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ABSTRACT

In this thesis, we study the homotopical relations of 2-categories, double categories,
and their ∞-analogues. For this, we construct homotopy theories for the objects of
interest, and show that there are homotopically full embeddings of 2-categories into (∞, 2)-
categories, and of double categories into double (∞, 1)-categories, which are compatible
with the inclusions of 2-categories and (∞, 2)-categories into their double categorical
analogues.

In the strict setting, we first present two model structures on the category of dou-
ble categories and double functors, constructed in papers by the author, Sarazola, and
Verdugo. Unlike previously defined model structures for double categories, they recover
Lack’s model structure for 2-categories. More precisely, the horizontal embedding func-
tor from 2-categories to double categories is homotopically well-behaved, and embeds the
homotopy theory of 2-categories into that of double categories in a reflective way. While,
in the first model structure, all double categories are fibrant, the fibrant objects of the
second model structure are the weakly horizontally invariant double categories. We show
that both model structures are enriched over 2-categories, and that the model structure
for weakly horizontally invariant double categories is further monoidal with respect to the
Gray tensor product for double categories.

Going to the ∞-world, we then consider ∞-versions of these 2-dimensional categories.
Double (∞, 1)-categories are defined as double Segal objects in spaces which are complete
in the horizontal direction, and hence include (∞, 2)-categories in the form of Barwick’s
2-fold complete Segal spaces. We then construct a nerve from double categories to double
(∞, 1)-categories, and show that it embeds the homotopy theory for weakly horizontally
invariant double categories into that of double (∞, 1)-categories in a reflective way. Fi-
nally, by restricting the nerve along the horizontal embedding, we obtain a nerve from
2-categories to 2-fold complete Segal spaces, which again embeds the homotopy theory of
2-categories into that of (∞, 2)-categories in a reflective way.

Keywords: 2-categories, double categories, (∞, 2)-categories, double (∞, 1)-categories,
nerve construction, homotopy theory.
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RÉSUMÉ

Dans cette thèse, on étudie les relations homotopiques des 2-catégories, doubles caté-
gories, et leurs ∞-analogues. Pour cela, on munit les catégories d’objets d’intérêt de
structures homotopiques, et on montre qu’il y a des plongements homotopiques pleins des
2-catégories dans les (∞, 2)-catégories, et des doubles catégories dans les doubles (∞, 1)-
catégories, qui sont compatibles avec les inclusions des 2-catégories et (∞, 2)-catégories
dans leurs analogues doubles catégoriques.

Dans le cadre strict, on présente tout d’abord deux structures de modèles sur la caté-
gorie des doubles catégories et doubles foncteurs, construites dans des articles par l’auteur,
Sarazola, et Verdugo. Contrairement aux structures de modèles existantes sur les doubles
catégories, ces nouvelles structures de modèles recouvrent la structure de modèles de Lack
sur les 2-catégories. Plus précisément, le plongement horizontal des 2-catégories dans les
doubles catégories a un bon comportement homotopique, et donne un plongement réflexif
de la théorie d’homotopie des 2-catégories dans celle des doubles catégories. Tandis que,
dans la première structure de modèles, toutes les doubles catégories sont fibrantes, les ob-
jets fibrants de la seconde structure de modèles sont les doubles catégories faiblement et
horizontalement invariantes. On montre que les deux structures de modèles sont enrichies
sur les 2-catégories et que la structure de modèles pour les doubles catégories faiblement
et horizontalement invariantes est de plus monoïdale par rapport au produit tensoriel de
Gray pour les doubles catégories.

En passant dans le cadre “infini”, on considère ensuite des ∞-versions de ces caté-
gories 2-dimensionnelles. Les doubles (∞, 1)-catégories sont définies comme étant des
doubles objets de Segal dans les espaces qui sont complets dans la direction horizon-
tale, et contiennent ainsi les (∞, 2)-catégories sous la forme d’espaces de Segal complets
itérés introduits par Barwick. On construit ensuite un nerf depuis les doubles catégories
vers les doubles (∞, 1)-catégories et on montre qu’il donne un plongement réflexif de
la théorie d’homotopie des doubles catégories faiblement et horizontalement invariantes
dans celle des doubles (∞, 1)-catégories. Finalement, en restreignant le nerf le long du
plongement horizontal, on obtient un nerf depuis les 2-catégories vers les espaces de Segal
complets itérés, qui à nouveau donne un plongement réflexif de la théorie d’homotopie
des 2-catégories dans celle des (∞, 2)-catégories.

Mots-clés: 2-catégories, doubles catégories, (∞, 2)-catégories, doubles (∞, 1)-catégories,
nerf, théorie d’homotopie.

iii





ACKNOWLEDGMENTS

First and foremost, I want to thank my advisor, Jérôme Scherer, for his help and
support throughout these years. Your constant availability, your interest in the subject I
chose to study, as well as your guidance into the academic world are very precious to me.

I would also like to thank my co-advisor, Kathryn Hess, who first inspired me to get
into topology, for her very useful advice throughout these years.

Special thanks go to my two collaborators, Maru Sarazola and Paula Verdugo, with
whom we worked out one of the main parts of this thesis. I spent the best time working
with you two, and I hope we will keep collaborating on projects for a long time. We
also came through difficult situations together, which I would not have been capable
of handling without you. In particular, I would like to thank you for all the time you
spent on our project, especially for meeting every day during the last four months of my
thesis, in order to fix (right in time) a really annoying mistake. I am so happy we started
collaborating on the WIT project, also joint with Viktoriya Ozornova and Simona Paoli.

I would especially like to thank Martina Rovelli, for being both such a good friend
and such a good mentor into the academic world. I could not have made it without your
constant availability for answering both my math and non-math questions.

I am also grateful to Nima Rasekh for all the interesting discussions we had about math
and non-math subjects. Your help throughout these years means a lot to me.

I would also like to thank the members of my Ph.D. thesis committee, Rune Haugseng,
Zsolt Patakfalvi, Emily Riehl, and Marc Troyanov. In particular, Emily Riehl introduced
me to the theory of higher categories and has been an inspiration for me throughout
these years; and Rune Haugseng made many useful comments about the first draft of this
thesis.

I want to thank Viktoriya Ozornova and Magdalena Kȩdziorek, for their very good
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INTRODUCTION

We give here a general introduction about the main results appearing in this thesis.
We refer the reader to the beginning of each part for more specific introductions to the
content of each section.

The setting

Higher category theory aims to study more structured objects than categories. While a
category consists of objects and morphisms between objects which compose associatively,
a higher category can be obtained by adding higher morphisms and by weakening the
associativity constraint. For example, a 2-category is obtained by also adding morphisms
between morphisms, called 2-morphisms, without changing the strictness of the associa-
tivity constraint of compositions. In particular, 2-categories are categories enriched in
categories, in the sense that their morphisms and 2-morphisms form a category of mor-
phisms between every pair of objects, rather than a set. Categories and 2-categories are
often too strict to accommodate many examples that appear in nature. In the perspective
of generalizing categories, an (∞, 1)-category is interpreted as a categorical structure that
admits morphisms in all dimensions, such that all k-morphisms are invertible for k > 1,
where compositions are only defined, and associative up to higher invertible morphisms.
Such a higher structure should be thought of as a homotopical version of a category. Simi-
larly, we obtain the notion of an (∞, 2)-category by instead requiring that the k-morphisms
are invertible for k > 2, and this should again be interpreted as a weaker version of a
2-category. In particular, categories and 2-categories should give rise to (∞, 1)-categories
and (∞, 2)-categories whose higher invertible k-morphisms are all trivial.

While the strict versions can be defined by fully describing their structure, to make
sense of their ∞-analogues, we need models. The machinery used here is often that
of model categories, which provide a good environment to do homotopy theory. Then,
the (∞, 1)-categories and (∞, 2)-categories are defined as the fibrant objects of a given
model structure. In particular, model categories were introduced by Quillen in [Qui67]
to axiomatize the homotopy theory of spaces, which are equivalent to (∞, 0)-categories –
also called ∞-groupoids – by Grothendieck’s homotopy hypothesis. Hence spaces give a
model of∞-groupoids, and furthermore, the usual nerve from categories to simplicial sets
restricts to a homotopically full embedding of groupoids into ∞-groupoids, in the form
of Kan complexes.

Several models of (∞, 1)-categories have been developed: among others, there are quasi-
categories, originally defined by Boardman and Vogt [BV73], and further developed by
Joyal [Joy02] and Lurie [Lur09], simplicial categories, defined by Quillen [Qui67] and
developed as a model for (∞, 1)-categories by Bergner [Ber07], and complete Segal spaces,
due to Rezk [Rez01]. Furthermore, all the models of (∞, 1)-categories have been shown
to be equivalent, and (∞, 1)-category theory has been developed in a model-independent
way by Riehl and Verity [RV19]. Similarly to the case of ∞-groupoids, a category can be
interpreted via nerve constructions as an (∞, 1)-category. In the model of quasi-categories,
this construction is given by the usual nerve from categories to simplicial sets, while there
are adapted versions for the models of simplicial categories and complete Segal spaces.

Going one dimension up, different models of (∞, 2)-categories generalizing the models
of (∞, 1)-categories mentioned above have also been introduced. As a generalization
of quasi-categories, we have the 2-quasi-categories, due to Ara [Ara14], while simplicial
categories can be generalized to categories enriched in quasi-categories or complete Segal
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spaces, for example. These latter models again interpret (∞, 2)-categories as categories
enriched in (∞, 1)-categories, which gives the ∞-analogue of the fact that a 2-category is
an enriched category in categories. Finally, the model of complete Segal spaces admits two
generalizations: one given by Rezk’s Θ2-spaces [Rez10], and the other by Barwick’s 2-fold
complete Segal spaces [Bar05]. There are also other models of (∞, 2)-categories that we
did not mention here, and all these models of (∞, 2)-categories have also been shown to
be equivalent. Hence this gives several nice contexts in which one could study the theory
of (∞, 2)-categories. Moreover, several nerves that fully embed the homotopy theory
of 2-categories into that of (∞, 2)-categories have already been constructed in different
models: into saturated 2-precomplicial sets by Ozornova and Rovelli in [OR19], into 2-
quasi-categories by Campbell in [Cam20], and into∞-bicategories by Gagna, Harpaz, and
Lanari in [GHL19].

Another type of 2-dimensional category, which are closely related to 2-categories but
are obtained by different methods, is that of a double category. While 2-categories are
extending the notion of a category by adding 2-morphisms between the morphisms and
hence can be seen as a globular version of a 2-dimensional category, double categories
have two directions and hence give a cubical version of a 2-dimensional category. More
precisely, a double category has two kinds of morphisms between the objects – called
horizontal and vertical morphisms – and its 2-morphisms are squares. In particular, there
is a horizontal embedding of 2-categories into double categories, which interprets a 2-
category as a horizontal double category with only trivial vertical morphisms. As in the
2-categorical case, there is an ∞-analogue of a double category modeled by Segal objects
in complete Segal spaces, due to Haugseng [Hau13].

In this double categorical context, the strict and ∞-versions have not yet been com-
pared. A natural expectation is that there is an ∞-version of the horizontal embedding,
which embeds (∞, 2)-categories into double (∞, 1)-categories, and that 2-categories and
double categories embed into their more homotopical versions, in such a way that the
following diagram commutes.

{2-categories}

{double categories}

{(∞, 2)-categories}

{double (∞, 1)-categories}

The aim of this thesis is to make sense of this picture by constructing homotopy theories
for double categories, as well as a comparison nerve functor from double categories to
double (∞, 1)-categories which is homotopically well-behaved, and hence shows that the
double categorical ∞-setting extends the strict one. Furthermore, since (∞, 2)-categories
in the form of 2-fold complete Segal spaces are in particular double (∞, 1)-categories, we
interpret this inclusion as the ∞-analogue of the horizontal embedding. We then show
that the double categorical nerve functor restricts along the horizontal embedding of 2-
categories into double categories, and provide a new nerve construction for 2-categories
into the model of 2-fold complete Segal spaces.

Why double categories?

The theory of (∞, 1)-categories has been the most studied until now. Since (∞, 1)-
categories should be thought of as a “weak” version of categories, it has been shown that
all the constructions and theorems of category theory are supported in an (∞, 1)-category,
but in a weaker way, i.e., everything should not work strictly anymore but up to coherent
homotopy. For example, the notion of limit has been constructed in each of the models
of (∞, 1)-categories presented above, and they correspond to each other when passing
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from a model to another. A well-known result in category theory characterizes a limit
of a functor as a terminal object in the category of cones over this functor. Using this
characterization, limits in an (∞, 1)-categories have then been constructed as terminal
objects in the corresponding (∞, 1)-category of cones (see [Joy02, Lur09, Ras18, RV19,
RV15, Rov19]).

Going one dimension up, we would also like to develop a useable theory of (∞, 2)-
categories, and in particular a notion of limit in an (∞, 2)-category. For this, we first
want to see if, in the strict setting, limits in a 2-category admit a similar characterization
to the one of a limit in a (1-)category in terms of terminal objects. Since 2-categories
are categories enriched in categories, a more accurate notion of limit in a 2-category
is that of a 2-limit, first introduced by Auderset [Aud74] and Borceux-Kelly [BK75],
and further developed by Street [Str76], Kelly [Kel82, Kel89] and Lack [Lac10]. A 2-
limit is an enriched version of a limit, in the sense that its universal property is now
expressed in terms of an isomorphism between hom-categories, rather than hom-sets. As
an example, the category of algebras over a monad, also called Eilenberg-Moore category,
can be obtained as a special kind of 2-limit (called lax limit). Hence having such a notion
of limit in the (∞, 2)-categorical context would allow us to study algebraic objects in a
more homotopical way. However, as clingman and the author show in [cM20], a 2-limit
cannot be characterized as a 2-terminal object in the corresponding 2-category of cones,
and we might therefore not be able to adapt the construction of limits in the (∞, 1)-
categorical setting given above to the (∞, 2)-categorical one.

This is where it becomes interesting to work with double categories. Indeed, by looking
at 2-categories as horizontally embedded in double categories, results by Grandis and Paré
[Gra20, GP99] show that a 2-limit of a 2-functor is equivalently a double terminal object
in the double category of cones over the corresponding horizontal double functor. Hence,
a passage from the 2-categorical setting to the double categorical one allows us to get the
desired characterization of 2-limits in terms of some kind of terminal objects, which we
might be able to import to the ∞-world.

While this issue arises in the strict context, we would like to see if it is still happening
in the more homotopical setting, which is sometimes better behaved. For this, we aim to
understand if the strict setting extends to the∞-setting, by showing that 2-categories and
double categories are special instances of (∞, 2)-categories and double (∞, 1)-categories
in such a way that these inclusions are compatible with the horizontal embeddings. As
mentioned above, this is the matter addressed in this thesis. Hence, the results proved
here imply that one could not define a limit in an (∞, 2)-category as a terminal object
in the corresponding (∞, 2)-category of cones, but one would rather need to pass to the
double (∞, 1)-categorical setting and define a limit in an (∞, 2)-category as a terminal
object in the corresponding double (∞, 1)-category of cones. Another approach to limits
in an (∞, 2)-category has been taken by Gagna, Harpaz, and Lanari in [GHL20].

Homotopy theory of double categories

A first step towards showing that 2-dimensional categories are embedded in their ∞-
analogues is to construct homotopy theories for 2-categories and double categories. As
mentioned above, the language of model categories provides a good framework to do
homotopy theory. A model structure is defined to be the data of three classes of morphisms
in a category – called weak equivalences, cofibrations, fibrations – satisfying some axioms
(see Definition 4.1.7), where the weak equivalences yield a weaker notion of invertibility
between the objects of the ambient category. In particular, a fibration which is also a
weak equivalence is called a trivial fibration, and a model structure is fully determined by
the data of its classes of weak equivalences and trivial fibrations, as well as by its classes
of trivial fibrations and fibrant objects, i.e., the objects such that the unique morphism



x LYNE MOSER

to the terminal object is a fibration. We will therefore only specify such classes to give
the data of the model structures considered in this introduction.

Going back to our matter, we aim to endow the categories 2Cat of 2-categories and
2-functors and DblCat of double categories and double functors with model structures.
In the case of 2-categories, Lack constructs in [Lac02, Lac04] a model structure on 2Cat
whose weak equivalences are the biequivalences, i.e., the 2-functors which admit a pseudo-
inverse up to pseudo-natural equivalence. Note that all 2-categories are fibrant in this
model structure. As for double categories, Fiore, Paoli, and Pronk construct several model
structures on DblCat in [FP10, FPP08]. However, their model structures on DblCat do
not recover the Lack’s model structure on 2-categories through the horizontal embedding.

Therefore, in [MSV20a], the author, Sarazola, and Verdugo construct a new model
structure on DblCat, compatible with the horizontal embedding of 2-categories into dou-
ble categories. In particular, it is obtained as an induced model structure from two
copies of Lack’s model structure, and its weak equivalences, called suggestively double
biequivalences, give a double categorical analogue of biequivalences for 2-categories. Un-
der some assumption, they can indeed be characterized as the double functors which have
a pseudo-inverse up to horizontal pseudo-natural equivalence. The following result sum-
marizes the main features of this model structure and is a compilation of Theorem 7.1.3
and Propositions 7.2.5 and 7.2.10.

Theorem A. There is a model structure on DblCat, in which the weak equivalences
are the double biequivalences, and the trivial fibrations are the double functors which are
surjective on objects, full on horizontal morphisms, surjective on vertical morphisms, and
fully faithful on squares. Moreover, all double categories are fibrant.

By construction this model structure has the correct homotopical behavior with respect
to the horizontal embedding of 2-categories into double categories, which we denote by
H : 2Cat→ DblCat. Indeed, this functor is both left and right Quillen, and homotopically
fully faithful from Lack’s model structure to the model structure for double categories
defined above. Furthermore, Lack’s model structure is also both left- and right-induced
along H from the model structure on DblCat, and this shows that the homotopy theory
of 2-categories is completely determined by this homotopy theory of double categories
through the horizontal embedding. This is the content of the next theorem, which appears
as Theorems 7.4.1, 7.4.4, 7.4.6 and 7.4.7 in this thesis.

Theorem B. The horizontal embedding functor H : 2Cat → DblCat is both left and
right Quillen, and homotopically fully faithful, where 2Cat is endowed with Lack’s model
structure and DblCat is endowed with the model structure of Theorem A. Moreover, Lack’s
model structure is both left- and right-induced along H from the model structure on DblCat
of Theorem A.

While this model structure is as compatible as possible with the horizontal embedding,
it is unsurprisingly not well-behaved with respect to the vertical direction. For instance,
as described in Theorem A, the trivial fibrations in this model structure are not symmetric
between the horizontal and vertical directions. Indeed, while they are full on horizontal
morphisms, they are only surjective on vertical morphisms. This will be an issue when try-
ing to apply the nerve functor from double categories to double (∞, 1)-categories. Indeed,
it will not have the correct homotopical behavior with respect to this model structure, as
for instance the model structure for double (∞, 1)-category does not carry this asymme-
try. Furthermore, as we will see below, the double categories whose nerve is fibrant, i.e.,
is a double (∞, 1)-category, are precisely the weakly horizontally invariant ones, where
a weakly horizontally invariant double category, first introduced in [MSV20b], is defined
as a double category in which the vertical morphisms can be transferred along horizontal
equivalences. Hence, to remedy these shortcomings, we construct in [MSV20b] another
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model structure on DblCat, whose trivial fibrations behave symmetrically between the
horizontal and vertical directions, and whose fibrant double categories are the weakly hor-
izontally invariant ones. This results appears as Proposition 8.1.2 and Theorem 8.1.15.

Theorem C. There is a model structure on DblCat, in which the trivial fibrations are the
double functors which are surjective on objects, full on horizontal and vertical morphisms,
and fully faithful on squares, and the fibrant objects are the weakly horizontally invariant
double categories.

While we could not get an explicit description of the weak equivalences in general, we
show in Proposition 8.1.18 that double biequivalences are in particular weak equivalences
in this second model structure, and in Proposition 8.3.4 that weak equivalences between
weakly horizontally invariant double categories are precisely the double biequivalences.
As a consequence, the weak equivalences between fibrant objects are precisely the double
functors which have a pseudo-inverse up to horizontal pseudo-natural equivalence. Fur-
thermore, as described in the next result, the homotopy theory of weakly horizontally
invariant double categories is contained in that of double categories. This appears as
Theorem 8.4.1.

Theorem D. The identity functor id : DblCat → DblCat is right Quillen, and homo-
topically fully faithful, from the model structure on DblCat of Theorem C for weakly
horizontally invariant double categories to the model structure on DblCat of Theorem A.

While the horizontal embedding H : 2Cat → DblCat remains left Quillen and homo-
topically fully faithful from Lack’s model structure to this new model structure, it is not
right Quillen anymore. Indeed, the horizontal double category HA associated to a 2-
category A is typically not weakly horizontally invariant; see Remark 8.4.5. We consider
instead a more homotopical version of H given by the functor H' : 2Cat→ DblCat, which
sends a 2-category A to the double category H'A which is defined as HA on horizontal
data and whose vertical morphisms are now given by the adjoint equivalences in A. In
particular, the inclusion HA → H'A is a weak equivalence, which exhibits H'A as a fi-
brant replacement of HA in the model structure for weakly horizontally invariant double
categories. These results are summarized in the following theorem, which is a compilation
of Theorems 8.4.7, 8.4.9 and 8.4.11.

Theorem E. The homotopical horizontal embedding H' : 2Cat→ DblCat is right Quillen,
and homotopically fully faithful, where 2Cat is endowed with Lack’s model structure and
DblCat is endowed with the model structure of Theorem C for weakly horizontally invari-
ant double categories. Lack’s model structure is further right-induced along H' from the
model structure on DblCat of Theorem C.

Moreover, the double category H'A provides a fibrant replacement of HA in the model
structure on DblCat of Theorem C.

Relations between 2-dimensional categories and their ∞-analogues

As mentioned above, the models of double (∞, 1)-categories and (∞, 2)-categories we
want to consider are given by Segal objects in complete Segal spaces and 2-fold complete
Segal spaces. In this thesis, since we want to see (∞, 2)-categories as horizontally embed-
ded in double (∞, 1)-categories, we actually consider a transposed notion of Haugseng’s
Segal objects in complete Segal spaces mentioned above, where the completeness con-
dition is in the horizontal direction. We refer to them as horizontally complete double
(∞, 1)-category. In particular, the horizontally complete double (∞, 1)-category and 2-
fold complete Segal spaces are given by the fibrant objects in two different model structures
on bisimplicial spaces, i.e., bisimplicial objects in the category sSet of simplicial sets and
simplicial maps. Moreover, the model structure on sSet∆op×∆op for 2-fold complete Segal
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spaces can be obtained as a localization of the model structure on sSet∆op×∆op for hori-
zontally complete double (∞, 1)-categories, and hence the identity on sSet∆op×∆op gives
a homotopically full embedding of (∞, 2)-categories into double (∞, 1)-categories, which
we interpret as the ∞-version of the horizontal embedding.

In order to compare these ∞-versions of 2-dimensional categories with their stricter
versions, we construct a nerve functor N : DblCat→ sSet∆op×∆op from double categories
into bisimplicial spaces. By studying the fibrancy of the nerves in the model structure
for horizontally complete double (∞, 1)-categories, we can see that the nerve of a double
category is fibrant if and only if the double category we started with is weakly horizontally
invariant. This forces us to consider the model structure on DblCat for weakly horizontally
invariant double categories for the nerve to be right Quillen. As summarized below, we
show that the nerve has the right homotopical properties, embedding double categories
into their ∞-analogues. This appears as Theorems 11.3.1, 11.2.7 and 11.4.8.
Theorem F. The nerve functor N : DblCat→ DblCath∞ is right Quillen, and homotopi-
cally fully faithful, where DblCat is endowed with the model structure of Theorem C for
weakly horizontally invariant double categories, and DblCath∞ denotes the model structure
on sSet∆op×∆op for horizontally complete double (∞, 1)-categories. Moreover, the nerve
of a double category A is a horizontally complete double (∞, 1)-category if and only if the
double category A is weakly horizontally invariant.

Now, recall that the horizontal double category HA associated to a 2-category A is in
general not weakly horizontally invariant, and hence, by the above result, the nerve NHA
does not give a double (∞, 1)-category nor a 2-fold complete Segal space. In order to
restrict the nerve N to a nerve from two categories, we therefore need to consider instead
a horizontal homotopical embedding H' : 2Cat → DblCat. By pre-composing with this
embedding, we obtain a nerve functor NH' : 2Cat → sSet∆op×∆op , which embeds the
homotopy theory of 2-categories into that of 2-fold complete Segal spaces. Furthermore,
we construct a level-wise homotopy equivalence between the nerves NH'A and NHA
of a 2-category A, showing that NH'A exhibits a fibrant replacement of NHA. The
below theorem recapitulates these results, and appears as Theorems 12.1.1, 12.2.1, 12.1.3
and 12.3.5.
Theorem G. The nerve functor NH' : 2Cat→ 2CSS is right Quillen, and homotopically
fully faithful, where 2Cat is endowed with Lack’s model structure, and 2CSS denotes the
model structure on sSet∆op×∆op for 2-fold complete Segal spaces. Lack’s model structure
on 2Cat is further right-induced from the model structure 2CSS for 2-fold complete Segal
spaces.

Moreover, the nerve NH'A provides a fibrant replacement of the nerve NHA in 2CSS
(and in DblCath∞), for every 2-category A.

In particular, the results given in this thesis can be summarized by the following dia-
gram of right Quillen and homotopically fully faithful functors

2Cat

DblCat

DblCat

2CSS

DblCath∞

NH'

H

id

N

id'

filled with a natural transformation which is level-wise a weak equivalence. This gives the
expected compatibility of the different categorical objects present in this diagram.
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Outline

The different parts of the thesis are organized as follows. In Part I., we first introduce
2-categories and double categories. We then present in Part II. the main aspects of the
theory of model categories. The reader familiar with 2-dimensional categories and model
categories may wish to skip these two first parts, except maybe Section 3.6, which presents
notions of weak horizontal invertibility in a double category whose theory was developed
in [MSV20a, MSV20b, Mos20]. Then, in Part III., we construct two model structures for
double categories, based on results of joint work [MSV20a, MSV20b] with Maru Sarazola
and Paula Verdugo. Then, in Part IV., we introduce the∞-analogues of 2-categories and
double categories and, finally, in Part V., we give the nerve construction, defined in the
paper [Mos20] by the author, relating the strict notions with their ∞-versions. A more
detailed outline can be found at the beginning of each part and each section.
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PART I.

2-DIMENSIONAL CATEGORIES

A category consists of objects and morphisms together with an associative and unital
composition on its morphisms. In particular, such a structure can be obtained by two
different categorical constructions from the category Set of sets and maps. The first
construction is given by “enrichment”: a category is a category enriched in Set, in the
sense that its morphisms between every pair of objects form a set. The second construction
is given by “internalization”: a category is an internal category to Set. In other words,
it is a diagram in Set which consists of a set of objects and a set of morphisms, as
well as maps representing source, target, identities, and compositions of morphisms. In
particular, categories form themselves a category Cat with functors as morphisms.

These “enrichment” and “internalization” constructions can be iterated, and we can
study the categories enriched over Cat, as well as the categories internal to Cat. While for
sets, the processes of enrichment and internalization give the same notion of categories,
in the case of Cat, they give rise to two different notions. A category enriched over Cat
is called a 2-category. As a category, it has objects, but rather than a set of morphisms,
it now has a category of morphisms between any pair of objects. The morphisms in
these hom-categories are called 2-morphisms, and are morphisms between morphisms. In
comparison, an internal category to Cat is called a double category, and it has two kinds
of morphisms between its objects – called the horizontal and vertical morphisms. Its 2-
morphisms sit in a square of two horizontal morphisms and two vertical morphisms, and
are therefore called squares. In particular, a 2-category can always be seen as a horizontal
double category with only trivial vertical morphisms. These 2-dimensional categories also
come with a notion of morphisms preserving their structure, called 2-functors and double
functors, respectively, and they form categories 2Cat and DblCat, respectively.

While 2-categories seem to be a more direct generalization of a category, many aspects
of 2-category theory benefit from a passage to double categories. For example, a good
notion of limit for 2-categories is that of a 2-limit, first introduced by Auderset [Aud74]
and Borceux-Kelly [BK75], and further developed by Street [Str76], Kelly [Kel82, Kel89]
and Lack [Lac10]. As clingman and the author show in [cM20], a 2-limit cannot be
characterized as a 2-terminal object in the corresponding 2-category of cones, but a pas-
sage to double categories allows such a characterization by results of Grandis and Paré
[Gra20, GP99]. Indeed, they show that the 2-limit of a 2-functor is double terminal in
the double category of cones over the corresponding horizontal double functor.

In this first part, we introduce the theory of 2-categories and double categories and
study their relations. While the theory of 2-categories is more classical, we show that
it can be generalized in the context of double categories. In particular, we show that
both categories 2Cat and DblCat are cartesian closed, and that they both admit a closed
symmetric monoidal structure given by the Gray tensor product, introduced by Gray
[Gra74] for 2-categories and by Böhm [Böh19] for double categories. We also show that
they both have weak invertibility notions for their morphisms, by defining an equivalence
to be a morphism which has an inverse up to 2-isomorphism. In the case of double
categories, this also induces a notion of weak invertibility for its squares, which was
recently introduced independently by the author, Sarazola, and Verdugo in [MSV20a],
and by Grandis and Paré in [GP19]. In particular, using this terminology, we can define
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weakly horizontally invariant double categories, which correspond to the class of fibrant
objects of one of the model structures on DblCat, and which were first introduced by the
author, Sarazola, and Verdugo in [MSV20b].

In Section 1, we first give a brief introduction on enriched categories and locally pre-
sentable categories. We then introduce 2-categories in Section 2 and show that they have
the properties mentioned above. Finally, in Section 3, we show that this theory extends
to the context of double categories, and we compare the categories 2Cat and DblCat
through several adjunctions.

1. Prelude on enriched categories and locally presentable categories

In this first section, we introduce some terminology about enriched categories and lo-
cally presentable categories, which will be useful in the rest of the thesis. In Section 1.1,
we first recall briefly the definition of a category enriched over a monoidal category. We
then introduce tensored and cotensored enriched categories, and show several technical re-
sults which follow from the universal properties in the definitions of tensors and cotensors.
In Section 1.2, we introduce locally presentable categories, which gives a useful condition
of “smallness” on a category preventing us running into set-theoretic issues. In particular,
all categories considered in this thesis satisfy this condition and, as an example, we show
that the categories Set of sets and Cat of small categories are locally presentable.

1.1. Enriched categories. A category consists of a collection of objects together with a
hom-set of morphisms between every pair of objects, which have an associative and unital
composition. This concept can be generalized by requiring that the hom objects are
objects in a monoidal category rather than sets. In this section, we introduce briefly this
generalization of categories, called enriched categories, in order to fix some terminology
for the rest of the thesis.

First, recall that amonoidal category (T ,⊗, I) is a category T endowed with a monoidal
product ⊗ : T ×T → T which is associative and unital with respect to the monoidal unit
I ∈ T up to canonical isomorphisms. We say that it is symmetric monoidal if the monoidal
product is symmetric up to isomorphism. Furthermore, we say that it is closed if it admits
internal homs, defined as follows.

Definition 1.1.1. A monoidal category (T ,⊗, I) is closed monoidal if, for every pair
of objects S, T ∈ T , there is a internal hom object [S, T ] ∈ T and an isomorphism

T (R⊗ S, T ) ∼= T (R, [S, T ])
natural in R, S, and T .

Remark 1.1.2. Using the universal property of the internal hom, one can show that it
induces a functor [−,−] : T op × T → T . In particular, given an object S ∈ T , the
isomorphisms in the definition above imply that the functor [S,−] : T → T is right adjoint
to the functor −⊗S : T → T . As a consequence, we get that the tensor product preserves
colimits in the first variable. Furthermore, if the tensor product is symmetric, it preserves
colimits in both variables.

While the isomorphisms expressing the universal property of the internal hom in the
definition above are isomorphisms of sets, they can be upgraded to isomorphisms in the
ambient category.

Proposition 1.1.3. Let (T ,⊗, I) be a closed monoidal category. For every tuple of objects
R, S, and T in T , there is an isomorphism in T

[R⊗ S, T ] ∼= [R, [S, T ]]
natural in R, S, and T .
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Proof. By the universal property of the internal hom [−,−] and the associativity of ⊗,
we have that

T (Q, [R, [S, T ]]) ∼= T (Q⊗R, [S, T ]) ∼= T ((Q⊗R)⊗ S, T )
∼= T (Q⊗ (R⊗ S), T ) ∼= T (Q, [R⊗ S, T ]),

for every object Q ∈ T . Hence, by the Yoneda Lemma, we can conclude that there is an
isomorphism [R⊗ S, T ] ∼= [R, [S, T ]] in T , natural in R, S, and T . �

An example of monoidal structure on a category is given by the product, which exists
under the assumption that the category considered is complete, i.e., it admits all small
limits.
Remark 1.1.4. If T is complete, then the product × : T × T → T defines a symmetric
monoidal product on T , with monoidal unit the terminal object ∗ ∈ T . If T is closed
with respect to the product, we say that it is cartesian closed.

We now introduce the concept of categories enriched in a monoidal category.
Definition 1.1.5. Let (T ,⊗, I) be a monoidal category. A T -enriched category A
consists of

(i) objects A,C,E, . . .,
(ii) a hom object A(A,C) ∈ T , for every pair of objects A and C,
(iii) a composition morphism ◦ : A(A,C) ⊗ A(C,E) → A(A,E) in T , for every tuple

of objects A, C, and E,
(iv) an identity morphism idA : I → A(A,A), for every object A,

such that composition is associative and unital in T . See [Rie14, Definition 3.3.1] or
[Kel05, §1.2] for a complete definition.
Remark 1.1.6. In particular, a closed monoidal category (T ,⊗, I) is enriched over itself
with hom objects given by the internal homs [−,−].

Given two enriched categories, we can define a notion of morphisms between those as
follows.
Definition 1.1.7. Let (T ,⊗, I) be a monoidal category, and let A and B be T -enriched
categories. A T -enriched functor F : A → B consists of

(i) an assignment on objects A ∈ A 7→ FA ∈ B,
(ii) a morphism FA,C : A(A,C)→ B(FA,FC) in T , for each pair of objects A,C ∈ A,

such that it is compatible with compositions and identities of A and B. See [Rie14,
Definition 3.5.1] or [Kel05, §1.2] for a complete definition.

Enriched categories and enriched functors assemble into a category.
Notation 1.1.8. Let (T ,⊗, I) be a monoidal category. We write T −Cat for the category
of T -enriched categories and T -enriched functors.

As mentioned in the introduction, the hom objects of a category are sets, and hence
they correspond to categories enriched over Set, the category of sets and maps.
Example 1.1.9. A Set-enriched category is a category and a Set-enriched functor is a
functor. Hence the category Cat of categories and functors correspond to the category
Set−Cat.

Every enriched category has an underlying category, which is given by applying the
functor T (I,−) : T → Set, where I is the monoidal unit, to its hom objects.
Definition 1.1.10. Let A be a T -enriched category. Its underlying category A0 is
the category with the same objects as A and with hom-sets A0(A,C) := T (I,A(A,C)).
See [Rie14, Definition 3.4.5] or [Kel05, §1.3] for a complete definition.
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When the enriching category is closed monoidal, we can further define tensored and
cotensored enriched categories as follows

Definition 1.1.11. Let T be a closed monoidal category. A T -enriched category A is
said to be tensored over T if, for every object A ∈ A and every object T ∈ T , there is
an object A⊗A T ∈ A and an isomorphism

A(A⊗A T,C) ∼= [T,A(A,C)],

for every object C ∈ A, natural in A, C, and T . It is cotensored over T if, for every
object C ∈ A and every object T ∈ T , there is an object CT ∈ A and an isomorphism

[T,A(A,C)] ∼= A(A,CT ),

for every object A ∈ A, natural in A, C, and T .

Remark 1.1.12. By applying the functor T (I,−) : T → Set to the above isomorphisms,
we obtain isomorphisms of sets

A0(A⊗A T,C) ∼= T (T,A(A,C)) ∼= A0(A,CT )

natural in A, C, and T .

Remark 1.1.13. In particular, a closed symmetric monoidal category (T ,⊗, I) is tensored
and cotensored over itself, with tensors given by the monoidal products ⊗ and cotensors
given by the internal homs [−,−].

Remark 1.1.14. Using the universal property of the tensor and the cotensor, one can
show that they induce functors − ⊗A − : A × T → A and (−)(−) : T op × A → A. In
particular, given an object A ∈ A, the functor A ⊗A − : T → A is left adjoint to the
functor A(A,−) : A → T and, for every object S ∈ T , the functor − ⊗A S : A → A is
right adjoint to the functor (−)S : A → A. As a consequence, the tensoring functor ⊗A
preserves colimits in both variables.

The following results tell us that the tensors and cotensors of an enriched category
commute with the tensor of the enriching category.

Proposition 1.1.15. Let (T ,⊗, I) be a closed monoidal category, and let A be a tensored
and cotensored T -enriched category. Then, for every object A ∈ A and every pair of
objects S, T ∈ T , we have isomorphisms

(A⊗A S)⊗A T ∼= A⊗A (S ⊗ T ) and (CS)T ∼= CS⊗T

natural in A, S, and T .

Proof. We prove that the first isomorphism holds. By Remark 1.1.12 and since T is closed
monoidal, we have that

A0((A⊗A S)⊗A T,C) ∼= A0(A⊗A S,CT ) ∼= T (S,A(A,CT ))
∼= T (S, [T,A(A,C)]) ∼= T (S ⊗ T,A(A,C))
∼= A0(A⊗A (S ⊗ T ), C),

for every object C ∈ A. Hence, by the Yoneda lemma, we can conclude that there is an
isomorphism (A ⊗A S) ⊗A T ∼= A ⊗A (S ⊗ T ) in A, natural in A, S, and T . The other
isomorphism can be shown to hold similarly. �

Finally, we show that, if we are only given the isomorphisms of sets of Remark 1.1.12,
we can upgrade them to isomorphisms in the monoidal category T , and hence the set-
level isomorphisms are enough to determine when a T -enriched category is tensored and
cotensored.



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 5

Corollary 1.1.16. Let (T ,⊗, I) be a closed symmetric monoidal category, and let A be
a T -enriched category. If

(i) for every pair of objects A,C ∈ A and every object T ∈ T , there are objects A⊗AT
and CT in A together with isomorphisms of sets

A0(A⊗A T,C) ∼= T (T,A(A,C)) ∼= A0(A,CT )

natural in A, C, and T ,
(ii) for every object A ∈ A and every pair of objects S, T ∈ T , there is an isomorphism

(A⊗A T )⊗A A ∼= A⊗A (T ⊗ S)

in A natural in A, S, and T ,
then A is tensored and cotensored over T .

Proof. By the above isomorphisms, and the commutativity of ⊗, we have that

T (S,A(A⊗A T,C)) ∼= A0((A⊗A T )⊗A S,C) ∼= A0(A⊗A (T ⊗ S), C)
∼= T (T ⊗ S,A(A,C)) ∼= T (S ⊗ T,A(A,C))
∼= T (S, [T,A(A,C)]),

for every object S ∈ T . Hence, by the Yoneda Lemma, we deduce that there is an
isomorphism A(A ⊗A T,C) ∼= [T,A(A,C)] in T , natural in A, C, and T . Similarly, one
can show that there is an isomorphism [T,A(A,C)] ∼= A(A,CT ) in T , natural in A, C,
and T . This shows that A is a tensored and cotensored T -enriched category. �

1.2. Locally presentable categories. In this section, we introduce conditions of “small-
ness” on a category, namely that of local presentability categories. In particular, all the
categories considered in this thesis satisfy this condition. We give a characterization of
these locally small categories in terms of limit-sketches, which will be useful to prove that
the categories considered in this thesis are locally presentable. In particular, we show
that the category Cat of small categories and functors is locally presentable using this
characterization. The definitions and results in this section are based on [AR94, §1].

We first define what it means for an object in a category to be small.

Definition 1.2.1. LetM be a category and λ be a regular cardinal. An object A ∈ M
is said to be λ-small if, for every λ-filtered colimit of a diagram {Xµ} inM, there is an
isomorphism colimµM(A,Xµ) ∼=M(A, colimµXµ)

A category is locally presentable when it is cocomplete, i.e., it admits all small
colimits, and it is generated by a set of small objects, as described below.

Definition 1.2.2. A categoryM is locally presentable if it is cocomplete, and there
is a regular cardinal λ and a set G of λ-small objects inM such that every object inM
is a λ-filtered colimit of objects in G.

In particular, given a locally presentable category, the accessibly embedded, full, re-
flective subcategories of this category are also locally presentable. We first recall what a
full, reflective subcategory is before proving this result.

Definition 1.2.3. Let M be a category. A full, reflective subcategory N of M is
a subcategory of M such that the inclusion functor I : N → M admits a left adjoint
L : M→N .

Remark 1.2.4. Equivalently, the inclusion I : N → M as above is full if and only if the
counit ε : LI ⇒ idN of the adjunction L a I is a natural isomorphism.
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Proposition 1.2.5. Let λ be a regular cardinal, andM be a locally presentable category
with set G of λ-small objects such that every object inM is a λ-filtered colimit of objects
in G. Then, a full, reflective subcategory N of M such that the inclusion I : N → M
preserves λ-filtered colimits is also locally presentable.

Proof. Let L : M→N denote the left adjoint of the inclusion I : N →M. We first prove
that N is cocomplete. Let F : A → N be a diagram in N . By post-composing F with
the inclusion I, we get a diagram IF : A → M. Since M is cocomplete, this diagram
admits a colimit, denoted by colimA IF , inM. By applying the left adjoint L, we get an
isomorphism in N

L(colimA IF ) ∼= colimA LIF ∼= colimA F,
since L preserves colimits, and the counit ε : LI ∼= idN is a natural isomorphism. This
shows that L(colimA IF ) is a colimit for F and hence that N is cocomplete. Now, we
show that LG = {LG | G ∈ G} is a set of λ-small objects in N such that every object in
N is a λ-filtered colimit of objects in LG. First, note that every object LG is λ-small, for
G ∈ G. Indeed, we have

N (LG, colimµXµ) ∼=M(G, I(colimµXµ)) ∼=M(G, colimµ IXµ)
∼= colimµM(G, IXµ) ∼= colimµN (LG,Xµ),

for every λ-filtered colimit of a diagram {Xµ} in N , where we used the facts that L a I
is an adjunction, that I preserves λ-filtered colimits, and that G ∈ G is λ-small in M.
Finally, given an objectX ∈ N , the object IX ∈M is a λ-filtered colimit IX ∼= colimµGµ
of objects Gµ ∈ G. Hence, we have an isomorphism in N

X ∼= LIX ∼= L(colimµGµ) ∼= colimµ LGµ,

since the counit ε : LI ∼= idN is a natural isomorphism, and L preserves colimits. This
shows that N is locally presentable. �

By results of [AR94], any locally presentable category is equivalent to a category of
models for a limit-sketch. We introduce this terminology before stating this theorem,
which will not be proven here since it involves more technicalities.

Definition 1.2.6. A limit-sketch is a tuple L = (A,D, σ) consisting of
(i) a small category A,
(ii) a set D of diagrams in A,
(iii) a map σ which assigns to each diagram D ∈ D a compatible cone σ(D) under D

in A.
A model of the limit-sketch L is a functor F : Aop → Set such that F (σ(D)) is the
limit of the diagram F (D) in Set. We denote by Mod(L) the full subcategory of the
category SetAop of functors Aop → Set and natural transformations between them.

Theorem 1.2.7. A category is locally presentable if and only if it is equivalent to a
category of models for a limit-sketch.

Proof. This is [AR94, Corollary 1.52]. �

Using this description of locally presentable categories, it is straightforward to see that
any category of presheaves in Set is locally presentable.

Example 1.2.8. Given a small category A, the category SetAop of functors Aop → Set
and natural transformations is locally presentable. Indeed, it corresponds to the category
of models for the limit-sketch L = (A,D, σ) with D = ∅. In particular, all accessibly
embedded, full, reflective subcategories of SetAop are also locally presentable by Proposi-
tion 1.2.5. Note that this also implies that the category Set itself is locally presentable.
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Furthermore, from this description of locally presentable categories using limit-sketches,
we can show that every locally presentable is also complete, i.e., it admits all small limits.

Proposition 1.2.9. A locally presentable category is complete.

Proof. We show that a category Mod(L) of models for a limit-sketch L = (A,D, σ) is
complete, which implies the result since every locally presentable is equivalent to such
a category by Theorem 1.2.7. Let {Fi}i∈I be a diagram in Mod(L), where I is a small
category. Then it is also a diagram in SetAop and, since SetAop is complete, the limit
limi∈I Fi in SetAop exists. We show that, for every diagram D ∈ D, (limi∈I Fi)(σ(D)) is
the limit of the diagram (limi∈I Fi)(D). Since limits are computed point-wise in SetAop ,
limits commute among each other, and Fi ∈ Mod(L) for all i ∈ I, we have that

(limi∈I Fi)(σ(D)) ∼= limi∈I (Fi(σ(D))) ∼= limi∈I (limD Fi(D))
∼= limD (limi∈I (Fi(D))) ∼= limD (limi∈I Fi)(D),

for every diagram D ∈ D, which shows that limi∈I Fi ∈ Mod(L). This concludes the
proof that Mod(L) is complete. �

Finally, we use this limit-sketch characterization of locally presentable categories to
show that Cat is locally presentable. This proof can be adapted to the context of double
categories, as we will see in Proposition 3.1.6.

Notation 1.2.10. For n ≥ 0, we define the category [n] to be the category induced by
the poset {0 ≤ 1 ≤ . . . ≤ n}. In other words, the category [n] is the category free on n
composable morphisms, i.e., the category generated by the following data

0 1 2 · · · n− 1 n .

In particular, the category [0] is the terminal category, and the category [1] is the category
free on a morphism.

Proposition 1.2.11. The category Cat of small categories and functors is locally pre-
sentable.

Proof. We construct a limit-sketch L = (A,D, σ) such that the category Mod(L) of models
for L is equivalent to Cat. LetA := ∆3 be the category generated by the following diagram

[0] [1] [2] [3] ,s0
d1

d1

d2

s0

s1
d1

d0

d3

d2

d1

d0

where the functors di : [n − 1] → [n] are induced by the order-preserving maps which
omit i, and the functors sj : [n]→ [n−1] are induced by the order-preserving maps which
double j, for all 1 ≤ n ≤ 3, 0 ≤ i ≤ n and 0 ≤ j ≤ n − 1. We define D to be the set
containing the following two diagrams in ∆3.

[0]

[1]

[1]

d0

d1

D1 =

[1]

[2]

[2]

d0

d2

D2 =

Then we set σ(D1) = [2] and σ(D2) = [3] together with the following cones.
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[0]

[1]

[1]

[2]

d0

d1

d2

d0

[1]

[2]

[2]

[3]

d0

d2

d3

d0

Now, given a category C, we can associate to it a functor Cat(−, C) : ∆op
3 → Set. In

particular, it is such that

Cat([2], C) ∼= Cat([1], C) ×
Cat([0],C)

Cat([1], C) and Cat([3], C) ∼= Cat([2], C) ×
Cat([1],C)

Cat([2], C)

since [2] = [1]
⊔

[0][1], [3] = [2]
⊔

[1][2], and Cat(−, C) sends colimits to limits. Hence
Cat(−, C) is in Mod(L). This extends in an obvious way on morphisms, and gives a
functor F : Cat→ Mod(L).

Conversely, given a functor X : ∆op
3 → Set in Mod(L), we can define a category GX

as follows. Since a category can equivalently be defined as an internal category to Set,
we describe the internal category to Set associated to GX. Its set of objects is given by
the set X[0] and its set of morphisms is given by the set X[1], where the source map is
X(d1) : X[1] → X[0] and the target map is X(d0) : X[0] → X[1]. The identity map is
given by X(s0) : X[0]→ X[1], and the composition map is given by

X[1]×X[0] X[1] ∼= X[2] X(d1)−−−−→ X[1].

Associativity of the composition follows from the fact that

X[3] ∼= X[2]×X[1] X[2] ∼= X[1]×X[0] X[1]×X[0] X[1]

and that the below left diagram commutes in ∆3, while unitality of the composition
follows from the fact that the below right diagram commutes in ∆3.

[1]

[2]

[2]

[3]

d2

d1

d1

d3

[1]

[0]

[2]

[1]

d0

s0

s1

d0

Given a natural transformation α : X ⇒ Y in Mod(L), we can associate to it a functor
Gα : GX → GY given by α0 : X[0]→ Y [0] on objects and α1 : X[1]→ Y [1]. This defines
a functor G : Mod(L)→ Cat.

It is straightforward to see that GF = idCat. Moreover, there is a natural isomorphism
FG ∼= idMod(L) given, at an object X ∈ Mod(L), by the isomorphism FGX ∼= X induced
by the identities on X[0] and X[1], and by the comparison maps X[1]×X[0] X[1] ∼= X[2]
and X[2] ×X[1] X[2] ∼= X[3]. This gives an equivalence of categories between Cat and
Mod(L), and hence Cat is locally presentable by Theorem 1.2.7. �

2. 2-categories

We now turn our attention to 2-categories, which can be seen as categories enriched in
Cat, the category of (small) categories and functors. In particular, a 2-category also has
morphisms between morphisms, called 2-morphisms, which are given by the morphisms
of the hom-categories. In Section 2.1, we first introduce the category 2Cat of 2-categories
and 2-functors, and show that it is locally presentable. Since every category can be seen as
a category enriched in Cat with discrete categories of morphisms, there is a full embedding
functor D : Cat→ 2Cat, and we show that this functor has both adjoints.
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In Section 2.2, we show that 2Cat is cartesian closed, by introducing the notions of
2-natural transformations and modifications, which correspond to the morphisms and 2-
morphisms of the internal hom 2-categories of 2Cat, respectively. In particular, a 2-natural
transformation is an enriched version of a natural transformation between functors, which
also satisfies the naturality conditions on the nose. However, since we also have a notion
of 2-morphism between morphisms in a 2-category, we can relax this naturality condition
by asking that it only holds up to 2-isomorphism. This gives rise to the notion of pseudo-
natural transformations. In Section 2.3, we use this notion, as well as an adapted version
of a modification to this pseudo-setting, to construct another internal hom 2-category,
called the pseudo-hom. These pseudo-homs happen to be the internal homs of another
symmetric monoidal structure on 2Cat, given by the Gray tensor product, introduced by
Gray in [Gra74].

Finally, in Section 2.4, we define a notion of equivalence in a 2-category, which cor-
responds to a pair of opposite morphisms such that their composites are related by a
2-isomorphism to the identities. This generalizes the usual notion of equivalences of cate-
gories. An equivalence in a 2-category is further said to be adjoint when its 2-isomorphism
components satisfy the triangle identities, analogous to the triangle identities of an ad-
junction. A classical 2-categorical result says that every equivalence can be promoted to
such an adjoint equivalence, which is very useful in practice, as we will see throughout
this thesis.

2.1. The category 2Cat. We recall that a category consists of a set of objects and
a set of morphisms between each pair of objects. By also adding morphisms between
morphisms, called 2-morphisms, we obtain the notion of a 2-category. In particular, a 2-
category is a Cat-enriched category, where Cat is the category of categories and functors.
In this section, we first introduce the category 2Cat of 2-categories and 2-functors. Since
categories can be seen as 2-categories with only trivial 2-morphisms, there is an inclusion
functor from Cat into 2Cat. We further introduce this functor, as well as its left and right
adjoints.

Let us first give the definition of a 2-category.

Definition 2.1.1. A 2-category A consists of
(i) objects A,C,E, . . .,
(ii) morphisms a : A→ C between objects A,C with an identity idA : A→ A at each

object A,
(iii) 2-morphisms α : a⇒ c of the form

A C

a

c

α

between morphisms a : A → C and c : A → C with an identity 2-morphism
ida : a⇒ a at each morphism a : A→ C,

(iv) an associative and unital (horizontal) composition law for morphisms, and for
2-morphisms along shared object boundaries

A C E

a

c

a′

c′

α α′ A= E ,

a′a

c′c

α′ ∗ α

(v) an associative and unital (vertical) composition law for 2-morphisms along shared
morphism boundaries
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A Cc

a

e

α

γ
A= C ,

a

e

γα

such that the horizontal and vertical compositions for 2-morphisms satisfy the interchange
law.

Remark 2.1.2. Given a 2-category A, for every pair of objects A and C in A, we have
a category A(A,C) of morphisms from A to C and 2-morphisms between them, with
composition given by the vertical composition of 2-morphisms. Hence, a 2-category is a
category enriched over Cat.

A morphism of 2-categories can then be defined as an assignment on objects, mor-
phisms, and 2-morphisms which preserve all the 2-categorical structure.

Definition 2.1.3. Let A and B be 2-categories. A 2-functor F : A → B sends
(i) each object A ∈ A to an object FA ∈ B,
(ii) each morphism a : A→ C in A to a morphism Fa : FA→ FC in B,
(iii) each 2-morphism α : a⇒ c in A to a 2-morphism Fα : Fa⇒ Fc in B,

in such a way that F preserves all compositions and identities.

Remark 2.1.4. A 2-functor F : A → B can equivalently be defined as an assignment on
objects together with, for every pair of objects A and C in A, a functor

FA,C : A(A,C)→ B(FA,FC).

Hence, a 2-functor is a Cat-enriched functor.

Then, 2-categories with this notion of morphisms form a category.

Notation 2.1.5. We write 2Cat for the category of 2-categories and 2-functors. By
Remarks 2.1.2 and 2.1.4, it is the same as the category Cat−Cat of Cat-enriched categories
and Cat-enriched functors.

In particular, the category 2Cat satisfies the condition of “smallness” introduced in
Definition 1.2.2. Since 2Cat is a full, reflective subcategory of the category of double
categories, we do not prove here that 2Cat is locally presentable, but rather deduce it
from the analogous result for double categories proved in Proposition 3.1.6 below.

Proposition 2.1.6. The category 2Cat is locally presentable and, in particular, it is both
complete and cocomplete.

Proof. As we will see in Proposition 3.4.5, the category 2Cat is an accessibly embedded,
full, reflective subcategory of the category DblCat of double categories and double func-
tors, introduced in Section 3.1. Indeed, the horizontal embedding H : 2Cat → DblCat,
introduced in Definition 3.4.1, is full and admits both adjoints by Proposition 3.4.5,
and hence H preserves in particular all colimits. As we show in Proposition 3.1.6 that
DblCat is locally presentable, it follows from Proposition 1.2.5 that 2Cat is also locally
presentable. The second part of the statement follows from the definition of a locally
presentable category and from Proposition 1.2.9. �

We describe below a set of objects which generate all 2-categories under colimits. For
this, we first need to introduce the following notations.

Notation 2.1.7. Recall the categories [n], for n ≥ 0, introduced in Notation 1.2.10. We
also denote by [n] the corresponding locally discrete 2-category.
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Notation 2.1.8. Given a category C, we define the 2-category ΣC as the 2-category with
two objects 0 and 1, and hom-categories given by ΣC(0, 0) = [0] = ΣC(1, 1), ΣC(0, 1) = C,
and ΣC(1, 0) = ∅. It is sometimes called the suspension of C, which explains the notation.
In particular, the 2-category Σ[1] is the 2-category free on a 2-morphism.

Remark 2.1.9. Every 2-category is a colimit of the following 2-categories: the terminal
2-category [0], the 2-category [1] free on a morphism, and the 2-category Σ[1] free on a
2-morphism.

As mentioned in the introduction, a category can be seen as a 2-category with only
trivial 2-morphisms. This gives a full embedding of Cat into 2Cat.

Definition 2.1.10. We define the discrete embedding functor D : Cat → 2Cat. It
sends a category C to the locally discrete 2-category DC with only trivial 2-morphisms,
and a functor F : C → D to the 2-functor DF : DC → DD which acts as F does on the
corresponding data.

This functor admits both adjoints. Its right adjoint, introduced below, is given by
sending a 2-category to its underlying category.

Definition 2.1.11. We define the functor U : 2Cat→ Cat. It sends a 2-category A to its
underlying category UA with the same objects as A and morphisms the morphisms
of A, and a 2-functor F : A → B to the functor UF : UA → UB which acts as F does on
the corresponding data.

The left adjoint of D : Cat→ 2Cat is given by sending a 2-category to a category whose
hom-sets are given by taking the path components of each hom-category. In other words,
there is a functors π0 : Cat→ Set which sends a category to its set of objects, quotiented
by the following equivalence relation: two objects are in the same equivalence class if
and only if there is a zig-zag of morphisms between them. Then, the left adjoint of D is
obtained by applying this functor π0 locally.

Definition 2.1.12. We define the functor P : 2Cat → Cat. It sends a 2-category A to
the category PA with the same objects as A and with hom-sets PA(A,C) = π0A(A,C),
for every pair of objects A,C ∈ A, where π0 : Cat → Set is the functor which sends a
category to its set of connected components. It sends a 2-functor F : A → B to the functor
PF : PA → PB which acts as F on objects and, for every pair of objects A,C ∈ A, is
given by π0F : π0A(A,C)→ π0B(FA,FC) on hom-sets.

We now show that, as promised, the functors P and U are indeed the left and right
adjoints of D, respectively.

Proposition 2.1.13. The functors P , D, and U form adjunctions

Cat 2Cat .

P

D

U

⊥

⊥

Moreover, the counit of the adjunction P a D and the unit of the adjunction D a U are
identities. In particular, the functor D : Cat→ 2Cat is a full embedding.

Proof. We first show that, for every category C and every 2-category A, there is an
isomorphism

2Cat(A, DC) ∼= Cat(PA, C)
natural in C andA. Since every 2-morphism inDC is trivial, a 2-functor F : A → DC sends
every 2-morphism of A to an identity 2-morphism. Hence it induces a functor F̂ : PA → C
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acting as F on objects and morphisms, since two morphisms in the same path component
must be sent to the same morphism of C by F . Conversely, ifG : PA → C is a functor, then
it induces a 2-functor Ĝ : A → DC which acts as G on objects and morphisms, and sends
every 2-morphism to the identity 2-morphism of the image under G of its boundaries,
which are in the same path component. These constructions are clearly inverse to each
other and natural in C and A. Hence P a D is an adjunction. Moreover, we have that
PDC = C for every category C, since the category DC has only trivial 2-morphisms, and
hence applying P does not identify morphisms in C. This shows that the counit of P a D
is an identity.

We now prove that, for every category C and every 2-category A, there is an isomor-
phism

2Cat(DC,A) ∼= Cat(C, UA)
natural in C and A. Since every 2-morphism in DC is trivial, the image of a 2-functor
F : DC → A is included in the underlying category of A and hence it restricts to a functor
F̂ : C → UA. Conversely, every functor G : C → UA induces a 2-functor Ĝ : DC → A
which acts as G on objects and morphisms, and sends the trivial 2-morphisms of DC to
the corresponding trivial 2-morphisms of A. These constructions are clearly inverse to
each other and natural in C and A. Hence D a U is an adjunction. Moreover, we clearly
have that UDC = C, for every category C, and hence the unit of D a U is an identity. �

2.2. Cartesian closeness of 2Cat. As mentioned in Proposition 2.1.6, the category 2Cat
is complete. Then, by Remark 1.1.4, it admits a symmetric monoidal structure given by
the product × : 2Cat × 2Cat → 2Cat. In this section, we show that 2Cat is cartesian
closed, by constructing its internal hom 2-category. In other words, given 2-categories A
and B, we need to define a 2-category whose objects are the 2-functors from A to B. The
morphisms in this 2-category are defined as follows.

Definition 2.2.1. Let F,G : A → B be 2-functors. A 2-natural transformation
ϕ : F ⇒ G consists of a morphism ϕA : FA → GA in B, for each object A ∈ A, such
that

(n1) for every 2-morphism α : a⇒ c in A, the following pasting equality holds.

FA FC GC

Fa

Fc

ϕC
Fα FA= GA GC

ϕA

Ga

Gc

Gα

Then, given two such 2-natural transformations, we can define a notion of morphisms
between these, which will be the 2-morphisms of the internal hom 2-category.

Definition 2.2.2. Let F,G : A → B be 2-functors, and let ϕ,ψ : F ⇒ G be 2-natural
transformations. A modification µ : ϕ ψ consists of a 2-morphism µA : ϕA ⇒ ψA
in B, for each object A ∈ A, such that
(m1) for every morphism a : A→ C in A, the following pasting equality holds.

FA FC GC
Fa

ϕC

ψC

µC FA= GA GC

ϕA

ψA

Ga
µA

With these notions of morphisms and 2-morphisms between 2-functors, we can intro-
duce a 2-category of 2-functors.

Definition 2.2.3. Let A and B be 2-categories. The hom 2-category [A,B]2 is the
2-category whose
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(i) objects are 2-functors from A to B,
(ii) morphisms are 2-natural transformations, and
(iii) 2-morphisms are modifications.

We show that this gives an internal hom in 2Cat with respect to the cartesian structure.

Proposition 2.2.4. The category 2Cat is cartesian closed with internal hom given by
[−,−]2, i.e., for every tuple of 2-categories A, B, and C, we have an isomorphism

2Cat(A, [B, C]2) ∼= 2Cat(A× B, C)

natural in A, B, and C. Furthermore, this isomorphism extends to an isomorphism of
2-categories

[A, [B, C]2]2 ∼= [A× B, C]2

natural in A, B, and C.

Proof. By taking A to be the 2-category [0] free on an object, [1] free on a morphism,
and Σ[1] free on a 2-morphism, a 2-functor A × B → C is precisely a 2-functor B → C,
a 2-natural transformation, and a modification, respectively. This shows that there is
a canonical isomorphism 2Cat(A, [B, C]2) ∼= 2Cat(A × B, C) when A ∈ {[0], [1],Σ[1]}.
Since every 2-category can be obtained as colimit of the 2-categories [0], [1], and Σ[1] by
Remark 2.1.9, products in 2Cat commutes with colimits, and 2Cat(−,−) sends colimits
in the first variable to limits, the result for a general 2-category A follows. The second
statement follows from Proposition 1.1.3. �

2.3. Gray tensor product for 2-categories. The notion of 2-natural transformations
can be weakened by requiring the naturality conditions to hold only up to 2-isomorphisms,
rather than strictly. This yields the notion of a pseudo-natural transformation, and mod-
ifications extend to this setting. Hence, we also have a 2-category of 2-functors, whose
morphisms are pseudo-natural transformations. This corresponds to the internal hom for
another symmetric monoidal structure on 2Cat, called the Gray tensor product. In this
section, we introduce these pseudo-homs and then show that there is a closed symmetric
monoidal structure on 2Cat with respect to these.

Let us first introduce the “pseudo” notion of transformation between 2-functors.

Definition 2.3.1. Let F,G : A → B be 2-functors. A pseudo-natural transformation
ϕ : F ⇒ G consists of

(i) a morphism ϕA : FA→ GA in B, for each object A ∈ A,
(ii) a 2-isomorphism ϕa in B

FA GA

FC GC ,

ϕA

Fa

ϕC

Gaϕa
∼=

for each morphism a : A→ C in A,
such that
(pn1) for every object A ∈ A, we have ϕidA = idϕA ,
(pn2) for every pair of composable morphisms a : A → C and c : C → E in A, the

following pasting equality holds,
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FA GA

FC GC

FE GE

ϕA

Fa

ϕC

Ga

Fa

ϕE

Ga

ϕa
∼=

ϕc
∼=

FA GA

FE GE

ϕA

F (ca)=

ϕE

G(ca)
ϕca

∼=

(pn3) for every 2-morphism α : a⇒ c in A, the following pasting equality holds.

FA GA

FC GC

ϕA

FaFc

ϕC

Ga
Fα ϕa

∼=

FA GA

FC GC

ϕA

Fc=

ϕC

Gc Ga
Gα

ϕc
∼=

As in the case of 2-natural transformations, there is a notion of morphisms between
pseudo-natural transformations, defined as follows.

Definition 2.3.2. Let F,G : A → B be 2-functors, and let ϕ,ψ : F ⇒ G be pseudo-
natural transformations. Then, a modification µ : ϕ ψ consists of a 2-morphism
µA : ϕA ⇒ ψA in B, for each object A ∈ A, such that
(mp1) for every morphism a : A→ C in A, the following pasting equality holds.

FA GA

FC GC

ϕA

Fa
ϕC

ψC

Ga

µC

ϕa
∼=

FA GA

FC GC

ϕA

ψA
Fa=

ψC

Ga

µA

ψa

∼=

The 2-functors, pseudo-natural transformations, and modifications form a 2-category.

Definition 2.3.3. Let A and B be 2-categories. The pseudo-hom 2-category [A,B]2,ps
is the 2-category whose

(i) objects are double functors from A to B,
(ii) morphisms are pseudo-natural transformations, and
(iii) 2-morphisms are modifications.

Using these pseudo-homs, we introduce a closed symmetric monoidal structure on 2Cat,
called the Gray tensor product. A description of the Gray tensor product of two 2-
categories can be found in Description 6.3.2.

Proposition 2.3.4. There is a closed symmetric monoidal product ⊗2 on 2Cat, called
the Gray tensor product, such that, for every tuple of 2-categories A, B, and C, we
have an isomorphism

2Cat(A, [B, C]2,ps) ∼= 2Cat(A⊗2 B, C)
natural in A, B, and C. Furthermore, this isomorphism extends to an isomorphism of
2-categories

[A, [B, C]2,ps]2,ps ∼= [A⊗2 B, C]2,ps

natural in A, B, and C.



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 15

Proof. The first part of the result follows from [Gra74]. The second statement follows
from Proposition 1.1.3. �

2.4. Equivalences in a 2-category. Finally, in this last section on 2-categories, we
introduce the notion of equivalences in a 2-category. This gives a weaker notion of in-
vertibility for morphisms. Indeed, while an isomorphism has an inverse such that their
composites are equal to the identity, an equivalence has an inverse such that their com-
posites are only related by a 2-isomorphism to the identity.

Definition 2.4.1. Let A be a 2-category. A morphism a : A→ C in A is an equivalence
if there is a tuple (a, c, η, ε) with c : C → A a morphism inA, and η : idA ⇒ ca, ε : ac⇒ idC
two 2-isomorphisms in A.

We can further require that the 2-isomorphisms in the data of an equivalence satisfy
the triangle identities, which are a generalization of the triangle identities satisfied by an
adjunction between categories.

Definition 2.4.2. Let A be a 2-category. A morphism a : A → C in A is an adjoint
equivalence if it is an equivalence (a, c, η, ε) and the 2-isomorphisms η and ε further
satisfy the following triangle identities.

A

C A

C

a

c

a

η
∼=

ε
∼=

A

C

a=

C A

C A

c

a

c

η
∼=

ε
∼=

C A
c=

Notation 2.4.3. We often write a : A '−→ C to highlight the fact that a morphism a is
an (adjoint) equivalence.

This “adjoint” version of equivalence is very useful in practice to make computations.
Luckily, every equivalence can be promoted to an adjoint one, and hence we can always
assume that a morphism in a 2-category which is an equivalence comes with adjoint
equivalence data.

Proposition 2.4.4. Every equivalence (a, c, η, ε) in a 2-category A can be promoted to
an adjoint equivalence (a, c, η, ε′).

Proof. See, for example, [RV19, Proposition 2.1.12]. �

Finally, we show that an equivalence in a pseudo-hom 2-category is precisely a pseudo-
natural transformation whose components are equivalences. We do not prove this result
here, since it is a direct consequence of the analogous result holding for double categories
(see Proposition 3.6.10).

Proposition 2.4.5. Let F,G : A → B be 2-functors. A pseudo-natural transformation
ϕ : F ⇒ G is an equivalence in [A,B]2,ps if and only if, for every object A ∈ A, its
morphism component ϕA : FA→ GA is an equivalence in B.

Proof. This can be obtained from Proposition 3.6.10 by considering ϕ as a horizontal
pseudo-natural transformation between the horizontal double functors HF and HG. In
particular, since all vertical morphisms in HA are trivial, the square components of ϕ are
vertical identity squares, by (hn1) of Definition 3.2.1. �
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Definition 2.4.6. Let F,G : A → B be 2-functors. A pseudo-natural transformation
ϕ : F ⇒ G which satisfies the conditions of Proposition 2.4.5 is called a pseudo-natural
equivalence. We say that ϕ is a pseudo-natural adjoint equivalence if it is an
adjoint equivalence in the pseudo-hom 2-category [A,B]2,ps, or equivalently, if, for every
object A ∈ A, its morphism component ϕA : FA→ GA is an adjoint equivalence in B.

3. Double categories

We now introduce the other kind of 2-dimensional categories of interest in this thesis.
While 2-categories have morphisms between the objects and 2-morphisms between the
morphisms, a double category has two kinds of morphisms between the objects, called
horizontal and vertical morphisms, and its 2-morphisms sit in a square with two horizontal
boundaries and two vertical boundaries, and are therefore called squares. In Section 3.1,
we first introduce the category DblCat of double categories and double functors. We
also explain how double categories can equivalently be understood as internal categories
to Cat, which allows us to adapt the proof of local presentability for Cat to DblCat.
Furthermore, every 2-category can be seen as a horizontal double category with only
trivial vertical morphisms, and hence it corresponds to an internal category to Cat with
discrete category of objects. This point of view on 2-categories and double categories will
be useful to get ∞-analogues of these notions.

In Section 3.2, we show that DblCat is cartesian closed by constructing internal hom
double categories. The construction is analogous to the one for 2Cat, except that we
now have two kinds of natural transformations between double functors: horizontal and
vertical natural transformations. By relaxing the naturality conditions, as it was done in
the 2-categorical case, we obtain pseudo-versions of these horizontal and vertical natural
transformations, which allow us to construct a pseudo-hom double category. These cor-
respond to the internal homs for another symmetric monoidal structure on DblCat, also
called the Gray tensor product, introduced by Böhm in [Böh19].

As mentioned above, every 2-categoryA can be seen as a horizontal double categoryHA
and this defines a full embedding functor H : 2Cat → DblCat. In Section 3.4, we intro-
duce this horizontal embedding and show that it has both adjoints. In particular, its
right adjoint is given by extracting from a double category A its underlying horizontal
2-category HA with the same objects as A, morphisms the horizontal morphisms of A,
and 2-morphisms the squares in A with trivial vertical boundaries. Since this functor
forgets the whole vertical structure of A, we define another functor V : DblCat → 2Cat
which extracts from a double category A a 2-category VA, whose objects are the vertical
morphisms of A and whose morphisms are the squares of A. Put together, the two func-
tors H and V recover most of the structure of a double category (except for the vertical
composition of vertical morphisms), and they are used in Section 7 to construct the first
model structure on DblCat from Lack’s model structure on 2Cat. Note that there are
also dual versions of these functors given by interchanging the horizontal and vertical
directions. Finally, we also introduce a more homotopical version of the horizontal em-
bedding H, given by the functor H' : 2Cat → DblCat, which sends a 2-category A to
the double category H'A, whose underlying horizontal category is still A, and whose
vertical morphisms are now given by the adjoint equivalences in A. This functor will be
the functor considered when looking at the homotopical inclusion of 2Cat into DblCat.

Using the adjunction H a H, we induce in Section 3.5 a 2Cat-enrichment on DblCat
from its monoidal structure given by the Gray tensor product. The hom 2-categories of
DblCat are defined to be the underlying horizontal 2-categories of the pseudo-hom double
categories, and this enrichment is tensored and cotensored with tensoring functor given
by restricting the Gray tensor product on DblCat in one variable along the horizontal
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embedding H : 2Cat → DblCat. This enrichment is used to show that the two model
structures on DblCat constructed in this thesis are enriched over 2Cat.

Finally, in Section 3.6, we introduce notions of weak invertibility for horizontal mor-
phisms and squares. These are analogous to the notion of equivalences in a 2-category
and can actually be defined as follows. A horizontal morphism in a double category A is a
horizontal equivalence if it is an equivalence in the underlying horizontal 2-category HA,
and a square is weakly horizontally invertible if it is an equivalence in the 2-category VA
of vertical morphisms, squares, and 2-morphisms as given in Definition 3.4.9. These no-
tions were recently introduced independently by the author, Sarazola, and Verdugo in
[MSV20a], and by Grandis and Paré in [GP19], whose terminology for the weakly hori-
zontally squares is that of equivalence cells. With this terminology, we introduce weakly
horizontally invariant double categories, which are such that every vertical morphism in
this double category can be transferred along horizontal equivalences through a weakly
horizontally invertible square. This notion was first introduced in by the author, Sarazola,
and Verdugo in [MSV20b], and is a weaker version of the horizontally invariant double
categories defined by Grandis and Paré in [GP99, §2.4]. We also prove here some technical
results about weakly horizontally invertible squares, which will be useful in the rest of the
thesis. These results appear in the appendix of the paper [Mos20] by the author.

3.1. The category DblCat. As mentioned above, a double category has two kinds of
morphisms between objects – called horizontal and vertical morphisms – and its 2-
morphisms are called squares. It corresponds to an internal category to Cat, the category
of categories and functors. It generalizes the concept of 2-categories, in the sense that
every 2-category can be seen as a horizontal double category, with only trivial vertical
morphisms. In this section, we introduce the category DblCat of double categories and
double functors, and we explain how this category corresponds to the category of internal
categories and internal functors to Cat. We also show that every 2-category gives rise to
a horizontal category, and hence corresponds to an internal category to Cat with discrete
category of objects.

Let us first introduce double categories.

Definition 3.1.1. A double category A consists of

(i) objects A,A′, C, C ′, . . .,
(ii) horizontal morphisms a : A → C between objects A,C with a horizontal identity

morphism idA : A→ A at each object A,
(iii) vertical morphisms u : A A′ between objects A,A′ with a vertical identity mor-

phism eA : A A at each object A,
(iv) squares α : (u a

a′ w) of the form

A C

A′ C ′

•u •w

a

a′

α

between horizontal morphisms a : A→ C and a′ : A′ → C ′ and vertical morphisms
u : A A′ and w : C C ′ with a vertical identity square ea : (eA a

a eC) for each
horizontal morphism a : A→ C, and a horizontal identity square idu : (u eA

eA′ u) for
each vertical morphism u : A A′, such that �A = ideA = eidA for all objects A,
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A C

A C

• •

a

a

ea

A A

A′ A′

•u •uidu

A A

A A

• •�A

(v) an associative and unital horizontal composition law for horizontal morphisms,
and for squares along their vertical boundaries,

(vi) an associative and unital vertical composition law for vertical morphisms, and for
squares along their horizontal boundaries,

such that horizontal and vertical compositions for squares satisfy the interchange law.

Remark 3.1.2. A double category A can equivalently be defined as an internal category
to Cat, i.e., as a diagram in Cat of the form

A0 A1 A1 ×A0 A1i

s

t

π0

π1

c

satisfying the relations of an internal category. Our convention is to look at the cate-
gory A0 as the category of objects and vertical morphisms, and at the category A1 as the
category of horizontal morphisms and squares.

Since a category is itself an internal category to Set, we can also consider a double
category as a diagram in Set of the form

A0,0 A1,0 A1,0 ×A0,0 A1,0

A0,1 A1,1 A1,1 ×A0,1 A1,1

A0,1 ×A0,0 A0,1 A1,1 ×A1,0 A1,1 Grid2×2(A1,1) ,

where A0,0 is the set of objects, A0,1 the set of vertical morphisms, A1,0 the set of horizontal
morphisms, and A1,1 the set of squares.

There is a notion of morphism between double categories which consists of assignments
on objects, horizontal morphisms, vertical morphisms, and squares that preserve all the
double categorical structure.

Definition 3.1.3. Let A and B be double categories. A double functor F : A → B
sends

(i) each object A ∈ A to an object FA ∈ B,
(ii) each horizontal morphism a : A→ C in A to a horizontal morphism Fa : FA→ FC

in B,
(iii) each vertical morphism u : A A′ in A to a vertical morphism Fu : FA FA′

in B,
(iv) each square α : (u a

a′ w) in A to a square Fα : (Fu Fa
Fa′ Fw) in B,

in such a way that F preserves horizontal and vertical compositions and identities.

Remark 3.1.4. A double functor F : A → B can equivalently be defined as an internal
functor to Cat, i.e., it consists of two functors F0 : A0 → B0 and F1 : A1 → B1 making the
following diagram commute.
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A0 A1 A1 ×A0 A1i

s

t

π0

π1

c

B0 B1 B1 ×B0 B1i

s

t

π0

π1

c

F0 F1 F1 ×F0 F1

Double categories and double functors form a category.

Notation 3.1.5. We write DblCat for the category of double categories and double
functors. By Remarks 3.1.2 and 3.1.4, it is the same as the category Cat(Cat) of internal
categories and internal functors to Cat.

The category DblCat also satisfies the conditions of “smallness” introduced in Defini-
tion 1.2.2. The proof works as in Proposition 1.2.11, where we proved that Cat is locally
presentable, with the changes mentioned below.

Proposition 3.1.6. The category DblCat is locally presentable and, in particular, it is
both complete and cocomplete.

Proof. Recall the category ∆3 from Proposition 1.2.11. In the case of DblCat, we can
construct a limit-sketch L′ = (A′,D′, σ′), where A′ = ∆3 ×∆3. The diagrams in D′ are
given by the diagrams D1×[j], [i]×D1, D2×[j], and [i]×D2, for all 0 ≤ i, j ≤ 3, where D1
and D2 are the diagrams in ∆3 as given in the proof of Proposition 1.2.11. Similarly, the
assignment σ′ is induced by the assignment σ of Proposition 1.2.11. Then the proof that
DblCat is equivalent to Mod(L′) works as in Proposition 1.2.11, using the characterization
of double categories presented in Remark 3.1.2. The second part of the statement follows
from the definition of a locally presentable category and from Proposition 1.2.9. �

As mentioned in the introduction, every 2-category can be seen as a horizontal double
category. Dually, every 2-category also gives rise to a vertical double category with only
trivial horizontal morphisms. In particular, since every category is a locally discrete 2-
category, it can also be seen as a horizontal or vertical double category. As we explain
below, the horizontal embedding of Cat into DblCat is more natural since it corresponds
to the embedding of internal categories to Set into internal categories to Cat, induced by
the inclusion Set→ Cat, which sends a set to the corresponding discrete category.

Definition 3.1.7. Let A be a 2-category. We define its associated horizontal double
category HA to be the double category with the same objects asA, horizontal morphisms
the morphisms of A, only trivial vertical morphisms, and squares

A B

A B

a

c

• •α

given by the 2-morphisms α : a ⇒ c of A. Dually, its associated vertical double
category VA has the same objects as A, only trivial horizontal morphisms, vertical
morphisms the morphisms of A, and squares

A A

A′ A′

•a •cα

given by the 2-morphisms α : a⇒ c of A.
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Remark 3.1.8. In particular, by considering the double category HA associated to a 2-
category A and by Remark 3.1.2, we can interpret the 2-category A as an internal category
to Cat of the form

A0 A1 A1 ×A0 A1 ,i

s

t

π0

π1

c

where A0 is the discrete category of objects in A, and A1 is the category of morphisms
and 2-morphisms in A. Our convention will be to look at a 2-category as a horizontal
double category.

Remark 3.1.9. Given a category C, the associated vertical double category VDC corre-
sponds to the internal category to Cat constant at C, while the associated horizontal
double category HDC corresponds to the internal category to Cat with discrete categories
of objects and of horizontal morphisms.

We finally describe a set of objects which generate all double categories under colimits.

Remark 3.1.10. In Proposition 3.1.6, we have seen that DblCat is locally presentable.
Recall from Notation 2.1.7 the 2-categories [0] and [1]. We also denote by [0] = H[0] the
terminal double category. Then, every double category is a colimit of the following double
categories: the terminal double category [0], the double category H[1] free on a horizontal
morphism, the double category V[1] free on a vertical morphism, and the double category
H[1]× V[1] free on a square.

Note that the product H[1]×V[1] indeed gives a non-trivial square even if this square
is induced by two identity squares. If we denote by f : 0 → 1 the non-trivial horizontal
morphism in H[1] and by u : 0 1 the non-trivial vertical morphism in V[1], then the
identity squares ef at f and idu at u induce a non-trivial square

(0, 0) (0, 1)

(1, 0) (1, 1)

(f, 0)

(f, 1)

•(0, u) •(1, u)(ef , idu)

in the product H[1]× V[1]. Indeed, it can not be trivial since none of its boundaries are
trivial.

3.2. Cartesian closeness of DblCat. As mentioned in Proposition 3.1.6, the category
DblCat is complete. Hence, by Remark 1.1.4, it admits a symmetric monoidal struc-
ture given by the product × : DblCat × DblCat → DblCat. In this section, we show
that DblCat is cartesian closed by constructing an internal hom double category, for ev-
ery pair of double categories A and B, whose objects are double functors from A to B.
The horizontal and vertical morphisms in this double category are called horizontal and
vertical natural transformations and generalize the concept of 2-natural transformations.
Similarly, the squares are generalization of the concept of modifications between 2-natural
transformations.

We first introduce the horizontal morphisms of the internal hom double category.

Definition 3.2.1. Let F,G : A → B be double functors. A horizontal natural trans-
formation ϕ : F ⇒ G consists of

(i) a horizontal morphism ϕA : FA→ GA in B, for each object A ∈ A,
(ii) a square ϕu in B
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FA GA

FA′ GA′ ,

•Fu •Gu

ϕA

ϕA′

ϕu

for each vertical morphism u : A A′ in A,
such that
(hn1) for every object A ∈ A, we have ϕeA = eϕA : (eFA ϕA

ϕA eGA),
(hn2) for every pair of composable vertical morphisms u : A A′ and u′ : A′ A′′ in A,

the following pasting equality holds,

FA GA

FA′ GA′

FA′′ GA′′

ϕA

ϕA′

ϕA′′

•Fu •Gu

•Fu′ •Gu′

ϕu

ϕu′

FA GA

FA′′ GA′′

ϕA

ϕA′′

•F (u′u)= •G(u′u)ϕu′u

(hn3) for every square α : (u a
a′ w) in A, the following pasting equality holds.

FA FC

FA′ FC ′

GC

GC ′

•Fu •Fw •Gw

Fa

Fa′

ϕC

ϕC′

Fα ϕw

FA

=

GA

FA′ GA′

GC

GC ′

•Fu •Gu •Gw

ϕA

ϕA′

Ga

Ga′

ϕu Gα

The vertical morphisms of the internal hom double category can be obtained by trans-
posing all the notions above.

Definition 3.2.2. Let F, F ′ : A→ B be double functors. A vertical natural transfor-
mation ν : F F ′ consists of

(i) a vertical morphism νA : FA F ′A in B, for each object A ∈ A,
(ii) a square νa in B

FA FC

F ′A F ′C ,

•νA •νC

Fa

F ′a

νa

for each horizontal morphism a : A→ C in A,
such that
(vn1) for every object A ∈ A, we have νidA = idνA : (νA idFA

idF ′A
νA),

(vn2) for every pair of composable horizontal morphisms a : A→ C and c : C → E in A,
the following pasting equality holds,

FA FC

F ′A F ′C

FE

F ′E

•νA •νC •νE

Fa

F ′a

Fc

F ′c

νa νc

FA

=

FE

F ′A F ′E

•νA •νE

F (ca)

F ′(ca)

νca
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(vn3) for every square α : (u a
a′ w) in A, the following pasting equality holds.

FA FC

FA′ FC ′

F ′A′ F ′C ′

•Fu •Fw

F ′a′

Fa

Fa′

•νA′ •νC′

Fα

νa′

FA

=

FC

F ′A F ′C

F ′A′ F ′C ′

•νA •νC

F ′a′

Fa

F ′a

•F ′u •F ′w

νa

F ′α

Finally, a square whose horizontal boundaries are horizontal natural transformations
and vertical boundaries are vertical natural transformations is called a modification, and
is defined as follows.

Definition 3.2.3. Let F, F ′, G,G′ : A → B be double functors, let ϕ : F ⇒ G and
ϕ′ : F ′ ⇒ G′ be horizontal natural transformations, and let ν : F F ′ and ξ : G G′

be vertical natural transformations. A modification µ : (ν ϕ
ϕ′ ξ) in a square as below left

consists of a square µA : (νA ϕA
ϕ′A

ξA) in B as below right, for each object A ∈ A,

F G

F ′ G′

•ν •ξ

ϕ

ϕ′

µ

FA GA

F ′A G′A

•νA •ξA

ϕA

ϕ′A

µA

such that
(dm1) for every vertical morphism u : A A′ in A, the following pasting equality holds,

FA GA

FA′ GA′

F ′A′ G′A′

•Fu •Gu

ϕ′A′

ϕA

ϕA′

•νA′ ξA′

ϕu

µA′

FA

=

GA

F ′A G′A

F ′A′ G′A′

•νA •ξA

ϕ′A′

ϕA

ϕ′A

•F ′u •G′u

µA

ϕ′u

(dm2) for every horizontal morphism a : A → C in A, the following pasting equality
holds.

FA FC

F ′A F ′C

GC

G′C

•νA •νC •ξC

Fa

F ′a

ϕC

ϕ′C

νa µC

FA

=

GA

F ′A G′A

GC

G′C

•νA •ξA •ξC

ϕA

ϕ′A

Ga

G′a

µA ξa

All together, they form a double category of double functors.

Definition 3.2.4. Let A and B be double categories. The hom double category [A,B]
is the double category whose

(i) objects are double functors from A to B,
(ii) horizontal morphisms are horizontal natural transformations,
(iii) vertical morphisms are vertical natural transformations, and
(iv) squares are modifications.
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This hom double category is the internal hom for the cartesian structure on DblCat,
which shows that DblCat is cartesian closed.

Proposition 3.2.5. The category DblCat is cartesian closed with internal hom given by
[−,−], i.e., for every tuple of double categories A, B, and C, we have an isomorphism

DblCat(A, [B,C]) ∼= DblCat(A× B,C)

natural in A, B, and C. Furthermore, this isomorphism extends to an isomorphism of
double categories

[A, [B,C]] ∼= [A× B,C]
natural in A, B, and C.

Proof. By taking A to be the double category [0] free on an object, H[1] free on a hor-
izontal morphism, V[1] free on a vertical morphism, and H[1] × V[1] free on a square,
a double functor A × B → C is precisely a double functor B → C, a horizontal natural
transformation, a vertical natural transformation, and a modification, respectively. This
shows that there is a canonical isomorphism DblCat(A, [B,C]) ∼= DblCat(A×B,C) when
A ∈ {[0],H[1],V[1],H[1] × V[1]}. Since every double category can be obtained as a col-
imit of the double categories [0], H[1], V[1], and H[1]× V[1] by Remark 3.1.10, products
in DblCat commutes with colimits, and DblCat(−,−) sends colimits in the first variable
to limits, the result for a general double category A follows. The second statement follows
from Proposition 1.1.3. �

3.3. Gray tensor product for double categories. In analogy to how we obtained a
pseudo-natural transformation from a 2-natural transformation, we can define notions of
horizontal and vertical pseudo-natural transformations between double functors. The no-
tion of modification also extends to this pseudo-setting and we obtain a double category
of double functors, horizontal and vertical pseudo-natural transformations, and modifica-
tions. Similarly to the case of 2Cat, this new double category of double functors is also
the internal hom for a symmetric monoidal structure on DblCat, also called the Gray
tensor product. In this section, we introduce the pseudo-hom double categories and show
that there is a closed symmetric monoidal structure on DblCat with respect to these.

Let us first introduce horizontal pseudo-natural transformations between double func-
tors.

Definition 3.3.1. Let F,G : A→ B be double functors. A horizontal pseudo-natural
transformation ϕ : F ⇒ G consists of

(i) a horizontal morphism ϕA : FA→ GA in B, for each object A ∈ A,
(ii) a square ϕu : (Fu ϕA

ϕA′ Gu) in B, for each vertical morphism u : A A′ in A,
(iii) a vertically invertible square ϕa in B

FA GA GC

FA FC GC ,

ϕA Ga

Fa ϕC

• •ϕa

∼=

for each horizontal morphism a : A→ C in A,
such that ϕ satisfies (hn1-2) of Definition 3.2.1 and
(hpn3) for every object A ∈ A, we have ϕidA = eϕA : (eFA ϕA

ϕA eGA),
(hpn4) for every pair of composable horizontal morphisms a : A→ C and c : C → E in A,

the following pasting equality holds,
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FA GA GC

FA FC GC

GE

GE
Fa ϕC

Gc

Gc

ϕA Ga

• • •ϕa

∼=

eGc

FA FC FE GE
Fa Fc ϕE

• • •eFa ϕc

∼=

FA GA GE

FA FE GE

ϕA G(ca)

F (ca) ϕE

•= •ϕca

∼=

(hpn5) for every square α : (u a
a′ w) in A, the following pasting equality holds.

FA FC

FA′ FC ′

GC

GC ′

FA GA GC

•Fu •Fw •Gw

• •

ϕA Ga

Fa

Fa′

ϕC

ϕC′

Fα ϕw

ϕa

∼=

FA

=

GA

FA′ GA′

GC

GC ′

FA′ FC ′ GC ′

•Fu •Gu •Gw

• •

Fa′ ϕC′

ϕA

ϕA′

Ga

Ga′

ϕu Gα

ϕa′

∼=

Again, by transposing the above notions, we get the dual concept of vertical pseudo-
natural transformations.

Definition 3.3.2. Let F, F ′ : A → B be double functors. A vertical pseudo-natural
transformation ν : F F ′ consists of

(i) a vertical morphism νA : FA F ′A in B, for each object A ∈ A,
(ii) a square νa : (νA Fa

F ′a νC) in B, for each horizontal morphism a : A→ C in A,
(iii) a horizontally invertible square νu in B

FA

F ′A

F ′A′

FA

FA′

F ′A′ ,

•νA •Fu

•F ′u •νA′
νu

∼=

for every vertical morphism u : A A′ in A,

such that ν satisfies (vn1-2) of Definition 3.2.2 and

(vpn3) for every object A ∈ A, we have νeA = idνA : (νA idFA
idF ′A

νA),
(vpn4) for every pair of composable vertical morphisms u : A A′ and u′ : A′ A′′ in A,

the following pasting equality holds,
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FA

F ′A

F ′A′

F ′A′′

FA

FA′

F ′A′

•νA •Fu

•F ′u

•F ′u′

•νA′
νu

∼=

FA

F ′A′′

FA′

FA′′

F ′A′′

•Fu

•Fu′

•F ′u′ •νA′′idF ′u′

idFu

νu′
∼=

FA

F ′A=

F ′A′′

FA

FA′′

F ′A′′

•νA •F (u′u)

•F ′(u′u) •νA′′
νu′u

∼=

(vpn5) for every square α : (u a
a′ w) in A, the following pasting equality holds.

FA FC

FA′ FC ′

F ′A′ F ′C ′

FA

F ′A

F ′A′

•νA

•F ′u

•Fu •Fw

F ′a′

Fa

Fa′

•νA′ •νC′

Fα

νa′

νu

∼=

FA

=

FC

F ′A F ′C

F ′A′ F ′C ′

FC

FC ′

F ′C ′

•Fw

•νC′

•νA •νC

F ′a′

Fa

F ′a

•F ′u •F ′w

νa

F ′α

νw

∼=

Finally, modifications also generalize to this pseudo-setting as follows.

Definition 3.3.3. Let F, F ′, G,G′ : A → B be double functors, let ϕ : F ⇒ G and
ϕ′ : F ′ ⇒ G′ be horizontal pseudo-natural transformations, and let ν : F F ′ and
ξ : G G′ be vertical pseudo-natural transformations. A modification µ : (ν ϕ

ϕ′ ξ)
consists of a square µA : (νA ϕA

ϕ′A
ξA) in B, for each object A ∈ A, such that

(dmp1) for every vertical morphism u : A A′ in A, the following pasting equality holds,

FA GA

FA′ GA′

F ′A′ G′A′

FA

F ′A

F ′A′

•νA

•F ′u

•Fu •Gu

ϕ′A′

ϕA

ϕA′

•νA′ •ξA′

ϕu

µA′

νu

∼=

FA

=

GA

F ′A G′A

F ′A′ G′A′

GA

GA′

G′A′

•Gu

•ξA′

•νA •ξA

ϕ′A′

ϕA

ϕ′A

•F ′u •G′u

µA

ϕ′u

ξu

∼=

(dmp2) for every horizontal morphism a : A → C in A, the following pasting equality
holds.

FA FC

F ′A F ′C

GC

G′C

FA GA GC

•νA •νC •ξC

• •

ϕA Ga

Fa

F ′a

ϕC

ϕ′C

νa µC

ϕa

∼=

FA

=

GA

F ′A G′A

GC

G′C

F ′A F ′C G′C

•νA •ξA •ξC

• •

F ′a ϕ′C

ϕA

ϕ′A

Ga

G′a

µA ξa

ϕ′a

∼=

All together, they form a double category whose objects are double functors between
fixed double categories.
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Definition 3.3.4. Let A and B be double categories. The pseudo-hom double cate-
gory [A,B]ps is the double category whose

(i) objects are double functors from A to B,
(ii) horizontal morphisms are horizontal pseudo-natural transformations,
(iii) vertical morphisms are vertical pseudo-natural transformations, and
(iv) squares are modifications.

One can construct a symmetric monoidal product on DblCat, also called the Gray
tensor product, which is closed with respect to the above pseudo-homs. A description of
the Gray tensor product of two double categories can be found in Description 8.5.1.

Proposition 3.3.5. There is a closed symmetric monoidal product ⊗Gr on DblCat, called
the Gray tensor product, such that, for every tuple of double categories A, B, and C,
we have an isomorphism

DblCat(A, [B,C]ps) ∼= DblCat(A⊗Gr B,C)
natural in A, B, and C. Furthermore, this isomorphism extends to an isomorphism of
double categories

[A, [B,C]ps]ps ∼= [A⊗Gr B,C]ps

natural in A, B, and C.

Proof. The first part of the result follows from [Böh19, §3]. The second statement follows
from Proposition 1.1.3. �

3.4. Relations between 2-categories and double categories. As we have seen in
Definition 3.1.7, every 2-category induces a horizontal and a vertical double category. We
extend these constructions to functors H : 2Cat → DblCat and V : 2Cat → DblCat and
show that these embeddings admit both adjoints. In particular, the right adjoints are
given by sending a double category A to its underlying horizontal 2-category HA and its
underlying vertical 2-category VA, respectively, which are constructed by forgetting the
vertical and horizontal structure of the double category, respectively. The functor H will
be used to construct one of the model structures on DblCat by inducing it from Lack’s
model structure on 2Cat. However, since it only remembers the horizontal structure
of a double category, we also need another functor, which we introduce now, sending
a double category A to the 2-category VA, whose objects are the vertical morphisms
of A and whose morphisms are the squares of A; the 2-morphisms are as described in
Definition 3.4.9. We then use the pair of functors (H,V) : DblCat → 2Cat × 2Cat to
construct one of the model structures on DblCat in Section 7. Finally, we also introduce
here another embedding H' : 2Cat → DblCat, which gives a more homotopical version
of the horizontal embedding. Indeed, it sends a 2-category A to a double category H'A
whose underlying horizontal 2-category is still A, but its vertical morphisms are now given
by the adjoint equivalences in A, instead of just the identities.

Let us first introduce the horizontal embedding of 2Cat into DblCat.

Definition 3.4.1. We define the horizontal embedding functor H : 2Cat→ DblCat.
It sends a 2-category A to its associated horizontal double category HA as given in
Definition 3.1.7, and a 2-functor F : A → B to the double functor HF : HA → HB which
acts as F does on the corresponding data.

Remark 3.4.2. When restricted to the category Cat of categories and functors, the hori-
zontal embedding HU : Cat → DblCat corresponds to the functor Cat(Set) → Cat(Cat)
induced by the inclusion Set→ Cat.

This horizontal embedding has both adjoints. Its right adjoint is given by taking the
underlying horizontal 2-category of a double category.
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Definition 3.4.3. We define the functor H : DblCat → 2Cat. It sends a double cat-
egory A to its underlying horizontal 2-category HA with the same objects as A,
morphisms the horizontal morphisms of A, and 2-morphisms α : a ⇒ c given by the
squares in A of the form

A C

A C .

a

c

• •α

It sends a double functor F : A → B to the 2-functor HF : HA → HB which acts as F
does on the corresponding data.

The left adjoint of the horizontal embedding is constructed by identifying objects which
are related by a zig-zag of vertical morphisms. This is also an instance of applying the
path component functor π0 : Cat→ Set to the category of objects and vertical morphisms,
and then adapting the extra structure to this identification.

Definition 3.4.4. We define the functor L : DblCat→ 2Cat. It sends a double category A
to the 2-category LA whose objects are given by equivalence classes of objects of A
under the following relation: two objects are identified if and only if there is a zig-zag
of vertical morphisms between them. Morphisms and 2-morphisms in LA are generated
by the horizontal morphisms and squares of A, respectively. Then the functor L sends a
double functor F : A → B to the 2-functor LF : LA → LB which acts as F does on the
corresponding data.

We now show that L and H are indeed the left and right adjoints of H, respectively.

Proposition 3.4.5. The functors L, H, and H form adjunctions

2Cat DblCat .

L

H

H

⊥

⊥

Moreover, the counit of the adjunction L a H and the unit of the adjunction H a H are
identities. In particular, the functor H : 2Cat→ DblCat is a full embedding.

Proof. We first show that, for every 2-category C and every double category A, there is
an isomorphism

DblCat(A,HC) ∼= 2Cat(LA, C)
natural in C and A. Since every vertical morphism in HC is trivial, a double functor
F : A → HC sends every vertical morphism in A to a vertical identity. Hence it induces
a 2-functor F̂ : LA → C acting as F on the corresponding data, since two objects in
the same equivalence class must be sent to the same object of C by F . Conversely, if
G : LA→ C is a 2-functor, then it induces a double functor Ĝ : A→ HC which acts as G
on the corresponding data, and sends every vertical morphism to the vertical identity
of the image under G of its boundaries, which are in the same equivalence class. These
constructions are clearly inverse to each other and natural in C and A. Hence L a H is an
adjunction. Moreover, we have that LHC = C, for every 2-category C, since the double
category HC has only trivial vertical morphisms, and hence applying L does not identify
objects in C. This shows that the counit of L a H is an identity.

We now prove that, for every 2-category C and every double category A, there is an
isomorphism

DblCat(HC,A) ∼= 2Cat(C,HA)
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natural in C and A. Since every vertical morphism in HC is trivial, the image of a double
functor F : HC → A is included in the underlying horizontal 2-category of A and hence
it restricts to a 2-functor F̂ : C → HA. Conversely, every 2-functor G : C → HA induces
a double functor Ĝ : HC → A which acts as G on the corresponding data, and sends
the trivial vertical morphisms of HC to the corresponding trivial vertical morphisms of A.
These constructions are clearly inverse to each other and natural in C and A. Hence H a H
is an adjunction. Moreover, we clearly have that HHC = C, for every 2-category C, and
hence the unit of H a H is an identity. �

Dually, we can define the vertical embedding functor.

Definition 3.4.6. We define the vertical embedding functor V : 2Cat→ DblCat. It
sends a 2-category A to its associated vertical double category VA as given in Defini-
tion 3.1.7, and a 2-functor F : A → B to the double functor VF : VA → VB which acts
as F does on the corresponding data.

This vertical embedding has both a left and a right adjoint, which are constructed as
above, by transposing the horizontal and vertical data.

Definition 3.4.7. We define the functor V : DblCat → 2Cat. It sends a double cate-
gory A to its underlying vertical 2-category VA with the same objects as A, mor-
phisms the vertical morphisms of A, and 2-morphisms α : u ⇒ w given by the squares
in A of the form

A A

A′ A′ .

•u •wα

It sends a double functor F : A → B to the 2-functor VF : VA → VB which acts as F
does on the corresponding data.

Remark 3.4.8. By transposing the results in Proposition 3.4.5, one can show that the
functor V is right adjoint to V, and that this latter also admits a left adjoint.

We now introduce a functor V : DblCat→ 2Cat which extracts from a double category
a 2-category whose objects are the vertical morphisms and whose morphisms are the
squares. For this, recall that V[1] is the double category free on a vertical morphism.

Definition 3.4.9. We define the functor V : DblCat→ 2Cat to be
V := H[V[1],−] : DblCat −→ 2Cat.

More explicitly, it sends a double category A to the 2-category VA whose objects are the
vertical morphisms of A, and whose morphisms are the squares of A. A 2-morphism in VA
between parallel morphisms α : (u a

a′ w) and γ : (u c
c′ w) consists of squares σ0 : (eA a

c eC)
and σ1 : (eA′ a

′

c′ eC′) satisfying the following pasting equality in A.

A C

A C

A′ C ′

• •

a

c

•u •w

c′

σ0

γ

A C

A′= C ′

A′ C ′

• •

a

a′

•u •w

c′

α

σ1

In particular, since V is a composite of two right adjoints, it is also a right adjoint.
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Proposition 3.4.10. The functor V : DblCat → 2Cat has a left adjoint given by the
functor L := H(−)× V[1] : 2Cat→ DblCat, i.e., we have an adjunction

DblCat 2Cat .

L

V

⊥

Proof. Since V is given by the composite

DblCat DblCat 2Cat ,
[V[1],−] H

where the functor [V[1],−] is right adjoint to − × V[1] by Proposition 3.2.5 and Re-
mark 1.1.2, and the functor H is right adjoint to H by Proposition 3.4.5, it follows that
V is right adjoint to the composite L := H(−)× V[1] of the two left adjoints. �

Finally, we introduce the homotopical version of the horizontal embedding.

Definition 3.4.11. We define the functor H' : 2Cat→ DblCat. It sends a 2-category A
to the double category H'A with the same objects as A, horizontal morphisms the mor-
phisms of A, vertical morphisms the adjoint equivalences in A, and squares

A B

A′ B′

a

c

•u = (u, u′, ηu, εu) •w = (w,w′, ηw, εw)α

given by the 2-morphisms α : wa ⇒ cu in A, where (u, u′, ηu, εu) and (w,w′, ηw, εw) are
adjoint equivalences in A. Compositions of horizontal and vertical morphisms are induced
by the composition of morphisms and adjoint equivalences in A, and compositions of
squares are induced by the composition of 2-morphisms in A. Then the functor H' sends
a 2-functor F : A → B to the double functor H'F : H'A → H'B which acts as F does
on the corresponding data.

In particular, this functor admits a left adjoint, which we now define.

Definition 3.4.12. We define the functor L' : DblCat → 2Cat which sends a double
category A to the 2-category L'A whose

(i) objects are the objects of A,
(ii) morphisms are generated by

• a morphism a : A→ C, for each horizontal morphisms a : A→ C in A,
• two morphisms u : A → A′ and u′ : A′ → A, for each vertical morphism
u : A A′ in A,

(iii) 2-morphisms are generated by
• a 2-morphism α : wa⇒ a′u for each square α : (u a

a′ w) in A,
• 2-isomorphisms ηu : idA ∼= u′u and εu : uu′ ∼= idA′ satisfying the triangle
identities, for each vertical morphism u : A A′ in A,

submitted to minimal relations making the inclusion A→ H'L'A into a double functor.
The functor L' sends a double functor F : A → B to the 2-functor L'F : L'A → L'B
which acts as F does on the corresponding data. In particular, it sends an adjoint equiv-
alence (u, u′, ηu, εu) in L'A associated to a vertical morphism u in A to the adjoint
equivalence (Fu, Fu′, ηFu, εFu) in L'B associated to the vertical morphism Fu in B.

Remark 3.4.13. The relations on the morphisms in L'A expressed by the fact that the
inclusion A → H'L'A is a double functor can be interpreted as follows. Two copies
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of morphisms coming from horizontal morphisms compose as in A, and two copies of
adjoint equivalences coming from vertical morphisms compose as in A, while two copies
of morphisms with one coming from a horizontal morphism and one coming from a vertical
morphism compose freely.

Proposition 3.4.14. The functors H' and L' form an adjunction

2Cat DblCat .

L'

H'
⊥

Proof. We show that, for every 2-category C and every double category A, there is an
isomorphism

DblCat(A,H'C) ∼= 2Cat(L'A, C)
natural in C and A. A double functor F : A → H'C induces a 2-functor F̂ : L'A→ C
which acts as F on objects and on the morphisms of L'A coming from horizontal mor-
phisms in A, sends an adjoint equivalence (u, u′, ηu, εu) in L'A associated to a vertical
morphism u in A to the adjoint equivalence in C corresponding to the vertical mor-
phism Fu in H'C, and sends a 2-morphism in L'A coming from a square α in A to the
2-morphism in C corresponding to the square Fα in H'C. Conversely, if G : L'A → C
is a 2-functor, it induces a double functor Ĝ : A → H'C which acts as G on objects and
horizontal morphisms, sends a vertical morphism u in A to the vertical morphism in H'A
corresponding to the adjoint equivalence (Gu,Gu′, Gηu, Gεu) in C, and sends a square α
in A to the square in H'C corresponding to the 2-morphism Gα in C. These construc-
tions are clearly inverse to each other and natural in C and A. Hence L' a H' is an
adjunction. �

However, the functor H' does not have a right adjoint, since it does not preserve
colimits, as we now show.

Remark 3.4.15. The functor H' does not have a right adjoint since it does not preserve
colimits. To see this, consider the following span of 2-categories B ← A → C. We set A
to be the 2-category with two objects 0 and 1, and freely generated by two morphisms
f : 0 → 1 and g : 1 → 0 and two 2-morphisms η : id0 ⇒ gf and ε : fg ⇒ id1. Then let B
be the category obtained from A by inverting the 2-morphism η, and C be the category
obtained from A by inverting the 2-morphism ε. Then the pushout B tA C contains
an equivalence (f, g, η, ε) and hence the double category H'(B tA C) contains a vertical
morphism induced by this equivalence (or the corresponding adjoint equivalence given
by Proposition 2.4.4). However, the double categories H'A, H'B, and H'C do not have
non-trivial vertical morphisms, since there are no equivalences in A, B, and C. This shows
that H' does not preserve pushouts.

3.5. 2Cat-enrichment of DblCat. By considering the underlying horizontal 2-category
of the pseudo-hom double categories defined in Definition 3.3.4, we obtain an enrichment
of DblCat over 2Cat endowed with the closed symmetric monoidal structure given by
the Gray tensor product ⊗2 (see Proposition 2.3.4). Furthermore, this enrichment is
tensored and cotensored, where the tensoring functor is given by restricting the Gray
tensor product along the horizontal embedding in one variable. We are considering this
enrichment here, since we will show that both model structures that we construct on
DblCat are 2Cat-enriched with respect to this enrichment. In this section, we first show
that this induces a tensored and cotensored enrichment of DblCat over 2Cat, and then
we compare the pseudo-hom 2-categories given by this enrichment with the pseudo-homs
of 2Cat. These technical results are useful in Section 7 when constructing one of the
model structures on DblCat.
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We first define tensors of double categories over 2Cat.

Definition 3.5.1. We define the tensoring functor ⊗ : DblCat×2Cat→ DblCat to be
the composite

DblCat× 2Cat DblCat×DblCat DblCat ,
id×H ⊗Gr

where ⊗Gr is the Gray tensor product on DblCat as defined in Proposition 3.3.5.

We show that this gives a 2Cat-enrichment of DblCat with hom 2-categories given
by the underlying horizontal 2-categories of the pseudo-hom double category [−,−]ps
introduced in Definition 3.3.4.

Proposition 3.5.2. The category DblCat is a tensored and cotensored 2Cat-enriched
category with

(i) hom 2-categories given by H[A,B]ps, for every pair of double categories A and B,
(ii) tensors given by A ⊗ C := A ⊗Gr HC, for every double category A and every 2-

category C,
(iii) cotensors given by [HC,B]ps, for every double category B and every 2-category C.

Proof. Let A and B be double categories and C be a 2-category. We have isomorphisms
DblCat(A⊗ C,B) = DblCat(A⊗Gr HC,B) ∼= DblCat(HC ⊗Gr A,B)

∼= DblCat(HC, [A,B]ps) ∼= 2Cat(C,H[A,B]ps)
natural in C, A, and B, by definition of the Gray tensor product ⊗Gr in Proposition 3.3.5,
the fact that it is symmetric, and the adjunction H a H of Proposition 3.4.5. Furthermore,
we also have an isomorphism

DblCat(A⊗ C,B) = DblCat(A⊗Gr HC,B) ∼= DblCat(A, [HC,B]ps)
natural in C, A, and B, by Proposition 3.3.5. Then, by definition of ⊗, associativity
of ⊗Gr, and Corollary 3.5.7 below, we have isomorphisms
(A⊗ C)⊗D = (A⊗Gr HC)⊗D ∼= A⊗Gr (HC ⊗ D) ∼= A⊗Gr H(C ⊗2 D) ∼= A⊗ (C ⊗2 D)
natural in C, D, and A. Hence, it follows from Corollary 1.1.16 that DblCat is tensored
and cotensored over 2Cat. �

First, we note that the underlying horizontal 2-category of the pseudo-hom double
category out of a vertical double category is the same as the underlying horizontal 2-
category of the strict hom double category. Hence, this tells us that we could have
equivalently defined the functors V : DblCat→ 2Cat of Definition 3.4.9 as the composite
of the pseudo-hom [V[1],−]ps out of the vertical morphism with H, instead of the strict
hom [V[1],−] with H.

Lemma 3.5.3. For every 2-category A and every double category B, the 2-categories
H[VA,B]ps and H[VA,B] coincide.

Proof. Given a 2-category A and a double category B, we show that the underlying
horizontal 2-categories H[VA,B]ps and H[VA,B] coincide. First note that they have the
same objects by definition. Then, since every horizontal morphism in VA is trivial, it is
straightforward to see that a horizontal pseudo-natural transformation between double
functors VA → B is a strict one, as every vertically invertible square component associated
to a horizontal identity is trivial by (hpn3) of Definition 3.3.1. It is then clear that the
2-morphisms – given by the adapted version of modifications – in both 2-categories are
the same by comparing Definitions 3.2.3 and 3.3.3. �

As a direct consequence, we can see that tensoring with a vertical double category is
equivalently given by taking the product with this vertical double category.
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Corollary 3.5.4. For every pair of 2-categories A and C, there is an isomorphism of
double categories VA⊗ C ∼= VA×HC natural in A and C.

Proof. For every pair of 2-categories A and C, and every double category B, we have
isomorphisms

DblCat(VA⊗ C,B) ∼= 2Cat(C,H[VA,B]ps) = 2Cat(C,H[VA,B])
∼= DblCat(HC, [VA,B]) ∼= DblCat(HC × VA,B)
∼= DblCat(VA×HC,B)

natural in A, C, and B, where the first isomorphism follows from Proposition 3.5.2, the
second from Lemma 3.5.3, the third from the adjunction H a H of Proposition 3.4.5, the
fourth from Proposition 3.2.5, and the last one holds by symmetry of the product. By the
Yoneda Lemma, we get an isomorphism of double categories VA⊗C ∼= VA×HC natural
in A and C, as desired. �

Remark 3.5.5. The above results implies that, for every 2-category A, we have an isomor-
phism of double categories LA = V[1]×HA ∼= V[1]⊗A natural in A, where L is the left
adjoint of the functor V : DblCat→ 2Cat given by Proposition 3.4.10.

We now compare the hom 2-categories of the 2Cat-enrichment of DblCat with the
pseudo-hom 2-categories of 2Cat. The following lemma tells us that the adjunction H a H
extends to an enriched adjunction between DblCat with the 2Cat-enrichment given by
H[−,−]ps and the 2Cat-enrichment given by the Gray tensor product on 2Cat.

Lemma 3.5.6. For every 2-category A and every double category B, there is an isomor-
phism of 2-categories H[HA,B]ps ∼= [A,HB]2,ps natural in A and B.

Proof. Given a 2-category A and a double category B, we want to show that there is
an isomorphism of 2-categories H[HA,B]ps ∼= [A,HB]2,ps natural in A and B. First
note that, by the adjunction H a H of Proposition 3.4.5, there is an isomorphism be-
tween the underlying sets of objects DblCat(HA,B) ∼= 2Cat(A,HB) natural in A and B.
Then, since HA has no non trivial vertical morphisms, it is straightforward to see that
a horizontal pseudo-natural transformation of double functors HA → B corresponds to a
pseudo-natural transformation of 2-functors A → HB as every square component associ-
ated to a trivial vertical morphism is trivial by (hn1) of Definition 3.2.1. The rest of the
data is the same and this can be seen by comparing Definitions 2.3.1 and 3.3.1. Similarly,
one can check that modifications of double functors HA → B correspond to modifications
of 2-functors A → HB by comparing Definitions 2.3.2 and 3.3.3. �

As a direct consequence, we can see that tensoring with a horizontal double category
is given by the horizontal double category associated to the Gray tensor product of 2-
categories. In other words, the functor H : 2Cat → DblCat preserves the Gray tensor
products.

Corollary 3.5.7. For every pair of 2-categories A and C, there is an isomorphism of
double categories HA⊗ C ∼= H(A⊗2 C) natural in A and C.

Proof. For every pair of 2-categories A and C, and every double category B, we have
isomorphisms

DblCat(HA⊗ C,B) ∼= 2Cat(C,H[HA,B]ps) ∼= 2Cat(C, [A,HB]2,ps)
∼= 2Cat(C ⊗2 A,HB) ∼= 2Cat(A⊗2 C,HB)
∼= DblCat(H(A⊗2 C),B)

natural in A, C, and B, where the first isomorphism follows from Proposition 3.5.2, the
second from Lemma 3.5.6, the third from Proposition 2.3.4, the fourth from the fact
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that ⊗2 is symmetric, and the last one from the adjunction H a H of Proposition 3.4.5.
By the Yoneda Lemma, we get an isomorphism of double categories HA⊗C ∼= H(A⊗2 C)
natural in A and C, as desired. �

Finally, we show that the functor V of Definition 3.4.9 also commutes with pseudo-hom
in the same way that H does.

Corollary 3.5.8. For every 2-category A and every double category B, there is an iso-
morphism of 2-categories V[HA,B]ps ∼= [A,VB]2,ps natural in A and B.

Proof. Given a 2-category A and a double category B, we have isomorphisms

V[HA,B]ps = H[V[1], [HA,B]ps] = H[V[1], [HA,B]ps]ps
∼= H[V[1]⊗Gr HA,B]ps ∼= H[HA, [V[1],B]ps]ps
∼= [A,H[V[1],B]ps]2,ps = [A,H[V[1],B]]2,ps = [A,VB]2,ps

natural in A and B, where the equalities hold by definition of V (see Definition 3.4.9) and
Lemma 3.5.3, and the first isomorphism follows from Proposition 3.3.5, the second from
the symmetry of the Gray tensor product and Proposition 3.3.5, and the last one from
Lemma 3.5.6. �

3.6. Weak horizontal invertibility in a double category. In this last section on
double categories, we introduce notions of weak invertibility for horizontal morphisms
and squares in a double category A. Since these correspond to the morphisms of the
induced 2-categories HA and VA, respectively, we can define a horizontal equivalence and
a weakly horizontally invertible square to be an equivalence (see Definition 2.4.1) in the
2-category HA and VA, respectively. We also introduce weakly horizontally invariant
double categories, which will be the fibrant objects of the model structure on DblCat
of Section 8. We study more carefully the behavior of weakly horizontally invertible
squares. In particular, we show that weakly horizontally invertible squares in the double
categories HA and H'A correspond to 2-isomorphisms in the 2-category A. Finally, we
introduce horizontal pseudo-natural equivalences as the horizontal pseudo-natural trans-
formations whose square components are weakly horizontally invertible. In analogy to the
case of pseudo-natural equivalences of Proposition 2.4.5, they correspond to the horizontal
equivalences in pseudo-hom double category.

Let us first define horizontal (adjoint) equivalences.

Definition 3.6.1. Let A be a double category. A horizontal morphism a : A → C
in A is a horizontal equivalence if it is an equivalence in the underlying horizontal
2-category HA. In other words, there is a tuple (a, c, η, ε) with c : C → A a horizontal
morphism in A and η, ε two vertically invertible squares in A of the form

A

A C A

A

,

• •

a c

η

∼=

C

C A C

C .

• •

c a

ε

∼=

Furthermore, the horizontal morphism a : A→ B is a horizontal adjoint equivalence
if it is an adjoint equivalence in HA, i.e., if the vertically invertible squares η and ε further
satisfy the following triangle identities.
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A

A C A

A C

C

• • •
a

c

a

a

η

∼=

ea

A C Ca

• • •ε

∼=

ea

A C

A C

•= •

a

a

ea

A

A C A

AC

C

• ••

a
c

c

c

η

∼=

ec

C AC c

• •• ε

∼=

ec

C A

C A

•= •

c

c

ec

We often denote by a : A '−→ C a horizontal (adjoint) equivalence in A.

By considering equivalences in the 2-category VA, we can define weakly horizontally
invertible squares in A.

Definition 3.6.2. Let A be a double category. A square α : (u a
a′ w) in A is weakly

horizontally invertible if it is an equivalence in the 2-category VA. In other words,
if there is a square γ : (w c

c′ u) in A together with vertically invertible squares (η, ε) and
(η′, ε′) satisfying the following pasting equalities.

A

A C A

A

• •
a c

η

∼=

A′ C ′ A′

•u •w •u

a′ c′

α γ

A

= A′

A′ C ′ A′

A′

A

• •

a′ c′

•u •uidu

η′

∼=

C

C A C

C

C ′ C ′

• •

•w •w

c a

idw

ε

∼=

C

=

A C

C ′

C ′

A′ C ′

C ′

• •

•w •u •w

c′ a′

c a

γ α

ε′

∼=

Note that the horizontal boundaries of the square α are horizontal equivalences (a, c, η, ε)
and (a′, c′, η′, ε′), called the horizontal equivalence data of α. We call γ a weak
inverse of α with respect to the horizontal equivalence data (a, c, η, ε) and (a′, c′, η′, ε′).

We often write
A C

A′ C ′

a

a′

•u •wα '
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to denote that the square α is weakly horizontally invertible in A.
Remark 3.6.3. Note that a square α is an adjoint equivalence in VA if and only if it is
weakly horizontally invertible and its horizontal equivalence data are horizontal adjoint
equivalences. In this case, we call them the horizontal adjoint equivalence data of α.

As a direct consequence of the 2-categorical result saying that any equivalence in a
2-category can be promoted to an adjoint equivalence (see Proposition 2.4.4), we get that
horizontal equivalences can be promoted to an adjoint one and, similarly, that a weakly
horizontally invertible square can be promoted to one whose horizontal equivalence data
is an adjoint one.
Lemma 3.6.4. Let A be a double category. Every horizontal equivalence in A can be pro-
moted to a horizontal adjoint equivalence. Moreover, every weakly horizontally invertible
square in A can be promoted to one with horizontal adjoint equivalence data.
Proof. Since horizontal equivalences and weakly horizontally invertible squares are equiv-
alences in the 2-categories HA and VA, respectively, this result is a direct consequence of
Proposition 2.4.4. �

With this terminology, we can introduce a “weak” version of the horizontally invariant
double categories introduced by Grandis and Paré in [GP99, §2.4]. These weakly hori-
zontally invariant double categories will be the fibrant objects in the model structure on
DblCat constructed in Section 8, and were first introduced in [MSV20b].
Definition 3.6.5. A double category A is weakly horizontally invariant if, for every
pair of horizontal equivalences a : A '−→ C and a′ : A′ '−→ C ′ in A and every vertical
morphism w : C C ′ in A, i.e., for every diagram in A as depicted below left, there is a
vertical morphism u : A A′ in A together with a weakly horizontally invertible square α
in A as depicted below right.

A C

A′ C ′

a
'

a′
'

•w

A C

A′ C ′

a
'

a′
'

•u •wα '

We now prove some technical results about weakly horizontally invertible squares The
first result says that, given a weakly horizontally invertible square α and horizontal adjoint
equivalence data for its horizontal boundaries, we can define a weak inverse to α with
respect to these horizontal adjoint equivalences, and that this weak inverse is unique.
Proposition 3.6.6. Let A be a double category, and let α be a weakly horizontally in-
vertible square in A of the form

A C

A′ C ′ .

a

a′

•u •wα '

Let (a, c, η, ε) and (a′, c′, η′, ε′) be horizontal adjoint equivalence data in A for the horizontal
equivalences a and a′. Then there is a unique weak inverse

C A

C ′ A′

c

c′

•w •uγ
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of α in A with respect to the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′).

Proof. Since every weakly horizontally invertible square can be promoted to one with
horizontal adjoint equivalence data by Lemma 3.6.4, there is a weak inverse β : (w b

b′ u)
of α in A with respect to horizontal adjoint equivalence data (a, b, µ, δ) and (a′, b′, µ′, δ′).
We define γ : (w c

c′ u) to be the square given by the following pasting.

C A

C ′ A′

c

c′

•w •uγ

C

C A C A

C A
c

b a
c

• • •ecδ−1 ∼=
C

=

A A
b

• • •eb η−1 ∼=

C ′ A′ A′
b′

•w •u •uβ idu

C ′ A′ C ′ A′
b′ a′

c′

• • •eb′ η′

∼=

C ′ C ′ A′
c′

• • •ec′δ′

∼=

We verify that γ is a weak inverse of α with respect to the horizontal adjoint equivalence
data (a, c, η, ε) and (a′, c′, η′, ε′). We have that

A

A C A

A

• •
a c

η

∼=

A′ C ′ A′

•u •w •u

a′ c′

α γ

A′ A′

• •(η′)−1 ∼=

A C

A C A C A

C A
a

a

c

b a
c

• • • •ea ecδ−1 ∼=

A A

• •η

∼=

A C

=

A A
a b

• • • •ea eb η−1 ∼=

A′ C ′ A′ A′
a′ b′

•u •w •u •uα β idu

A′ C ′ A′ C ′ A′
a′ b′ a′

c′

• • • •ea′ eb′ η′

∼=

A′ C ′ C ′ A′
a′ c′

• • • •ea′ ec′δ′

∼=

A′ A′

• •(η′)−1 ∼=
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A C

A C A C A

C A
a

a

c

b a c

• • • •ea ecδ−1 ∼=

A A

• •η

∼=

A A A

• • •µ−1 ∼= η−1 ∼=

A′ A′ A′

•u= •u •uidu idu

A′ C ′ A′ C ′ A′
a′ b′ a′ c′

• • •µ′

∼=

η′
∼=

A′ C ′ C ′ A′
a′ c′

• • • •ea′ ec′δ′
∼=

A′ A′

• •(η′)−1 ∼=

A

A′

=

A

A′ ,

•u •uidu

where the first equality holds by definition of γ, the second since β is a weak inverse of α
with respect to the horizontal adjoint equivalence data (a, b, µ, δ) and (a′, b′, µ′, δ′), and
the last one by the triangle identities for (µ, δ) and (µ′, δ′) and the fact that η−1 and (η′)−1

are the vertical inverses of η and η′, respectively. Similarly, we have that

C

C A C

C

C ′

C ′

A′ C ′

C ′

• •

• •

•w •u •w

c′ a′

c a

ε−1 ∼=

γ α

ε′

∼=

C

C A C A C

C C

b a c a

• • •δ−1 ∼= ε−1 ∼=

C A A C
b a

• • • •eb eaη−1 ∼=

C ′ A′ A′ C ′
b′ a′

•w •u •u •wβ idu α

C ′

=

A′ C ′ A′ C ′
b′ a′ c′ a′

• • • •eb′ ea′η′

∼=

C ′ C ′ C ′

• • •δ′

∼=

ε′

∼=
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C

C A C

C

C ′

C ′

A′ C ′

C ′

• •

• •

•w= •u •w

b′ a′

b a

δ−1 ∼=

β α

δ′

∼=

C

C ′

=

C

C ′ ,

•w •widw

where the first equality holds by definition of γ, the second by the triangle identities for
(η, ε) and (η′, ε′), and the last one since β is a weak inverse of α with respect to the
horizontal adjoint equivalence data (a, b, µ, δ) and (a′, b′, µ′, δ′). This shows that γ is a
weak inverse of α with respect to the horizontal adjoint equivalence data (a, c, η, ε) and
(a′, c′, η′, ε′), and hence the existence of a weak inverse for α with respect to the horizontal
adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′).

We now prove uniqueness. Suppose that γ′ : (w c
c′ u) is another weak inverse of α with

respect to the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′). Then we
have that

C A

C ′ A′

c

c′

•w •uγ′

C

=

A

C ′ A′

A

A′

c

c′

•w •u •uγ′ idu

C

C

=

C ′

C ′

A

A C A

A

• ••

•

a c

c

c

ec η

∼=

A′ C ′ A′

•w •u •w •u

a′ c′c′

γ′ α γ

A′ A′

• •

c′

ec′ (η′)−1 ∼=

C

C A C A

C A

C ′

C ′

A′ C ′ A′

C ′ A′

•

•

• •

• •

•w= •u •w •u

c′ a′

c a

c

c

c′

c′

ε−1 ∼= ec

ec′

γ′ α γ

ε′

∼=

C

C ′

=

C A

C ′ A′

c

c′

•w •w •uidw γ

C A

C ′

=

A′ ,

c

c′

•w •uγ

where the second equality holds since γ is a weak inverse of α with respect to the horizontal
adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′), the third one by the triangle identities
for (η, ε) and (η′, ε′), and the fourth one since γ′ is a weak inverse of α with respect to
the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε). This shows that γ′ = γ
and that the weak inverse of α with respect to the horizontal adjoint equivalence data
(a, c, η, ε) and (a′, c′, η′, ε′) is unique. �
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We now show that a square with trivial vertical boundaries is weakly horizontally
invertible if and only if it is vertically invertible. In particular, since the horizontal
double category HA associated to a 2-category A has only trivial vertical morphisms, its
weakly horizontally invertible squares correspond to the 2-isomorphisms in A.

Proposition 3.6.7. Consider a square α in a double category A of the form

A C

A C ,

a
'

a′
'

• •α

where a and a′ are horizontal equivalences. Then the square α is weakly horizontally
invertible if and only if it is vertically invertible.

Proof. Suppose first that α is weakly horizontally invertible. Let (a, c, η, ε) and (a′, c′, η′, ε′)
be horizontal adjoint equivalence data for a and a′, and let γ : (eC c

c′ eA) be the unique
weak inverse of α, given by Proposition 3.6.6, with respect the horizontal adjoint equiva-
lence data (a, c, η, ε) and (a′, c′, η′, ε′). We define β to be the following pasting.

A C

A C

a′

a

• •β

A

A

=

C A C

A C

• • •

a′

a c a′

η

∼=

ea′

A C A C

• • • •

a c′ a′

ea′ea γ

A C C

• • •

a

ea ε′

∼=

We now verify that β is the vertical inverse of α by showing that both vertical composites
of α and β give the vertical identity square at a and a′, respectively. We have that

A C

A C

A C

a

a′

a

• •

• •

α

β

A

A C A C

A C

• • •

a

a c a

η

∼=

ea

A C A C

•= • • •

a c′ a′

αea γ

A C C

• • •

a

ea ε′

∼=
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A

A= C A

A C

C

• • •
a

c

a

a

η

∼=

ea

A C Ca

• • •ε

∼=

ea

A C

A C ,

•= •

a

a

ea

where the first equality holds by definition of β, the second since γ is the weak inverse
of α with respect to the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′),
and the last one by the triangle identities for (η, ε). Similarly, one can show that the other
vertical composite of β and α is ea′ , using the other relation saying that (α, γ) are weak
inverses with respect to the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′),
and the triangle identities for (η′, ε′). This shows that the square β is a vertical inverse
of α and hence that the square α is vertically invertible.

Now suppose that α is vertically invertible with vertical inverse α−1. Let (a, c, η, ε) be
horizontal equivalence data for a. Then the data (a′, c, η′, ε′) is a horizontal equivalence
data for a′, where the vertically invertible squares η′ and ε′ are given by the following
pasting equalities.

A

A C A

A

• •

a′ c

η′

∼=
A

A= C A

A

• •
a c

η

∼=

A C A

• • •

a′ c

α

∼=

ec

C

C A C

C

• •

c a′

ε′

∼=

C A C

C=

C

A C

C

• •

• • •

c a

c a′

ec α−1 ∼=

ε

∼=

It is then straightforward to see that the vertical identity square ec is a weak inverse of α
with respect to the horizontal equivalence data (a, c, η, ε) and (a′, c, η′, ε′). This shows
that α is weakly horizontally invertible. �

We now show that a square in the double category H'A associated to a 2-category A
is weakly horizontally invertible if and only if it is induced by a 2-isomorphism in A.

Lemma 3.6.8. Let A be a 2-category and let α be a square in H'A of the form

A C

A′ C ′ ,

a
'

a′
'

•u = (u, u′, ηu, εu) •w = (w,w′, ηw, εw)α
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where the horizontal morphisms a and a′ are equivalences in A, and the vertical morphisms
u and w in H'A are induced by the adjoint equivalences (u, u′, ηu, εu) and (w,w′, ηw, εw)
in A. Then α is weakly horizontally invertible if and only if its associated 2-morphism
α : wa⇒ a′u is a 2-isomorphism.

Proof. First note that, by definition of H'A, the square α in H'A corresponds to a 2-
morphism α : wa⇒ a′u in A, which also gives rise to a square α in H'A, defined as the
following pasting

A C C ′

A A′ C ′

a

a′u

w

• •α

A

=

A

A C

A′ C ′

C ′

C ′ ,

• •

a

a′u

w

•u •wαidu idw

where the squares idu and idw are induced by the identity 2-morphisms in A at u and w,
respectively. Note that the composites wa and a′u are horizontal equivalences in H'A.
We show that α is weakly horizontally invertible if and only if α is weakly horizontally
invertible, and then conclude by applying Proposition 3.6.7.

Let (a, c, η, ε) and (a′, c′, η′, ε′) be adjoint equivalence data in A for a and a′. Suppose
that α is weakly horizontally invertible, and let γ be its weak inverse in H'A, given by
Proposition 3.6.6,

C A

C ′ A′

c

c′

•w •uγ

with respect to the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′). We
define γ to be the following pasting of squares in H'A

C ′ C A

C ′ A′ A

w′

u′c′

c

• •γ

C ′

C ′

=

C A

C ′ A′ A

A

,

w′

u′c′

c

• ••w •uεw γ ηu

where the squares εw and ηu are induced by the 2-isomorphisms εw : ww′ ⇒ idC′ and
ηu : idA ⇒ u′u of A. We show that γ is a weak inverse for the square α with respect to
the composite of the horizontal adjoint equivalence data of (a, c, η, ε) with (w,w′, ηw, εw),
and of (u, u′, ηu, εu) with (a′, c′, η′, ε′). We have that

A C

A C C ′ C A

C A
a

a

c

w w′ c

• • • •ea ecηw

∼=

A A

• •η

∼=

A A′ C ′ A′ Au a′ c′ u′

• • •α γ



42 LYNE MOSER

A A C

A A C C ′ C A

C A A

A

a

a

c

w w′ c

•= • • • • •�A ea ec �Aηw

∼=

A A A A

• •• •�A η

∼=

�A

A A′ C ′ C ′ C ′ A′ Au a′ c′ u′

•u •w• • ••w •uidu α idw εw γ ηu

A

A=

A

A C A

A A

A

• • • •
a c

�A η

∼=

�A

A A′ C ′ A′ A

•u •w •u

u a′ c′ u′

• •idu α γ ηu

A= C

A C C ′ C A

C A

,

u

u

u′

a′ c′ u′

• • • •eu eu′η′

∼=

A A

• •ηu

∼=

where the first equality holds by definition of α and γ, the second by the triangle identities
for (ηw, εw), and the third since γ is the weak inverse of α with respect to the horizontal
adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′) and by rearranging the square. The
other relation involving the counits can be shown similarly. Hence γ is a weak inverse
of α, and this shows that α is weakly horizontally invertible.

Now suppose that the square α is weakly horizontally invertible, and let γ be its weak
inverse in H'A, given by Proposition 3.6.6,

C ′ C A

C ′ A′ A

w′

u′c′

c

• •γ

with respect to the composite of the horizontal adjoint equivalence data (a, c, η, ε) and
(w,w′, ηw, εw), and the composite of the horizontal adjoint equivalence data (u, u′, ηu, εu)
and (a′, c′, η′, ε′). We define γ to be the following pasting of squares in H'A

C A

C ′ A′

c

c′

•w •uγ

C C

C ′

=

C A

A

C ′

C ′

A′ A

A′ ,A′
c′

•w •

c

•

• • •u

• •
c′ u′

w′ c

ηw ec

γ

ec′ εu
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where the squares ηw and εu are induced by the 2-isomorphisms ηw : idC ⇒ w′w and
εu : uu′ ⇒ idA′ of A. We show that γ is a weak inverse for the square α with respect to
the horizontal adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′). We have that

A

A C A

A

• •
a c

η

∼=

A′ C ′ A′

•u •w •u

a′ c′

α γ

A

=

C C

A C C ′ C A

C A
a

a

c

w w′ c

• • •w • •ea ecidw ηw

A A

• •η

∼=

A A′ C ′ A′ A
u a′ c′ u′

• • •α γ

A′ A′ C ′ A′ A′
a′ c′

•u •u• • •idu ea′ ec′ εu

A

A= A′

A′ A′ C ′ A′ A′

A′ A

A

u u′

a′ c′

• •

•u • • •u

ηu

∼=

η′

∼=idu εu

A

= A′

A′ C ′ A′ ,

A′

A

• •

a′ c′

•u •uidu

η′

∼=

where the first equality holds by definition of γ and by the relation between α and α,
the second since γ is a weak inverse of α with respect to the composites of the horizon-
tal adjoint equivalence data of (a, c, η, ε) with (w,w′, ηw, εw), and of (u, u′, ηu, εu) with
(a′, c′, η′, ε′), and the third by the triangle identities for (ηu, εu). The other relation in-
volving the counits can be shown similarly. Hence γ is a weak inverse of α, and this shows
that α is weakly horizontally invertible.

We have seen that the square α is weakly horizontally invertible if and only if α is
weakly horizontally invertible. By Proposition 3.6.7, since the vertical boundaries of α
are trivial, this holds if and only if α is vertically invertible, which in turns holds if
and only if the corresponding 2-morphism α : wa ⇒ a′u is a 2-isomorphism in A. This
concludes the proof. �

As a consequence of this result, we can see that the weakly horizontally invertible
squares in a double category A induce 2-isomorphisms in the induced 2-category L'A,
where L' is the left adjoint of the homotopical horizontal embedding H' (see Defini-
tion 3.4.12 and Proposition 3.4.14).

Lemma 3.6.9. Let A be a double category.
(i) If a : A '−→ C is a horizontal equivalence in A, then the corresponding morphism

a : A '−→ C in L'A is an equivalence.
(ii) If α : (u a

a′ w) is a weakly horizontally invertible square in A, then the correspond-
ing 2-morphism α : wa⇒ a′u in L'A is a 2-isomorphism, where u and w are the
equivalences in L'A induced by the vertical morphisms u and w of A.
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Proof. We first prove (i). Let (a, c, η, ε) be a horizontal equivalence in A. Then, by
construction of L'A, there are corresponding morphisms a and c, and corresponding 2-
isomorphisms η : idA ⇒ ca and ε : ac ⇒ idC in L'A. Hence this shows that (a, c, η, ε) is
an equivalence in L'A.

Now suppose that we have a weakly horizontally invertible square α in A as in (ii). Its
horizontal boundaries a and a′ are horizontal equivalences in A, and hence they are also
equivalences in L'A by (i). Let (u, u′, ηu, εu) and (w,w′, ηw, εw) be the adjoint equivalence
data in L'A induced by the vertical morphisms u and w of A. Then, the square α induces
a 2-morphism α : wa ⇒ a′u in L'A, which itself induces a square α in H'L'A of the
form

A C

A′ C ′ ,

a

a′

•(u, u′, ηu, εu) •(w,w′, ηw, εw)α '

where a and a′ are equivalences in L'A. The relations expressing the fact that α is weakly
horizontally invertible in A translate to relations in H'L'A, which imply that the corre-
sponding square α is weakly horizontally invertible in H'L'A. Hence, by Lemma 3.6.8,
we get that the associated 2-morphism α : wa⇒ a′u is a 2-isomorphism in L'A. �

Finally, we prove that a horizontal equivalence in the pseudo-hom double category
of Definition 3.3.4 is precisely a horizontal pseudo-natural transformation whose square
components are weakly horizontally invertible squares.

Proposition 3.6.10. Let F,G : A → B be double functors. A horizontal pseudo-natural
transformation ϕ : F ⇒ G is a horizontal equivalence in [A,B]ps if and only if, for every
vertical morphism u : A A′ in A, its square component ϕu : (Fu ϕA

ϕA′ Gu) is a weakly
horizontally invertible square in B. In particular, for every object A ∈ A, its horizontal
morphism component ϕA : FA→ GA is a horizontal equivalence in B.

Proof. Suppose first that ϕ : F ⇒ G is a horizontal equivalence in [A,B]ps. Then there
is a horizontal equivalence data (ϕ,ψ, η, ε) in [A,B]ps for ϕ. By evaluating this data at
an object A ∈ A, we get a horizontal equivalence (ϕA, ψA, ηA, εA) in B. Moreover, the
relations satisfied by the vertically invertible modifications η and ε, as given in (dmp1) of
Definition 3.3.3 – or similarly by (dm1) of Definition 3.2.3 since the vertical boundaries
of η and ε are trivial –, tell us that the squares (ϕu, ψu) are weak inverses with respect to
the horizontal equivalence data (ϕA, ψA, ηA, εA) and (ϕA′ , ψA′ , ηA′ , εA′), for every vertical
morphism u : A A′ in A. This shows that ϕ is such that its square component ϕu is
weakly horizontally invertible in B, for every vertical morphism u : A A′ in A.

Now suppose that ϕ : F ⇒ G is such that its square component ϕu : (Fu ϕA
ϕA′ Gu) is

weakly horizontally invertible in B, for every vertical morphism u : A A′ in A. Then,
its horizontal morphism component ϕA : FA → GA is a horizontal equivalence in B, for
every object A ∈ A, since it is the horizontal boundary of a weakly horizontally invertible
square. Let us fix horizontal adjoint equivalence data (ϕA, ψA, ηA, εA) in B, for each object
A ∈ A. We define a horizontal pseudo-natural transformation ψ : G ⇒ F and two modi-
fications η and ε in [A,B]ps, such that (ϕ,ψ, η, ε) is a horizontal adjoint equivalence data
for ϕ in [A,B]ps. Given a vertical morphism u : A A′ in B, we define ψu : (Gu ψA

ψA′
Fu)

to be the unique weak inverse of ϕu in B, given by Proposition 3.6.6, with respect to the
horizontal adjoint equivalence data (ϕA, ψA, ηA, εA) and (ϕA′ , ψA′ , ηA′ , εA′). It is straight-
forward to see that ψ satisfies (hn1-2) of Definition 3.2.1, since ϕ satisfies these conditions
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and by the fact that the weak inverse of ϕu with respect to the horizontal adjoint equiv-
alence data (ϕA, ψA, ηA, εA) and (ϕA′ , ψA′ , ηA′ , εA′) is unique by Proposition 3.6.6. Given
a horizontal morphism a : A→ C in A, we define ψa to be the vertically invertible square
in B given by the following pasting.

GA FA FC

GA GC FC

ψA Fa

Ga ψC

• •ψa

∼=

GA

=

GA

FA FC GC

FA GA GC

FC

FC

ψA

Fa

ϕC ψC

ψA ϕA

Ga

ψC

• •• •eψA eψCϕ−1
a

∼=

GA FA FC FC
ψA Fa

• • • •eψA eFa ηC
∼=

GA GA GC FC
ψAGa

• • • •eGa eψCεA
∼=

The fact that ψ satisfies (hpn3-4) of Definition 3.3.1 follows from the triangles identities
for (ηA, εA), for all objects A ∈ A, and the fact that ϕ satisfies these conditions. Finally,
(hpn5) of Definition 3.3.1 for ψ follows from the fact that (ϕu, ψu) are weak inverses with
respect to the horizontal adjoint equivalence data (ϕA, ψA, ηA, εA) and (ϕA′ , ψA′ , ηA′ , εA′),
for all vertical morphisms u : A A′, and the fact that ϕ satisfies this condition. More-
over, the squares ηA and εA, for all objects A ∈ A, assemble into vertically invertible
modifications η and ε in [A,B]ps, as desired. This shows that (ϕ,ψ, η, ε) is a horizontal
adjoint equivalence data for ϕ in [A,B]ps, and this concludes the proof. �

Definition 3.6.11. Let F,G : A → B be double functors. A horizontal pseudo-natural
transformation ϕ : F ⇒ G which satisfies the conditions of Proposition 3.6.10 is called
a horizontal pseudo-natural equivalence. We say that ϕ is a horizontal pseudo-
natural adjoint equivalence if it is a horizontal adjoint equivalence in the pseudo-
hom double category [A,B]ps, or equivalently, if, for every object A ∈ A, its horizontal
morphism component ϕA : FA→ GA is a horizontal adjoint equivalence in B.





PART II.

BACKGROUND ON MODEL CATEGORIES

Model categories provide a good environment to do homotopy theory. While in a
category, two objects are considered to be “the same” if they are isomorphic, model
categories allow us to relax this notion of sameness. Indeed, in a model category, there is
a class of morphisms, called weak equivalences, which is used to compare two objects of the
ambient category. For example, a good notion of a weak equivalence between categories
is that of an equivalence of categories – defined as a functor which has an inverse up
to natural isomorphisms –, rather than that of an isomorphism of categories. A more
geometric example is given by that of topological spaces, where a continuous map is a
weak equivalence if it induces isomorphisms between homotopy groups in all dimensions.

In particular, from a model category, we can construct its homotopy category, which
is given by localizing at the class of weak equivalences. Hence, in this homotopy cate-
gory, two objects are isomorphic if and only if they are weakly equivalent in the model
category we started with. In particular, the homotopy category of a model category is
obtained by restricting to the cofibrant-fibrant objects, and by taking homotopy classes
of morphisms between these objects. We therefore often call a model category after its
class of (cofibrant-)fibrant objects. Furthermore, there is a notion of a Quillen equiva-
lence between model categories which allows us to interpret the homotopy theories of two
different model categories as being the same. In particular, a Quillen equivalence induces
an equivalence between homotopy categories, which motivates the fact that it gives a
homotopical version of an equivalence.

Model categories were actually introduced by Quillen [Qui67] to axiomatize the homo-
topy theory of topological spaces mentioned above. In particular, Quillen constructs a
model structure on the category of simplicial sets which models the homotopy theory of
spaces, in the sense that there is a Quillen equivalence between the model structure on
topological spaces and Quillen’s model structure on simplicial sets. Moreover, the fibrant
objects in this model structure on simplicial sets are the Kan complexes and, since the
homotopy category whose objects are Kan complexes is equivalent to that of topological
spaces, we often refer to the Kan complexes as “spaces”.

Model categories provide the language we use in this thesis to prove the desired the-
orems. In order to compare 2-categories, double categories, and their ∞-analogues, we
construct model categories in which each of these notions corresponds to the fibrant ob-
jects, and we compare the model categories using homotopical analogues of adjunctions
between categories.

In Section 4, we first recall the basic definition of the theory of model categories. We
also explain how to construct the homotopy category of a model category, and give the
homotopical version of adjunctions between model categories, called Quillen pairs. In
particular, a Quillen pair induces an adjunction between the homotopy categories, which
shows that it models the correct homotopical notion. We also introduce at the end of
Section 4, enriched and monoidal categories, which are model structures on the underlying
category of a tensored, cotensored, and enriched (or closed monoidal) category satisfying
the pushout-product axiom. In particular, all model structures considered in this thesis
are enriched and/or monoidal.
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Then, in Section 5, we recall two constructions of model categories. The first one is
given by inducing a model structure on a category from another model category along
an adjunction. These are called left- and right-induced model structures, depending on
whether we induce the model structure along a left or a right adjoint, and the results
are based on work by Garner, Hess, Kȩdziorek, Riehl, and Shipley in [HKRS17, GKR20].
The second one is given by localizing a model category at a set of morphisms, and is
called a left Bousfield localization. The results of this section are based on Hirschhorn’s
book [Hir03] and Werndli’s thesis [Wer16]. However, we restrict ourselves here to the
case of a model category enriched over the model structure on simplicial sets for Kan
complexes mentioned above, since we will only apply this theorem in such a context.
This construction is very useful to restrict the class of fibrant objects of a model structure
to a smaller class, and will be used in Part IV. to build model structures whose fibrant
objects are the (∞, 2)-categories and the double (∞, 1)-categories, respectively.

4. Model categories

A model category contains three classes of morphisms, called weak equivalences, cofi-
brations, and fibrations. A cofibration which is also a weak equivalence is then called a
trivial cofibration and, similarly, a fibration which is also a weak equivalence is a trivial
fibration. Cofibrations and trivial fibrations, as well as trivial cofibrations and fibrations,
form weak factorization systems. In Section 4.1, we first introduce model categories, using
this terminology. In particular, we prove some classical results about weak factorization
systems, which will be used throughout this thesis. We also introduce cofibrant and fibrant
objects which are such that the unique morphism from the initial object is a cofibration
and the unique morphism to the terminal object is a fibration, respectively.

Often, the weak factorization systems of a model category are cofibrantly generated, in
the sense that there is a set of cofibrations and a set of trivial cofibrations which generate
the whole class of such. In Section 4.2, we introduce this property, which can also be
defined for any weak factorization system. We then prove the small object argument,
which says that the weak factorization system generated by any set of morphisms in
a locally presentable category always exists, based on results by [Hir03]. Most of the
model structures considered in this thesis are cofibrantly generated, which is a very useful
condition in practice since we can often restrict our attention to the sets of generating
(trivial) cofibrations to prove a result for all (trivial) cofibrations.

Then, in Section 4.3, we construct the homotopy category of a model category. This
homotopy category is given by restricting to the cofibrant-fibrant objects, and taking
homotopy classes of morphisms between such objects. In particular, a Whitehead The-
orem for model categories tells us that the weak equivalences between cofibrant-fibrant
objects are precisely the homotopy equivalences, i.e., the morphisms which have an inverse
up to homotopy. This ensures that they correspond to the invertible morphisms in the
homotopy category.

After having introduced the main definitions about model categories, we define in Sec-
tion 4.4 the notion of a Quillen pair, which gives a homotopical version of an adjunction.
Indeed, we show that a Quillen pair induces an adjunction between homotopy categories.
We also introduce Quillen reflections, co-reflections, and equivalences, and show that
they induce the corresponding 1-categorical notion between homotopy categories, which
justifies their definitions. In particular, a Quillen equivalence gives the right type of com-
parison to identify two homotopy theories. The results of Sections 4.3 and 4.4 are based
on [DS95].

Finally, in Section 4.5, we study enriched model categories. These are model structures
on the underlying category of an enriched, tensored, and cotensored category satisfying
an additional axiom, called the pushout-product axiom. In particular, when we have
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a model structure on a closed monoidal category which is enriched over itself, we say
that the model structure is monoidal. In Part I., we have seen that the categories 2Cat
of 2-categories and DblCat double categories both admit a closed symmetric monoidal
structure given by the Gray tensor product, and that DblCat is also tensored, cotensored,
and enriched over 2Cat. In Part III., we will see that the model structure on 2Cat is
monoidal with respect to the Gray tensor product, and that both model structures on
DblCat are enriched over 2Cat. The second-constructed model structure on DblCat is
further monoidal with respect to the Gray tensor product for double categories.

4.1. Model categories via weak factorization systems. Traditionally, a model cate-
gory is defined to be a category equipped with three classes of morphisms – called cofibra-
tions, fibrations, and weak equivalences – which satisfy several axioms. In particular, the
class of cofibrations and the class of fibrations which are also weak equivalences – called
trivial fibrations – form a weak factorization system: every morphism of the ambient cat-
egory can be factored into a cofibration followed by a trivial fibration, and cofibrations
are precisely the morphisms which have the left lifting property with respect to trivial
fibrations, and dually. Similarly, the class of trivial cofibrations and the class of fibrations
also form a weak factorization system. Therefore, weak factorization systems allow us to
give a more concise definition of model categories and this is the approach that we are
taking here.

Let us first recall what we mean by a lifting property.

Definition 4.1.1. LetM be a category and let l : A→ B and r : X → Y be morphisms
inM. If, in every commutative square inM of the form

A

B

X

Y ,

f

g

l rh

there is a lift h : B → X with hl = f and rh = g, we say that l has the left lifting
property with respect to r, or equivalently, that r has the right lifting property with
respect to l.

Given a class C of morphisms in M, we say that a morphism f in M has the left
(resp. right) lifting property with respect to C if f has the left (resp. right) lifting
property with respect to each morphism in C.

Notation 4.1.2. Let C be a class of morphisms in a categoryM. We denote by �C the
class of morphisms inM which have the left lifting property with respect to C, and by C�

the class of morphisms inM which have the right lifting property with respect to C.

Using these notations, a weak factorization system on a category is defined as follows.

Definition 4.1.3. LetM be a category. A weak factorization system (L,R) onM
consists of two classes L and R of morphisms inM satisfying the following conditions.
(wfs1) Every morphism f inM can be factored as f = rl with l ∈ L and r ∈ R.
(wfs2) We have that L = �R and R = L�.

Since the left and right classes of a weak factorization system are defined by lifting
properties against each other, we can show that they satisfy the following properties.
Before stating these properties, we first recall the notion of a transfinite composition of
morphisms.

Definition 4.1.4. LetM be a category and λ be an ordinal. A transfinite composition
of morphisms inM is a sequence of composable morphisms
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A0 A1 A2 · · · Aµ Aµ+1 · · · Aκ · · · ,
l0 l1 lµ

for all ordinals µ < λ, such that, for every limit ordinal κ < λ, the unique morphism
colimµ<κAµ → Aκ is an isomorphism. Let us denote by ιµ : Aµ → colimµ<λAµ the leg of
the colimit cone, for µ < λ. Then the morphism ι0 : A0 → colimµ<λAµ is the composite
of the transfinite composition.

Proposition 4.1.5. Let (L,R) be a weak factorization system on a categoryM. Then the
classes L and R contain isomorphisms, and are closed under compositions and retracts.
Furthermore,

(i) the left class L is closed under coproducts, pushouts, and transfinite compositions,
(ii) the right class R is closed under products and pullbacks.

Proof. We prove the results for the left class L, and those for the right class R can be
proven dually. In the proof, to show that a certain morphism is contained in L, we always
show that it has the left lifting property with respect to every morphism in R, i.e., that
it is in �R = L.

We first prove that L contains isomorphisms. Let l : A
∼=−→ B be an isomorphism inM

and write l−1 : B → A for its inverse. Let r : X → Y be a morphism in R and consider a
commutative square inM of the form

A

B

X

Y .

f

g

l rfl−1

Then the composite fl−1 : B → X is a lift in this diagram since we have fl−1l = f and
rfl−1 = gll−1 = g. Hence l ∈ L.

We now show that L is closed under compositions. Let l : A → B and k : B → C be
morphisms in L. Let r : X → Y be a morphism in R and consider a commutative diagram
inM of the form

A

B

C

X

Y .

f

l

k

r

g

h

h′

Since l has the left lifting property with respect to r, there is a lift h : B → X such that
hl = f and rh = gk. Then, since k has the left lifting property with respect to r, there is
a lift h′ : C → X such that h′k = h and rh′ = g. Then h′ is the desired lift for kl. Hence
kl ∈ L.

We now show that L is closed under retracts. Let l : A → B be a morphism in L and
suppose that k : C → D is a retract of l through the following commutative diagram.
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C A

D B

C

D
j

k l

i s

t

k

Let r : X → Y be a morphism in R and consider a commutative square in M as below
left. We compose it with the right-hand commutative square of the above diagram, as
depicted below right.

C

D

X

Y

f

g

k rhj

A

B

C

D

X

Y

s

t

l k

f

g

rh

Since l has the left lifting property with respect to r, there is a lift h : B → X in the above
right diagram such that hl = fs and rh = gt. Then, the composite hj : D → X is a lift
in the above left diagram, since hjk = hli = fsi = f and rhj = gtj = g. Hence k ∈ L.

We now show that L is closed under coproducts. Let {li : Ai → Bi | i ∈ I} be a
collection of morphisms in L such that their coproduct

⊔
i∈I li :

⊔
i∈I Ai →

⊔
i∈I Bi exists.

Let r : X → Y be a morphism in R and consider a commutative square in M as below
left. We compose it with the inclusion morphisms of Ai and Bi into the coproducts, for
every i ∈ I, as depicted below right.

⊔
i∈I Ai

⊔
i∈I Bi

X

Y

f

g

⊔
i∈I li rh

Ai

Bi

⊔
i∈I Ai

⊔
i∈I Bi

X

Y

ιAi

ιBi

li
⊔
i∈I li

f

g

rhi

Since, for every i ∈ I, the morphism li is in L, there is a lift hi : Bi → X in the above
right diagram such that hili = fιAi and rhi = gιBi . By the universal property of the
coproduct

⊔
i∈I Bi, there is a unique morphism h :

⊔
i∈I Bi → X such that hιBi = hi, for

all i ∈ I. Then h(
⊔
i∈I li)ιAi = hιBi li = hili = fιAi and rhιBi = rhi = gιBi and this gives

h(
⊔
i∈I li) = f and rh = g by uniqueness of such morphisms. Hence h is a lift in the above

left diagram and
⊔
i∈I li ∈ L.

We now show that L is closed under pushouts. Let l : A→ B be a morphism in L and
suppose that k : C → D is a pushout of l through the following pushout diagram.

A

B

C

D

p

q

l k

p

Let r : X → Y be a morphism in R and consider a commutative square in M as below
left. We compose it with the above pushout square, as depicted below right.
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C

D

X

Y

f

g

k rh′

A

B

C

D

X

Y

p

q

l k

f

g

rh

p

Since l has the left lifting property with respect to r, there is a lift h : B → X in the
above right diagram such that hl = fp and rh = gq. By the universal property of the
pushout, since hl = fp, there is a unique morphism h′ : D → X such that h′k = f and
h′q = h. Then rh′k = rf = gk and rh′q = rh = gq and hence rh′ = g by uniqueness of
such a morphism. Hence h′ is a lift in the above left diagram and k ∈ L.

We finally show that L is closed under transfinite compositions. Let λ be an ordinal
and suppose that we have a transfinite composition of morphisms

A0 A1 A2 · · · Aµ Aµ+1 · · · Aκ · · ·l0 l1 lµ

such that lµ : Aµ → Aµ+1 is in L, for all ordinals µ < λ. We show that the composite
ι0 : A0 → colimµ<λAµ is in L. Let r : X → Y be a morphism in R and consider a
commutative square of the form

A0

colimµ<λAµ

X

Y .

f

g

ι0 rh

We build a lift h : colimµ<λAµ → X in this diagram by transfinite induction. In other
words, we construct a morphism hµ : Aµ → X such that rhµ = gιµ, for each µ < λ. First,
we set h0 = f : A0 → X and we indeed have rf = gι0. Given µ + 1 < λ a successor
ordinal, consider the following commutative square

Aµ

Aµ+1

X

Y ,

hµ

gιµ+1

lµ r
hµ+1

which commutes since, by induction hypothesis, rhµ = gιµ = gιµ+1lµ. Since lµ is in L,
there is a lift hµ+1 : Aµ+1 → X in the above diagram with hµ+1lµ = hµ and rhµ+1 = gιµ+1.
Now given κ < λ a limit ordinal, let us denote by ικµ : Aµ → Aκ ∼= colimµ<κAµ the leg of
the colimit cone, for µ < κ. We set hκ : Aκ → X to be the unique morphism such that
hκι

κ
µ = hµ, for all µ < κ. In particular, since rhκικµ = rhµ = gιµ = gικι

κ
µ for every µ < κ,

we have rhκ = gικ by uniqueness of such a morphism. Finally, we set h : colimµ<λAµ → X
to be the unique morphism such that hιµ = hµ, for all µ < λ. It is indeed a lift in the
first diagram as hι0 = h0 = f and, since rhιµ = rhµ = gιµ, for all µ < λ, then rh = g by
uniqueness of such a morphism. Hence ι0 ∈ L. �

We now prove the following “retract argument”, which is very useful when trying to
prove that a certain morphism is contained in the left or right class of a weak factorization
system, since these are closed under retracts by the above result.

Proposition 4.1.6 (Retract argument). Let f : A→ B be a morphism in a categoryM
which factors as
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A

C

B .
f

i p

(i) If f has the left lifting property with respect to p, then f is a retract of i of the
form

A A

B C

A

B .
k

f i

p

f

(ii) If f has the right lifting property with respect to i, then f is a retract of p of the
form

A C

B B

A

B .

f p

i r

f

Proof. We prove the first statement. Since f has the left lifting property with respect
to p, there is a lift k : B → C in the following commutative square.

A

B

C

B

i

f pk

This gives the desired retract since pk = idB, pi = f , and kf = i.
The second statement can be proven dually. �

We are now ready to give the definition of a model category in terms of its weak
factorization systems.

Definition 4.1.7. Amodel category is a complete and cocomplete categoryM together
with three classes of morphisms inM,

(i) a class C of cofibrations ( ),
(ii) a class F of fibrations ( ), and
(iii) a class W of weak equivalences ( ∼ ),

satisfying the following conditions.
(mc1) The classW satisfies the 2-out-of-3 property, i.e., given two composable morphisms

f and g inM, if two out of the three morphisms f , g, and gf are in W, then so
is the third.

(mc2) The pairs (C,F ∩W) and (C ∩W,F) are weak factorization systems onM.
We say that (C,F ,W) is a model structure on M. We denote by (M, C,F ,W) or
simply byM the data of a model category.

Definition 4.1.8. Let (M, C,F ,W) be a model category. A morphism in C ∩W is called
a trivial cofibration ( ∼ ), and a morphism in F ∩ W is called a trivial fibration
( ∼ ).
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In particular, the class of weak equivalences of a model category is closed under compo-
sitions by one instance of the 2-out-of-3 property, and it contains all isomorphisms since
C ∩ W ⊆ W and C ∩ W contains all isomorphisms by Proposition 4.1.5. We can further
show that it is closed under retracts. The proof is taken from [Joy08, Proposition E.1.3].

Proposition 4.1.9. Let (M, C,F ,W) be a model category. Then the class W of weak
equivalences is closed under retracts.

Proof. Let f : X ∼
Y be a weak equivalence in M and suppose that g : A → B is a

retract of f through the following commutative diagram.

A X

B Y

A

B
l

g f

∼

k r

s

g

Since (C ∩W,F) is a weak factorization system, we can factor the morphism g as

A

C

B
g

j
∼

p

with j a trivial cofibration and p a fibration. We then consider the pushout P of j along
k and we obtain a commutative diagram

A X

C P
p

A

C

B Y B ,

j

∼

j′

∼

k r

k′

j

∼

p f ′ p

l s

h

f

∼

where h : P → C and f ′ : P → Y are the unique morphisms given by the universal property
of the pushout such that hk′ = idC , hj′ = jr, f ′k′ = lp, and f ′j′ = f . Note that j′ is a
trivial cofibration, since it is the pushout of a trivial cofibration and this class is closed
under pushouts by Proposition 4.1.5. Moreover, note that the right-below square of the
above diagram commutes, since phj′ = pjr = gr = sf = sf ′j′ and phk′ = p = slp = sf ′k′

and hence ph = sh′ by uniqueness of such a morphism. By the 2-out-of-3 property, since
f and j′ are weak equivalences, then so is f ′. Hence the pasting of the two bottom squares
tells us that the fibration p is a retract of the weak equivalence f ′. As before, we can
factor f ′ as

P

Z

Y
f ′

∼

i
∼

q
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with i a trivial cofibration and q a fibration. By the 2-out-of-3 property, we also have
that q is a weak equivalence, and hence a trivial fibration. Since p is a fibration and i is
a trivial cofibration, there is a lift t : Z → C in the following commutative diagram.

P

Z Y B

C
h

q
∼

i

∼

s

pt

Since qik′ = f ′k′ = lp and tik′ = hk′ = idC , the following diagram also commutes.

C Z

B Y

C

B
l

p q

∼

ik′ t

s

p

This shows that p is a retract of q and, since the class F ∩W of trivial fibrations is closed
under retracts by Proposition 4.1.5, it follows that p is a trivial fibration. Finally, since
g = pj is a composite of weak equivalences, it is also a weak equivalence by the 2-out-of-3
property. �

Since a model category is cocomplete and complete, it admits both an initial object and
a terminal object. There are then two classes of objects of interest in a model category,
given by requiring that the unique map from the initial object or to the terminal object
be a cofibration or a fibration, respectively.

Definition 4.1.10. Let M be a model category. An object X ∈ M is said to be cofi-
brant if the unique morphism ∅ → X from the initial object ∅ ofM is a cofibration. An
object X ∈M is said to be fibrant if the unique morphism X → ∗ to the terminal object
∗ ofM is a fibration.

4.2. Generating sets. Model categories are often cofibrantly generated, in the sense
that they admit sets of generating cofibrations and generating trivial cofibrations which
generate the whole classes of such under transfinite compositions, pushouts, and retracts.
In particular, if the ambient category is locally presentable, cofibrantly generated model
categories have nice factorizations into a cofibration (resp. trivial cofibration) followed by
a trivial fibration (resp. fibration). The construction of such factorizations is given by the
small object argument. Some of the results in this section are taken from [Hir03, §10].

In a more general framework, a weak factorization system is said to be cofibrantly
generated when its left class is generated by a set of morphisms.

Definition 4.2.1. Let M be a category. A weak factorization system (L,R) on M is
cofibrantly generated if there is a set I of morphisms in M such that R = I�. We
call I a generating set of morphisms in L. In this case, note that L = �(I�).

Remark 4.2.2. If (L,R) is a cofibrantly generated weak factorization system with gener-
ating set I, then L = �(I�) and therefore I ⊆ L.

Notation 4.2.3. Given a set I of morphisms in a category M, we write I−inj := I�

and I−cof := �(I−inj) = �(I�). We call a morphism in I−inj an I-injective and a
morphism in I−cof an I-cofibration.
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By requiring both weak factorization systems of a model category to be cofibrantly
generated, we get the notion of a cofibrantly generated model category.

Definition 4.2.4. A model category (M, C,F ,W) is cofibrantly generated if the weak
factorization systems (C,F∩W) and (C∩W,F) are cofibrantly generated, with generating
sets I and J , respectively. A morphism in I ⊆ C is called a generating cofibration
and a morphism in J ⊆ C ∩W is called a generating trivial cofibration.

In particular, a combinatorial model category is defined as a locally presentable cat-
egory endowed with a model structure whose weak factorization systems are cofibrantly
generated.

Definition 4.2.5. A model categoryM is combinatorial if it is locally presentable and
cofibrantly generated.

Under these hypotheses, the weak factorization systems of a combinatorial model struc-
ture always come with a functorial factorization of its morphisms into a cofibration fol-
lowed by a trivial fibration, and into a trivial cofibration followed by a fibration. Let us
first make precise what we mean by a functorial factorization.

Definition 4.2.6. Let M be a category. A weak factorization system (L,R) on M is
functorial if there is a functor M[1] → M[2] which sends a morphism f in M to a
factorization f = rl of f into morphisms l ∈ L and r ∈ R.

By the small object argument, given a set I of morphisms in a locally presentable
category M, the weak factorization system generated by this set always exists and is
functorial. In particular, every morphism in the category splits as a relative I-cell com-
plex, as defined below, followed by a morphism in I−inj.

Definition 4.2.7. Let I be a set of morphisms in a categoryM. A morphism inM is
a relative I-cell complex if it is a transfinite composition of pushouts of morphisms
in I. We denote by I−cell the class of relative I-cell complexes inM.

Remark 4.2.8. Since the class I−cof is closed under pushouts and transfinite compositions
by Proposition 4.1.5, and it contains I, there is an inclusion I−cell ⊆ I−cof.

Before proving the small object argument for locally presentable categories, we give
this lemma which tells us that coproducts of morphisms in I can be seen as transfinite
compositions of pushouts of morphisms in I. This appears as [Hir03, Proposition 10.2.7].

Lemma 4.2.9. Let I be a set of morphisms in a locally presentable category M and let
{is : As → Bs | s ∈ S} be a family of morphisms in I. Then the coproduct⊔

s∈S
is :

⊔
s∈S

As →
⊔
s∈S

Bs

is the composite of a transfinite composition of pushouts of the morphisms is.

Proof. Choose a well-ordering of the set S. Then there is a unique ordinal λ with an
order-preserving isomorphism S ∼= λ. We write iµ : Aµ → Bµ, for µ < λ + 1, for the
morphism corresponding to is : As → Bs, for s ∈ S, under the isomorphism S ∼= λ. We
define a transfinite composition of pushouts of the morphisms iµ as follows.

X0 X1 X2 · · · Xµ Xµ+1 · · · Xκ · · ·l0 l1 lµ

We set Xµ :=
(⊔

µ≤α<λ+1Aα
)⊔(⊔

α<µBα
)
and lµ : Xµ → Xµ+1 to be the morphism in-

duced by iµ : Aµ → Bµ, for every µ < λ+1. Note that the morphism lµ : Xµ → Xµ+1 is the
pushout of iµ : Aµ → Bµ along the inclusion Aµ → Xµ :=

(⊔
µ≤α<λ+1Aα

)⊔(⊔
α<µBα

)
,
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for every µ < λ+ 1. Moreover, we have that the composite of the transfinite composition
X0 → colimµ<λ+1Xµ is the coproduct

⊔
µ<λ+1 iµ :

⊔
µ<λ+1Aµ →

⊔
µ<λ+1Bµ. This shows

the result. �

We are finally ready to state and prove the small object argument for locally presentable
categories. This appears as [Hir03, Proposition 10.5.16]

Proposition 4.2.10 (Small object argument). Let I be a set of morphisms in a locally
presentable category M. There is a functorial weak factorization system (I−cof, I−inj).
In particular, every morphism inM factors as a morphism in I−cell followed by a mor-
phism in I−inj.

Proof. SinceM is locally presentable, we can choose an ordinal λ such that all the domains
of morphisms in I are λ-small. Let f : X → Y be a morphism in M. We define by
transfinite induction a factorization of f as

X

Cµ

Y ,
f

jµ pµ

where jµ is in I−cell, for every µ < λ. For µ = 0, we set C0 = X, j0 = idX and p0 = f .
Let 0 < µ+ 1 < λ be a successor ordinal and let Aµ be the collection of all commutative
squares inM of the form

A

B

Cµ

Y

g

h

i pµ

with i : A→ B a morphism in I. We define Cµ+1 to be the following pushout.

⊔
Aµ A

⊔
Aµ B

Cµ

Cµ+1

⊔
Aµ g

qµ+1

⊔
Aµ i iµ

Y

pµ+1

⊔
Aµ h

pµp

By definition of Aµ, the outside square commutes, and hence there is a unique morphism
pµ+1 : Cµ+1 → Y such that pµ+1iµ = pµ and pµ+1qµ+1 =

⊔
Aµ h. We set jµ+1 : X → Cµ+1

to be the composite jµ+1 = iµjµ, which is in I−cell since jµ is in I−cell by induction
hypothesis and iµ is in I−cell by Lemma 4.2.9. Then pµ+1jµ+1 = pµ+1iµjµ = pµjµ = f
and this gives a factorization of f as desired. Now let κ < λ be a successor ordinal. We
set Cκ = colimµ<κCµ and we denote by ικµ : Cµ → Cκ the leg of the colimit cone for µ < κ.
We set jκ := ικ0 : X → Cκ where we recall that X = C0. By the universal property of
the colimit, there is a unique morphism pκ : Cκ → Y such that pκικµ = pµ for all µ < κ.
Then, we have pκjκ = pκι

κ
0 = p0 = f and this gives a factorization of f as desired, since

jκ ∈ I−cell as it is a transfinite composition of the morphisms iµ ∈ I−cell for µ < κ.
Now let C := colimµ<λCµ and let us denote by iµ : Cµ → C the leg of the colimit cone at
µ < λ. We get a factorization of f as
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X

C

Y ,
f

j p

where j := ι0 : X = C0 → C and p : C → Y is the unique morphism given by the
universal property of the colimit such that pιµ = pµ. By construction, it is clear that the
morphism j is a relative I-cell complex. We show that p is an I-injective, i.e., that it has
the right lifting property with respect to every morphism in I. Consider a commutative
square

A

B

C

Y

g

h

i pl

with i : A → B a morphism in I. We want to find a lift l : B → C in this diagram.
Since the domain A of i is λ-small and C is a λ-filtered colimit of {Cµ}, the morphism
g : A → C factors through Cµ, for some µ < λ, i.e., we have a commutative triangle as
below left. This gives a commutative square as below right since pιµ = pµ.

A

Cµ

C
g

ĝ ιµ

A

B

Cµ

Y

ĝ

h

i pµ

Note that this commutative square is in Aµ, and therefore we can consider the inclusions
kA : A →

⊔
Aµ A and kB : B →

⊔
Aµ B at its components. We define l : B → C to be the

composite

B
⊔
Aµ B Cµ+1 C .

kB qµ+1 ιµ+1

Then l gives the desired lift since pl = pιµ+1qµ+1kB = pµ+1qµ+1kB = (
⊔
Aµ h)kB = h and

li = ιµ+1qµ+1kBi = ιµ+1qµ+1(
⊔
Aµ i)kA = ιµ+1iµ(

⊔
Aµ g)kA = ιµ+1iµĝ = ιµĝ = g. This

shows that p is in I−inj. Moreover, it is clear by construction that this factorization is
functorial. �

As a direct consequence of this result, we get functorial factorizations in any combina-
torial model structure.

Corollary 4.2.11. Let (M, C,F ,W) be a combinatorial model category. Then the weak
factorization systems (C,F ∩W) and (C ∩W,F) are functorial.

Proof. Since the model structure onM is cofibrantly generated, there are sets I and J
of morphisms inM such that

(C,F ∩W) = (I−cof, I−inj) and (C ∩W,F) = (J−cof,J−inj).

SinceM is locally presentable, the result then follows from Proposition 4.2.10. �

Finally, it follows from the factorization given by the small object argument and from
the retract argument, that every I-cofibration is a retract of a relative I-cell complex.
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Proposition 4.2.12. Let I be a set of morphisms in a locally presentable category M.
Then every morphism i : A→ B in I−cof is a retract of a morphism j : A→ C in I−cell
of the form

A A

B C

A

B .
k

i j

p

i

Proof. Let i : A → B be a morphism in I−cof. By the small object argument (see
Proposition 4.2.10), we can factor i as

A

C

B
i

j p

with j ∈ I−cell and p ∈ I−inj. Since i has the left lifting property with respect to p, it
is a retract of j of the desired form by the retract argument (see Proposition 4.1.6). �

4.3. Whitehead Theorem and homotopy category. Weak equivalences in a model
category are interpreted as the morphisms which are “homotopically invertible”. Indeed,
a Whitehead Theorem for model categories characterizes the weak equivalences between
objects which are both fibrant and cofibrant as the morphisms which admit an inverse
up to homotopy. Such a notion of weak equivalence therefore gives a “weaker” version of
an isomorphism, which is often better to study the relations between objects in a cate-
gory. For example, an equivalence of categories is a more appropriate notion of invertible
morphism in the category Cat, than that of isomorphisms. Given a model category, we
can localize it at its class of weak equivalences and then study the objects in this new
category, where two objects are now isomorphic if and only if they are weakly equivalent
in the category we started with. Such a construction is called the homotopy category of a
model category. The aim of this section is to introduce the notions of (right) homotopies
in a model category and we construct its homotopy category based on results in [DS95,
§§4-6].

Let us fix a model category (M, C,F ,W). We first introduce path objects inM, which
allow us to define right homotopies between morphisms ofM.

Definition 4.3.1. Let X ∈M be an object. A path object for X is an object Path(X)
inM together with a factorization of the diagonal morphism ∆: X → X ×X

X Path(X) X ×Xw
∼

p

into a weak equivalence w and a fibration p inM.

When an object X ∈M is fibrant, the projection from its path object to X are actually
trivial fibrations, as we see now.

Lemma 4.3.2. Let X be a fibrant object in M, and Path(X) be a path object for X.
Then the morphisms pi : Path(X)→ X obtained by composing p : Path(X) X×X with
the projections πi : X ×X → X are trivial fibrations, for i = 0, 1.

Proof. First note that, since X is fibrant, the projections

π0 : X ×X X × ∗ ∼= X and π1 : X ×X ∗ ×X ∼= X
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are fibrations since they are obtained as products of the fibrations idX andX ∗. There-
fore, the morphism pi is a fibration as a composite of the fibrations p and πi, for i = 0, 1.
Moreover, since the following diagram commutes

X Path(X) X ×X ,

∆

X

w
∼

p

pi πi

the morphism pi is a weak equivalence by 2-out-of-3, since idX and w are weak equiva-
lences, for i = 0, 1. �

Remark 4.3.3. In particular, if X is a fibrant object inM, then Path(X) is also fibrant,
since pi : Path(X) ∼ X is a fibration, for i = 0, 1.

A right homotopy between two morphisms is then defined as a morphism to the path
object which retrieves each of the two morphisms when composing with one of the two
projections mentioned above.

Definition 4.3.4. Two morphisms f, g : A→ X inM are said to be right homotopic
if there is a path object

X Path(X) X ×Xw
∼

p

for X in M together with a morphism h : A → Path(X) in M such that the following
diagram commutes.

A

Path(X)

X ×X
(f, g)

h p

We call h a right homotopy from f to g, and we write f ∼r g.

Remark 4.3.5. Let A and X be objects inM. If X is fibrant, the right homotopy relation
is an equivalence relation on the setM(A,X) of morphisms. We denote the set of right
homotopy classes by πr(A,X) =M(A,X)/ ∼r. See [DS95, Lemma 4.14].

Pre-composition with a trivial cofibration induces an isomorphism between sets of right
homotopy classes.

Lemma 4.3.6. Let X be a fibrant object inM, and let j : A ∼
B be a trivial cofibration

inM. Then j induces an isomorphism between sets of right homotopy classes

πr(B,X)
∼=−→ πr(A,X), [f ]r 7→ [fj]r.

Proof. The map j∗ : πr(B,X) → πr(A,X) is well-defined. Indeed, if two morphisms
f, g : B → X are such that f ∼r g, there is a right homotopy h : B → Path(X) from f
to g, and then hj : A→ Path(X) gives a right homotopy from fj to gj, so that fj ∼r gj.

Given [g]r ∈ πr(A,X), consider the following commutative square.

A X

B ∗

g

j

∼ f
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Since j is a trivial cofibration and X is fibrant, there is a lift f : B → X in the above
diagram. We get that j∗[f ]r = [fj]r = [g]r, which shows that j∗ is surjective. Now
given [f ]r, [f ′]r ∈ πr(B,X) such that [fj]r = [f ′j]r, there is a path object Path(X) for X
and a right homotopy h : B → Path(X) in M from fj to f ′j. Consider the following
commutative square.

A Path(X)

B X ×X

h

j

∼

p

(f, f ′)

h′

Since j is a trivial cofibration and p is a fibration (by definition of path objects), there is
a lift h′ : B → Path(X) in the above diagram, which gives a right homotopy from f to f ′,
i.e., [f ]r = [f ′]r. This shows that j∗ is injective and finishes the proof. �

Remark 4.3.7. There is a dual notion of left homotopy defined through a cylinder object;
see [DS95, §4]. However, when A is a cofibrant object and X is a fibrant object in M,
two morphisms A → X are right homotopic if and only if they are left homotopic by
[DS95, Lemma 4.21]. When the left and right homotopy relations coincide, we then say
that the morphisms considered are homotopic. This gives an equivalence relation on the
setM(A,X), that we denote by ∼, and we write π(A,X) =M(A,X)/ ∼ for the set of
homotopy classes.

A dual statement of Lemma 4.3.6 says that post-composing with a trivial fibration
induces an isomorphism between sets of left homotopy classes (see [DS95, Lemma 4.9]).
Therefore, as a consequence of the above remark, we get the following result.

Lemma 4.3.8. Let A be a cofibrant object and Y be a fibrant object inM.
(i) If j : A ∼

B is a trivial cofibration inM, then j induces an isomorphism between
sets of homotopy classes

j∗ : π(B, Y )→ π(A, Y ), [f ] 7→ [fj].

(ii) If q : X ∼
Y is a trivial fibration in M, then q induces an isomorphism between

sets of homotopy classes
q∗ : π(A,X)→ π(A, Y ), [f ] 7→ [qf ].

Proof. The first statement follows directly from Lemma 4.3.6 and Remark 4.3.7; note
that B is cofibrant as A is cofibrant and j is a cofibration. The second statement can be
proven dually. �

The homotopy relation respects weak equivalences in the sense that the morphisms in
the same homotopy class as a weak equivalence are also weak equivalences.

Lemma 4.3.9. Let A be a cofibrant object and X be a fibrant object inM. Suppose that
f : A ∼

X is a weak equivalence in M, and that g : A → X is a morphism in M such
that f ∼ g. Then g is also a weak equivalence.

Proof. Let Path(X) be a path object for X and h : A→ Path(X) be a homotopy from f

to g. Recall from Lemma 4.3.2 that, since X is fibrant, the morphism pi : Path(X) ∼ X

obtained as the composite of p : Path(X) X ×X with the projection πi : X ×X X
is a trivial fibration for i = 0, 1. Since f = p0h, by 2-out-of-3, we get that h is also a
weak equivalence. Therefore, by 2-out-of-3 applied to g = p1h, we conclude that g is also
a weak equivalence. �
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We now introduce homotopy equivalences which are given by the morphisms that have
an inverse up to homotopy.

Definition 4.3.10. Let A and X be cofibrant-fibrant objects in M. A morphism
f : A→ X in M is a homotopy equivalence if there is a morphism g : X → A in M
such that idA ∼ gf and fg ∼ idX . We say that g is a homotopy inverse of f .

The following result, called Whitehead Theorem, characterizes the weak equivalences
between cofibrant-fibrant objects as the homotopy equivalences between these objects.
This motivates the fact that weak equivalences can be interpreted as a weaker notion of
invertibility between objects in a category.

Theorem 4.3.11 (Whitehead Theorem for model categories). LetM be a model category,
and let A and X be cofibrant-fibrant objects inM. Then a morphism f : A→ X inM is
a weak equivalence if and only if it is a homotopy equivalence.

Proof. Let f : A ∼
X be a weak equivalence inM. Since (C,F∩W) is a weak factorization

system, there is a factorization of f as

A

C

X
f

∼

i q∼

with i a cofibration and q a trivial fibration. Note that C is cofibrant since A is cofibrant
and i is a cofibration, and C is fibrant since X is fibrant and q is a fibration. Furthermore,
by 2-out-of-3, since f and q are weak equivalences, so is i. Since i is a trivial cofibration
and A is fibrant, there is a morphism s : C → A in M such that si = idA, given by the
existence of a lift in the following commutative square.

A A

C ∗

i

∼ s

Moreover, by Lemma 4.3.8, we have that i∗ : π(C,C) → π(A,C) is an isomorphism.
Therefore, since i∗[is] = [isi] = [i] = i∗[idC ], we get that [is] = [idC ], i.e., is ∼ idC . This
shows that s is a homotopy inverse of i. Dually, we can show that there is a morphism
k : X → C such that qk = idX and kq ∼ idC . Therefore, the composite sk : X → A is
a homotopy inverse for f as skf = skqi ∼ si = idA and fsk = qisk ∼ qk = idX . This
shows that f is a homotopy equivalence.

Now suppose that f : A → X is a homotopy equivalence, and let g : X → A be a
homotopy inverse of f . As above, there is factorization of f as

A

C

X
f

i q∼

with i a cofibration and q a trivial fibration. Again, we have that C is cofibrant-fibrant.
By 2-out-of-3, it is enough to show that i is a weak equivalence. Let Path(A) be a path
object for A and h : A→ Path(A) be a homotopy from gf to idA. Consider the following
commutative square.
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A Path(A)

C A

h

i p0

∼

gq

h′

Since i is a cofibration and p0 is a trivial fibration by Lemma 4.3.2 as A is fibrant, there
is a lift h′ : C → Path(A) in the above diagram. Write s = p1h

′ : C → A. Note that
gq ∼ s. Furthermore, we have that si = p1h

′i = p1h = idA. As q : C ∼
X is a weak

equivalence, we have that q is a homotopy equivalence by the above arguments. Let
k : X → C be a homotopy of inverse of q. Since f = qi, we get that kf = kqi ∼ i. Hence
is ∼ igq ∼ kfgq ∼ kq ∼ idC . By Lemma 4.3.9, as idC is a weak equivalence, so is is.
Since i is a retract of is of the form

A C

C C

A

C ,

i

i is
∼

s

i

and since the class of weak equivalences is closed under retracts by Proposition 4.1.9, we
get that i is also a weak equivalence. This shows that f = qi is a weak equivalence, and
concludes the proof. �

The Whitehead Theorem suggests that the cofibrant-fibrant objects in a model category
are better behaved. In particular, starting from any object of M, we want to replace it
with another weakly equivalent object which is both fibrant and cofibrant. This can be
done using the following constructions.

Definition 4.3.12. Let X ∈ M be an object. Since (C,F ∩W) is a weak factorization
system onM, the unique morphism ∅ → X from the initial object can be factored as

∅ Xc X ,
qX
∼

where Xc is a cofibrant object and qX is a trivial fibration in M. The data (Xc, qX) is
called a cofibrant replacement of X. Dually, since (C ∩W,F) is a weak factorization
system onM, the unique morphism X → ∗ to the terminal object can be factored as

X Xf ∗ ,
jX
∼

where Xf is a fibrant object and jX is a trivial cofibration in M. The data (Xf , jX) is
called a fibrant replacement of X.

Remark 4.3.13. When X is cofibrant, a canonical choice of cofibrant replacement for X
is given by the identity idX : X → X. Dually, when X is fibrant, a canonical choice of
fibrant replacement for X is given by the identity idX : X → X.

In particular, a morphism between two objects induces a morphism between their
fibrant (resp. cofibrant) replacements, which happens to be unique up to right (resp. left)
homotopy.

Lemma 4.3.14. LetM be a model category, and let f : X → Y be a morphism inM.
(i) Given fibrant replacements (Xf , jX) and (Y f , jY ) of X and Y , respectively, there

is a morphism ff : Xf → Y f inM making the following square commute.
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X

Xf

Y

Y f

jX

∼

ff

f

jY

∼

Moreover, such a morphism ff is unique up to right homotopy, and ff is a weak
equivalence if and only if f is so.

(ii) Dually, given cofibrant replacements (Xc, qX) and (Y c, qY ) of X and Y , respec-
tively, there is a morphism f c : Xc → Y c in M making the following square
commute.

Xc

X

Y c

Y

qX

∼
f

f c

qY
∼

Moreover, such a morphism f c is unique up to left homotopy, and f c is a weak
equivalence if and only if f is so.

Proof. We prove the first statement. Since jX : X ∼
Xf is a trivial cofibration and Y f

is fibrant inM, there is a lift in the following diagram

X

Xf

Y Y f

∗

f jY

jX

∼ ff

and we can choose ff to be this lift. Then, by Lemma 4.3.6, the trivial cofibration jX
induces an isomorphism (jX)∗ : πr(Xf , Y f )

∼=−→ πr(X,Y f ) since Y f is fibrant. Therefore,
if g : Xf → Y f is another morphism such that gjX = jY f , then g ∼r ff by injectivity of
(jX)∗. By 2-out-of-3, it is clear that ff is a weak equivalence if and only f is so.

The second statement can be proven dually. �

The following remark constructs a cofibrant-fibrant replacement for any object ofM.

Remark 4.3.15. Given an object X inM, first take a fibrant replacement jX : X ∼
Xf

of X and then take a cofibrant replacement qXf : (Xf )c ∼ Xf of Xf . Note that the
object (Xf )c is cofibrant-fibrant; it is cofibrant by definition of a cofibrant replacement
and it is fibrant since Xf is fibrant and qXf is a fibration. By applying Lemma 4.3.14
to a morphism f : X → Y in M, we get a morphism (ff )c : (Xf )c → (Y f )c which is
compatible with the fibrant and cofibrant replacements considered. This morphism (ff )c
can be seen to be unique up to homotopy with this property, and, furthermore, it is a
weak equivalence if and only if f is so.

Using these cofibrant-fibrant replacements, we can define the homotopy category ofM
as the category with the same objects asM and whose morphisms between two objects
are given by homotopy classes between their cofibrant-fibrant replacements.

Definition 4.3.16. LetM be a model category and let us fix for each object X ∈ M a
cofibrant-fibrant replacement ((Xf )c, jX , qXf ) of X. The homotopy category ofM is
the category ho(M) whose objects are the objects ofM and whose hom-sets are given by

ho(M)(X,Y ) = π((Xf )c, (Y f )c),
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for all objects X and Y ofM.

There is a well-defined functor fromM to its homotopy category, which is the identity
on objects and sends a morphism to the homotopy class of its cofibrant-fibrant replace-
ment. This functor exhibits ho(M) as a localization ofM at its class of weak equivalences.

Lemma 4.3.17. There is a functor γ : M→ ho(M) which is the identity on objects.

Proof. Given a morphism f : X → Y in M, we define γ(f) = [(ff )c] ∈ π((Xf )c, (Y f )c).
This is a well-defined functor since the morphisms (ff )c are unique up to homotopy, when
cofibrant-fibrant replacements are fixed, by Remark 4.3.15. �

Theorem 4.3.18. The pair (ho(M), γ) is a localization ofM at the class of weak equiv-
alences W. In other words, for every functor F : M→ E sending weak equivalences inM
to isomorphisms in E, there is a unique functor G : ho(M) → E such that Gγ = F , i.e.,
such that the following diagram commutes.

M E

ho(M)

F

γ ∃!G

Proof. Let F : M→ E be a functor sending weak equivalences inM to isomorphisms in E .
We construct a functor G : ho(M) → E such that Gγ = F . For an object X ∈ ho(M),
i.e., an object X ∈M, we set GX := FX. Given objects A and X inM, and a morphism
[f ] ∈ ho(M)(A,X) = π((Af )c, (Xf )c), we set G[f ] to be the following composite in E

FA F (Af ) F ((Af )c) F ((Xf )c) F (Xf ) FX ,
FjA
∼=

(FqAf )−1

∼=
Ff FqXf

∼=
(FjX)−1

∼=

where ((Af )c, jA, qAf ) and ((Xf )c, jX , qXf ) are cofibrant-fibrant replacements of A andX,
respectively. To check that this is well-defined, it is enough to show that if [f ] = [g] in
π((Af )c, (Xf )c), then Ff = Fg. Let

(Xf )c Path((Xf )c) (Xf )c × (Xf )cw
∼

p

be a path object for (Xf )c) and h : (Af )c → Path((Xf )c) be a homotopy from f to g.
Since we have that wp0 = id(Xf )c = wp1, where p0 and p1 are as in Lemma 4.3.2, then
(Fw)(Fp0) = F (wp0) = F (wp1) = (Fw)(Fp1). Hence, as w is a weak equivalence, its
image Fw is an isomorphism in E , and we get that Fp0 = Fp1. Therefore, we indeed
have

Ff = F (hp0) = (Fh)(Fp0) = (Fh)(Fp1) = F (hp1) = Fg.

The functoriality of G is straightforward. Furthermore, by construction, we have that
Gγ = F and it is the unique functor with this property. �

The localization γ : M→ ho(M) is saturated, which means that the isomorphisms in
ho(M) are precisely the images of the weak equivalences inM under γ.

Lemma 4.3.19. A morphism f : X → Y inM is a weak equivalence if and only if γ(f)
is an isomorphism in ho(M).

Proof. By Lemma 4.3.14, a morphism f : X → Y is a weak equivalence if and only if
(ff )c : (Xf )c → (Y f )c is a weak equivalence. By Theorem 4.3.11, since (Xf )c and (Y f )c
are cofibrant-fibrant, the morphism (ff )c : (Xf )c → (Y f )c is a weak equivalence if and
only if it is a homotopy equivalence, which holds if and only if γ(f) = [(ff )c] is an
isomorphism in ho(M). �
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Finally, we give two useful lemmas. The first one characterizes the hom-sets with
cofibrant source and fibrant source in the homotopy category ho(M), and the second one
says that the weak equivalences in a model category satisfy the 2-out-of-6 property, which
is a stronger condition than that of 2-out-of-3.

Lemma 4.3.20. Let A be a cofibrant object and X be a fibrant object inM. Then there
is an isomorphism ho(M)(A,X) ∼= π(A,X).

Proof. Let jA : A ∼
Af be a fibrant replacement of A and qX : Xc ∼ X be a cofibrant

replacement of X. By Lemma 4.3.8, the trivial cofibration jA and the trivial fibration qX
induce isomorphisms

ho(M)(A,X) = π(Af , Xc) π(A,Xc) π(A,X) ,
∼=

(jA)∗
∼=

(qX)∗

which gives the desired result. �

Lemma 4.3.21 (2-out-of-6 property). Let M be a model category and suppose that we
have a commutative diagram inM

X

Y

Z

T

gf

∼

hg
∼

f h
g

such that gf and hg are weak equivalences. Then the morphisms f , g, and h are also
weak equivalences inM.

Proof. Note that isomorphisms satisfy the 2-out-of-6 property. The result then follows
from the fact that a morphism f is a weak equivalence in M if and only if γ(f) is an
isomorphism in ho(M) by Lemma 4.3.19. �

4.4. Quillen pairs, reflections, co-reflections, and equivalences. Having intro-
duced model categories and their homotopy categories, we now turn our attention to
comparisons between two homotopy theories. As for categories, there are homotopical
versions of adjunctions and adjoint equivalences between model categories, which induce
adjunctions and adjoint equivalences at the level of homotopy categories. Most results of
this section are based on [DS95, §9].

Let us fix two model categoriesM and N and an adjunction

M N
L

R

⊥

between them. We first give the homotopical version of an adjunction between model
categories, which is defined as an adjunction satisfying one of the following equivalent
conditions.

Proposition 4.4.1. The following conditions are equivalent for the adjunction L a R.
(i) The left adjoint L preserves cofibrations and trivial cofibrations.
(ii) The right adjoint R preserves fibrations and trivial fibrations.

Proof. We show that the left adjoint L preserves cofibrations if and only if the right
adjoint R preserves trivial fibrations. The proof that L preserves trivial cofibrations if
and only if R preserves fibrations works similarly.
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First note that, by the universal property of the adjunction L a R, the below left
commutative diagram inM has a lift if and only if the below right diagram in N has a
lift, for every cofibration i : A B in N and every trivial fibration p : X ∼

Y inM.

LA X

LB Y

Li p

∼

A RX

B RY

i Rp

If L : N →M preserves cofibrations, for every cofibration i : A B inN and every trivial
fibration p : X ∼

Y inM, there is a lift in every commutative diagram inM as above left
since Li is a cofibration inM. Hence, there is also a lift in every diagram as above right,
which shows that Rp is a trivial fibration in N , for every trivial fibration p : X ∼

Y inM.
Conversely, if R : M→N preserves trivial fibrations, for every cofibration i : A B inN
and every trivial fibration p : X ∼

Y inM, there is a lift in every commutative diagram
in N as above right since Rp is a trivial fibration in N . Hence, there is also a lift in every
diagram as above left, which shows that Li is a cofibration in M, for every cofibration
i : A B in N . �

Definition 4.4.2. The adjunction L a R is a Quillen pair if it satisfies one of the
equivalent conditions of Proposition 4.4.1. We call L a left Quillen functor, and R a
right Quillen functor.

Remark 4.4.3. Suppose that L a R is a Quillen pair. Since the left adjoint L preserves
initial objects and cofibrations, it sends cofibrant objects in N to cofibrant objects inM.
Dually, since the right adjoint R preserves terminal objects and fibrations, it sends fibrant
objects inM to fibrant objects in N .

Remark 4.4.4. Suppose that the model structure on N is cofibrantly generated, with
generating sets I and J of cofibrations and trivial cofibrations, respectively. To show that
the left adjoint L : N → M is left Quillen, it is then enough to check that L sends the
morphisms in I to cofibrations inM and the morphisms in J to trivial cofibrations inM.
Indeed, recall that every cofibration (resp. trivial cofibration) in the cofibrantly generated
model category N is a retract of a relative I-cell complex (resp. relative J -cell complex)
by Proposition 4.2.12, where a relative I-cell complex (resp. relative J -cell complex) is a
transfinite composition of pushouts of morphisms in I (resp. J ). Hence, since L preserves
colimits and retracts, and the classes of cofibrations and trivial cofibrations of M are
closed under retracts, pushouts, and transfinite compositions by Proposition 4.1.5, it
follows that L preserves all cofibrations and all trivial cofibrations.

The following lemma is a classical result in homotopy theory, and gives conditions
on a functor for it to send weak equivalences between fibrant or cofibrant objects to
weak equivalences. In particular, these results apply to right and left Quillen functors,
respectively.

Lemma 4.4.5 (Ken Brown’s Lemma). Let F : M→N be a functor.
(i) If F sends trivial fibrations between fibrant objects in M to weak equivalences

in N , then F sends all weak equivalences between fibrant objects in M to weak
equivalences in N .

(ii) Dually, if F sends trivial cofibrations between cofibrant objects in M to weak
equivalences in N , then F sends all weak equivalences between cofibrant objects
inM to weak equivalences in N .
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Proof. We prove the first statement. Let X and Y be fibrant objects in M, and let
f : X ∼

Y be a weak equivalence in M. Consider the morphism (idX , f) : X → X × Y
and denote by πX : X × Y → X and πY : X × Y → Y the projections. Note that, since
the objects X and Y are fibrant, the projections πX and πY are fibrations in M. We
factor the morphism (idX , f) as follows

X

C

X × Y ,
(idX , f)

j
∼

q

where j : X ∼
C is a trivial cofibration and q : C X×Y is a fibration inM. Then the

composites πXq : C X and πY q : C Y are fibrations in M, as they are composites
of two fibrations. Since πXqj = πX(idX , f) = idX and πY qj = πY (idX , f) = f , by 2-
out-of-3, the composites πXq and πY q are also weak equivalences inM, and hence trivial
fibrations inM. Since C is fibrant, as X×Y is so, and F sends trivial fibrations between
fibrant objects inM to weak equivalences in N , we have that F (πXq) : FC ∼

FX and
F (πY q) : FC ∼

FY are weak equivalence in N . Now, the morphism Fj : FX ∼
FC is

a weak equivalence in N , by 2-out-of-3, as F (πXq)F (j) = F (πXqj) = F (idX) = idFX .
Then Ff = F (πY qj) = F (πY q)F (j) is a composite of weak equivalences, and therefore
Ff : FX ∼

FY is a weak equivalence in N .
The second statement can be proven dually. �

Corollary 4.4.6. Suppose that the adjunction L a R is a Quillen pair.
(i) The right Quillen functor R preserves weak equivalences between fibrant objects.
(ii) The left Quillen functor L preserves weak equivalences between cofibrant objects.

Proof. We prove the first statement. Since R is right Quillen, it preserves all trivial fibra-
tions and sends fibrant objects inM to fibrant objects in N by Remark 4.4.3. Therefore,
by Ken Brown’s Lemma (see Lemma 4.4.5), the functor R preserves weak equivalences
between fibrant objects.

The second statement can be proven dually. �

Corollary 4.4.7. Suppose that the adjunction L a R is a Quillen pair.
(i) If all objects inM are fibrant, then the right Quillen functor R preserves all weak

equivalences.
(ii) If all objects in N are cofibrant, then the left Quillen functor L preserves all weak

equivalences.

Proof. It is a direct consequence of Corollary 4.4.6. �

The counit and unit of an adjunction might be natural isomorphisms, in which case
we talk of a reflection when the counit is invertible, a co-reflection when the unit is
invertible, and an equivalence when both are invertible. In particular, the right adjoint of
a reflection is fully faithful, and dually the left adjoint of a co-reflection is fully faithful.
We now present homotopical versions of these notions for model categories.

Definition 4.4.8. Let η : idN ⇒ RL and ε : LR ⇒ idM denote the unit and counit,
respectively, of the adjunction L a R. The adjunction L a R is

(i) a Quillen reflection if it is a Quillen pair and, for every fibrant object X ∈M,
the component of the derived counit

L(RX)c
L(qNRX)
−−−−−→ LRX

εX−→ X
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is a weak equivalence inM, where ((RX)c, qNRX) denotes a cofibrant replacement
of RX in N ,

(ii) a Quillen co-reflection if it is a Quillen pair and, for every cofibrant object
A ∈ N , the component of the derived unit

A
ηA−→ RLA

R(jMLA)
−−−−→ R(LA)f

is a weak equivalence in N , where ((LA)f , jMLA) denotes a fibrant replacement
of LA inM,

(iii) aQuillen equivalence if it is both a Quillen reflection and a Quillen co-reflection.

In particular, when a Quillen pair is a Quillen reflection, the right adjoint R not only
preserves weak equivalences between fibrant objects but also reflects them. And similarly
for a Quillen co-reflection. This is summarized in the following proposition.

Proposition 4.4.9. Suppose that the adjunction L a R is a Quillen pair.
(i) If L a R is a Quillen reflection, then a morphism f between fibrant objects inM

is a weak equivalence inM if and only if Rf is a weak equivalence in N ,
(ii) If L a R is a Quillen co-reflection, then a morphism g between cofibrant objects

in N is a weak equivalence in N if and only if Lg is a weak equivalence inM,
(iii) If L a R is a Quillen equivalence, then R creates weak equivalences between fibrant

objects and L creates weak equivalences between cofibrant objects.

Proof. We prove the first statement. Suppose that L a R is a Quillen reflection. Let X
and Y be fibrant objects inM and f : X → Y be a morphism inM. By Corollary 4.4.6,
since R is right Quillen, it preserves weak equivalences between fibrant objects. Therefore,
if f is a weak equivalence, then so is Rf . Conversely, suppose that Rf : RX ∼

RY is a
weak equivalence in N . Then its cofibrant replacement (Rf)c : (RX)c ∼ (RY )c is also a
weak equivalence in N by Lemma 4.3.14. By Corollary 4.4.6, since L is left Quillen, it
preserves weak equivalences between cofibrant objects. Therefore, the morphism L(Rf)c
is a weak equivalence making the following diagram commute inM.

L(RX)c

L(RY )c

LRX

LRY

X

Y

L(Rf)c ∼ f

L(qNRX)

L(qNRY )

εX

εY

LRf

Since the top and bottom composites are weak equivalences by assumption, it follows by
2-out-of-3 that f is also a weak equivalence.

The second statement can be proven dually, and the last one is a direct consequence
of the two other statements. �

Given a Quillen pair between model categories, we want to define induced functors
between their homotopy categories. The next result together with Theorem 4.3.18 tells
us how to construct such functors.

Lemma 4.4.10. Suppose that the adjunction L a R is a Quillen pair.
(i) For each object X ∈M, fix a fibrant replacement Xf of X. Then the assignment

γN ◦R((−)f ) : M→ ho(N ), X 7→ R(Xf ), f 7→ γN (R(ff ))

defines a functor which sends weak equivalences inM to isomorphisms in ho(N ).
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(ii) For each object A ∈ N , fix a cofibrant replacement Ac of A. Then the assignment
γM ◦ L((−)c) : N → ho(M), A 7→ L(Ac), g 7→ γM(L(gc))

defines a functor which sends weak equivalences in N to isomorphisms in ho(M).

Proof. We prove the first statement. Let f : X → Y and g : Y → Z be morphisms
in M. By Lemma 4.3.14, the morphisms (g ◦ f)f and gf ◦ ff both fit in the com-
mutative diagram for g ◦ f . Therefore, there is a path object Path(Zf ) and a homo-
topy h : Xf → Path(Zf ) from (g ◦ f)f to gf ◦ ff . Since Zf is fibrant, then Path(Zf )
is also fibrant by Remark 4.3.3. Since R preserves weak equivalences between fibrant
objects by Corollary 4.4.6, then R(Path(Zf )) is a path object for R(Zf ) in N and
Rh : R(Xf ) → R(Path(Zf )) is a homotopy from R((g ◦ f)f ) to R(gf ) ◦ R(ff ). This
shows that γN (R((g ◦ f)f )) = γN (R(gf )) ◦ γN (R(ff )). Clearly, γN ◦ R((−)f also pre-
serves identities, and therefore it is a functor.

Now let f : X ∼
Y be a weak equivalence in M. By Lemma 4.3.14, the morphism

ff : Xf ∼
Y f is also a weak equivalence in M. Since R preserves weak equivalences

between fibrant objects by Corollary 4.4.6, then R(ff ) : R(Xf ) ∼ R(Y f ) is a weak equiv-
alence in N . By Lemma 4.3.19, it follows that γN (R(ff )) is an isomorphism in ho(N ).

The second statement can be proven dually. �

Definition 4.4.11. Let L a R be a Quillen pair.
(i) For each object X ∈ M, fix a fibrant replacement Xf of X. The right derived

functor of R is defined to be the unique functor R : ho(M) → ho(N ), given by
Theorem 4.3.18 and Lemma 4.4.10, making the following diagram commute.

M ho(N )

ho(M)

γN (R(−)f )

γM R

(ii) For each object A ∈ N , fix a cofibrant replacement Ac of A. The left derived
functor of L is defined to be the unique functor L : ho(N ) → ho(M), given by
Theorem 4.3.18 and Lemma 4.4.10, making the following diagram commute.

N ho(M)

ho(N )

γM(L(−)c)

γN L

We now show that the derived functors induced from a Quillen pair between model
categories form an adjunction between their homotopy categories. Quillen pairs can
therefore be interpreted as the correct homotopical version of adjunctions.

Theorem 4.4.12. Suppose that the adjunction L a R is a Quillen pair. Then their
derived functors L and R form an adjunction

ho(M) ho(N )
L

R

⊥

between the homotopy categories ofM and N .

Proof. Let η : idN ⇒ RL and ε : LR ⇒ idM denote the unit and counit, respectively,
of the adjunction L a R. Let A be a cofibrant object in N and X be a fibrant object
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inM. We first show that there is an isomorphism π(LA,X) ∼= π(A,RX). Note that LA
is cofibrant inM and RX is fibrant in N by Remark 4.4.3. We define a map

Φ: π(LA,X) −→ π(A,RX), [f ] 7→ [(Rf)ηA],
and check that it is well-defined. Given [f ] = [g] in π(LA,X), let Path(X) be a path object
for X inM and h : A→ Path(X) be a homotopy from f to g. Recall from Remark 4.3.3
that Path(X) is fibrant since X is so. As the right Quillen functor R preserves fibrations
and weak equivalences between fibrant objects by Corollary 4.4.6, then RPath(X) is a
path object for RX in N . Then (Rh)ηA : A→ RPath(X) gives a homotopy from (Rf)ηA
to (Rg)ηA. This shows that [(Rf)ηA] = [(Rg)ηA] and that Φ is well-defined. Dually, one
can show that the map

Ψ: π(A,RX) −→ π(LA,X), [g] 7→ [εX(Lg)],
is well-defined. By the triangle identities for (η, ε), we directly get that ΦΨ = idπ(A,RX)
and ΨΦ = idπ(LA,X). This gives the desired isomorphism. By Lemma 4.3.20, it follows
that there is an induced isomorphism Φ: ho(M)(LA,X)

∼=−→ ho(N )(A,RX) for every
cofibrant object A ∈ N and every fibrant object X ∈M.

Now, let A be any object in N and X be any object in M. Given a fibrant re-
placement (Xf , jMX ) of X in M and a cofibrant replacement (Ac, qNA ) of A in N , the
morphisms γM(jMX ) and γN (qNA ) are isomorphisms in ho(M) and ho(N ) respectively, by
Lemma 4.3.19. Therefore, we have the following isomorphisms

ho(M)(LA,X) = ho(M)(L(Ac), X) ho(M)(L(Ac), Xf )

ho(N )(Ac, R(Xf )) ,ho(N )(A,RX) = ho(N )(A,R(Xf ))

∼=
γM(jMX )∗

∼=
γN (qNA )∗

Φ∼=∼=

which shows that L a R is an adjunction. �

In particular, when a Quillen pair is a Quillen reflection, co-reflection, or equivalence,
the induced derived functors give a reflection, co-reflection, or equivalence between the
corresponding homotopy categories.

Theorem 4.4.13. Suppose that the adjunction L a R is a Quillen pair.
(i) If L a R is a Quillen reflection, the derived adjunction L a R is a reflection, i.e.,

the counit of the adjunction L a R is a natural isomorphism.
(ii) If L a R is a Quillen co-reflection, the derived adjunction L a R is a co-reflection,

i.e., the unit of the adjunction L a R is a natural isomorphism.
(iii) If L a R is a Quillen equivalence, the derived adjunction L a R is an equivalence

of categories between the homotopy categories ho(M) and ho(N ).

Proof. Suppose that L a R is a Quillen pair, and let η : idM ⇒ LR and ε : RL ⇒ idN
denote the unit and counit, respectively, of the adjunction L a R.

We want to describe the unit η : idho(N ) ⇒ RL and the counit ε : LR⇒ idho(M) of the
derived adjunction L a R. Let A ∈ N be an object. Consider the following commutative
diagram obtained by taking X = LA in the diagram of the proof of Theorem 4.4.12.

ho(M)(LA,LA) = ho(M)(L(Ac), L(Ac)) ho(M)(L(Ac), (L(Ac))f )

ho(N )(Ac, R((L(Ac))f ))ho(N )(A,RLA) = ho(N )(A,R((L(Ac))f ))

∼=
γM(jML(Ac))∗

∼=
γN (qNA )∗

Φ∼=∼= Θ
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Then ηA = [Θ(idLA)] ∈ ho(N )(A,RLA). Therefore, by evaluating the diagram at idLA,
we get that [R(jML(Ac))ηAc ] = ηA[qNA ]. Similarly, for every object X ∈ M, we get that
[εXfL(qN

R(Xf ))] = [jMX ]εX .
We prove the first statement. If L a R is a Quillen reflection, we need to show that

ε : LR ⇒ idho(M) is a natural isomorphism. Given an object X ∈ M, by assumption,
the derived counit εXfL(qN

R(Xf )) at the fibrant object Xf of M is a weak equivalence.
Therefore [εXfL(qN

R(Xf ))] is an isomorphism in ho(M). By the above, we have that
[εXfL(qN

R(Xf ))] = [jMX ]εX , and, since jMX is a weak equivalence and hence [jMX ] is an
isomorphism in ho(M), it follows that εX is an isomorphism in ho(M). This shows that
ε is a natural isomorphism, and hence that R is a reflection.

The second statement can be proven similarly. As a direct consequence, we get that,
if L a R is a Quillen equivalence, then both the counit ε and the unit η of the adjunction
L a R are natural isomorphisms. This says that L a R is an equivalence of categories,
which proves the last statement. �

Remark 4.4.14. Since the right adjoint of a reflection is fully faithful, if an adjunction
L a R is a Quillen reflection, then the right derived functor R : ho(M) → ho(N ) is fully
faithful. We therefore say that the right Quillen functor R is homotopically fully faithful.
Dually, if an adjunction L a R is a Quillen co-reflection, then the left Quillen functor L
is homotopically fully faithful.

4.5. Monoidal model categories and enriched model categories. Given a model
category M, if the category M is enriched, tensored, and cotensored over a closed
monoidal category T which itself admits a model structure, the model structure on M
is said to be enriched if it satisfies an additional axiom, sometimes called the pushout-
product axiom. In particular, if the model structure on the closed monoidal category T
also satisfies this additional axiom, we call T a monoidal model category. In this section,
we introduce enriched model categories and give several ways of expressing the pushout-
product axiom.

For this, let us fix a closed monoidal category (T ,⊗, I) whose underlying category
admits a model structure. We use here the definitions and notations for enriched categories
introduced in Section 1.1. Before introducing enrichment of a model structure, we recall
a construction which builds from two morphisms in a T -enriched category a morphism
in T called the pullback corner morphism.

Definition 4.5.1. LetM be a T -enriched category. Let i : A→ B and p : X → Y be two
morphisms in its underlying categoryM0. We define the pullback corner morphism
of i and p to be the unique morphism (i∗, p∗) : M(B,X) →M(A,X)×M(A,Y )M(B, Y )
in T given by the universal property of the pullback as in the following diagram.

M(A,X)×M(A,Y )M(B, Y )

M(B,X)

M(B, Y )

M(A,X)

M(A, Y )
i∗

p∗

(i∗, p∗)

i∗

p∗
y

We are now ready to introduce the notion of enriched model categories.

Definition 4.5.2. A T -enriched categoryM is a T -enriched model category if
(emc1) its underlying categoryM0 admits a model structure (C,F ,W),
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(emc2) the T -enriched categoryM is tensored and cotensored over T (see Definition 1.1.11),
(emc3) for every cofibration i : A B inM0 and every fibration p : X Y inM0, the

pullback corner morphism
(i∗, p∗) : M(B,X)→M(A,X)×M(A,Y )M(B, Y )

is a fibration in T , which is trivial if either i or p is trivial.
Remark 4.5.3. Note that, if ∅ is an initial object inM and ∗ is a terminal object inM,
then, for every object A ∈ M, the hom objectsM(∅, A) andM(A, ∗) are isomorphic to
the terminal object in T . Hence, we can deduce from (emc3) of Definition 4.5.2 that:

(i) if A is a cofibrant object in M0 and p : X Y is a fibration in M0, then the
induced morphism

p∗ : M(A,X) M(A, Y )
is a fibration in T , which is trivial if p is so, and

(ii) if i : A B is a cofibration in M0 and X is a fibrant object in M0, then the
morphism

i∗ : M(B,X) M(A,X)
is a fibration in T , which is trivial if i is so.

In particular, if A is a cofibrant object inM0 and X is a fibrant object inM0, then the
hom objectM(A,X) is fibrant in T .

Since a T -enriched model category is assumed to be both tensored and cotensored
over T , we can rephrase (emc3) by using tensors and cotensors instead of internal homs.
The condition using tensors is often convenient to check that a model structure is enriched.
We first introduce the construction given by the pushout-product morphism and pullback
corner morphism, defined using tensors and cotensors.
Definition 4.5.4. Let M be a tensored T -enriched category. Let i : A → B be a mor-
phism inM0 and k : S → T be a morphism in T . The pushout-product of i and k is
the unique morphism i�M k : A⊗M T

⊔
A⊗MS B ⊗M S → B ⊗M T inM0 given by the

universal property of the pushout as in the following diagram.

A⊗M S

A⊗M T

B ⊗M S

A⊗M T
⊔
A⊗MS B ⊗M S

B ⊗M T

i⊗M S

A⊗M k

i�M k

i⊗M T

B ⊗M k
p

Definition 4.5.5. Let M be a cotensored T -enriched category. Let p : X → Y be a
morphism inM0 and k : S → T be a morphism in T . The pullback corner morphism
of k and p is the unique morphism pk : XT → XS ×Y S Y T inM0 given by the universal
property of the pullback as in the following diagram.

XS ×Y S Y T

XT

Y T

XS

Y S
Y k

pS

pk

Xk

pT
y
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Using the constructions defined above, we can reformulate (emc3) as follows.
Proposition 4.5.6. LetM be a T -enriched category which satisfies (emc1-2) of Defini-
tion 4.5.2. Then it satisfies (emc3) if and only if it satisfies one of the following equivalent
conditions.
(emc3’) For every cofibration i : A B inM0 and every cofibration k : S T in T , the

pushout-product morphism
i�M k : A⊗M T

⊔
A⊗MS

B ⊗M S → B ⊗M T

is a cofibration inM0, which is trivial if either i or k is trivial.
(emc3”) For every fibration p : X Y in M0 and every cofibration k : S T in T , the

pullback corner morphism
pk : XT → XS ×Y S Y T

is a fibration inM0, which is trivial if either p or k is trivial.
Proof. SinceM is tensored and cotensored over T by (emc2) of Definition 4.5.2, for every
pair of objects A,B ∈M and every object S ∈ T , we have isomorphisms

M0(A⊗M S,B) ∼= T (S,M(A,B)) ∼=M0(A,BS)
natural in A, B, and S, by Remark 1.1.12. Let i : A → B and p : X → Y be morphisms
in M0 and k : S → T be a morphism in T . Then there is a lift in the diagram in T as
depicted below

S

T

M(B,X)

M(A,X)×M(A,Y )M(B, Y )

k (i∗, p∗)

if and only if there is a lift in one of the following diagrams inM0, respectively.

A⊗M T
⊔
A⊗MS B ⊗M S

B ⊗M T

X

Y

i�M k p

A

B

XT

XS ×Y S Y T

i pk

By taking i to be a cofibration inM0, p to be a fibration inM0, and k to be a cofibration
in T , with one of them being trivial for each case, we can see that (ecm3) is equivalent
to (ecm3’) and (ecm3”), respectively. �

Remark 4.5.7. Suppose that the model structure on T and M0 are cofibrantly gener-
ated. Then, in order to prove (ecm3’), it is enough to check that this condition holds for
generating cofibrations and generating trivial cofibrations. Indeed, recall that all cofibra-
tions and trivial cofibrations in a cofibrantly generated model category are retracts of a
transfinite composition of pushouts of morphisms in the generating sets. Hence, since the
tensoring functor ⊗M preserves colimits and retracts in both variables by Remark 1.1.14,
then the pushout-product construction also preserves colimits in each variable as it is
constructed as a pushout of tensors. Hence, since the classes of cofibrations and trivial
cofibrations of M0 are closed under retracts, pushouts, and transfinite compositions by
Proposition 4.1.5, it follows that (emc3’) holds for all cofibrations and trivial cofibrations.

When the model structure on the closed monoidal category T is enriched over itself,
we say that it is monoidal. Note that the three constructions in (emc3), (emc3’), and
(emc3”) in this case all take morphisms in T and produce a morphism in T .
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Definition 4.5.8. A closed monoidal category T whose underlying category admits a
model structure is a monoidal model category if it is an enriched model category over
itself.

Finally, we show that a weak equivalence in a T -enriched model category induces weak
equivalences between hom objects in T under correct cofibrancy and fibrancy conditions.
In order to prove this result, we first need the following factorization lemma, which holds
in any model category.

Lemma 4.5.9. LetM be a model category.
(i) Let f : X → Y be a morphism inM between fibrant objects X and Y inM. Then

there is a factorization of f as

X

Z

Y ,
f

j
∼

r

where r : Z Y is a fibration in M and j : X ∼
Z is a weak equivalence which

is a section of a trivial fibration q : Z ∼
X inM, i.e., we have qj = idX .

(ii) Let f : A → B be a morphism in M between cofibrant objects A and B in M.
Then there is a factorization of f as

A

C

B ,
f

i q
∼

where i : A B is a cofibration inM and q : C ∼
B is a weak equivalence which

is a retract of a trivial cofibration j : B ∼
C inM, i.e., we have qj = idB.

Proof. We prove the first statement. Let f : X → Y be a morphism inM between fibrant
objects X and Y inM. Let us fix a path object for Y

Y Path(Y ) Y × Y .
w
∼

p

We recall that pi : Path(Y ) ∼ Y denotes the composite of p : Path(Y )→ Y ×Y with the
projection πi : Y × Y → Y , for i = 0, 1, and that pi is a trivial fibration by Lemma 4.3.2
since Y is fibrant, for i = 0, 1. In particular, we have piw = idY , for i = 0, 1. We define
q : Z ∼

X to be the pullback of p0 along f , as depicted in the below diagram.

Z

Path(Y )

X

Y

X

Y

q

∼

f

f

f ′

p0
∼

w

j

y

Note that q is a trivial fibration since p0 is a trivial fibration and the class of trivial
fibrations is closed under pullbacks by Proposition 4.1.5. Then, since p0wf = f , there
is a unique morphism j : X → Z, as depicted above, such that qj = idX and f ′j = wf .
Since q : Z ∼

X is a weak equivalence, by 2-out-of-3, we get that j : X ∼
Z is also a

weak equivalence. Finally, we set r := p1f
′ : Z → Y . With this definition of r, we have

that rj = p1f
′j = p1wf = f . Hence the morphisms r and j give a factorization of f . It

remains to show that r is a fibration. Consider the following commutative diagram.
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Z X × Y
y

Path(Y ) Y × Y

X

Y

Y

π1

p

f ′

p1 π1

f × idY

q′ π0

π0

f

q

r

Since the right-hand square is a pullback, there is a unique morphism q′ : Z → X × Y
such that π0q

′ = q and (f × idY )q′ = pf ′. Since the outer rectangle is also a pullback,
the left-hand square is a pullback. Henc, since fibrations are closed under pullbacks and
p is a fibration, the morphism q′ : Z X × Y is a fibration. Note that the projections
π1 : X × Y Y and π1 : Y × Y Y are fibrations, as X and Y are fibrant objects.
Finally, we have r = p1f

′ = π1pf
′ = π1(f × idY )q′ = π1q

′ is a composite of two fibrations,
and therefore is a fibration. This shows the desired result.

The second statement can be proven dually �

Proposition 4.5.10. LetM be a T -enriched model category.
(i) Let f : X ∼

Y be a weak equivalence between fibrant objects X and Y in M0.
Then, for every cofibrant object A ∈M0, the induced morphism

f∗ : M(A,X)→M(A, Y )
is a weak equivalence in T .

(ii) Let f : A ∼
B be a weak equivalence between cofibrant objects A and B in M0.

Then, for every fibrant object X ∈M0, the induced morphism
f∗ : M(B,X)→M(A,X)

is a weak equivalence in T .

Proof. We prove the first statement. Let f : X ∼
Y be a weak equivalence between

fibrant objects X and Y inM0. By Lemma 4.5.9, since X and Y are fibrant, there is a
factorization of f as

X

Z

Y ,
f

∼

j
∼

r

where r : Z Y is a fibration and j : X ∼
Z is a weak equivalence which is a section of

a trivial fibration q : Z ∼
X. By 2-out-of-3, since f and j are weak equivalences, we get

that r : Z ∼
Y is a trivial fibration. Let A be a cofibrant object inM0. By Remark 4.5.3,

since q and r are trivial fibrations, the induced morphisms

q∗ : M(A,Z) ∼ M(A,X) and r∗ : M(A,Z) ∼ M(A, Y )
are trivial fibrations in T . Since j is a section of q, i.e., we have that qj = idX , then
q∗j∗ = (qj)∗ = idM(A,X) and j∗ : M(A,X) ∼ M(A,Z) is a weak equivalence in T , by
2-out-of-3. Finally, since f = rj, then f∗ = r∗j∗ and f∗ : M(A,X) ∼ M(A, Y ) is a weak
equivalence in T , as a composite of two weak equivalences.

The second statement can be proven dually. �



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 77

5. Constructions of model structures

In this section, we introduce two different constructions, which build, from an existing
model category, another model category. These constructions are very useful in practice
as we will see in Section 7 and Part IV..

The first construction, presented in Section 5.1, is given by inducing a model structure
along an adjunction. More precisely, given a right adjoint U : K → M, where M is a
model category, we can define, if it exists, a model structure on the category K, whose
fibrations and weak equivalences are precisely the morphisms in K whose image under U
is a fibration or a weak equivalence inM, respectively. Such a model structure is called
right-induced. Dually, given a left adjoint L : N →M, we can construct the left-induced
model structure on N , if it exists, by defining its cofibrations and weak equivalences to be
the morphisms in N whose image under L is a cofibration or a weak equivalence in M,
respectively. We state here a theorem by Hess, Kȩdziorek, Riehl, and Shipley, which gives
a criterion for the left- and right-induced model structure to exist, called the acyclicity
condition, when the categories considered are locally presentable. In particular, we use
these results in Section 7 to right-induce a model structure on DblCat along the functors
(H,V) : DblCat→ 2Cat× 2Cat introduced in Section 3.4. The results of this section are
based on [HKRS17, GKR20].

In Section 5.2, we give another construction of model categories, that of left Bousfield
localizations. In this context, the ambient category does not change, and we only change
the model structure. The idea is that of a localization, where we add to the class of
weak equivalences new morphisms which we would like to be invertible. In particular,
this construction is very useful when one wants to restrict the class of fibrant objects
to a certain class of objects of interest. For example, in Part IV., we build models of
(∞, 1)-categories, (∞, 2)-categories, and double (∞, 1)-categories by localizing categories
of simplicial spaces and bisimplicial spaces, so that the fibrant objects are precisely the
objects of interest. To construct the left Bousfield localization of a model category, we
restrict ourselves to simplicial categories whose objects are all cofibrant, since this is the
setting in which we will apply the theorems. The theory holds however in a more general
setting and we refer the reader to [Hir03, Wer16] for the general theory of left Bousfield
localizations. As mentioned in the introduction, a simplicial model category is a model
category enriched over the model structure on simplicial sets for Kan complexes, and we
also recall here the main features of this model structure. The results of this section are
based on [Hir03, Wer16].

5.1. Left- and right-induced model structures. We now turn our attention towards
model structures induced along adjunctions. This is a useful tool to define new model
structures on a category, when it is related by an interesting adjunction to another cat-
egory that already admits a model structure. The definitions and results here are based
on [HKRS17, §§2-3] and [GKR20, §2].

Let us fix a model category (M, C,F ,W) and two adjunctions

K M N .

F

U

⊥

L

R

⊥

We define what it means to induce the model structure ofM on the categories K and N
along the right adjoint U and the left adjoint L, respectively.

Definition 5.1.1. Consider the adjunctions F a U and L a R.
(i) The right-induced model structure on K, if it exists, is given by

(�(U−1(F ∩W)), U−1F , U−1W).
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(ii) The left-induced model structure on N , if it exists, is given by
(L−1C, (L−1(C ∩W))�, L−1W).

Remark 5.1.2. Note that, sinceW satisfies the 2-out-of-3 property, then the classes U−1W
and L−1W of weak equivalences in the right- and left-induced model structures, respec-
tively, also satisfy the 2-out-of-3 property.

In particular, when we consider the model structure on a category obtained as the right-
or left-induced model structure along an adjunction, this adjunction becomes a Quillen
pair.
Proposition 5.1.3. Consider the adjunctions F a U and L a R.

(i) If the right-induced model structure on K exists, then F a U is a Quillen pair.
(ii) If the left-induced model structure on N exists, then L a R is a Quillen pair.

Proof. We prove the first statement. By definition, if f is a weak equivalence (resp. fi-
bration) in K, then Uf is a weak equivalence (resp. fibration) inM. Therefore the right
adjoint U preserves fibrations and trivial fibrations. This shows that F a U is a Quillen
pair.

The second statement can be proven dually. �

The following is a useful criterion for the existence of the right- or left-induced model
structure along an adjunction. Under smallness conditions on the categories involved, it
is enough to check the acyclicity conditions. This is a result by Hess, Kȩdziorek, Riehl,
and Shipley, whose proof goes beyond the scope of this introduction to model categories
and is therefore not displayed here.
Proposition 5.1.4. Suppose that the model category (M, C,F ,W) is combinatorial and
that the categories K and N are locally presentable.

(i) The right-induced model structure on K exists if and only if �(U−1F) ⊆ U−1W,
(ii) The left-induced model structure on N exists if and only if (L−1C)� ⊆ L−1W.

Proof. This result is obtained by applying [HKRS17, Corollary 3.3.4] or [GKR20, Corol-
lary 2.7]. Note that, by [HKRS17, Corollary 3.1.7], every combinatorial model structure
is accessible. �

The next result gives a useful criterion for proving the acyclicity condition correspond-
ing to a right-induced model structure. A dual statement for the acyclicity condition
corresponding to a left-induced model structure can be proven similarly, and is a straight-
forward consequence of [HKRS17, Theorem 2.2.1].
Corollary 5.1.5. Suppose that the model category (M, C,F ,W) is combinatorial and
that the category K is locally presentable. Suppose that all objects in M are fibrant and
that, for each object X ∈ K, there is a factorization of the diagonal morphism in K

X Path(X) X ×Xw p

such that Uw is a weak equivalence in M and Up is a fibration in M. Then the right-
induced model structure on K exists.
Proof. By Proposition 5.1.4, it suffices to show that �(U−1F) ⊆ U−1W. Let j : A → B
be a morphism in �(U−1F). Since every object inM is fibrant, the morphism A→ ∗ is
in U−1F . Therefore, there is a lift r : B → A in the following commutative square.

A

B

A

∗

j r
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As p : Path(B)→ B ×B is in U−1F , there is also a lift h : B → Path(B) in the following
commutative diagram.

A

B

B Path(B)

B ×B

j w

(jr, idB)

j ph

Note that the composites

Path(B) p−→ B ×B π0−→ B and Path(B) p−→ B ×B π1−→ B

are in U−1W, by 2-out-of-3, since idB = π0pw and idB = π1pw. Therefore, as idB = π1ph,
the morphism h is also in U−1W, by 2-out-of-3. We deduce that jr is in U−1W, by 2-
out-of-3, since jr = π0ph. By applying 2-out-of-6 (see Lemma 4.3.21) to the following
diagram

A

B

A

B ,
jr

j jr

we get that j is in U−1W. �

Finally, the following proposition gives us generating sets of cofibrations and trivial
cofibrations for a model structure which is right-induced from a cofibrantly generated
model structure.

Proposition 5.1.6. Suppose that the model category (M, C,F ,W) is combinatorial with
generating sets I of cofibrations and J of trivial cofibrations, and that the category K
is locally presentable. Then the right-induced model structure on K along the adjunction
F a U is also cofibrantly generated with generating sets FI of cofibrations and FJ of
trivial cofibrations.

Proof. To show that FI and FJ are generating sets of cofibrations and trivial cofibra-
tions, respectively, for the right-induced model structure on K, it is enough to check
that U−1F = (FJ )� and that U−1(F ∩ W) = (FI)�. First note that, since the func-
tor F is left Quillen by Proposition 5.1.3, then F preserves trivial cofibrations and hence
FJ ⊆ F (C ∩W) ⊆ �(U−1F). It follows that U−1F = (�(U−1F))� ⊆ (FJ )�. Now, let
p : X Y in K be a morphism in (FJ )�. Then, for every morphism j : A ∼

B in J ,
there is a lift in the below left commutative diagram.

FA X

FB Y

Fj p

A UX

B UY

j

∼

Up

By the universal property of the adjunction F a U , the above left commutative square cor-
responds uniquely to a commutative square as above right, for every morphism j : A ∼

B
in J . Since J is a generating set of trivial cofibrations inM, it follows that Up is a fibra-
tion inM. This shows that (FJ )� ⊆ U−1F . Hence we indeed have that U−1F = (FJ )�.
Similarly, one can show that the other equality holds. �
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5.2. Left Bousfield localizations. In this section, we introduce left Bousfield localiza-
tions of model categories. These are given by localizing a model category at some set
of morphisms. In other words, we are requiring some specific morphisms to become in-
vertible in the homotopy category. This construction is very useful when one wants to
study a specific class of objects in a model category. Indeed, this allows one to restrict the
class of fibrant objects of a model category to be precisely the class of objects of study.
To simplify the approach, we only consider here left Bousfield localizations of simplicial
model categories at a set of cofibrations. We refer the reader to [Hir03, Wer16] for the
theory in a more general setting.

Simplicial model categories are defined to be enriched model categories over the Kan-
Quillen model structure on the category of simplicial sets. We start by recalling the
definition of a simplicial set and the main features of the model structure for simplicial
sets. We first introduce the simplex category ∆.

Definition 5.2.1. We define the simplex category ∆ to be the category whose objects
are the ordered sets [n] = {0 < 1 < . . . < n}, for n ≥ 0, and whose morphisms are the
order-preserving maps. In particular, we denote by di : [n − 1] → [n] the ith face map
which skips i, for 0 ≤ i ≤ n and n ≥ 1, and by sj : [n + 1] → [n] the jth degeneracy
map which doubles j, for 0 ≤ j ≤ n and n ≥ 0. These maps generate all the morphisms
in ∆ under compositions.

A simplicial set is then defined to be a functor ∆op → Set.

Definition 5.2.2. We define sSet := Set∆op to be the category of simplicial sets and
simplicial maps.

Notation 5.2.3. Given a simplicial set X : ∆op → Set, we denote by Xn := X([n])
its set of n-simplices, for all n ≥ 0. We denote by di := X(di) : Xn → Xn−1 and
sj := X(sj) : Xn → Xn+1 the images under X of the face and degeneracy maps, for all
0 ≤ i ≤ n and 0 ≤ j ≤ n.

We now recall the basic constructions of boundary and horn inclusions of standard
n-simplices.

Definition 5.2.4. We define the standard n-simplex ∆[n] to be the representable
functor ∆(−, [n]) : ∆op → Set, for n ≥ 0. By the Yoneda Lemma, the face maps di
induce simplicial maps di : ∆[n − 1] → ∆[n], for all 0 ≤ i ≤ n and n ≥ 1. We define the
boundary of ∆[n] to be

δ∆[n] :=
⋃

0≤i≤n
Im
(
di : ∆[n− 1]→ ∆[n]

)
,

for n ≥ 1, and we set δ∆[0] := ∅. For n ≥ 1 and 0 ≤ t ≤ n, we define the (n, t)-horn of
∆[n] to be

Λt[n] :=
⋃

0≤i≤n, i 6=t
Im
(
di : ∆[n− 1]→ ∆[n]

)
.

These simplicial sets come with inclusion maps ιn : δ∆[n] → ∆[n], for all n ≥ 0, and
`n,t : Λt[n]→ ∆[n] for all n ≥ 1 and 0 ≤ t ≤ n.

Remark 5.2.5. Boundary inclusions generate all monomorphisms in sSet under transfinite
compositions of pushouts and retracts.

These boundary and horn inclusions form generating sets of cofibrations and trivial cofi-
brations, respectively, for the model structure on sSet described below in Theorem 5.2.7.
The fibrations and fibrant objects are then defined by their lifting properties with respect
to horn inclusions.
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Definition 5.2.6. A simplicial map p : X → Y is a Kan fibration if it has the right
lifting property with respect to the horn inclusion `n,t : Λt[n] → ∆[n], for all n ≥ 1 and
0 ≤ t ≤ n. A simplicial set X is a Kan complex if the unique map X → ∆[0] is a Kan
fibration.

We now state the existence of the Kan-Quillen model structure on sSet and describe its
relevant classes of maps. This model structure is enriched over itself through the cartesian
monoidal structure on sSet. We refer the reader to [JT99] for a proof.

Theorem 5.2.7. There is a combinatorial, simplicial model structure on sSet whose
(i) cofibrations are the monomorphisms; in particular, every object is cofibrant,
(ii) fibrations are the Kan fibrations; in particular, the fibrant objects are the Kan

complexes,
(iii) weak equivalences are the simplicial maps f : X → Y such that the induced maps

f∗ : π(Y,K) → π(X,K) between homotopy classes is an isomorphism, for every
Kan complex K.

Generating sets of cofibrations and trivial cofibrations are given by the sets of monomor-
phisms

I = {ιn : δ∆[n]→ ∆[n] | n ≥ 0} and J = {`n,t : Λt[n]→ ∆[n] | n ≥ 1, 0 ≤ t ≤ n}.

Proof. The existence of the model structure is [JT99, Theorem 1.7.1]. The fact that it is
simplicial follows from [JT99, Theorem 1.5.2]. �

Remark 5.2.8. The category sSet is locally presentable. Moreover, every simplicial set
can be obtained as a colimit of the standard n-simplices. Using this description, we
can define a realization functor | − | : sSet → Top to the category of topological spaces
and continuous maps as follows. A simplicial set X ∼= colimσ∈Xn, n≥0 ∆[n] is sent to the
topological space |X| := colimσ∈Xn, n≥0 ∆n, where ∆n is the geometric n-simplex. A weak
equivalence in sSet can then be characterized through this geometric realization functor:
a simplicial map f : X → Y is a weak equivalence in sSet if and only if its realization
|f | : |X| → |Y | is a weak (homotopy) equivalence of topological spaces. This realization
functor further induces a Quillen equivalence between the Kan-Quillen model structure
on sSet and the Quillen model structure for topological spaces.

With this model structure on sSet, we can introduce simplicial model categories as the
simplicial categories which admit a model structure that is enriched over sSet.

Definition 5.2.9. A simplicial model categoryM is an sSet-enriched model category,
where sSet is endowed with the Kan-Quillen model structure of Theorem 5.2.7.

We are now ready to introduce left Bousfield localizations of simplicial model categories.
For simplicity and since it is the case for all the model structures in this paper to which we
will apply this construction, we suppose that all objects in the simplicial model categories
considered are cofibrant. If it is not the case, then one needs to work with cofibrant
replacements and left properness in order to make the theory work. We first introduce
what will be the fibrant objects and the weak equivalences in the left Bousfield localization.

Definition 5.2.10. LetM be a simplicial model category such that all objects inM are
cofibrant and let S be a set of cofibrations inM.

(i) An object X ∈ M is S-local if it is fibrant in M and, for every cofibration
s : A→ B in S, the induced map

s∗ : M(B,X)→M(A,X)

is a trivial fibration in sSet.
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(ii) A morphism f : A→ B inM is an S-local equivalence if, for every S-local objectX
inM, the induced map

f∗ : M(B,X)→M(A,X)
is a weak equivalence in sSet.

We now describe the model structure given by localizing at a set of cofibrations.
Definition 5.2.11. LetM be a simplicial model category such that all objects inM are
cofibrant and let S be a set of cofibrations inM. The left Bousfield localization LSM
ofM at S, if it exists, is the model structure onM whose

(i) cofibrations are precisely the cofibrations inM,
(ii) weak equivalences are the S-local equivalences.

The rest of the model structure is determined by lifting properties.

Remark 5.2.12. Note that every cofibration s : A B in S is a trivial cofibration in
the left Bousfield localization LSM since it is both a cofibration and an S-local equiva-
lence. Furthermore, it follows from Remark 4.5.3 that a cofibration j : A B is a trivial
cofibration in LSM if and only if the induced map

j∗ : M(B,X) M(A,X)
is a trivial fibration in sSet, for every S-local object X ∈M.

Remark 5.2.13. By Remark 4.5.3, every weak equivalence f : A ∼ B inM induces a weak
equivalence

f∗ : M(B,X) ∼ M(A,X)
in sSet, for every fibrant object X ∈ M. Since S-local objects are in particular fibrant
in M, we get that every weak equivalence in M is in particular a weak equivalence
in LSM. As a consequence, every trivial cofibration inM is a trivial cofibration in LSM.

The following proposition implies that the homotopy category of the left Bousfield
localization LSM is embedded in that ofM in a reflective way.
Proposition 5.2.14. Let M be a simplicial model category such that all objects in M
are cofibrant. Let S be a set of cofibrations inM such that the left Bousfield localization
LSM exists. Then the identity adjunction

LSM M

idM

idM

⊥

is a Quillen reflection.
Proof. First, note that the left adjoint idM : M → LSM preserves all cofibrations, by
definition of LSM, and all weak equivalences, by Remark 5.2.13. Hence it is left Quillen.
Furthermore, the component of the derived counit at a fibrant object X ∈ LSM is
given by the cofibrant replacement morphism qMX : Xc → X in M. Since this is a weak
equivalence in M, it is also a weak equivalence in LSM by Remark 5.2.13. This shows
that the identity adjunction is a Quillen reflection. �

When the simplicial model category is combinatorial, the left Bousfield localization at
any set of cofibrations always exists. We do not prove this result here, as it goes beyond
the scope of this introduction to model categories.
Theorem 5.2.15. Let M be a combinatorial, simplicial model category such that all
objects in M are cofibrant. Let S be a set of cofibrations in M. Then the left Bousfield
localization LSM onM exists and it is combinatorial.
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Proof. This follows from [Wer16, Theorem 6.1]. Note that the model categoryM is left
proper since all objects inM are cofibrant. A proof in the case of cellular model categories
can also be found in [Hir03, Theorem 4.1.1]. �

Furthermore, we can show that the left Bousfield localization of a simplicial model
category is also simplicial.

Proposition 5.2.16. Let M be a simplicial model category such that all objects in M
are cofibrant. Let S be a set of cofibrations inM such that the left Bousfield localization
LSM exists. Then the model structure LSM ofM is simplicial.

More precisely, if j : A B is a cofibration in LSM and i : K L is a cofibration
in sSet, then the pushout-product morphism j� i : A ⊗ L

⊔
A⊗K B ⊗ K B ⊗ L is a

cofibration in LSM, which is trivial if either j is a weak equivalence in LSM or i is a
weak equivalence in sSet, where ⊗

Proof. Since the model structure onM is simplicial, the pushout-product j� i is a cofi-
bration inM by (emc3’) of Proposition 4.5.6, and hence it is also a cofibration in LSM. It
remains to show that j� i is an S-local equivalence, whenever j or i is a weak equivalence.
Let X be an S-local object inM. We show that the map

(j� i)∗ : M(B ⊗ L,X)→M(A⊗ L
⊔
A⊗K

B ⊗K,X)

is a trivial fibration in sSet, whenever j or i is a weak equivalence. For n ≥ 0, by the
universal property of the tensor ⊗ and by Proposition 1.1.15, there is a lift in the below
left diagram in sSet if and only if there is a lift in the below right diagram in sSet.

δ∆[n]

∆[n]

M(B ⊗ L,X)

M(A⊗ L
⊔
A⊗K B ⊗K,X)

ιn (j� i)∗

δ∆[n]× L
⊔
δ∆[n]×K ∆[n]×K

∆[n]× L

M(B,X)

M(A,X)

ιn� i j∗

Since the model structure on sSet is simplicial, the pushout-product map ιn� i is a
cofibration in sSet, which is trivial if i is so. Moreover, by Remark 4.5.3, we have that j∗
is a fibration. Furthermore, the fibration j∗ is trivial if j is an S-local equivalence. Hence,
if either j is an S-local equivalence in M or i is a weak equivalence in sSet, there is a
lift in the above right diagram. This shows that there is a lift in the above left diagram,
and hence that (j� i)∗ is a trivial fibration in sSet. We conclude that j� i is a trivial
cofibration in LSM, whenever j is a weak equivalence in LSM or i is a weak equivalence
in sSet. �

We now give a characterization of the S-local objects in terms of lifting properties.

Lemma 5.2.17. LetM be a combinatorial, simplicial model category such that all objects
inM are cofibrant. Let S be a set of cofibrations inM and let J denote a set of generating
trivial cofibrations forM. We define the set JS to be

JS = J
⋃
{s� ιn : A⊗∆[n]

⊔
A⊗δ∆[n]

B ⊗ δ∆[n]→ B ⊗∆[n] | s : A→ B ∈ S, n ≥ 0},

where ⊗ denotes the tensor of M over sSet. Then, an object X ∈ M is S-local if and
only if the unique morphism X → ∗ to the terminal object ∗ in M is in JS−inj, i.e., it
has the right lifting property with respect to every morphism in JS , where ⊗ denotes the
tensor ofM over sSet.
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Proof. Let X be an object in M. First note that X is fibrant in M if and only if the
morphism X → ∗ is in J−inj. Now, let s : A B be a cofibration in S and n ≥ 0. Then,
by the universal property of the tensor ⊗, there is a lift in the below left diagram inM
if and only if there is a lift in the below right diagram in sSet.

A⊗∆[n]
⊔
A⊗δ∆[n]B ⊗ δ∆[n]

B ⊗∆[n]

X

∗

s� ιn

δ∆[n]

∆[n]

M(B,X)

M(A,X)

ιn s∗

This says that the morphism X → ∗ has the right lifting property with respect to s� ιn,
for every s ∈ S and n ≥ 0, if and only if the map s∗ : M(B,X) →M(A,X) is a trivial
fibration in sSet, for every s ∈ S. Hence, this shows that an object X is S-local if and
only if X → ∗ is in JS−inj. �

Using this result, we can show that the fibrant objects in the left Bousfield localization
at a set S of cofibrations are S-local objects. The converse, i.e., that S-local objects
are fibrant in the left Bousfield localization, requires to find a set of generating trivial
cofibrations which is, in general, larger than the set JS introduced in Lemma 5.2.17, and
to prove that S-local objects also lift against the additional trivial cofibrations. Since
constructing this generating set of trivial cofibrations involves a lot of technicalities, we
do not prove it here.

Proposition 5.2.18. Let M be a combinatorial, simplicial model category such that all
objects in M are cofibrant and let S be a set of cofibrations in M. An object is fibrant
in LSM if and only if it is S-local.

Proof. Let X be a fibrant object in LSM. By Lemma 5.2.17, it is enough to show that
the morphism X → ∗, which is a fibration in LSM by assumption, is in JS−inj. By
Remark 5.2.13 and Proposition 5.2.16, the set JS is contained in the class of trivial
cofibrations of LSM. Hence, since X → ∗ has the right lifting property with respect to
all trivial cofibrations, it is in JS−inj.

For the converse, i.e., that an S-local object is fibrant in LSM, we refer the reader to
[Wer16, Proposition 5.3] or [Hir03, Theorem 4.1.1]. �

We now want to prove that a morphism between S-local objects is a weak equivalence
(resp. fibration) in LSM if and only if it is a weak equivalence (resp. fibration) in M.
For this, we first compute path objects for simplicial model categories.

Lemma 5.2.19. LetM be a simplicial model category and let X be a fibrant object inM.
Then the following diagram

X X∆[1] X ×Xw
∼

p

gives a path object for X inM, where the morphisms w and p are induced by the maps

∆[0] ∪∆[0] = δ∆[1] ∆[1] ∆[0]ι1 !

in sSet.

Proof. Since the map `1,0 : ∆[0] ∼ ∆[1] is a trivial cofibration in sSet, and the map
ι1 : ∆[0] ∪ ∆[0] = δ∆[1] ∆[1] is a cofibration in sSet, if X is fibrant in M, then the
induced morphisms

X`1,0 : X∆[1] ∼ X∆[0] ∼= X and p = Xι1 : X∆[1] X∆[0]∪∆[0] ∼= X ×X
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are fibrations inM such that the first morphism is trivial, by (emc3”) of Proposition 4.5.6.
Since !`1,0 = id∆[0], then X`1,0w = X`1,0X ! = idX and, by 2-out-of-3, we get that w is a
weak equivalence. This shows that X∆[1] is a path object for X. �

We are now ready to prove the desired result.

Proposition 5.2.20. Let M be a combinatorial, simplicial model category such that all
objects inM are cofibrant and let S be a set of cofibrations inM.

(i) A morphism between S-local objects is a weak equivalence in LSM if and only if
it is a weak equivalence inM.

(ii) A morphism between S-local objects is a fibration in LSM if and only if it is a
fibration inM.

Proof. We first prove (i). By Remark 5.2.13, we already know that weak equivalences
inM are weak equivalences in LSM. So let f : X ∼

Y be a weak equivalence in LSM
between S-local objects. Since S-local objects are precisely the fibrant objects in LSM
by Proposition 5.2.18 and all objects in LSM are cofibrant, by the Whitehead Theorem
(see Theorem 4.3.11), the morphism f : X ∼

Y is a homotopy equivalence in LSM. To
make sense of the notion of homotopy in the simplicial model category LSM, we are using
the path objects X∆[1] and Y ∆[1] given by Lemma 5.2.19. Then X∆[1] and Y ∆[1] are also
path objects inM, asM is also simplicial and the simplicial enrichment of LSM andM
are the same. This implies that f is a homotopy equivalence inM. In particular, it is a
weak equivalence inM, by Theorem 4.3.11.

We now prove (ii). Since idM : LSM → M is right Quillen by Proposition 5.2.14, a
fibration in LSM is in particular a fibration inM. So let p : X → Y be a fibration inM
between S-local objects. We factor p as

X

Z

Y
p

j
∼

r

with j a trivial cofibration in LSM and r a fibration in LSM. Since Y is S-local and
p is a fibration in LSM, then Z is also S-local by Proposition 5.2.18. By (i), the trivial
cofibration j between S-local objects is a weak equivalence in M. Hence j is a trivial
cofibration inM, asM and LSM have the same cofibrations. Since p has the left lifting
property with respect to j, it is a retract of the fibration r by the retract argument (see
Proposition 4.1.6) and therefore it is also a fibration in LSM. �

We finally want to prove that a left Quillen functor L : M → N which sends all
cofibrations in S to weak equivalences in N induces a left Quillen functor L : LSM→N .
For this, we first need the following result. We do not give a full proof of this result since
it involves more knowledge about Reedy model categories, which has not been covered in
this introduction. We refer the reader to [Hir03] for a complete proof.

Lemma 5.2.21. Let M be a simplicial model category such that all objects in M are
cofibrant and let N be a model category. Suppose that

N M
L

R

⊥

is a Quillen pair. Let f : A→ B be a morphism inM. Then the morphism Lf : LA→ LB
is a weak equivalence in N if and only if the induced map of simplicial sets

L(f ⊗∆[−])∗ : N (L(B ⊗∆[−]), X)→ N (L(A⊗∆[−]), X)
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is a weak equivalence in sSet, for every fibrant object X ∈ N .

Proof. SinceM is simplicial, the cosimplicial objects

A⊗∆[−], B ⊗∆[−] : ∆→ Set

are cosimplicial resolutions of the cofibrant objects A and B inM by [Hir03, Proposition
16.1.3]. Then, since L is left Quillen, by [Hir03, Proposition 16.2.1], the cosimplicial
objects

L(A⊗∆[−]), L(B ⊗∆[−]) : ∆→ Set
are cosimplicial resolutions of the cofibrant objects LA and LB in N . Finally, by the
equivalence of (1) and (5) in [Hir03, Theorem 17.7.7], we get that Lf is a weak equivalence
if and only if the induced map

L(f ⊗∆[−])∗ : N (L(B ⊗∆[−]), X)→ N (L(A⊗∆[−]), X)

is a weak equivalence in sSet, for every fibrant object X ∈ N . �

Before proving the desired result, we first consider the right adjoint of the left Quillen
functor L : M→N that sends cofibrations in S to weak equivalences in N , and we prove
that it sends fibrant objects in N to S-local objects inM.

Lemma 5.2.22. LetM be a combinatorial, simplicial model category such that all objects
inM are cofibrant and let N be a model category. Suppose that

N M
L

R

⊥

is a Quillen pair. Let S be a set of cofibrations inM such that Ls : LA ∼
LB is a weak

equivalence in N , for all s ∈ S. Then the right adjoint R : N →M sends fibrant objects
in N to S-local objects inM.

Proof. Let X be a fibrant object in N . Since Ls : LA ∼
LB is a weak equivalence in N ,

for all s ∈ S, then the induced map

L(s⊗∆[−])∗ : N (L(B ⊗∆[−]), X) ∼ N (L(A⊗∆[−]), X)

is a weak equivalence in sSet, by Lemma 5.2.21, for all s ∈ S. Since L a R is an adjunction,
there is an isomorphism

N (L(A⊗∆[n]), X) ∼=M0(A⊗∆[n], RX) ∼=M(A,RX)n
natural in A ∈ M, X ∈ N , and n ≥ 0. Hence this induces an isomorphism of simplicial
sets N (L(A⊗∆[−]), X) ∼=M(A,RX), natural in A ∈ M and X ∈ N . Hence we have a
commutative square in sSet of the form

N (L(B ⊗∆[−]), X)

M(B,RX)

N (L(A⊗∆[−]), X)

M(A,RX) ,

L(s⊗∆[−])∗
∼

s∗

∼= ∼=

for all s ∈ S. By 2-out-of-3, we get that the bottom map s∗ is a weak equivalence in sSet,
for all s ∈ S. This shows that RX is S-local. �

Theorem 5.2.23. Let M be a combinatorial, simplicial model category such that all
objects inM are cofibrant and let N be a model category. Suppose that
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N M
L

R

⊥

is a Quillen pair. Let S be a set of cofibrations inM such that Ls : LA ∼
LB is a weak

equivalence in N , for all s ∈ S. Then the adjunction L a R induces a Quillen pair

N LSM
L

R

⊥

between N and the left Bousfield localization LSM ofM at S.

Proof. Since L : M → N preserves cofibrations and the cofibrations in LSM are the
cofibrations inM, it follows that L : LSM→N preserves cofibrations. We show that it
also preserves trivial cofibrations. Let j : A ∼

B be a trivial cofibration in LSM. Since
L preserves cofibrations, then Lj : LA LB is a cofibration in N . It remains to show
that Lj is a weak equivalence in N . Since j is an S-local equivalence in M, then the
induced map

j∗ : M(B, Y )→M(A, Y )
is a weak equivalence in sSet, for every S-local object Y ∈ M. By Lemma 5.2.22, the
image RX of a fibrant object X ∈ N is S-local. Hence the induced map

j∗ : M(B,RX) ∼ M(A,RX)
is a weak equivalence in sSet, for every fibrant object X ∈ N . Since there is an isomor-
phism N (L(A ⊗∆[−]), X) ∼= M(A,RX) in sSet natural in A ∈ M and X ∈ N and by
2-out-of-3, we get that the map

L(j ⊗∆[−])∗ : N (L(B ⊗∆[−]), X)→ N (L(A⊗∆[−]), X)
is a weak equivalence in sSet, for every fibrant object X ∈ N . Finally, by Lemma 5.2.21,
this says that Lj : LA ∼

LB is a weak equivalence in N . Hence L preserves trivial
cofibrations and this shows that L : LSM→N is left Quillen. �





PART III.

HOMOTOPY THEORY OF 2-DIMENSIONAL
CATEGORIES

In category theory as well as in homotopy theory, we strive to find the correct notion of
“sameness”. When working with categories themselves, we have already discussed the fact
that having an isomorphism between categories is much too strong a requirement, and
we would instead concur that the right condition to demand is that of an equivalence of
categories. At heart, this is due to the fact that the category Cat of categories and functors
can be extended to a 2-category with natural transformations as 2-morphisms and, as we
have seen in Definition 2.4.1, there is a weaker version of an invertible morphism in that
context. In particular, an equivalence of categories is defined to be a functor which admits
an inverse up to natural isomorphisms, and can equivalently be characterized as a functor
which is surjective on objects up to isomorphism, and fully faithful on morphisms.

Since these equivalences seem to give a good notion of invertibility for functors between
categories, we expect them to model a certain homotopy theory of categories. It is indeed
the case since equivalences of categories form a class of weak equivalences in a model
structure on Cat, called the canonical model structure.

Going one dimension up and focusing on 2-categories, as we have seen in Defini-
tion 2.3.3, the 2-functors themselves form a 2-category, with morphisms given by the
pseudo-natural transformations and 2-morphisms given by the modifications. We can
then define a higher version of an equivalence of categories, by saying that a 2-functor
is a biequivalence if it admits an inverse up to pseudo-natural equivalences (see Defini-
tion 2.4.6), which correspond to equivalences in the pseudo-hom 2-category. Note that,
in this case, the inverse functor might not be a 2-functor anymore, but rather a pseudo-
functor. By a Whitehead theorem for 2-categories, and in analogy with the 1-dimensional
case, these biequivalences can be characterized as the 2-functors which are surjective on
objects up to equivalence, full on morphisms up to 2-isomorphism, and fully faithful on
2-morphisms.

As is the case of equivalences of categories, biequivalences form a class of weak equiv-
alences for a model structure on the category 2Cat of 2-categories and 2-functors, con-
structed by Lack in [Lac02, Lac04]. In particular, the inclusion of Cat into 2Cat gives
a homotopically full embedding from the canonical model structure on Cat into Lack’s
model structure on 2Cat.

By considering the relations between 2-categories and double categories, namely that
every 2-category can be seen as a horizontal double category with only trivial vertical
morphisms, we expect to find a homotopy theory of double categories containing that of
2-categories through this horizontal embedding. Constructing such a homotopy theory
for double categories is the aim of this part.

The idea of defining a model structure on the category DblCat of double categories
and double functors is scarcely a new one. In [FP10, FPP08], Fiore, Paoli, and Pronk
construct several model structures on DblCat. However, the horizontal embedding of
2-categories does not induce a Quillen pair between Lack’s model structure on 2Cat
and any of these model structures on DblCat (see [MSV20a, §8]). Some intuition is
provided by the fact that their categorical model structures on DblCat are constructed
from the canonical model structure on Cat, and hence the weak equivalences in there
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induce equivalences of categories between the underlying horizontal (1-)categories, and
between the (1-)categories of vertical morphisms and squares. However, a biequivalence
of 2-categories does not in general induce an equivalence between underlying categories,
which explains partially why the horizontal embedding of 2Cat into DblCat does not
preserve weak equivalences with respect to their model structures.

In order to remedy this loss of higher data, we define new model structures on DblCat
in joint works with Maru Sarazola and Paula Verdugo [MSV20a, MSV20b], which are
compatible with the horizontal embedding of 2-categories into double categories. We
first construct in [MSV20a] a model structure on DblCat by upgrading the 1-categorical
definitions above to 2-categorical ones. For this, instead of considering the underlying
horizontal categories and the categories of vertical morphisms and squares, we consider
instead the following 2-categories: the underlying horizontal 2-category HA as given in
Definition 3.4.3 and the 2-category VA as given in Definition 3.4.9 of a double category A.
In particular, these 2-categories have the desired underlying categories, and hence extend
the definitions above.

We then define a weak equivalence in DblCat to be a double functor F such that
the induced 2-functors HF and VF are biequivalences; we call them suggestively double
biequivalences. They can be described analogously to the biequivalences; namely, a double
biequivalence is precisely a double functor which is surjective on objects up to horizontal
equivalence, full on horizontal morphisms up to vertically invertible square (with trivial
vertical boundaries), surjective on vertical morphisms up to weakly horizontally invertible
square, and fully faithful on squares. We then construct a model structure on DblCat
whose weak equivalences are precisely the double biequivalences. In particular, the hor-
izontal embedding of 2Cat into DblCat both preserves and reflects weak equivalences,
and this model structure is actually designed in such a way that it is as homotopically
compatible as possible with the horizontal embedding.

Unsurprisingly, this model structure is not well-behaved with respect to the vertical
direction, as it is constructed with a pronounced horizontal bias. In particular, it is
not compatible with the nerve construction from double categories to double (∞, 1)-
categories, as we will see in Section 11. It is for instance due to the fact that all objects
of this first model structure on DblCat are fibrant, while the double categories whose
nerve is fibrant are precisely the weakly horizontally invariant double categories (see
Definition 3.6.5 and Theorem 11.4.8). Hence the nerve does not preserve fibrant objects,
which should actually be the case. To remedy this issue, we construct in [MSV20b]
another model structure on DblCat in which the fibrant objects are precisely the weakly
horizontally invariant double categories and the weak equivalences are such that they
induce a double biequivalence between fibrant replacements. The existence of such a
model structure was also noticed at roughly the same time by Campbell. This new model
structure on DblCat is again compatible with the (homotopical) horizontal embedding of
2-categories into double categories, and further provides the right homotopical context to
apply the nerve construction.

In Section 6, we first recall the main features of Lack’s model structure on 2Cat. In
particular, we provide sets of generating (trivial) cofibrations, and show that it is monoidal
with respect to the Gray tensor product for 2-categories. Then, in Section 7, we construct
a model structure on DblCat by right-inducing it from two copies of Lack’s model structure
on 2Cat along the right adjoint (H,V) : DblCat→ 2Cat×2Cat. We show that this model
structure on DblCat shares some features with Lack’s model structure. In particular, it
is cofibrantly generated and enriched over 2Cat with respect to the enrichment given in
Proposition 3.5.2. Due to the asymmetry between the horizontal and vertical directions
of this model structure, it is not monoidal with respect to the Gray tensor product for
double categories. Finally, in Section 8, we construct the other model structure on DblCat
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for weakly horizontally invariant double categories. While we were not able to show that
there is a set of generating trivial cofibrations for this model structure, it should also be
cofibrantly generated, and this will be studied in forthcoming work. However, unlike the
other one, this model structure is monoidal with respect to the Gray tensor product for
double categories, and hence also enriched over 2Cat with respect to the enrichment given
in Proposition 3.5.2.

6. Lack’s model structure for 2-categories

In this section, we recall the main features of the canonical model structure on Cat
– the category of categories and functors – and Lack’s model structure on 2Cat – the
category of 2-categories and 2-functors. As already mentioned in the introduction, the
weak equivalences of these model structures are given by the equivalences of categories and
the biequivalences of 2-categories, respectively. The fibrations in Cat are the isofibrations,
and the fibrations in 2Cat are 2-categorical versions of these isofibrations. In particular,
all categories and all 2-categories in these model structures are fibrant.

In Section 6.1, we first introduce these model structures by describing their weak equiv-
alences and fibrations, and show that the discrete embedding D : Cat → 2Cat is homo-
topically full. We further show that the canonical model structure on Cat is right-induced
from Lack’s model structure on 2Cat along D. Then, in Section 6.2, we turn our atten-
tion to the cofibrations in Lack’s model structure on 2Cat. In particular, we show that
the cofibrant objects are precisely the 2-categories whose underlying category is free. We
further provide sets of generating (trivial) cofibrations for this model structure, by study-
ing the lifting properties of the (trivial) fibrations described in Section 6.1. Finally, in
Section 6.3, we show that Lack’s model structure on 2Cat is not monoidal with respect
to the cartesian product, but that it is so with respect to the Gray tensor product for
2-categories.

The results here are based on [Lac02, Lac04].

6.1. Lack’s model structure. Before introducing the model structure for 2-categories
constructed by Lack in [Lac02, §3] and [Lac04, §2], we recall the canonical model struc-
ture on the category Cat of categories and functors. The weak equivalences in this model
structure are given by the equivalences of categories, which correspond to the equiva-
lences in the 2-category of categories, functors, and natural transformations. These can
equivalently be defined as follows (see e.g. [Rez00, Proposition 1.1]).

Definition 6.1.1. Let C and D be categories. A functor F : C → D is an equivalence
of categories if
(eq1) for every object D ∈ D, there is an object C ∈ C together with an isomorphism

D
∼=−→ FC in D,

(eq2) for every pair of objects C,E ∈ C and every morphism d : FC → FE in D, there
is a unique morphism c : C → E in C such that d = Fc.

The fibrations in the canonical model structure are given by the isofibrations, which
are the functors such that every isomorphism to an object in the image can be lifted to
an isomorphism in the source category.

Definition 6.1.2. Let C and D be categories. A functor F : C → D is an isofibration if,
for every object E ∈ C and every isomorphism d : D

∼=−→ FE in D, there is an isomorphism
c : C

∼=−→ E in C such that d = Fc.

These two classes of functors just defined determine a model structure on Cat, called
the canonical model structure.
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Theorem 6.1.3. There is a model structure on Cat in which the weak equivalences are
the equivalences of categories and the fibrations are the isofibrations.

Proof. A proof can be found in [JT91, Theorem 3.4] or [Rez00, Theorem 3.1]. �

Remark 6.1.4. Note that every category C is fibrant, since every functor C → [0] is trivially
an isofibration. Moreover, a trivial fibration in the canonical model structure on Cat is
precisely a functor which is surjective on objects and fully faithful on morphisms.

Remark 6.1.5. The functors which have the left lifting property with respect to functors
that are surjective on objects and fully faithful on morphisms are precisely the functors
which are injective on objects. This gives a characterization of the cofibrations in the
canonical model structure on Cat. Furthermore, every category C is cofibrant, since
∅ → C is trivially injective on objects.

A 2-categorical analogue of an equivalence of categories is given by the notion of biequiv-
alences. These are defined as the 2-functors which are surjective on objects up to equiva-
lence – the higher categorical version of invertibility for a morphism – and which induce
an equivalence between hom-categories.

Definition 6.1.6. Let A and B be 2-categories. A 2-functor F : A → B is a biequiva-
lence if

(b1) for every object B ∈ B, there is an object A ∈ A together with an equivalence
B
'−→ FA in B,

(b2) for every pair of objects A,C ∈ A and every morphism b : FA→ FC in B, there
is a morphism a : A→ C in A together with a 2-isomorphism b ∼= Fa in B,

(b3) for every pair of morphisms a, c : A→ C in A and every 2-morphism β : Fa⇒ Fc
in B, there is a unique 2-morphism α : a⇒ c in A such that β = Fα.

Similarly, a 2-categorical version of an isofibration is a 2-functor which is such that
every equivalence to an object in the image can be lifted to an equivalence in the source
2-category, and which induces an isofibration on hom-categories.

Definition 6.1.7. Let A and B be 2-categories. A 2-functor F : A → B is a Lack
fibration if

(f1) for every object C ∈ A and every equivalence b : B '−→ FC in B, there is an
equivalence a : A '−→ C in A such that b = Fa,

(f2) for every morphism c : A → C in A and every 2-isomorphism β : b ∼= Fc in B,
there is a 2-isomorphism α : a ∼= c in A such that β = Fα.

These classes of 2-functors determine a model structure on 2Cat, constructed by Lack.

Theorem 6.1.8. There is a model structure on 2Cat in which the weak equivalences are
the biequivalences and the fibrations are the Lack fibrations.

Proof. This appears as [Lac02, Theorem 3.3] or [Lac04, Theorem 4]. �

Remark 6.1.9. Note that every 2-category A is fibrant in 2Cat, as every 2-functor A → [0]
trivially satisfies (f1-2).

We now show that the trivial fibrations in this model structure are also a 2-categorical
analogue of the trivial fibrations in the canonical model structure in Cat. Namely, we
show that they are precisely the 2-functors which are surjective on objects and which
induce a trivial fibration between hom-categories. For this, we need the following result
saying that a 2-functor which induces a trivial fibration between hom-categories reflects
equivalences and 2-isomorphisms.

Lemma 6.1.10. Let A and B be 2-categories, and let F : A → B be a 2-functor.
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(i) Suppose that F is fully faithful on 2-morphisms. Then, if α : a ⇒ c is a 2-
morphism in A such that Fα : Fa ∼= Fc is a 2-isomorphism in B, then α is a
2-isomorphism in A.

(ii) Suppose that F is full on morphisms and fully faithful on 2-morphisms. Then, if
a : A→ C is a morphism in A such that Fa : FA '−→ FC is an equivalence in B,
then a is an equivalence in A.

Proof. We first prove (i). Since Fα : Fa ∼= Fc is a 2-isomorphism, it has an inverse
(Fα)−1 : Fc ⇒ Fa. By fully faithfulness of F on 2-morphisms, there is a unique 2-
morphism γ : c⇒ a in A such that (Fα)−1 = Fγ. Since we have that

F (γα) = (Fγ)(Fα) = (Fα)−1F (α) = idFa = F (ida),

by fully faithfulness on 2-morphisms, we get that γα = ida. Similarly, we can show that
αγ = idc, which shows that γ is an inverse of α. Hence α is a 2-isomorphism in A.

We now prove (ii). Since Fa : FA '−→ FC is an equivalence in B, there is a morphism
b : FC → FA in B together with 2-isomorphisms η : idFA ∼= b(Fa) and ε : (Fa)b ∼= idFC .
By fullness of F on morphisms, there is a morphism c : C → A in A such that b = Fc.
Then η : F (idA) = idFA ⇒ b(Fa) = (Fc)(Fa) = F (ca) and, by fully faithfulness of F
on 2-morphisms, there is a unique 2-morphism η : idA ⇒ ca in A such that η = F (η).
Moreover, η is a 2-isomorphism by (i), as η is so. Similarly, there is a unique 2-isomorphism
ε : ac ∼= idC such that ε = Fε. This shows that a is an equivalence in A. �

Proposition 6.1.11. Let A and B be 2-categories. A 2-functor F : A → B is a trivial
fibration in the model structure on 2Cat of Theorem 6.1.8 if and only if it is surjective on
objects, full on morphisms, and fully faithful on 2-morphisms.

Proof. Suppose that F is surjective on objects, full on morphisms, and fully faithful on 2-
morphisms. Then it satisfies trivially (b1-3) of Definition 6.1.6. We show that F satisfies
(f1-2) of Definition 6.1.7. Let b : B '−→ FC be an equivalence in B. By surjectivity
of F on objects, there is an object A ∈ A such that B = FA. Then, by fullness of F
on morphisms, there is a morphism a : A → C such that b = Fa. Since F is full on
morphisms and fully faithful on 2-morphisms, it follows from Lemma 6.1.10 (ii) that a
is an equivalence in A, which proves (f1). Now, let c : A → C be a morphism in A and
β : b ∼= Fc be a 2-isomorphism in B. By fullness of F on morphisms, there is a morphism
a : A → C such that b = Fa. Then β : Fa = b ∼= Fc, and by fully faithfulness of F
on 2-morphisms, there is a unique 2-morphism α : a ⇒ c in A such that β = Fα. By
Lemma 6.1.10 (i), we have that α is a 2-isomorphism, which proves (f2).

Now suppose that F is a trivial fibration, i.e., it is both a biequivalence and a Lack
fibration. Let B ∈ B be an object. By (b1), there is an object C ∈ A together with an
equivalence b : B '−→ FC in B, and, by (f1), there is an equivalence a : A '−→ C in A such
that b = Fa. In particular, we have B = FA, so that F is surjective on objects. Now, let
b : FA→ FC be a morphism in B. By (b2), there is a morphism a : A→ C in A together
with a 2-isomorphism β : b ∼= Fc in B, and, by (f2), there is a 2-isomorphism α : a ∼= c
in A such that β = Fα. In particular, we have b = Fa, so that F is full on morphisms.
Fully faithfulness on 2-morphisms is precisely (b3). �

Finally, we show that there is a Quillen reflection (see Definition 4.4.8) between the
canonical model structure on Cat and Lack’s model structure on 2Cat. This is given
by the adjunction P a D of Proposition 2.1.13, where we recall that D : Cat → 2Cat
is the functor which sends a category to its associated locally discrete 2-category, and
P : 2Cat → Cat is obtained by taking the path components of the hom-categories of a
2-category.
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Remark 6.1.12. Given a category C, note that an equivalence in the 2-category DC is
precisely an isomorphism in the category C, since DC has only trivial 2-morphisms.

Furthermore, given a 2-category A, the path component of an equivalence in A is an
isomorphism in PA. Indeed, given an equivalence a : A '−→ C in A, there is a morphism
c : C → A together with 2-isomorphisms ca ∼= idA and idB ∼= ac. Therefore, in the
category PA, we get that [c][a] = [ca] = [idA] = idA and similarly that [a][c] = idB. This
shows that [a] is an isomorphism in PA.

Before showing the result, we show that the left adjoint P preserves weak equivalences.

Lemma 6.1.13. The functor P : 2Cat → Cat sends biequivalences to equivalences of
categories.

Proof. Let F : A → B be a biequivalence. We show that PF : PA → PB satisfies (eq1-2)
of Definition 6.1.1. Let B ∈ PB be an object. By (b1) of Definition 6.1.6, there is an
object A ∈ A together with an equivalence b : B '−→ FA in B. By Remark 6.1.12, this
gives an object A ∈ PA and an isomorphism [b] : B

∼=−→ FA in PB, which shows (eq1).
Now, let A and C be objects in PA and [b] : FA → FC be a morphism in PB. By (b2)
of Definition 6.1.6, there is a morphism a : A → C in A together with a 2-isomorphism
b ∼= Fa in B. In particular, this says that the morphism [a] : A → C in PA is such that
[b] = F [a], which shows that PF is full on morphisms. Moreover, if c : A→ C is another
morphism in A such that F [c] = [b] = F [a], then there is a 2-morphism β : Fa⇒ Fc in B
by definition of PB. By (b3) of Definition 6.1.6, there is a unique 2-morphism α : a ⇒ c
in A such that Fα = β. This shows that [a] = [c] in PA and hence proves (eq2). �

The following result, which appears as [Lac02, Theorem 8.2], implies that the homotopy
category of categories is embedded into that of 2-categories in a reflective way.

Theorem 6.1.14. The adjunction

Cat 2Cat

P

D

⊥

is a Quillen reflection, where Cat is endowed with the model structure of Theorem 6.1.3
and 2Cat is endowed with the model structure of Theorem 6.1.8.

Proof. We show that the right adjoint D : Cat → 2Cat preserves fibrations and trivial
fibrations. Let F : C → D be an isofibration. We show that the 2-functor DF : DC → DD
satisfies (f1-2) of Definition 6.1.7. Let E be an object in DC and d : D '−→ FE be an
equivalence in DD. By Remark 6.1.12, the equivalence d is an isomorphism d : D

∼=−→ FE

in D. Since F is an isofibration, there is an isomorphism c : C
∼=−→ E in C such that

d = Fc, which shows (f1). The 2-functor DF trivially satisfies (f2) since all 2-morphisms
in DD are trivial. Hence DF is a fibration in 2Cat. Now let F : C → D be a trivial
fibration in Cat, i.e., it is surjective on objects and fully faithful on morphisms. Then
DF : DC → DD is clearly surjective on objects and full on morphisms. It is further fully
faithful on 2-morphisms, since F is fully faithful on morphisms and all 2-morphisms in
DC and DD are trivial. This shows that DF is a trivial fibration in 2Cat. Therefore, the
functor D : Cat→ 2Cat is right Quillen.

It remains to show that the derived counit is level-wise an equivalence of categories.
Let C be a category. First note that PDC = C, so that the counit εC is given by the identity
at C. Now let qDC : (DC)c → DC denote a cofibrant replacement of DC in 2Cat. Since P
preserves weak equivalences by Lemma 6.1.13, we have that P (qDC) : P (DC)c → PDC = C
is an equivalence of categories. But this is precisely the component of the derived counit
at C. This shows that P a D is a Quillen reflection. �
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Remark 6.1.15. The components of the derived counit of the adjunction P a D are not
biequivalences in general. To see this, let Σ[1] be the 2-category free on a 2-morphism
(see Notation 2.1.8). Then Σ[1] is cofibrant, since its underlying category is free (see
Corollary 6.2.4 below). We have that DPΣ[1] = [1] is the 2-category free on a morphism.
Then the unit ηΣ[1] : Σ[1]→ DPΣ[1] = [1], which is also the derived counit as all objects
in Cat are fibrant, is not a biequivalence, as it identifies the two non trivial morphisms
of Σ[1] which are not related by a 2-isomorphism and therefore does not satisfy (b3) of
Definition 6.1.6.

Theorem 6.1.16. The model structure on Cat of Theorem 6.1.3 is right-induced along
the adjunction

Cat 2Cat

P

D

⊥

from the model structure on 2Cat of Theorem 6.1.8.

Proof. We need to show that a functor F : C → D is an equivalence (resp. isofibration)
in Cat if and only ifDF : DC → DD is a biequivalence (resp. Lack fibration) in 2Cat. Since
the functor D : Cat → 2Cat is right Quillen, it preserves fibrations and, since all objects
in Cat are fibrant, it also preserves weak equivalences by Corollary 4.4.7. This shows
that, if F is an equivalence (resp. isofibration), then DF is a biequivalence (resp. Lack
fibration).

Now suppose that DF is a biequivalence. Since P : 2Cat → Cat sends biequivalences
to equivalences by Lemma 6.1.13 and PD = idCat, then PDF = F is an equivalence.

Finally, suppose that DF is a Lack fibration. We show that F is an isofibration.
Let E ∈ C be an object and d : D

∼=−→ FE be an isomorphism in D. Then the isomorphism
d : D

∼=−→ FE is in particular an equivalence in DD. By (f1) of Definition 6.1.7 for DF ,
there is an equivalence c : C '−→ E in DC such that d = (DF )c. By Remark 6.1.12, this
corresponds to an isomorphism c : C

∼=−→ E in C such that d = Fc, which shows that F is
an isofibration. �

6.2. Cofibrations, cofibrant objects, and generating sets. While all categories are
cofibrant in the canonical model structure on Cat, not every 2-category is cofibrant.
However, cofibrations and cofibrant objects in Lack’s model structure on 2Cat can be
characterized in terms of their underlying functor and their underlying category, respec-
tively. The characterizations of this section come from [Lac02, §4], and the generating
sets of cofibrations and trivial cofibrations given in Notation 6.2.5 from [Lac02, §3] and
[Lac04, §2].

Recall the functor U : 2Cat → Cat from Definition 2.1.11 which sends a 2-category A
to its underlying category UA.

Remark 6.2.1. This functor U : 2Cat → Cat has a right adjoint R : Cat → 2Cat, which
sends a category C to the 2-category RC with the same objects and morphisms as C, and
with a unique 2-morphism between each pair of parallel morphisms. A functor F : C → D
is sent to the 2-functor RF : RC → RD which acts as F on objects and morphisms, and
sends the unique 2-morphism ! : f ⇒ g in RC to the unique 2-morphism ! : Ff ⇒ Fg
in RD, for all morphisms f, g in C. Note that the functor RF is fully faithful on 2-
morphims, as there is a unique 2-morphism between each pair of parallel morphisms in
RC and in RD.

Theorem 6.2.2. Let A and B be 2-categories. A 2-functor F : A → B is a cofibration
in the model structure on 2Cat of Theorem 6.1.8 if and only if its underlying functor
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UF : UA → UB has the left lifting property with respect to all surjective on objects and
full functors.
Proof. Suppose that F : A → B is a cofibration in 2Cat. Let G : C → D be a surjective on
objects and full functor in Cat. We need to show that there is a lift in every commutative
diagram as below left.

UA C

UB D

UF G

A RC

B RD

F RG

By the adjunction U a R, such a lift exists if and only if there is a lift in the above right
commutative diagram. This is indeed the case since RG : RC → RD is a trivial fibration
in 2Cat: it is surjective on objects and full on morphisms since G is so, and fully faithful
on 2-morphisms by Remark 6.2.1; see Proposition 6.1.11. This shows that UF has the
left lifting property with respect to every surjective on objects and full functor.

Now suppose that UF has such a lifting property. Let P : X → Y be a trivial fibration
in 2Cat. We need to show that there is a lift in every commutative diagram as below left.

A X

B Y

F P

Q

L

UA UX

UB UY

UF UP

UQ

UL

By applying U to this diagram, we get a commutative diagram as above right in which
there is a lift UL : UB → UX , since UP : UX → UY is surjective on objects and full
on morphisms as P is so by Proposition 6.1.11. This defines the 2-functor L : B → X
on objects and morphisms. Given a 2-morphism β : b ⇒ d in B, by fully faithfulness on
2-morphisms of P (see Proposition 6.1.11), there is a unique 2-morphism χ : Lb ⇒ Ld
in X such that Qβ = Pχ : Qb = PLb ⇒ Qd = PLd. We set Lβ := χ and this gives a
well-defined 2-functor making the diagram above left commute. Hence F is a cofibration
in 2Cat. �

Corollary 6.2.3. Let A and B be 2-categories. A 2-functor F : A → B is a cofibration
in the model structure on 2Cat of Theorem 6.1.8 if and only if

(i) it is injective on objects and faithful on morphisms,
(ii) the underlying category UB is a retract of a category obtained from the image

of UA under UF by freely adjoining objects and then morphisms between objects.
Proof. There is a cofibrantly generated weak factorization system (L,R) on Cat, where
the right class R contains all surjective on objects and full functors. A generating set of
morphisms is given by the set containing the unique functor ∅ → [0] and the inclusion
functor [0] t [0] → [1]. Then the left class L contains all functors G : C → D which
are injective on objects and faithful on morphisms, and such that D is a retract of a
category obtained from the image of C under G by freely adjoining objects and then
morphisms between objects. Then the result follows from Theorem 6.2.2 and the above
characterization of functors in Cat which have the left lifting property with respect to the
surjective on objects and full functors. �

By applying this result to a 2-functor whose source is the initial object ∅ in 2Cat, we
get the following characterization of cofibrant 2-categories.
Corollary 6.2.4. A 2-category A is cofibrant in the model structure on 2Cat of Theo-
rem 6.1.8 if and only if its underlying category UA is free.
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Proof. By Corollary 6.2.3, the 2-functor ∅ → A is a cofibration if and only if the cate-
gory UA is a retract of a free category. However, a retract of a free category is itself
free. �

Finally, we give sets of generating cofibrations, and generating trivial cofibrations for
Lack’s model structure on 2Cat. For this, recall the construction Σ from Notation 2.1.8.

Notation 6.2.5. Let I2 denote the set containing the following 2-functors:
(i) the unique 2-functor i1 : ∅ → [0],
(ii) the inclusion 2-functor i2 : [0] t [0]→ [1],
(iii) the inclusion 2-functor i3 : δC → C, where C = Σ[1] is the free 2-category on a

2-morphism, and δC = Σ([0] t [0]) is its sub-2-category containing the boundary
of the 2-morphism, i.e., it is free on two parallel morphisms,

(iv) the 2-functor i4 : C2 → C sending the two non trivial 2-morphisms of C2 to the
non trivial 2-morphism of C, where C2 = Σ({0 ⇒ 1}) is the free 2-category on
two parallel 2-morphisms.

Let J2 denote the set containing the following 2-functors:
(i) the inclusion 2-functor j1 : [0]→ Eadj, where the 2-category Eadj is the “free-living

adjoint equivalence”,
(ii) the inclusion 2-functor j2 : [1]→ Cinv, where the 2-category Cinv = ΣI is the “free-

living 2-isomorphism”, where the category I = {0 ∼= 1} denotes the “free-living
isomorphism”.

Theorem 6.2.6. The model structure on 2Cat of Theorem 6.1.8 is cofibrantly generated,
and sets of generating cofibrations and generating trivial cofibrations can be given by the
sets I2 and J2, respectively.

Proof. Using the characterization of cofibrations of Corollary 6.2.3, it is straightforward
to see that the 2-functors in I2 are cofibrations in 2Cat. A direct computation shows that
a 2-functor has the right lifting property with respect to each 2-functor in I2 precisely
when it is surjective on objects, full on morphisms, and fully faithful on 2-morphisms. By
Proposition 6.1.11, such a 2-functor is precisely a trivial fibration in 2Cat.

Similarly, one can check that the 2-functors in J2 are trivial cofibrations in 2Cat and
that a 2-functor has the right lifting property with respect to each 2-functor in J2 precisely
when it satisfies (f1-2) of Definition 6.1.7, i.e., it is a Lack fibration. �

6.3. Monoidality. We now study the monoidality of Lack’s model structure on 2Cat,
following [Lac02, §7]. While it is not monoidal with respect to the cartesian product, it
is monoidal with respect to the Gray tensor product.

Remark 6.3.1. The model structure on 2Cat of Theorem 6.1.8 is not monoidal with respect
to the cartesian product. Indeed, given the generating cofibration i2 : [0]t [0]→ [1], then
the pushout-product

i2�× i2 : [1] t [1]
⊔

[0]t[0]t[0]t[0]
[1] t [1]→ [1]× [1]

is not a cofibration. To see this, the domain of i2�× i2 can be described as the 2-
category freely generated by four morphisms (f, 0) : (0, 0)→ (1, 0), (f, 1) : (0, 1)→ (1, 1),
(0, f) : (0, 0) → (0, 1), and (1, f) : (1, 0) → (1, 1), while the codomain of i2�× i2 is
the 2-category containing the same four morphisms subject to the following relation:
(1, f)(f, 0) = (f, 1)(0, f). Therefore, the pushout-product i2�× i2 is not faithful on mor-
phisms, as it sends the two distinct composites (1, f)(f, 0) and (f, 1)(0, f) to the same
morphism in [1] × [1]. This shows that i2�× i2 is not a cofibration in 2Cat by Corol-
lary 6.2.3.
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To show that Lack’s model structure on 2Cat is monoidal with respect to the Gray
tensor product ⊗2, as defined in Proposition 2.3.4, we first describe the data of the Gray
tensor product of two 2-categories, in order to compare it with the cartesian product.

Description 6.3.2. Let A and X be 2-categories. Their Gray tensor product A⊗2 X is
the 2-category described by the following data:

(i) an object in A⊗2 X is a pair (A,X) of an object A ∈ A and an object X ∈ X ,
(ii) morphisms in A⊗2 X are generated by the following morphisms:

• a morphism (a,X) : (A,X) → (C,X), for each pair (a,X) of a morphism
a : A→ C in A and an object X ∈ X , and
• a morphism (A, x) : (A,X)→ (A,Z), for each pair (A, x) of an object A ∈ A
and a morphism x : X → Z in X ,

(iii) 2-morphisms in A⊗2 X are generated by the following 2-morphisms:
• a 2-morphism (α,X) : (a,X)⇒ (c,X), for each pair (α,X) of a 2-morphism
α : a⇒ c in A and an object X ∈ X ,
• a 2-morphism (A,χ) : (A, x)⇒ (A, z), for each pair (A,χ) of an object A ∈ A
and a 2-morphism χ : x⇒ z in X , and
• a 2-isomorphism (a, x) : (C, x)(a,X) ∼= (a, Z)(A, x), for each pair (a, x) of a
morphism a : A→ C in A and a morphism x : X → Z in X ,

subject to conditions which are equivalent to requiring that the below 2-functor
πA,X : A⊗2 X → A×X is fully faithful on 2-morphisms.

There is a 2-functor πA,X : A⊗2 X → A×X , which is the identity on objects, sends the
generating morphisms (a,X) and (A, x) of A⊗2X to the morphisms (a, idX) and (idA, x)
in A × X , respectively, and sends the generating 2-morphisms (α,X), (A,χ), and (a, x)
of A⊗2 X to the 2-morphisms (α, ididX ), (ididA , χ), and id(a,x) in A×X , respectively.

Lemma 6.3.3. Let A and X be 2-categories. Then the 2-functor πA,X : A⊗2X → A×X
is a trivial fibration in the model structure on 2Cat of Theorem 6.1.8.

Proof. To show that πA,X is a trivial fibration, we use the characterization in Proposi-
tion 6.1.11. Since πA,X is the identity on objects, it is clearly surjective on objects. Given
a morphism (a, x) : (A,X)→ (C,Z) in A×X , the composite

(A,X) (C,X) (C,Z)
(a,X) (C, x)

in A ⊗2 X is sent by πA,X to (a, x), which shows that πA,X is full on morphisms. Fully
faithfulness on 2-morphisms holds by Description 6.3.2 (iii). �

Using this result, we can prove the following lemma.

Lemma 6.3.4. Let A and B be 2-categories, and F : A → B be a biequivalence. Then,
for every 2-category X , the induced 2-functors

F × idX : A×X → B ×X and F ⊗2 idX : A⊗2 X → B ⊗2 X

are also biequivalences.

Proof. It is straightforward to see that (b1-3) of Definition 6.1.6 hold for the 2-functor
F × idX : A×X → B ×X since they hold for F . Therefore F × idX is a biequivalence.

By Lemma 6.3.3, the 2-functors πA,X : A⊗2 X → A× X and πB,X : B ⊗2 X → B × X
are trivial fibrations, and hence they are in particular biequivalences. Since the following
diagram commutes
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A⊗2 X B ⊗2 X

A×X B × X ,

F ⊗2 idX

πA,X πB,X

F × idX

and F×idX is a biequivalence, it follows by 2-out-of-3 that F⊗2 idX is also a biequivalence.
�

We are now ready to prove that Lack’s model structure on 2Cat is monoidal with
respect to the Gray tensor product.

Theorem 6.3.5. The model structure on 2Cat of Theorem 6.1.8 is monoidal with respect
to the Gray tensor product ⊗2.

Proof. We first show that the pushout-product i�⊗2 j is a cofibration in 2Cat, whenever i
and j are cofibrations in 2Cat. By Remark 4.5.7, it is enough to show the result when i and
j are in the set of generating cofibrations I2 = {i1, i2, i3, i4} described in Notation 6.2.5.
Furthermore, note that i�⊗2 j

∼= j�⊗2 i since the Gray tensor product is symmetric, and
therefore it is enough to show the result for one of the two pushout-products.

Suppose that i = i1 : ∅ → [0]. Since ∅⊗2A ∼= ∅ and [0]⊗2A ∼= A for every 2-category A,
then i1�⊗2 j

∼= j and it is a cofibration, for every j ∈ I2. Now suppose that i is one
of the generating cofibrations i3 : δC → C or i4 : C2 → C. Then i is an isomorphism
on underlying categories. Since U preserves pushouts and the underlying category of the
Gray tensor product A ⊗2 B only depends on the underlying categories of A and B, for
every pair of 2-categories A and B, it follows that the functor

U(i�⊗2 j) : U(D ⊗2 B)
⊔

U(D⊗2A)
U(C ⊗2 A)→ U(C ⊗2 B)

is an isomorphism of categories, where D is either δC or C2, and j : A → B is in
{i2, i3, i4}. It follows from Corollary 6.2.3 that i�⊗2 j is a cofibration. It remains to
show that i2�⊗2 i2 is a cofibration, for the generating cofibration i2 : [0] t [0] → [1].
The domain of i2�⊗2 i2 can be described as the 2-category freely generated on four
morphisms (f, 0) : (0, 0) → (1, 0), (f, 1) : (0, 1) → (1, 1), (0, f) : (0, 0) → (0, 1), and
(1, f) : (1, 0) → (1, 1). Then i2�⊗2 i2 is the inclusion 2-functor of this 2-category into
the 2-category with the same underlying category, and an additional 2-isomorphism
(1, f)(f, 0) ∼= (f, 1)(0, f) (compare with Remark 6.3.1). Hence the pushout-product
i2�⊗2 i2 is an isomorphism on underlying categories, and therefore it is a cofibration
by Corollary 6.2.3. This shows that i�⊗2 j is a cofibration in 2Cat whenever i and j are
cofibrations in 2Cat.

We now show that the pushout-product i�⊗2 j is a trivial cofibration in 2Cat, whenever
i is a cofibration in 2Cat and j : A → B is a trivial cofibration in 2Cat. Again, it is enough
to show the result for i ∈ I2. Note that all domains of the generating cofibrations in I2
are cofibrant by Corollary 6.2.4, since they have free underlying categories. Therefore, the
generating cofibration i ∈ I2 is of the form i : D → E with D cofibrant. By Lemma 6.3.4,
the 2-functors idD ⊗2 j and idE ⊗2 j are biequivalences, since j is a biequivalence. Fur-
thermore, since D is cofibrant, j is a cofibration, and idD⊗2 j = (∅ → D)�⊗2 j, it follows
by the first part of the proof that idD⊗2 j is a cofibration in 2Cat. Consider the following
diagram.
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D ⊗2 A D ⊗2 B

E ⊗2 A P

E ⊗2 B

idD ⊗2 j

∼

i⊗2 idA
k
∼ i�⊗2 j

idE ⊗2 j

∼

i⊗2 idBp

Since trivial cofibrations are closed under pushouts and idD⊗2 j is a trivial cofibration by
the above discussion, then k is also a trivial cofibration. Then i�⊗2 j is a biequivalence by
2-out-of-3 applied to idE⊗2 j = (i�⊗2 j)k. This shows that i�⊗2 j is a trivial cofibration
in 2Cat whenever i and j are cofibrations in 2Cat such that one of i and j is trivial. This
concludes the proof. �

7. The first model structure for double categories

In this section, we construct a first model structure on DblCat – the category of double
categories and double functors –, in such a way that it is compatible with the horizontal
embedding functor H : 2Cat → DblCat, which sends a 2-category to its associated hori-
zontal double category. For this, we consider the functor (H,V) : DblCat→ 2Cat× 2Cat,
which extracts from a double category A its underlying horizontal 2-category HA (see
Definition 3.4.3) and the 2-category VA = H[V[1],A] (see Definition 3.4.9) whose objects
are the vertical morphisms of A and whose morphisms are the squares of A. We first
show in Section 7.1 that the right-induced model structure on DblCat along the func-
tor (H,V) : DblCat→ 2Cat× 2Cat exists, where both copies of 2Cat are endowed with
Lack’s model structure.

In particular, the weak equivalences in this model structure can be characterized as the
double biequivalences, i.e., the double functors which are surjective on objects up to hor-
izontal equivalence, full on horizontal morphisms up to vertically invertible square (with
trivial vertical boundaries), surjective on vertical morphisms up to weakly horizontally
invertible square, and fully faithful on squares (see Definition 7.2.1). In Section 7.2, we
show that this characterization of weak equivalences holds, and we further characterize
the fibrations and trivial fibrations in right-induced model structure on DblCat.

Then, in Section 7.3, we turn our attention to the cofibrations in this model structure
on DblCat. In particular, we show that they admit a similar characterization to the
one of the cofibrations in 2Cat given in Theorem 6.2.2 in the horizontal direction. As
a consequence, cofibrant double categories have a free underlying horizontal category.
However, their underlying vertical category is not free, but is instead a copy of disjoint
unions of the categories [0] and [1]. This gives an instance of the fact that this model
structure is not well-behaved with respect to the vertical direction.

In Section 3.4, we show that the horizontal embedding H : 2Cat → DblCat is both a
left and a right Quillen functor and that it is homotopically fully faithful. Moreover, we
show that Lack’s model structure on 2Cat is both left- and right-induced from this model
structure on DblCat along H. In particular, this says that the horizontal embedding H
both preserves and reflects the whole homotopical structure, and hence that the homotopy
theory of 2-categories is completely determined by that of double categories under H.
With these very nice results, we more than achieved our goal of defining a model structure
for double categories compatible with the horizontal embedding.

Finally, in Section 7.5, we note that this model structure on DblCat is neither monoidal
for the cartesian product nor for the Gray tensor product for double categories. The fact
that it is not cartesian closed can be deduced by using a similar argument to the one for
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Lack’s model structure on 2Cat. But the fact that it is not monoidal for the Gray tensor
product for double categories is a consequence of the asymmetry between the horizontal
and vertical directions in the characterization of cofibrations. However, by restricting the
Gray tensor product in one variable along H, we remove this issue and this provides a
2Cat-enrichment of the model structure on DblCat.

All the results in this section are based on joint work [MSV20a] with Maru Sarazola
and Paula Verdugo.

7.1. The model structure. Recall the functors H : DblCat→ 2Cat introduced in Def-
inition 3.4.3 and V : DblCat → 2Cat introduced in Definition 3.4.9. We aim to induce a
model structure on DblCat along the right adjoint (H,V) : DblCat→ 2Cat×2Cat, where
each copy of 2Cat is endowed with Lack’s model structure. To prove the existence of such
a right-induced model structure, we apply Corollary 5.1.5, which requires the existence
of a path object for DblCat. Recall that the 2-category Eadj is the “free-living adjoint
equivalence”, and that [−,−]ps denote the pseudo-hom double categories introduced in
Definition 3.3.4.

Definition 7.1.1. Let A be a double category. We define a path object for A to be the
double category Path(A) = [HEadj,A]ps together with the following factorization of the
diagonal double functor ∆: A→ A× A

A Path(A) A× A ,W P

where W : A ∼= [[0],A]ps → Path(A) = [HEadj,A]ps is induced by the unique double
functor HEadj → [0], and P : Path(A) = [HEadj,A]ps → A×A ∼= [[0] t [0],A]ps is induced
by the inclusion double functor [0] t [0]→ HEadj.

We show that the image under (H,V) : DblCat→ 2Cat×2Cat of the double functorsW
and P is a weak equivalence and a fibration, respectively, in 2Cat× 2Cat.

Proposition 7.1.2. Let A be a double category. The path object

A Path(A) A× AW P

of Definition 7.1.1 is such that (H,V)W is a weak equivalence in 2Cat×2Cat and (H,V)P
is a fibration in 2Cat×2Cat, where each copy of 2Cat is endowed with the model structure
of Theorem 6.1.8.

Proof. We first prove that HW and VW are biequivalences. By Lemma 3.5.6 and Corol-
lary 3.5.8, we have commutative squares as depicted below,

H[[0],A]ps

H[HEadj,A]ps

[[0],HA]2,ps

[Eadj,HA]2,ps

HW = H[!,A]ps [!,HA]2,ps

∼=

∼=

V[[0],A]ps

V[HEadj,A]ps

[[0],VA]2,ps

[Eadj,VA]2,ps

VW = V[!,A]ps [!,VA]2,ps

∼=

∼=

where [−,−]2,ps denote the pseudo-hom 2-categories introduced in Definition 2.3.3. Now
recall from Notation 6.2.5 that j1 : [0]→ Eadj is a trivial cofibration in 2Cat and also that
every 2-category is fibrant. Therefore, by monoidality of the model structure on 2Cat
with respect to the Gray tensor product (see Proposition 2.3.4 and Theorem 6.3.5), the
2-functors

[j1,HA]2,ps : [Eadj,HA]2,ps → [[0],HA]2,ps, [j1,VA]2,ps : [Eadj,VA]2,ps → [[0],VA]2,ps

are trivial fibrations in 2Cat. By pre-composing these 2-functors with [!,HA]2,ps and
[!,V]2,ps, respectively, we get the identity at HA and VA. Therefore, by 2-out-of-3, we get
that [!,HA]2,ps and [!,V]2,ps are biequivalences. It follows from the commutativity of the
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above diagrams that HW and VW are also biequivalences. This shows that (H,V)W is
a weak equivalence in 2Cat× 2Cat.

We now prove that HP and VP are Lack fibrations. Again, by Lemma 3.5.6 and Corol-
lary 3.5.8, we have commutative squares as follows,

H[HEadj,A]ps

H[[0] t [0],A]ps

[Eadj,HA]2,ps

[[0] t [0],HA]2,ps

HP = H[Hi,A]ps [i,HA]2,ps

∼=

∼=

V[HEadj,A]ps

V[[0] t [0],A]ps

[Eadj,VA]2,ps

[[0] t [0],VA]2,ps

VP = V[Hi,A]ps [i,VA]2,ps

∼=

∼=

where i : [0]t[0]→ Eadj denotes the inclusion 2-functor. This 2-functor i is a cofibration in
2Cat, by Corollary 6.2.3, and since every 2-category is fibrant, we get by monoidality of the
model structure on 2Cat (see Theorem 6.3.5) that the 2-functors [i,HA]2,ps and [i,VA]2,ps
are Lack fibrations. It follows by the commutativity of the above diagrams that HP
and VP are also Lack fibrations. This shows that (H,V)P is a fibration in 2Cat×2Cat. �

This allows us to prove the existence of the desired right-induced model structure.

Theorem 7.1.3. Consider the adjunction

DblCat 2Cat× 2Cat ,

H t L

(H,V)

⊥

where each copy of 2Cat is endowed with the model structure of Theorem 6.1.8. Then the
right-induced model structure on DblCat exists.

Proof. First recall that the categories 2Cat and DblCat are locally presentable by Proposi-
tions 2.1.6 and 3.1.6. Then, by Theorem 6.2.6, the model category 2Cat is combinatorial
and every 2-category is fibrant. Therefore, we can apply Corollary 5.1.5 and Proposi-
tion 7.1.2 verifies the required conditions for the path object Path(A) of Definition 7.1.1
for every double category A. This proves the existence of the right-induced model struc-
ture on DblCat. �

Remark 7.1.4. Note that every double category is fibrant in the model structure on DblCat
of Theorem 7.1.3. Indeed, this follows from the facts that every 2-category is fibrant, and
that a double category A is fibrant in the right-induced model structure along (H,V) if
and only if the 2-categories HA and VA are fibrant.

7.2. Double biequivalences and double fibrations. In this section, we characterize
the weak equivalences, fibrations, and trivial fibrations in the model structure on DblCat
of Theorem 7.1.3. We show that these admit characterizations in terms of conditions
analogous to the ones that biequivalences, Lack fibrations, or trivial fibrations in 2Cat
satisfy. First, we show that the weak equivalences in DblCat are precisely the double
functors which are double biequivalences.

Definition 7.2.1. Let A and B be double categories. A double functor F : A → B is a
double biequivalence if
(db1) for every object B ∈ B, there is an object A ∈ A together with a horizontal

equivalence B '−→ FA in B,
(db2) for every pair of objects A,C ∈ A and every horizontal morphism b : FA → FC

in B, there is a horizontal morphism a : A→ C together with a vertically invertible
square in B of the form
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FA FC

FA FC ,

• •

b

Fa

∼=

(db3) for every vertical morphism v : B B′ in B, there is a vertical morphism u : A A′

in A together with a weakly horizontally invertible square in B of the form

B FA

B′ FA′ ,

•v •Fu

'

'

'

(db4) for every pair of horizontal morphisms a : A→ C and a′ : A′ → C ′ in A, every pair
of vertical morphisms u : A A′ and w : C C ′ in A, and every square β in B
as depicted below left, there is a unique square α in A as depicted below right
such that β = Fα.

FA FC

FA′ FC ′

•Fu •Fw

Fa

Fa′

β

A C

A′ C ′

•u •w

a

a′

α

We can see that conditions (db1-2) and (db4) are analogous to the ones that a biequiv-
alence of 2-categories satisfy. In particular, a biequivalence G in 2Cat induces a double
biequivalence HG in DblCat. To see that a double functor F is a double biequivalence
in DblCat if and only if the 2-functors HF and VF are biequivalences in 2Cat, we study
what conditions (b1-3) of Definition 6.1.6 applied to the 2-functors HF and VF mean
for F .

Remark 7.2.2. Let F : A → B be a double functor. The 2-functor HF : HA → HB is a
biequivalence if and only if the double functor F satisfies (db1-2) of Definition 7.2.1 and
the following condition:

(hb3) for every pair of horizontal morphisms a, c : A→ C in A, and every square β in B
as depicted below left, there is a unique square α in A as depicted below right
such that β = Fα.

FA FC

FA FC

• •

Fa

Fc

β

A C

A C

• •

a

c

α

Remark 7.2.3. Let F : A → B be a double functor. The 2-functor VF : VA → VB is a
biequivalence if and only if the double functor F satisfies (db3) of Definition 7.2.1 and
the following conditions:

(vb2) for every pair of vertical morphisms u : A A′ and w : C C ′ in A, and every
square β : (Fu b

b′ Fw) in B, there is a square α : (u a
a′ w) in A together with

vertically invertible squares in B as in the following pasting equality,
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FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

b

Fa

Fa′

∼=

Fα

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

b

b′

Fa′

β

∼=

(vb3) for every pair of squares α : (u a
a′ w) and γ : (u c

c′ w) in A, and every pair of squares
τ0 and τ1 in B as in the below left pasting equality, there are unique squares σ0 and
σ1 in A as in the below right pasting equality such that τ0 = Fσ0 and τ1 = Fσ1.

FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

Fa

Fc

Fc′

τ0

Fγ

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

Fa

Fa′

Fc′

Fα

τ1

A

A

A′

C

C

C ′

• •

•u •w

a

c

c′

σ0

γ

A

= A′

A′

C

C ′

C ′

•u •w

• •

a

a′

c′

α

σ1

Note that (db4) is the only condition of Definition 7.2.1 for F that does not appear
in Remarks 7.2.2 and 7.2.3. We first show that (hb3) and (vb2-3) of the above remarks
actually imply (db4).

Lemma 7.2.4. Let F : A→ B be a double functor satisfying (hb3) of Remark 7.2.2 and
(vb2-3) of Remark 7.2.3. Then the double functor F satisfies (db4) of Definition 7.2.1.

Proof. Let a : A→ C and a′ : A′ → C ′ be horizontal morphisms in A, and let u : A A′

and w : C C ′ be vertical morphisms in A. Suppose we have a square β in B as depicted
below left.

FA FC

FA′ FC ′

•Fu •Fw

Fa

Fa′

β

A C

A′ C ′

•u •w

a

a′

α

We want to show that there is a unique square α in A as depicted above right such that
β = Fα. By (vb2) of Remark 7.2.3, there is a square γ : (u c

c′ w) in A together with
vertically invertible squares τ0 and τ1 in B as in the following pasting equality.

FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

Fa

Fc

Fc′

τ0

∼=

Fγ

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

Fa

Fa′

Fc′

β

τ1

∼=

By (hb3) applied to the vertically invertible squares τ0 and τ1, there are unique squares
σ0 and σ1 in A as depicted below such that τ0 = Fσ0 and τ1 = Fσ1.
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A C

A C

• •

a

c

σ0

A′ C ′

A′ C ′

• •

a′

c′

σ1

By Lemma 6.1.10 (i) applied to HF , the squares σ0 and σ1 are vertically invertible, as
2-isomorphisms in HA and HB are precisely vertically invertible squares of this form. We
set α to be the following pasting composite

A C

A′ C ′

•u •w

a

a′

α

A

=

A′

A′

C

C ′

C ′

A C

•u •w

• •

• •

a

c

c′

a′

γ

σ−1
1

∼=
σ0

∼=

which is such that β = Fα. This proves existence.
Now suppose that we have two squares α and γ in A as follows

A C

A′ C ′

•u •w

a

a′

α

A C

A′ C ′

•u •w

a

a′

γ

such that Fα = Fγ. Take τ0 = eFa and τ1 = eFa′ in (vb3) of Remark 7.2.3. Then there
are unique squares σ0 and σ1 in A as in the following pasting equality

A

A

A′

C

C

C ′

• •

•u •w

a

a

a′

σ0

γ

A

= A′

A′

C

C ′

C ′

•u •w

• •

a

a′

a′

α

σ1

such that eFa = Fσ0 and eFa′ = Fσ1. Since the vertical identity squares ea and ea′ satisfy
this condition, by unicity of such squares, we must have σ0 = ea and σ1 = ea′ . By the
above pasting equality, we get that α = γ, which proves unicity. Therefore, the double
functor F satisfies (db4) of Definition 7.2.1. �

We are now ready to prove that the weak equivalences in the right-induced model
structure on DblCat are precisely the double biequivalences.

Proposition 7.2.5. Let A and B be double categories. A double functor F : A→ B is a
weak equivalence in the model structure on DblCat of Theorem 7.1.3 if and only if it is a
double biequivalence.
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Proof. Suppose that F : A→ B is a weak equivalence in DblCat, i.e., the 2-functors HF
and VF are biequivalences. We show that F satisfies (db1-4) of Definition 7.2.1. By
Remark 7.2.2, the double functor F satisfies (db1-2) and, by Remark 7.2.3, it satisfies
(db3). Finally, (db4) holds by Lemma 7.2.4. This shows that F is a double biequivalence.

Now suppose that F : A → B is a double biequivalence. To prove that HF and VF
are biequivalences, it suffices to show (hb3) of Remark 7.2.2 and (vb2-3) of Remark 7.2.3.
First, note that (hb3) is a special case of (db4), where the vertical morphisms are identities.
Therefore, the double functor F satisfies (hb3). Now let u : A A′ and w : C C ′ be
vertical morphisms in A and let β : (Fu b

b′ Fw) be a square in B. By (db2), there are
horizontal morphisms a : A→ C and a′ : A′ → C ′ in A together with vertically invertible
squares τ0 and τ1 in B as follows.

FA FC

FA FC

• •

b

Fa

τ0

∼=

FA′ FC ′

FA′ FC ′

• •

b′

Fa′

τ1

∼=

Let δ in B be the square given by the following pasting composite.

FA FC

FA′ FC ′

•Fu •Fw

Fa

Fa′

δ

FA

=

FA′

FA′

FC

FC ′

FC ′

FA FC

•Fu •Fw

• •

• •

Fa

b

b′

Fa′

β

τ1

∼=

τ−1
0

∼=

Then, by (db4), there is a unique square α : (u a
a′ w) in A such that δ = Fα. Then the

square α together with the vertically invertible squares τ0 and τ1 give the desired data of
(vb2), which shows that F satisfies this condition. Finally, let α : (u a

a′ w) and γ : (u c
c′ w)

be squares in A, and τ0 and τ1 be squares in B as in the following pasting equality.

FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

Fa

Fc

Fc′

τ0

Fγ

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

Fa

Fa′

Fc′

Fα

τ1

By (db4) applied to τ0 and τ1, there are unique squares σ0 : (eA a
c eC) and σ1 : (eA′ a

′

c′ eC′)
in A such that τ0 = Fσ0 and τ1 = Fσ1. Moreover, by unicity in (db4), we get that the
following pasting equality holds
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A

A

A′

C

C

C ′

• •

•u •w

a

a

a′

σ0

γ

A

= A′

A′

C

C ′

C ′ ,

•u •w

• •

a

a′

a′

α

σ1

since applying F to each vertical composite yields the same square in B. This shows
(vb3), and we conclude that F is a weak equivalence in DblCat. �

We now turn our attention to the fibrations in DblCat and show that these are precisely
the double fibrations.

Definition 7.2.6. Let A and B be double categories. A double functor F : A → B is a
double fibration if
(df1) for every object C ∈ A and every horizontal equivalence b : B '−→ FC in B, there

is a horizontal equivalence a : A '−→ C in A such that b = Fa.
(df2) for every horizontal morphism c : A → C in A and every vertically invertible

square β in B as depicted below left, there is a vertically invertible square α in A
as depicted below right such that β = Fα,

FA FC

FA FC

• •

b

Fc

β

∼=

A C

A C

• •

a

c

α

∼=

(df3) for every vertical morphism w : C C ′ in A and every weakly horizontally invert-
ible square β in B as depicted below left, there is a weakly horizontally invertible
square α in A as depicted below right such that β = Fα.

B FC

B′ FC ′

•v •Fw

b
'

b′
'

β '

A C

A′ C ′

•u •w

a
'

a′
'

α '

Again we can see that conditions (df1-2) are analogous to the ones that a Lack fibration
of 2-categories satisfy. In particular, a Lack fibration G in 2Cat induces a double fibra-
tion HG in DblCat. To see that a double functor F is a double fibration in DblCat if and
only if the 2-functors HF and VF are Lack fibrations in 2Cat, we study what conditions
(f1-2) of Definition 6.1.7 applied to the 2-functors HF and VF mean for F .

Remark 7.2.7. Let F : A → B be a double functor. The 2-functor HF : HA → HB is a
Lack fibration if and only if the double functor F satisfies (df1-2) of Definition 7.2.6.

Remark 7.2.8. Let F : A → B be a double functor. The 2-functor VF : VA → VB is a
Lack fibration if and only if the double functor F satisfies (df3) of Definition 7.2.6 and
the following condition:
(vf2) for every square γ : (u c

c′ w) in A and every square β in B together with vertically
invertible squares τ0 and τ1 in B as in the below left pasting equality, there is a
square α in A together with vertically invertible squares σ0 and σ1 in A as in the
below right pasting equality such that β = Fα, τ0 = Fσ0, and τ1 = Fσ1.
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FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

b

Fc

Fc′

∼=

τ0

Fγ

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

b

b′

Fc′

β

∼=

τ1

A

A

A′

C

C

C ′

• •

•u •w

a

c

c′

∼=

σ0

γ

A

= A′

A′

C

C ′

C ′

•u •w

• •

a

a′

c′

α
∼=

σ1

We are now ready to prove the desired characterization.
Proposition 7.2.9. Let A and B be double categories. A double functor F : A→ B is a
fibration in the model structure on DblCat of Theorem 7.1.3 if and only if it is a double
fibration.
Proof. Suppose that F : A→ B is a fibration in DblCat, i.e., the 2-functors HF and VF
are Lack fibrations. By Remarks 7.2.7 and 7.2.8, we directly see that F satisfies (df1-3)
of Definition 7.2.6. Hence F is a double fibration.

Now suppose that F : A → B is a double fibration. From Remark 7.2.7, we directly
have that HF is a Lack fibration. To prove that VF is a Lack fibration, it suffices to show
(vf2) of Remark 7.2.8. Let γ : (u c

c′ w) be a square in A, β be a square in B, and τ0 and τ1
be vertically invertible squares τ0 and τ1 in B such that the following pasting equality
holds.

FA

FA

FA′

FC

FC

FC ′

• •

•Fu •Fw

b

Fc

Fc′

∼=

τ0

Fγ

FA

= FA′

FA′

FC

FC ′

FC ′

•Fu •Fw

• •

b

b′

Fc′

β

∼=

τ1

By (df2) of Definition 7.2.6, there are vertically invertible squares σ0 and σ1 in A

A C

A C

• •

a

c

σ0

∼=

A′ C ′

A′ C ′

• •

a′

c′

σ1

∼=

such that τ0 = Fσ0 and τ1 = Fσ1. We set α to be the following pasting composite.

A C

A′ C ′

•u •w

a

a′

α

A

=

A′

A′

C

C ′

C ′

A C

•u •w

• •

• •

a

c

c′

a′

γ

σ−1
1

∼=

σ0

∼=
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Then (α, σ0, σ1) gives the desired data, which shows (vf2). We conclude that F is a
fibration in DblCat. �

Finally, by using these characterizations of fibrations and weak equivalences in DblCat,
we can see that trivial fibrations are precisely the double functors which are surjective on
objects, full on horizontal morphisms, surjective on vertical morphisms, and fully faithful
on squares. Again, these conditions resemble the conditions that a trivial fibration in 2Cat
satisfies.

Proposition 7.2.10. Let A and B be double categories. A double functor F : A → B is
a trivial fibration in the model structure on DblCat of Theorem 7.1.3 if and only if it is
surjective on objects, full on horizontal morphisms, surjective on vertical morphisms, and
fully faithful on squares.

Proof. A double functor F : A → B is a trivial fibration in DblCat if and only if the
2-functors HF and VF are trivial fibrations in 2Cat, which is the case if and only if the
2-functors HF and VF are surjective on objects, full on morphisms, and fully faithful on
2-morphisms by Proposition 6.1.11. Another characterization says that F : A → B is a
trivial fibration in DblCat if and only if F is both a weak equivalence and a fibration in
DblCat, which is the case if and only if F is both a double biequivalence and a double
fibration by Propositions 7.2.5 and 7.2.9. To show the result, we use these two differ-
ent ways of characterizing trivial fibrations in DblCat depending on which one is more
accurate.

Suppose that F : A → B is a trivial fibration in DblCat. Surjectivity on objects and
fullness on morphisms of HF give surjectivity on objects and fullness on horizontal mor-
phisms for F . Surjectivity on objects of VF gives surjectivity on vertical morphisms for F .
Finally, fully faithfulness on squares follows from the fact that F is in particular a double
biequivalence and hence satisfies (db4) of Definition 7.2.1.

Now suppose that F : A → B is surjective on objects, full on horizontal morphisms,
surjective on vertical morphisms, and fully faithful on squares. We show that HF and VF
are surjective on objects, full on morphisms, and fully faithful on 2-morphisms. Surjec-
tivity on objects and fullness on morphisms for HF is precisely surjectivity on objects
and fullness on horizontal morphisms of F . Fully faithfulness on 2-morphisms for HF
follows from the fully faithfulness on squares of F , since 2-morphisms in HA and HB
are squares in A and B with trivial vertical boundaries. Surjectivity on objects for VF is
precisely surjectivity on vertical morphisms for F . We show that VF is full on horizontal
morphisms. Let u : A A′ and w : C C ′ be vertical morphisms in A. A morphism
β : Fu→ Fw in VB is a square β in B of the form

FA FC

FA′ FC ′ .

•Fu •Fw

b

b′

β

By fullness on horizontal morphisms of F , there are horizontal morphisms a : A → C
and a′ : A′ → C ′ in A such that b = Fa and b′ = Fa′. Then, by fully faithfulness on
squares of F , there is a unique square α : (u a

a′ w) in A such that β = Fα. This gives a
morphism α : u→ w in VA such that β = (VF )α as desired. Finally, fully faithfulness on
2-morphisms for VF follows directly from fully faithfulness on squares of F . This shows
that F is a trivial fibration in DblCat. �

7.3. Cofibrations, cofibrant objects, and generating sets. By Theorem 6.2.6, Lack’s
model structure on 2Cat is cofibrantly generated. Therefore, by Proposition 5.1.6, the
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right-induced model structure on DblCat is also cofibrantly generated. This proposition
actually gives us sets of generating cofibrations and generating trivial cofibrations for the
model structure on DblCat, which depends on sets of generating cofibrations and gener-
ating trivial cofibrations for the model structure on 2Cat; e.g. one can choose the sets I2
and J2 of 2-functors described in Notation 6.2.5.

Proposition 7.3.1. The model structure on DblCat of Theorem 7.1.3 is cofibrantly gen-
erated with generating sets of cofibrations and trivial cofibrations given by

I ′ = {Hi,Li = Hi× V[1] | i ∈ I2} and J ′ = {Hj,Lj = Hj × V[1] | j ∈ J2},
where I2 and J2 are generating sets of cofibrations and trivial cofibrations for the model
structure on 2Cat of Theorem 6.1.8.

Proof. By Theorem 6.2.6, the model structure on 2Cat is cofibrantly generated. Let I2
and J2 be generating sets of cofibrations and trivial cofibrations in 2Cat, respectively.
By Proposition 5.1.6, since the model structure on DblCat is right-induced along the
adjunction H t L a (H,V) from 2Cat × 2Cat, generating sets of cofibrations and trivial
cofibrations in DblCat are given by
(H t L)(I2 × I2) = {Hi t Li′ | i, i′ ∈ I2}, (H t L)(J2 × J2) = {Hj t Lj′ | j, j′ ∈ J2}.
We show that I ′ is a set of generating cofibrations in DblCat. For i ∈ I2, the double

functors Hi and Li are cofibrations in DblCat, since H t L is left Quillen by Proposi-
tion 5.1.3, and we have that (H t L)(i, id∅) = Hi and (H t L)(id∅, i) = Li, where (i, id∅)
and (id∅, i) are cofibrations in 2Cat× 2Cat. This shows that I ′ is contained in the class
of cofibrations. Now, given i, i′ ∈ I2, the cofibration Hi t Li′ of (H t L)(I2 × I2) can be
obtained as a coproduct of Hi and Li′ in I ′. This shows that I ′ generates (HtL)(I2×I2),
and since this latter generates all cofibrations in DblCat, it follows that I ′ is a generating
set of cofibrations.

Similarly, one can show that J ′ is a generating set of trivial cofibrations. �

We now want to give smaller and more explicit sets of generating cofibrations and
generating trivial cofibrations. For this, we first aim to characterize cofibrations and
cofibrant objects in DblCat. In analogy with the characterization of cofibrations in 2Cat
in terms of their underlying functor, cofibrations in DblCat can be characterized in terms
of their underlying horizontal and vertical functors.

Remark 7.3.2. The functor UH : DblCat → Cat, which sends a double category to its
underlying horizontal category, has a right adjoint Rh : Cat → DblCat. It sends a cate-
gory C to the double category RhC with the same objects as C, horizontal morphisms the
morphisms of C, a unique vertical morphism between each pair of objects, and a unique
square ! : (! fg !) for each pair of morphisms f and g in C. A functor F : C → D is sent to the
double functor RhF : RhC → RhD which acts as F on objects and horizontal morphisms,
sends the unique vertical morphism ! : C C ′ in RhC to the unique vertical morphism
! : FC FC ′ in RhD, for all objects C,C ′ ∈ C, and the unique square ! : (! fg !) in RhC
to the unique square ! : (! FfFg !) in RhD, for all morphisms f, g in C. Note that the double
functor RhF is fully faithful on vertical morphisms and squares.

Remark 7.3.3. The functor UV : DblCat → Cat, which sends a double category to its
underlying vertical category, has a right adjoint Rv : Cat→ DblCat. It sends a category C
to the double category RvC with the same objects as C, a unique horizontal morphism
between each pair of objects, vertical morphisms the morphisms of C, and a unique square
! : (f !

! g) for each pair of morphisms f and g in C. A functor F : C → D is sent to the
double functor RvF : RvC → RvD which acts as F on objects and vertical morphisms,
sends the unique horizontal morphism ! : C → D in RvC to the unique horizontal morphism
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! : FC → FD in RvD, for all objects C,D ∈ C, and the unique square ! : (f !
! g) in RvC to

the unique square ! : (Ff !
! Fg) in RvD, for all morphisms f, g in C. Note that the double

functor RhF is fully faithful on horizontal morphisms and squares.

Theorem 7.3.4. Let A and B be double categories. A double functor F : A → B is a
cofibration in the model structure on DblCat of Theorem 7.1.3 if and only if

(i) its underlying horizontal functor UHF : UHA→ UHB has the left lifting property
with respect to all surjective on objects and full functors, and

(ii) its underlying vertical functor UVF : UVA → UVB has the left lifting property
with respect to all surjective on objects and surjective on morphisms functors.

Proof. Suppose that F : A → B is a cofibration in DblCat. Let G : C → D be a surjec-
tive on objects and full functor in Cat. We need to show that there is a lift in every
commutative diagram as below left.

UHA C

UHB D

UHF G

A RhC

B RhD

F RhG

By the adjunction UH a Rh, such a lift exists if and only if there is a lift in the above
right commutative diagram. This is indeed the case since RhG : RhC → RhD is a trivial
fibration in DblCat: it is surjective on objects and full on horizontal morphisms since G
is surjective on objects and full on morphisms, and fully faithful on vertical morphisms
and squares by Remark 7.3.2; see Proposition 7.2.10. This shows (i).

Now, let G : C → D be a surjective on objects and surjective on morphisms functor.
As before, using the adjunction UV a Rv, we can show that UVF : UVA → UHB has
the left lifting property with respect to G, since RvG is a trivial fibration in DblCat: it is
surjective on objects and surjective on vertical morphisms since G is surjective on objects
and surjective on morphisms, and fully faithful on horizontal morphisms and squares by
Remark 7.3.3; see Proposition 7.2.10. This shows (ii).

Now suppose that F is such that (i) and (ii) hold. Let P : X→ Y be a trivial fibration
in DblCat. We need to show that there is a lift in every commutative diagram as below
left.

A X

B Y

F P

Q

L

UVA UVX

UVB UVY

UVF UVP

UVQ

Lv

UHA UHX

UHB UHY

UHF UHP

UHQ

Lh

Since UVP : UVX→ UVX is surjective on objects and morphisms as P is surjective on
objects and vertical morphisms by Proposition 7.2.10, there is a lift Lv : UVB → UVX
in the diagram above middle. Furthermore, since UHP : UHX → UHY is surjective
on objects and full on morphisms as P is surjective on objects and full on horizontal
morphisms by Proposition 7.2.10, there is a lift Lh : UHB → UHX in the above right
diagram and we can choose this lift to be such that Lh and Lv coincide on objects,
by fullness of UHP . This defines the double functor L : B → X on objects, horizontal
morphisms, and vertical morphisms. Given a square β : (u b

b′ v) in B, by fully faithfulness
of P on squares (see Proposition 7.2.10), there is a unique square χ : (Lu Lb

Lb′ Lv) in X
such that Qβ = Pχ. We set Lβ = χ and this gives a well-defined double functor making
the diagram above left commute. Hence F is a cofibration in DblCat. �
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Corollary 7.3.5. Let A and B be double categories. A double functor F : A → B is a
cofibration in the model structure on DblCat of Theorem 7.1.3 if and only if

(i) it is injective on objects, and faithful on horizontal and vertical morphisms,
(ii) the underlying horizontal category UHB is a retract of a category obtained from

the image of UHA under UHF by freely adjoining objects and then morphisms
between objects, and

(iii) the underlying vertical category UVB is a retract of a category obtained from the
image of UVA under UVF by freely adjoining objects and morphisms.

Proof. By Theorem 7.3.4, we have that F : A→ B is a cofibration in DblCat if and only
if the functor UHF has the left lifting property with respect to surjective on objects and
full functors, and the functor UVF has the left lifting property with respect to surjective
on objects and surjective on morphisms functors. As in the proof of Corollary 6.2.3, we
can see that UHF has the left lifting property with respect to surjective on objects and
full functors if and only if F is injective on objects, faithful on horizontal morphisms, and
(ii) is satisfied. It remains to show that UVF has the left lifting property with respect
to surjective on objects and surjective on morphisms functors if and only if F is injective
on objects, faithful on vertical morphisms, and (iii) is satisfied.

There is a cofibrantly generated weak factorization system (L,R) on Cat, where the
right class R contains all surjective on objects and surjective on morphisms functors. A
generating set of morphisms is given by the set containing the unique functor ∅ → [0] and
the unique functor ∅ → [1]. Then the left class L contains all functors G : C → D which are
injective on objects and faithful on morphisms, and such that D is a retract of a category
obtained from the image of C under G by freely adjoining objects and morphisms. This
shows the desired result. �

By applying this result to a double functor whose source is the empty double category ∅,
we get the following characterization of cofibrant double categories.

Theorem 7.3.6. A double category A is cofibrant in the model structure on DblCat of
Theorem 7.1.3 if and only if

(i) its underlying horizontal category UHA is free, and
(ii) its underlying vertical category UVA is a disjoint union of copies of [0] and [1].

Proof. By Corollary 7.3.5, the double functor ∅ → A is cofibrant if and only if the category
UHA is a retract of a free category and the category UVA is a retract of a category which
is a disjoint union of copies of [0] and [1]. However, a retract of a free category is itself
free, and a retract of a category which is a disjoint union of copies of [0] and [1] is itself
a disjoint union of copies of [0] and [1]. �

By looking at the characterizations of fibrations and trivial fibrations in DblCat given
in Propositions 7.2.9 and 7.2.10, we can describe new sets of generating cofibrations and
generating trivial cofibrations by studying the lifting properties. These can be described
as follows.

Notation 7.3.7. Let S = H[1]× V[1] be the double category free on a square, δS be its
boundary, and S2 be the double category free on two squares with the same boundaries.

0 1

0′ 1′

;S = • •α

0 1

0′ 1′

;δS = • •

0 1

0′ 1′

.S2 = • •α0 α1

Let I denote the set containing the following double functors:
(i) the unique double functor I1 : ∅ → [0],



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 113

(ii) the inclusion double functor I2 : [0] t [0]→ H[1],
(iii) the inclusion double functor I3 : ∅ → V[1],
(iv) the inclusion double functor I4 : δS→ S,
(v) the double functor I5 : S2 → S sending the two non trivial squares in S2 to the

non trivial square of S.
Let J denote the set containing the following double functors:

(i) the inclusion double functor J1 : [0] → HEadj, where the 2-category Eadj is the
“free-living adjoint equivalence”,

(ii) the inclusion double functor J2 : H[1] → HCinv, where the 2-category Cinv is the
“free-living 2-isomorphism”,

(iii) the inclusion double functor J3 : V[1]→ HEadj ×V[1], where HEadj ×V[1] can be
described as the “free-living weakly horizontally invertible square with horizontal
adjoint equivalence data”.

Proposition 7.3.8. The model structure on DblCat of Theorem 7.1.3 is cofibrantly gen-
erated, and sets of generating cofibrations and generating trivial cofibrations can be given
by the sets I and J , respectively, of Notation 7.3.7.

Proof. Using the characterization of cofibrations of Corollary 7.3.5, it is straightforward to
see that the double functors in I are cofibrations in DblCat. A direct computation shows
that a double functor has the right lifting property with respect to each double functor
in I precisely when it is surjective on objects, full on horizontal morphisms, surjective on
vertical morphisms, and fully faithful on squares. By Proposition 7.2.10, such a double
functor is precisely a trivial fibration in DblCat.

Similarly, one can check that the double functors in J are trivial cofibrations in DblCat
and that a double functor has the right lifting property with respect to each double functor
in J precisely when it satisfies (df1-3) of Definition 7.2.6. By Proposition 7.2.9, such a
double functor is precisely a fibration in DblCat. �

7.4. Quillen pairs between DblCat and 2Cat. In this section, we show that the hori-
zontal embedding H : 2Cat→ DblCat is both left and right Quillen, and that it is homo-
topically fully faithful. This shows that the homotopy theory of 2-categories is embedded
into that of double categories in a reflective and co-reflective way. The relation is however
even stronger: the model structure on 2Cat is both left- and right-induced along H from
that on DblCat. This says that the functor H preserves and reflects the whole homotopi-
cal structure. Therefore, the model structure on DblCat is as compatible as possible with
respect to the horizontal embedding H.

Recall that H has both adjoints by Proposition 3.4.5. We first show that the functor H
is a Quillen co-reflection (see Definition 4.4.8).

Theorem 7.4.1. The adjunction

DblCat 2Cat
H

H

⊥

is a Quillen co-reflection, where 2Cat is endowed with the model structure of Theo-
rem 6.1.8 and DblCat is endowed with the model structure of Theorem 7.1.3.

Proof. Since a double functor F is a weak equivalence (resp. fibration) in DblCat if and
only if the 2-functors HF and VF are biequivalences (resp. Lack fibrations) in 2Cat, it is
straightforward to see that H preserves weak equivalences and fibrations. Therefore, the
functor H is right Quillen. Now let A be a 2-category. Since HHA = A, the unit ηA is
given by the identity at A. Since all objects are fibrant in DblCat, the components of the
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derived unit are given by the components of the unit at cofibrant 2-categories, which are
identities. This shows that H a H is a Quillen co-reflection. �

We do not expect the model structures on 2Cat and DblCat to be Quillen equivalent,
as the homotopy theory of double categories should be richer than that of 2-categories.
The following remark shows that this is indeed not the case.

Remark 7.4.2. The components of the derived counit of the adjunction H a H are not
double biequivalences in general. To see this, consider the double category V[1] free on a
vertical morphism. Then V[1] is fibrant, as every double category is fibrant, and we have
that HV[1] = [0] t [0]. Since [0] t [0] is cofibrant in 2Cat, the component of the derived
counit at V[1] is given by the inclusion double functor H([0]t [0]) = [0]t [0]→ V[1], which
is not a double biequivalence, as it is does not satisfy (db3) of Definition 7.2.1.

Remark 7.4.3. Similarly, the adjunction L a V is also a Quillen pair between DblCat
and 2Cat, as shown in [MSV20a, Proposition 6.15]. However, it is neither a Quillen
co-reflection nor a Quillen reflection by [MSV20a, Remarks 6.16 and 6.17].

We now show that the horizontal embedding H is also a Quillen reflection.

Theorem 7.4.4. The adjunction

2Cat DblCat
L

H

⊥

is a Quillen reflection, where 2Cat is endowed with the model structure of Theorem 6.1.8
and DblCat is endowed with the model structure of Theorem 7.1.3.

Proof. We show that H : 2Cat → DblCat preserves fibrations and trivial fibrations. Let
F : A → B be a Lack fibration in 2Cat. We show that HF : HA → HB is a fibration
in DblCat by proving that it satisfies (df1-3) of Definition 7.2.6 (see Proposition 7.2.9).
Since HHF = F is a Lack fibration, then HF satisfies (df1-2) by Remark 7.2.7. It remains
to prove (df3). Let C ∈ A be an object and suppose we have a weakly horizontally
invertible square β in HB as follows.

B FC

B FC

• •

b
'

d

'

β '

By Proposition 3.6.7, the weakly horizontally invertible square β in HB corresponds to a
2-isomorphism β : b ∼= d. By (f1) of Definition 6.1.7, there is an equivalence c : A '−→ C
in A such that d = Fc. Then, by (f2) of Definition 6.1.7 applied to the 2-isomorphism
β : b ∼= Fc, there is a 2-isomorphism α : a ∼= c in A such that β = Fα. By Proposi-
tion 3.6.7, this equivalently gives a weakly horizontally invertible square α in HA

A C

A C

• •

a
'

c
'

α '

such that β = (HF )α, which proves (df3). This shows that HF is a double fibration
in DblCat and that H preserves fibrations.
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Now, let F : A → B be a trivial fibration in 2Cat. By Proposition 6.1.11, it is surjective
on objects, full on morphisms, and fully faithful on 2-morphisms. Then the double functor
HF : HA → HB is surjective on objects, full on horizontal morphisms, and fully faithful
on squares, as these are given by the objects, morphisms, and 2-morphisms in A and B,
respectively. It is further surjective on vertical morphisms, as HA and HB have only
trivial vertical morphisms, and F is surjective on objects. By Proposition 7.2.10, this
shows that HF is a trivial fibration in DblCat. Therefore, the functor H is right Quillen.

Let A be a 2-category. Since the functor H is right Quillen and all 2-categories are
fibrant, it preserves weak equivalences by Corollary 4.4.7. Moreover, by Theorem 7.4.1,
the functor H is left Quillen and therefore preserves cofibrant objects. This shows that
a cofibrant replacement of HA in DblCat can be given by H(qA) : H(Ac) → HA, where
qA : Ac → A is a cofibrant replacement of A in 2Cat. Furthermore, the counit εA of the
adjunction L a H at any 2-category A is an isomorphism by Proposition 3.4.5. Therefore,
we have a commutative square in 2Cat

LH(Ac) LHA

Ac A

LH(qA)

εAc ∼= εA∼=

qA
∼

and, by 2-out-of-3, we conclude that the derived counit εA ◦ LH(qA) is a biequivalence.
This shows that L a H is a Quillen reflection. �

As before, the following remark shows that the adjunction L a H is not a Quillen
equivalence.
Remark 7.4.5. The components of the derived unit of the adjunction L a H are not
double biequivalences in general. To see this, consider the double category V[1] free on a
vertical morphism. Then V[1] is cofibrant in DblCat by Theorem 7.3.6, and we have that
HLV[1] = [0] since the functor L collapses the vertical direction (see Definition 3.4.4).
Since all objects are fibrant in 2Cat, the component of the derived unit at V[1] is given by
the unique double functor V[1] → [0]. This is not a double biequivalence, as it identifies
the two objects of V[1] which are not related by a horizontal equivalence and therefore
does not satisfy (db2) of Definition 7.2.1.

Theorems 7.4.1 and 7.4.4 imply that the functor H : 2Cat→ DblCat preserves cofibra-
tions, fibrations, and weak equivalences (since every 2-category is fibrant). We now show
that H also reflects cofibrations, fibrations, and weak equivalences.
Theorem 7.4.6. The model structure on 2Cat of Theorem 6.1.8 is right-induced along
the adjunction

2Cat DblCat
L

H

⊥

from the model structure on DblCat of Theorem 7.1.3.
Proof. We need to show that a 2-functor F is a biequivalence (resp. Lack fibration) in 2Cat
if and only if the double functor HF is a weak equivalence (resp. fibration) in DblCat.
Since the functor H is right Quillen by Theorem 7.4.4, it preserves fibrations and, since all
objects in 2Cat are fibrant, it preserves weak equivalences by Corollary 4.4.7. This shows
that, if F is a biequivalence (resp. Lack fibration) in 2Cat, then HF is a weak equivalence
(resp. fibration) in DblCat. Conversely, if HF is a weak equivalence (resp. fibration)
in DblCat, then HHF = F is a biequivalence (resp. Lack fibration) in 2Cat by definition
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of the weak equivalences (resp. fibrations) in the right-induced model structure on DblCat
of Theorem 7.1.3. Therefore, the model structure on 2Cat is right-induced along H from
that on DblCat. �

Theorem 7.4.7. The model structure on 2Cat of Theorem 6.1.8 is left-induced along the
adjunction

DblCat 2Cat
H

H

⊥

from the model structure on DblCat of Theorem 7.1.3.

Proof. By Theorem 7.4.6, a 2-functor F is a biequivalence in 2Cat if and only if the
double functor HF is a weak equivalence in DblCat. Therefore, it remains to show that a
2-functor F is a cofibration in 2Cat if and only if the double functor HF is a cofibration
in DblCat. By Theorem 7.4.1, the functor H is left Quillen, and therefore, if F is a
cofibration in 2Cat, then HF is a cofibration in DblCat. Now suppose that F : A → B
is a 2-functor such that HF : HA → HB is a cofibration in DblCat. Let P : X → Y be
a trivial fibration in 2Cat. We need to show that there is a lift in every commutative
diagram as below left.

A X = HHX

B Y = HHY

F P = HHP

HA HX

HB HY

HF HP

By the adjunction H a H, such a lift exists if and only if there is a lift in the above
right commutative diagram. Since H is right Quillen by Theorem 7.4.4, then HP is a
trivial fibration in DblCat. Therefore, there is a lift in the above right diagram as HF is
a cofibration. This shows that F is a cofibration in 2Cat. We conclude that the model
structure on 2Cat is left-induced along H from that on DblCat. �

We now turn our attention to the relation between the canonical model structure on Cat
and the model structure on DblCat. Recall the Quillen reflection P a D between Cat
and 2Cat (see Theorem 6.1.14). By composing with the Quillen reflection L a H between
2Cat and DblCat, we get the following result.

Corollary 7.4.8. The adjunction

Cat DblCat
PL

HD

⊥

is a Quillen reflection, where Cat is endowed with the model structure of Theorem 6.1.3
and DblCat is endowed with the model structure of Theorem 7.1.3.

Proof. This follows directly from Theorems 7.4.4 and 6.1.14. �

As the canonical model structure on Cat is right-induced along D from the model
structure on 2Cat and 2Cat is right-induced along H from the model structure on DblCat,
we get the following result.

Corollary 7.4.9. The model structure on Cat of Theorem 6.1.3 is right-induced along
the adjunction
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Cat DblCat
PL

HD

⊥

from the model structure on DblCat of Theorem 7.1.3.

Proof. This follows directly from Theorems 7.4.6 and 6.1.16. �

7.5. 2Cat-enrichment. In analogy with the model structure on 2Cat, the model struc-
ture on DblCat is not monoidal with respect to the cartesian product. However, it is not
monoidal with respect to the Gray tensor product ⊗Gr of Proposition 3.3.5 on DblCat
either. This is a consequence of the fact that the model structure on DblCat is not sym-
metric between the horizontal and vertical directions, while the Gray tensor product is.
To remedy this issue, we consider a less symmetric version of the Gray tensor product by
restricting along the horizontal embedding in one variable, i.e., we consider the tensoring
functor ⊗ : DblCat×2Cat→ DblCat defined in Definition 3.5.1. We show that the model
structure on DblCat is 2Cat-enriched with respect to ⊗, where the 2Cat-enrichment is
given by the underlying horizontal 2-categories H[−,−]ps of the pseudo-hom double cat-
egories (see Definition 3.3.4).

We first show that the model structure on DblCat is not cartesian closed, by using a
similar argument than that of Remark 6.3.1.

Remark 7.5.1. The model structure on DblCat of Theorem 7.1.3 is not monoidal with
respect to the cartesian product. Given the generating cofibration I2 : [0] t [0] → H[1],
then the pushout-product

I2�× I2 : H[1] tH[1]
⊔

[0]t[0]t[0]t[0]
H[1] tH[1]→ H[1]×H[1]

is not a cofibration in DblCat since it is not faithful on horizontal morphism (see Corol-
lary 7.3.5). Indeed, it sends the two horizontal composites (1, f)(f, 0) and (f, 1)(0, f) of
the domain to the same horizontal morphism (1, f)(f, 0) = (f, 1)(0, f) in the codomain.
See Remark 6.3.1 for more details.

While the model structure on 2Cat is monoidal with respect to the Gray tensor prod-
uct ⊗2 (see Theorem 6.3.5), it is not the case that the model structure on DblCat is
monoidal with respect to the double categorical analogue ⊗Gr of the Gray tensor prod-
uct, defined in Proposition 3.3.5.

Remark 7.5.2. The model structure on DblCat of Theorem 7.1.3 is not monoidal with
respect to the Gray tensor product ⊗Gr. Given the generating cofibration I3 : ∅ → V[1],
the pushout-product

I3�⊗Gr I3 : ∅ → V[1]⊗Gr V[1]
is not a cofibration in DblCat. To see this, note that the underlying vertical category
V[1]⊗Gr V[1] is the free category on a non-commutative square of morphisms. However,
this is not a disjoint union of copies of [0] and [1], and therefore V[1] ⊗Gr V[1] is not
cofibrant by Theorem 7.3.6.

The rest of the section is devoted to the proof of the 2Cat-enrichment of the model
structure on DblCat, as given in the following theorem.

Theorem 7.5.3. The model structure on DblCat of Theorem 7.1.3 is 2Cat-enriched,
where the enrichment is given by H[−,−]ps.

We show this result by showing that the pushout-product I �⊗ i of a cofibration I
in DblCat with a cofibration i in 2Cat is a cofibration in DblCat, which is trivial if one
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of I or i is. By Remark 4.5.7, it is enough to show this result when I is a generating
cofibration or a generating trivial cofibration in DblCat. Recall the sets

I ′ = {Hi,Li = Hi× V[1] | i ∈ I2} and J ′ = {Hj,Lj = Hj × V[1] | j ∈ J2},
of generating cofibrations and generating trivial cofibrations in DblCat given in Proposi-
tion 7.3.1, where I2 and J2 denote sets of generating cofibrations and generating trivial
cofibrations in 2Cat. We first prove the following technical result, which allows us to
compute the pushout-product I �⊗ i of a double functor I of the form Hi′ or Li′, for i′ a
2-functor, with a 2-functor i.

Lemma 7.5.4. Let i : A → B and i′ : A′ → B′ be 2-functors. Then
(i) there is an isomorphism Hi′�⊗ i ∼= H(i′�⊗2 i) in the category of morphisms

DblCat[1],
(ii) there is an isomorphism Li′�⊗ i ∼= H(i′�⊗2 i)×V[1] = L(i′�⊗2 i) in the category

of morphisms DblCat[1].

Proof. Since the functor H is a left adjoint, it preserves pushouts. Moreover, by Corol-
lary 3.5.7, we have isomorphisms HA⊗C ∼= H(A⊗2C) natural in A and C, for every pair of
2-categories A and C. Therefore, we directly get the isomorphism Hi′�⊗ i ∼= H(i′�⊗2 i),
which proves (i). Then (ii) follows from the following sequence of isomorphisms

Li′�⊗ i ∼= (V[1]×Hi′)�⊗ i ∼= (V[1]⊗ i′)�⊗ i
= (V[1]⊗Gr Hi′)�⊗ i ∼= V[1]⊗Gr (Hi′�⊗ i)
∼= V[1]⊗Gr H(i′�⊗2 i) = V[1]⊗ (i′�⊗2 i)
∼= V[1]×H(i′�⊗2 i) ∼= L(i′�⊗2 i),

which hold by definition of L = H(−)×V[1] ∼= V[1]×H(−), by Remark 3.5.5, which says
that there is an isomorphism C⊗V[1] ∼= HC×V[1] natural in C, for every 2-category C, by
associativity and symmetry of the Gray tensor product ⊗Gr, by definition of the tensor ⊗,
and by point (i). �

Proof of Theorem 7.5.3. We need to show that the pushout-product I �⊗ i of a generating
cofibration I ∈ I ′ with a cofibration i in 2Cat is a cofibration in DblCat, which is trivial if
either I ∈ J ′ is a generating trivial cofibration or i is a biequivalence, where I ′ and J ′ are
the generating sets of cofibrations and trivial cofibrations of Proposition 7.3.1 in DblCat.
Suppose first that I ∈ I ′. Then I is of the form Hi′ or Li′ for some generating cofibration i′
in 2Cat. By Lemma 7.5.4, we have isomorphisms

Hi′�⊗ i ∼= H(i′�⊗2 i) and Li′�⊗ i ∼= L(i′�⊗2 i).
Since the model structure on 2Cat is monoidal with respect to ⊗2 by Theorem 6.3.5, the
pushout-product i′�⊗2 i is a cofibration in 2Cat, which is trivial when i is a biequivalence.
By Theorem 7.4.1 and Remark 7.4.3, the functors H and L are left Quillen, and therefore
preserve cofibrations and trivial cofibrations. This shows that I �⊗ i is a cofibration
in DblCat, which is trivial when i is a biequivalence, for all I ∈ I ′. Now suppose that
I ∈ J ′. Then I is of the form Hj or Lj for some generating trivial cofibration j in 2Cat.
Similarly, we can show that Hj�⊗ i ∼= H(j�⊗2 i) and Lj�⊗ i ∼= L(j�⊗2 i) are trivial
cofibrations in DblCat. This shows that the model structure on DblCat is 2Cat-enriched.

�

8. The second model structure for double categories

The asymmetry between the horizontal and vertical direction in the first model struc-
ture on DblCat constructed above can be noticed using the fact that the inclusion
[0] t [0] → H[1] of the two end-points in the horizontal morphism is a cofibration, while
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the transposed inclusion [0] t [0] → V[1] is not. We therefore want to add this latter to
our class of cofibrations. Furthermore, as mentioned in the introduction, we aim to get
a model structure on DblCat in which the fibrant objects are precisely the weakly hori-
zontally invariant double categories. Hence, we construct a weakly horizontally invariant
replacement of double categories, and define a double functor to be a weak equivalence
if it induces a double biequivalence between weakly horizontally invariant replacements.
The new class of cofibrations, generated by the set I of cofibrations of Notation 7.3.7
and the additional inclusion [0]t [0]→ V[1], together with the class of weak equivalences
described above exists. Its proof is the content of Sections 8.1 to 8.3.

In Section 8.1, we first describe the cofibrations, trivial fibrations, and weak equiva-
lences of the desired model structure. In particular, the cofibrant objects are now the
double categories which have free underlying horizontal and vertical categories, which
shows that this model structure is more symmetric than the first one. We also show that
the class of double biequivalences is contained in the class of weak equivalences of this
model structure. Then, in Section 8.2, we introduce a set Jw of trivial cofibrations, which
is such that the trivial cofibrations and fibrations between weakly horizontally invariant
double categories are precisely the Jw-cofibrations and Jw-injectives, respectively. This
result is useful in Section 8.3 to prove that the classes of trivial cofibrations and fibrations
in the proposed model structure on DblCat form a weak factorization system. We fur-
ther show that the fibrant objects are precisely the weakly horizontally invariant double
categories, as desired.

Then, in Section 8.4, we compare this new model structure with the model structures
previously introduced in Sections 6 and 7. We show that the identity on DblCat gives
a homotopically full embedding of the model structure for weakly horizontally invariant
double categories into the model structure for double categories constructed in Theo-
rem 7.1.3. The horizontal embedding H : 2Cat→ DblCat is still left Quillen from Lack’s
model structure to the model structure for weakly horizontally invariant double categories,
however it is not right Quillen anymore. This is due for instance to the fact that the hor-
izontal double category associated to a 2-category is not weakly horizontally invariant in
general, and hence that H does not preserve fibrant objects. Instead, we consider the
homotopical version H' : 2Cat→ DblCat of the horizontal embedding introduced in Def-
inition 3.4.11, and we show that it gives the desired homotopically full embedding of 2Cat
into DblCat. In particular, for every 2-category A, the double category H'A provides
a fibrant replacement of the horizontal double category HA. We also show that Lack’s
model structure on 2Cat is right-induced along H' from the model structure on DblCat
for weakly horizontally invariant double categories.

Finally, in Section 8.5, we show that this model structure is monoidal with respect
to the Gray tensor product for double categories. In comparison with the first model
structure on DblCat constructed in Section 7, the cofibrations of this new model structure
can be characterized by a symmetric condition on their underlying horizontal and vertical
functors, and hence the arguments showing that the first model structure is not monoidal,
do not hold anymore. In particular, it is also 2Cat-enriched for the enrichment of DblCat
of Proposition 3.5.2.

The results presented here are joint work with Maru Sarazola and Paula Verdugo, and
will appear in a forthcoming version of the paper [MSV20b].

8.1. Description of the model structure. We now want to define a model structure
on DblCat, whose fibrant objects are the weakly horizontally invariant double categories,
since these are the double categories whose nerve is fibrant. For this, we first determine
the class of cofibrations, to which we add the inclusion [0]t[0]→ V[1] of the two end-points
into the vertical morphism. This yields the following set of generating cofibrations.
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Notation 8.1.1. Recall from Notation 7.3.7 that S = H[1] × V[1] denotes the double
category free on a square, δS denotes its boundary, and S2 denotes the double category
free on two squares with the same boundaries. Let Iw denote the set containing the
following double functors:

(i) the unique double functor I1 : ∅ → [0],
(ii) the inclusion double functor I2 : [0] t [0]→ H[1],
(iii) the inclusion double functor I ′3 : [0] t [0]→ V[1],
(iv) the inclusion double functor I4 : δS→ S,
(v) the double functor I5 : S2 → S sending the two non trivial squares in S2 to the

non trivial square of S.

Having this set of generating cofibrations in hands, we already know that the cofi-
brations in our model structure are going to be the Iw-cofibrations, and that the trivial
fibrations are going to be the Iw-injectives. Let us first give a description of these classes
of double functors.

Proposition 8.1.2. A double functor F : A→ B is in Iw−inj if and only if it is surjective
on objects, full on horizontal morphisms, full on vertical morphisms, and fully faithful on
squares.

Proof. A double functor F has the right lifting property with respect to I1 : ∅ → [0] if
and only if it is surjective on objects; with respect to I2 : [0] t [0]→ H[1] if and only if it
is full on horizontal morphisms; with respect to I ′3 : [0]t [0]→ V[1] if and only if it is full
on vertical morphisms; and with respect to I4 : δS→ S and I5 : S2 → S if and only if it is
full and faithful on squares, respectively. This shows the result. �

Remark 8.1.3. It is straightforward to see that every double functor in Iw−inj trivially
satisfies (db1-4) of Definition 7.2.1, using this description. Hence every double functor in
Iw−inj is a double biequivalence.

Theorem 8.1.4. A double functor F : A → B is in Iw−cof if and only if its underlying
horizontal and vertical functors UHF : UHA → UHB and UVF : UVA → UVB have
the left lifting property with respect to surjective on objects and full functors.

Proof. The proof works as in Theorem 7.3.4, except that now a trivial fibration is full
on vertical morphism instead of surjective, and therefore the underlying vertical functor
UVF has the left lifting property with respect to surjective on objects and full functors
instead of surjective on objects and surjective on morphisms functors. �

Corollary 8.1.5. A double functor F : A→ B is in Iw−cof if and only if
(i) it is injective on objects, and faithful on horizontal and vertical morphisms,
(ii) the underlying horizontal category UHB is a retract of a category obtained from

the image of UHA under UHF by freely adjoining objects and then morphisms
between objects, and

(iii) the underlying vertical category UVB is a retract of a category obtained from
the image of UVA under UVF by freely adjoining objects and then morphisms
between objects.

Proof. The proof works as in Corollary 7.3.5, with the modifications imposed by Theo-
rem 8.1.4. �

As a direct consequence of this result, we get that the cofibrant objects are precisely
the double categories whose underlying horizontal and vertical categories are free. In
comparison with the cofibrant objects of the first model structure, characterized in Theo-
rem 7.3.6, the underlying vertical category of a cofibrant double category can now contain
free composites of morphisms.
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Corollary 8.1.6. A double category A is cofibrant if and only if its underlying horizontal
and vertical categories UHA and UVA are free.

Proof. By Corollary 8.1.5, the double functor ∅ → A is cofibrant if and only if the cate-
gories UHA and UVA are retracts of free categories. However, a retract of a free category
is itself free. �

It remains to introduce the class of weak equivalences in order to determine a model
structure on DblCat. We define a weak equivalence to be a double functor that induces
a double biequivalence between weakly horizontally invariant replacements. To construct
a weakly horizontally invariant double category from a double category A, we attach
H'Eadj-data freely to every horizontal adjoint equivalence in A. Let us first give a precise
description of the double category H'Eadj.

Description 8.1.7. We first describe the double category H'Eadj. It contains a horizon-
tal adjoint equivalence (f, g, η, ε), where f : 0→ 1 and g : 1→ 0 are horizontal morphisms,
and η and ε are vertically invertible squares, as in Definition 3.6.1, which represents the
unit and counit of the horizontal adjoint equivalence. It also contains two vertical mor-
phisms u : 0 1 and v : 1 0. The squares are generated by η and ε, as well as the two
following weakly horizontally invertible squares.

0 1

1 1

•u •

f

'

α '

1 0

0 0

•v •

g

'

γ '

Let us denote by α′ and γ′ their weak inverses, given by Proposition 3.6.6, with re-
spect to the identity horizontal adjoint equivalence and the horizontal adjoint equivalence
(f, g, η, ε). Then, we can form the following weakly horizontally invertible squares β and
δ, and we also denote by β′ and δ′ their weak inverses, given by Proposition 3.6.6, with re-
spect to the identity horizontal adjoint equivalence and the horizontal adjoint equivalence
(f, g, η, ε).

0 0

0 1

• •u

f

'

β '

0

0= 1 0

0

• •
f

'
g

'

η

∼=

0 1 1

• • •u
'
f

α′ 'ef

1 1

1 0

• •v

g
'

δ '

1

1= 0 1

1

• •
g

'
f

'

ε−1 ∼=

1 0 0

• • •v
'
g

γ′ 'eg

Moreover, the horizontal composite of β with α is the vertical identity square ef at f ,
and the vertical composite of β with α is the horizontal identity square idu at u. In other
words, this says that (f, u, α, β) is the data of an orthogonal companion pair ; see [Gra20,
§4.1.1]. On the other hand, the horizontal composite of α′ with β′ is the vertical identity
square eg at g, and the vertical composite of β′ with α′ is the horizontal identity square idu
at u. In other words, this says that (g, u, α′, β′) is the data of an orthogonal adjoint pair ;
see [Gra20, §4.1.2]. Similarly, (g, v, γ, δ) is the data of an orthogonal companion pair, and
(f, v, γ′, δ′) is the data of an orthogonal adjoint pair.

The pair of vertical morphisms (u, v) further forms a vertical adjoint equivalence, i.e.,
an adjoint equivalence in the underlying vertical 2-category VH'Eadj, with unit η′ given
by the vertical composite of β with γ′, and counit ε′ given by the vertical composite of δ′
with α. In particular, all the squares in H'Eadj are also weakly vertically invertible – the
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transposed notion of weakly horizontally invertible – with vertical weak inverses given by
the obvious square.

Note that there is an inclusion J4 : HEadj → H'Eadj which sends the horizontal adjoint
equivalence in HEadj to the horizontal adjoint equivalence (f, g, η, ε) in H'Eadj.

Remark 8.1.8. Let A be a double category. Given a double functor G : H'Eadj → A, its
data is completely determined by the image (Gf,Gg,Gη,Gε) of the horizontal adjoint
equivalence (f, g, η, ε) of H'Eadj, and the images Gα and Gγ of the squares α and γ
in H'Eadj. This follows from the fact that the weak inverse of a weakly horizontally
invertible square with respect to fixed horizontal adjoint equivalence data is unique, by
Proposition 3.6.6, and from the fact that, given a data (f, u, α) as above, a square β
such that the data (f, u, α, β) is that of an orthogonal companion pair is also uniquely
determined. The latter can be easily proven by using the relations between α and β.

We are now ready to introduce weakly horizontally invariant replacements.

Construction 8.1.9. Let A be a double category and let HorEq(A) denote the class of
all horizontal adjoint equivalence data in A. Then each horizontal adjoint equivalence
(a, c, η, ε) in A defines a double functor HEadj → A and we define Awhi to be the pushout⊔

HorEq(A) HEadj A

⊔
HorEq(A) H'Eadj Awhi .

⊔
HorEq(A) J4 jA

p

Now let F : A→ B be a double functor. Then F induces double functors
F0 :

⊔
HorEq(A)

HEadj →
⊔

HorEq(B)
HEadj (resp. F1 :

⊔
HorEq(A)

H'Eadj →
⊔

HorEq(B)
H'Eadj)

by sending the copy of HEadj (resp. H'Eadj) at a horizontal adjoint equivalence (a, c, η, ε)
in HorEq(A) to the copy of HEadj (resp. H'Eadj) at the horizontal adjoint equivalence
(Fa, Fc, Fη, F ε) in HorEq(B). Then there is a unique double functor Fwhi : Awhi → Bwhi

making the following diagram commute.⊔
HorEq(A) HEadj A

⊔
HorEq(A) H'Eadj Awhi

⊔
HorEq(A) J4

jA

p

⊔
HorEq(B) HEadj B

⊔
HorEq(B) H'Eadj Bwhi

⊔
HorEq(B) J4

jB

F0

F1

F

Fwhi

p

This defines a functor (−)whi : DblCat → DblCat[1] sending a double category A to the
double functor jA : A→ Awhi and a double functor F : A→ B to the following commuta-
tive square in DblCat.

A B

Awhi Bwhi

F

jA jB

Fwhi

This is functorial by construction.

Remark 8.1.10. Since the double functor jA : A→ Awhi is a pushout of coproducts of the
double functor J4 : HEadj → H'Eadj, it is the identity on underlying horizontal categories
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and it is fully faithful on squares, for every double category A. Hence a double functor
F : A→ B coincides with Fwhi : Awhi → Bwhi on underlying horizontal categories.
Remark 8.1.11. The construction jA : A → Awhi adds to each horizontal adjoint equiva-
lence (a, c, η, ε) in A H'Eadj-data in Awhi, as detailed in Description 8.1.7, extending the
given horizontal adjoint equivalence. In particular, by studying this H'Eadj-data which
extends (a, c, η, ε), we can see that two vertical morphisms u and v were freely added
in Awhi together with weakly horizontally and vertically invertible squares as in Descrip-
tion 8.1.7. To refer to these freely added vertical morphisms u and v, we often say that
the morphisms u and v were added using the horizontal adjoint equivalence data (a, c, η, ε)
in A.

In particular, we check that the double category Awhi constructed this way is indeed
weakly horizontally invariant (see Definition 3.6.5).
Proposition 8.1.12. For every double category A, the double category Awhi is weakly
horizontally invariant.

Proof. Let a : A '−→ C and a′ : A′ '−→ C ′ be horizontal equivalences in A and w : C C ′

be a vertical morphism in Awhi. Let (a, c, η, ε) and (a′, c′, η′, ε′) be horizontal adjoint
equivalence data in A for a and a′. By construction of Awhi, there are four vertical
morphisms in Awhi that were added using the horizontal adjoint equivalences (a, c, η, ε) and
(a′, c′, η′, ε′) and, in particular, there are vertical morphisms u : A C and v : C ′ A′

in Awhi together with weakly horizontally invertible squares α and γ′ in Awhi as depicted
below (see Description 8.1.7).

A C

C C

•u •

a
'

α '

C ′ C ′

A′ C ′

•v •

a′
'

γ′ '

Then the composite of vertical morphisms vwu : A A′ together with the following past-
ing of weakly horizontally invertible squares

A C

C C

•u •

a
'

α '

C ′ C ′

•w •widw

A′ C ′

•v •

a′
'

γ′ '

gives the required data, showing that Awhi is weakly horizontally invariant. �

This construction allows us to define the class of weak equivalences in our model struc-
ture to be the class of double functors which induce a double biequivalence between weakly
horizontally invariant replacements.
Definition 8.1.13. We define W to be the class of double functors F : A → B such
that the induced double functor Fwhi : Awhi → Bwhi is a double biequivalence (see Defini-
tion 7.2.1).



124 LYNE MOSER

In particular, since double biequivalences are the weak equivalences in the model struc-
ture on DblCat of Theorem 7.1.3, they satisfy 2-out-of-3 and are closed under retracts.
As a direct consequence, we can prove that the class W also has these properties.

Proposition 8.1.14. The class W of Definition 8.1.13 satisfies 2-out-of-3, and is closed
under retracts.

Proof. Recall that the class of double biequivalences is the class of weak equivalences in
the model structure on DblCat of Theorem 7.1.3. Hence it satisfies 2-out-of-3, and it is
closed under retracts. Since the replacement (−)whi is functorial, the fact that the classW
of Definition 8.1.13 satisfies 2-out-of-3, and is closed under retracts follows directly from
the fact that double biequivalences satisfy these properties. �

By taking cofibrations to be Iw-cofibrations and weak equivalences to be double func-
tors inW, we obtain the desired model structure on the category DblCat, as stated in the
theorem below. Since we need several additional technical results proven in Section 8.2
in order to show that the classes of trivial cofibrations and fibrations form a weak fac-
torization system, the proof of this results is reported to Section 8.3. We also report to
Section 8.3 the characterization of fibrant objects as weakly horizontally invariant double
categories.

Theorem 8.1.15. There is a model structure (C,F ,W) on DblCat such that
(i) the class C of cofibrations is given by C := Iw−cof, where Iw is the set described

in Notation 8.1.1,
(ii) the class W of weak equivalences is the class W as described in Definition 8.1.13,
(iii) the class F of fibrations is given by F := (C ∩W)�, and
(iv) the fibrant objects are the weakly horizontally invariant double categories.

Proof. By Proposition 8.1.14, we already know that the class W of weak equivalences
satisfy the 2-out-of-3 property. Furthermore, by Proposition 8.1.17 below, we have that
F ∩W = Iw−inj, and hence the pair (C,F ∩W) = (Iw−cof, Iw−inj) is the weak factor-
ization system generated by the set Iw of Notation 8.1.1. It remains to show that the pair
(C ∩W,F) forms a weak factorization system, which is the content of Theorem 8.3.5 and
Corollary 8.3.6. The proof that the fibrant objects are precisely the weakly horizontally
invariant double categories is in Theorem 8.3.1. �

Remark 8.1.16. In particular, since C = Iw−cof and W are closed under retracts (see
Proposition 8.1.14), then the class C ∩W is also closed under retracts.

As a first check to see if this indeed defines a model structure, we verify that an Iw-
injective is precisely a fibration which is also a weak equivalence.

Proposition 8.1.17. We have that F ∩W = Iw−inj.

Proof. We first prove that Iw−inj ⊆ F ∩W. Since C ∩W ⊆ C = Iw−cof, it follows that
Iw−inj = Iw−cof� ⊆ (C ∩ W)� = F . Hence it remains to show that Iw−inj ⊆ W. Let
Q : A → B be a double functor in Iw−inj. We show that the induced double functor
Qwhi : Awhi → Bwhi is in Iw−inj using Proposition 8.1.2. By Remark 8.1.3, this shows
that Qwhi is a double biequivalence and hence that Q ∈ W.

By Remark 8.1.10, the double functors Q and Qwhi coincide on underlying horizontal
categories and the double functors jA : A → Awhi and jB : B → Bwhi are fully faithful on
squares. It follows that Qwhi is surjective on objects and full on horizontal morphisms
as Q is so, and it is fully faithful on squares since Q, jA and jB are so and QwhijA = jBQ.
It remains to prove that Qwhi is full on vertical morphisms. Let A, A′ be objects in A
and v : QA QA′ be a vertical morphism in Bwhi. If v ∈ B, then there is a vertical
morphism u : A A′ in A such that Qu = v since Q is full on vertical morphisms. Now
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suppose that v was freely added in Bwhi using a horizontal adjoint equivalence (b, d, η, ε)
between the objects QA and QA′ in B. Since Q is full on horizontal morphisms, and
fully faithful on squares, there is a horizontal adjoint equivalence (a, c, η′, ε′) between
the objects A and A′ in A whose image under Q is (b, d, η, ε). If u : A A′ is the
vertical morphism in Awhi which was freely added using the horizontal adjoint equivalence
(a, c, η′, ε′), then we have Qwhiu = v by definition of Qwhi. Finally, since every vertical
morphism in Bwhi is a composite of vertical morphisms in B and freely added vertical
morphisms as considered above, it follows that, for every vertical morphism v : QA QA′

in B, there is a vertical morphism u : A A′ in Awhi such that Qwhiu = v. This vertical
morphism u is constructed by taking a lift as above for each part of the composite of v.
Hence Qwhi is full on vertical morphisms. This shows that Iw−inj ⊆ F ∩W.

We now prove that F ∩W ⊆ Iw−inj. Let P : A → B be a double functor in F ∩W.
We factor P as

A

C

BP

I Q

with I ∈ Iw−cell and Q ∈ Iw−inj. Since Q ∈ W by the above result, and P ∈ W,
by assumption, we get that I ∈ W by 2-out-of-3. Hence I ∈ C ∩ W. Therefore, since
P ∈ F = (C ∩ W)� has the right lifting property with respect to I, by the retract
argument (see Proposition 4.1.6), we have that P is a retract of Q ∈ Iw−inj. Finally,
since Iw−inj is closed under retracts, we get that P ∈ Iw−inj. This concludes the proof
that F ∩W = Iw−inj. �

We finally prove that the class of double biequivalences is included inW. The reversed
inclusion does not hold, but, as we will see later in Proposition 8.3.4, a weak equiva-
lence whose source is a weakly horizontally invariant double category is always a double
biequivalence.

Proposition 8.1.18. Every double biequivalence is in W.

Proof. Let F : A → B be a double biequivalence. We need to show that the induced
double functor Fwhi : Awhi → Bwhi is a double biequivalence. We show that Fwhi satisfies
(db1-4) of Definition 7.2.1. Since F and Fwhi coincide on underlying horizontal categories
by Remark 8.1.10 and B is included in Bwhi, then Fwhi satisfies (db1-2) since F does so.
Moreover, since jA, jB, and F are fully faithful on squares and FwhijA = FjB, then Fwhi

is also fully faithful on squares, i.e., it satisfies (db4).
It remains to show (db3). Let v : B B′ be a vertical morphism in Bwhi. If v ∈ B,

then, by (db3) for F , there is a vertical morphism u : A A′ in A together with a weakly
horizontally invertible square β in B

FA B

FA′ B′ .

•v •Fu

b
'

b′
'

β '

Since A and B are included in Awhi and Bwhi, this gives the desired data for v in Bwhi.
Now suppose that v is a composite of freely added vertical morphisms in Bwhi. Then,
there is a horizontal adjoint equivalence (f, g, η, ε) in B between the objects B and B′

together with a weakly horizontally invertible square α in Bwhi of the form
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B B′

B′ B′

•v •

f

'

α '

obtained by composing the corresponding weakly horizontally invertible squares for each
freely added vertical morphism appearing in the composite of v. We now show that,
given already fixed horizontal equivalences b : FA '−→ B and b′ : FA′ '−→ B′ in B, there
is a vertical morphism u : A A′ in Awhi together with a weakly horizontally invertible
square β in Bwhi of the form

FA B

FA′ B′ .

•Fwhiu •v

b
'

b′
'

β '

So let b : FA '−→ B and b′ : FA′ '−→ B′ be horizontal equivalences in B and let (b′, d′, η′, ε′)
be horizontal adjoint equivalence data for b′. Since Fwhi satisfies (db2) and (db4), there
is a horizontal equivalence a : A '−→ A′ in A together with a vertically invertible square ψ
in Bwhi of the form

FA B B′ FA′
b
'

f

'
d′

'

FA FA′ .
Fa

'

• •∼=

ψ

Let u : A A′ be the freely added vertical morphism in Awhi using a horizontal adjoint
equivalence data for a. We define β to be given by the following pasting

FA B

FA′ B′

•Fwhiu •v

b

b′

β '

FA B

FA B B′

FA= B B′ FA′ B′ B

B′ B

B

• • •

• • • • •

b

b f g

b f

d′ b′ g

eb

eb ef eg

∼=

η

∼=(ε′)−1

FA FA′ B′ B

• • • •

Fa

b′ g

eb′ eg

∼=

ψ

FA′ FA′ B′ B′ ,
b′

•Fwhiu •v• •eb′'Fwhiα 'γ

where α is the weakly horizontally invertible square in Awhi which was freely added with u
(see Description 8.1.7), and γ is the weak inverse of α in Bwhi with respect to the horizontal
adjoint equivalence (f, g, η, ε) and the identity horizontal adjoint equivalence. This gives
the desired weakly horizontally invertible square.

Note that every vertical morphism v in Bwhi can be decomposed as follows: it is the
composite of a sequence of composable vertical morphism vµ : Bµ → Bµ+1 such that, if
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vµ ∈ B, then vµ−1 and vµ+1 are composites of freely added vertical morphisms as consid-
ered above, and if vµ is a composite of freely added vertical morphisms as considered above,
then vµ−1 and vµ+1 are in B, for all µ. Using this decomposition of v, we can first fix a
weakly horizontally invertible square βµ relating vµ to a vertical morphism Fuµ, where uµ
is a vertical morphism in A, for each vertical morphism vµ in B. Then, we can choose
a weakly horizontally invertible square βµ relating vµ to a vertical morphism Fwhiuµ,
where uµ is a vertical morphism in Awhi, in a such a way that the horizontal equivalence
which is the source of βµ corresponds to the horizontal equivalence which is the target of
βµ−1 and the horizontal equivalence which is the target of βµ corresponds to the horizontal
equivalence which is the source of βµ+1, where βµ−1 and βµ+1 were previously fixed since
vµ−1 and vµ+1 are in B. Hence, the composite of the vertical morphisms uµ is a vertical
morphism u in Awhi and the vertical composite of the squares βµ (which is well-defined
by construction) gives a weakly horizontally invertible square in Bwhi relating v to Fwhiu.
This shows (db3) for Fwhi and hence that F is in W. �

8.2. Jw-cofibrations and Jw-injectives. In order to prove Theorem 8.1.15, we need to
study more closely the trivial cofibrations and fibrations of the proposed model structure
on DblCat. While we were not able to find a nice description of these double functors
in general, we can prove that every trivial cofibration induces a Jw-cofibrations between
weakly horizontally invariant replacements, and that a fibration with weakly horizontally
invariant target is a Jw-injective, where Jw is the following set of cofibrations.

Notation 8.2.1. Let W denote the “free-living weakly horizontally invertible square with
horizontal adjoint equivalence data”, and W− be its double subcategory where we remove
one of the vertical morphisms.

0 1

0′ 1′

;W =

'

'

• •'

0 1

0′ 1′

.W− =

'

'

•

Let Jw denote the set containing the following double functors:
(i) the inclusion double functor J1 : [0] → HEadj, where the 2-category Eadj is the

“free-living adjoint equivalence”,
(ii) the inclusion double functor J2 : H[1] → HCinv, where the 2-category Cinv is the

“free-living 2-isomorphism”,
(iii) the inclusion double functor J ′3 : W− →W.

Remark 8.2.2. It is straightforward from the description of cofibrations in Iw−cof in
Corollary 8.1.5 that the double functors J1, J2, and J3 are in Iw−cof.

By definition, a weakly horizontally invariant double category is precisely a double
category which has the right lifting property with respect to J ′3 : W− → W. This yields
the following result.

Proposition 8.2.3. A double category A is weakly horizontally invariant if and only if
the double functor A→ [0] is in Jw−inj.

Proof. First note that every double functor A→ [0] trivially lifts against J1 : [0]→ HEadj
and J2 : H[1] → HCinv. Then it lifts against J3 : W− → W if and only if it is weakly
horizontally invariant by definition; see Definition 3.6.5. �

By studying the lifting properties with respect to the double functors in Jw, we can
characterize the Jw-injectives as follows.
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Proposition 8.2.4. A double functor F : A → B is in Jw−inj if and only if it satisfies
(df1-2) of Definition 7.2.6 and the following condition:

(df3’) for every vertical morphism w : C C ′ in A, every pair of horizontal equivalences
a : A '−→ C and a′ : A′ '−→ C ′ in A, and every weakly horizontally invertible square β
in B as depicted below left, there is a weakly horizontally invertible square α in A
as depicted below right such that β = Fα.

FA FC

FA′ FC ′

•v •Fw

Fa
'

Fa′
'

β '

A C

A′ C ′

•u •w

a
'

a′
'

α '

Proof. As mentioned in Proposition 7.3.8, a double functor F has the right lifting property
with respect to the double functors J1 : [0]→ HEadj and J2 : H[1]→ HCinv if and only if
it satisfies (df1- 2) of Definition 7.2.6. Furthermore, it has the right lifting property with
respect to J ′3 : W− →W if and only if it satisfies (df3’) above. �

In particular, the following useful result tells us that every Jw-injective has the right
lifting property with respect to the double functor J4 : HEadj → H'Eadj.

Proposition 8.2.5. Let F : A → B be a double functor in Jw−inj. Then F is in
{J4}−inj, where J4 : HEadj → H'Eadj is the inclusion double functor introduced in De-
scription 8.1.7.

Proof. To show that F is in {J4}−inj, it is enough to show that it has the right lifting
property with respect to J4 : HEadj → H'Eadj. Consider a commutative square in DblCat
of the form

HEadj

H'Eadj

A

B ,

(a, c, η, ε)

G

J4 F
L

where a : A '−→ C is a horizontal adjoint equivalence with data (a, c, η, ε). We want to
find a lift L : H'Eadj → A in this diagram. By Description 8.1.7, the images under G
of the weakly horizontally invertible squares α and γ in H'Eadj are weakly horizontally
invertible squares in B as depicted below.

FA FC

FC FC

•Gu •

Fa
'

Gα '

FC FA

FA FA

•Gv •

Fc
'

Gγ '

By (df3’) of Proposition 8.2.4, there are weakly horizontally invertible squares α and γ
in A, as depicted below, such that Fα = Gα and Fγ = Gγ.

A C

C C

•u •

a
'

α '

C A

A A

•v •

c
'

γ '
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By Description 8.1.7, the data (a, c, η, ε) together with the squares α and γ generate
H'Eadj-data in A, i.e., they determine a double functor L : H'Eadj → A which extends
(a, c, η, ε). Furthermore, since the H'Eadj-data G : H'Eadj → B and FL : H'Eadj → B
coincide on the images of the horizontal adjoint equivalence and the squares α and γ
of H'Eadj, they must be equal, by unicity of such data (see Remark 8.1.8), i.e., we have
FL = G. Hence L gives the desired lift, and this shows that F ∈ {J4}−inj. �

Remark 8.2.6. As a consequence of this result and Proposition 8.2.3, we have that, for
every weakly horizontally invariant double category A, the double functor A → [0] is in
{J4}−inj.

Finally, we show that the class of Jw-injectives which are double biequivalences is
precisely the class of Iw-injectives, i.e., the class of trivial fibrations in our proposed
model structure on DblCat.
Proposition 8.2.7. A double functor F : A→ B is a Jw-injective and a double biequiv-
alence if and only if it is an Iw-injective.
Proof. Since Jw ⊆ Iw−cof by Remark 8.2.2, then Iw−inj = Iw−cof� ⊆ J �

w = Jw−inj.
Furthermore, by Remark 8.1.3, an Iw-injective is in particular a double biequivalence.
This proves that, if F is an Iw-injective, then F is a Jw-injective and a double biequiva-
lence.

Now suppose that F is a Jw-injective and a double biequivalence. We prove that F is an
Iw-injective using Proposition 8.1.2. Note that, since F satisfies (db4) of Definition 7.2.1,
it is fully faithful on squares. It remains to prove that F is surjective on objects, and full
on horizontal and vertical morphisms.

We first show that F is surjective on objects. Let B be an object in B. Since F satisfies
(db1) of Definition 7.2.1, there is an object C ∈ A together with a horizontal equivalence
b : B '−→ FC in B. By (df1) of Definition 7.2.6, it follows that there is a horizontal
equivalence a : A '−→ C in A such that b = Fa. In particular, we have B = FA. We now
show that F is full on horizontal morphisms. Let A, C be objects in A and b : FA→ FC
be a horizontal morphism in B. Since F satisfies (db2) of Definition 7.2.1, there is a
horizontal morphism c : A→ C in A together with a vertically invertible square β in B as
depicted below left.

FA FC

FA FC

• •

b

Fc

β

∼=

A C

A C

• •

a

c

α

∼=

By (df2) of Definition 7.2.6, there is a vertically invertible square α in A as above right
such that β = Fα. In particular, we have b = Fa. We finally prove that F is full on
vertical morphisms. Let A, A′ be objects in A and v : FA FA′ be a vertical morphism
in B. Since F satisfies (db3) of Definition 7.2.1, there is a vertical morphism w : C C ′

in A together with a weakly horizontally invertible square β in B as depicted below left.

FA FC

FA′ FC ′

•v •Fw

b
'

b′
'

β '

A C

A′ C ′

•u •w

a
'

a′
'

α '

Since F is full on horizontal morphisms and fully faithful on squares, there are horizontal
equivalences a : A '−→ C and a′ : A′ '−→ C ′ in A such that b = Fa and b′ = Fa′. Then,
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by (df3’) of Proposition 8.2.4, there is a weakly horizontally invertible square α in A as
depicted above right such that β = Fα. In particular, we have v = Fu. This shows
that F is an Iw-injective and concludes the proof. �

We now want to study more closely the Jw-cofibrations. We first show that they are
cofibrations, which satisfy the conditions of a double biequivalence except for the condition
(db3) on vertical morphisms.

Proposition 8.2.8. Let J : A→ B be a double functor in Jw−cell. Then J satisfies the
following conditions:

(i) it is injective on objects, and faithful on horizontal and vertical morphisms,
(ii) it satisfies (db1-2) and (db4) of Definition 7.2.1 of double biequivalences.

Proof. Since Jw ⊆ Iw−cof by Remark 8.2.2, then Jw−cell ⊆ Iw−cof and, by Corol-
lary 8.1.5, we have that J is injective on objects, and faithful on horizontal and vertical
morphisms. This proves (i).

We now prove (ii). First note that J satisfies (db4) of Definition 7.2.1. Indeed, since
taking pushouts along the double functors J1, J2, and J3 do not allow to add squares
between existing boundaries nor to identify two squares, and since J is a transfinite
composition of pushouts along these double functors, then J is fully faithful on squares.
In particular, since J is also injective on objects and faithful on horizontal and vertical
morphisms by (i), we have an isomorphism of double categories A ∼= J(A), where J(A) is
the image of J . Let λ be an ordinal and let X : λ→ DblCat be a transfinite composition
of pushouts of double functors in Jw such that J is the composite

J : A ∼= J(A) = X0
ι0−→ colimµ<λXµ = B.

We first prove that J satisfies (db1) of Definition 7.2.1. Let B be an object in B. We
prove that there is an object A ∈ A and a horizontal equivalence b : JA '−→ B in B by
transfinite induction. If B ∈ X0 = J(A), then there is an object A ∈ A such that JA = B
and we can take b = idJA. Now suppose that B ∈ Xµ+1 for a successor ordinal µ+ 1 < λ.
If B ∈ Xµ, then we are done by induction. Otherwise, since pushouts along J2 and J ′3 do
not modify the objects, the double category Xµ+1 was obtained as a pushout along J1 of
the following form

[0]

HEadj

Xµ

Xµ+1 ,

D

J1 iµ

d

p

where D is an object in Xµ and d : D '−→ B is a horizontal adjoint equivalence in B.
By induction, since D ∈ Xµ, there is an object A ∈ A and a horizontal equivalence
f : JA '−→ D in B. Then, the composite b := df : JA '−→ B gives the desired horizontal
equivalence in B. If B ∈ Xκ for a limit ordinal κ < λ, since Xκ = colimµ<κXµ, there is an
ordinal µ < κ such that B ∈ Xµ, and we are done by induction. This shows (db1) for J .

We now prove that J satisfies (db2) of Definition 7.2.1. Let A, C be objects in A
and b : JA → JC be a horizontal morphism in B. We prove that there is a horizontal
morphism a : A→ C in A and a vertically invertible square β in B of the form

JA JC

JA JC ,

Ja

b

• •β

∼=
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by transfinite induction. If b ∈ X0 = J(A), then there is a horizontal morphism a : A′ → C ′

in A such that Ja = b. Then JA = JA′ and JC = JC ′ and, since J is injective on objects,
we have that A = A′ and C = C ′. Hence a : A→ C is such that Ja = b and we can take
β = eJa. Now suppose that b ∈ Xµ+1 for a successor ordinal µ+1 < λ. If b ∈ Xµ, then we
are done by induction. Otherwise, the double category Xµ+1 was obtained as a pushout
along J2 as depicted below left,

H[1]

HCinv

Xµ

Xµ+1

d

J2 iµ

δ

p

B D

B D

d

f

• •δ

∼=

where d : B → D is a horizontal morphism in Xµ and δ is a vertically invertible square
in B as depicted above right. Then the horizontal morphism b ∈ Xµ+1 is a composite
of horizontal morphisms in Xµ and the freely added horizontal morphism f . By taking
instances of the vertically invertible square δ in order to replace the instances of f in the
composite of b by instances of d, we find that there is a horizontal morphism b : JA→ JC
in Xµ and a vertically invertible square ϕ in B as depicted below left.

JA JC

JA JC

b

b

• •ϕ

∼=
JA JC

JA JC

Ja

b

• •ψ

∼=

Since b ∈ Xµ, by induction, there is a horizontal morphism a : A→ C in A and a vertically
invertible square ψ as above left. By setting β to be the vertical composite of ψ with ϕ,
we get the desired vertically invertible square in B. If b ∈ Xκ for a limit ordinal κ < λ,
since Xκ = colimµ<κXµ, there is an ordinal µ < κ such that b ∈ Xµ, and we are done by
induction. This shows (db2) for J and concludes the proof. �

Remark 8.2.9. Note that double functors in Jw−cof also satisfy the conditions of Propo-
sition 8.2.8 since they are retracts of double functors in Jw−cell. We do not prove this
result here since we do not need it.

When the source of a Jw-cofibration is a weakly horizontally invariant double category,
we can further show that (db3) of Definition 7.2.1 is satisfied, and hence that every such
Jw-cofibration is a double biequivalence.

Proposition 8.2.10. Let J : A→ B be a double functor in Jw−cell such that A is weakly
horizontally invariant. Then J is a double biequivalence.

Proof. Let J : A→ B be in Jw−cell. By Proposition 8.2.8, we have that J satisfies (db1-2)
and (db4) of Definition 7.2.1. It remains to show (db3) of Definition 7.2.1 for J in order
to show that it is a double biequivalence. Let λ be an ordinal and let X : λ→ DblCat be a
transfinite composition of pushouts of double functors in Jw such that J is the composite

J : A ∼= J(A) = X0
ι0−→ colimµ<λXµ = B.

Let v : B B′ be a vertical morphism in B. We show that there is a vertical morphism
u : A A′ in A and a weakly horizontally invertible square β in B of the form
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JA B

JA′ B′ ,

•Ju •v

'

'

'β

by transfinite induction. If v ∈ X0 = J(A), then there is a vertical morphism u : A A′

in A such that Ju = v and we can take β = idJu. Now suppose that v ∈ Xµ+1 for a
successor ordinal µ + 1 < λ. If v ∈ Xµ, then we are done by induction. Otherwise, the
double category Xµ+1 was obtained as a pushout along J ′3 as depicted below left,

W−

W

Xµ

Xµ+1

(w, d, d′)

J ′3 iµ

δ

p

D Y

D′ Y ′

•w •w
'
d

d′
'

'δ

where w : D D′ is a vertical morphism in Xµ, d : D '−→ Y and d′ : D′ '−→ Y ′ are horizon-
tal equivalences in Xµ, and δ is a weakly horizontally invertible square in B as depicted
above right. Then the vertical morphism v ∈ Xµ+1 is a composite of vertical morphisms
in Xµ and the freely added vertical morphism w. We prove that the result holds for a
composite of the form v = v1wv0 with v0 : B Y and v1 : Y ′ B′ two vertical mor-
phisms in Xµ; the other cases where w appears several time in the decomposition of v can
be proven similarly. By induction, since v0, v1, and w are in Xµ, there are vertical mor-
phisms u0 : A C, u1 : C ′ A′, and t : X X ′ in A and weakly horizontally invertible
squares β0, β1, and ϕ in B as depicted below.

JA B

JC Y

•Ju0 •v0

b0
'

b′0

'

'β0

JC ′ Y ′

JA′ B′

•Ju1 •v1

b1
'

b′1

'

'β1

JX D

JX ′ D′

•Jt •w

f

'

f ′
'

'ϕ

Let (df, g, η, ε) and (d′f ′, g′, η′, ε′) be horizontal adjoint equivalences in B for the com-
posites df : JX '−→ Y and d′f ′ : JX ′ '−→ Y ′. Since J satisfies (db2) and (db4) of Defini-
tion 7.2.1, there are horizontal equivalences a : C '−→ X and a′ : C ′ '−→ X ′ in A together
with vertically invertible squares ψ and ψ′ in B as depicted below.

JC Y JX
b′0
'

g

'

JC JX
Ja

'

• •∼=

ψ

JC ′ Y ′ JX ′
b1
'

g′

'

JC ′ JX ′
Ja′
'

• •∼=

ψ′

Hence, since A is weakly horizontally invariant, the below left diagram in A can be filled
with a vertical morphism u : C C ′ and a weakly horizontally invertible square α in A
as depicted below right.
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C X

C ′ X ′

•t

a
'

a′
'

C X

C ′ X

•u •t

a
'

a′
'

'α

Finally, by setting u := u1uu0 : A A′ and by considering the following pasting of squares
in B

JA B B
b0

JC Y Y
b′0

•Ju0 •v0 •v0β0 ' idv0

JC Y JX D Y
b′0

g

f d

• • •eb′0 ε−1 ∼=

JC JX D Y
Ja f d

• • • •ψ

∼= ef ed

JC ′ JX ′ D′ Y ′
Ja′ f ′ d′

•Ju •Jt •w •wJα ' ϕ ' δ '

JC ′ Y ′ JX ′ D′ Y ′
b1 g′

f ′ d′

• • • •(ψ′)−1 ∼= ef ′ ed′

JC ′ Y ′ Y ′
b1

• • •eb1 ε′

∼=

JA′ B′ B′ ,
b′1

•Ju1 •v1 •v1β1 ' idv1

we get a weakly horizontally invertible square of the desired form between the vertical
morphisms Ju = (Ju1)(Ju)(Ju0) and v = v1wv0. Finally, if v ∈ Xκ for a limit ordinal
κ < λ, since Xκ = colimµ<κXµ, there is an ordinal µ < κ such that v ∈ Xµ, and we are done
by induction. This shows (db3) for J , and proves that J is a double biequivalence. �

Remark 8.2.11. If J : A → B is a double functor in Jw−cof such that A is weakly hor-
izontally invariant, then it is a retract of a double functor K : A → C in Jw−cell by
Proposition 4.2.12, whose source is also A. Hence, by Proposition 8.2.10, the double func-
tor K is a double biequivalence and, since double biequivalences are closed under retract,
this shows that J is also a double biequivalence.

We now want to show that the fibrations in our proposed model structure, whose target
is a weakly horizontally invariant double category, are precisely the Jw-injectives. We first
show that the class of fibrations is included in Jw−inj.

Lemma 8.2.12. We have that F ⊆ Jw−inj.

Proof. First note that every double functor in Jw satisfies (db1-4) of Definition 7.2.1.
Hence every double functor in Jw is a double biequivalence and then, by Proposition 8.1.18,
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they are in particular in W. With this observation and by Remark 8.2.2, we have that
Jw ⊆ C ∩W. It follows that F = (C ∩W)� ⊆ J �

w = Jw−inj. �

To prove that a Jw-injective with weakly horizontally invariant target is a fibration,
we first study the weakly horizontally invariant replacement of a trivial cofibration in our
proposed model structure. We first show that it is a cofibration, and then show that it is
actually a Jw-cofibration. We then use the lifting property of our considered Jw-injective
with respect to Jw−cof to prove that it has the right lifting property with respect to
every trivial cofibration, and hence is a fibration.

We first show that the weakly horizontally invariant replacement of a cofibration which
is fully faithful on squares is a cofibration. This includes the class of trivial cofibrations,
since every weak equivalence in our model structure is fully faithful on squares.

Lemma 8.2.13. Let I : A→ B be a double functor in C which is fully faithful on squares.
Then the induced double functor Iwhi : Awhi → Bwhi is in C = Iw−cof.

Proof. We first prove the result when I is a double functor in Iw−cell which is fully
faithful on squares. We use Corollary 8.1.5 to prove that Iwhi is in Iw−cell. Since I and
Iwhi coincide on underlying horizontal categories by Remark 8.1.10, then Iwhi is injective
on objects and faithful on horizontal morphisms, as I is so. Furthermore, the underlying
horizontal category UHBwhi = UHB is obtained from the image of UHAwhi = UHA
by freely adding objects and then morphisms between objects. It remains to prove that
Iwhi is faithful on vertical morphisms and that the underlying vertical category UVBwhi is
obtained from the image of UVAwhi by freely adding objects and then morphisms between
objects. Since I is in Iw−cell, the underlying vertical category UVB is obtained from the
image of UVA by freely adding objects and then morphisms between objects. Then, by
construction, the categories UVAwhi and UVBwhi are obtained from the image of UVA
and UVB, respectively, by freely adding morphisms between objects. Now suppose that
v : B B′ in Bwhi is freely added to B using a horizontal adjoint equivalence (b, d, η, ε)
in B. If there is a horizontal adjoint equivalence (a, c, η′, ε′) in A such that its image under I
is (b, d, η, ε), then (a, c, η′, ε′) is the unique such in A since I is injective on objects, faithful
on horizontal morphisms, and fully faithful on squares. Hence the vertical morphism freely
added in Awhi using this horizontal adjoint equivalence (a, c, η′, ε′) is the unique vertical
morphism in Awhi that is sent to v. This shows that Iwhi is faithful on vertical morphisms.
If there is no horizontal adjoint equivalence in A whose image under I is (b, d, η, ε), then
v is freely added in Bwhi to the image of Awhi. Hence UVBwhi is obtained from the image
of UVAwhi by freely adding objects and then morphisms between objects. This shows
that Iwhi is in Iw−cell.

Now suppose that I is a double functor in Iw−cof which is fully faithful on squares.
We factor I as

A

C

BI

K Q

with K ∈ Iw−cell and Q ∈ Iw−inj. Since both I and Q are fully faithful on squares,
then K is also fully faithful on squares. Since I has the left lifting property with respect
to Q, by the retract argument (see Proposition 4.1.6), we have that I is a retract of K.
Since the replacement (−)whi is functorial, then Iwhi is also a retract of Kwhi. By the first
part of the proof, we have that Kwhi is in Iw−cell and hence this shows that Iwhi is in
Iw−cof. This concludes the proof. �

We now use this result to prove that the weakly horizontally invariant replacement of
a trivial cofibration is a Jw-cofibration.
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Proposition 8.2.14. Let I : A → B be a double functor in C ∩ W. Then the induced
double functor Iwhi : Awhi → Bwhi is in Jw−cof.

Proof. Since I ∈ W, the induced double functor Iwhi : Awhi → Bwhi is a double biequiva-
lence. We factor Iwhi as

Awhi

C

BwhiIwhi

J P

with J ∈ Jw−cell and P ∈ Jw−inj. Since J : Awhi → C is a relative Jw-cell complex with
Awhi weakly horizontally invariant, then J is a double biequivalence by Proposition 8.2.10.
Since both Iwhi and J are double biequivalences, then P is also a double biequivalence,
by 2-out-of-3. Hence P is both a Jw-injective and double biequivalence, and therefore P
is an Iw-injective by Proposition 8.2.7. Since Iwhi, jA and jB are fully faithful on squares
and IwhijA = jBI, then I is also fully faithful on squares. Hence, by Lemma 8.2.13, the
double functor Iwhi is in Iw−cof. It follows that Iwhi has the left lifting property with
respect to P ∈ Iw−inj and, by the retract argument (see Proposition 4.1.6), we get that
Iwhi is a retract of J ∈ Jw−cell. This shows that Iwhi is in Jw−cof. �

Finally, we prove that every Jw-injective with weakly horizontally invariant target
lifts against every trivial cofibration, by using its lifting property against the weakly
horizontally invariant replacement of such a double functor.

Proposition 8.2.15. Let P : A → B be a double functor with B weakly horizontally
invariant. Then P is in F if and only if P is in Jw−inj.

Proof. If P is in F , then P is in Jw−inj by Lemma 8.2.12. Now suppose that P is in
Jw−inj. We show that P has the right lifting property with every double functor in C∩W,
i.e., it is in (C ∩ W)� = F . Let I : C → D be a double functor in C ∩ W and consider a
commutative square in DblCat of the form

C

D

A

B .

F

G

I PL

We want to find a lift L : D→ A in this diagram. Since B is weakly horizontally invariant,
the double functor B → [0] has the right lifting property with respect to coproducts of
J4 : HEadj → H'Eadj by Remark 8.2.6. Hence there is a lift in the below left diagram.

⊔
HorEq(D) HEadj D

⊔
HorEq(D) H'Eadj

BG

⊔
HorEq(D) J4

K

⊔
HorEq(D) HEadj D

⊔
HorEq(D) H'Eadj Dwhi

⊔
HorEq(D) J4 jD

τD

B

G

K

Ĝ

p

By the universal property of the pushout, there is a unique double functor Ĝ : Dwhi → B
making the above right diagram commute. Now, since P ∈ Jw−inj, by Proposition 8.2.5,
it has the right lifting property with respect to coproducts of J4 : HEadj → H'Eadj. Hence
there is a lift in the following commutative diagram
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⊔
HorEq(C) HEadj C

⊔
HorEq(C) H'Eadj

A

B ,
⊔

HorEq(D) H'Eadj

F

P
⊔

HorEq(C) J4
K ′

I1 K

where I1 is the double functor induced from I as described in Construction 8.1.9. By the
universal property of the pushout Cwhi, there is a unique double functor F̂ : Cwhi → A
making the following diagram commute.

⊔
HorEq(C) HEadj C

⊔
HorEq(C) H'Eadj Cwhi

⊔
HorEq(C) J4 jC

τC

A

F

K ′

F̂

p

Since IwhijC = jDI and IwhiτC = τDI1, we have ĜIwhijC = ĜjDI = GI = PF = PF̂ jC
and ĜIwhiτC = ĜτDI1 = KI1 = PK ′ = PF̂ τC. Since such a double functor is unique
by the universal property of the pushout Cwhi, we get that ĜIwhi = PF̂ and hence the
following diagram commutes.

C

D

Cwhi

Dwhi

A

B

jC F̂

jD Ĝ

I Iwhi PL̂

F

G

Since I ∈ C ∩ W, then Iwhi is in Jw−cof by Proposition 8.2.14. Since P ∈ Jw−inj, it
has the right lifting property with respect to Iwhi and there is a lift L̂ : Dwhi → A in the
right-hand square of the above diagram. Then the composite L := L̂jD : D→ A gives the
desired lift since PL = PL̂jD = ĜjD = G and LI = L̂jDI = L̂IwhijC = F̂ jC = F . This
shows that P ∈ F and concludes the proof. �

8.3. Remaining of the proof of Theorem 8.1.15. We now aim to give the remaining
of the proof of Theorem 8.1.15. In other words, we need to show that the pair (C ∩W,F)
forms a weak factorization system and that the fibrant objects in DblCat are precisely the
weakly horizontally invariant double categories. This second result is a direct consequence
of Proposition 8.2.15.

Theorem 8.3.1. A double category A is fibrant, i.e., it is such that the double functor
A→ [0] is in F , if and only if it is weakly horizontally invariant.

Proof. We recall from Proposition 8.2.3 that a double category A is weakly horizontally
invariant if and only if the double functor A→ [0] is in Jw−inj. Then, since [0] is weakly
horizontally invariant, the result follows directly from Proposition 8.2.15. �
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We now show that the weakly horizontally invariant replacements given in Construc-
tion 8.1.9 are fibrant replacements in our model structure. As a consequence of Propo-
sition 8.2.10, since the weakly horizontally invariant replacements jA : A → Awhi are
Jw-cofibration, we first get the following result.
Proposition 8.3.2. Let A be a weakly horizontally invariant double category. Then the
double functor jA : A→ Awhi is a double biequivalence.
Proof. Note that, by construction, jA : A → Awhi is a double functor in {J4}−cof. Since
Jw−inj ⊆ {J4}−inj by Proposition 8.2.5, then we have that

{J4}−cof = �{J4}−inj ⊆ �Jw−inj = Jw−cof.
Hence jA is a Jw-cofibration with weakly horizontally invariant source, and hence it is a
double biequivalence by Remark 8.2.11. �

As a corollary of this result, we get that the weakly horizontally invariant replace-
ments jA : A → Awhi are trivial cofibrations, and hence are fibrant replacements in our
model structure, since the weakly horizontally invariant double categories are precisely
the fibrant double categories by Theorem 8.3.1.
Corollary 8.3.3. Let A be a double category. Then the double functor jA : A → Awhi is
in C ∩W. In particular, this gives a fibrant replacement of A.
Proof. Note that, using Corollary 8.1.5, one can check that J4 : HEadj → H'Eadj is
in Iw−cof. Since jA is obtained as a pushout of coproducts of J4 and Iw−cof is closed
under coproducts and pushouts, then jA ∈ Iw−cof = C. It remains to show that jA ∈ W.
We want to show that (jA)whi is a double biequivalence. Since (jA)whi is defined using
the universal property of pushout, by uniqueness of such a double functor, we can see
that (jA)whi = jAwhi . Since Awhi is weakly horizontally invariant, it follows from Propo-
sition 8.3.2 that jAwhi is a double biequivalence. Hence jA ∈ C ∩ W by definition of W.
Moreover, since jA is in W, and Awhi is fibrant, by Theorem 8.3.1, this gives a fibrant
replacement of A. �

We can also prove, using Proposition 8.3.2, that every weak equivalence with fibrant
source is in particular a double biequivalence, and this gives a characterization of the
weak equivalences between fibrant objects.
Proposition 8.3.4. Let F : A → B be a double functor with A weakly horizontally in-
variant. Then F is in W if and only if F is a double biequivalence.
Proof. If F is a double biequivalence, then F is inW by Proposition 8.1.18. Now suppose
that F is in W. By definition of W, the induced double functor Fwhi : Awhi → Bwhi is a
double biequivalence. We prove that F satisfies (db1-4) of Definition 7.2.1. Since F and
Fwhi coincide on underlying horizontal categories by Remark 8.1.10 and jB is fully faithful
on squares, then F satisfies (db1-2) since F does so. Moreover, since jA, jB, and Fwhi are
fully faithful on squares and FwhijA = jBF , then F satisfies (db4).

It remains to prove (db3) for F . By Proposition 8.3.2, since A is weakly horizontally
invariant, the double functor jA : A→ Awhi is a double biequivalence. Hence the composite
FwhijA : A → Bwhi is a double biequivalence. Let v : B B′ be a vertical morphism
in B. By (db3) for FwhijA, there is a vertical morphism u : A A′ in A and a weakly
horizontally invertible square β in Bwhi as depicted below left.

FA B

FA′ B′

•jBFu = FwhijAu •jBv

b
'

b′
'

'β

FA B

FA′ B′

•Fu •v

b
'

b′
'

'β′
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Since jBF = FwhijA and jB is fully faithful on squares, this yields a weakly horizontally
invertible square β′ in B as depicted above right. This shows (db3) for F and hence shows
that F is a double biequivalence. �

We are now ready to finish the proof of Theorem 8.1.15 by proving that the classes of
trivial cofibrations and fibrations form a weak factorization system. We first show that
every double functor can be factored as a trivial cofibration followed by a fibration.

Theorem 8.3.5. Let F : A → B be a double functor. Then there is a factorization of F
as

A

C

BF

I P

with I ∈ C ∩W and P ∈ F .

Proof. Let F : A → B. We consider the induced double functor Fwhi : Awhi → Bwhi and
we factor it as

Awhi

C

BwhiFwhi

J P

with J ∈ Jw−cell and P ∈ Jw−inj. Then, by Proposition 8.2.15, the double functor P
is also in F since Bwhi is weakly horizontally invariant. In particular, note that C is also
weakly horizontally invariant, since Bwhi is fibrant and P : C → Bwhi is a fibration, by
Theorem 8.3.1. We define D to be the pullback of P along jB, as depicted below.

D B

C Bwhi

P ′

π jB

P

A

Awhi

F

jA

K

J

y

Since P ′ is a pullback of P ∈ F , it is also in F .
We now show that π : D → C is in W. For this, we construct a fibrant replacement

π̂ : Dwhi → C for π such that π = π̂jD and then show that π̂ is a double biequivalence.
Since double biequivalences are contained in W by Proposition 8.1.18 and the double
functor jD : D → Dwhi is in W by Corollary 8.3.3, this would imply that π is in W as
well. Consider the set HorEq(D) of horizontal adjoint equivalences in D. Then, the image
under K of the set HorEq(A) of horizontal adjoint equivalences in A, which we denote by
S, is contained in HorEq(D). Let T = HorEq(D)\S be the complement of S. Then, since
C is weakly horizontally invariant, by Remark 8.2.6, the double functor C → [0] has the
right lifting property with respect to coproducts of J4 : HEadj → H'Eadj and the identity
on H'Eadj. Hence there is a lift in the following diagram.

(
⊔
S H'Eadj)

⊔
(
⊔
T HEadj) Awhi⊔D

⊔
S∪T=HorEq(D) H'Eadj

C
J
⊔
π

(
⊔
S idH'Eadj)

⊔
(
⊔
T J4)

L
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Then, by the universal property of the pushout Dwhi, there is a unique double functor
π̂ : Dwhi → C making the following diagram commute,⊔

HorEq(D) HEadj D

⊔
HorEq(D) H'Eadj Dwhi

⊔
HorEq(D) J4 jD

τD

C

π

L

π̂

p

where the outer square commutes by definition of L and since πK = JjA. Then, since
KwhijA = jDK and KwhiτA = τDK1, we have that π̂KwhijA = π̂jDK = πK = JjA and
π̂KwhiτA = π̂τDK1 = LK1 = JτA. Since such a double functor is unique by the universal
property of the pushout Awhi, we have the relation π̂Kwhi = J .

We now show that π̂ satisfies (db1-4) of Definition 7.2.1 of a double biequivalence.
First note that π is fully faithful on squares, as it is a pullback of the double functor
jB : B → Bwhi which is fully faithful on squares, and double functors which are fully
faithful on squares are precisely the double functors with the right lifting property with
respect to I4 : δS→ S and I5 : S2 → S of Notation 8.1.1. Hence, since π̂jD = π and jD, π
are fully faithful on squares, then so is π̂, i.e., it satisfies (db4). Then, since J : Awhi → C
is in Jw−cell and Awhi is weakly horizontally invariant, then J is a double biequivalence
by Proposition 8.2.10, and (db1-3) for π̂ follow from the fact that J satisfies (db1-3).
Indeed, if C is an object in C, then, by (db1) for J , there is an object A ∈ Awhi together
with a horizontal equivalence c : C '−→ JA = π̂KwhiA in C, and this gives (db1) for π̂. We
can prove (db2-3) for π̂ in a similar manner. This shows that π̂ is a double biequivalence,
and hence that π is in W.

Finally, since J is a double biequivalence, it is in W by Proposition 8.1.18. Moreover,
the double functor jA : A → Awhi is in W by Corollary 8.3.3. Hence, since jA, J , and π
are in W and πK = JjA, then K is also in W by 2-out-of-3. We factor K as

A

E

DK

I Q

with I ∈ Iw−cell ⊆ C and Q ∈ Iw−inj. Then Q ∈ W by Proposition 8.1.17 and, by
2-out-of-3, we have that I ∈ C ∩ W. Since Q is also in F by Proposition 8.1.17 and
F = P ′K, this gives a factorization of F as

A

E

BF

I P ′Q

with I ∈ C ∩W and P ′Q ∈ F , which concludes the proof. �

As a direct consequence of this result, we get that the trivial cofibrations are precisely
the double functors which have the left lifting property with respect to all fibrations.

Corollary 8.3.6. We have that C ∩W = �F .

Proof. By definition of F , we already know that C ∩ W ⊆ �F . It remains to show that
�F ⊆ C ∩ W. Let F : A → B be a double functor in �F . By Theorem 8.3.5, there is a
factorization of F as
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A

C

BF

I P

with I ∈ C ∩W and P ∈ F . Since F has the left lifting property with respect to P , by
the retract argument (see Proposition 4.1.6), we get that F is a retract of I ∈ C ∩W and,
since C ∩W is closed under retracts by Remark 8.1.16, then F ∈ C ∩W. This concludes
the proof that C ∩W = �F . �

Remark 8.3.7. This shows that Jw−cof ⊆ C ∩W. Indeed, we have that F ⊆ Jw−inj by
Lemma 8.2.12, and hence we get that Jw−cof = �Jw−inj ⊆ �F = C ∩W.

8.4. Quillen pairs with 2Cat and the first model structure on DblCat. We now
turn our attention to the relation of this new model structure on DblCat with the first
model structure on DblCat constructed in Theorem 7.1.3 and with Lack’s model structure
on 2Cat. The identity functor on DblCat induces a Quillen pair between our two model
structures on DblCat, and further shows that the homotopy theory of weakly horizontally
invariant double categories is included into that of double categories. As for its relation
with Lack’s model structure on 2Cat, while the horizontal embedding H : 2Cat→ DblCat
is still left Quillen, it is not right Quillen anymore. However, its more homotopical version
H' : 2Cat → DblCat (see Definition 3.4.11) provides such a right Quillen functor. In
particular, the double category H'A associated to a 2-category A is weakly horizontally
invariant and provides a fibrant replacement of the horizontal double category HA.

We first show that the identity adjunction is a Quillen reflection, embedding the ho-
motopy of weakly horizontally invariant double categories into that of double categories.

Theorem 8.4.1. The identity adjunction

DblCatwhi DblCat
id

id

⊥

is a Quillen reflection, where DblCat is endowed with the model structure of Theorem 7.1.3
and DblCatwhi is endowed with the model structure of Theorem 8.1.15 for weakly hori-
zontally invariant double categories.

Proof. We first show that the sets I and J of generating cofibrations and trivial cofi-
brations of DblCat introduced in Notation 7.3.7 are included in Iw−cof and Jw−cof,
respectively, where the sets Iw and Jw are the sets given in Notations 8.1.1 and 8.2.1,
respectively. First note that the double functors I1, I2, I4, and I5 of I are also elements
of Iw. Then the double functor I3 : ∅ → V2 in I can be decomposed as

∅ = ∅ t ∅ [0] t [0] V[1] ,
I1 t I1 I ′3

where I1tI1 and I ′3 are in Iw−cof, since Iw−cof is closed under coproducts and I1, I ′3 are
in Iw, by definition. This shows that I3 ∈ Iw−cof, and hence that I ⊆ Iw−cof. On the
other hand, the double functors J1 and J2 of J are also elements of Jw. Then the double
functor J3 : V[1]→W = HEadj ×V[1] in J can be obtained as a retract of J ′3 : W− →W
of Jw as follows,
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V[1] W− V[1]

W W W

I R

J3 J ′3 J3

where the double functor I : V[1] → W− sends the non trivial vertical morphism of V[1]
to the non trivial vertical morphism in W−, and the double functor R : W− → V[1] sends
the non trivial vertical morphism of W− to the non trivial vertical morphism in V[1] and
the two horizontal adjoint equivalences to identities. This shows that J3 ∈ Jw−cof, and
hence that J ⊆ Jw−cof.

With these results, we can show that the left adjoint id : DblCat → DblCatwhi is left
Quillen. Indeed, it sends every generating cofibration in I to a cofibration in DblCatwhi,
i.e., a double functor in C = Iw−cof, and it sends every generating trivial cofibration in J
to a double functor in Jw−cof, which is included in the class C ∩W of trivial cofibrations
in DblCatwhi, by Remark 8.3.7.

It remains to show that the derived counit is level-wise a weak equivalence in DblCatwhi.
Let A be a fibrant double category in DblCatwhi. Then the component of the derived
counit at A is given by the cofibrant replacement qA : Ac → A in the first model structure
on DblCat. In particular, the double functor qA is a double biequivalence, and hence
a weak equivalence in DblCatwhi by Proposition 8.1.18. This shows that the identity
adjunction is a Quillen reflection. �

However, the identity adjunction does not induce a Quillen equivalence between the
two model structures on DblCat, as shown in the following remark.

Remark 8.4.2. The derived unit is not a level-wise double biequivalence. To see this, first
note that the component of the derived unit at a cofibrant double category A in the model
structure on DblCat of Theorem 7.1.3 is given by a fibrant replacement jA : A → Af in
the model structure on DblCat of Theorem 8.1.15 for weakly horizontally invariant double
categories. In particular, we can consider the weakly horizontally invariant replacement
jA : A→ Awhi given in Construction 8.1.9 by Corollary 8.3.3. We need to show that this
weakly horizontally invariant replacement is not always a double biequivalence. To see
this, let A be the double category spanned by the following data,

A

A′ B′

B′′

•v

•w

a
'

where a comes with horizontal adjoint equivalence data (a, c, η, ε). Note that, by Theo-
rem 7.3.6, the double category A is cofibrant in the model structure on DblCat of The-
orem 7.1.3. The double category Awhi is obtained from A by adding H'Eadj-data ex-
tending the horizontal adjoint equivalence (a, c, η, ε). In particular, a vertical morphism
u : A′ B′ gets freely added to Awhi. Then the composite wuv : A B′′ in Awhi does
not admit a lift as required by (db3) of Definition 7.2.1, since there are no vertical mor-
phisms between the objects A and B′′ in A. Hence jA is not a double biequivalence, which
proves the desired result.
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First, as a direct consequence of the Quillen pair between the two model structures
on DblCat and the fact that H a H is a Quillen pair between Lack’s model structure
on 2Cat and the first model structure on DblCat, we get that H a H is also a Quillen
pair between 2Cat and the model structure on DblCat for weakly horizontally invariant
double categories. Furthermore, it is a Quillen co-reflection.

Theorem 8.4.3. The adjunction

DblCat 2Cat
H

H

⊥

is a Quillen co-reflection, where 2Cat is endowed with the model structure of Theo-
rem 6.1.8 and DblCat is endowed with the model structure of Theorem 8.1.15.

Proof. The fact that it is a Quillen pair follows directly from Theorems 7.4.1 and 8.4.1.
We now show that the derived unit is level-wise a biequivalence. Let A be a cofibrant
2-category. Then the component of the derived unit at A is given by the underlying hori-
zontal 2-functor of a fibrant replacement HjHA : A = HHA → H(HA)f of the horizontal
double category HA in DblCat. In particular, if we consider the fibrant replacement given
by in Construction 8.1.9 (see also Corollary 8.3.3), it does not change the underlying hor-
izontal 2-category of HA by Remark 8.1.10. Hence, the 2-functor HjHA is an identity,
and in particular a biequivalence. This shows that H a H is a Quillen co-reflection. �

Remark 8.4.4. By the above theorem, we have that the functor H : 2Cat → DblCat pre-
serves cofibrations. Note that the functor H also reflects cofibrations. Indeed, given a
2-functor F : A → B, if HF : HA → HB is a cofibration in DblCat, then its underlying
horizontal functor UHHF has the left lifting property with respect to all surjective on
objects and full functors by Theorem 8.1.4 and, since UHHF = UF , this proves Theo-
rem 6.2.2 for F . Hence F is a cofibration in 2Cat.

While the functor H : 2Cat → DblCat is still left Quillen with respect to this new
model structure on DblCat, it is not right Quillen anymore, as not every double category
is fibrant.

Remark 8.4.5. The functor H : 2Cat → DblCat is not right Quillen with respect to the
model structure on 2Cat of Theorem 6.1.8 and the model structure on DblCat of The-
orem 8.1.15. To see this, consider the 2-category Eadj given by the “free-living adjoint
equivalence”. Then its associated horizontal double category HEadj is not weakly horizon-
tally invariant. Indeed, there is no vertical morphism in HEadj filling the below diagram,
since there are only trivial vertical morphisms in HEadj.

0 1

1 1

'

•

Therefore H does not preserve fibrant objects, as every 2-category is fibrant, and the
fibrant double categories are the weakly horizontally invariant ones by Theorem 8.3.1.

We now show that the more homotopical version H' of H is a right Quillen functor.
For this, we first show that the double category H'A associated to a 2-category A is
weakly horizontally invariant.

Proposition 8.4.6. Let A be a 2-category. Then the double category H'A is weakly
horizontally invariant.
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Proof. Let a : A '−→ C and a′ : A′ '−→ C ′ be horizontal equivalences in H'A, i.e., equiva-
lence in A, and let w : C C ′ be a vertical morphism in H'A, i.e., an adjoint equivalence
w : C '−→ C ′ in A. Let us fix adjoint equivalence data (a, c, η, ε) and (a′, c′, η′, ε′) in A for a
and a′. We set u : A A′ to be the vertical morphism in H'A corresponding to the fol-
lowing composite of adjoint equivalences in A

A C C ′ A′ .
a
'

w
'

c′

'

Then, the 2-isomorphism α := ε′wa : wa ∼= a′c′wa = a′u induced by the counit ε′ yields a
weakly horizontally invertible square in H'A as depicted below by Lemma 3.6.8.

A C

A′ C ′

a
'

a′
'

u

'

w'α
∼=

This shows that H'A is weakly horizontally invariant. �

We now show that the double functor H' is a Quillen reflection.

Theorem 8.4.7. The adjunction

2Cat DblCat
L'

H'
⊥

is a Quillen reflection, where 2Cat is endowed with the model structure of Theorem 6.1.8
and DblCat is endowed with the model structure of Theorem 8.1.15.

Proof. We show that H' : 2Cat → DblCat preserves fibrations and trivial fibrations.
Let F : A → B be a Lack fibration in 2Cat. We show that H'F : H'A → H'B is a
fibration in DblCat. By Proposition 8.2.15, since H'B is weakly horizontally invariant
by Proposition 8.4.6, then H'F is a fibration in DblCat if and only if it is a Jw-injective.
Hence, we need to prove that H'F satisfies (df1-2) of Definition 7.2.6 and (df3’) of
Proposition 8.2.4. Since HH'F = F is a Lack fibration in 2Cat, we have that H'F
satisfies (df1-2) by Remark 7.2.7. It remains to prove (df3’). Let w : C C ′ be a vertical
morphism in H'A, i.e., an adjoint equivalence w : C '−→ C ′ in A, and let a : A '−→ C and
a′ : A′ '−→ C ′ be horizontal equivalences in H'A, i.e., equivalences in A. Suppose that
we have a weakly horizontally invertible square β in H'B, i.e., a 2-isomorphism in B by
Lemma 3.6.8, as follows.

FA FC

FA′ FC ′

Fa
'

Fa′
'

v

'

Fw'β
∼=

Let (c′, a′, η, ε) be an adjoint equivalence data for a′, and let δ be the 2-isomorphism in B
given by the below left pasting.
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FA FC

FA′ FC ′

Fa

Fa′

v Fw

FA′

Fc′

β
∼=

Fε
∼=

A C

C ′

a

C ′A′

w

u

a′

c′

α
∼=

η
∼=

By (f2) of Definition 6.1.7 for F applied to δ, we get a morphism u : A→ A′ in A and a
2-isomorphism α : c′wa ∼= u in A such that δ = Fα. Note that u is an equivalence in A
since u is isomorphic to the equivalence c′wa. Therefore, it induces a vertical morphism
u : A A′ in H'A by choosing an adjoint equivalence data for u. We set α : wa ∼= a′u to
be the above right pasting composite. Then, by the triangle identities for (η, ε) and the
fact that δ = Fα, we get that β = Fα. Hence α gives a weakly horizontally invertible
square in H'A such that β = (H'F )α, as desired. This shows that H'F is a fibration
in DblCat.

Now let F : A → B be a trivial fibration in 2Cat. By Proposition 6.1.11, we directly
get that H'F is surjective on objects, full on horizontal morphisms, and fully faithful
on squares, as these latter are just coming from 2-morphisms in A and B. Fullness on
vertical morphisms follows from the fact that F is full on morphisms and fully faithful
on squares, and therefore, by Lemma 6.1.10, a lift of an adjoint equivalence is an adjoint
equivalence. This shows that H'F is a trivial fibration in DblCat by Proposition 8.1.2,
and hence that H' is right Quillen.

It remains to show that the derived counit is level-wise a biequivalence. Let A be a
2-category. Let qH'A : (H'A)c → H'A denote the cofibrant replacement of H'A con-
structed as follows. The double category (H'A)c has the same objects as A; it has a copy
a for each morphism a in A and horizontal morphisms in (H'A)c are given by free com-
posites of a’s; it has a copy u for each adjoint equivalence u in A and vertical morphisms
in (H'A)c are given by free composites of u’s; and squares in (H'A)c are given by squares
of H'A whose boundaries are the actual composites in H'A of the representative of the
free composites. This double category is indeed cofibrant, as its underlying horizontal
and vertical categories are free, and the projection qH'A : (H'A)c → H'A is a trivial
fibration in DblCat since it clearly satisfies the conditions of Proposition 8.1.2. Then, the
derived counit

L'(H'A)c L'H'A A
L'qH'A εA

is a trivial fibration in 2Cat. Indeed, the 2-category L'(H'A)c is obtained from A as
follows. It has the same objects as A; there is a copy a for each morphism a in A and
a copy u for each adjoint equivalence u in A, and morphisms in L'(H'A)c are given by
free composites of a’s and u’s; and 2-morphisms in L'(H'A)c are given by 2-morphisms
in A whose boundaries are the actual composites in A of the representatives of the free
composites. With this description, we can see that the derived counit at A is a trivial
fibration in 2Cat as it clearly satisfies the conditions of Proposition 6.1.11. In particular,
it is a biequivalence. This shows that L' a H' is a Quillen reflection. �

Remark 8.4.8. The components of the derived unit of the adjunction L' a H' are not
weak equivalences in DblCat in general. To see this, consider the double category V[1]
free on a vertical morphism. Then V[1] is cofibrant in DblCat by Corollary 8.1.6, and
we have that H'L'V[1] = H'Eadj. Since all objects are fibrant in 2Cat, the component
of the derived unit at V[1] is given by the inclusion ηV[1] : V[1] → H'Eadj sending the
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non trivial vertical morphism of V[1] to the vertical morphism of H'Eadj represented by
the adjoint equivalence 0 '−→ 1 in Eadj. Furthermore, since V[1] is weakly horizontally
invariant, it is enough to see that ηV[1] : V[1]→ H'Eadj is not a double biequivalence, to
show that it is not a weak equivalence in DblCat, by Proposition 8.3.4. Since V[1] and
H'Eadj have the same objects 0 and 1, but H'Eadj has non trivial horizontal morphisms
between 0 and 1, then ηV[1] can not satisfy (db2) of Definition 7.2.1 and therefore it is
not a double biequivalence.

We now prove that the functor H' provides a level-wise fibrant replacement of H in
the model structure on DblCat for weakly horizontally invariant double categories.
Theorem 8.4.9. Let A be a 2-category. The inclusion double functor JA : HA → H'A
is a double biequivalence. In particular, this exhibits H'A as a fibrant replacement of HA
in the model structure on DblCat of Theorem 8.1.15.
Proof. We show that the inclusion double functor JA : HA → H'A satisfies (db1-4) of
Definition 7.2.1. Since HHA = A = HH'A, the inclusion JA is the identity on underlying
horizontal 2-categories. Since HA is completely determined by its underlying horizontal
2-category, it follows that JA satisfies (db1-2) and (db4). It remains to show (db3). Let
u : A A′ be a vertical morphism in H'A, i.e., an adjoint equivalence u : A '−→ A′ in A.
Then the following square

A A

A A′u
'

JA(eA) u'idu
∼=

gives a weakly horizontally invertible square in H'A as required. This shows that JA is a
double biequivalence and hence it is a weak equivalence in DblCat by Proposition 8.1.18.

�

As a direct consequence of this result and the Quillen reflection between the two model
structures on DblCat, we get the following result.
Corollary 8.4.10. The adjunction

2Cat DblCat
L'

H'
⊥

is a Quillen reflection, where 2Cat is endowed with the model structure of Theorem 6.1.8
and DblCat is endowed with the model structure of Theorem 7.1.3.
Proof. This follows directly from Theorems 8.4.1 and 8.4.7. �

While Theorem 8.4.7 implies that H' : 2Cat → DblCat preserves weak equivalences
and fibrations, the following result implies that it further reflects weak equivalences and
fibrations. Hence the model structure on 2Cat is completely determined from the model
structure on DblCat for weakly horizontally invariant double categories through its image
under H'.
Theorem 8.4.11. The model structure on 2Cat of Theorem 6.1.8 is right-induced along
the adjunction

2Cat DblCat
L'

H'
⊥
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from the model structure on DblCat of Theorem 8.1.15.

Proof. We need to show that a 2-functor F is a biequivalence (resp. Lack fibration) in 2Cat
if and only if the double functor H'F is a weak equivalence (resp. fibration) in DblCat.
Since the functor H' is right Quillen by Theorem 8.4.7, it preserves fibrations and, since
all objects in 2Cat are fibrant, it preserves weak equivalences by Corollary 4.4.7. This
shows that, if F is a biequivalence (resp. Lack fibration) in 2Cat, then H'F is a weak
equivalence (resp. fibration) in DblCat. Conversely, if H'F is a weak equivalence in
DblCat, then it is a double biequivalence by Proposition 8.3.4, since its source is weakly
horizontally invariant by Proposition 8.4.6. Hence HH'F = F is a biequivalence in 2Cat
by Proposition 7.2.5. Finally, if H'F is a fibration in DblCat, then it is a Jw-injective by
Proposition 8.2.15, since its target is weakly horizontally invariant by Proposition 8.4.6.
Hence HH'F = F is a Lack fibration in 2Cat by Remark 7.2.7, since F satisfies (df1-2)
of Definition 7.2.6 by Proposition 8.2.4. Therefore, the model structure on 2Cat is right-
induced along H' from that on DblCat. �

Finally, by composing the Quillen reflection P a D between Cat and 2Cat with the
Quillen reflection L' a H' between 2Cat and DblCat, we get the following result.

Corollary 8.4.12. The adjunction

Cat DblCat
PL'

H'D

⊥

is a Quillen reflection, where Cat is endowed with the model structure of Theorem 6.1.3
and DblCat is endowed with the model structure of Theorem 8.1.15.
Proof. This follows directly from Theorems 8.4.7 and 6.1.14. �

As the canonical model structure on Cat is right-induced along D from Lack’s model
structure on 2Cat and this latter is right-induced along H' from the model structure
on DblCat for weakly horizontally invariant double categories, we get the following result.
Corollary 8.4.13. The model structure on Cat of Theorem 6.1.3 is right-induced along
the adjunction

Cat DblCat
PL'

H'D

⊥

from the model structure on DblCat of Theorem 8.1.15.
Proof. This follows directly from Theorems 8.4.11 and 6.1.16. �

8.5. Monoidality. We now turn our attention to the monoidality of the model structure
on DblCat for weakly horizontally invariant double categories. By a similar argument to
the one in Remark 7.5.1, we can also show that this new model structure on DblCat is not
monoidal with respect to the cartesian product. However, by fixing the asymmetry be-
tween the horizontal and vertical directions, as we show in this section, it is monoidal with
respect to the Gray tensor product ⊗Gr on DblCat, as introduced in Proposition 3.3.5.

We first give a description of the Gray tensor product of two double categories.

Description 8.5.1. Let A and X be double categories. Their Gray tensor product A⊗GrX
is the double category described by the following data:

(i) an object in A⊗Gr X is a pair (A,X) of an object A ∈ A and an object X ∈ X,
(ii) horizontal morphisms in A ⊗Gr X are generated by the following horizontal mor-

phisms:
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• a horizontal morphism (a,X) : (A,X) → (C,X), for each pair (a,X) of a
horizontal morphism a : A→ C in A and an object X ∈ X, and
• a horizontal morphism (A, x) : (A,X) → (A,Z), for each pair (A, x) of an
object A ∈ A and a horizontal morphism x : X → Z in X,

(iii) vertical morphisms in A⊗Gr X are generated by the following vertical morphisms:
• a vertical morphism (u,X) : (A,X) (A′, X ′), for each pair (u,X) of a ver-
tical morphism u : A A′ in A and an object X ∈ X, and
• a vertical morphism (A, t) : (A,X) (A,Z), for each pair (A, t) of an object
A ∈ A and a vertical morphism t : X Z in X,

(iv) squares in A⊗Gr X are generated by the following squares:
• a square (α,X) as below left, for each pair (α,X) of a square α : (u a

a′ w)
in A and an object X ∈ X, and a square (A,χ) as below right, for each pair
(A,χ) of an object A ∈ A and a square χ : (t bb′ v) in X,

(A,X) (C,X)

(A′, X) (C ′, X)

•(u,X) •(w,X)

(a,X)

(a′, X)

(α,X)

(A,X) (A,Z)

(A,X ′) (A,Z ′)

•(A, t) •(A, v)

(A, x)

(A, x′)

(A,χ)

• a square (a, t) as below left, for each pair (a, t) of a horizontal morphism
a : A→ C in A and a vertical morphism t : X X ′ in X, and a square (u, x)
as below right, for each pair (u, x) of a vertical morphism u : A A′ in A
and a horizontal morphism x : X → Z in X,

(A,X) (C,X)

(A,X ′) (C,X ′)

•(A, t) •(C, t)

(a,X)

(a,X ′)

(a, t)

(A,X) (A,Z)

(A′, X) (A′, Z)

•(u,X) •(u, Z)

(A, x)

(A′, x)

(u, x)

• a vertically invertible square (a, x) as below, for each pair (a, x) of a horizontal
morphism a : A→ C in A and a horizontal morphism x : X → Z in X,

(A,X) (C,X) (C,Z)

(A,X) (A,Z) (C,Z)

• •

(a,X) (C, x)

(A, x) (a, Z)

∼=(a, x)

• a horizontally invertible square (u, t) as below, for each pair (u, t) of a vertical
morphism u : A A′ in A and a vertical morphism t : X X ′ in X.

(A,X)

(A′, X)

(A′, X ′)

(A,X)

(A,X ′)

(A′, X ′)

•(u,X)

•(A′, t)

•(A, t)

•(u,X ′)

∼=
(u, t)

subject to conditions which are equivalent to requiring that the below double
functor ΠA,X : A⊗Gr X→ A× X is fully faithful on squares.
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There is a double functor ΠA,X : A ⊗Gr X → A × X, which is the identity on objects,
sends the generating horizontal morphisms (a,X) and (A, x) of A⊗Gr X to the horizontal
morphisms (a, idX) and (idA, x) in A × X, respectively, sends the generating vertical
morphisms (u,X) and (A, t) of A ⊗Gr X to the vertical morphisms (u, eX) and (eA, t)
in A × X, respectively, and sends the generating squares (α,X), (A,χ), (a, t), (u, x),
(a, x), and (u, t) of A⊗Gr X to the squares (α,�X), (�A, χ), (ea, idt), (idu, ex), e(a,x), and
id(u,t) in A× X, respectively.

As in Lemma 6.3.3 dealing with the case of the tensor product for 2-categories, we can
show that this projection double functor ΠA,X : A⊗Gr X→ A× X is a trivial fibration in
the model structure on DblCat for weakly horizontally invariant double categories.

Lemma 8.5.2. Let A and X be double categories. Then the projection double functor
ΠA,X : A⊗Gr X→ A× X is a trivial fibration in the model structure on DblCat of Theo-
rem 8.1.15.

Proof. To show that ΠA,X is a trivial fibration, we use the characterization in Proposi-
tion 8.1.2. Since ΠA,X is the identity on objects, it is clearly surjective on objects. Given
a horizontal morphism (a, x) : (A,X)→ (C,Z) in A× X, the composite

(A,X) (C,X) (C,Z)
(a,X) (C, x)

of horizontal morphisms in A ⊗Gr X is sent by ΠA,X to (a, x), which shows that ΠA,X is
full on horizontal morphisms. Now, given a vertical morphism (u, t) : (A,X) (A′, X ′)
in A× X, the composite

(A,X) (A′, X) (A′, X ′)•
(u,X)

•
(A′, t)

of vertical morphisms in A⊗Gr X is sent by ΠA,X to (u, t), which shows that ΠA,X is full
on vertical morphisms. Fully faithfulness on squares holds by Description 8.5.1 (iv). �

As a consequence, we get the following lemma.

Lemma 8.5.3. Let A and B be double categories, and let F : A→ B be a double biequiv-
alence. Then, for every double category X, the induced double functors

F × idX : A× X→ B× X and F ⊗Gr idX : A⊗Gr X→ B⊗Gr X

are also double biequivalences.

Proof. Let X be a double category. It is straightforward to see that (db1-4) of Defini-
tion 7.2.1 hold for the double functor F × idX : A × X → B × X since they hold for F .
Therefore F × idX is a double biequivalence.

Then, the double functors ΠA,X : A ⊗Gr X → A × X and ΠB,X : B ⊗Gr X → B × X are
trivial fibrations, by Lemma 8.5.2, and hence they are in particular double biequivalences
by Proposition 8.2.7. Since the following diagram commutes

A⊗Gr X B⊗Gr X

A× X B× X

F ⊗Gr idX

ΠA,X ΠB,X

F × idX

and F × idX is a double biequivalence, it follows by 2-out-of-3 that F ⊗Gr idX is also a
double biequivalence. �
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Using this result, we can show that the same results holds for a general weak equivalence
in the model structure on DblCat for weakly horizontally invariant double categories. For
this we first need to show that Awhi×Xwhi is a weakly horizontally invariant replacement
of the product of the double categories A and X.

Lemma 8.5.4. Let A and X be double categories. Then the double category Awhi ×Xwhi

is weakly horizontally invariant and the double functor jA × jX : A× X→ Awhi × Xwhi is
a weak equivalence in the model structure on DblCat of Theorem 8.1.15, where jA and
jX are the double functors introduced in Construction 8.1.9. In particular, this gives a
fibrant replacement of A× X.

Proof. First note that, since Awhi and Xwhi are weakly horizontally invariant, they are
fibrant, and hence their product Awhi ×Xwhi is also fibrant, i.e., it is weakly horizontally
invariant, by Theorem 8.3.1.

By Construction 8.1.9, the projections πA : A × X → A and πX : A × X → X induce
double functors πwhi

A : (A×X)whi → Awhi and πwhi
X : (A×X)whi → Xwhi between the weakly

horizontally invariant replacements. Hence this yields a commutative triangle

A× X

(A× X)whi Awhi × Xwhi .

jA×X jA × jX

(πwhi
A , πwhi

X )

Since jA×X is a weak equivalence by Corollary 8.3.3, to show that jA × jX is a weak
equivalence, it is enough to show that (πwhi

A , πwhi
X ) is a weak equivalence by 2-out-of-3.

For this, we show that (πwhi
A , πwhi

X ) is a trivial fibration using Proposition 8.1.2. First
note that (πwhi

A , πwhi
X ) is the identity on underlying horizontal categories, and it is fully

faithful on squares since jA×X and jA × jX are so. Hence (πwhi
A , πwhi

X ) is clearly surjective
on objects, full on horizontal morphisms, and fully faithful on squares. It remains to
show that it is full on vertical morphisms. However, by studying the weakly horizontally
invariant replacements, we can see that all the vertical morphisms that were freely added
to Awhi×Xwhi from the image of A×X were also freely added to (A×X)whi from the image
of A × X. Hence it is clear that (πwhi

A , πwhi
X ) is full on vertical morphisms. In particular,

this shows that (πwhi
A , πwhi

X ) is a weak equivalence, and hence that so is jA × jX. �

Corollary 8.5.5. Let A and B be double categories, and let F : A → B be a weak equiv-
alence in the model structure on DblCat of Theorem 8.1.15. Then, for every double
category X, the induced double functors

F × idX : A× X→ B× X and F ⊗Gr idX : A⊗Gr X→ B⊗Gr X

are also weak equivalences in DblCat.

Proof. Let F : A→ B be a weak equivalence in DblCat. By definition, the weakly horizon-
tally invariant replacement Fwhi : Awhi → Bwhi is a double biequivalence. We show that
F×idX : A×X→ B×X is a weak equivalence by showing that it induces a double biequiv-
alence between the fibrant replacements of A×X and B×X constructed in Lemma 8.5.4.
In other words, we need to show that Fwhi × idXwhi : Awhi ×Xwhi → Bwhi ×Xwhi is a dou-
ble biequivalence, which is the case by Lemma 8.5.3 since Fwhi is a double biequivalence.
This shows that F × idX is a weak equivalence, by 2-out-of-3, since jA × jX, jB × jX, and
Fwhi × idXwhi are weak equivalences. We can then deduce that F ⊗Gr idX is also a weak
equivalence as in Lemma 8.5.3 since the trivial fibrations ΠA,X and ΠB,X are in particular
weak equivalences. �
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This allows us to prove that the model structure on DblCat for weakly horizontally
invariant double categories is monoidal with respect to the Gray tensor product, inspired
by the proof of Theorem 6.3.5 showing the monoidality of Lack’s model structure on 2Cat.
Theorem 8.5.6. The model structure on DblCat of Theorem 8.1.15 is monoidal with
respect to the Gray tensor product ⊗Gr.
Proof. We first show that the pushout-product I �⊗Gr J is a cofibration in DblCat, when-
ever I and J are cofibrations in DblCat. By Remark 4.5.7, it is enough to show the result
when I and J are in the set of generating cofibrations Iw = {I1, I2, I

′
3, I4, I5} described

in Notation 8.1.1. Furthermore, note that I �⊗Gr J
∼= J �⊗Gr I since the Gray tensor

product is symmetric, and therefore it is enough to show the result for one of the two
pushout-products.

Suppose that I = I1 : ∅ → [0]. Since ∅ ⊗Gr A ∼= ∅ and [0] ⊗Gr A ∼= A for every
double category A, then I1�⊗Gr J

∼= J and it is a cofibration, for every J ∈ Iw. Now
suppose that I is one of the generating cofibrations I4 : δS → S or I5 : S2 → S. Then I
is an isomorphism on underlying horizontal and vertical categories. Since UH and UV
preserve pushouts and the underlying horizontal and vertical categories of the Gray tensor
product A ⊗Gr B only depends on the underlying horizontal and vertical categories of A
and B, for every pair of double categories A and B, it follows that the functors

UH(I �⊗Gr J) : UH(D⊗Gr B)
⊔

UH(D⊗GrA)
UH(S⊗Gr A)→ UH(S⊗Gr B),

UV(I �⊗Gr J) : UV(D⊗Gr B)
⊔

UV(D⊗GrA)
UV(S⊗Gr A)→ UV(S⊗Gr B)

are isomorphisms of categories, where D is either δS or S2, and J : A→ B is in {I2, I
′
3, I4, I5}.

It follows from Corollary 8.1.5 that I �⊗Gr J is a cofibration. It remains to show that
I �⊗Gr J is a cofibration for I, J ∈ {I2, I

′
3}. The pushout-product I2�⊗Gr I2 is given

by the boundary inclusion δ(H[1] ⊗Gr H[1]) → H[1] ⊗Gr H[1], where δ(H[1] ⊗Gr H[1]) is
the double subcategory of H[1]⊗Gr H[1] where we removed the non trivial squares. Simi-
larly, the pushout-products I2�⊗Gr I

′
3 and I ′3�⊗Gr I

′
3 are given by the boundary inclusions

δ(H[1]⊗GrV[1])→ H[1]⊗GrV[1] and δ(V[1]⊗GrV[1])→ V[1]⊗GrV[1], respectively. Since
these three pushout-products induce isomorphisms on underlying horizontal and verti-
cal categories, they are cofibrations by Corollary 8.1.5. This shows that I �⊗Gr J is a
cofibration in DblCat whenever I and J are cofibrations in DblCat.

We now show that the pushout-product I �⊗Gr J is a trivial cofibration in DblCat,
whenever I is a cofibration in DblCat and J : A → B is a trivial cofibration in DblCat.
Again, it is enough to show the result for I ∈ Iw. Note that all domains of the gener-
ating cofibrations in Iw are cofibrant by Corollary 8.1.6, since they have free underlying
horizontal and vertical categories. Therefore, the generating cofibration I ∈ Iw is of the
form I : D → E with D cofibrant. By Corollary 8.5.5, the double functors idD ⊗Gr J and
idE ⊗Gr J are weak equivalences, since J is a weak equivalence. Furthermore, since D is
cofibrant, J is a cofibration, and idD ⊗Gr J = (∅ → D)�⊗Gr J , it follows by the first part
of the proof that idD ⊗Gr J is a cofibration in DblCat. Consider the following diagram.

D⊗Gr A D⊗Gr B

E⊗Gr A P

E⊗Gr B

idD ⊗Gr J
∼

I ⊗Gr idA

K
∼ I �⊗Gr J

idE ⊗Gr J

∼

I ⊗Gr idBp
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Since trivial cofibrations are closed under pushouts and idD ⊗Gr J is a trivial cofibration
by the above discussion, then K is also a trivial cofibration. Then I �⊗Gr J is a weak
equivalence by 2-out-of-3 applied to idE ⊗Gr J = (I �⊗Gr J)K. This shows that I �⊗Gr J
is a trivial cofibration in DblCat whenever I and J are cofibrations in DblCat such that
one of I and J is trivial. This concludes the proof. �

Remark 8.5.7. Recall that, by restricting the Gray tensor product ⊗Gr in one variable
along H : 2Cat → DblCat, we get the tensoring functor ⊗ : DblCat × 2Cat → DblCat
which gives an enrichment of DblCat over 2Cat as in Proposition 3.5.2. Since the functor
H is left Quillen by Theorem 8.4.3, as a corollary of Theorem 8.5.6, we get that the model
structure on DblCat of Theorem 8.1.15 is 2Cat-enriched with respect to the enrichment
given by H[−,−]ps.





PART IV.

HOMOTOPY THEORY OF ∞-ANALOGUES OF
2-DIMENSIONAL CATEGORIES

Higher category theory aims to study more structured objects than categories. Recall
that a category consists of objects and a set morphisms between every pair of objects
such that these morphisms compose associatively. Higher structures on categories can
be obtained by adding higher morphisms, and by weakening the associativity constraint
of the different compositions. As we have seen in Part I., 2-categories are obtained this
way by also including 2-morphisms between the morphisms, but without changing the
strictness of the associativity constraint for compositions. If this latter is relaxed to a 2-
isomorphism, we obtain a bicategory. Continuing this process up to n-morphisms between
(n − 1)-morphisms, we obtain notions of n-categories and weak n-categories, depending
on whether the compositions of k-morphisms are associative on the nose or up to higher
invertible morphisms, for k < n. To encode full coherence, it is often convenient to
allow morphisms in all dimensions and, by requiring all k-morphisms to be invertible
for k > n, we obtain the notion of an (∞, n)-category. This latter should be thought of
as a homotopical version of a (weak) n-category.

Higher categories can be obtained using the categorical tools of enrichment and in-
ternalization. As introduced in Section 1.1, an enriched category is a generalization of a
category where the sets of morphisms are replaced by more structured objects, e.g. cate-
gories, simplicial sets, or topological spaces. In particular, a 2-category is obtained this
way as a category enriched over categories. We can then iterate this process and define an
n-category as a category enriched in (n− 1)-categories. Accordingly, an (∞, n)-category
should be a category enriched in (∞, n − 1)-categories. On the other hand, we recall
that an internal category is a diagram in a category consisting of an object of objects
and an object of morphisms, together with a composition given internally to the ambient
category. In particular, as described in Remark 3.1.2, a double category is obtained this
way as an internal category to categories. Moreover, in Remark 3.1.8, we have seen that
a 2-category can also be seen as an internal category to categories with discrete category
of objects. Going up in dimensions, an n-category can also be seen as an internal cate-
gory to (n− 1)-categories whose (n− 1)-category of objects is discrete. In this sense, an
(∞, n)-category should then correspond to an internal category to (∞, n − 1)-categories
whose (∞, n− 1)-category of objects is discrete.

While n-categories are well-defined via these methods, to make sense of a notion of
(∞, n)-categories, we need models. The machinery used here is often that of model
categories, presented in Part II.. Model categories were first introduced by Quillen [Qui67]
to axiomatize the homotopy theory of spaces, which are equivalent to (∞, 0)-categories
– also called ∞-groupoids – by Grothendieck’s homotopy hypothesis. In particular, the
Kan-Quillen model structure for simplicial sets given in Theorem 5.2.7 gives a model
for ∞-groupoids. As for (∞, 1)-categories, they were first modeled by quasi-categories,
originally defined by Boardman and Vogt [BV73], and further developed by Joyal [Joy02]
and Lurie [Lur09]. Following the idea that an (∞, 1)-category is an enriched category in
∞-groupoids, another model for (∞, 1)-categories is given by simplicial categories whose
simplicial homs are Kan complexes, as constructed by Bergner [Ber07]. In this thesis,
we adopt the other point of view, which sees an (∞, 1)-category as an internal category
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to ∞-groupoids with “discrete” ∞-groupoid of objects. This is given by the model of
complete Segal spaces, introduced by Rezk [Rez01], where the discreteness condition is
given by a completeness condition implying that the space of objects is weakly equivalent
to the underlying ∞-groupoid of the (∞, 1)-category. There are also other models of
(∞, 1)-categories and these were all shown to be equivalent.

Going one dimension up, we now want to describe ∞-analogues of the 2-dimensional
categories introduced in Part I.. For this, we adopt the point of view that a double cat-
egory is an internal category to categories and that a 2-category is also such a structure
with discrete category of objects. Hence, we define a double (∞, 1)-category as an internal
category to (∞, 1)-categories modeled by complete Segal spaces. In particular, this cor-
responds to the notion of Segal objects in complete Segal spaces introduced by Haugseng
in [Hau13] as a model for double (∞, 1)-categories. However, in this thesis, since we want
to consider (∞, 2)-categories as horizontally embedded in double (∞, 1)-categories, we
require the completeness condition to hold in the horizontal direction, rather than in the
vertical direction as in Haugseng’s definition. Then, an (∞, 2)-category can be defined as
a complete Segal object in complete Segal spaces whose complete Segal space of objects
is essentially constant. This model of (∞, 2)-categories was introduced by Barwick in
[Bar05] under the name of 2-fold complete Segal spaces. In particular, both models of
double (∞, 1)-categories and 2-fold complete Segal spaces are obtained as a left Bous-
field localization (see Section 5.2) of the Reedy model structure on bisimplicial spaces.
Moreover, the (∞, 2)-categorical model is a localization of the double (∞, 1)-categorical
model, which gives us the desired “horizontal embedding” of (∞, 2)-categories into double
(∞, 1)-categories.

In Section 9, we first recall the main features of the Reedy model structure on simplicial
spaces, and then localize this model structure in order to obtain a model structure for
complete Segal spaces. Then, in Section 10, after introducing the Reedy model structure
on bisimplicial spaces, we localize it to obtain the two desired models of double (∞, 1)-
categories, and (∞, 2)-categories in the form of 2-fold complete Segal spaces.

9. Complete Segal spaces as a model of (∞, 1)-categories

We present in this section the model for (∞, 1)-categories given by Rezk’s complete
Segal spaces, introduced in [Rez01]. A Segal space is a simplicial space X : ∆op → sSet,
where X0 is thought of as the space of objects, X1 as the space of morphisms, and X2 as
the space of composable pairs of morphisms, given by a Segal condition which requires
that the spaces X2 and X1 ×X0 X1 are the same up to weak equivalence. Going up in
dimensions, the space Xn is also identified with the space of n composable morphisms,
for n ≥ 3. Hence, in such a Segal space, there is a notion of homotopy equivalences,
which are defined as the vertices of X1 which admit an inverse up to higher homotopies.
In particular, this yields two different underlying ∞-groupoids for the Segal space X:
the space X0 of objects and the underlying space of X1 consisting of the homotopy
equivalences. However, an (∞, 1)-category should have only one underlying ∞-groupoid,
and therefore, instead of requiring the space X0 of objects to be discrete, we impose a
completeness condition, which identifies the two ∞-groupoids mentioned above. A Segal
space satisfying this completeness condition is then called a complete Segal space and
models an (∞, 1)-category.

There is a model structure on the category of simplicial spaces whose fibrant objects
are precisely the complete Segal spaces. It is obtained as a left Bousfield localization of
the Reedy model structure on the category of simplicial spaces. In Section 9.1, we first
recall the main features of this Reedy model structure, which coincides with the injective
model structure. Then, in Section 9.2, we introduce complete Segal spaces, following the
paper [Rez01] by Rezk, and give the model structure for complete Segal spaces.
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9.1. Reedy and injective model structures on simplicial spaces. We first intro-
duce the Reedy and injective model structures on the category sSet∆op of simplicial objects
in sSet, where sSet is the category of simplicial sets endowed with the Kan-Quillen model
structure (see Theorem 5.2.7). The Reedy and injective model structures are both con-
structed in such a way that their weak equivalences are level-wise. Furthermore, these
two model structures on sSet∆op actually coincide. This allows us to describe both the
(trivial) cofibrations as the level-wise (trivial) cofibrations by definition of the injective
model structure, and the fibrations as the Reedy fibrations, i.e., maps such that their
associated matching map is a fibration, by definition of the Reedy model structure.

Since the objects considered here are simplicial objects in sSet, they can also be seen
as bisimplicial sets ∆op ×∆op → Set. We now introduce notations for the representable
functors in each of the copy of ∆op, as well as their boundary and horn inclusions.

Notation 9.1.1. Consider the category sSet∆op ∼= Set∆op×∆op of bisimplicial sets. We
denote by ∆[n] the representable functor

∆[n] : ∆op ×∆op → Set, ([k], [p]) 7→ ∆([p], [n])
constant in the first variable, for all n ≥ 0, and by F [k] the representable functor

F [k] : ∆op ×∆op → Set, ([l], [n]) 7→ ∆([l], [k])
constant in the second variable, for all k ≥ 0. As in Definition 5.2.4, we write δ∆[n] and
δF [k] for the boundaries of ∆[n] and F [k], for all n, k ≥ 0, and Λt[n] for the (n, t)-horn
of ∆[n], for all n ≥ 1 and 0 ≤ t ≤ n. These come with inclusion maps ι∆n : δ∆[n]→ ∆[n],
ιFk : δF [k]→ F [k], and `∆n,t : Λt[n]→ ∆[n].

Notation 9.1.2. Given a bisimplicial set X : ∆op → sSet, we denote by Xk := X([k]) its
kth simplicial set, and by Xk,n := Xk([n]) the set of n-simplices of Xk, for k, n ≥ 0. Note
that, by the Yoneda Lemma, there is an isomorphism Xk,n

∼= sSet∆op(F [k] × ∆[n], X),
for all k, n ≥ 0.

We refer to the direction given by the ∆[n]’s as the space direction, and the one given
by the F [k]’s as the categorical direction. This terminology comes from the fact that,
given a bisimplicial set X : ∆op → sSet which is an “(∞, 1)-category”, we think of X0 as
the space of objects, X1 as the space of morphisms, X2 as the space of pair of composable
morphisms, etc. Hence Xk,n

∼= sSet∆op(F [k]×∆[n], X) can be thought of as the set of n-
simplices in the space of k composable morphisms, so that F [k] represents the categorical
part of X and ∆[n] the topological part of X.

There is an inclusion of sSet into sSet∆op which looks at a simplicial set as a bisim-
plicial set constant in the categorical direction. Since sSet models spaces, and hence
∞-groupoids, this inclusion mirrors the inclusion of sets into categories in the ∞-setting.

Notation 9.1.3. We define the inclusion functor c : sSet → sSet∆op , which sends a sim-
plicial set K to the bisimplicial set c(K) constant at K in the categorical direction, i.e.,
we have that c(K)k = K, for all k ≥ 0, and a simplicial map f : K → L to the map
c(f) : c(K)→ c(L) constant at f in the categorical direction, i.e., we have that c(f)k = f ,
for all k ≥ 0. This functor clearly preserves colimits.
Remark 9.1.4. Note that ∆[n] is actually c(∆[n]), where ∆[n] is the standard n-simplex
in sSet.

With this inclusion functor, we define a simplicial enrichment on sSet∆op , which is
both tensored and cotensored. In particular, we will see that the Reedy/injective model
structure on sSet∆op is simplicial with respect to this enrichment.

Proposition 9.1.5. The category sSet∆op is a tensored and cotensored simplicial category
with
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(i) simplicial homs Map(X,Y ) given by

Map(X,Y )n = sSet∆op(X ×∆[n], Y ),
for all n ≥ 0 and X,Y ∈ sSet∆op,

(ii) tensors given by X ⊗K := X × c(K), for all X ∈ sSet∆op and K ∈ sSet,
(iii) cotensors Y K given by

(Y K)k = Map(F [k]× c(K), Y ),
for all k ≥ 0, Y ∈ sSet∆op, and K ∈ sSet.

Proof. First note that, by the Yoneda Lemma, we have
sSet(∆[n],Map(X,Y )) ∼= Map(X,Y )n = sSet∆op(X ×∆[n], Y ),

for all n ≥ 0. Now, since every simplicial set K can be obtained as a colimit of ∆[n]’s of
the form K ∼= colimσ∈Kn,n≥0 ∆[n], it follows that

sSet(K,Map(X,Y )) ∼= sSet(colimσ,n ∆[n],Map(X,Y )) ∼= limσ,n sSet(∆[n],Map(X,Y ))
∼= limσ,n sSet∆op(X ×∆[n], Y ) ∼= sSet∆op(colimσ,n (X ×∆[n]), Y )
∼= sSet∆op(X × (colimσ,n ∆[n]), Y ) ∼= sSet∆op(X × c(K), Y ),

where we used that the hom-functors send colimits in the first variable to limits, that
products commute with colimits in sSet∆op , and that the isomorphism for ∆[n] holds by
the above argument. Now, again by the Yoneda Lemma, we can see that

sSet∆op(F [k]×∆[n], Y K) ∼= (Y K)k,n = sSet∆op(F [k]×∆[n]× c(K), Y ),
for all k, n ≥ 0, by definition of Y K and Map(−,−). Since every bisimplicial set X can
be obtained as a colimit of F [k]×∆[n]’s of the form X ∼= colimσ∈Xk,n,k,n≥0 F [k]×∆[n],
using similar arguments to the ones above, we can show that

sSet∆op(X,Y K) ∼= sSet∆op(X × c(K), Y ).
Furthermore, since the inclusion functor c : sSet → sSet∆op preserves products, we have
isomorphisms

(X ⊗K)⊗ L ∼= X × c(K)× c(L) ∼= X × c(K × L) ∼= X ⊗ (K × L)
natural in X, K, and L, for all X ∈ sSet∆op and K,L ∈ sSet. Hence, it follows from
Corollary 1.1.16 that sSet∆op is tensored and cotensored over sSet. �

We now describe the Reedy/injective model structure on sSet∆op .

Theorem 9.1.6. Let sSet be the category of simplicial sets endowed with the Kan-Quillen
model structure of Theorem 5.2.7. The Reedy/injective model structure on sSet∆op

exists and is such that
(i) the cofibrations are the monomorphisms; in particular, every object is cofibrant,
(ii) the weak equivalences are the level-wise weak equivalences,
(iii) the fibrations are the Reedy fibrations, i.e., the maps f : X → Y in sSet∆op such

that the pullback corner map
((ιFk )∗, f∗) : Map(F [k], X)→ Map(δF [k], X) ×

Map(δF [k],Y )
Map(F [k], Y )

is a Kan fibration in sSet, for all k ≥ 0,
(iv) the fibrant objects are the Reedy fibrant ones, i.e., the objects X ∈ sSet∆op such

that the induced map
(ιFk )∗ : Xk

∼= Map(F [k], X)→ Map(δF [k], X)
is a Kan fibration in sSet, for all k ≥ 0.
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Moreover, it is combinatorial, and simplicial for the enrichment of Proposition 9.1.5.

Proof. The existence of the injective model structure, although classical, can be seen as
a special instance of [HKRS17, Theorem 3.4.1], where it is constructed as a left-induced
model structure along the left Kan extension i! : sSetOb(∆op) → sSet∆op of the inclusion
functor i : Ob(∆op) → ∆op, where Ob(∆op) is the discrete category of objects of ∆op.
A proof for the existence of the Reedy model structure can be found, for example, in
[Hir03, Theorem 15.3.4] or in [RV14, Theorem 4.18]. The fact that they coincide follows,
for example, from [BR13, Proposition 3.15 and Corollary 4.5].

A proof of the fact that the Reedy model structure is cofibrantly generated can be found
in [Hir03, Theorem 15.6.27] or [RV14, Proposition 7.7]. It also follows from Remark 9.1.7
below, where we give sets of generating cofibrations and trivial cofibrations. Finally, it
is simplicial since the model structure on sSet is simplicial by Theorem 5.2.7, and by the
fact that the (trivial) cofibrations, tensors, and colimits in sSet∆op are defined level-wise.
Indeed, if i : A B is a cofibration in sSet∆op and j : K L is a cofibration in sSet,
then their pushout-product

i�× c(j) : A× c(L)
⊔

A×c(K)
B × c(K)→ B × c(L)

is given level-wise in sSet by ik�× j, where ik and j are cofibrations in sSet, for all k ≥ 0.
Hence it is a cofibration in sSet by (emc3’) of Proposition 4.5.6, since sSet is simplicial.
Moreover, if one of i or j is trivial, then so is ik�× j, for all k ≥ 0. This shows (emc3’)
for sSet∆op . �

Remark 9.1.7. A set of generating cofibrations for the Reedy/injective model structure
on sSet∆op is given by

{ιFk �× ι∆n : δF [k]×∆[n]
⊔

δF [k]×δ∆[n]
F [k]× δ∆[n]→ F [k]×∆[n] | k, n ≥ 0}.

Indeed, these maps generate all monomorphisms in sSet∆op under transfinite composi-
tions, pushouts, and retracts. Moreover, a set of generating trivial cofibrations is given
by

{ιFk �× `∆n,t : δF [k]×∆[n]
⊔

δF [k]×Λt[n]
F [k]×Λt[n]→ F [k]×∆[n] | k ≥ 0, n ≥ 1, 0 ≤ t ≤ n}.

Let f : X Y be a Reedy fibration in sSet∆op . Then there is a lift in every commutative
diagram in sSet∆op of the form

δF [k]×∆[n]
⊔
δF [k]×Λt[n] F [k]× Λt[n]

F [k]×∆[n]

X

Y

ιFk �× `
∆
n,t

∼

f

if and only if there is a lift in the every commutative diagram in sSet of the form
Λt[n]

∆[n]

Map(F [k], X)

Map(δF [k], X)×Map(δF [k],Y )Map(F [k], Y ) ,

`∆n,t

∼ ((ιFk )∗, f∗)

for all k ≥ 0, n ≥ 1, and 0 ≤ t ≤ n. But, by definition, the map f is a Reedy fibration
if and only if there is a lift in the second diagrams, for all k ≥ 0, n ≥ 1, and 0 ≤ t ≤ n.
Hence this holds if and only if there is a lift in the first diagrams, for all k ≥ 0, n ≥ 1,
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and 0 ≤ t ≤ n. This shows that the maps ιFk �× `∆n,t form a set of generating trivial
cofibrations.

Remark 9.1.8. Since the Reedy model structure on sSet∆op is simplicial and every object
is cofibrant, the map

idF [k] × `∆n,t = (∅ → F [k])�× `∆n,t : F [k]× Λt[n]→ F [k]×∆[n]

is a trivial cofibration in sSet∆op . Hence, if f : X Y is a Reedy fibration in sSet∆op ,
then it is level-wise a Kan fibration, i.e., the map fk : Xk → Yk is a Kan fibration in sSet,
for all k ≥ 0. To see this, note that there is a lift in the below left diagram in sSet if and
only if there is a lift in the below right diagram in sSet∆op .

Λt[n]

∆[n]

Xk
∼= Map(F [k], X)

Yk ∼= Map(F [k], Y )

`∆n,t

∼

fk

F [k]× Λt[n]

F [k]×∆[n]

X

Y

idF [k] × `∆n,t

∼

f

Since f is a Reedy fibration and idF [k]×`∆n,t is a trivial cofibration by the above argument,
there is a lift in the above right diagram, and this shows that fk is a Kan fibration, for
all k ≥ 0. As a direct consequence, we have that, if X ∈ sSet∆op is Reedy fibrant, then
the simplicial set Xk is a Kan complex, for all k ≥ 0.

9.2. Complete Segal spaces. As mentioned above, an (∞, 1)-category can be modeled
by a bisimplicial set X : ∆op → sSet, by looking at X0 as its space of objects, X1 as its
space of morphisms, X2 as its space of pair of composable morphisms, etc. In particular,
to have that X2 models pair of composable morphisms, we need to require that a certain
map, called the Segal map, between X2 and the fibered product X1 ×X0 X1 is a weak
equivalence. This gives rise to the notion of a Segal space. These do not quite model
(∞, 1)-categories since we have a space of objects rather than a set, and we need to
impose a further condition, called the completeness condition, which yields the notion of
a complete Segal space, introduced by Rezk in [Rez01]. In particular, we also recall Rezk’s
construction of a model structure on sSet∆op in which the fibrant objects are precisely the
complete Segal spaces, which is obtained as a localization of the Reedy/injective model
structure on sSet∆op×∆op .

Let us first introduce the Segal maps.

Notation 9.2.1. Let k ≥ 1. We write G[k] := F [1] tF [0] . . . tF [0] F [1] for the colimit of
the following diagram in sSet∆op

F [1]

F [0]

F [1]

F [0]

. . .

F [0]

F [1] ,

d0 d1 d0 d1

where k copies of F [1] appear. We set G[0] := F [0]. In particular, the maps ρi : [1]→ [k]
of ∆ with image {i− 1, i}, for all 1 ≤ i ≤ k, induce an inclusion map

gFk := ρ1 t . . . t ρk : G[k]→ F [k].

Definition 9.2.2. Let X : ∆op → sSet be a bisimplicial set and k ≥ 0. Then the map
gFk : G[k]→ F [k] induces a map

(gFk )∗ : Xk
∼= Map(F [k], X)→ Map(G[k], X) ∼= X1 ×X0 . . .×X0 X1,

called the Segal map.
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A Segal space can then be defined by requiring that the Segal maps are weak equiv-
alences of simplicial sets. We further impose a Reedy fibrancy condition, since we want
these to be the fibrant objects of a localization of the Reedy model structure.

Definition 9.2.3. A bisimplicial set X : ∆op → sSet is a Segal space if

(i) it is Reedy fibrant,
(ii) the Segal map Xk

∼
X1×X0 . . .×X0X1 is a weak equivalence in sSet, for all k ≥ 0.

Since (∞, 1)-categories should be thought of as categories enriched in ∞-groupoids –
modeled here by Kan complexes – there should be a Kan complex of morphisms between
any two vertices in X0, i.e., 0-simplices of the simplicial set X0, for a Segal space X. We
now construct such enriched homs.

Remark 9.2.4. If X is Reedy fibrant, note that the map

(ιF1 )∗ ∼= (d1, d0) : X1 ∼= Map(F [1], X) Map(δF [1], X) ∼= X0 ×X0

is a Kan fibration in sSet.

Definition 9.2.5. Let X be a Segal space and let x, y ∈ X0 be vertices. We define the
mapping space X(x, y) to be the following pullback in sSet.

X(x, y)

∆[0]

X1

X0 ×X0(x, y)

(d1, d0)
y

Since the map (d1, d0) : X1 X0×X0 is a Kan fibration, its pullback X(x, y) ∆[0] is
also a Kan fibration, and hence X(x, y) is a Kan complex.

In particular, in order to model an (∞, 1)-category, we want to define a composition
“up to homotopy” on the mapping spaces of a Segal space. This can be achieved as
follows.

Construction 9.2.6. Let X be a Segal space and x, y, z be vertices in X0. Similarly,
we can define a Kan complex X(x, y, z) as the fiber of the fibration X2 X0 ×X0 ×X0
at (x, y, z). This yields the following diagram in sSet, where both squares are pullbacks.

X(x, y, z) X2

X(x, y)×X(y, z)

∆[0]

X1 ×X0 X1

X0 ×X0 ×X0(x, y)

(d1, d0)

(d2, d0)∼∼ y

y

Since all objects are Kan complexes in this diagram, i.e., they are all fibrant, the pullback
X(x, y, z) ∼ X(x, y)×X(y, z) of the weak equivalence X2

∼
X1 ×X0 X1 is also a weak

equivalence in sSet. We then define a map d1 : X(x, y, z)→ X(x, z) to be the unique map
given by the universal property of pullbacks which makes the following diagram commute.
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X(x, z)

X(x, y, z)

∆[0]

X1

X2

X0 ×X0

d1

(x, z)

(d1, d0)

d1

y

Then the diagram

X(x, y)×X(y, z) X(x, y, z) X(x, z)∼ d1

gives the desired composition up to homotopy, since the map going in the wrong direction
is a weak equivalence.

Using these constructions, we can define the homotopy category of a Segal space X, by
taking X0,0 as its set of objects, and the sets of path components of the mapping spaces
as its hom-sets. Recall that, given a simplicial set K, its set of path components π0K is
defined to be the following co-equalizer in Set

K1 K0 π0K .
d1

d0

Moreover, recall that a weak equivalence f : K ∼
L in the model structure on sSet of

Theorem 5.2.7 induces an isomorphism π0f : π0K
∼=−→ π0L between the sets of path com-

ponents. Hence this gives the following.

Definition 9.2.7. Let X be a Segal space. We define its homotopy category ho(X)
to be the category whose

(i) objects are the vertices of X0,
(ii) hom-sets are given by ho(X)(x, y) = π0X(x, y), for all x, y ∈ X0,
(iii) composition is given by

π0X(x, y)× π0X(y, z) ∼= π0X(x, y, z) π0d1−−−→ π0X(x, z),
for all x, y, z ∈ X0,

(iv) identities are given by [s0x] ∈ π0X(x, x), for all x ∈ X0.

By looking at the maps that are invertible in the homotopy category, we get a notion of
homotopy equivalences in a Segal space, which correspond to the homotopically invertible
morphisms of the (∞, 1)-category.

Definition 9.2.8. Let X be a Segal space. A homotopy equivalence in X is a vertex
f ∈ X1 such that its homotopy class [f ] ∈ ho(X) is an isomorphism.

By [Rez01, Lemma 5.8], if two vertices f, g ∈ X1 are in the same path component and
one of them is a homotopy equivalence, then so is the other. Hence we can define the
following.

Definition 9.2.9. Let X be a Segal space. We define its space of homotopy equiv-
alences Xheq

1 to be the subspace of X1 consisting of those components of X1 whose
vertices are homotopy equivalences. In particular, every degenerate simplex s0x is a ho-
motopy equivalence, for every vertex x ∈ X0, and the map s0 : X0 → X1 factors through
s0 : X0 → Xheq

1 .

Given a Segal space, we now have two∞-groupoids of objects; one given by the spaceX0
of objects, and the other one given by the underlying∞-groupoid Xheq

1 , as defined above.
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In order to model (∞, 1)-categories, we need to require that these two ∞-groupoids are
weakly equivalent.

Definition 9.2.10. A simplicial space X : ∆op → sSet is a complete Segal space if
(i) it is Reedy fibrant,
(ii) the Segal map Xk

∼
X1×X0 . . .×X0X1 is a weak equivalence in sSet, for all k ≥ 0,

(iii) the map s0 : X0
∼
Xheq

1 is a weak equivalence in sSet.

The space of homotopy equivalences can be modeled by the simplicial mapping space
out of the discrete nerve of the “free-living isomorphism”. We can then re-express the
last condition of a complete Segal space by requiring that some inclusion induces a weak
equivalence between simplicial homs, which is useful to describe the set of cofibrations at
which we want to localize.

Notation 9.2.11. We denote by N : Cat → Set∆op×∆op the discrete nerve constant in
the space direction. It is given by (NC)k,n = Cat([k], C), for every category C.

Example 9.2.12. We define the category I = {x ∼= y} to be the “free-living isomor-
phism”. Its discrete nerve is given by (NI)k,n = Cat([k], I). In particular, a functor
[k] → I can be described as a word of k letters in {x, y}. For example, when k = 0,
we have that (NI)0,n = {x, y}; and, when k = 1, (NI)1,n = {xx, xy, yx, yy} where xx
and yy are degenerate and represent the identities at x and y, and xy and yx represent
the two inverse morphisms between x and y. In particular, it comes with an inclusion
map e : F [0]→ NI, where the unique 0-simplex of F [0] is sent to x.

Proposition 9.2.13. Let X be a Segal space. There is an isomorphism of simplicial sets
Xheq

1
∼= Map(NI,X). Moreover, the map s0 : X0 → Xheq

1 is a weak equivalence in sSet if
and only if the map

e∗ : Xheq
1
∼= Map(NI,X)→ Map(F [0], X) ∼= X0

is a weak equivalence in sSet.

Proof. The first isomorphism follows from [Rez01, Theorem 6.2]. For the second one, note
that the composite F [0]→ NI → F [0] is the identity, and hence the composite

X0 Xheq
1
∼= Map(NI,X) X0 ∼= Map(F [0], X)s0 e∗

is also the identity. We conclude, by 2-out-of-3, that s0 is a weak equivalence if and only
if e∗ is. �

We are now ready to state the main theorem, which constructs the model structure for
complete Segal spaces as a localization of the Reedy/injective model structure.

Theorem 9.2.14. There is a model structure on sSet∆op, denoted by CSS, such that
(i) the cofibrations in CSS are the monomorphisms; in particular, every object is

cofibrant,
(ii) the fibrant objects in CSS are the complete Segal spaces.

In particular, it is obtained as a localization of the Reedy/injective model structure on
sSet∆op of Theorem 9.1.6 at the set of monomorphisms

{gFk : G[k]→ F [k] | k ≥ 0}
⋃
{e : F [0]→ NI}.

Moreover, this model structure is combinatorial, and simplicial for the enrichment of
Proposition 9.1.5.
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Proof. Since the Reedy model structure on sSet∆op is a combinatorial, simplicial model
structure such that all objects are cofibrant by Theorem 9.1.6, its left Bousfield localiza-
tion CSS at the set of monomorphisms

S = {gFk : G[k]→ F [k] | k ≥ 0}
⋃
{e : F [0]→ NI}

exists and is again simplicial and combinatorial, by Theorem 5.2.15. Moreover, the cofibra-
tions in CSS are the monomorphisms, since they are the cofibrations of the Reedy model
structure. Finally, the fibrant objects are the S-local objects by Proposition 5.2.18, i.e.,
an object X ∈ CSS is fibrant if and only if it is Reedy fibrant and the maps

(gFk )∗ : Xk
∼
X1 ×X0 . . .×X0 X1 and e∗ : Xheq

1
∼
X0

are weak equivalences in sSet, for all k ≥ 0. This shows that the fibrant objects are
precisely the complete Segal spaces, by Proposition 9.2.13. �

Finally, we show that every category gives rise to a complete Segal space.

Example 9.2.15. In [Rez01, §3.5], Rezk constructs a nerve NRezk : Cat→ sSet∆op which
associates to a category C the bisimplicial set

NRezkC : ∆op ×∆op → Set, ([k], [n]) 7→ Cat([k]× I[n], C),
where I[n] is the category with object set {0, . . . , n} and a unique isomorphism between
any two objects. In particular, by [Rez01, Proposition 6.1], the nerve NRezkC is a complete
Segal space, for every category C.

10. Models of double (∞, 1)-categories and (∞, 2)-categories

Given the model of (∞, 1)-categories presented above, we want to use it to define ∞-
analogues of double categories and 2-categories. For this, we consider bisimplicial spaces
X : ∆op ×∆op → sSet, where the additional copy of ∆op allows us to have one more
dimension. In particular, a double (∞, 1)-category X : ∆op ×∆op → sSet should be such
that X0,0 forms its space of objects, X1,0 its space of horizontal morphisms, X0,1 its space
of vertical morphisms, and X1,1 its space of squares. The higher simplicial sets should
model horizontal and vertical composites of such. For this to be the case, we require that
a double (∞, 1)-category satisfies the Segal condition in both directions. We can further
impose a completeness condition in one direction, and our convention here is to put it in
the horizontal direction. Note that we cannot have the completeness condition in both
directions since this would imply that Xheq

1,0 ' X0,0 ' Xheq
0,1 and hence that two objects

in X0,0 are horizontally equivalent if and only if they are vertically equivalent. However,
even in a strict double category, it is not true that two objects are horizontally isomorphic
if and only they are vertically isomorphic, so this is not a desirable condition. By choosing
the completeness condition to be in the vertical direction instead, we recover the model of
double (∞, 1)-categories defined by Haugseng [Hau13]; this gives an equivalent model to
the horizontally complete one via a transpose functor which interchanges the horizontal
and vertical directions.

Using the fact that an (∞, 2)-category should be a horizontal double (∞, 1)-category,
we define an (∞, 2)-category as a double (∞, 1)-category X : ∆op ×∆op → sSet such that
its space of vertical morphisms X0,1 is discrete. For this, we identify all the spaces X0,k of
k composable vertical morphisms with the space of objects X0,0 up to weak equivalence.
In this case, there is no problem about also requiring the completeness condition in the
vertical direction, and this yields the notion of 2-fold complete Segal spaces introduced
by Barwick [Bar05].

As in the case of complete Segal spaces, there are model structures on the category
of bisimplicial spaces whose fibrant objects are the double (∞, 1)-categories and 2-fold
complete Segal spaces, respectively. They are obtained as left Bousfield localizations of
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the Reedy/injective model structure on the category of bisimplicial spaces, by similar
methods to the ones presented in Section 9. In Section 10.1, we first recall the main
features of the Reedy/injective model structure for bisimplicial spaces, and then localize
it in Section 10.2 to obtain a model structure for double (∞, 1)-categories. Finally, in
Section 10.3, we further localize the model structure for double (∞, 1)-categories to obtain
a model structure for 2-fold complete Segal spaces. In particular, the identity on bisim-
plicial spaces is a Quillen reflection embedding the homotopy theory of 2-fold complete
Segal spaces into that of double (∞, 1)-categories. This identity functor can therefore be
interpreted as the ∞-analogue of the horizontal embedding of 2-categories into double
categories.

10.1. Reedy and injective model structures on bisimplicial spaces. We now con-
sider the category sSet∆op×∆op of simplicial objects in sSet∆op or bisimplicial objects
in sSet. Similarly to Section 9.1, we describe the Reedy and injective model categories
on this category, where sSet is endowed with the Kan-Quillen model structure of The-
orem 5.2.7. As it was the case of sSet∆op , the Reedy and injective model structures on
sSet∆op×∆op coincide, and hence we can describe both the cofibrations and fibrations in
this model structure.

Since bisimplicial objects in sSet can equivalently be described as trisimplicial sets
(∆op)×3 → Set, there is one more simplicial direction. We first introduce our notations
for the representable in each simplicial direction and for their respective boundary and
horn inclusions.

Notation 10.1.1. Consider the category sSet∆op×∆op ∼= Set(∆op)×3 of trisimplicial sets.
We denote by ∆[n] the representable functor

∆[n] : ∆op ×∆op → Set, ([m], [k], [p]) 7→ ∆([p], [n])

constant in the first two variables, for all n ≥ 0, by F [k] the representable functor

F [k] : ∆op ×∆op → Set, ([m], [l], [n]) 7→ ∆([l], [k])

constant in the first and third variables, for all k ≥ 0, and by R[m] the representable
functor

R[m] : ∆op ×∆op → Set, ([q], [k], [n]) 7→ ∆([q], [m])
constant in the last two variables, for all m ≥ 0. As in Definition 5.2.4, we write δ∆[n],
δF [k], and δR[m] for the boundaries of ∆[n], F [k], and R[m], for all n, k,m ≥ 0, and
Λt[n] for the (n, t)-horn of ∆[n], for all n ≥ 1 and 0 ≤ t ≤ n. These come with inclusion
maps ι∆n : δ∆[n]→ ∆[n], ιFk : δF [k]→ F [k], ιRm : δR[m]→ R[m], and `∆n,t : Λt[n]→ ∆[n].

Notation 10.1.2. Given a trisimplicial set X : ∆op ×∆op → sSet, we denote its (m, k)th
simplicial set by Xm,k := X([m], [k]), and by Xm,k,n := Xm,k([n]) the set of n-simplices
of Xm,k, for m, k, n ≥ 0. Note that, by the Yoneda Lemma, there is an isomorphism
Xm,k,n

∼= sSet∆op×∆op(R[m]× F [k]×∆[n], X), for all m, k, n ≥ 0. We also write

Xm,− := X([m],−) : ∆op → sSet and X−,k := X(−, [k]) : ∆op → sSet

for the induced bisimplicial sets, for m, k ≥ 0.

We refer to the direction given by the ∆[n]’s as the space direction, the one given by
the F [k]’s as the vertical direction, and the one given by the R[m]’s as the horizontal
direction. The idea this time is that a double (∞, 1)-category can be modeled by a
trisimplicial set X : ∆op ×∆op → sSet, by looking at X0,0 as its space of object, X0,1 as
its space of horizontal morphisms, X1,0 as its space of vertical morphisms, and X1,1 as its
space of squares. Since sSet∆op×∆op(R[1], X) ∼= X1,0,0 and sSet∆op×∆op(F [1], X) ∼= X0,1,0
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represent the sets of horizontal morphisms and vertical morphisms of the “double (∞, 1)-
category” X, respectively, which justifies the fact that R[m] represents the horizontal
direction of X, while F [k] represents the vertical one.

There is also an inclusion of sSet into sSet∆op×∆op which looks at a simplicial set as a
constant trisimplicial set in the horizontal and vertical directions. This can be thought of
as the ∞-version of the fact that any set can be seen as a discrete double category with
only trivial morphisms.

Notation 10.1.3. There is an inclusion functor c : sSet → sSet∆op×∆op , which sends a
simplicial set K to the trisimplicial set c(K) constant in the horizontal and vertical direc-
tions, i.e., we have that c(K)m,k = K, for all m, k ≥ 0, and a simplicial map f : K → L
to the map c(f) : c(K)→ c(L) constant at f in the horizontal and vertical directions, i.e.,
we have that c(f)m,k = f , for all m, k ≥ 0. This functor clearly preserves colimits.

Remark 10.1.4. Note that ∆[n] is actually c(∆[n]), where ∆[n] is the standard n-simplex
in sSet.

The category sSet∆op×∆op is also simplicially enriched, tensored, and cotensored, and
the Reedy/injective model structure is simplicial with respect to this enrichment, as we
will see below.

Proposition 10.1.5. The category sSet∆op×∆op is a tensored and cotensored simplicial
category with

(i) simplicial homs Map(X,Y ) given by
Map(X,Y )n = sSet∆op×∆op(X ×∆[n], Y ),

for all n ≥ 0 and X,Y ∈ sSet∆op×∆op,
(ii) tensors given by X ⊗K := X × c(K), for all X ∈ sSet∆op×∆op and K ∈ sSet,
(iii) cotensors Y K given by

(Y K)m,k = Map(R[m]× F [k]× c(K), Y ),

for all m, k ≥ 0, Y ∈ sSet∆op×∆op, and K ∈ sSet.

Proof. The proof is similar to the one of Proposition 9.1.5. �

We introduce the following notation, which represents the boundary of the product
R[m]× F [k].

Notation 10.1.6. Let m, k ≥ 0. We write
δ(R[m]× F [k]) := δR[m]× F [k]

⊔
δR[m]×δF [k]

R[m]× δF [k].

Hence the pushout-product ιRm�× ιFk is the inclusion δ(R[m]× F [k])→ R[m]× F [k].

Using this notation, we now describe the Reedy/injective model structure on sSet∆op×∆op .

Theorem 10.1.7. Let sSet be the category of simplicial sets endowed with the Kan-
Quillen model structure of Theorem 5.2.7. The Reedy/injective model structure on
sSet∆op×∆op exists and is such that

(i) the cofibrations are the monomorphisms; in particular, every object is cofibrant,
(ii) the weak equivalence are the level-wise weak equivalences,
(iii) the fibrations are the Reedy fibrations, i.e., the maps f : X → Y in sSet∆op×∆op

such that the pullback corner map induced by f and ιRm�× ιFk
Map(R[m]×F [k], X)→ Map(δ(R[m]×F [k]), X) ×

Map(δ(R[m]×F [k]),Y )
Map(R[m]×F [k], Y )

is a Kan fibration in sSet, for all m, k ≥ 0,
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(iv) the fibrant objects are the Reedy fibrant ones, i.e., the objects X ∈ sSet∆op such
that the induced map
(ιRm�× ιFk )∗ : Xm,k

∼= Map(R[m]× F [k], X)→ Map(δ(R[m]× F [k]), X)
is a Kan fibration in sSet, for all m, k ≥ 0.

Moreover, it is combinatorial, and simplicial for the enrichment of Proposition 10.1.5.

Proof. The proof of this result is similar to the one of Theorem 9.1.6. Sets of generating
cofibrations and trivial cofibrations are given just below in Remark 10.1.8. �

Remark 10.1.8. A set of generating cofibrations for the Reedy/injective model structure
on sSet∆op×∆op is given by

{(ιRm�× ιFk )�× ι∆n | m, k, n ≥ 0},
where (ιRm�× ιFk )�× ι∆n is the inclusion

δ(R[m]× F [k])×∆[n]
⊔

δ(R[m]×F [k])×δ∆[n]
R[m]× F [k]× δ∆[n]→ R[m]× F [k]×∆[n],

and a set of generating trivial cofibrations is given by
{(ιRm�× ιFk )�× `∆n,t | m, k ≥ 0, n ≥ 1, 0 ≤ t ≤ n},

where (ιRm�× ιFk )�× `∆n,t is the inclusion

δ(R[m]× F [k])×∆[n]
⊔

δ(R[m]×F [k])×Λt[n]
R[m]× F [k]× Λt[n]→ R[m]× F [k]×∆[n].

One can check that these indeed give generating sets for the Reedy/injective model struc-
ture on sSet∆op×∆op using similar arguments to the ones presented in Remark 9.1.7.

Remark 10.1.9. As in Remark 9.1.8, one can show that, if f : X Y is a Reedy fibration
in sSet∆op×∆op , then it is level-wise a Kan fibration, i.e., the map fm,k : Xm,k → Ym,k is a
Kan fibration in sSet, for all m, k ≥ 0. Hence, if X ∈ sSet∆op×∆op is Reedy fibrant, then
the simplicial set Xm,k is a Kan complex, for all m, k ≥ 0.

10.2. Double (∞, 1)-categories. In analogy to the strict case where a double category is
defined as an internal category to categories (see Remark 3.1.2), a double (∞, 1)-category
should be a “homotopical” internal category to (∞, 1)-categories. As we have seen in
Section 9.2, a complete Segal space is an example of a “homotopical” internal category
to ∞-groupoids. By iterating this process, we could think of a double (∞, 1) category
as a double complete Segal space, i.e., as a trisimplicial set X : ∆op ×∆op → sSet such
that all rows X−,k : ∆op → sSet and all columns Xm,− : ∆op → sSet are complete Segal
spaces. However, by setting this condition, we get that Xheq

1,0 ' X0,0 ' Xheq
0,1 , which says

that the space of horizontal homotopy equivalences is weakly equivalent to the space of
vertical homotopy equivalences. However, as mentioned in the introduction, this is not a
desirable condition, since, even in the strict case, two objects in a double category are not
horizontally isomorphic (or equivalent) if and only if they are vertically isomorphic (or
equivalent). Instead, we choose to put the completeness condition in only one direction
and, since we want to see an (∞, 2)-category as a horizontal double (∞, 1)-category, we
require the double (∞, 1)-categories to be horizontally complete.

Definition 10.2.1. A trisimplicial set X : ∆op ×∆op → sSet is a horizontally com-
plete double (∞, 1)-category if

(i) it is Reedy fibrant,
(ii) the bisimplicial set Xm,− : ∆op → sSet is a Segal space, for all m ≥ 0,
(iii) the bisimplicial set X−,k : ∆op → sSet is a complete Segal space, for all k ≥ 0.
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We introduce the following inclusion maps, which induce the Segal maps in the hori-
zontal and vertical directions on simplicial homs.

Notation 10.2.2. As in Notation 9.2.1, we define G[k] := F [1] tF [0] . . . tF [0] F [1] to be
the colimit of k copies of F [1] under F [0], for k ≥ 1, and set G[0] := F [0]. It comes with
an inclusion map gFk : G[k]→ F [k]. Similarly, we define Q[m] := R[1]tR[0] . . .tR[0]R[1] to
be the colimit of m copies of R[1] under R[0], for m ≥ 1, and set Q[0] := R[0]. It comes
with an inclusion map qRm : Q[m]→ R[m].

To be able to express the completeness condition in both directions, we introduce the
following discrete nerves functors, as well as notations for the discrete nerves of the “free-
living isomorphism”.

Notation 10.2.3. We denote by NR : Cat → Set(∆op)×3 the discrete nerve constant in
the vertical and space directions. It is given by (NRC)m,k,n = Cat([m], C), for every
category C. Similarly, we denote by NF : Cat → Set(∆op)×3 the discrete nerve constant
in the horizontal and space directions. It is given by (NFC)m,k,n = Cat([k], C), for every
category C.

Below, we consider the discrete nerves NRI and NF I of the “free-living isomorphism”,
which can be described as in Example 9.2.12, and these come with inclusions maps
eR : R[0]→ NRI and eF : F [0]→ NF I.

We can now obtain the model structure for double (∞, 1)-categories by localizing the
Reedy/injective model structure on sSet∆op×∆op at the monomorphisms introduced above.

Theorem 10.2.4. There is a model structure on sSet∆op×∆op, denoted by DblCath∞, such
that

(i) the cofibrations in DblCath∞ are the monomorphisms; in particular, every object
is cofibrant,

(ii) the fibrant objects in DblCath∞ are the horizontally complete double (∞, 1)-cate-
gories.

In particular, it is obtained as a localization of the Reedy model structure on sSet∆op×∆op

of Theorem 10.1.7 at the set of monomorphisms
{idR[m]×gFk : R[m]×G[k]→ R[m]×F [k], qRm×idF [k] : Q[m]×F [k]→ R[m]×F [k] | m, k ≥ 0}⋃

{eR × idF [k] : F [k] ∼= R[0]× F [k]→ NRI × F [k] | k ≥ 0}.
Moreover, this model structure is combinatorial, and simplicial for the enrichment of
Proposition 10.1.5.

Proof. Since the Reedy model structure on sSet∆op×∆op is a combinatorial, simplicial
model structure such that all objects are cofibrant, its left Bousfield localization DblCath∞
at the set S of monomorphisms
{idR[m]×gFk : R[m]×G[k]→ R[m]×F [k], qRm×idF [k] : Q[m]×F [k]→ R[m]×F [k] | m, k ≥ 0}⋃

{eR × idF [k] : F [k] ∼= R[0]× F [k]→ NRI × F [k] | k ≥ 0}.
exists and is again simplicial and combinatorial, by Theorem 5.2.15. Moreover, the cofi-
brations in DblCath∞ are the monomorphisms, since they are the cofibrations of the Reedy
model structure on sSet∆op×∆op . Finally, the fibrant objects are the S-local objects by
Proposition 5.2.18, i.e., an object X ∈ DblCath∞ is fibrant if and only if it is Reedy fibrant
and the maps

(idR[m] × gFk )∗ : Xm,k
∼
Xm,1 ×Xm,0 . . .×Xm,0 Xm,1 ∼= Map(R[m]×G[k], X),

(qRm × idF [k])∗ : Xm,k
∼
X1,k ×X0,k . . .×X0,k X1,k ∼= Map(Q[m]× F [k], X),
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(eR × idF [k])∗ : Xheq
1,k
∼= Map(NRI × F [k], X) ∼ X0,k ∼= Map(R[0]× F [k], X)

are weak equivalences in sSet, where we identified Xm,k
∼= Map(R[m] × F [k], X), for all

m, k ≥ 0. The first weak equivalences tell us that the bisimplicial set Xm,− is a Segal
space, for all m ≥ 0, while the two other weak equivalences tell us that the bisimplicial
set X−,k is a complete Segal space, for all k ≥ 0. This shows that the fibrant objects are
precisely the horizontally complete double (∞, 1)-categories. �

While we chose the completeness in the horizontal direction, one could have chosen
to put it in the vertical direction instead. In this case, the double (∞, 1)-categories
correspond to Segal objects in complete Segal spaces, and hence correspond to the model of
double (∞, 1)-categories introduced by Haugseng in [Hau13, Definition 2.2.2.1]. However,
as we show below, these two models are Quillen equivalent.

Remark 10.2.5. By requiring in the definition of a double (∞, 1)-category that we instead
have Xm,− a complete Segal space and Xk,− a Segal space, for all m, k ≥ 0, we obtain the
transposed notion of vertically complete double (∞, 1)-categories. In particular,
we can also define a model structure DblCatv∞ on sSet∆op×∆op , whose fibrant objects are
the vertically complete double (∞, 1)-categories, by localizing the Reedy model structure
on sSet∆op×∆op at the same monomorphisms inducing the Segal maps and the monomor-
phisms idR[m] × eF : R[m] ∼= R[m] × F [0] → R[m] × NF I, for all m ≥ 0, in place of the
monomorphisms eR × idF [k].

These two models of double (∞, 1)-categories are then Quillen equivalent. To see this,
consider the functor t : ∆×∆ → ∆×∆ which switches the two copies of ∆, i.e., we
have t([m], [k]) = t([k], [m]), for all m, k ≥ 0. Pre-composing with t induces a functor
t∗ : sSet∆op×∆op → sSet∆op×∆op , which can be thought of as the “transpose” functor.
Since t ◦ t = id∆×∆, we get an adjunction

DblCath∞ DblCatv∞ ,
t∗

t∗

⊥

which gives a Quillen equivalence between the two models of double (∞, 1)-categories.

10.3. 2-fold complete Segal spaces. We finally introduce the model of (∞, 2)-categories
given by the 2-fold complete Segal spaces first defined by Barwick [Bar05]. In analogy to
the strict case where a 2-category is seen as an internal category to categories with a
discrete category of objects (see Remark 3.1.8), we want to define an (∞, 2)-category
as a “homotopical” internal category to (∞, 1)-categories with “homotopically discrete”
(∞, 1)-category of objects. To achieve this, we define an (∞, 2)-category to be a double
(∞, 1)-category X whose first column is constant; in particular, we have that the spaces
of vertical morphisms and objects are weakly equivalent, i.e., X0,1 ' X0,0, which can be
interpreted as the fact that all vertical morphisms are trivial. From this weak equivalence,
we also get that X0,1 ' Xheq

1,0 , and so we can further require the completeness condition
in both directions. A priori, there should be another model of double (∞, 1)-categories,
closer to the one of 2-fold complete Segal spaces, where there is some (not full) complete-
ness condition between horizontal morphisms and squares; namely, the space of horizontal
morphisms should be weakly equivalent to the space of homotopically, vertically invertible
squares with “trivial” vertical boundaries. This model might be addressed in future work.

We first introduce the notation for the inclusion maps which will be used to express
the fact that the first column is homotopically constant.
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Notation 10.3.1. For every k ≥ 0, we denote by ck : F [0] → F [k] the inclusion map
sending the unique 0-simplex of F [0] to 0. Given X ∈ sSet∆op×∆op , it induces a map

(ck)∗ : X0,k ∼= Map(F [k], X)→ Map(F [0], X) ∼= X0,0.

We can now state the definition of a 2-fold complete Segal space.
Definition 10.3.2. A trisimplicial setX : ∆op ×∆op → sSet is a 2-fold complete Segal
space if

(i) it is Reedy fibrant,
(ii) the bisimplicial set Xm,− : ∆op → sSet is a complete Segal space, for all m ≥ 0,
(iii) the bisimplicial set X−,k : ∆op → sSet is a complete Segal space, for all k ≥ 0,
(iv) the bisimplicial set X0,− : ∆op → sSet is essentially constant, i.e., the map

X0,k
∼
X0,0 of Notation 10.3.1 is a weak equivalence in sSet, for all k ≥ 0.

Since 2-fold complete Segal spaces are in particular horizontally complete double (∞, 1)-
categories, we can obtain the model structure for 2-fold complete Segal spaces by localizing
the model structure DblCath∞ on sSet∆op×∆op for horizontally complete double (∞, 1)-
categories.
Theorem 10.3.3. There is a model structure on sSet∆op×∆op, denoted by 2CSS, such
that

(i) the cofibrations in 2CSS are the monomorphisms; in particular, every object is
cofibrant,

(ii) the fibrant objects in 2CSS are the 2-fold complete Segal spaces.
In particular, it is obtained as a localization of the model structure DblCath∞ on sSet∆op×∆op

of Theorem 10.2.4 at the set of monomorphisms

{idR[m] × eF : R[m] ∼= R[m]× F [0] ∼ R[m]×NF I | m ≥ 0}
⋃
{ck : F [0]→ F [k] | k ≥ 0}.

Moreover, this model structure is combinatorial, and simplicial for the enrichment of
Proposition 10.1.5.
Proof. Since the model structure DblCath∞ on sSet∆op×∆op of Theorem 10.2.4 is a combi-
natorial, simplicial model structure such that all objects are cofibrant, its left Bousfield
localization 2CSS at the set S of monomorphisms

{idR[m] × eF : R[m] ∼= R[m]× F [0] ∼ R[m]×NF I | m ≥ 0}
⋃
{ck : F [0]→ F [k] | k ≥ 0}

exists and is again simplicial and combinatorial, by Theorem 5.2.15. Moreover, the cofi-
brations in 2CSS are the monomorphisms, since they are the cofibrations in DblCath∞.
Finally, the fibrant objects are the S-local objects by Proposition 5.2.18, i.e., an object
X ∈ 2CSS is fibrant if and only if it is a horizontally complete double (∞, 1)-category
and the maps

(idR[m] × eF )∗ : Xheq
m,1
∼= Map(R[m]×NF I,X) ∼ Xm,0 ∼= Map(R[m]× F [0], X),

c∗k : X0,k ∼= Map(F [k], X) ∼ X0,0 ∼= Map(F [0], X)
are weak equivalences in sSet, for all m, k ≥ 0. The first weak equivalences tell us that
the Segal space Xm,− is a complete Segal space, for all m ≥ 0, while the second weak
equivalences tell us that the bisimplicial set X0,− is essentially constant. This shows that
the fibrant objects are precisely the 2-fold complete Segal spaces. �

Finally, since 2CSS is a left Bousfield localization of DblCath∞, the identity adjunction
on sSet∆op×∆op induces a Quillen reflection embedding the homotopy theory of 2-fold
complete Segal spaces into that of horizontally complete double (∞, 1)-categories. Hence
the functor id : 2CSS → DblCath∞ can be interpreted as the ∞-version of the horizontal
embedding H : 2Cat→ DblCat (or even H'; see Definitions 3.4.1 and 3.4.11).
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Corollary 10.3.4. The identity adjunction on sSet∆op×∆op

2CSS DblCath∞

id

id

⊥

is a Quillen reflection.

Proof. This follows directly from Theorem 10.3.3 and Proposition 5.2.14. �





PART V.

NERVE CONSTRUCTIONS

As mentioned in Part IV., an n-category has k-morphisms between (k− 1)-morphisms,
for all k ≤ n. On the other hand, an (∞, n)-category is a homotopical version of an
n-category which has morphisms in all dimensions such that the k-morphisms are all
invertible up to higher morphisms, for k > n. In particular, an n-category should be
a special case of an (∞, n)-category where the k-morphisms, for k > n, are all trivial.
From this point of view, a (1-)category is a special instance of an (∞, 1)-category, and,
for example, in the model of complete Segal spaces, there is a nerve NRezk : Cat→ CSS,
which constructs from a category a complete Segal space (see Example 9.2.15). This nerve
actually embeds the homotopy theory of categories into that of complete Segal spaces in
a reflective way, and hence gives the desired inclusion of categories into (∞, 1)-categories.

Going up in dimensions, a 2-category should also be an example of an (∞, 2)-category.
Furthermore, we have seen that there is also a model of double (∞, 1)-categories, which
should therefore contain its stricter version, namely that of double categories. Hence,
we aim to find an inclusion of the 2-dimensional categories into their ∞-analogues which
is compatible with the horizontal embedding of 2-categories into double categories. As
we have seen in Part IV., (∞, 2)-categories and double (∞, 1)-categories can be modeled
by bisimplicial spaces, satisfying certain Segal and completeness conditions, and that
the identity on the category sSet∆op×∆op of bisimplicial spaces induces an embedding of
(∞, 2)-categories into double (∞, 1)-categories. Recall that the model of (∞, 2)-categories
considered is that of 2-fold complete Segal spaces. Hence, to achieve our goal, we construct
a nerve functor N : DblCat→ sSet∆op×∆op , which embeds the homotopy theory of double
categories into that of double (∞, 1)-categories, such that it restricts along the horizontal
embedding to a nerve functor 2Cat → sSet∆op×∆op , which embeds the homotopy theory
of 2-categories into that of 2-fold complete Segal spaces.

While the natural model structure for 2-categories is the one constructed by Lack in
[Lac02, Lac04], also recalled in Section 6, we constructed in Part III. two different model
structures for double categories. Hence we need to choose which homotopy theory of
double categories we would like to consider in this context. By looking at the properties
of a fibrant nerve, we can see that the nerve of a double category satisfies the Reedy
fibrancy condition imposed on a double (∞, 1)-category if and only if the double category
considered is weakly horizontally invariant. In particular, since all double categories are
fibrant in the first model structure on DblCat, the nerve will not preserve fibrant objects
from this model structure, and hence we need to opt for the second model structure
on DblCat, in which the fibrant double categories are precisely the weakly horizontally
invariant ones.

With this model structure on DblCat for weakly horizontally invariant double cate-
gories, we show that the nerve functor N : DblCat→ DblCath∞ is right Quillen and homo-
topically fully faithful into the model structure on sSet∆op×∆op for (horizontally complete)
double (∞, 1)-categories. Moreover, with this model structure on DblCat, we recall that
the horizontal embedding which gives a right Quillen and homotopical fully faithful func-
tor is given by the more homotopical version H' : 2Cat → DblCat. We show that the
composite of this horizontal embedding with the nerve gives a functor NH' : 2Cat→ 2CSS
which is right Quillen and homotopically fully faithful from Lack’s model structure on
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2Cat into the model structure on sSet∆op×∆op for 2-fold complete Segal spaces. To sum
up, this yields a commutative square of right Quillen and homotopically full functors as
follows.

2Cat

DblCat

2CSS

DblCath∞

NH'

H'

N

id

However, we were hoping to find a nerve that is compatible with the horizontal em-
bedding functor H, but the nerve NHA of a horizontal double category HA associated to
a 2-category A is in general not Reedy fibrant since, as we have seen in Remark 8.4.5,
a horizontal double category HA is in general not weakly horizontally invariant. Hence
the nerve NHA does not always give a double (∞, 1)-category or a 2-fold complete Segal
space. We show that the nerve NH'A actually provides a fibrant replacement of the nerve
NHA, and hence this yields a diagram of right Quillen and homotopically fully faithful
functors

2Cat

DblCat

DblCat

2CSS

DblCath∞

NH'

H

id

N

id'

filled with a natural transformation which is level-wise a weak equivalence. This gives the
expected compatibility of the nerve N with the horizontal embedding H.

In Section 11, we first construct the nerve N for double categories into double (∞, 1)-
categories and show that it has the expected homotopical properties. Then, in Section 12,
we restrict this nerve along the horizontal embedding H', and show that it gives rise to a
homotopically full embedding of 2-categories into 2-fold complete Segal spaces. We also
show, as mentioned above, that the nerve NH' is a level-wise fibrant replacement of NH.
Finally, in Section 13, we describe the different nerves considered in low dimensions in
order to get some intuition about their constructions. The results here are based on the
paper [Mos20] by the author.

11. Nerve of double categories

In this section, we give the construction of the nerve functor from double categories to
bisimplicial spaces. In Section 11.1, we define the nerve and its left adjoint, and in Sec-
tion 11.2, we show that they form a Quillen pair between the model structure on DblCat
for weakly horizontally invariant double categories, constructed in Theorem 8.1.15, and
the model structure DblCath∞ for horizontally complete double (∞, 1)-categories, con-
structed in Theorem 10.2.4. Once this fact is established, we prove in Section 11.3 that
the nerve functor is homotopically fully faithful, by showing that the (derived) counit of
the adjunction is level-wise a weak equivalence in DblCat. Finally, in Section 11.4, we
show that the nerve of a double category is almost fibrant; namely, it satisfies all con-
ditions of a horizontally complete double (∞, 1)-category except for the Reedy/injective
fibrancy condition in the vertical direction. We show that this latter condition is satisfied
by the nerve if and only if the double category considered is weakly horizontally invariant.
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11.1. Definition of the nerve. As mentioned in Section 10.2, a double (∞, 1)-category
is a trisimplicial set X : ∆op ×∆op → sSet where we can think of X0,0 as the space of
objects,X1,0 as the space of horizontal morphisms,X0,1 as the space of vertical morphisms,
and X1,1 as the space of squares. Hence, given a double category A, we would like to
associate to it a trisimplicial set NA in such a way that the vertices of the spaces (NA)0,0,
(NA)1,0, (NA)0,1, and (NA)1,1 are precisely the objects, horizontal morphisms, vertical
morphisms, and squares of A, respectively. In this section, we give the construction of
such a nerve functor N : DblCat→ sSet∆op×∆op .

To define the nerve functor, we make use of the following proposition, which can also
be found in [Cis19, Theorem 1.1.10].

Proposition 11.1.1. Let C be a small category and M be a locally presentable cate-
gory. Given a functor F : C → M, its left Kan extension L : SetCop → M along the
Yoneda embedding C → SetCop, which sends an object C ∈ C to the representable functor
C(−, C) : Cop → Set, exists and has a right adjoint R : M→ SetCop.

C

SetCop

MF

L

R

>

Moreover, for every object C ∈ C, we have that L(C(−, C)) = F (C), and, for every pair
of objects A ∈ M and C ∈ C, there is an isomorphism (RA)(C) ∼=M(F (C), A), natural
in A and C.

Proof. We first construct L. Let X : Cop → Set be an object of SetCop . Then there is an
isomorphism in SetCop

X ∼= colimx∈X(C), C∈C C(−, C).
We set LX := colimx∈X(C), C∈C F (C) ∈ M. Since M is locally presentable, it is in
particular cocomplete, and this is well-defined. Furthermore, it extends uniquely to a
functor L : SetCop → M by the universal property of colimits. Moreover, by definition,
we have that L(C(−, C)) = F (C), for every object C ∈ C, and that L is the left Kan
extension of F , since it is defined with the formula for point-wise left Kan extensions.

We now construct R. Given an object A ∈M, we set
RA :=M(F (−), A) : Cop → Set

to be the functor which sends an object C ∈ C to the setM(F (C), A). This assignment
extends on morphisms ofM, and defines a functor R : M→ SetCop .

Finally, we show that the functors L and R form an adjunction. Let A be an object
inM, and X : Cop → Set be an object in SetCop . Then we have isomorphisms

SetCop(X,RA) ∼= SetCop(colimx∈X(C), C∈C C(−, C), RA)
∼= limx∈X(C), C∈C SetCop(C(−, C), RA) ∼= limx∈X(C), C∈C RA(C)
∼= limx∈X(C), C∈CM(F (C), A) ∼=M(colimx∈X(C), C∈C F (C), A)
=M(LX,A)

natural inX andA, where the first isomorphism holds sinceX ∼= colimx∈X(C), C∈C C(−, C),
the second since SetCop(−,−) sends colimits to limits in the first variable, the third by the
Yoneda Lemma, the fourth by definition of RA, the fifth sinceM(−,−) sends colimits to
limits in the first variable, and finally the last one by definition of LX. This shows that
L a R is an adjunction. �

To define the nerve we make use of truncated versions of the n-orientals O(n), intro-
duced by Street in [Str87]. More precisely:
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Definition 11.1.2. For n ≥ 0, we define the 2-category O2(n), called the 2-truncated
n-oriental, as the 2-category described by the following data.

(i) Its set of objects is given by {0, . . . , n},
(ii) For 0 ≤ x, x′ ≤ n, its hom-category O2(n)(x, x′) is given by the poset

O2(n)(x, x′) =
{
{I ⊆ [x, x′] | x, x′ ∈ I} if x′ ≤ x,
∅ if x > x′,

where [x, x′] = {y ∈ {0, . . . , n} | x ≤ y ≤ x′}.
We also define the 2-category O∼2 (n) as the 2-category obtained from O2(n) by formally

inverting every 2-morphism, and we define the 2-category Õ2(n) as the 2-category obtained
from O∼2 (n) by formally making every morphism into an adjoint equivalence.

In order to have a better sense of what these 2-categories look like, we describe the
lower cases.

Example 11.1.3. For n = 0, the 2-categories O2(0), O∼2 (0), and Õ2(0) are all given by
the terminal (2-)category [0].

For n = 1, the 2-categories O2(1) and O∼2 (1) are both given by the free (2-)category [1]
on a morphism, while the 2-category Õ2(1) is the “free-living adjoint equivalence” Eadj.

For n = 2, the 2-categories O2(2), O∼2 (2), and Õ2(2) are generated, respectively, by the
following data,

0

1

2 0

1

2
∼=

0

1

2
' '

'

∼=

where '−→ denotes the data of an adjoint equivalence.
For n = 3, the 2-category O2(3) is generated by the following data

0

1 2

3 0

=

1 2

3

and the 2-categoryO∼2 (3) is generated by the corresponding 2-category with all 2-morphisms
invertible, while the 2-category Õ2(3) is generated by the corresponding 2-category with
all morphisms being adjoint equivalences and all 2-morphisms being invertible.

We now use Proposition 11.1.1 to construct the nerve functor N : DblCat→ Set(∆op)×3 ,
as the right adjoint of the left Kan extension of the following tricosimplicial object in
double categories along the Yoneda embedding. To define this tricosimplicial object
X : ∆×∆×∆ → DblCat, we recall that the first and second copies of ∆ represents the
horizontal and vertical directions, respectively, while the third one represents the space
direction of the double (∞, 1)-category. Hence, in the first two copies we want to see hor-
izontal (resp. vertical morphisms) and their composites, while in the last one we would
to see all horizontal equivalences and their composites, since double (∞, 1)-categories are
assumed to be horizontally complete.

Definition 11.1.4. We define the tricosimplicial double category

X : ∆×∆×∆→ DblCat,

([m], [k], [n]) 7→ Xm,k,n := (VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n),
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where the cosimplicial maps are induced by the ones of the cosimplicial objects
∆→ DblCat, ∆→ 2Cat,

[k] 7→ VO∼2 (k), [m] 7→ O∼2 (m), and [n] 7→ Õ2(n),
and ⊗ : DblCat× 2Cat→ DblCat is the tensoring functor introduced in Definition 3.5.1.

Proposition 11.1.5. The tricosimplicial double category X induces an adjunction

∆×∆×∆

Set(∆op)×3

DblCat ,X

C

N

>

where C is the left Kan extension of X along the Yoneda embedding, and we have that

(NA)m,k,n ∼= DblCat((VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n),A),
for all A ∈ DblCat and all m, k, n ≥ 0,

Proof. This is a direct application of Proposition 11.1.1, since DblCat is locally presentable
by Proposition 3.1.6. �

Remark 11.1.6. As expected, note that the 0-simplices of the simplicial set (NA)0,0 are
given by the objects of A, the ones of (NA)1,0 by the horizontal morphisms of A, the ones
of (NA)0,1 by the vertical morphisms of A, and the ones of (NA)1,1 by the squares of A.
For a description of the 1- and 2-simplices of these simplicial sets, we refer the reader to
Section 13.1. For m ≥ 2 or k ≥ 2, the simplicial sets (NA)m,k witness “compositions”
in A of the above data.

Remark 11.1.7. By Proposition 11.1.1, the left adjoint C of the nerve is given on repre-
sentables by C(F [k]×R[m]×∆[n]) = Xm,k,n. In particular, we have that

C(F [k]) = VO∼2 (k), C(R[m]) = HO∼2 (m) and C(∆[n]) = HÕ2(n).

We also introduce a functor C, which takes values in 2-categories and coincides with C
in the horizontal and space directions.

Notation 11.1.8. We denote by X : ∆×∆×∆ → 2Cat the tricosimplicial 2-category
given by Xm,k,n := O∼2 (m)⊗2 Õ2(n), and by C : Set(∆op)×3 → 2Cat the left Kan extension
of X along the Yoneda embedding, where ⊗2 : 2Cat × 2Cat → 2Cat is the Gray tensor
product introduced in Proposition 2.3.4.

Remark 11.1.9. Note that Xm,0,n = HXm,0,n. Therefore, if X ∈ Set(∆op)×3 is constant in
the vertical direction, then CX = HCX. In particular, we have that C(R[m]) = HC(R[m])
and C(∆[n]) = HC(∆[n]), where C(R[m]) = O∼2 (m) and C(∆[n]) = Õ2(n).

11.2. The nerve N is right Quillen. We now want to show that the nerve functor
defined in the previous section induces a right Quillen functor from the model structure
on DblCat of Theorem 8.1.15 for weakly horizontally invariant double categories and the
model structure DblCath∞ on sSet∆op×∆op of Theorem 10.2.4 for horizontally complete
double (∞, 1)-categories. Since the model category DblCath∞ is obtained as a left Bousfield
localization of the Reedy/injective model structure on sSet∆op×∆op , we first prove that
N : DblCat → sSet∆op×∆op is right Quillen for the Reedy/injective model structure, and
then apply Theorem 5.2.23 to show that it restricts to a right Quillen functor to DblCath∞.

Proposition 11.2.1. The adjunction



176 LYNE MOSER

DblCat sSet∆op×∆op

C

N

⊥

is a Quillen pair between the model structure on DblCat of Theorem 8.1.15 and the
Reedy/injective model structure on sSet∆op×∆op of Theorem 10.1.7.

Proof. By Remark 4.4.4, to prove that C is left Quillen, it is enough to show that C
sends generating cofibrations and generating trivial cofibrations in the Reedy/injective
model structure sSet∆op×∆op to cofibrations and trivial cofibrations in DblCat, respec-
tively. Recall from Remark 10.1.8 that a set of generating cofibrations for sSet∆op×∆op

is given by the pushout-product maps (ιFk �× ιRm)�× ι∆n , for all m, k, n ≥ 0, and a set of
generating trivial cofibrations is given by the pushout-product maps (ιFk �× ιRm)�× `∆n,t,
for all m, k ≥ 0, n ≥ 1, and 0 ≤ t ≤ n. Note that the map ιFk is constant in the horizontal
and space directions, the map ιRm is constant in the vertical and space directions, and the
maps ι∆n and `∆n,t are constant in the horizontal and vertical directions. Therefore, since
the functor C preserves colimits and by Remark 11.1.9, we have that

C((ιFk �× ιRm)�× ι∆n ) ∼= (CιFk �⊗G CιRm)�⊗G Cι∆n ∼= (CιFk �⊗CιRm)�⊗Cι∆n ,
and similarly for `∆n,t in place of ι∆n . Since the model structure DblCat is enriched over
2Cat by Remark 8.5.7, pushout-products of cofibrations with respect to ⊗ are cofibrations,
which are trivial if one of the morphisms involved is a weak equivalence. Therefore, it is
enough to show that CιFk is a cofibration in DblCat, for all k ≥ 0, that CιRm and Cι∆n are
cofibrations in 2Cat, for all m,n ≥ 0, and that C`∆n,t is a trivial cofibration in 2Cat, for
all n ≥ 1, 0 ≤ t ≤ n. These statements are verified in Lemmas 11.2.4 to 11.2.6 below. �

To prove that the boundary and horn inclusions mentioned above are sent to cofibra-
tions in 2Cat and DblCat, we introduce the following definitions of the boundary of O2(n)
and the (n, t)-horn of O2(n), which will be used to describe the images under C of the
boundary and horn inclusions.

Definition 11.2.2. For n ≥ 0, we define the boundary 2-category δO2(n) as the
coequalizer in 2Cat⊔

0≤i<j≤n
O2(n− 2)

⊔
0≤i≤n

O2(n− 1) δO2(n) ,

where the maps in the (i, j)-copy are induced by the cosimplicial identities didj = dj−1di,
where dr : O2(n − 2) → O2(n − 1) and ds : O2(n − 1) → O2(n) denote the face maps for
r = i, j and s = i, j − 1. In particular, there is an inclusion δO2(n)→ O2(n) induced by
the face maps di : O2(n − 1) → O2(n) for 0 ≤ i ≤ n. More explicitly, these 2-categories
are given by the following:

• for n = 0, δO2(0) = ∅ with δO2(0) = ∅ → O2(0) = [0] given by the unique
morphism,
• for n = 1, δO2(1) = [0] t [0] with δO2(1) = [0] t [0] → O2(1) = [1] given by
including the two copies of [0] as the two endpoints of the morphism in [1],
• for n = 2, δO2(2) is the sub-2-category of O2(2) where the 2-morphism is missing
and the inclusion δO2(2)→ O2(2) is given by the following 2-functor.

0

1

2 0
−→

1

2

• for n = 3, δO2(3) is the sub-2-category of O2(3) where only the equality between
the two pasting diagrams in O2(3) – as depicted in Example 11.1.3 – is missing,
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• for n ≥ 4, δO2(n) = O2(n).

Similarly, we define the boundary 2-categories δO∼2 (n) and δÕ2(n).
Definition 11.2.3. For n ≥ 1 and 0 ≤ t ≤ n, we define the (n, t)-horn 2-category
ΛtO2(n) as the co-equalizer in 2Cat⊔

0≤i<j≤n
i 6=t,j 6=t

O2(n− 2)
⊔

0≤i≤n
i 6=t

O2(n− 1) ΛtO2(n) ,

where the maps in the (i, j)-copy are induced by the cosimplicial identities didj = dj−1di,
where dr : O2(n − 2) → O2(n − 1) and ds : O2(n − 1) → O2(n) denote the face maps for
r = i, j and s = i, j − 1. In particular, there is an inclusion ΛtO2(n) → O2(n) induced
by the face maps di : O2(n − 1) → O2(n) for 0 ≤ i ≤ n, i 6= t. More explicitly, these
2-categories are given by the following:

• for n = 1, ΛtO2(1) = [0] with ΛtO2(1) = [0]→ O2(1) = [1] given by the inclusion
of [0] at the source of the morphism in [1] if t = 1 and at the target if t = 0,
• for n = 2, Λ2O2(2), Λ1O2(2), and Λ0O2(2) are generated, respectively, by the
following data

0

1

2 0

1

2 0

1

2

with the obvious inclusions into O2(2),
• for n = 3 and 0 ≤ t ≤ 3, ΛtO2(3) is the sub-2-category where the equality between
the two pasting diagrams in O2(3) and the 2-morphism opposite to the object t
are missing. For example, when t = 0, the inclusion Λ0O2(3)→ O2(3) is given by
the following.

0

1 2

3 0

1 2

3 0

−→

1 2

3 0

=

1 2

3

• for n ≥ 4 and 0 ≤ t ≤ n, ΛtO2(n) = O2(n).

Similarly, we define the (n, t)-horn 2-categories ΛtO∼2 (n) and ΛtÕ2(n).
We are now ready to prove the promised lemmas which complete the proof of Proposi-

tion 11.2.1. Recall from Notation 8.1.1 the set Iw of generating cofibrations for the model
structure on DblCat of Theorem 8.1.15, and from Notation 6.2.5 the sets I2 and J2 of
generating cofibrations and generating trivial cofibrations for Lack’s model structure on
2Cat of Theorem 6.1.8.
Lemma 11.2.4. For all k ≥ 0, the double functor C(ιFk ) : C(δF [k]) → C(F [k]) is a
cofibration in DblCat.
Proof. The boundary δF [k] of the representable F [k] can be computed as the following
co-equalizer in sSet∆op×∆op

⊔
0≤i<j≤k

F [k − 2]
⊔

0≤i≤k
F [k − 1] δF [k] ,

where the maps in the (i, j)-copy are induced by the cosimplicial identities didj = dj−1di.
By construction of δO∼2 (k) (see Definition 11.2.2), by Remark 11.1.7, and since C preserves
colimits, we find that

C(δF [k]) = VδO∼2 (k) and C(F [k]) = VO∼2 (k),
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for all k ≥ 0. Therefore, the double functors C(ιFk ) are given by
• for k = 0, the generating cofibration I1 : ∅ → [0],
• for k = 1, the generating cofibration I ′3 : [0] t [0]→ V[1],
• for k = 2, the inclusion

0

1

2

0

2

•

•
•

0

−→ 1

2

0

2 ,

•

•
• ∼=

which is a cofibration by Corollary 8.1.5 since it is the identity on underlying
horizontal and vertical categories,
• for k = 3, the inclusion VδO∼2 (3) → VO∼2 (3), which is a cofibration by Corol-
lary 8.1.5 since it is the identity on underlying horizontal and vertical categories,
• for k ≥ 4, the identity.

This shows that the double functor C(ιFk ) is a cofibration in DblCat, for all k ≥ 0. �

Lemma 11.2.5. For all m,n ≥ 0, the 2-functors C(ιRm) : C(δR[m]) → C(R[m]) and
C(ι∆n ) : C(δ∆[n])→ C(∆[n]) are cofibrations in 2Cat.

Proof. We first prove the statement for C(ιRm). As in the proof of Lemma 11.2.4 and by
Remark 11.1.9, we find that

C(δR[m]) = δO∼2 (m) and C(R[m]) = O∼2 (m),

for all m ≥ 0. Therefore, the 2-functors C(ιRm) are given by
• for m = 0, the generating cofibration i1 : ∅ → [0],
• for m = 1, the generating cofibration i2 : [0] t [0]→ [1],
• form = 2, the inclusion δO∼2 (2)→ O∼2 (2), which is a cofibration by Corollary 6.2.3
since it is the identity on underlying categories,
• form = 3, the inclusion δO∼2 (3)→ O∼2 (3), which is a cofibration by Corollary 6.2.3
since it is the identity on underlying categories,
• for m ≥ 4, the identity.

Therefore, the 2-functor C(ιRm) is a cofibration in 2Cat, for all m ≥ 0.
We now prove the statement for C(ι∆n ). As above, we find that

C(δ∆[n]) = δÕ2(n) and C(∆[n]) = Õ2(n),

for all n ≥ 0. Therefore the 2-functors C(ι∆n ) : δÕ2(n)→ Õ2(n) can be described as the 2-
functors C(ιRm) above, but where all the morphisms of the 2-categories in play are adjoint
equivalences. Using Corollary 6.2.3, it is then straightforward to see that the 2-functor
C(ι∆n ) is also a cofibration in 2Cat, for all n ≥ 0. �

Lemma 11.2.6. For all n ≥ 1 and 0 ≤ t ≤ n, the 2-functor C(`∆n,t) : C(Λt[n])→ C(∆[n])
is a trivial cofibration in 2Cat.

Proof. We have that Λt[n] is defined as the coequalizer in sSet∆op×∆op

⊔
0≤i<j≤n
i 6=t,j 6=t

∆[n− 2]
⊔

0≤i≤n
i 6=t

∆[n− 1] Λt[n] ,
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where the maps in the (i, j)-copy are induced by the cosimplicial identities didj = dj−1di.
By construction of ΛtÕ2(n) (see Definition 11.2.3), by Remark 11.1.9, and since C pre-
serves colimits, we find that

C(Λt[n]) = ΛtÕ2(n) and C(∆[n]) = Õ2(n),

for all n ≥ 1 and 0 ≤ t ≤ n. Therefore, the 2-functors C(`∆n,t) : ΛtÕ2(n) → Õ2(n) are
given by

• for n = 1 and 0 ≤ t ≤ 1, the generating trivial cofibration j1 : [0]→ Õ2(1) = Eadj,
including [0] as one of the two end points,
• for n = 2 and 0 ≤ t ≤ 2, the inclusion ΛtÕ2(2) → Õ2(2), which is a cofibration
by Corollary 6.2.3 since it is given by adding two morphisms x → y and y → x
freely between objects x < y ∈ {0, 1, 2} \ {t} on underlying categories. Moreover,
it is a biequivalence, since it is bijective on objects, essentially full on morphisms,
and fully faithful on 2-morphisms, where essential fullness on morphisms can be
shown using the fact that all the morphisms are adjoint equivalences.
• for n = 3 and 0 ≤ t ≤ 3, the inclusion ΛtÕ2(3) → Õ2(3), which is a cofibration
by Corollary 6.2.3 since it is the identity on underlying categories. Moreover, it
is a biequivalence, since it is bijective on objects and morphisms, and it is fully
faithful on 2-morphisms, where fully faithfulness follows from the fact that there
is a unique 2-isomorphism filling the triangle of the missing 2-isomorphism and it
is given by the obvious composite of the three other 2-isomorphisms.
• for n ≥ 4 and 0 ≤ t ≤ n, the identity.

Therefore, the 2-functor C(`∆n,t) is a trivial cofibration in 2Cat, for all n ≥ 1 and for all
0 ≤ t ≤ n. �

We now prove the theorem saying that the nerve functor N : DblCat → DblCath∞ is
right Quillen.

Theorem 11.2.7. The adjunction

DblCat DblCath∞

C

N

⊥

is a Quillen pair between the model structure on DblCat of Theorem 8.1.15 for weakly
horizontally invariant double categories and the model structure on sSet∆op×∆op of Theo-
rem 10.2.4 for horizontally complete double (∞, 1)-categories.

Proof. By Theorem 5.2.23 and Proposition 11.2.1, it is enough to show that the cofi-
brations gFk × idR[m], idF [k] × qRm, and idF [k] × eR, with respect to which we localize the
Reedy/injective model structure on sSet∆op×∆op in order to obtain the model structure
DblCath∞ of Theorem 10.2.4, are sent by C to weak equivalences in DblCat. By definition
of C and by Remark 11.1.9, we have that

C(gFk × idR[m]) ∼= C(gFk )⊗ idCR[m] = C(gFk )�⊗ (∅ → CR[m]),

and similarly that
C(idF [k] × qRm) ∼= (∅ → CF [k])�⊗C(qRm), C(idF [k] × eR) ∼= (∅ → CF [k])�⊗C(eR).

Since C is left Quillen from the Reedy/injective model structure on sSet∆op×∆op in which
every object is cofibrant, the unique morphisms ∅ → CR[m] and ∅ → CF [k] are cofibra-
tions DblCat. Hence, the unique morphism ∅ → CR[m] is also a cofibration in 2Cat since
C = HC and the functor H reflects cofibrations by Remark 8.4.4. Similarly, the morphisms
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C(gFk ), C(qRm) and C(eR) are cofibrations in DblCat and 2Cat, since they are images of
monomorphisms in sSet∆op×∆op . As the model structure on DblCat is 2Cat-enriched by
Remark 8.5.7, it is enough to show that C(gFk ) is a weak equivalence in DblCat and that
C(qRm), and C(eR) are biequivalences. These statements are the content of Lemmas 11.2.8
and 11.2.9, respectively. �

The following two lemmas complete the proof of Theorem 11.2.7. Recall from Propo-
sition 8.1.18 that double biequivalences, as defined in Definition 7.2.1, are in particular
weak equivalences in the model structure on DblCat of Theorem 8.1.15.

Lemma 11.2.8. For all k ≥ 0, the double functor C(gFk ) : C(G[k])→ C(F [k]) is a double
biequivalence in DblCat. In particular, it is a weak equivalence in DblCat.

Proof. Since C preserve colimits and [k] = [1] t[0] . . . t[0] [1], we have that

C(G[k]) = V[k] and C(F [k]) = VO∼2 (k),

for all k ≥ 0. First note that, when k = 0, 1, the double functor C(gFk ) is an identity. For
k ≥ 2, let us give an example. When k = 2, the double functor C(gF2 ) is given by the
inclusion

0

1

2

•

•

0

1

2 .

0

−→

2

•

•
• ∼=

Having this example in mind, we can see that, for all k ≥ 0, C(gFk ) : V[k] → VO∼2 (k)
is the identity on objects and horizontal morphisms, and it is fully faithful on squares,
since all squares in V[k] are trivial. The double functor C(gFk ) is also injective on vertical
morphisms. Moreover, since every vertical morphism i j in VO∼2 (k) is related by
a horizontally invertible square to the composite i i + 1 . . . j, then C(gFk ) is
essentially full on vertical morphisms. This shows that the double functor C(gFk ) is a
double biequivalence, for all k ≥ 0. In particular, it is a weak equivalence in DblCat by
Proposition 8.1.18. �

Lemma 11.2.9. For all m ≥ 0, the 2-functors

C(qRm) : C(Q[m])→ C(R[m]) and C(eR) : C(R[0])→ C(NRI)

are biequivalences in 2Cat.

Proof. We first show the result for C(qRm). As in the proof of Lemma 11.2.8 and by
Remark 11.1.9, we have that

C(Q[m]) = [m] and C(R[m]) = O∼2 (m),

for all m ≥ 0. First note that, when m = 0, 1, the 2-functor C(qRm) is an identity. For
m ≥ 2, let us give an example. When m = 3, the 2-functor C(qR3 ) is given by the inclusion

0

1 2

3 0

−→

1 2

3

∼=

∼=
0

=

1 2

3 .

∼=
∼=
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Having this example in mind, we can see that, for all m ≥ 0, C(qRm) : [m]→ O∼2 (m) is the
identity on objects, and it is fully faithful on 2-morphisms, since all 2-morphisms in [m]
are trivial. The 2-functor C(qRm) is also injective on morphisms. Moreover, since every
morphism i→ j in O∼2 (m) is related by a 2-isomorphism to the composite

i→ i+ 1→ . . .→ j,

then C(qRm) is essentially full on morphisms. This shows that the 2-functor C(qRm) is a
biequivalence, for all m ≥ 0.

It remains to show that C(eR) is a biequivalence. We have that C(R[0]) = [0], and
we compute C(NRI). Recall from Example 9.2.12 that m-simplices of the bisimplicial
space NRI constant in the vertical and space directions are given by words of m letters in
{x, y}. Since C(NRI) is obtained by gluing a copy of O∼2 (m) for each m-simplex of NRI,
we have that C(NRI) has

• two objects 0 and 1, given by the 0-simplices x and y,
• two non-trivial morphisms f : 0 → 1 and g : 1 → 0, given by the 1-simplices xy
and yx,
• two non-trivial 2-isomorphisms η : idx ∼= gf and ε : idy ∼= fg, given by the 2-
simplices xyx and yxy,

such that η and ε satisfy the triangle identities, expressed by the 3-simplices yxyx and
xyxy. Higher simplices of NRI do not add any relations. Therefore, the 2-category
C(NRI) = Eadj is the “free-living adjoint equivalence”, and C(eR) = j1 : [0] → Eadj is a
generating trivial cofibration in 2Cat. In particular, it is a biequivalence. �

11.3. The nerve N is homotopically fully faithful. We now prove that the Quillen
pair C a N is a Quillen reflection which implies that the nerve functor is homotopically
fully faithful. For this, we show that the derived counit of the adjunction C a N is level-
wise a weak equivalence in DblCat. More precisely, we show that it is a trivial fibration
as described in Proposition 8.1.2. Note that, since all objects are cofibrant in DblCath∞,
the derived counit coincides with the counit.

Theorem 11.3.1. The components εA : CNA → A of the (derived) counit are trivial
fibrations in DblCat, for all double categories A. In particular, these are weak equivalences
in DblCat and therefore the adjunction C a N is a Quillen reflection.

Proof. Let A be a double category. We first compute the double category CNA. By a
formula for left Kan extensions, we have that

CNA = colim(Y ↓ NA −→ ∆×∆×∆ X−→ DblCat),

where Y : ∆×∆×∆ → Set(∆op)×3 denotes the Yoneda embedding and Y ↓ NA is the
slice category over NA. An object in Y ↓ NA is a map R[m] × F [k] × ∆[n] → NA, or
equivalently, by the adjunction C a N, a double functor (VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n)→ A.
Therefore, for each double functor (VO∼2 (k) ⊗ O∼2 (m)) ⊗ Õ2(n) → A, we glue a copy of
Xm,k,n = (VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n) in CNA.

The double category CNA is cofibrant, since every object in DblCath∞ is cofibrant and
C is left Quillen. Therefore its underlying horizontal and vertical categories are free by
Corollary 8.1.6 and it is enough to describe the generating morphisms. First note that
CNA has the same objects as A. The horizontal morphisms in CNA are freely generated
by

• a horizontal morphism f : A→ B, for each horizontal morphism f of A,
• a horizontal morphism f̃(f,g,η,ε) : A → B together with a horizontal morphism
g̃(f,g,η,ε) : B → A, for each horizontal adjoint equivalence (f, g, η, ε) in A.
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where idA, f̃(idA,idA,ididA ,ididA ), and g̃(idA,idA,ididA ,ididA ) are identified with the identity idA
at the object A of CNA. The vertical morphisms in CNA are freely generated by a vertical
morphism u : A A′, for each vertical morphism u of A, where eA is identified with the
identity eA at the object A of CNA. It remains to identify the squares of CNA. They are
generated by:

• vertically invertible squares η̃(f,g,η,ε) : (eA idA
g̃ f̃

eA) and ε̃(f,g,η,ε) : (eB f̃ g̃
idB eB) sat-

isfying the triangle identities, for each horizontal adjoint equivalence (f, g, η, ε)
in A,
• a square α : (u f

f
′ v), for each square α in A,

• a square α̃ : (u f̃

f̃ ′
v), for each square α in A whose horizontal boundaries are

horizontal adjoint equivalences (f, g, η, ε) and (f ′, g′, η′, ε′),
• a vertically invertible square θf,k,g,h : (eA g̃ f

k h̃
eC), for each vertically invertible

square θ in A as depicted below,

A

A B′ C

B C

• •

f g

'

'
h k

θ

∼=

where g and h are horizontal adjoint equivalences,
• a vertically invertible square ϕf,g,h : (eA h

gf
eC), for each vertically invertible square

ϕ in A as depicted below,

A

A B C

C

• •

h

f g

ϕ

∼=

• a vertically invertible square ϕ̃f,g,h : (eA h̃

g̃ f̃
eC), for each vertically invertible

square ϕ in A as above, but where the morphisms f , g, and h are all horizontal
adjoint equivalences,
• a horizontally invertible square ψu,v,w : (w idA

idA′′
v u), for each horizontally invertible

square ψ in A as depicted below.
A

A′

A′′

A

A′′

•u

•v

•w ∼=ψ

Furthermore, these squares are submitted to relations represented by double functors
(VO∼2 (k) ⊗ O∼2 (m)) ⊗ Õ2(n) → A, where k + m + n ≥ 3. In particular, these relations
hold for the squares that represent them in A.

Then the double functor εA : CNA→ A is given by the identity on objects and by send-
ing each horizontal morphism, vertical morphism, and square in CNA to the horizontal
morphism, vertical morphism, and square in A representing it. This defines a double
functor since the underlying horizontal and vertical categories are free, and the relations



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 183

on squares in CNA are satisfied by the squares representing them in A. Moreover, it is
straightforward to see that this double functor is surjective on objects, full on horizontal,
and full on vertical morphisms. Fully faithfulness on squares follows from the fact that,
given a boundary in CNA, for each square in A in the representing boundary, we added a
unique square, and the fact that the relations satisfied for squares in A are also satisfied
in CNA. �

Remark 11.3.2. Since all objects are cofibrant in DblCath∞ by Theorem 10.2.4, the func-
tor C : DblCath∞ → DblCat preserves weak equivalences by Ken Brown’s Lemma (see
Lemma 4.4.5). Therefore, since the components εA : CNA → A of the counit are weak
equivalences by Theorem 11.3.1, for all A ∈ DblCat, the nerve N : DblCat → DblCath∞
reflects weak equivalences by 2-out-of-3.

11.4. Level of fibrancy of nerves of double categories. The nerve of any double
category is almost fibrant in the model structure DblCath∞ of Theorem 10.2.4. Indeed,
aside from the vertical Reedy/injective fibrancy condition, the nerve of a double category
satisfies the conditions of a horizontally complete double (∞, 1)-category. As we will see,
vertical Reedy/injective fibrancy for the nerve of a double category A is satisfied if and
only if the double category A is weakly horizontally invariant.

Let us first summarize the properties that the nerve of a general double category
satisfies.

Theorem 11.4.1. The nerve of a double category A is such that
(i) (NA)−,k : ∆op → sSet is Reedy/injective fibrant, for all k ≥ 0,
(ii) (NA)m,− : ∆op → sSet is satisfies the Segal condition, for all m ≥ 0,
(iii) (NA)−,k : ∆op → sSet is a complete Segal space, for all k ≥ 0.

To show this theorem we will need several technical results. The first piece is a Quillen
pair between Lack’s model structure on 2Cat and the Kan-Quillen model structure on
sSet, whose left adjoint is given by the restriction of the functor C : sSet∆op×∆op → 2Cat
to its space component.

Definition 11.4.2. We define the cosimplicial 2-category
X : ∆→ 2Cat,

[n] 7→ Õ2(n).

Proposition 11.4.3. The cosimplicial 2-category X induces an adjunction

∆

Set∆op

2Cat ,X

C

N

>

where C is the left Kan extension of X along the Yoneda embedding, and we have that

(NA)n ∼= 2Cat(Õ2(n),A),
for all A ∈ 2Cat and all n ≥ 0.

Proof. This is a direct application of Proposition 11.1.1, since 2Cat is locally presentable
by Proposition 2.1.6. �

This adjunction gives the desired Quillen pair between the model structures for 2-
categories and for Kan complexes.

Proposition 11.4.4. The adjunction
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2Cat sSet

C

N

⊥

is a Quillen pair between Lack’s model structure on 2Cat of Theorem 6.1.8 and the Kan-
Quillen model structure on sSet of Theorem 5.2.7.
Proof. By Remark 4.4.4, it is enough to show that C sends generating cofibrations and
generating trivial cofibrations in sSet to cofibrations and trivial cofibrations in 2Cat, re-
spectively. Recall from Theorem 5.2.7 that generating cofibrations and trivial cofibrations
in sSet are given by the maps ι∆n : δ∆[n] → ∆[n], for n ≥ 0, and `∆n,t : Λt[n] → ∆[n], for
n ≥ 1 and 0 ≤ t ≤ n, respectively. Note that we have C(ι∆n ) = C(ι∆n ) and C(`∆n,t) = C(`∆n,t).
Therefore, by Lemmas 11.2.5 and 11.2.6, we see that these are cofibrations and trivial
cofibrations in 2Cat, respectively. This shows the result. �

We will reformulate conditions (i-iii) of Theorem 11.4.1, which are for now given in
terms of weak equivalences between mapping spaces, using the right Quillen functor N
of the above proposition. This can be done by applying the following lemma.
Lemma 11.4.5. Let X ∈ sSet∆op×∆op be a trisimplicial set which is constant in the space
direction. Then, for every double category A, we have an isomorphism of simplicial sets

Map(X,NA) ∼= N (H[C(X),A]ps)
natural in X and A.
Proof. For all n ≥ 0, we have isomorphisms of sets

Map(X,NA)n ∼= sSet∆op×∆op(X ×∆[n],NA)
∼= DblCat(C(X ×∆[n]),A)
∼= DblCat(C(X)⊗ Õ2(n),A)
∼= 2Cat(Õ2(n),H[C(X),A]ps)
∼= N (H[C(X),A]ps)n

natural in n, X, and A, where the first isomorphism holds by definition of the map-
ping space (see Proposition 10.1.5), the second by the adjunction C a N, the third by
definition of C and the fact that X is constant in the space direction, the fourth by
the universal property of ⊗ (see Proposition 3.5.2), and the last isomorphism by Propo-
sition 11.4.3. In particular, these isomorphisms of sets assemble into an isomorphism
Map(X,NA) ∼= N (H[C(X),A]ps) of simplicial sets, which is natural in X and A. �

We now prove Theorem 11.4.1 assuming Lemmas 11.4.6 and 11.4.7 below.

Proof of Theorem 11.4.1. Let A be a double category. By Lemmas 11.4.6 and 11.4.7, the
2-functor H[C(idF [k] × ιRm),A]ps is a fibration in 2Cat, and the 2-functors

H[C(idF [k] × qRm),A]ps, H[C(idF [k] × eR),A]ps and H[C(gFk × idR[m]),A]ps

are trivial fibrations in 2Cat, for all m, k ≥ 0. As N : 2Cat → sSet is right Quillen
by Proposition 11.4.4, these are sent by N to fibrations and trivial fibrations in sSet,
respectively. As the map idF [k] × ιRm is constant in the space direction, by Lemma 11.4.5,
we have that

Map(idF [k] × ιRm,NA) ∼= N (H[C(idF [k] × ιRm),A]ps).
By the above arguments, this is a fibration in sSet, for all m, k ≥ 0, which shows (i) saying
that (NA)−,k is Reedy/injective fibrant. Similarly, we have that

Map(idF [k] × qRm,NA) ∼= N (H[C(idF [k] × qRm),A]ps),
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Map(idF [k] × eR,NA) ∼= N (H[C(idF [k] × eR),A]ps),
Map(gFk × idR[m],NA) ∼= N (H[C(gFk × idR[m]),A]ps),

and these are trivial fibrations in sSet by the above arguments, for all m, k ≥ 0. The fact
that Map(idF [k] × qRm,NA) and Map(idF [k] × eR,NA) are in particular weak equivalences
in sSet shows that (iii) holds, i.e., we have the Segal and completeness conditions for
(NA)−,k, and the fact that Map(gFk × idR[m],NA) is in particular a weak equivalence in
sSet gives (ii), i.e., the Segal condition for (NA)m,−. �

The following two lemmas complete the proof of Theorem 11.4.1.

Lemma 11.4.6. Let A be a double category. The 2-functor H[C(idF [k] × ιRm),A]ps is a
fibration in 2Cat, and the 2-functors H[C(idF [k]×qRm),A]ps and H[C(idF [k]×eR),A]ps are
trivial fibrations in 2Cat, for all m, k ≥ 0.

Proof. By the universal property of the tensor ⊗ in Proposition 3.5.2, we get isomorphisms
of 2-categories as in the following commutative square.

H[VO∼2 (k)⊗O∼2 (m),A]ps H[VO∼2 (k)⊗ δO∼2 (m),A]ps

[O∼2 (m),H[VO∼2 (k),A]ps]2,ps [δO∼2 (m),H[VO∼2 (k),A]ps]2,ps

H[C(idF [k] × ιRm),A]ps

[C(ιRm),H[VO∼2 (k),A]ps]2,ps

∼= ∼=

As every 2-category is fibrant and C(ιRm) is a cofibration in 2Cat by Lemma 11.2.5, the 2-
functor [C(ιRm),H[VO∼2 (k),A]ps]2,ps is a fibration in 2Cat by monoidality of Lack’s model
structure (see Theorem 6.3.5). Hence H[C(idF [k] × ιRm),A]ps is also a fibration in 2Cat.

Similarly, we have isomorphisms H[C(idF [k] × qRm),A]ps ∼= [C(qRm),H[VO∼2 (k),A]ps]2,ps
and H[C(idF [k] × eR),A]ps ∼= [C(eR),H[VO∼2 (k),A]ps]2,ps. By Lemma 11.2.9 and since C
preserves cofibrations, the 2-functors C(qRm) and C(eR) are trivial cofibrations in 2Cat.
Therefore, by monoidality of Lack’s model structure, the 2-functors

[C(qRm),H[VO∼2 (k),A]ps]2,ps and [C(eR),H[VO∼2 (k),A]ps]2,ps

are trivial fibrations in 2Cat and hence so are
H[C(idF [k] × qRm),A]ps and H[C(idF [k] × eR),A]ps. �

For the last piece for the proof of Theorem 11.4.1, we refer the reader to Definitions 3.3.1
and 3.3.3 for a description of the data of the underlying horizontal 2-category H[−,−]ps
of double functors, horizontal pseudo-natural transformations, and modifications with
trivial vertical boundaries.

Lemma 11.4.7. Let A be a double category. The 2-functor H[C(gFk × idR[m]),A]ps is a
trivial fibration in 2Cat, for all m, k ≥ 0.

Proof. By the isomorphisms of double categories in Proposition 3.3.5 introducing the Gray
tensor ⊗Gr and by applying H to these isomorphisms, we get isomorphisms of 2-categories
as in the following commutative square.

H[VO∼2 (k)⊗O∼2 (m),A]ps H[V[k]⊗O∼2 (m),A]ps

H[VO∼2 (k), [HO∼2 (m),A]ps]ps H[V[k], [HO∼2 (m),A]ps]ps

H[C(gFk × idR[m]),A]ps

H[C(gFk ), [HO∼2 (m),A]ps]ps

∼= ∼=
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To see that the 2-functor H[C(gFk × idR[m]),A]ps is a trivial fibration in 2Cat, it is enough
to show that the 2-functor

H[C(gFk ),B]ps : H[VO∼2 (k),B]ps → H[V[k],B]ps

is a trivial fibration in 2Cat, for any B ∈ DblCat. Then, by applying this result to
B = [HO∼2 (m),A]ps, we get that H[C(gFk ), [HO∼2 (m),A]ps]ps is a trivial fibration in 2Cat.
Then, by the commutative square above, we get that H[C(gFk × idR[m]),A]ps is also a
trivial fibration in 2Cat.

We first describe the double functor C(gFk ) : V[k] → VO∼2 (k) on objects and vertical
morphisms. Since the horizontal morphisms and squares of V[k] are all trivial, this de-
scribes the image of C(gFk ) completely. We denote by ui : i i+ 1, for 0 ≤ i < k, the
vertical morphisms generating the double category V[k]. Then the double functor C(gFk )
is the identity on objects and sends a generating vertical morphism ui : i i+ 1 of V[k]
to the vertical morphism i i+ 1 of VO∼2 (k) represented by {i, i+ 1}.

Now let B be a double category. We show that the 2-functor H[C(gFk ),B]ps is a trivial
fibration in 2Cat, by verifying that it is surjective on objects, full on morphisms, and fully
faithful on 2-morphisms.

Given a double functor F : V[k]→ B, consider the composite

VO∼2 (k) Vπ−→ V[k] F−→ B,

where π : O∼2 (k) → [k] is the identity on objects and acts on hom-categories as the
unique functor O∼2 (k)(i, j) → [k](i, j) = [0]. The composite above is a double functor
in H[VO∼2 (k),B] such that F (Vπ)C(gFk ) = F , which proves surjectivity on objects.

Let F,G : VO∼2 (k)→ B be double functors, and ϕ : FC(gFk )⇒ GC(gFk ) be a horizontal
pseudo-natural transformation in H[V[k],B]ps. We want to define a horizontal pseudo-
natural transformation ϕ : F ⇒ G in H[VO∼2 (k),B]ps such that ϕC(gFk ) = ϕ. By (hn2) of
Definition 3.2.1, it is enough to define ϕ on the generating vertical morphisms of VO∼2 (k)
which are represented by {i, j} for i < j. When j = i + 1, we set ϕ{i,i+1} := ϕui . For
j > i+1, let θ denote the unique horizontally invertible square in VO∼2 (k) from the vertical
morphism represented by {i, j} to the vertical composite of morphisms represented by
[i, j] = {l | i ≤ l ≤ j}. Then there is a unique way of defining ϕ{i,j} so that ϕ is natural;
namely as follows.

Fi

Fj

Gi

Gj

•F{i,j} •G{i,j}ϕ{i,j}

Fi F i

F (i+ 1)

...

FjFj

•F{i,j}=

•F{i,i+1}

•

•

Fθ
∼=

Gi Gi

G(i+ 1)

...

Gj Gj

•G{i,j}

•G{i,i+1}

•

•

(Gθ)−1

∼=

ϕui

ϕui+1

ϕuj−1

...

This defines a horizontal pseudo-natural transformation ϕ : F ⇒ G which maps to ϕ via
H[C(gFk ),B]ps, and hence shows fullness on morphisms.

Let ϕ,ψ : F ⇒ G be horizontal pseudo-natural transformations in H[VO∼2 (k),B]ps,
and let µ : ϕ := ϕC(gFk ) ψ := ψC(gFk ) be a 2-morphism in H[V[k],B]ps, i.e., a modifi-
cation with trivial vertical boundaries. The modification µ comprises the data of squares
µi : (eFi ϕi

ψi
eGi), for 0 ≤ i ≤ k, natural with respect to the square components of ϕ
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and ψ. By the relations between the square components of ϕ and ϕ, and the ones of ψ
and ψ as indicated in the pasting equality above, one can show that the squares µi of
µ are also natural with respect to the square components of ϕ and ψ. Therefore µ also
defines a 2-morphism µ : ϕ ψ in H[VO∼2 (k),B]ps. As it is the unique such 2-morphism
in H[VO∼2 (k),B]ps that maps to µ via H[C(gFk ),B]ps, this shows fully faithfulness on
2-morphisms. �

Finally, we show that the nerve of a double category satisfies the missing condition
of a horizontally complete double (∞, 1)-category in the list of Theorem 11.4.1, namely
the Reedy/injective fibrancy in the vertical direction, precisely when the double category
is weakly horizontally invariant. Recall that the weakly horizontally invariant double
categories are the fibrant objects in the model structure on DblCat of Theorem 8.1.15.
Theorem 11.4.8. The nerve of a double category A is such that (NA)m,− : ∆op → sSet
is Reedy/injective fibrant, for all m ≥ 0, if and only if the double category A is weakly
horizontally invariant.
Proof. Let A be a double category. Suppose that A is weakly horizontally invariant,
then NA is a horizontally complete double (∞, 1)-category since N : DblCat→ DblCath∞
is right Quillen. In particular, this says that (NA)m,− : ∆op → sSet is Reedy/injective
fibrant, for all m ≥ 0.

Conversely, suppose that (NA)m,− : ∆op → sSet is Reedy/injective fibrant, for all
m ≥ 0. Then (NA)0,− is Reedy/injective fibrant and therefore the map

(ιF1 )∗ : (NA)0,1 ∼= Map(F [1],NA)→ Map(δF [1],NA) ∼= (NA)0,0 × (NA)0,0.

is a fibration in sSet. In particular, it has the right lifting property with respect to
`∆1,1 : ∆[0]→ ∆[1], i.e., there is a lift in every commutative diagram as below.

∆[0] (NA)0,1

∆[1] (NA)0,0 × (NA)0,0

`∆1,1 (ιF1 )∗

v

(f, f ′)

By Descriptions 13.1.2 and 13.1.4, the upper map v is the data of a vertical morphism
v : B B′ in A, while the bottom map (f, f ′) is the data of a pair of horizontal adjoint
equivalences (f : A '−→ B, f ′ : A′ '−→ B′) in A. Therefore, the existence of a lift in each
diagram as above corresponds to the existence of a weakly horizontally invertible square
in A of the form

A B

A′ B′ ,

•u •v
'
f

f ′
'

'

for each such data (v, f, f ′). In other words, this says that A is weakly horizontally
invariant. �

Remark 11.4.9. In particular, since a horizontal double category is not generally weakly
horizontally invariant (see Remark 8.4.5), the nerve NHA of a 2-categoryA is not generally
fibrant in DblCath∞. Since every 2-category is fibrant in Lack’s model structure on 2Cat,
this shows that the composite NH is not right Quillen from 2Cat to DblCath∞. Therefore,
we will need to define the nerve for 2-categories differently in the next section.
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12. Nerve of 2-categories

As 2-categories are horizontally embedded in double categories, we hope that the nerve
functor N : DblCat→ DblCath∞ restricts to a nerve functor 2Cat→ 2CSS. Since the nerve
of a double category HA associated to a 2-category A is not generally fibrant, as explained
in Remark 11.4.9, we need to define the nerve of a 2-category as the nerve of the fibrant
replacement of HA given by H'A in DblCat; see Theorem 8.4.9. In Section 12.1, we show
that the composite of the Quillen pairs L' a H' and C a N restrict to a Quillen pair
between 2Cat and 2CSS. The (derived) counit of the composite of these adjunctions is also
level-wise a biequivalence, and we get a homotopically full embedding of 2Cat into 2CSS.
As all objects are fibrant in 2Cat, the nerve NH' preserves weak equivalences, and we
can further show in Section 12.2 that Lack’s model on 2Cat is right-induced from 2CSS
along NH'. In particular, as the weak equivalences and fibrations are determined through
their images under NH', this says that the homotopy theory of 2-categories is created by
that of 2-fold complete Segal spaces. In Section 12.3, we compare the nerve of the double
categories HA and H'A, by showing that the nerve of the latter is a fibrant replacement
of the nerve of the former in 2CSS, and hence also in DblCath∞.

12.1. The nerve NH' is right Quillen and homotopically fully faithful. We con-
sider the composite of the Quillen pairs

2Cat DblCat DblCath∞ ,
L'

H'

⊥

C

N

⊥

and show that this gives a Quillen pair between Lack’s model structure on 2Cat and the
model structure 2CSS on sSet∆op×∆op for 2-fold complete Segal spaces. Since this latter
is obtained as a left Bousfield localization of DblCath∞ by Theorem 10.3.3, we can again
apply Theorem 5.2.23.

Theorem 12.1.1. The adjunction

2Cat 2CSS

L'C

NH'

⊥

is a Quillen pair between Lack’s model structure on 2Cat and the model structure on
sSet∆op×∆op for 2-fold complete Segal spaces, i.e., (∞, 2)-categories.

Remark 12.1.2. Note that the functor L' : DblCat→ 2Cat does not preserve tensors. For
example, the 2-category L'(V[1] ⊗ [1]) is generated by a non-invertible 2-morphism as
below left, while the 2-category L'(V[1])⊗2 [1] is generated by a 2-isomorphism as below
right.

0 1

0′ 1′

' '

0 1

0′ 1′

' '
∼=

However, the fact that the left-hand 2-morphism is not invertible in a square coming from
a pair of a vertical morphism and a horizontal morphism is the only difference between
L'(−⊗−) and L'(−)⊗2 L

'(−).

Proof. First note that the adjunction L'C a NH' is a Quillen pair between 2Cat and
DblCath∞, since it is a composite of the two Quillen pairs L' a H' of Theorem 8.4.7 and
C a N of Theorem 11.2.7. By Theorem 5.2.23, it is enough to show that the functor L'C
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sends the cofibrations eF × idR[m] and ck, with respect to which we localize DblCath∞ to
obtain 2CSS in Theorem 10.3.3, to weak equivalences in 2Cat.

We first show that L'C(eF × idR[m]) is a biequivalence. By a similar computation to
the one of C(NRI) in the proof of Lemma 11.2.9, we obtain that

L'C(NF I ×R[m]) ∼= L'(VÕ2(k)⊗O∼2 (m)).

Then the squares in the tensor VÕ2(k) ⊗ O∼2 (m) induced from vertical morphisms in
VÕ2(k) and morphisms in O∼2 (m) must be weakly vertically invertible, since all vertical
morphisms in VÕ2(k) are vertical equivalences, and these correspond to 2-isomorphisms
in L'(VÕ2(k)⊗O∼2 (m)), by a dual version of Lemma 3.6.9. By Remark 12.1.2, we deduce
that L' preserves this tensor:

L'(VÕ2(k)⊗O∼2 (m)) ∼= Õ2(k)⊗2 O
∼
2 (m) ∼= L'C(NF I)⊗2 L

'C(R[m]).
Therefore, L'C(eF × idR[m]) ∼= L'C(eF )�⊗2 (∅ → L'CR[m]). Both morphisms in
this pushout-product are cofibrations in 2Cat since L'C is left Quillen from DblCath∞,
and therefore, by monoidality of the model structure on 2Cat (see Theorem 6.3.5), it is
enough to show that L'C(eF ) is a biequivalence. But this is clear since the 2-functor
L'C(eF ) : L'C(F [0])→ L'C(NF I) can be identified with the generating trivial cofibra-
tion j1 : [0]→ Eadj in 2Cat.

We now show that the 2-functor L'C(ck) : L'C(F [0])→ L'C(F [k]) is a biequivalence.
It is given by the inclusion [0]→ Õ2(k) at 0. First note that for k = 0, this is the identity.
For k ≥ 1, it is a biequivalence since it is

• bi-essentially surjective on objects as every object in Õ2(k) is related by an adjoint
equivalence to the object 0,
• essentially full on morphisms since every composite of adjoint equivalences 0→ 0
in Õ2(k) is related by a 2-isomorphism to id0, which is given by a pasting of units
and counits of the adjoint equivalences,
• fully faithful on 2-morphisms since the only 2-morphism id0 ⇒ id0 in Õ2(k) is the
identity.

This proves the theorem. �

As in the double categorical case, the adjunction L'C a NH' is a Quillen reflection
and hence the nerve NH' is homotopically fully faithful. Again, since all objects in 2CSS
are cofibrant, the derived counit of the adjunction L'C a NH' coincide with the counit,
and we show that it is level-wise a biequivalence.

Theorem 12.1.3. The components εA : L'CNH'A → A of the (derived) counit are
biequivalences, for all 2-categories A. In particular, the adjunction L'C a NH' is a
Quillen reflection.

Proof. This follows from the fact that the (derived) counits of the adjunctions C a N and
L' a H' are weak equivalences, by Theorems 11.3.1 and 8.4.7, respectively. �

Remark 12.1.4. We recall the adjunction P a D between Cat and 2Cat introduced in
Proposition 2.1.13. By Theorem 6.1.14, these functors form a Quillen reflection between
the canonical model structure on Cat and Lack’s model structure on 2Cat. By composing
with the Quillen reflection of Theorems 12.1.1 and 12.1.3, we obtain a Quillen reflection

Cat 2Cat 2CSS

P

D

⊥

L'C

NH'

⊥
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between the canonical model structure on Cat and the model structure on sSet∆op×∆op

for 2-fold complete Segal spaces, i.e., (∞, 2)-categories.

12.2. 2Cat is right-induced from 2CSS along NH'. We now show that Lack’s model
structure on 2Cat is right-induced from the model structure 2CSS for 2-fold complete
Segal spaces along the nerve NH'. In particular, this says that the homotopy theory of 2-
categories is determined by the homotopy theory of 2-fold complete Segal spaces through
its image under NH'.

Theorem 12.2.1. Lack’s model structure on 2Cat of Theorem 6.1.8 is right-induced along
the adjunction

2Cat 2CSS

L'C

,
NH'

⊥

where 2CSS denotes the model structure on sSet∆op×∆op of Theorem 10.3.3 for 2-fold
complete Segal spaces.

Proof. It is enough to show that a 2-functor F is a weak equivalence (resp. fibration)
in 2Cat if and only if NH'F is a weak equivalence (resp. fibration) in 2CSS, as model
structures are uniquely determined by their classes of weak equivalences and fibrations.

Since the functor NH' is right Quillen, it preserves fibrations. Moreover, since all
objects are fibrant in 2Cat, the functor NH' also preserves weak equivalences by Ken
Brown’s Lemma (see Lemma 4.4.5). This shows that, if F is a weak equivalence (resp. fi-
bration) in 2Cat, then NH'F is a weak equivalence (resp. fibration) in 2CSS.

Now let F : A → B be a 2-functor such that NH'F : NH'A → NH'B is a weak
equivalence in 2CSS. Since all objects are cofibrant in 2CSS, by Ken Brown’s Lemma
(see Lemma 4.4.5), the left Quillen functor L'C preserves weak equivalences. Therefore,
the 2-functor L'CNH'F is a biequivalence. We then have a commutative square

L'CNH'A L'CNH'B

A B ,

L'CNH'F
∼

εA

∼

εB

∼

F

where the vertical 2-functors are biequivalences by Theorem 12.1.3. By 2-out-of-3, we get
that F is also a biequivalence.

Finally, let F : A → B be a 2-functor such that NH'F : NH'A → NH'B is a fibration
in 2CSS. We show that F has the right lifting property with respect to the generating
trivial cofibrations j1 : [0]→ Eadj and j2 : [1]→ Cinv in 2Cat as described in Notation 6.2.5,
where Eadj denotes the “free-living adjoint equivalence” and Cinv denotes the “free-living
2-isomorphism”. First note that, if NH'F is a fibration, then (NH'F )m,k is a fibration
in sSet for all m, k ≥ 0, since fibrations between fibrant objects in 2CSS are in particular
level-wise fibrations (see Proposition 5.2.20 and Remark 10.1.9).

By taking m = k = 0, as (NH'F )0,0 is a fibration in sSet, there is a lift in every
commutative diagram as below left.

∆[0] (NH'A)0,0

∆[1] (NH'B)0,0

`∆1,1 (NH'F )0,0

[0] A

Eadj B

j1 F



RELATIONS BETWEEN 2-DIMENSIONAL CATEGORIES AND THEIR ∞-ANALOGUES 191

By Description 13.2.1, a 0-simplex in (NH'A)0,0 is an object of A, and a 1-simplex in
(NH'A)0,0 is an adjoint equivalence inA. Therefore, the existence of a lift in each diagram
as above left corresponds to the existence of a lift in each diagram as above right. This
shows that F has the right lifting property with respect to j1.

Now take m = 1 and k = 0. As (NH'A)1,0 is a fibration in sSet, there is a lift in every
commutative diagram as below left.

∆[0] (NH'A)1,0

∆[1] (NH'B)1,0

`∆1,1 (NH'F )1,0

[1] A

[1]⊗2 Eadj B

j′2 F

By Description 13.2.2, a 0-simplex in (NH'A)1,0 is a morphism of A, and a 1-simplex in
(NH'A)1,0 is a 2-isomorphism in A, as depicted in Description 13.2.3 (1). Therefore, the
existence of a lift in each diagram as above left corresponds to the existence of a lift in
each diagram as above right. Now the generating trivial cofibration j2 : [1] → Cinv is a
retract of j′2 of the following form

[1] [1] [1]

Cinv [1]⊗2 Eadj Cinv ,

j2 j′2 j2

i r

where i sends the 2-isomorphism of Cinv to the 2-isomorphism of [1]⊗2 Eadj, and r sends
the adjoint equivalences of Eadj to identities, and the 2-isomorphism of [1] ⊗2 Eadj to
the 2-isomorphism of Cinv. Therefore, since F has the right lifting property with respect
to j′2, then F also has the right lifting property with respect to j2. This shows that F is
a fibration in 2Cat and concludes the proof. �

12.3. Comparison between the nerves NH and NH'. We now want to compare
the nerves NHA and NH'A of a 2-category A. For this, we will construct a homotopy
equivalence between the spaces (NHA)m,k and (NH'A)m,k. Their sets of n-simplices are
given by

(NHA)m,k,n = DblCat(Xm,k,n,HA) ∼= 2Cat(LXm,k,n,A)
and

(NH'A)m,k,n = DblCat(Xm,k,n,H'A) ∼= 2Cat(L'Xm,k,n,A).
Let us first describe the 2-categories L'Xm,k,n and LXm,k,n.

Description 12.3.1. The 2-category LXm,k,n is obtained from the double category

Xm,k,n = (VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n)
by identifying the objects (x, y, z) ∼ (x, y′, z), for all 0 ≤ x ≤ m, 0 ≤ y, y′ ≤ k, and
0 ≤ z ≤ n, and by identifying the vertical morphisms (x, g, z) : (x, y, z) (x, y′, z), where
g ∈ O∼2 (k)(y, y′), with the identity at (x, y, z) ∼ (x, y′, z). We denote by [x, z] the equiv-
alence class {(x, y, z) | 0 ≤ y ≤ k}. Then, the 2-category LXm,k,n has

• objects [x, z] for all 0 ≤ x ≤ m and 0 ≤ z ≤ n,
• morphisms freely generated by

– a morphism (f, y, z) : [x, z] → [x′, z] where f ∈ O∼2 (m)(x, x′) is represented
by the set {x, x′}, for all 0 ≤ x, x′ ≤ m, 0 ≤ y ≤ k, and 0 ≤ z ≤ n,
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– a morphism (x, y, h) : [x, z]→ [x, z′] where h ∈ Õ2(n)(z, z′) is represented by
the set {z, z′}, for all 0 ≤ x ≤ m, 0 ≤ y ≤ k, and 0 ≤ z, z′ ≤ n,

• a 2-morphism α : f ⇒ f ′ for each square α : (u f

f
′ v) in Xm,k,n.

Description 12.3.2. The 2-category L'Xm,k,n has

• the same objects as the double category Xm,k,n = (VO∼2 (k) ⊗ O∼2 (m)) ⊗ Õ2(n),
i.e., triples (x, y, z) with 0 ≤ x ≤ m, 0 ≤ y ≤ k, 0 ≤ z ≤ n,
• morphisms generated by

– a morphism (f, y, z) : (x, y, z) → (x′, y, z) where f ∈ O∼2 (m)(x, x′) is repre-
sented by the set {x, x′}, for all 0 ≤ x, x′ ≤ m, 0 ≤ y ≤ k, and 0 ≤ z ≤ n,

– a morphism (x, y, h) : (x, y, z) → (x, y, z′) where h ∈ Õ2(n)(z, z′) is repre-
sented by the set {z, z′}, for all 0 ≤ x ≤ m, 0 ≤ y ≤ k, and 0 ≤ z, z′ ≤ n,

– an adjoint equivalence (x, g, z) : (x, y, z) '−→ (x, y′, z) where g ∈ O∼2 (k)(y, y′)
is represented by the set {y, y′}, for all 0 ≤ x ≤ m, 0 ≤ y, y′ ≤ k, and
0 ≤ z ≤ n,

• a 2-morphism α : vf ⇒ f
′
u for each square α : (u f

f
′ v) in Xm,k,n.

Example 12.3.3. We compute these 2-categories in the case where m = 1, k = 1, and
n = 0. Let us denote by u : 0′ 1′ the vertical morphism in V[1] and by f : 0 → 1 the
morphism in [1]. We have that L(V[1] ⊗ [1]) is the free 2-category on a 2-morphism as
depicted below left, while L'(V[1] ⊗ [1]) is the 2-category as depicted below right. We
omit the z-component here since it is always 0.

[0] [1]

(f, 0′)

(f, 1′)

(f, u)

(0, 0′) (1, 0′)

(0, 1′) (1, 1′)

(f, 0′)

(f, 1′)

(0, u) ' ' (1, u)
(f, u)

Remark 12.3.4. Using these descriptions, we can see that the 0-simplices of the simpli-
cial sets (NHA)0,0 and (NH'A)0,0 are the objects of A, and the ones of (NHA)1,0 and
(NH'A)1,0 the morphisms of A. The 0-simplices in (NHA)1,1 are the 2-morphisms of A
as in the above left diagram of Example 12.3.3, while the ones of (NH'A)1,1 are the 2-
morphisms of A as in the above right diagram of Example 12.3.3. Finally, the 0-simplices
in (NHA)0,1 are just objects of A, while the ones of (NH'A)0,1 are adjoint equivalences
in A. We describe these simplicial sets in greater detail in Sections 13.2 and 13.3.

There is a comparison morphism πm,k,n : L'Xm,k,n → LXm,k,n which sends an object
(x, y, z) to the object [x, z], morphisms (f, y, z) and (x, y, h) to the morphisms (f, y, z)
and (x, y, h), the adjoint equivalences (x, g, z) to the identity at [x, z], and a 2-morphism
α : vf ⇒ f

′
u to the corresponding 2-morphism α : f ⇒ f

′. Note that this is a 2-functor
since the adjoint equivalences are sent to identities. Moreover, this 2-functor is clearly
surjective on objects, full on morphisms, and fully faithful on 2-morphisms. By construct-
ing an inverse 2-functor up to pseudo-natural equivalence (see Definition 2.4.6) to this
comparison morphism πm,k,n, we obtain the following result.

Theorem 12.3.5. Let A be a 2-category. The map π∗ : NHA → NH'A induced by the
comparison maps πm,k,n : L'Xm,k,n → LXm,k,n is level-wise a homotopy equivalence in
sSet∆op×∆op. In particular, this exhibits NH'A as a fibrant replacement of NHA in 2CSS
(or in DblCath∞).
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Proof. We first construct an inverse 2-functor up to pseudo-natural equivalence

ιm,k,n : LXm,k,n → L'Xm,k,n
to the 2-functor πm,k,n such that the composite πm,k,nιm,k,n is the identity at LXm,k,n. It
sends an object [x, z] to the object (x, 0, z), a generating morphism (f, y, z) : [x, z]→ [x′, z]
with f ∈ O∼2 (m)(x, x′) represented by the set {x, x′} to the composite

(x, 0, z) (x,g,z)−−−−→
'

(x, y, z) (f,y,z)−−−−→ (x′, y, z) (x′,g′,z)−−−−−→
'

(x′, 0, z),

and a generating morphism (x, y, h) : [x, z]→ [x, z′] with h ∈ Õ2(n)(z, z′) represented by
the set {z, z′} to the composite

(x, 0, z) (x,g,z)−−−−→
'

(x, y, z) (x,y,h)−−−−→ (x, y, z′) (x,g′,z′)−−−−−→
'

(x, 0, z′),

where g ∈ Õ2(k)(0, y) is represented by the set {0, y} and g′ ∈ Õ2(k)(y, 0) is its weak
inverse. The assignment on 2-morphisms is uniquely determined by these assignments on
objects and morphisms, since the 2-functor πm,k,n is fully faithful on 2-morphisms and
we imposed that πm,k,nιm,k,n = idLXm,k,n . In particular, since the morphisms in the 2-
category LXm,k,n are freely generated by the morphisms (f, y, z) and (x, y, h), this defines
a 2-functor ιm,k,n : LXm,k,n → L'Xm,k,n.

We now construct a pseudo-natural adjoint equivalence

εm,k,n : ιm,k,nπm,k,n ⇒ idL'Xm,k,n .

At an object (x, y, z) ∈ L'Xm,k,n, we define ε(x,y,z) to be the morphism

ε(x,y,z) := (x, g, z) : (x, 0, z) '−→ (x, y, z),

where g ∈ Õ2(k)(0, y) is represented by the set {0, y}. Note that the morphism ε(x,y,z) as
defined above is an adjoint equivalence. Given a morphism (f, y, z) : (x, y, z)→ (x′, y, z),
we define ε(f,y,z) to be the following 2-isomorphism

(x, 0, z) (x, y, z)

(x, y, z)

(x′, y, z)

(x′, 0, z) (x′, y, z)

ε(x,y,z) = (x, g, z)
'

(x, g, z) '

(f, y, z)

(x′, g′, z) '

ε(x′,y,z) = (x′, g, z)
'

(f, y, z)

∼=

=

induced by the counit gg′ ∼= idy of the adjoint equivalence (g, g′). We define ε(x,y,h) for a
morphism (x, y, h) : (x, y, z) → (x, y, z′) similarly. This defines a pseudo-natural adjoint
equivalence εm,k,n : ιm,k,nπm,k,n ⇒ idL'Xm,k,n , which can be represented by a 2-functor
Õ2(1) → [L'Xm,k,n, L'Xm,k,n]2,ps since it corresponds to an adjoint equivalence in the
pseudo-hom 2-category Proposition 2.4.5. By definition of the Gray tensor product ⊗2
(see Proposition 2.3.4), this pseudo-natural adjoint equivalence can equivalently be seen
as a 2-functor
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L'Xm,k,n ⊗2 Õ2(1)

L'Xm,k,n

L'Xm,k,n

L'Xm,k,n .

id⊗2 d
1

id⊗2 d
0

εm,k,n

ιm,k,n ◦ πm,k,n

We claim that these 2-functors εm,k,n induce a homotopy ε∗m,k as in

(NH'A)m,k ×∆[1]

(NH'A)m,k

(NH'A)m,k

(NH'A)m,k ,

id× d1

id× d0

ε∗m,k

π∗m,k ◦ ι∗m,k

where the nth component of ε∗m,k is obtained by applying the functor 2Cat(−,A) to εm,k,n,
for all n ≥ 0.

For each F ∈ (NH'A)m,k,n, we want to describe the corresponding (∆[n]×∆[1])-prism
of the homotopy, which coincide with Fιm,k,nπm,k,n at 0 ∈ ∆[1] and with F at 1 ∈ ∆[1].
Note that a (∆[n]×∆[1])-prism in (NH'A)m,k corresponds to a 2-functor

L'((VO∼2 (k)⊗O∼2 (m))⊗ (Õ2(n)⊗2 Õ2(1))) −→ A.

The squares induced by vertical morphisms in VO∼2 (k) and morphisms in Õ2(1) must
be weakly horizontally invertible in (VO∼2 (k) ⊗ O∼2 (m)) ⊗ (Õ2(n) ⊗2 Õ2(1)), since the
morphisms in Õ2(1) are adjoint equivalences. It follows from Lemma 3.6.9 that the
corresponding 2-morphisms in L'((VO∼2 (k)⊗O∼2 (m))⊗ (Õ2(n)⊗2 Õ2(1))) are invertible
and therefore, by Remark 12.1.2, we get that

L'((VO∼2 (k)⊗O∼2 (m))⊗(Õ2(n)⊗2 Õ2(1)))
∼= L'((VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n))⊗2 Õ2(1)

= L'Xm,k,n ⊗2 Õ2(1).

This says that a (∆[n]×∆[1])-simplex in (NH'A)m,k corresponds to a 2-functor

L'Xm,k,n ⊗2 Õ2(1)→ A.

We can therefore define the component of the homotopy at F ∈ (NH'A)m,k,n to be
Fεm,k,n. This shows the claim.

Since ι∗m,k ◦ π∗m,k = id(NHA)m,k and by the above homotopy, we see that ι∗m,k and π∗m,k
give a homotopy equivalence between (NHA)m,k and (NH'A)m,k, for all m, k ≥ 0. These
assemble into maps ι∗ and π∗ of sSet∆op×∆op which give a level-wise weak equivalence
between NHA and NH'A. This is in particular a weak equivalence in 2CSS and in
DblCath∞. Since NH'A is fibrant in 2CSS and in DblCath∞, we conclude that it gives a
fibrant replacement of NHA. �
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Remark 12.3.6. Recall from Theorem 6.1.14 the Quillen pair P a D between Cat and
2Cat and let C be a category. We compute the nerve of the double category HDC:

(NHDC)m,k,n = 2Cat(LXm,k,n, DC) ∼= Cat(PLXm,k,n, C),
for all m, k, n ≥ 0. By applying the functor P to the 2-category LXm,k,n as given in
Description 12.3.1, we can see that PLXm,k,n ∼= [m] × I[n], where I[n] is the category
with object set {0, . . . , n} and a unique isomorphism between any two objects. Therefore,

(NHDC)m,k,n ∼= Cat([m]× I[n], C) = NRezk(C)m,n
is given by the Rezk nerve (see Example 9.2.15) constant in the vertical direction. Simi-
larly, we compute the nerve of H'DC and find that

(NH'DC)m,k,n = 2Cat(L'Xm,k,n, DC)
∼= Cat(PL'Xm,k,n, C) ∼= Cat((I[k]× [m])× I[n], C).

By Theorem 12.3.5, we get a level-wise homotopy equivalence NHDC → NH'DC which
exhibits NH'DC as a fibrant replacement of the Rezk nerve of C in 2CSS (or DblCath∞).

13. Explicit description of the nerves in lower dimensions

In this last section, we describe the nerves of the different double categories considered
in this paper in lower dimensions; namely, for 0 ≤ m, k ≤ 1 and 0 ≤ n ≤ 2. The aim of
these descriptions is to give the intuition that the space of the nerve at (m, k) = (0, 0)
models the space of objects, the one at (m, k) = (1, 0) models the space of horizontal mor-
phisms, the one at (m, k) = (0, 1) models the space of vertical morphisms, and the one at
(m, k) = (1, 1) models the space of squares of the corresponding double category. In Sec-
tion 13.1, we first describe the nerve N of a general double category. Then, in Section 13.2,
we describe the nerve NH' of a 2-category. Finally, in Section 13.3, we also describe the
nerve NH of a 2-category, in order to compare it with its fibrant replacement NH'.

13.1. Nerve of a double category. Let A be a double category. We want to describe
the 0-, 1-, and 2-simplices of the space (NA)m,k for 0 ≤ m, k ≤ 1.

Description 13.1.1. By definition of N, we have that

(NA)m,k,n = DblCat((VO∼2 (k)⊗O∼2 (m))⊗ Õ2(n),NA)
∼= 2Cat(Õ2(n),H[VO∼2 (k)⊗O∼2 (m),A]ps).

Therefore we can describe the 0-, 1-, and 2-simplices of the space (NA)m,k as follows.
(0) A 0-simplex in (NA)m,k is a double functor F : VO∼2 (k)⊗O∼2 (m)→ A.
(1) A 1-simplex in (NA)m,k is an adjoint equivalence in H[VO∼2 (k)⊗O∼2 (m),A]ps, i.e.,

by Proposition 3.6.10, a horizontal pseudo-natural transformation

VO∼2 (k)⊗O∼2 (m) A

F

G

ϕ

such that, the horizontal morphism ϕi : Fi → Gi is a horizontal adjoint equiva-
lence in A, for each object i ∈ VO∼2 (k)⊗O∼2 (m), and the square ϕu : (Fu ϕi

ϕi′ Gu) is
weakly horizontally invertible, for each vertical morphism u in VO∼2 (k)⊗O∼2 (m).
Recall from Definition 3.6.11 that such a ϕ is called a horizontal pseudo-natural
adjoint equivalence and we denote it by ϕ : F '=⇒ G.

(2) A 2-simplex is the data of three horizontal pseudo-natural adjoint equivalences
ϕ : F '=⇒ G, ψ : G '=⇒ H, and θ : F '=⇒ H together with an invertible modification µ
as follows.
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F

G

H

ϕ ψ

θ

∼=µ

We first compute the space (NA)0,0, which is given by the space of objects. As expected
from the completeness condition being in the horizontal direction, its 0-simplices are given
by the objects, and its 1-simplices by the horizontal adjoint equivalences.

Description 13.1.2 (m = 0, k = 0). We describe the space (NA)0,0. First note that the
double category VO∼2 (0)⊗O∼2 (0) = [0] is the terminal (double) category.

(0) A 0-simplex in (NA)0,0 is a double functor A : [0]→ A, i.e., the data of an object
A ∈ A.

(1) A 1-simplex in the space (NA)0,0 is a horizontal pseudo-natural adjoint equivalence
ϕ : A '=⇒ B, i.e., the data of a horizontal adjoint equivalence ϕ : A '−→ C in A.

(2) A 2-simplex in (NA)0,0 is an invertible modification µ : θ ∼= ψϕ between such hor-
izontal pseudo-natural adjoint equivalences, i.e., the data of a vertically invertible
square in A

A E

A C E .

• •
'
θ

ϕ
'

ψ

'

µ

∼=

We now turn our attention to the space of horizontal morphisms (NA)1,0. We observe
that the squares appearing as n-simplices of this space all have trivial vertical boundaries.
In particular, this prevents a completeness condition for (NA)1,−. However, this still looks
like a degenerate completeness condition, which could be added to the definition of a
double (∞, 1)-category, as mentioned at the beginning of Theorem 10.3.3.

Description 13.1.3 (m = 1, k = 0). We describe the space (NA)1,0. First note that
VO∼2 (0)⊗O∼2 (1) = H[1] is the free double category on a horizontal morphism.

(0) A 0-simplex in (NA)1,0 is a double functor f : H[1] → A, i.e., the data of a hori-
zontal morphism f : A→ B in A.

(1) A 1-simplex in the space (NA)1,0 is a horizontal pseudo-natural adjoint equivalence
ϕ : f '=⇒ g, i.e., the data of two horizontal adjoint equivalences ϕ0 : A '−→ C and
ϕ1 : B '−→ D together with a vertically invertible square in A

A C D

A B D .

ϕ0
'

g

f ϕ1

'

• •ϕ

∼=

(2) A 2-simplex in (NA)1,0 is an invertible modification µ : θ ∼= ψϕ between such
horizontal pseudo-natural adjoint equivalences, i.e., the data of two vertically
invertible squares µ0 and µ1 in A satisfying the following pasting equality.
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A E F

A C E F

θ0
'

h

• • •
'
ϕ0

'
ψ0 h

µ0

∼=

eh

A C D F

• ••
'
ϕ0

'
ψ1g

ψ

∼=eϕ0

A B D F

• • •
'
ϕ1

'
ψ1f

ϕ

∼= eψ1

A E F

A= B E

θ0
'

h

• •
θ1
'

f

θ

∼=

A B D F

• • •
'
ϕ1

'
ψ1f

µ1

∼=ef

We now compute the lower simplices of the space (NA)0,1 – the space of vertical mor-
phisms. As expected from the horizontal completeness condition, its 0-simplices are
given by the vertical morphisms, and its 1-simplices by the weakly horizontally invertible
squares.

Description 13.1.4 (m = 0, k = 1). We describe the space (NA)0,1. First note that
VO∼2 (1)⊗O∼2 (0) = V[1] is the free double category on a vertical morphism.

(0) A 0-simplex in (NA)0,1 is a double functor u : V[1]→ A, i.e., the data of a vertical
morphism u : A A′ in A.

(1) A 1-simplex in the space (NA)0,1 is a horizontal pseudo-natural adjoint equivalence
ϕ : u '=⇒ w, i.e., the data of two horizontal adjoint equivalences ϕ : A '−→ C and
ϕ′ : A′ '−→ C ′ together with a weakly horizontally invertible square in A

A′

A C

C ′ .

ϕ

'

•u

ϕ′
'

•wϕ̃ '

(2) A 2-simplex in (NA)0,1 is an invertible modification µ : θ ∼= ψϕ between such
horizontal pseudo-natural adjoint equivalences, i.e., the data of two vertically
invertible squares µ and µ′ in A satisfying the following pasting equality.

A E

A C E

θ
'

• •
ϕ

'
ψ

'

µ

∼=

A′ C ′ E′

•u •w •y
'
ϕ′

'
ψ′

ϕ̃ ' ψ̃ '

A

=

E

A′ E′

θ
'

•u

'
θ′

•yθ̃ '

A′ C ′ E′
'
ϕ′

'
ψ′

• •µ′

∼=

Finally, we consider the space of squares (NA)1,1.

Description 13.1.5 (m = 1, k = 1). We describe the space (NA)1,1. First note that
VO∼2 (1)⊗O∼2 (1) = V[1]×H[1] is the free double category on a square.

(0) A 0-simplex in (NA)1,1 is a double functor α : V[1]×H[1]→ A, i.e., the data of a
square α in A
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A′

A B

B′ .

f

•u

f ′

•vα

(1) A 1-simplex in the space (NA)1,1 is a horizontal pseudo-natural adjoint equivalence
ϕ : α '=⇒ β, i.e., the data of four horizontal adjoint equivalences ϕ0, ϕ1, ϕ′0, and ϕ′1,
two vertically invertible squares ϕ and ϕ′, and two weakly horizontally invertible
squares ϕ̃0 and ϕ̃1 in A fitting in the following pasting equality.

A C D

A B D

ϕ0
'

g

• •
f ϕ1

'

ϕ

∼=

A′ B′ D′

•u •v •x

f ′
'
ϕ′1

α ϕ̃1 '

A

=

C D

A′ C ′ D′

ϕ0
'

g

•u •w •x

ϕ′0

'
g′

ϕ̃0 ' β

A′ B′ D′
f ′

'
ϕ′1

• •ϕ′

∼=

(2) A 2-simplex in (NA)1,1 is an invertible modification µ : θ ∼= ψϕ between such
horizontal pseudo-natural adjoint equivalences, i.e., the data of four vertically
invertible squares in A

A E

A C E

• •
'
θ0

ϕ0

'
ψ0

'

µ0

∼=

A E

A C E

• •
'
θ1

ϕ1

'
ψ1

'

µ1

∼=

A E

A C E

• •
'
θ′1

ϕ′1

'
ψ′1

'

µ′1

∼=

EA

A C E

• •
'
θ′0

ϕ′0

'
ψ′0

'

µ′0

∼=

such that
• (µ0, µ1) satisfies the pasting equality as in Description 13.1.3 (2) with respect
to ϕ, ψ, and θ,
• (µ′0, µ′1) satisfies the pasting equality as in Description 13.1.3 (2) with respect
to ϕ′, ψ′, and θ′,
• (µ0, µ

′
0) satisfies the pasting equality as in Description 13.1.4 (2) with respect

to ϕ̃0, ψ̃0, and θ̃0,
• (µ1, µ

′
1) satisfies the pasting equality as in Description 13.1.4 (2) with respect

to ϕ̃1, ψ̃1, and θ̃1.

13.2. Nerve of a 2-category. By computing the nerve of a 2-category, we expect to
see the space of objects at (m, k) = (0, 0), the space of morphisms at (m, k) = (1, 0), and
the space of 2-morphisms at (m, k) = (1, 1), while the space at (m, k) = (0, 1) should be
weakly equivalent to the space of objects, since the first column of 2-fold complete Segal
space is essentially constant.

Let A be a 2-category. Recall that its nerve is given by the nerve of its associated
double category H'A. We therefore translate Descriptions 13.1.2 to 13.1.5 to this setting.
In particular, we first obtain the space of objects (NH'A)0,0, whose 0-simplices are the
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objects, and whose 1-simplices are the adjoint equivalences of A, as expected by the
completeness condition.

Description 13.2.1 (m = 0, k = 0). We describe the space (NH'A)0,0.
(0) A 0-simplex in (NH'A)0,0 is the data of an object A ∈ A.
(1) A 1-simplex in (NH'A)0,0 is the data of an adjoint equivalence A '−→ C in A.
(2) A 2-simplex in (NH'A)0,0 is the data of a 2-isomorphism as in the following

diagram.

A

C

E

' '

'
∼=

As for the space of morphisms (NH'A)1,0, we can see that the completeness condition
is now satisfied for (NH'A)1,−, since vertical morphisms are now adjoint equivalences
in A and they therefore also appear in the horizontal direction.

Description 13.2.2 (m = 1, k = 0). We describe the space (NH'A)1,0.
(0) A 0-simplex in (NH'A)1,0 is the data of a morphism f : A→ B in A.
(1) A 1-simplex in (NH'A)1,0 is the data of two adjoint equivalences and a 2-isomorphism

in A as in the following diagram.

A C

B D

'

'

f g
∼=

(2) A 2-simplex in (NH'A)1,0 is the data of two 2-isomorphisms filling the triangles
of the following pasting equality.

A

C

E

' '

'
∼=

B

D

F

f

g

h

' '

∼=
∼=

A

=

B

D

F

E
'

'

f h

' '
∼=

∼=

The space (NH'A)0,1 is actually given by the space of adjoint equivalences. Since the
“free-living adjoint equivalence” is biequivalent to the point, this space can be interpreted
as “homotopically the same” as the space of objects.

Description 13.2.3 (m = 0, k = 1). We describe the space (NH'A)0,1.
(0) A 0-simplex in (NH'A)0,1 is the data of an adjoint equivalence u : A '−→ A′ in A.
(1) A 1-simplex in (NH'A)0,1 is the data of a 2-isomorphism as in the following

diagram, by Lemma 3.6.8.

A C

A′ C ′

'

'

u

'

w'

∼=

(2) A 2-simplex in (NH'A)0,1 is the data of two 2-isomorphisms filling the triangles
of the following pasting equality.
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A

C

E

' '

'
∼=

A′

C ′

E′

u

'

w

'

y'

' '

∼=
∼=

A

=

A′

C ′

E′

E
'

'

u

'

y'

' '
∼=

∼=

Finally, we compute the space of 2-morphisms (NH'A)1,1. Although its 0-simplices
are not precisely the 2-morphisms of A, homotopically they give the right notion as the
vertical morphisms u and v in the square below are adjoint equivalences.

Description 13.2.4. We describe the space (NH'A)1,1.
(0) A 0-simplex in (NH'A)1,1 is the data of a 2-morphism in A as in the following

diagram.

A B

A′ B′

f

f ′

u

'

v'

α

(1) A 1-simplex in (NH'A)1,1 is the data of four adjoint equivalences and four 2-
isomorphisms in A as in the following diagram.

A

B

C

D
f '

' g

∼=

A′

B′

D′

u

'

v

'

x'

f ′ '

α
∼=

A

C

=

A′

C ′

B′

D′

D

' g

u

'

w

'

x'

' g′

f ′ '

∼=

β
∼=

(2) A 2-simplex in (NH'A)1,1 is the data of four 2-isomorphisms filling triangles
satisfying relations as described in Description 13.2.2 (2) an Description 13.2.3 (2).

13.3. Nerve of a horizontal double category. Finally, we compute the nerve of a
horizontal double category HA in lower dimensions, where A is a 2-category, in order to
compare it with the nerve NH'A described above. Since HA and H'A have the same
underlying horizontal 2-category, namely A itself, then the spaces (NHA)0,0 and (NHA)1,0
are equal to the spaces (NH'A)0,0 and (NH'A)1,0 and they can therefore be described as
in Descriptions 13.2.1 and 13.2.2, respectively. In particular, they are the desired space
of objects and space of morphisms.

We now turn our attention to the space (NHA)0,1. Unlike (NH'A)0,1, this space has
as 0-simplices the objects of A. This prohibits a completeness condition in the vertical
direction since equalities are not homotopically good enough.

Description 13.3.1 (m = 0, k = 1). We describe the space (NHA)0,1.
(0) A 0-simplex in (NHA)0,1 is the data of an object A ∈ A.
(1) A 1-simplex in (NHA)0,1 is the data of a 2-isomorphism as in the following dia-

gram, by Proposition 3.6.7.
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A C

'

'

∼=

(2) A 2-simplex in (NHA)0,1 is the data of two 2-isomorphisms filling the triangles of
the following pasting equality.

A

C

E
' '

'
∼=

' '
∼=

∼=

A
=

C

E

'

'

' '
∼=

∼=

Finally, we compute the space of 2-morphisms (NHA)1,1, which appears to have pre-
cisely the 2-morphisms of A as 0-simplices. However, as explained above, this description
is not homotopically well-behaved, since we would also need to consider adjoint equiva-
lences in the vertical direction.

Description 13.3.2. We describe the space (NHA)1,1.
(0) A 0-simplex in (NHA)1,1 is the data of a 2-morphism in A

A B .

f

f ′

α

(1) A 1-simplex in (NHA)1,1 is the data of four adjoint equivalences and four 2-
isomorphisms in A as in the following diagram.

A

B

C

D

' g

∼=
f '

f ′
'α

∼=
A=

B

C

D
' g′

∼=

f ′ '

' g∼=
β

(2) A 2-simplex in (NHA)1,1 is the data of four 2-isomorphisms filling triangles satis-
fying relations as described in Description 13.2.2 (2) an Description 13.3.1 (2).
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