Y2O3 was measured at 260nJ. This is slightly higher 

(but similar) to YVO4, which can be a little surprising because the refractive index and nonlinear 

refractive index are almost the same as for YAG, which has a much higher threshold. While this 

would make Y2O3 a good candidate for the SC generation, it gets damaged extremely fast. We 

initially used a Y2O3 ceramic to generate SC, before trying a Y2O3 monocrystal in case the damage 

was due to the defects in the ceramic. In both case the SC lasted less than a minute even when the 

pulse energy was kept near the threshold. The damage also occurred independently of the focusing 

conditions (for a focal length of 30, 50 or 75mm of the focusing lens) The damage mechanism was 

determined to be inelastic because even blocking the laser and waiting for a few minutes before 

unblocking it didn’t restore the Supercontinuum. Also, the damage appears not to be thermal: The 

pulse repetition rate was lowered down to 10kHz, yet after a few minutes of SC generation (in a 

fresh position in the crystal) the SC still extinguished. Thermal damage should be strongly 

dependent on the pulse repetition rate[201], unlike what we observed. The duration after which we 

observe damage is also relatively random. Thus, damage is likely caused by a single pulse, and 

intensity related.  

 

Figure 5-6: Supercontinuum spectrum in Y2O3 for different values of the input pulse energy. 
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The spectrum of the SC was still measured for different values of the pulse energy (figure 5-6). 

The repetition rate was lowered to 10kHz so that there was enough time to acquire spectra. The 

cutoff wavelength is around 570nm, worse than YAG (~500nm) but slightly better than for YVO4. 

This matches theory as the main parameter for the extent of the SC is the bandgap (see table 5-1). 

The spectral energy density sharply drops around 850nm (~40 times less than at the peak around 

700nm). This would also be a very bad feature for our application. There are several sharp gaps in 

the spectrum between 570 and 650nm. For 1J input pulse energy, we can observe interference 

fringes from 800 to 1000nm, indicating a second filament.  

 

Yttria oxide cannot be used for our OPA because the damage occurs too fast. Even without the 

damage problem, Y2O3 would not be particularly suitable as the SC is too weak between 800nm 

and 900nm. 

 

5.2.3.4 Potassium gadolinium tungstate 

 

The crystal used in experiments was a 4mm long b-cut potassium gadolinium tungstate (KGW) 

crystal, so it was birefringent for a normal angle of incidence, unlike the other crystals we used. 

This means the two different polarisations need to be tested. The numerical aperture was 0.04. In 

the following, the polarisation giving the highest SC power will be called polarisation 1 and the 

other one polarisation 2. The threshold for SC generation was found at 220nJ for polarisation 1 

and at 240nJ for polarisation 2. This is a little higher than YVO4, but quite similar. The spectrum 

dependence on the input pulse energy is shown for both polarisations figure 5-7. There is a hole in 

the spectrum around 900nm, which is deeper for polarisation 2 (about 1/10th of the 700nm peak, 

compared to ~1/5th for polarisation 1. The cut-off wavelength gets shorter for increasing pulse 

energy when near the threshold and stabilizes around 570nm for 400nJ pulse energy or higher. 

This is broad enough for our application. There are interference patterns indicating the formation 

of a second filament from 400nJ already (particularly visible for polarisation 2). The spectrum is 

otherwise relatively smooth. 
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Figure 5-7: Spectrum of the supercontinuum for KGW for each of the 2 main polarisations 
(left and right) and for different input pulse energy 

The short-term standard deviation was once again measured around 1% for the whole 

supercontinuum for 350nJ input pulse energy as well as around 700, 800 and 900nm with bandpass 

filters. No damage was observed over a 12h long measurement of the SC power with 400nJ pulse 

energy. Advantageously the SC pulse energy is 12nJ for 400nJ input pulse energy, to compare 

with ~8nJ for YVO4 at the same input pulse energy. Finally, the beam quality of the SC after an 

iris was 1.2, which is quite good 

 

5.2.3.5 Conclusions of Supercontinuum experiments 

 

The two crystals that appear the most suited for providing an OPA seed via supercontinuum 

generation are YVO4 and KGW. In both case the bandwidth of the supercontinuum is large enough 

to cover our whole tunability range, no damage to the crystal was observed over long periods of 

use and the required pulse energy for a stable Supercontinuum, between 300 and 400nJ, is not too 

high compared to our total pulse energy of about 3J. The SC produced with KGW is slightly 

more energetic, but the spectrum of the SC produced with YVO4 has less variations so it could be 

more suitable. Both crystals were later used.  

 

The supercontinuum produced with YAG was also stable and with a broad bandwidth, but 

threshold energy is higher. Yttria oxide appears unsuitable for SC generation due to damage. 

Diamond was also tested, but the threshold energy was found at 600nJ, which makes it less 

suitable. 
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5.2.4 Second harmonic generation 

 

The principle of parametrical amplification is to amplify a weak seed pulse with a stronger pump 

pulse by difference frequency generation. This means the frequency of the pump pulse has to be 

higher than that of the seed. Thus, we cannot directly use our 1030nm to pump the OPA and we 

need to frequency double the laser. This is done in a nonlinear second order crystal, in that case 

BBO. The objective is to maximize the conversion efficiency while keeping good spatial and 

temporal properties of the SH. Indeed, the pump properties will influence the output of the OPA 

the most.  

 

Figure 5-8: Simulation results for second harmonic generation in a 1mm BBO crystal, using 
the femtolux 3 pulse profile and phase retrieved with FROG. The beam quality of the SH is 
1.04, the total conversion efficiency 69,6% 

In order to find the right crystal length and beam diameter, the SHG process was simulated using 

the “Wavemixer” program we created. The pulse profile and phase of our laser was retrieved with 

FROG [183], and is the same as in chapter 3. The best SH conversion efficiency was obtained for 

a 1mm long BBO crystal cut for type I phase matching (=23.4° and =90°) and a 200m beam 

diameter of the fundamental. The simulation results are shown figure 5-8. The predicted 
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conversion efficiency of ~70% is quite high, while the beam quality of the SH remains very good 

at 1.04. The SH spectra will display 2 strong peaks, but this should not affect the OPA much. The 

pulse has some side lobes, due to the third order dispersion inherited from the fundamental 

radiation. The SH pulse duration should be 210fs (full width at half maximum). Having too short 

a SH pulse can limit the bandwidth of the signal pulse out of the OPA, if the SC is dispersed. 

Indeed, the different wavelength of the SC will then be separated in time, which means the portion 

that overlaps the SH can have a much shorter bandwidth than the whole SC.  

 

 

Figure 5-9: Optical scheme of the second harmonic generation setup (left) and photo of the 
SHG part of the final OPA (right). 

The simulation results let us choose the appropriate focal length and crystal length for the 

experimental setup. The optical scheme of the experimental SH setup is shown figure 5-9 as well 

as an image of the mounted optics. The portion of the beam that will be used for SC generation is 

separated with a half waveplate and cube polarizer, and what remains is focused on the 1mm BBO 

crystal with a 200mm focal length lens. The orientation of the BBO crystal is adjusted with a 

rotation stage. The mount of the BBO crystal is also a rotation mount so that the polarisation of 
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the fundamental radiation can be aligned with the ordinary polarisation for the BBO crystal. The 

SH pulse will be emitted with the extraordinary polarisation. After collimating the SH beam, the 

remains of the fundamental are removed with a dichroic mirror and the SH can then be used for 

parametric amplification. With this setup we measured a maximum conversion efficiency of 61,4% 

with 2,7J of fundamental energy. Indeed, the output power of our source was 3W, instead of the 

3.3W specified. This is quite close to the prediction from simulation. The slightly lower efficiency 

can be explained by the perfect conditions we assume in simulation are not met (non-Gaussian 

beam, slightly wrong angle…) and small differences between the retrieved pulse and phase and 

the real one. The beam quality parameter of the SH was measured by Z-scan to be 1.11 and 1.21 

along the two axes of the beam. This is worse than in simulation, but the real fundamental beam 

also has M2=1.1. It is still good for practical applications. 

 

5.2.5 Parametric amplification 

 

Crystal type deff  

(pm/V) 

  

(mrad) 

n2  

(10-20m2/W) 

ng 

p-s / p-i 

LBO [196] I 0.84 [149] 7.1 2.6 [197] 0.010/0.015 

BBO[245] I 2.01 [149] 55.7 4 [197] 0.020/0.034 

BiBO [246] II 2.96 [151] 24.9 / 24.4 * 15 [247]  0.040/0.081 

Table 5-2: Relevant properties of different crystals for DFG with a 515nm pump wavelength 
and 800nm signal wavelength (1446nm idler wavelength deff is the effective nonlinear 
coefficient,  the walk-off, n2 the nonlinear refractive index and ng the refractive index 
difference between signal and pump (s-p) and idler and pump (i-p). deff was calculated using 
the known Deff matrix  (references next to the deff values), the phasematching conditions and 
Miller’s rule [5] to adjust for wavelength.  The phasematching conditions,  and ng are 
calculated from the Sellmeier equations for the crystal (reference next to the crystal name). * 
In BiBO the walk off is for the signal and idler, as they are along the extraordinary direction 
(type II phasematching)  

The previous two steps let us generate a broadband seed that covers our whole tunability range 

and convert our 1030nm source laser to its 515nm second harmonic, thus having a strong beam 

with a shorter wavelength than what we wish to amplify. The first question is which nonlinear 

crystal to choose? Three bulk crystals are aften used for visible range OPA or SHG: BiBO 
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(Bismuth triborate), LBO (lithium triborate) and BBO (beta barium borate). The relevant 

properties for all 3 are shown table 5.2 

 

The effective nonlinear coefficient might seem like the most important parameter for a nonlinear 

crystal as it will directly affect how strong the nonlinear interaction is. Indeed, the larger deff, the 

sooner we will reach a peak of conversion efficiency (before DFG stops and back conversion, 

meaning SFG in this case, starts). Therefore, the main question becomes what limits the crystal 

length we can use? Four effects can degrade the properties of the signal and idler radiation as well 

as reduce the DFG efficiency: Loss of spatial overlap due to walk-off, loss of temporal overlap 

due group index difference, insufficient phasematching bandwidth and Kerr effect (self and cross 

phase modulation). In a first order approximation the phasematching bandwidth is proportional to 

the signal-idler group index difference (which we can calculate from the other two). So, for each 

of these effects a figure of merit is the ratio of the relevant parameter to deff. For spatial overlap, 

BBO is the worst while LBO and BiBO are mostly equivalent).  For Kerr effect, BBO is the best 

though LBO is quite similar, and BiBO the worst. BBO and LBO are very close for temporal 

overlap and the phasematching bandwidth, while BiBO is worse for both. Ideally the beam 

diameters for DFG need to be as small as possible, because a higher intensity means a higher rate 

of conversion and so a shorter crystal needed. The limitations are the damage to the threshold and 

Kerr effect, which is also intensity dependent. With a pulse energy of 1,66 J, and a beam diameter 

of 100 m, a suitable crystal length for BBO is 1,5mm, meaning a spatial shift of about 80m due 

to walk-off. Because the spatial shift is almost as large as the beam, this will strongly affect the 

DFG and the output beam quality. Indeed, simulations confirmed that BBO is the worst crystal in 

our case.  
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Wavelength 

(nm) 

BiBO LBO 

 Efficiency 

(%) 

M2 TL duration (fs) 

Signal        Idler  

Efficiency 

(%) 

M2 TL duration (fs) 

Signal        Idler 

900 21,9 1.5 21.3 24 26.4 1.4 21.1 22.8 

850 20 1.4 24.2 28.7 25.1 1.3 22 24.3 

800 17.5 1.25 28.8 36.2 23.4 1.2 23.4 26.8 

700 6.2 1.05 35.9 58.2 22.3 1.1 23.3 27.7 

Table 5-3: Main simulation results for DFG in a 1mm BiBO crystal and 3.2mm LBO 

crystal using the simulated SH pulse from figure 5-8, and an 80nm bandwidth seed with 

1nJ of energy centred at 4 different wavelength, with a 100m beam diameter for both the 

SH and seed, stretched with a GDD of 1000fs2 (estimated GDD on the SC due to the 

different optics). Efficiency is the total energy converted to signal and idler compared to 

the initial pump energy.  

 

The choice is now between LBO and BiBO. Table 5-3 contains the main results of simulations for 

both of those case. Here I didn’t use the real spectrum of the SC, but a Super Gaussian spectrum 

with a large bandwidth (80nm), centred on different wavelength. Nevertheless, this lets us compare 

the two crystals for conditions close to our OPA. The crystal length was chosen to maximise 

conversion efficiency while maintaining a good beam quality at 850nm (M2 < 1.4), and the same 

conditions were kept for all other wavelengths. Indeed, while we can modify the angle of the 

crystal and the delay between SH and SC, we cannot in practice change the beam diameter or 

crystal length for each wavelength. Generally, the conversion efficiency is lower with BiBO. In 

particular, it drops down massively at 700nm (only 6%). We also observe that the TL duration of 

the signal and idler increases at 700nm, meaning the phasematching bandwidth is too small. By 

comparison the conversion efficiency varies little in LBO (from 22.3% to 26.4%), and the TL 

duration also stays around 22fs, meaning the whole bandwidth is amplified. Beam quality is better 

at shorter wavelength, meaning a longer crystal might let us reach even higher conversion 

efficiency there, but then it would be too long for pulses centred on 900nm (and beam quality 

would worsen). A maximum overall conversion efficiency of 26% can seem quite low compared 

to the 70% reached (in simulation) for SHG. This is because type I SHG is a degenerate case with 

only 2 radiations to consider, versus 3 different waves for SFG and DFG. In DFG the pump wave 

will locally deplete much faster at the temporal and spatial peak, and then back conversion will 
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start locally, damaging the beam and the conversion efficiency. In SHG, when the fundamental is 

depleted there is nothing left for DFG (in that case back conversion) to start. It is possible to 

increase DFG conversion efficiency by using flat topped beams and/or pulses [105], [248], but not 

in our case, because good beam focusability is required for microscopy.  

 

One of the most important results of the simulations is the effect of the GDD accumulated by the 

supercontinuum. For an 80nm bandwidth super Gaussian spectrum centred on 800nm, the pulse 

duration will be stretched to ~200fs, the same as the SH pulse duration (see figure 5.8). From 

simulations, the GDD is the main limiting factor controlling the bandwidth of the signal, as even 

a 5mm LBO crystal is short enough to have phasematching over more than 80nm. This means the 

GDD of the SC needs to be kept as low as possible. Thus, all mirrors on the SC path need to be 

coated to be low GDD (GDD<5fs2), as otherwise a single dielectric mirror can add 500fs2 of GDD. 

In total the GDD added by all optical elements on the path of the SC is between 1000fs2 and 

1500fs2 depending on the wavelength. 

 

For DFG simulation showed the best choice for material was LBO. The refractive indexes of LBO 

are strongly temperature sensitive. We could use non-critical phase matching (meaning use 

temperature to insure phasematching at the desired wavelength for a crystal cut along one of the 

optical planes) and so doing remove walk-off completely. However, the required temperatures are 

between 150 and 200°C, requiring special coatings. The stability of such systems can also be a 

problem. Therefore, we chose to use critical phasematching, with a crystal cut of =90° and =10°, 

while the temperature of the crystal is fixed around 40°C by a specially designed mount. If the 

incidence angle of the beams is 0 on the crystal face, the phasematching conditions are met around 

750nm. By adjusting the orientation of the crystal, the phasematching conditions can be met for 

different wavelengths. At 980 nm phasematching is observed for =13°, so the maximum 

incidence angle should be 4.8° (those are the angles inside the crystal, and we need to account for 

refraction). In the end a 3mm long and a 5mm long LBO crystals were ordered and tested. 

 

Finally, the DFG was experimentally realised. This is a much more complex system than SHG 

because we need to ensure temporal and spatial overlap. The temporal overlap is controlled with 

the delay stage on the SC path (see figure 5.1) and the spatial overlap was obtained by adjusting 
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the angles of DM3 and M6. A camera was used to check the beam diameters and that they are 

centred on the same positions. Initially finding the right position of the delay stage is difficult as 

the SC pulse duration is about 2ps, meaning the translation stage ideal position will vary by less 

than 1mm. The optical path (including the optical indices of all the optical elements) was calculated 

for the SC and SH to place the translation stage as close as possible to the ideal position. After the 

LBO crystal is placed the angle of DM3 is adjusted to tune the overlap even more precisely and 

maximize efficiency. Once some signal amplification is observed, the process of tuning the OPA 

for a given wavelength is relatively complex: 

1-  Measure the spectrum of the signal with a spectrometer. The SH and idler have been 

removed with a dichroic mirror. 

2- Adjust the delay to shift the central wavelength of the spectrum in the right direction 

3- Adjust the angle of the LBO crystal (with a precision rotation stage) to maximise the 

spectral peak. This should also shift the central peak. 

4- Repeat 2 and 3 until the spectrum is centred on the right wavelength 

5- Replace the spectrometer with a powermeter and very slightly adjust the crystal angle to 

maximize power.  

6- Adjust the spatial overlap (DM3) to maximize the signal power 

7- Adjust the SC crystal position (with a translation stage) to maximize the signal power. This 

also helps gain some more signal power (up to 10%)  

8- Check one last time with the spectrometer that the central wavelength is still the same 

 

The different measured spectra of the signal are shown figure 5.10. The spectrum is relatively 

Gaussian for central wavelength above 850nm. For a central wavelength around 900nm, we have 

a particularly broad spectrum (dark blue or red curves), but also several peaks. This comes from 

the supercontinuum spectrum which has a dip around 950nm. This spectral region corresponds to 

much lower GDD accumulated by the supercontinuum (the 0 dispersion of the different materials 

on the SC path will be between 1.4 and 2m, so the dispersion is smaller for longer wavelength), 

which is why the amplification bandwidth is much larger. The strange shape of the spectrum should 

not strongly affect multiphoton microscopy as long as the pulse is well compressed. This also 

means the transform limited duration of the signal can be much shorter. For a central wavelength 

around 970nm, there is a clear cut-off around 1000 nm. This is due to the short-pass filter used to 



 123 

separate the SC from the pump. The bandwidth of the signal becomes smaller for shorter 

wavelength. However, a given bandwidth (in nm) at 700nm corresponds to a much shorter TL 

duration than the same bandwidth centred on 900nm. This is because the TL pulse duration is 

proportional to the bandwidth in frequency, not in wavelength. The relationship is given by: 

 

Δ𝜈 =
𝑐

𝜆0
2  Δ𝜆 (5.2) 

 

Where 0 is the central wavelength, c the speed of light,  the bandwidth in wavelength and  

the bandwidth in frequency. The amplified signal power also varies with the central wavelength 

(figure 5.11). There is a peak around 750nm with signal powers of almost 200mW (meaning 200J 

signal pulse energy as the repetition rate is 1MHz). The power then drops down to 140mW around 

850nm. There is also a strong increase of signal power for a central wavelength of 970nm. This 

corresponds to the sharply cut-off spectrum (black curve) figure 5.10. This spectral region 

corresponds to the remaining spectrum of the pump laser that was used for SC generation. The 

initial spectrum was much narrower but was broadened by self-phase modulation in the YVO4 

crystal, and there is still some of this spectral peak beyond the cut-off wavelength of the short pass 

filter. It is more intense than the rest of the SC and so can be amplified more easily. However, the 

bandwidth is very narrow, so the TL duration would be more than 50fs. 
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Figure 5-10: Spectra of the signal output of the OPA over the tunability range. Each spectrum 
corresponds to a specific delay between the SH and supercontinuum as well as a specific 
crystal angle. 

The beam quality parameter M2 was also measured by Z-scan for several central wavelength. 

While M2 increases around 900nm, it remains quite good (the maximum is 1.22), so the 

focusability of the beam after the objective of the microscope should be good and the beam shape 

will be mostly Gaussian. 

 

 

Figure 5-11: Left: OPA output (signal) power depending on the central wavelength. Right: 
beam quality parameter M2 dependence on wavelength. 
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 Signal power (mW) / Beam quality parameter M2 

          (nm) 

Seed  

(mW) 

690 nm 750nm 800nm 850nm 900nm 970nm 

0,1 40 / 1.07 28 / 1.07 15 / 1.08 5 / 1.16 4 / 1.2 9 / 1.11 

0,2 67 / 1.08 50 / 1.07 27 / 1.08 10 / 1.16 7 / 1.2 18 / 1.11 

0,5 137 / 1.08 100 / 1.08 59 / 1.09 23 / 1.16 17 / 1.2 38 / 1.11 

1 198 / 1.11 150 / 1.1 97 / 1.1 41 / 1.16 31 / 1.2 64 / 1.12 

2 259 / 1.16 203 / 1.15 145 / 1.12 72 / 1.17 55 / 1.2 98 / 1.14 

5 323 / 1.27 266 / 1.26 211 / 1.2 129 / 1.2 105 / 1.22 148 / 1.22 

10 357 / 1.39 306 / 1.37 258 / 1.29 179 / 1.25 153 / 1.25 188 / 1.32 

20 379 / 1.53 342 / 1.51 303 / 1.42 231 / 1.34 204 / 1.32 228 / 1.45 

50 403 / 1.73 402 / 1.69 370 / 1.6 305 / 1.51 277 / 1.45 289 / 1.63 

Measured 177 / 1.14 193 /1.07 180 / 1.07 147 / 1.11 138 / 1.22 210 / – 

Table 5-4: Simulated signal power and beam quality parameter M2 for the OPA for 

different central wavelengths of the amplified signal, and different seed powers. The last 

line contains the measured values for the signal power and M2. The simulations were 

performed using the simulated SH (figure 5.8) and the measured spectrum of the 

Supercontinuum, with both beam diameters of 180m and a 5mm LBO crystal. I assume 

a GDD of 1500fs2 on the supercontinuum. 

 

Globally, the output of the OPA is satisfying. The tunability range is between 680 and 980nm and 

the bandwidth of the signal is broad enough to support pulse durations between 25 and 50fs. The 

power of the signal varies with the central wavelength but remains in a reasonable range (between 

140 and 200mW). This is the lower end of the expected power range, and lower than we could 

expect from simulations. To better understand why, I performed a series of simulations using the 

actual supercontinuum spectrum, the SH pulse simulated using the FROG reconstructed laser pulse 

(figure 5.8) with the measure SH power (1.66W at 1MHz) and varied the SC power.  

 

The main results of the simulation set are assembled table 5.4. Tis table is very rich in information. 

First, we can observe that for low values of the seed power (0.1 to 0.5mW) the final signal power 

depends mostly linearly on the seed power. This linear dependency can be predicted from the DFG 
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equations (see chapter 2) when the conversion efficiency is low. Second, the signal power varies 

significantly with wavelength for a given seed power. This might seem to contradict table 5.3. 

These simulations are quite different from those presented in figure 3, as I used the SC spectrum, 

meaning the seed power is no longer the same around each central wavelength (+/- 40nm). The 

shape of the Supercontinuum spectrum is reproduced, with a peak around 700nm and much lower 

spectral density around 900. However, the amplitude of the spectral variations lessens when the 

seed power increases, and we start to saturate (because we deplete the pump). For instance, at 

0.1mW seed power, there is 10 times more signal at 690nm as there is at 900nm (which is about 

the difference in the SC spectrum as well), but at 50mW seed power there is only 1.5 times more 

signal power. It is also important of note that table 5.3 contains efficiency values, while here we 

have the signal power. The efficiency is the ratio of energy converted to signal and idler to the 

initial pump energy. The shorter the signal wavelength, the higher the share of energy that goes to 

the signal. Third, we surprisingly observe that the measured variations of signal power with the 

central wavelength are too low compared to simulations. For wavelength shorter than750nm, the 

signal power is lower than it should be for a 4mW seed (The SC power measured after the iris), 

but for longer wavelength the signal power is higher than in simulation, something which rarely 

happens. Here it is important to consider the steps we use for tuning the OPA: Step 7 is to change 

slightly the SC crystal position to maximize the output power. The SC spectrum depends on the 

position at which it is generated in the crystal, so in this step we are actually selecting the best SC 

spectrum for a given wavelength. The SC spectrum (from YVO4) used in simulations has a 

particularly deep hole around 900nm (about 10 times less than the peak), but it is possible to have 

more energy at 900nm, but less in the SC overall. Also, we observe a peak at 750nm in 

measurements, when simulation predicts a higher power at 700nm. Here we need to remember that 

the M2 for the SC was ~1.5 around 700nm, compared to ~1.1 elsewhere. Since the focusing lens 

for the OPA seed is the same for all wavelength, this means the SC diameter in the LBO crystal 

will be about 1.4 times greater at 700nm than at 800nm, so the intensity of the seed is halved, and 

the conversion efficiency is reduced. 

 

The simulation results using the real SC spectrum and the same conditions as in the experimental 

setup let us understand why there is significant variation of the signal power when the central 

wavelength is tuned. It also shows that if the SC power was higher, it would be possible to reach 
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much higher conversion efficiency. This suggests that we could reach higher signal power by using 

a 2 stage OPA: A preamplification (with a 3mm LBO crystal for instance) using only part of the 

pump power, and a second (and final) amplification in a 5mm LBO crystal. While such a scheme 

can increase the output, it is also more complex than the setup figure 5.1, requiring a second delay 

stage, and a second spatial overlap of the signal beam with the SH beam, as well as more optics 

(which also adds some GDD).  

 

The OPA scheme of figure 5.1 was tested as a source for the MPEM, with the properties measured 

so far. Indeed, it was better to test an already built setup (which worked fine even though the signal 

power is on the lower end of our expectations) and see later about improvements. This also let us 

keep the project on schedule. The main results presented further in this work are all for the 1 stage 

OPA with YVO4 as the SC crystal. Later on, KGW was also tested as a replacement SC crystal 

(there was a small improvement) and a 2 stage OPA was assembled to see what the gain would be, 

and we began testing it.  

 

5.2.6 Two stage parametrical amplification 

 

Because the seed power in the second amplification is quite high (a few tens of mW), higher 

efficiency can be reached without affecting beam quality too much. Indeed, the limiting factor is 

that back conversion will start affecting the centre of the signal beam early in the crystal, while 

conversion is still ongoing on the beam sides, leading to the creation of a hole at the centre of the 

beam. The rate of conversion when the seed is weak is mostly governed by the squared SH 

intensity, so a Gaussian with a diameter of dSH/2, where dSH is the SH diameter. When the seed 

is stronger the intensity of the seed also increases the conversion rate, which will affect the sides 

of the beam more than the centre, especially if the seed diameter is a little larger than the SH 

diameter. 
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Figure 5-12: Optical scheme of the 2 stage OPA. The SHG and SC generation are the same as 
in figure 5.1 and not shown again. The supercontinuum beam (SC) is shown just after the first 
delay stage (see figure 5.1), and the SH (at 515nm, in green) starts just after the collimation. 
Notations: L=lens; M=Mirror; DM= Dichroic mirror; /2= Half waveplate; LP= Long pass 
filter 

The optical scheme for the 2 stage OPA is shown figure 5-12. The first part remains the same but 

the SH beam is split in 2 using a polariser and half waveplate. The weaker part is used to amplify 

a portion of the SC in a 5mm LBO crystal (same cut as before). The temporal overlap is obtained 

thanks to the delay stage on the SC path (not shown figure 5-12). After amplification the pump 

(515nm) and idler are removed with a dichroic mirror (DM2), and filters are used to remove any 

remains. Here a flippable mirror lets us collect the signal beam for testing its properties (spectrum 
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and power) or send it to the second stage of amplification. The largest part of the SH beams goes 

through a delay stage so that temporal overlap can be obtained in the second amplification crystal. 

This SH beam and the signal from the first stage of OPA are then focused (L4 and L5 respectively) 

and spatially overlapped (with dichroic mirror DM3) in the second OPA crystal (a 3mm LBO 

crystal with the same cut as previously). After the second and final amplification, the signal is 

separated from the pump and idler and can be sent in the prism compressor, which is not drawn 

again. The dichroic mirrors and the mirrors M4 and M5 need to be low GDD so that the signal is 

not too stretched in the second stage of amplification.  

 

It is immediately apparent that adding a second stage of OPA makes the system much more 

complex. The tuning steps detailed in the previous section need to be performed for both stages, 

first to find the right wavelength and maximize efficiency in the stage 1 (Power and spectrum 

measured at “Test 1”), then maximizing the conversion efficiency of stage 2. The tuning of the 

second stage is a little easier because the spectrum should already be centred on the right 

wavelength. The important question is how much do we gain by adding a second stage of OPA?  

 

The repartition of the SH energy and the crystal length of each LBO crystal was chosen with 

simulations in order to maximize the signal power. The main focus of the 2 stage OPA was to 

increase the signal power between 900 and 950nm, as this wavelength range produced an 

extremely broad spectrum but relatively low power (140mW) for a single stage OPA. Also, the 

camera used for the second harmonic microscope is particularly sensitive between 450 and 500nm, 

meaning it is better to use a central signal wavelength between 900 and 1000nm. Simulations 

showed that with 550mW of pump power (at 1MHz repetition rate) for the first stage the signal 

power should be between 30 and 50mW. This is lower than previously because the pump power 

is much lower. The second stage of amplification should then produce 370mW at the output of the 

second stage. This might seem quite high when compared to the signal power for 50mW seed 

power in table 5-4. However, in table 5-4 the power of the seed is spread over the whole 

supercontinuum bandwidth and most of it will be unamplified, while here the spectrum of the 

signal out of the first stage of amplification is mostly the same as the output of the second stage. 

The predicted bandwidth of the amplified signal is sufficient for a 27fs TL pulse, and the calculated 

beam quality is 1.13. 
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The output of the 2 stage OPA was only studied around 950nm central wavelength as this is the 

most advantageous for second harmonic microscopy in our case (as mentioned previously due to 

the spectral sensitivity of the camera). As expected, the addition of a second stage let us reach a 

significantly higher signal power, of 250mW (at 1MHz) compared to ~140mW with a single stage. 

Unfortunately, the spectral narrowing is significant, and the transform limited duration is around 

60fs, compared to ~25fs for the single stage OPA. Overall, the SNR ratio of 2 photon microscopy 

images when the full power of the signal is used should still increase, because it quadratically 

depends on the pulse energy, but linearly depends on the duration. The real signal power is still 

significantly lower than predicted by simulations which is not surprising: The many optical 

elements can cause some losses even with the proper anti-reflection coating and the simulation 

makes some assumption that tend to improve efficiency (neglected TOD of the input SC, beam 

quality of the SC…) and is carried twice in a row. Also, the GDD added by the lenses and other 

elements was neglected at the time of simulations (because it was yet unknown), which explains 

the narrower bandwidth and some loss of conversion efficiency. Indeed, the pulse lengthening is 

likely due to the added GDD from the first LBO crystal (included in simulations) and all the new 

optical elements on the signal path (not included). Ideally, the signal could be partially 

recompressed before the second stage of OPA, but that adds a significant complexity. 

 

The addition of a second stage of OPA is a late change to the system, and all testing was done with 

a single stage OPA. Improvement in the signal output of the microscope has been observed with 

the 2 stage OPA but the gain is marginal at best, considering the lengthening of the pulse. The rest 

of results are for the single stage OPA, unless specified otherwise. 

 

5.2.7 Pulse compression 

 

The output of the OPA has a large bandwidth, allowing for pulses shorter than 30fs at all the 

different wavelength considered. However, due to the accumulated GDD over the optical path of 

the SC, the pulses are significantly stretched. In fact, the simulations showed that the stretching of 

the SC making the SC pulse much longer than the pump pulse (with about 230fs pulse duration) 

is the main limiting factor for the signal bandwidth, which means the signal pulse will have 
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durations around 200fs. Therefore, the last element of the OPA scheme is a compressor for the 

signal. 

 

Compression of an ultrashort pulse can be performed by different means. Inside the fibre laser the 

compression is achieved thanks to temperature tuning of a chirped fibre Bragg grating for instance 

[203]. For free space optics, the usual compressor schemes are a grating compressor [249] or a 

prism compressor. In both cases the different wavelengths are angularly separated and later 

recombined. Because each wavelength follows a different optical path, a certain amount of GDD 

can be added or subtracted, depending on the geometry. It is possible to compensate for higher 

orders of dispersion as well [214], [250] or to compensate for a particular spectral phase [213], but 

for ~30fs pulses it should not be necessary. Indeed, the effect of GDD is proportional to 𝜏TL
3  where 

𝜏TL is the pulse TL duration, the effect of third order dispersion is proportional to 𝜏TL
3  and so on.  

The estimated TOD for the different elements in the SC path (and the signal path afterwards) is 

1800fs3 at 800nm, which would stretch a 25fs pulse with a Gaussian spectrum to 26.2fs.  

 

The geometry of a prism compressor is shown figure 5-13. The incidence angle 0 is chosen at 

Brewster angle, which also determines the apex angle . This means that for s polarised light there 

is no reflectance. The Brewster configuration is technically only verified for a specific wavelength. 

Several materials were considered for the prisms. The amount of GDD added or removed depends 

on the distance between prisms L (see figure 5-13) and the insertion of each prism, l1 and l2. 

Usually, l1 is as small as possible, the limit being the beam diameter, as this minimizes the amount 

of material on the optical path (and so the GDD added by material dispersion). The distance L is 

chosen so that it is possible to compensate for GDD for all wavelength in the tunability range, and 

the insertion l2 is how the compressor is tuned. A mirror is used to send back the spatially dispersed 

beam on the same path so that the different components are recombined. The path cannot be 

exactly the same otherwise the input and output would not be separated. In practice the beams are 

separated in the vertical direction  
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Figure 5-13: Geometry of a prism compressor [251] 

The material of the prism determines the distance L and insertion l2 that are necessary to 

compensate a given amount of dispersion. The material was chosen so that L is not too large (less 

than 20cm) and the insertion l2 is between 1mm and 20mm (to stay within the prism and limit the 

amount of material on the path). The longer the wavelength, the shorter the insertion length. In the 

end, SF57 glass verified all those criteria. 

 

 

Wavelength, nm Pulse duration, fs TL duration, fs 

700 44 51 

750 41 40 

800 38 40 

900 23 23 

930 29 21 

Table 5-5: Pulse duration measured by autocorrelation and TL duration of the pulse 

calculated from the signal spectrum. 

 

Following the prism compressor, the pulse duration of the signal was measured by autocorrelation. 

Autocorrelation is not sufficient to retrieve the pulse shape or the phase of the pulse. However, the 

FWHM of the autocorrelation trace AC provides a fast way to estimate the pulse FWHM duration 

, as for a Gaussian pulse the two are simply linked by 𝜏𝐴𝐶 = √2 𝜏. Here the pulse shape is not 

necessarily Gaussian but should be relatively similar if the pulse is nearly transform limited. More 

complex methods, such as FROG[183], SPIDER [92] or Dispersion scan[91] for instance, but 
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those require more complex optical schemes and would not be well adapted to the measurements 

of several pulses with different central wavelength. The phase of the signal pulse is also irrelevant 

to Multi-photon microscopy, as all second order interactions inside the sample are well within the 

low efficiency approximation. The measured pulse duration as well as the calculated TL pulse 

duration from the spectrum of the signal are listed table 5-5. 

 

The pulse duration of the signal after compression is very close to the TL duration calculated from 

the spectrum. In fact, at 700nm and at 800nm the pulse duration seems to be shorter than the TL 

duration. This is not physically possible, but it is likely that the spectrum in both those cases during 

the autocorrelation measurement was slightly different from the measured spectrum (figure 5-10). 

The duration calculated by Autocorrelation can also be slightly different from the true FWHM 

pulse duration, as the formula is valid only for Gaussian pulses. The TL duration is also calculated 

by cutting the noise in the spectrum (which can reduce the TL duration significantly) and it is 

possible that very weak components of the spectrum are cut also.  

 

The compressed duration of the pulse is below 50fs for all wavelength considered, which was the 

initial objective. For 900nm central wavelength the pulse duration is especially short due to the 

extremely large bandwidth. Indeed, the material dispersion is less for the longer wavelength, 

because the zero-dispersion wavelength of optical glasses and the crystals we used (LBO and 

YAG) are between 1 and 2m. The prism compressor also removes a certain amount of TOD. At 

900nm for a 17cm distance L between the prisms, I calculated that an insertion l2 of about 20mm 

was necessary to compensate for the GDD, and the estimated TOD removed by the prism 

compressor is 6500fs3. However, there can be some variations as the final prism configuration is 

not exactly the same as in the model. This means the final TOD should be around -5000fs3. This 

is not completely neglectable for such a large bandwidth, but the effect is not very large either 

from Table 5.5.  
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5.2.8 Comparison with the current MPM source 

 

Properties Current OPA 

Central wavelength 𝜆 (nm) 1030 980 to 700 

Pulse duration 𝜏 (fs) 200 25 to 45  

Repetition rate f (kHz) 200 1000 

Maximum pulse energy E (nJ) 500* 150 

Beam quality M2 <1.2 <1.25 

Table 5-6. Comparison between the OPA system described in this chapter and the 

femtosecond laser previously used as the source for our Multi-Photon Microscope [36]. 

*The maximum pulse energy is to prevent damage to the microscope objective. 

 

The previous laser source was a 200fs laser [36], and its properties are listed table 5-6 along with 

the properties of the output of the OPA. The OPA provides tunability of the central wavelength 

between 980 and 700nm, with a pulse duration as short as 25fs at 900nm. The repetition rate can 

also be higher (though it can also be reduced easily by the pulse picker in the Femtolux-3 laser), 

and beam quality is comparable in both cases. The pulse energy is significantly lower, which can 

be a problem as the second harmonic signal depends quadratically on the pulse energy. If it is 

possible to use the maximum pulse energy and maximum repetition rate of both sources the 

theoretical second harmonic signal ratio (for the OPA output at 900nm) is: 

 

𝑆𝑂𝑃𝐴
𝑆0

=
𝐸𝑂𝑃𝐴
2  𝑓𝑂𝑃𝐴 𝜏0

𝐸0
2 𝑓0 𝜏𝑂𝑃𝐴

= 3.6 (5.3) 

 

Where 0 stands the original laser source, S is the signal from the microscope, E the pulse energy, 

f the repetition rate and  is the pulse duration. If it is possible to use both system to the maximum 

settings the new source should therefore provide 3.6 times higher 2 photon signal for the same 

sample over the same integration time.  
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5.3  MULTIPHOTON MICROSCOPY WITH THE OPA SOURCE  

 

5.3.1 Integration of the OPA source to the Microscope 

 

 

Figure 5-14: Simplified optical scheme of the multiphoton microscope and the two possible 
laser sources. LP = Long pass filter; SP = Short pass filter; M = Mirror; DM= Dichroic mirror. 

The optical scheme of the microscope with the 2 possible sources is shown figure 5-14. The OPA 

or the previous system can be used alternatively thanks to a flipping mirror (M2). Unlike a confocal 

microscope, a lens is placed before the objective so that there is wide field illumination of the 

sample. Because the new system is much more sensitive to dispersion than the original source 

(which has a shorter bandwidth), the mirrors were replaced by low GDD versions. The different 

samples we used need to be in water. Depending on the type of sample, second harmonic or 2 

photon fluorescence is generated. The laser source is filtered out with a dichroic mirror and a filter, 

before the signal is collected with an electron multiplying intensified CCD camera (EM-ICCD) 

[252].  One last important aspect is the acquisition window: it is beneficial to limit the acquisition 

time around a pulse to improve the signal to noise ratio (SNR). Indeed, with repetition rates of 

200kHz or 1MHz and pulse duration of a few hundred fs or less, there should be no signal most of 

the time. The camera is synchronized with the laser source, with a delay adjusted to compensate 

for the optical path and the length of the electric cables. Thus, the electronic shutter can then isolate 
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the region around each pulse (gating within 500ps for this camera).  Initially there were issues with 

the repletion rate of the OPA and we had to use it only at 330kHz repetition rate. Later on, this 

was fixed and the full repletion rate of 1MHz was used. Further, the repletion rate used is 

mentioned along with the images. 

 

The intensifier of the camera is required so that very low second harmonic or 2 photon fluorescence 

signal can be detected. However, the quantum efficiency (QE) of the intensifier is wavelength 

dependent (figure 5-15). The peak of efficiency is around 460nm, meaning that the ideal source 

for second harmonic microscopy is 920nm. The efficiency remains high between 430 and 600nm, 

a window which includes the second harmonic of the original source central wavelength. In 

practice, it means we cannot use wavelength shorter than 850nm for second harmonic microscopy 

without a large loss of SNR. The tunability range between 700 and 850nm can still be used for 2 

photon microscopy. In the following, the central wavelength is set around 950nm to maximize the 

QE of the intensifier. The slightly lower QE for the original source is accounted for in the 

comparisons. 

 

 

Figure 5-15: Quantum efficiency of the PI-Max4 intensifier used in experiments [252]  

The dispersion introduced by the objective is significant, meaning that before and after the 

objective the pulse duration is much longer. One of limits of this microscope scheme is focusing 

inside the objective, which can generate white light and damage the optical glass. Since the peak 

intensity will be reduced for a longer pulse, the dispersion can play a positive role here and reduce 

damage. The dispersion out of the OPA can be adjusted simply by adjusting the prism compressor. 
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Here, it is not practical to measure the pulse autocorrelation after the objective. However, the 

output second harmonic (or two photon fluorescence) signal will be stronger for shorter pulses, so 

the prism compressor can be adjusted by maximizing the throughput.  

 

 

5.3.2 Imaging with the OPA light source 

 

5.3.2.1 Nanoparticles 

 

 

Figure 5-16: SH microscopy image of a suspension of BaTiO3 nanoparticles, using the 

previous light source (a) and c)) or the OPA (b) and d)) laser source. For a) and b) there is 

a relatively homogenous distribution of nanoparticles, but the images are not centered on 

the same point. For c) and d), the field is centered on a specific cluster of nanoparticles. 

Acquisition time is 5ms, 330kHz repetition rate for the OPA (~150nJ pulse energy), and 

200kHz for the original source (~500nJ pulse energy). 

Second Harmonic microscopy is sensitive to non-centrosymmetric media and can be used to image 

specific biological tissues without markers such as collagen [11], [185], micro-tubules in neurons 

[13], [253], [254]… However, when the SH signal is too weak (for analysis of dynamic processes 

where a long acquisition time is not possible for instance) or if what we need to image is 
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centrosymmetric, markers can be used[19], [255], [256]. One such marker is BaTiO3 nanoparticles 

[19]. Here we can use such nanoparticles to compare the SH signal from the 2 different laser 

sources. 

 

The SH images for BaTiO3 nanoparticles are shown figure 5-16. At first glance at images a) and 

b) we can see that the beam diameters are different. Comparing the two sources with different 

beam diameters would be unfair as this just depends on the collimating condition of each laser 

beam before the microscope. It would be possible to adjust the beam diameter out of the OPA with 

a telescope if we need a larger or smaller field in the focal plane. As can be expected we observe 

a Gaussian beam. Here the low conversion efficiency approximation is definitely valid: Depletion 

of the fundamental is neglectable. Therefore, the SH fluence depends quadratically on the 

fundamental fluence, and the beam waist diameter of the fundamental is √2 times that of the 

observed SH. The HRS images let us calculate the beam diameter of the SH, by fitting the data. In 

this case the beam radius at 1/e2 were 36μm and 50μm for the OPA and pre-existing sources 

respectively. For a fair comparison of the 2 sources, we will compensate for the beam diameter 

difference (using the low efficiency approximation).  

 

Images a) and b) are not suitable to compare the throughput of second harmonic microscopy, 

because we do not know the exact concentration of nanoparticles in a specific zone, nor were the 

2 beams (from the original source and the OPA) were centered on the same point. For this, we 

needed to illuminate a specific cluster of nanoparticles (images c) and d)). Here we can directly 

compare the SH signal in a small region around the center of the cluster. 
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5.3.2.2 Glass micro-pipette 

 

 

Figure 5-17: SH microscopy images of the tip of a glass micropipette with the original source 
(a) and with the OPA source (b). Image acquisition time 40ms, 330kHz repetition rate of OPA 
(~150nJ pulse energy), 200kHz for the original source (~290nJ pulse energy), single pulse 
peak fluence is the same in both cases. 

SH microscopy is sensitive to interfaces because there is a break of centro-symmetry.  Here we 

imaged a glass micropipette immerged in water. There will be SH signal at the interface and in the 

water close to it because the water molecules tend to orient themselves near the interface. Such a 

system can also be used to probe the effect of electric potential differences inside and outside the 

micropipette [36] for instance. 

 

SH microscopy images of a glass micropipette are presented figure 5.17. Here the original source 

power was adjusted so that the peak fluence is the same. We can easily observe a very large 

increase in SH signal when using the OPA source. Part of this is due to the higher repletion rate, 

but mostly to the shorter pulses. By looking at the signal near the peak we can compare both 

sources. Other acquisitions were also made using the maximum power of the original source. 

 

5.3.2.3 Giant Unilamellar Vesicles 

 

One of the most prevalent interfaces in organic tissues is the cell membrane. Investigation of the 

cell membrane with second harmonic microscopy is thus particularly interesting, with for instance 

novel results on ion channels[257]. Giant Unilamellar Vesicles (GUVs) are defined as a vesicle 
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made of a lipid bilayer with a size of more than 1μm, making them very similar to a (simplified) 

cell membrane. GUVs are often investigated with 2 photon fluorescence [258]–[260] or even with 

SH markers [9], [261], but to our knowledge there is no published results on marker free SH 

microscopy images of GUVs, as the signal is extremely weak. Here we performed both 2 photon 

fluorescence imaging and label free SH imaging of GUVs. 

 

 

Figure 5-18: Schematic representation of vesicle forming (from A to D) [262] and white light 
image of a GUV in the focal plane of the multi-photon microscope (E). Initially lipds are in a 
suspension in a solvent (A). When it evaporates, lipid bilayers form (B), and when the bilayers 
are rehydrated (C), vesicles start swelling due (D) to osmotic pressure. 

The process of GUVs formation is explained figure 5.18 [262]. At the start (A), a marker (Nile 

Red [263]) for 2 photon fluorescence can be introduced. The rehydration of the lipid bilayers (C) 

takes place in a sucrose solution. Later on, some of the sucrose solution containing GUVs was 

transferred in a glucose solution with CaCl2. Because of the difference of density, the GUVs will 

fell at the bottom of the sample and we then imaged them (image E). 

E 
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Figure 5-19: a) Image of a GUV with 2photon fluorescence, in SS polarization, with the 
original laser source (10ms acquisition, 200kHz repetition rate) b) 2PF image of the same 
GUV in PP polarization with the OPA source (10ms acquisition, 331kHz repetition rate) c) SH 
image (marker free) of a GUV with the original source, SS polarization (1s acquisition, 200kHz 
repetition rate) d) Same as c) but with the OPA source (1s acquisition, 331kHz repetition 
rate). The fluence was the same for both sources. 

The GUVs were successfully imaged in 2PF and SH with each laser source. Figure 5.19 we observe 

that the 2PF images collect light from the whole GUV, whereas only the sides of the GUV are 

visible in SH images. This is because the propagation direction needs to be orthogonal to the 

surface for maximum SH conversion efficiency, whereas there is no such constraint for 2 photon 

fluorescence. The SH signal is enhanced by the presence of different ionic potentials inside and 

outside the GUVs (due to the CaCl2 solution). Thanks to the marker, the signal is also much 

stronger for 2PF (acquisition time of only 10ms), whereas the SH images required a much longer 

acquisition time. The SH signal is also polarization sensitive: only the top and bottom of the GUV 

is visible in each image, where the polarization direction is orthogonal to the surface. It was 

possible to acquire marker free SH images of GUVs even with the original source, but the new 

source significantly improves the SNR, and it would be possible to acquire images much faster 
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(especially since here the repetition rate was only 331kHz, but we later found how to use the full 

1MHz repetition rate). 

 

5.3.3 Discussion 

 

The tunable OPA was used as a light source in several multiphoton microscopy experiments and 

compared to the existing commercial solution. Because of the limitations of the camera the 

tunability range was not really used yet, though it might prove useful for some 2PF experiments. 

The main advantage of the OPA is providing an extremely short pulse (down to 25fs) compared 

to the 200fs pulse duration of the original laser source. This is not the first time sub 100 fs pulses 

have been used for Multi-photon microscopy[37], [264]–[266], with in some cases pulses as short 

as 10fs [265], [266]. One approach is to employ spatio-temporal focusing [37], [264], meaning use 

gratings to separate the different wavelength spatially and reconstruct the pulse only in the focal 

plane of the microscope. Spatiotemporal focusing can limit the photodamage and photobleaching 

out of the focal plane, but it is better adapted to confocal microscopy rather than wide field 

microscopy. Here there is no large spatial dispersion inside the microscope, but the pulse will be 

stretched by material dispersion before and after the sample, which also helps limit the damage. A 

pulse duration around 30fs is quite favorable, for the signal should be strongly enhanced at a given 

fluence, yet the complexity of the OPA remains reasonable. For sub 10fs pulses, the higher order 

dispersion terms are no longer neglectable and need to be compensated (meaning the prism 

compressor is no longer sufficient), and because those are few cycle pulses, carrier envelope phase 

becomes relevant [267], [268]. The OPA we designed is a good compromise between very 

complex (and pricey) solutions and commercial systems. Also, the bandwidth of ultrashort pulses 

can become larger than the excitation bandwidth of two photon fluorescence. Here the original 

source is better adapted for the Nile Red marker (central excitation wavelength ~500nm [263]), 

for instance.  This is less of a problem for SH microscopy, where the 𝜒(2) elements only weakly 

depend on wavelength and phase-mismatch is neglectable because samples are thin. 

 

A theoretical gain from using the OPA source versus the previous ultrashort laser source. Two 

situations are relevant: when fluence (per pulse) is the same in both cases, set at the maximum 

output of the OPA around 940nm central wavelength, and when we use both system at the 
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maximum possible output (500nJ pulse energy for the original system). In that case the beam 

diameters should be the same with both sources, so that the comparison is fair. Since this is not the 

case in practice, the ratio of beam diameters (measured in HRS or nanoparticles experiments) is 

used to compensate. The theoretical gain at the same fluence is: 

 

𝐺𝐹𝑙 =
𝑓𝑂𝑃𝐴 𝜏0
𝑓0 𝜏𝑂𝑃𝐴

≈ 40 (5.4) 

 

 Here f is the repetition rate for the OPA or original system (noted 0) and 𝜏 the pulse duration. If 

we consider that both beam diameters are the same, the gain at maximum operating parameters is: 

 

𝐺𝑀𝑎𝑥 =
𝑓𝑂𝑃𝐴 𝜏0𝐸𝑂𝑃𝐴

2

𝑓0 𝜏𝑂𝑃𝐴𝐸0
2 ≈ 3.6 (5.5) 

 

Where E is the pulse energy for the OPA or original source respectively. In practice the gain is 

calculated by measuring the average SH intensity on a small area around the signal peak (in figures 

5.15, 5.16, 5.17 and 5.19) when the fluence is the same for both pulses for GFl (calculated by using 

the pulse energy and the beam diameters measured experimentally). For GMax, the same is done at 

maximum output but the square of the diameter ratio is used to compensate the difference in 

diameters. The calculated gains are listed in table 5.7. All gains were calculated for a 1MHz 

repetition rate of the Femtolux-3 laser, even though some of the data was acquired at a lower 

repetition rate. We tested that there was no damage when using the full 1MHz repetition rate. For 

each experimental situation, the gain is averaged on 4 or 5 separate images. 
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Experiment 
Signal gain at maximum 

power, GMax 

Signal gain at the same 

fluence, GFl 

Nanoparticles, Cluster 1 2.5 27.2 

Nanoparticles, Cluster 2 2.3 25.5 

Nanoparticles, Cluster 3 2.7 30 

Glass-Water interface 3.1 34.4 

GUVs SH 2.1 23.3 

Theory 3.6 40 

Table 5-7. Signal increase when using the OPA laser source when compared to the original 

laser source. Theoretical gain calculated for a 25fs pulse with 1MHz repetition rate and 

150mW for the OPA (see table 5-6 for original source parameters) 

 

There is a very large gain by using the OPA source at the same fluence as the 200fs laser source 

(more than 23 times in every experiment, and up to 34 times). Unfortunately, the pulse energy at 

the output of the OPA is significantly lower than what we can use with the original source, meaning 

the gain at maximum throughput is smaller, but still significant. Importantly, no photodamage to 

the objective or white light generation in water was observed with the OPA source, which is the 

main limit with using the original source. As white light generation is intensity related, and the 

mechanisms of damage for sub ps pulses also depend on the pulse duration [111], it is possible 

that there would be damage if we were able to use a pulse energy as high as the original source. 

The subject of photodamage with biological samples is even more complex [38], and also depends 

on the peak intensity (not only the fluence). Globally, the gain is close to what we can expect from 

theory, but a little smaller. This is likely due to high order dispersion and the pulse quality. Indeed, 

the different optical elements (especially the objective) add not only GDD (which is compensated 

by the prism compressor), but also third order dispersion (TOD) and higher order terms, which are 

not compensated. When there is TOD, some of the energy goes to smaller tailing or leading pulses 

(depending on the sign of the TOD), which will not generate much SH because their peaks are 

much lower. The pulse shape also becomes less Gaussian, meaning the SH conversion efficiency 
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decreases. Those effects are not completely neglectable, but only induce ~25% signal loss, from 

table 5.7 results. The OPA source performs as expected for the multi-photon microscope, leading 

to a significant signal to noise ratio gain. 

 

5.4  CONCLUSION 

 

We built an OPA system that provides wavelength tunability from 970 to 700nm, with pulse 

energy between 150 and 200nJ and 1MHz repetition rate and pulse duration between 25 and 50fs. 

The construction of the OPA involved several stages. First, for supercontinuum generation 

crystals, we selected YVO4 and KGW as good candidates, as in both cases only about 300nJ pulse 

energy is required to achieve a stable supercontinuum, and the supercontinuum spectrum and 

spatial properties are appropriate to serve as seed for the OPA. Second, a SHG setup reaching 67% 

conversion efficiency was assembled. Third, the actual parametrical amplification was performed 

in a lithium tri-borate crystal, chosen according to simulations. Finally, the compression of the 

pulse was insured by a two prisms compressor. A second stage of OPA was also tested, and while 

it significantly increases the pulse energy (from 150 to 250nJ at 900nm), it comes at the expense 

of increasing the pulse duration. The main limiting factor for the signal duration (for 1 stage or 2 

stage OPA) was determined to be the accumulated group delay dispersion on the supercontinuum 

path.  

 

After testing the properties of the output of the OPA, it could finally be integrated with the 

microscope. The optical scheme was set so that we could easily switch between the OPA and the 

existing femtosecond laser source. Several samples, including pure water, glass-water interface 

around a micropipette, nanoparticles and giant unilamellar vesicles, were imaged using the two 

laser sources successively, and the throughput was ordered. To make the comparison fair, it 

accounts for the difference of beam diameters in the sample. The beam diameter was measured 

using a dense distribution of nanoparticles. Of particular interest was the markerless second 

harmonic imaging of giant unilamellar vesicles and the detection of hyper Rayleigh scattering, 

which is only made possible by the high peak power of the laser source and the high sensitivity of 

the camera. Importantly, no damage was observed even when using the maximum power available 

with the OPA. 
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Optical parametrical amplification of a few tens of femtosecond pulses was experimentally proven 

to make a very suitable laser source for two-photon microscopy. For second harmonic microscopy 

it provides a much shorter pulse duration than commercially available laser systems, meaning the 

throughput can be increased while keeping photodamage low. For two photon excitation 

fluorescence, the tunability is an asset as the wavelength can be centred on the two-photon 

excitation spectrum. However, because the laser spectrum is very broadband (between 20 and 

80nm bandwidth, depending on the central wavelength), it might be broader than the excitation 

spectrum, which can limit the gain from using such short pulses. It is possible to use even shorter 

pulse duration (which would improve second harmonic throughput), but compared to few cycle 

laser systems, this OPA is a simpler alternative, which does not require compensation of high order 

dispersion or concerns over carrier envelope phase [268].  

 

This system could be adapted relatively easily to a different wide filed multiphoton microscope. 

Here, the idler was simply removed, because the camera of the microscope cannot be used on the 

range of wavelength that it covers (1.1 to 2𝜇𝑚). It could be compressed, and its duration should 

be similar to that of the signal, though the power will be lower (from 50 to 150nJ). The idler could 

be used for second harmonic microscopy, especially since a wavelength of 1.4𝜇𝑚 would provide 

maximum penetration depth in tissues an still good second harmonic transmission [269]. For sum 

frequency generation microscopy, the signal and idler could be used together, or one of them could 

be used along with a portion of the original laser source. With a higher power laser source (Ekspla 

is currently developing a 30W version of the Femtolux laser), the output power would be higher. 

Alternatively, a second stage of OPA was proven to improve the total conversion efficiency, but 

if we want to maintain sub 50fs pulse duration, the pulse needs to be partially compressed between 

the two stages, or some of the optical elements would need to be changed so that there is less 

material dispersion on the signal path. 
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Summary and Outlook 
 

Summary 
 

In this thesis we used nonlinear crystals to generate new wavelengths from a source femtosecond 

laser. The parametrical amplification laser so created can then be used for multi-photon 

microscopy. 

 

In chapter 2, we presented a novel simulation tool we created for second order interactions in 

nonlinear crystals. This tool, called “Wavemixer” can simulate second harmonic generation, sum 

frequency generation or parametrical amplification for a wide variety of crystals and 

configurations. It accounts for linear propagation in the crystal, second order interaction and self 

and cross phase modulation. The simulation results were often the basis of the work presented in 

the next chapters.  

 

In chapter 3, we studied the effect of dispersion for efficient second harmonic generation in 

nonlinear crystal. We showed that dispersion of the fundamental pulse can cause back conversion 

early on in the crystal and so drastically reduce the conversion efficiency. The sensitivity of both 

the conversion efficiency and the beam spatial properties depends on the focusing conditions and 

the length of the crystal. The stretching of the pulse due to dispersion cannot on its own account 

for the second harmonic behaviour. The sensitivity can be reduced by using short crystals and tight 

focusing, but photodamage and Kerr effect limit the applicable range. A good knowledge of the 

fundamental spectral phase, even if the pulse is well-compressed, is important for the choice of 

physical parameters. 

 

In chapter 4, we showed how a new transverse parameter, a temperature gradient in the crystal, 

can be used to improve the performance of second harmonic generation, in particular for chirped 

pulses as were studied in the previous chapter. A similar idea is applied for chirped periodically 

polarized crystals, but here the phase mismatch changes continuously instead of discretely. When 

a temperature gradient is applied in the propagation direction of the crystal, different wavelengths 

are phasematched in different positions in the crystal, and chirp temporally separates the different 
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spectral components of the fundamental. We demonstrate by simulations and by experiments that 

this can lead to higher conversion efficiency and better spatial properties of the second harmonic, 

but also impact the bandwidth and pulse duration. 

 

In chapter 5, we explain the process of actually building a parametrical amplification setup for a 

femtosecond fibre laser and the testing of this new source on a multi-photon microscope. The 

parametrical amplification setup is made of several parts. First, supercontinuum generation in a 

bulk crystal lets us generate a large bandwidth in the near infrared and visible from part of the 

source laser power, but with very small (a few nanojoules) pulse energy. Second, the rest of the 

source laser is frequency doubled in a nonlinear crystal. Third, the supercontinuum and second 

harmonic are spatially and temporally overlapped in a second nonlinear crystal, leading to 

amplification of a specific wavelength range (depending on the angle of the crystal and the 

temporal overlap). Finally, the amplified signal is compressed in a prism compressor. Starting from 

a 260fs fibre laser with 3W average output power at 1MHz repetition rate, this process provides 

us with a tunability range from 980 to 700nm, with pulse energy between 150 and 200nJ and pulse 

duration between 25 and 50fs. This source was compared to an existing laser source with a multi-

photon microscope. Several second harmonic images were acquired, and the throughput gain 

matches with what can be expected from theory. This shows that femtosecond fibre lasers 

combined with parametrical amplification are a suitable and cost-efficient source of illumination 

in wide-field multiphoton microscopy.  
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Outlook 
 

The initial motivation of this project was the design of a new tunable femtosecond source for wide-

field multi-photon microscopy. The planned source was indeed delivered and tested and performed 

within expectations. The proof of concept was thus realised. The parametrical amplification source 

we built can be considered an early prototype but is still quite far from a commercial system. For 

this, miniaturisation and further study of the stability would be required. Also, the tuning of the 

current system is relatively complex and would likely need to be automated. Yet this is not the 

only result of this project: The simulation tool which was created to better design and optimize the 

parametric amplification is very flexible and was already used for several other projects. It also 

lets us investigate the effect of different parameters as we did for chapter 3 and 4. The use of 

temperature gradients already produced interesting results when applied to second harmonic 

generation and could likely be extended to sum frequency generation or parametrical 

amplification, in particular for optical parametrical chirped pulse amplification.  

 

The increase in throughput from the wide field multiphoton microscope should also lead to 

improvement in image quality and the increase in repetition rate, which we showed did not cause 

any photodamage so far, is useful for imaging dynamic processes. For two photon excitation 

fluorescence microscopy, the tunability should be more relevant but the advantage of a shorter 

pulse duration might be somewhat negated if the excitation bandwidth of the fluorescent markers 

is too narrow.       
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