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Abstract
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with

an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of

numerical methods to solve a variety of equations such as orthogonal maps, the prescribed

Jacobian equation and inequality, the elliptic and parabolic Monge-Ampère equations.

For orthogonal map we develop an operator-splitting/finite element approach for the numeri-

cal solution of the Dirichlet problem. This approach is built on the variational principle, the

introduction of an associated flow problem, and a time-stepping splitting algorithm. Moreover,

we propose an extension of this method with an anisotropic mesh adaptation algorithm. This

extension allows us to track singularities of the solution’s gradient more accurately. Various

numerical experiments demonstrate the accuracy and the robustness of the proposed method

for both constant and adaptive mesh.

For the prescribed Jacobian equation and the three-dimensional Monge-Ampère equation,

we consider a least-squares/relaxation finite element method for the numerical solution of

the Dirichlet problems. We then introduce a relaxation algorithm that splits the least-square

problem, which stems from a reformulation of the original equations, into local nonlinear

and variational problems. We develop dedicated solvers for the algebraic problems based on

Newton method and we solve the differential problems using mixed low-order finite element

method. Overall the least squares approach exhibits appropriate convergence orders in L2(Ω)

and H 1(Ω) error norms for various numerical tests.

We also design a second-order time integration method for the approximation of a parabolic

two-dimensional Monge-Ampère equation. The space discretization of this method is based

on low-order finite elements, and the time discretization is achieved by the implicit Crank-

Nicolson type scheme. We verify the efficiency of the proposed method on time-dependent

and stationary problems. The results of numerical experiments show that the method achieves

nearly optimal orders for the L2(Ω) and H 1(Ω) error norms when smooth solutions are ap-

proximated.

Finally, we present an adaptive mesh refinement algorithm for the elliptic Monge-Ampere

equation based on the residual error estimate. The robustness of the proposed algorithm is

verified using various test cases and two different solvers which are inspired from the two

previous proposed numerical methods.

Key words. orthogonal maps, origami, operator splitting, finite element methods, adaptive

mesh refinement, prescribed Jacobian equation, Monge-Ampère equation, least-squares

method, Newton methods, parabolic Monge-Ampère equation.
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Résumé
Cette thèse se consacre à l’analyse numérique des équations aux dérivées partielles (EDP) en

mettant l’accent sur les EDP entièrement non linéaires du premier et du second ordre. Le but

principal est la conception de méthodes numériques pour résoudre une variété d’équations

telles que les représentations orthogonales, l’équation Jacobienne prescrite, les équations

elliptiques et paraboliques de Monge-Ampère.

Pour les représentations orthogonales, nous développons une solution numérique du pro-

blème de Dirichlet basée sur le principe variationnel, l’introduction d’un problème de flux

associé, et d’un algorithme de segmentation en étapes temporelles. De plus, nous proposons

une extension de cette méthode avec un algorithme d’adaptation de maillage anisotrope.

Cette extension nous permet de suivre plus précisément les singularités du gradient de la solu-

tion. Diverses analyses numériques démontrent la précision et la robustesse de la méthode

proposée, tant pour le maillage constant que pour le maillage adaptatif.

Pour l’équation Jacobienne prescrite et l’équation tridimensionnelle de Monge-Ampère, nous

considérons une méthode des moindres carrés/relaxation par éléments finis pour la solution

numérique du problème de Dirichlet. Nous introduisons un algorithme de relaxation qui divise

le problème des moindres carrés en deux : un problème local non linéaire et un problème

variationnel. Les solveurs que nous proposons sont basés sur la méthode de Newton et la

méthode des éléments finis d’ordre inférieur mixte. Globalement, l’approche des moindres

carrés posséde des ordres de convergence appropriés sous forme de normes d’erreur L2(Ω) et

H 1(Ω) pour divers tests numériques.

Nous développons également une méthode d’intégration temporelle du second ordre pour

l’approximation d’une équation parabolique bidimensionnelle de Monge-Ampère. La dis-

crétisation spatiale de cette méthode est basée sur des éléments finis d’ordre inférieur, et la

discrétisation temporelle est obtenue par un schéma implicite de type Crank-Nicolson.

Nous présenterons enfin un algorithme de raffinement de maillage adaptatif pour l’équation

elliptique de Monge-Ampère, basé sur l’estimation de l’erreur résiduelle. La robustesse des

algorithmes proposés est vérifiée à l’aide de différents tests et de deux solveurs qui s’inspirent

des deux méthodes numériques proposées précédemment.

Mots clés. representations orthogonales, origami, méthodes des éléments finis, raffinement

du maillage adaptatif, équation Jacobienne prescrite, équation de Monge-Ampère, méthode

des moindres carrés, méthodes de Newton, équation parabolique de Monge-Ampère.
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Introduction

Partial differential equations (PDEs) are often used to describe problems in scientific and

engineering fields. Depending on their characteristics, PDEs can be classified as linear or

nonlinear. Under the nonlinear class, PDEs can be further categorized as semi-linear, quasi-

linear, or fully nonlinear. Semi-linear PDEs arise when the unknown variable is nonlinear, but

has linear derivatives. Quasi-linear PDEs, on the other side, are characterized by a nonlinear

low-order derivatives, and linear highest-order ones. Fully nonlinear equations are the ones

where the highest-order derivatives are nonlinear. In this context, the order of a PDE refers

to the order of its highest derivative. In this work, we focus on first and second-order fully

nonlinear PDEs.

Fully nonlinear equations have much attention because of their importance in many appli-

cations. A non-exhaustive list of applications includes astrophysics [Ambrosio et al., 2003],

differential geometry [Caffarelli and Milman, 1999b], fluid dynamics [Benamou and Brenier,

2000], image processing [Zitová and Flusser, 2003], mathematical finance [Stojanovic, 2004],

mesh generation [Budd et al., 2009], meteorology [Hoskins, 1975], optimal transport [Villani,

2003; Figalli, 2018], alongside others.

In this work, we carry a thorough numerical study of some well-known fully nonlinear equa-

tions. We also explore in depth other less well-known equations in the literature of com-

putational mathematics. The numerical methods that we design target primarily first and

second-order fully nonlinear equations. The former involves folding or transforming a map

whereas the latter addresses the prototypical Monge-Ampère equation and the parabolic

Monge-Ampère equation in higher-order dimension. Throughout this study, we develop new

algorithms based on variational and Galerkin approaches, which proved to be computation-

ally efficient and reliable. These algorithms use a combination of standard methods such as

splitting methods (Alternating direction method of multipliers (ADMM), Marchuk-Yanenko),

different variations of Newton methods, and mixed methods with low order finite elements.

Moreover, we extend those methods to tackle fully nonlinear equations with adaptive mesh

refinement algorithms, which is to the best of our knowledge not well studied, if not at all.

Ultimately, this work paves the way to new applications, creates new tools to solve fully-

nonlinear equations, and hopefully gives insightful perspectives to both theoretical analysis

and numerical analysis communities. Below, we give a brief definition of fully nonlinear
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Introduction

equations, then we describe each of the equations that we tackle in the subsequent chapters.

Fully nonlinear equations

The general formulation of a scalar fully nonlinear equations can be expressed as

F [u] = F (x,u,Du,D2u) = 0, (1)

where
(
x,u,Du,D2u

) ∈ (
Ω,R,Rd ,Rd×d

)
.

For linear, semi-linear, and quasi-linear PDEs, the usual theory develops for classical and

weak solutions. These solutions are difficult or impossible to derive for fully nonlinear PDEs,

therefore another notion of solutions was established, and is referred to as viscosity solutions,

see [Crandall et al., 1984]. There are numerous articles that investigate fully nonlinear PDE’s

from a theoretical point of view. One of the most cited work that includes extensive bibliog-

raphy review until 1995 is [Caffarelli and Cabré, 1995]. Other important works on existence,

uniqueness, regularity of classical or viscosity solutions can be found in [Evans, 1982; Jensen,

1988; Ishii, 1989; Ishii and Lions, 1990; Caffarelli et al., 1996; Dacorogna and Marcellini, 1999].

Recent works of well-posedness of fully nonlinear first and second order elliptic equations is

discussed in [Katzourakis, 2015; Abugirda and Katzourakis, 2018; Katzourakis, 2016]. Results

involving singularities are discussed in the following references [Labutin, 2001; Armstrong

et al., 2012; Felmer et al., 2012; Birindelli and Galise, 2019].

Early numerical results for fully nonlinear equations dates back to the late 80’ in [Oliker and

Prussner, 1988]. The first work on the convergence of numerical schemes towards viscosity

solutions is [Barles. and Souganidis, 1991]. Later, for more than a decade, most articles

focused on convergence theory [Kuo and Trudinger, 1992; Krylov, 2000; Barles and Jakobsen,

2002; Krylov, 2005]. Starting from mid 2000s, many numerical schemes appeared in the

literature. Oberman developed a finite difference method based on the framework in [Barles.

and Souganidis, 1991], see [Oberman, 2008]. Feng and Neilan introduced the vanishing

moment method for second order fully nonlinear equations in [Feng and Neilan, 2009c, 2014].

Glowinski and Dean showed numerical results using augmented Lagrangian and nonlinear

least squares methods in [Dean and Glowinski, 2006]. In [Boehmer, 2008], Boehmer presented

stability and convergence results using C 1 finite-elements methods. More recent works can be

found in [Lakkis and Pryer, 2011; Davydov and Saeed, 2013; Jensen and Smears, 2013; Davydov

and Saeed, 2017; Gallistl and Süli, 2019; Lakkis and Mousavi, 2019, 2020]. Some articles provide

a summary of the work that has been done in the past years such as [Feng et al., 2013; Neilan

et al., 2017].

Let us present some examples of second order fully nonlinear equations. For that, letΩ⊂Rd , u :

Ω→R and f be a given function. In the literature, the first example considered as the prototype

of fully nonlinear equations is the Monge-Ampère equation F [u] = detD2u − f = 0 for given f .

We will examine this problem in a two and three-dimensional framework. Another equation

2
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is the elliptic (σ2) equation F [u] = |∇2u|2 −D2u : D2u −2 f = 0. The (σ2) equation appears in

differential geometry and continuum mechanics. Numerical results are reported in [Caboussat,

2014], and theoretical results are in [Trudinger, 1997; Gilbarg and Trudinger, 2001; Chang et al.,

2011]. Another second order equation is the Pucci F [u] =α|∇2u|2 + (α−1)2 detD2u = 0 where

α> 1. This equation combines the Laplace operator and the Monge-Ampère operators with a

weightα. Theoretical results of Pucci’s equations are obtained in [Busca et al., 2005; Felmer and

Quaas, 2006; Felmer et al., 2006; Quaas and Sirakov, 2008] while different numerical methods

are developed in [Dean and Glowinski, 2005; Caffarelli and Glowinski, 2008; Lakkis and Pryer,

2013; Finlay and Oberman, 2018; Mishra and Kumar, 2018; Caboussat, 2019; Bonnans et al.,

2020].

Although the literature of second order fully nonlinear equations is very rich, we can not claim

the same for first order ones. We give few examples of first order fully nonlinear equations. A

prototype example of this category is the steady scalar Eikonal equation. Let u :Ω⊂R2 →R

then F [u] = |∇u|−1 = 0. This equation appears in several mathematical models e.g. image

processing, optics, wave propagation, differential geometry [Dacorogna et al., 2004, 2003;

Glowinski et al., 2015; Gremaud and Kuster, 2006; Hysing and Turek, 2004; Qin et al., 1992;

Zhao, 2005]. Numerical methods based for the solution of these type of nonlinear equations

can be found in, e.g., [Caboussat and Glowinski, 2015b; Caboussat et al., 2015; Dacorogna

et al., 2004, 2003; Glowinski et al., 2003]. The next equations equations is the orthogonal maps

given by F [u] =∇u(∇u)T − I = 0, for u = [u1,u2]T :Ω→R2. Orthogonal maps has importance

in modeling origami applications for instance. Another equation that falls in the category of

first order fully nonlinear equation that we will investigate later is the prescribed Jacobian

equation F [u] = det∇u− f = 0 which appears in optimal transport applications.

Orthogonal maps

The art of paper folding inspire many applications in science e.g. self-assembling robots

[Felton et al., 2014], mirrors and solar panels [Jasim and Taheri, 2018], DNA folding [Sanderson,

2010]. The mathematical analysis of paper-folding problems has been addressed in [Bern and

Hayes, 1996; Basterrechea and Dacorogna, 2014; Dacorogna and Marcellini, 1999; Hull, 2003;

Dacorogna et al., 2008a,b, 2010a]. Close related problems are discussed in [Nash, 1954; Ball

and James, 1992]. A review paper that summarizes all the work in the mathematical analysis

of paper-folding problems is [Dacorogna et al., 2010b]. From the mechanical point of view,

an interactive tool for paper folding is developed by [Ghassaei et al., 2018] based on models

developed in [Tachi, 2009, 2010; Schenk and Guest, 2011].

The equation that we are interested in here reads as: find u : Ω→R2 satisfying{ ∇u ∈O (2) inΩ,

u = g on ∂Ω,
(2)

where g is a given sufficiently smooth boundary data, and O (2) the space of orthonormal 2×2

3
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matrix-valued functions. Note that finding ∇u ∈O (2) is equivalent to the gradient ∇u be an

orthogonal 2×2 matrix (∇u(∇u)T = I). Equation (2) is referred to in [Dacorogna et al., 2010b]

as flat origami. Here we refer to it as orthogonal maps.

Although the initial application of orthogonal maps appears in the theory of paper folding,

there exists similar related formulations in other fields, such as, computational geometry

[Demaine and Tachi, 2017; Abel et al., 2018], rigid maps [Dudte et al., 2016; Qiu et al., 2019],

or rigid displacements and bending [Afkham et al., 2018; Bartels et al., 2017; Bonito et al.,

2020]. Due to the low regularity and the possible multiplicity of the solutions of orthogonal

maps problem, these solutions have to be defined in a generalized sense, the most commonly

accepted one being the sense of viscosity solutions see, e.g., [Crandall et al., 1984].

Orthogonal maps can be considered as a multivariate version of the classical, scalar, Eikonal

equation. Therefore, our numerical method of orthogonal maps that developed here are

inspired by previous works related to Eikonal equations [Caboussat and Glowinski, 2015b;

Caboussat et al., 2015; Dacorogna et al., 2004, 2003; Glowinski et al., 2003]. Tentative ap-

proaches for orthogonal maps problems have been described in [Glowinski and Niu, 2017]

and in [Glowinski, 2015b, Chapter 8].

The numerical method that we propose to solve (2) relies on a mix of classical variational

techniques. The main ingredients of the method are the introduction of a variational principle,

and an association of a flow problem, which is solved by operator-splitting techniques. Finally,

the splitting strategy allows the decoupling of the local nonlinearities and of the differential

operators. Thus, the methodology can be decomposed to the following steps:

i Penalization method to relax the equation ∇u(∇u)T = I.

ii Derivation of Euler-Lagrange equation of the regularized problem and introduction of a

initial value problem (flow problem).

iii First order operator-splitting scheme to time-discretize an initial value problem.

iv Low order conforming finite elements approximation.

The operator-splitting approach allows the decoupling of the differential operators from the

nonlinearities. This strategy has been successfully applied to other situations, such as Monge-

Ampère and Pucci equations [Caboussat et al., 2013; Caffarelli and Glowinski, 2008; Dean and

Glowinski, 2008; Glowinski, 2009; Glowinski et al., 2018], visco-plastic or particulate flow [Dean

et al., 2007; Glowinski, 2003] and other problems involving non-smooth operators [Caboussat

and Glowinski, 2008, 2012].

Prescribed Jacobian equation and inequality

Next, we consider the prescribed Jacobian equation. Let us assume that we have two sets

Ω,Ω′ ⊂R2 ( open and bounded) and two mass densities f :Ω→R and p :Ω′ →R, we look for a

4
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map u :Ω→Ω′ that satisfies ∫
u(Ω)

p(y)dy =
∫
Ω

f (x)dx.

In other words, we look for a transformation u that spreads the mass f into the mass p.

Applying integration by substitution the solution of the above problem is

det∇u (x) p(u(x)) = f (x) ∀x ∈Ω. (3)

Equation (3) appears in many applications e.g. geometry, optics, economics (see [Guillen,

2019]). Theoretical investigations of (3) in all dimensions are done in [Csató et al., 2011]. It

is worth mentioning that if one consider u(x) =∇ψ(x) then (3) becomes the Monge-Ampère

equation

detD2ψ= f (x)

p(∇ψ(x))
∀x ∈Ω.

In this work we set p(u(x)) = 1 and we look for a solution to the the Dirichlet problem{
det∇u = f inΩ,

u = g on ∂Ω,
(4)

where g is given and takes values in ∂Ω′. The uniqueness and the regularity of a field u

satisfying (4) are not guaranteed. Some results about (4) are available in literature, but under

special cases. For instance, if we set in (4) g(x) = x and f ∈ C k,a Hölder space with k ∈
N0,0 <α< 1 results are given in [Dacorogna and Moser, 1990] where the necessary condition∫
Ω f = |Ω| is assumed. Later, other proofs where given in [Rivière and Ye, 1996; Avinyó et al.,

2012; Carlier and Dacorogna, 2012]. Results that consider the right hand side f to be in the

Sobolev spaces are given in [Ye, 1994; Burago and Kleiner, 1998; McMullen, 1998]. Numerical

results using the augmented Lagrangian method for solution of (4) are given in [Caboussat and

Glowinski, 2015a, 2018]. A related problem in incompressible elasticity has been addressed in

[Glowinski and Tallec, 1989].

In order to demonstrate the flexibility of the proposed method we also consider the prescribed

Jacobian inequality. The problem reads as

{
det∇u ≥ f inΩ,

u = g on ∂Ω.
(5)

Theoretical results of the prescribed Jacobian inequality are given in [Fischer and Kneuss,

2019], and to the best of our knowledge there are no proposed numerical schemes to solve

these type of equations.

The numerical method that we propose solving (4) relies on reformulating the problem into

a nonlinear least squares one. This is done by minimizing the L2-distance between ∇u and

a matrix-valued function p ∈ (L2(Ω))2×2, where u satisfies the boundary conditions of the

5
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problem, and p satisfies detp = f . Then, a relaxation algorithm allows the decoupling of the

local nonlinearities and of the differential operators. The methodology can decompose to the

following steps:

i Reformulation of the problem to nonlinear least square formulation.

ii Use of relaxation algorithm ADMM type that decouples to local nonlinear optimization

problems, and linear variational problems.

iii Use of Newton type methods to solve the local nonlinear problems.

iv Use of a mixed finite element method using low order conforming finite elements approxi-

mations to solve the variational problem.

The numerical method that we propose to solve (5) follows closely the above framework and

the only difference lies in the solution of the local nonlinear problems.

Numerical solutions obtained using the least squares formulation together with the ADMM

algorithm have been used for other fully-nonlinear or quasi-linear equations, for instance in

[Dean et al., 1996; Dean and Glowinski, 2004, 2005, 2006; Glowinski, 2009, 2008; Caboussat

et al., 2013; Caboussat, 2014; Glowinski, 2015b; Caboussat et al., 2018; Caboussat, 2019]. The

ADMM algorithm is firstly introduced in [Glowinski and Marroco, 1975] while there are similar

algorithm developed in [Douglas and Rachford, 1956; Gabay and Mercier, 1976]. The ADMM

in a nutshell is a convex optimization solver which breaks the problem into easy to handle sub-

problems. The algorithm is used in numerous articles in different fields, for full bibliography

review we refer to [Glowinski et al., 2018].

Monge-Ampère equation

The Monge-Ampère equation is the most established benchmark equation in the literature of

second order fully nonlinear equation. The Monge-Ampère equation receives a lot of attention

since it appears in many applications, for instance in finance [Stojanovic, 2004], in seismic

wave propagation [Engquist et al., 2016], in geostrophic flows [Feng and Neilan, 2009b], in

differential geometry [Feng et al., 2007], in mechanics and physics [Frisch et al., 2002], and it

has some applications in optimal transport reported in [Caffarelli and Milman, 1999a]. The

Dirichlet problem for the elliptic Monge-Ampère equation reads as follows{
det D2u = f inΩ,

u = g on ∂Ω,
(6)

where g and f are given sufficiently smooth data.

Theoretical results about existence of week solutions in all dimensions of Monge-Ampère equa-

tion has been discussed in [Dairbekov et al., 2010; Aleksandrov, 1958]. Moreover, existence and

uniqueness for the two dimensional case is discussed in [Aleksandrov, 1958]. The regularity of

the solution is addressed in [Calabi, 1958; Pogorelov, 1971]. The existence of global smooth

solution proved in [Ivochkina, 1985; Krylov, 1984; Caffarelli et al., 2014]. Results with non
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smooth data are discussed in [Caffarelli, 1991; De Philippis and Figalli, 2013]. Dedicated books

on Monge-Ampère equation are [Gutiérrez, 2001; Figalli, 2017] among others.

From a computational point of view, the last years witnessed an explosion in the proposed

number of numerical solutions of the Monge-Ampère equation proposed in the literature.

Mainly, new works consider the two-dimensional Monge-Ampère equation while, in three-

dimensional case, the complexity increases a lot and only a handful of methods are available.

The first method that approximated numerically the two-dimensional Monge-Ampère equa-

tion has been introduced [Oliker and Prussner, 1988], which is based on a geometrical inter-

pretation of the Monge-Ampère equation. The convergence of this method is discussed in

[Nochetto and Zhang, 2019]. A finite difference monotone scheme is constructed in [Oberman,

2008] using wide stencils. This scheme is later improved and extended in three-dimensional

case in [Froese and Oberman, 2011, 2012]. The Newton method to linearize the Monge-

Ampère equation together with finite differences is used in [Loeper and Rapetti, 2005] and

finite elements in [Feng and Neilan, 2009a; Lakkis and Pryer, 2013; Davydov and Saeed, 2013;

Neilan, 2014b; Davydov and Saeed, 2017]. Other finite differences-based methods can be

found in [Benamou et al., 2010; Awanou, 2016; Nochetto et al., 2018; Froese and Salvador, 2018;

Nochetto et al., 2019; Nochetto and Ntogkas, 2019] and in three dimensions in [Mirebeau,

2015].

We consider Galerkin methods which are used in a variety of articles. For instance, in [Feng and

Neilan, 2009c,a; Neilan, 2010; Feng and Neilan, 2011, 2014], they used the vanishing approach

together with finite element method. In [Brenner et al., 2011], the authors constructed low-

order penalty methods for the two-dimensional Monge-Ampère equation and then extended

it to three-dimensional case in [Brenner and Neilan, 2012]. Related methods are discussed

in [Neilan, 2014a; Awanou, 2020] for the two-dimensional setting. Standard finite elements

methods for the solution of Monge-Ampère equation in two and three dimensions are reported

in [Awanou, 2014]. A method using multigrid schemes is presented in [Liu et al., 2017], whereas

methods with meshfree schemes are reported in [Liu and He, 2014; Böhmer and Schaback,

2019]. A method dedicated to non-convex 2d grids is detailed in [Jensen, 2018]. Other FE

methods can be found in [Zheligovsky et al., 2010; Cossette and Smolarkiewicz, 2011; Weller

et al., 2016; Feng and Jensen, 2017; Westphal, 2019].

Among the different approaches used to solve the two and three-dimensional Monge-Ampère

equation, the operator-splitting method is a relevant in many works such as [Liu et al., 2019;

Glowinski et al., 2019] and our work on orthogonal maps in [Caboussat et al., 2019]. One of

the first Galerkin methods for the solution of Monge-Ampère equation in two dimensions

using augmented Lagrangian or least-squares/relaxation approaches has been advocated in

[Dean and Glowinski, 2008; Glowinski, 2009] and later improved in [Caboussat et al., 2013].

This method has been extended to optical design applications in [Prins et al., 2015; Thije ten

Boonkkamp et al., 2019; Yadav et al., 2019a,b]. The main contribution of our work has been

to extend the existing method to a three-dimensional case. We also propose a new efficient
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method for the two-dimensional case by solving the parabolic Monge-Ampère equation.

As mentioned above a nonlinear least squares formulation is used to solve (6). The refor-

mulation is done by minimizing the L2-distance between D2u and a matrix-valued func-

tion p ∈ (L2(Ω))3×3 where u satisfies the boundary conditions of the problem and p satisfies

detp = f . Then a relaxation algorithm allows the decoupling of the local nonlinearities and of

the differential operators. Finally, the methodology can decompose to the following steps

i Reformulation of the problem to a nonlinear least squares optimization problem.

ii Use of relaxation algorithm ADMM type that decouples the problem into local nonlinear

optimization problems, and linear variational problems.

iii Use of Newton type methods to solve the local nonlinear problems.

iv Use of a mixed finite element method using low order conforming finite elements approxi-

mations to solve the variational problem.

Parabolic Monge-Ampère equation

Last, we consider parabolic fully nonlinear equations. For instance we examine equations

expressed as

ut +F (x,u,Du,D2u) = 0, (7)

where
(
x,u,Du,D2u

) ∈ (Ω,R,Rn ,Rn×n).

Theoretical properties of those equations are discussed in [Wang, 1992; Jakobsen and Karlsen,

2002; Caffarelli and Stefanelli, 2008; Imbert and Silvestre, 2013; Serra, 2015; Ekren et al., 2016;

Krylov, 2018]. Numerical results for fully nonlinear parabolic equations are given in [González

et al., 2002; Budd and Williams, 2006; Zhang and Zhuo, 2014; Feng and Lewis, 2014, 2018].

Some applications of interest arise for example in finance [Stojanovic, 2004; Koleva and Vulkov,

2013], or in mesh adaptation techniques [Budd et al., 2009; Budd and Williams, 2009; Sulman

et al., 2011a; Sulman, 2017; Sulman et al., 2020].

We focus here on a time-evolutive parabolic Monge-Ampère equation where the problem

reads: forΩ bounded domain, find u : Ω× (0,T ) →R satisfying


∂u

∂t
−detD2u = f inΩ× (0,T ),

u = g in ∂Ω× (0,T ),

u(0) = u0 inΩ.

(8)

A numerical method to solve equation (8) has been developed in [Feng and Lewis, 2018] where

the authors construct a scheme using high order local discontinuous Galerkin methods. An-

other perspective of equation (8) is given if we use the relationship detD2u = 1

2
∇·(cof(D2u)∇u

)
.

The equation (8) can be seen as a nonlinear heat equation. Results for quasi-linear parabolic

equations have been developed in [Thomee, 2007; Akrivis, 2015; Akrivis and Lubich, 2015].
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Finally, we can use (8) or a close related form to derive methods for solving the steady state

Monge-Ampère equation, see, e.g. in [Sulman et al., 2011b; Feng and Lewis, 2018; Liu et al.,

2019].

The numerical method that we propose to solve (8) is as follows

i Time discretization by using Crank–Nicolson type scheme.

ii Linearization of the problem with the Newton method.

iii Space discretization is achieved by continuous low order finite elements.

The Newton method for the linearization of the Monge-Ampère operator also successfully

used in [Loeper and Rapetti, 2005; Lakkis and Pryer, 2013].

Adaptive methods

After developing, analyzing, implementing and testing our solvers for first and second order

fully nonlinear equations, our goal is to design mesh adaptation algorithms based on heuris-

tic error estimates. A posteriori error estimates for linear elliptic equations is discussed in

[Babuška and Rheinboldt, 1978; Babuška et al., 1992; Verfürht, 1996; Iyer, 1999; Verfürth, 2013],

and for nonlinear equations in [Akrivis et al., 2009; Verfürth, 1994]. Adaptive mesh refinements

techniques are proposed in [Verfürth, 1994; Dorfler, 1996; Soner et al., 2003]. Anisotropic a

posteriori error estimates are given in [Apel et al., 2011; Picasso, 2003b,a; Formaggia et al.,

2004; Picasso, 2005, 2006]. To the best of our knowledge, the are no works dealing with mesh

adaptation techniques for first order fully nonlinear equations. For the second order fully

nonlinear equations, preliminary results are given in [Lakkis and Pryer, 2013] where the adap-

tive mesh refinement is based on Zienkiewicz–Zhu gradient recovery a posteriori estimator.

Moreover, an adaptive finite difference method is developed in [Froese and Salvador, 2018].

In this work we will consider isotropic and anisotropic adaptive meshes. Isotropic adaptive

meshes will be chosen mainly to tackle point singularities. Anisotropic adaptive meshes, on

the other hand, will be favored when we deal with line singularities.

As an example of first-order fully nonlinear equations we consider the orthogonal maps

equation. The simplified error estimate in this case is derived in the linear variational problem

which corresponds to a Laplace equation ∇2u = f. For this equation, anisotropic a posterior

error estimates and an adaptive algorithm has been developed in [Picasso, 2003a] which we

closely follow here.

Next, we derive an error estimate for the Monge-Ampère operator detD2u. We write the

Monge-Ampère equation with the equivalent formulation as 1
2∇· (cof(D2u)∇u

)= f . Then, we

derive a heuristic a posteriori error estimate based on residual estimate. The derived error

estimate is used as a criterion to the adaptive algorithm.

In the above adaptive algorithms, our goal is to reduce the number of elements and increase

the accuracy of the solutions. Numerical examples are presented to verify the robustness of
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the algorithms in each case. The adaptive algorithms designed for orthogonal maps and the

Monge-Ampère operator can be used with minor changes to solve other equations such as

Eikonal equations or Pucci equation.

Thesis outline

In Chapter 1 of this thesis we present a numerical method for the approximation of the

solution of the orthogonal maps equation. We provide the mathematical formulation of the

problem, the operator splitting method, and its finite element implementation. We also show

the robustness of the method by presenting several numerical experiments. Then we extend

the method by developing an adaptive algorithm. We conclude this chapter by discussing

numerical results of the adaptive algorithm.

In Chapter 2, we present a numerical method for the approximation of the solution of the

prescribed Jacobian equation and inequality. We provide details about the equality/inequal-

ity, and we reformulate it as a nonlinear least square problem. We develop the method by

introducing a relaxation algorithm that splits the problem into local nonlinear and variational

problems. We develop the solvers for the algebraic and differential problems. Then, we present

an implementation in the finite element space and conclude with numerical examples to

validate the method.

In Chapter 3, we present a numerical method for the solution of the three-dimension Monge-

Ampère equation. We describe the mathematical formulation and detail of the nonlinear

least-squares method that is solved using a relaxation algorithm. We develop the algebraic

and differential solvers. Finally, we present the finite elements implementation and numerical

examples using P1 andQ1 polynomials.

In Chapter 4, we present a numerical method for the solution of the parabolic Monge-Ampère

equation. We describe the proposed method and we verify its efficiency on time-dependent,

and stationary problems. In the second part of this chapter, we derive an error estimate for the

steady-state Monge-Ampère equation, and develop an adaptive algorithm. The robustness of

this proposed algorithm is checked using various test cases and two different solvers.

Chapters 1, 3 and a part of Chapter 4 are based on works were successfully published [Cabous-

sat et al., 2018, 2019; Caboussat and Gourzoulidis, 2019] or submitted [Caboussat et al., 2020]

during this study. Chapters 2 and part of Chapter 4 is intended to be reworked and published

in the future.
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1 Numerical Approximation of Orthogo-
nal Maps

1.1 Mathematical Model

1.1.1 Initial problem

LetΩ be a open bounded domain of R2, and consider g : ∂Ω→R2 a sufficiently smooth given

function on its boundary. The unit square Ω= (0,1)2 is a typical domain when considering

origami applications. The problem of interest is written as follows. Find u : Ω→R2 satisfying

{ ∇u ∈O (2) inΩ,

u = g on ∂Ω,
(1.1)

where in (1.1)

u =
(

u1

u2

)
, ∇u =

 ∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

 ,

and O (2) the space of orthonormal 2×2 matrix-valued functions. Here u1, resp. u2, denote

the first, resp. second, component of the mapping u. Actually, u is a mapping that maps Ω

(the original sheet) into another domain of R2. The image u(Ω) of Ω through this mapping

corresponds to the resulting paper sheet, described in the two-dimensional space, after the

folding. Problem (1.1) can be equivalently written as:

 ∇u(∇u)T = I a.e inΩ,

u = g on ∂Ω,
(1.2)

11
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or



|∇u1| = 1 a.e inΩ,

|∇u2| = 1 a.e inΩ,

∇u1 ·∇u2 = 0 a.e inΩ,

u = g on ∂Ω.

(1.3)

We adopt the later formulation to set up the numerical method. Let us now develop equation

(1.3) as follows:



(
∂u1

∂x1

)2

+
(
∂u1

∂x2

)2

= 1(
∂u2

∂x1

)2

+
(
∂u2

∂x2

)2

= 1 inΩ,

∂u1

∂x1

∂u2

∂x1
+ ∂u1

∂x2

∂u2

∂x2
= 0

u = g on ∂Ω.

(1.4)

The problem of interest (1.3) is reminiscent of the scalar Eikonal equation, but introduces a

coupling between the two components; it can be seen as a vectorial Eikonal problem.

Theoretical considerations of (1.1) or (1.3) have been addressed, e.g., in [Ball and James, 1992;

Dacorogna and Marcellini, 1999; Dacorogna et al., 2008b, 2010b]. For instance, an explicit

solution of the homogeneous Dirichlet problem has been exhibited in [Dacorogna et al., 2018].

Existence conditions of a solution have been shown, but the uniqueness of that solution is

generally not guaranteed (As we show in the numerical experiments section, we can easily

construct problems with multiple solutions).

1.1.2 Determinant property and angle condition

A determinant representation of (1.1) can be found by the following algebraic computations

(det∇u)2 =
(
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1

)2

=
(
∂u1

∂x1

∂u2

∂x2

)2

+
(
∂u1

∂x2

∂u2

∂x1

)2

−2
∂u1

∂x1

∂u2

∂x2

∂u1

∂x2

∂u2

∂x1
.

(1.5)
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Now, if we multiply the first two equations of (1.4) by each other we have

(
∂u1

∂x1

∂u2

∂x1

)2

+
(
∂u1

∂x2

∂u2

∂x1

)2

+
(
∂u1

∂x1

∂u2

∂x2

)2

+
(
∂u1

∂x2

∂u2

∂x2

)2

= 1. (1.6)

Combine (1.5) and (1.6) we obtain

(det∇u)2 +2
∂u1

∂x1

∂u2

∂x2

∂u1

∂x2

∂u2

∂x1
+

(
∂u1

∂x1

∂u2

∂x1

)2

+
(
∂u1

∂x2

∂u2

∂x2

)2

= 1,

which can be written as

(det∇u)2 = 1−
(
∂u1

∂x1

∂u2

∂x1
+ ∂u1

∂x2

∂u2

∂x2

)2

,

and using the third equation of (1.4) we can conclude that det∇u =±1.

Therefore, the solution of (1.1) must satisfy

det∇u(x) =±1, a.e.x ∈Ω, (1.7)

except on the folding lines. In the numerical experiments section, illustrations of det∇u for

different test cases show how the sign is fluctuating and is not defined on the folding lines.

Moreover, for each vertex that lies at the intersection of folding lines, conditions apply on the

number of singularity lines crossing each other(see [Dacorogna and Marcellini, 1999]). This

property is sometimes called the angle condition and states that the number of edges coming

from one vertex is even, and the determinant det∇u alternates between 1 and −1 for adjacent

regions touching the vertex.

1.1.3 Rigid maps problem

Problem (1.1) is actually a problem rewritten from the so-called rigid maps problem, which

consists in finding the map ũ :Ω⊂R2 →R3 such that

{ ∇ũ ∈O (2,3) a.e. inΩ,

ũ = g̃ on ∂Ω,
(1.8)

where O (2,3) = {
A :Ω→ R2×3 : AT A = I inΩ

}
. The solution to this equivalent problem consists

in finding the mapping ũ that embeds the folded paper ũ(Ω) into R3. A graphical representa-

tion of problem (1.1) and (1.8) can be found in Figure 1.1.

Remark. In the general case map we consider ū :Ω⊂Rn →Rm such that is considered.
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Figure 1.1 – Graphical representation (bottom) of the orthogonal map u : R2 → R2, where
u(x, y) = (−|x| , y) is the solution to (1.1) when folding a paper along a centered axis oriented
with the Ox axis; and, graphical representation of the rigid map ũ :R2 →R3, where ũ(x, y) =
(x/

p
2, y, |x|/p2) is the solution to (1.8) when folding a paper in R3.

{ ∇ū ∈O (n,m) inΩ,

ū = ḡ on ∂Ω,

where O (n,m) = {
A :Ω→ Rn×m : AT A = I inΩ

}
and (n,m) ∈ N. In this work, we examine only

the cases where n = m = 2.

1.2 Numerical Algorithms

We propose a numerical method for (1.3) that relies on variational techniques. The underlying

principles are the introduction of a variational principle, and of the corresponding flow

problem, which is solved by operator-splitting techniques. Ultimately, the splitting strategy

allows the decoupling of the local nonlinearities and of the differential operators.

1.2.1 Regularization and Penalization

In order to solve (1.3) and to enforce the uniqueness of the solution, we consider a variational

problem. We denote f to be a given vector-valued function, which corresponds to a target

solution, for instance given by prior information. Then the variational problem reads as: find
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u ∈ Eg satisfying

J (u) ≤ J (v), ∀v ∈ Eg, (1.9)

where

J (v) = C

2

∫
Ω
|v− f|2 dx+ 1

2

∫
Ω
|∇v|2dx, (1.10)

and

Eg = {v ∈ (H 1(Ω))2, v|∂Ω = g, ∇v ∈O (2) a.e inΩ}. (1.11)

In (1.10), C > 0 is a positive constant. While the first term of (1.10) is a distance to be minimized,

the second term ensures smoothness of the solution. In most numerical experiments, no a

priori information is known therefore we consider f = 0.

Note that the equation (1.3) itself has been transferred into a constraint in (1.11). To handle

such constraints, we use an approach which has been successful with the scalar Eikonal

equation in Caboussat and Glowinski [2015b], namely we penalize the constraint ∇v ∈O (2) (or,

equivalently, the first three equations of (1.3)). Let ε1 > 0 be a given (regularization) parameter,

and ε2 > 0 be a given (penalization) parameter. We denote (ε1,ε2) by ε. The modified objective

function is defined as follows:

Jε(v) := J (v)+ ε1

2

∫
Ω
|∇2v|2dx

+ 1

4ε2

∫
Ω

[
(|∇v1|2 −1)2 + (|∇v2|2 −1)2 +|∇v1 ·∇v2|2

]
dx. (1.12)

The second term is a biharmonic regularization designed to increase the robustness of the

convergence of the numerical algorithm. The introduction of such a term has been already

experimented for similar problems, see [Caboussat and Glowinski, 2018], and will be discussed

numerically via experiments. The variational problem (1.9) becomes: Find uε ∈ Vg satisfying

Jε(uε) ≤ Jε(v), ∀v ∈ Vg, (1.13)

where

Vg = {v ∈ (H 2(Ω))2, v|∂Ω = ḡ}. (1.14)

The numerical approach to solve (1.13) relies on an appropriate reformulation of the problem

when considering the first order optimality conditions, together with the introduction of a

flow problem.
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In (1.14), we used ḡ an extension of g belonging to (H 3/2(∂Ω))2 see e.g. [Ern and Guermond,

2004], to make the boundary data compatible with the regularizing term in (1.10). However,

numerical experiments in Section 1.2 suggest regularizing g is not essential.

1.2.2 First Order Optimality Conditions

We define the tensor-valued function pε := ∇uε. Problem (1.13) is equivalent to: Find pε ∈
Q4 =

(
L4 (Ω)

)2×2
satisfying

jε(pε) ≤ jε(q), ∀q ∈ Q4, (1.15)

where

jε(q) =1

2

∫
Ω
|q|2 + C

2

∫
Ω
|Bq+ug − f|2 dx+ I∇(q)

+ 1

4ε2

∫
Ω

[
(|q1|2 −1)2 + (|q2|2 −1)2 +|q1 ·q2|2

]
dx,

(1.16)

and q1, q2 are the two column vectors of q. Here we define:

(i) the function ug ∈ (H 2(Ω))2 as the unique solution (harmonic extension) of

 ∇2ug = 0 inΩ,

ug = g on ∂Ω.

(ii) the function Bq as the unique solution in (H 1
0 (Ω))2 of

∇2Bq =∇·q inΩ.

(iii) the functional I∇(q) as

I∇(q) =


ε1

2

∫
Ω
|∇ ·q|2dx if q ∈∇Vg,

+∞ otherwise.

Based on this change of variables, the first order optimality conditions (Euler-Lagrange equa-
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1.2. Numerical Algorithms

tions) relative to (1.16) read as follows: Find pε ∈ Q4 such that:

∫
Ω

pε : qdx+C
∫
Ω

(Bpε+ug − f) ·Bqdx+〈∂I∇(pε),q〉

+ 1

ε2

∫
Ω

[
(|pε

1|2 −1)pε
1 ·q1 + (|pε

2|2 −1)pε
2 ·q2

+1

2
pε

1 ·pε
2(pε

2 ·q1 +pε
1 ·q2)

]
dx = 0, ∀q ∈ Q4.

(1.17)

Here, ∂I∇(·) denotes the subdifferential of the non-smooth proper lower semi-continuous

(l.s.c.) convex functional I∇. In the sequel, the superscript ε will be dropped for simplicity.

1.2.3 Flow Problem and Operator-Splitting Algorithm

The solution method for (1.17) relies on an associated initial-value problem (flow in the

dynamical systems terminology), to be integrated from t = 0 to t = +∞. This initial value

problem is defined as follows: Find p(t ) ∈ Q4 for a.e. t ∈ (0,+∞) satisfying

∫
Ω

∂p(t )

∂t
: qdx+

∫
Ω

p(t ) : qdx+C
∫
Ω

(Bp(t )+ug − f) ·Bqdx+〈∂I∇(p(t )),q〉

+ 1

ε2

∫
Ω

[
(|p1(t )|2 −1)p1(t ) ·q1 + (|p2(t )|2 −1)p2(t ) ·q2

+1

2
p1(t ) ·p2(t )(p2(t ) ·q1 +p1(t ) ·q2)

]
dx = 0, ∀q ∈ Q4.

(1.18)

together with the initial condition p(0) = p0 given.

We apply an operator-splitting strategy to solve (1.18) (namely, a first-order Marchuk-Yanenko

scheme, see for example in [Glowinski, 2015b]). Let ∆t > 0 be a constant given time step,

t n = n∆t , n = 1,2, . . ., to define the approximations pn ' p(t n). Starting from the initial

condition p0 = p0, the Marchuk-Yanenko scheme allows, using pn for all n ≥ 0, to compute

successively pn+1/2 and pn+1 with the two following intermediate steps:

(A) Prediction step: Find pn+1/2 ∈ Q4 satisfying

∫
Ω

pn+1/2 −pn

∆t
: qdx+

∫
Ω

pn+1/2 : qdx

+ 1

ε2

∫
Ω

[
(|pn+1/2

1 |2 −1)pn+1/2
1 ·q1 + (|pn+1/2

2 |2 −1)pn+1/2
2 ·q2

+1

2
pn+1/2

1 ·pn+1/2
2 (pn+1/2

2 ·q1 +pn+1/2
1 ·q2)

]
dx = 0,

(1.19)

for all q ∈ Q4. Notice here that this nonlinear problem does not involve any derivatives of

the variable p, a significant simplification,
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(B) Correction step: Find pn+1 ∈ Q4 satisfying

∫
Ω

pn+1 −pn+1/2

∆t
: qdx+C

∫
Ω

(Bpn+1 +ug − f) ·Bq dx

+〈∂I∇(pn+1),q〉 = 0,

(1.20)

for all q ∈ Q4. This problem is actually a (hidden) linear variational problem whose

solution will be addressed in Section 1.2.5.

1.2.4 Local Optimization Problems

The sub-problem (1.19) that arises in the splitting algorithm does not involve any derivatives

of the variable q. Therefore, it can be solved point-wise a.e. inΩ (see also, e.g., [Caboussat and

Glowinski, 2018; Caboussat et al., 2018, 2013] for other instances of similar simplifications). To

make (1.19) more explicit, we consider the four following test functions:

q11 = q

[
1 0

0 0

]
,q12 = q

[
0 1

0 0

]
,q21 = q

[
0 0

1 0

]
,q22 = q

[
0 0

0 1

]
,

with q ∈ L2(Ω). Taking q = qi j in (1.19), we obtain the following system of nonlinear equations:

(1+∆t ) pn+1/2
11 + ∆tµn+1/2pn+1/2

11

ε2
− pn

11 +
∆tκn+1/2pn+1/2

21

2 ε2
= 0,

(1+∆t ) pn+1/2
12 + ∆tµn+1/2pn+1/2

12

ε2
− pn

12 +
∆tκn+1/2pn+1/2

22

2 ε2
= 0,

(1+∆t ) pn+1/2
21 + ∆tλn+1/2pn+1/2

21

ε2
− pn

21 +
∆tκn+1/2pn+1/2

11

2 ε2
= 0,

(1+∆t ) pn+1/2
22 + ∆tλn+1/2pn+1/2

22

ε2
− pn

22 +
∆tκn+1/2pn+1/2

12

2 ε2
= 0,

(1.21)

where

µn+1/2 :=
((

pn+1/2
11

)2 + (
pn+1/2

12

)2 −1
)

,

λn+1/2 :=
((

pn+1/2
21

)2 + (
pn+1/2

22

)2 −1
)

,

κn+1/2 := (
pn+1/2

11 pn+1/2
21 +pn+1/2

12 pn+1/2
22

)
.

Actually, system (1.21) can be reformulated in a more condensed form. Let us denote [p11, p12]T
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1.2. Numerical Algorithms

byα and [p21, p22]T by β; then (1.21) becomes

(1+∆t )αn+1/2 + ∆t (|αn+1/2|2 −1)αn+1/2

ε2
+ ∆t (αn+1/2 ·βn+1/2)βn+1/2

2ε2
=αn ,

(1+∆t )βn+1/2 + ∆t (|βn+1/2|2 −1)βn+1/2

ε2
+ ∆t (αn+1/2 ·βn+1/2)αn+1/2

2ε2
=βn .

(1.22)

The above nonlinear system consists of four cubic equations. It is solved using a Newton-

Raphson method. If ∆t ≤ ε2 then we can have a unique solution solution of system (1.22).

In practice (see Section 1.3), once a finite element discretization ofΩ is constructed, (1.22) is

solved point-wise on each element of the discretization. The number of systems to solve thus

depends on the number of elements of the triangulation.

1.2.5 Variational Problems

The sub-problem (1.20) that arises in the splitting algorithm is a well-posed, linear variational

problem. In order to highlight this statement, let us consider the reverse change of variable

and take ∇un+1 := pn+1. Problem (1.20) can be rewritten as follows : Find un+1 ∈ Vg such that

ε1∆t
∫
Ω

(∇2un+1) · (∇2v)dx+
∫
Ω
∇un+1 : ∇vdx+C∆t

∫
Ω

un+1 ·vdx =

C∆t
∫
Ω

f ·vdx+
∫
Ω

pn+1/2 : ∇vdx, v ∈ (H 2(Ω)∩H 1
0 (Ω))2.

(1.23)

Problem (1.23) is a fourth-order linear variational problem of the biharmonic type. We in-

troduce a coupled problem with an auxiliary variable. The additional equation reads: Find

wn+1 ∈ (
H 1

0 (Ω)
)2

such that

wn+1 =−∇2un+1 inΩ. (1.24)

Aggregating (1.23) and (1.24) allows to obtain a coupled second order linear system that reads

as follows: Find (un+1,wn+1) ∈ Vg ×
(
H 1

0 (Ω)
)2

such that



ε1∆t
∫
Ω
∇wn+1 : ∇vdx+

∫
Ω
∇un+1 : ∇vdx+C∆t

∫
Ω

un+1 ·vdx

=C∆t
∫
Ω

f ·vdx+
∫
Ω

pn+1/2 : ∇vdx,∫
Ω
∇un+1 : ∇qdx−

∫
Ω

wn+1 ·qdx = 0,

(1.25)

for all (v,q) ∈ (
H 1

0 (Ω)
)2 × (

H 1
0 (Ω)

)2
.
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1.3 Finite Element Discretization

1.3.1 Generalities

The space approximation of the time-stepping algorithm (1.19)-(1.20) is addressed with piece-

wise linear continuous finite elements. The use of low-order finite elements is appropriate

for problems such as (1.1), due to the low regularity of the solution. Indeed, piecewise linear

finite element methods rely on spaces of Lipschitz continuous functions well-suited to the

approximation of solutions to the orthogonal maps equation.

Let us define a space discretization step h > 0, and associate with h a triangulation Th

that satisfies the usual compatibility conditions (see, e.g., [Glowinski, 2008] for a complete

definition). Let us denote by Σh the (finite) set of the vertices of Th , by Nh the number of

elements in Σh , and by Σ0h the subset of those elements in Σh not located on Γ (with N0h :=
card(Σ0h)). From the triangulation Th we define the following finite element spaces:

Vh = {v ∈ (C 0(Ω))2,v ∈ (P1)2,∀K ∈Th},

Vg,h = {v ∈ Vh ,v(Q) = g(Q), ∀Q vertex of Th belonging to Γ},

Qh = {q ∈ (L∞(Ω))2×2, q
∣∣
K ∈R2×2,∀K ∈Th},

where P1 is the space of two-variable polynomials of degree ≤ 1. Note that we have ∇Vh ⊂ Qh .

Next, we equip Vh , and its sub-spaces Vg,h , with the following discrete inner product (based

on classical quadrature formulas):

(v,w)0h =
Nh∑

k=1

mk∑
i=1

Wi v(ζi) ·w(ζi ), ∀v,w ∈ Vh ,

where Wi , resp. ζi are the weights, resp. evaluation points, of a Gauss quadrature rule of order

≥ 2, and mk is the number of quadrature points in the element k (supposed constant). The

quadrature formulas used are implemented in the library libmesh ([Kirk et al., 2006]). The

corresponding norm is ||v||0h := √
(v,v)0h , for all v ∈ Vh . In a similar fashion, we equip the

space Qh with the inner product and norm respectively defined as follows:

((p,q))0h = ∑
K∈Th

|K | p
∣∣
K : q

∣∣
K ,

and
∣∣∣∣∣∣q∣∣∣∣∣∣

0h =√
((q,q))0h (with |K | = area of K ).

The discrete version of the numerical algorithm uses the same steps as the continuous version

presented in Section 1.2. However, let us sketch the main discretized milestones in the sequel.
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1.3.2 Discretization of the flow problem

For the discrete analogous the operator-splitting strategy (1.19)-(1.20), we define the ap-

proximations pn
h ' ph(t n) ∈ Qh . Starting from the initial condition p0

h = p0,h , we compute

successively pn+1/2
h and pn+1

h with the two intermediate steps:

(A) Prediction step: Find pn+1/2
h ∈ Qh satisfying

∫
Ω

pn+1/2
h −pn

h

∆t
: qhdx+

∫
Ω

pn+1/2
h : qhdx

+ 1

ε2

∫
Ω

[
(|pn+1/2

1,h |2 −1)pn+1/2
1,h ·q1,h + (|pn+1/2

2,h |2 −1)pn+1/2
2,h ·q2,h

+1

2
pn+1/2

1,h ·pn+1/2
2,h (pn+1/2

2,h ·q1,h +pn+1/2
1,h ·q2,h)

]
dx = 0,

(1.26)

for all qh ∈ Qh .

(B) Correction step: Find pn+1
h ∈ Qh satisfying

∫
Ω

pn+1
h −pn+1/2

h

∆t
: qhdx+C

∫
Ω

(Bpn+1
h +ug,h − f) ·Bqh dx

+〈∂I∇(pn+1
h ),qh〉 = 0,

(1.27)

for all qh ∈ Qh .

1.3.3 Solution of the discrete local optimization problems

The finite dimensional nonlinear problem (1.26) can be solved triangle-wise; Indeed, if

pn+1/2
h := {pn+1/2

K ,h }K∈Th , one can rewrite (1.26) as follows: For each triangle K ∈Th , solve

(1+∆t ) pn+1/2
K ,h,11 +

∆tµn+1/2
h pn+1/2

K ,h,11

ε2
− pn

K ,h,11 +
∆tκn+1/2

h pn+1/2
K ,h,21

2 ε2
= 0,

(1+∆t ) pn+1/2
K ,h,12 +

∆tµn+1/2
h pn+1/2

K ,h,12

ε2
− pn

K ,h,12 +
∆tκn+1/2

h pn+1/2
K ,h,22

2 ε2
= 0,

(1+∆t ) pn+1/2
K ,h,21 +

∆tλn+1/2
h pn+1/2

K ,h,21

ε2
− pn

K ,h,21 +
∆tκn+1/2

h pn+1/2
K ,h,11

2 ε2
= 0,

(1+∆t ) pn+1/2
K ,h,22 +

∆tλn+1/2
h pn+1/2

K ,h,22

ε2
− pn

K ,h,22 +
∆tκn+1/2

h pn+1/2
K ,h,12

2 ε2
= 0,

(1.28)
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where

µn+1/2
h :=

((
pn+1/2

K ,h,11

)2 +
(
pn+1/2

K ,h,12

)2 −1

)
,

λn+1/2
h :=

((
pn+1/2

K ,h,21

)2 +
(
pn+1/2

K ,h,22

)2 −1

)
,

κn+1/2
h :=

(
pn+1/2

K ,h,11 pn+1/2
K ,h,21 +pn+1/2

K ,h,12 pn+1/2
K ,h,22

)
.

System (1.28) is similar to (1.21) and can be solved by Newton techniques, taking pn
K ,h as an

initial guess. When applied to the solution of problem (1.28), the Newton method always

converges and never requires more than 10 iterations for the test problems considered in

Section 1.4.

1.3.4 Solution of discrete linear variational problems

Problem (1.27) is discretized as follows: Find (un+1
h ,wn+1

h ) ∈ Vg,h ×V0,h such that



ε1∆t ((∇wn+1
h ,∇vh))0h + ((∇un+1

h ,∇vh))0h +C∆t (un+1
h ,vh)0h

=C∆t (f,vh)0h + ((pn+1/2
h ,∇vh))0h ,

((∇un+1
h ,∇qh))0h − (wn+1

h ,qh)0h = 0,

(1.29)

for all (vh ,qh) ∈ V0,h ×V0,h .

Let ϕi , i = 1. . . Nh be the piecewise linear basis functions of Vh . Note that, by defining the

classical rigidity and mass matrices A and M by Ai , j =
∫
Ω
∇ϕi ·∇ϕ j dx, Mi , j =

∫
Ω
ϕiϕ j dx, and

suitable right-hand side F, the linear system can be compactly written as

(
A+C∆t M ε1∆t A

A −M

)(
u

w

)
=

(
F

0

)
Among the many methods to solve the above block-structured linear system here we use a

monolithic approach, however a Scur complement is another widely use method.

1.4 Numerical Experiments

In this section we are going to report on the results of numerical experiments aimed at assess-

ing the robustness, the accuracy and the efficiency of our methodology. The computational

domain (i.e. the paper sheet to be folded) is chosen either as the unit square Ω = (0,1)2 or

as the unit disk Ω= {(x, y) ∈R2 : x2 + y2 < 1}. All the experiments have been performed on a

desktop computer with Intel Xeon E5-1650 (3.50 GHz × 12) and 64 GB memory.
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We consider several discretizations of the computational domain, using various finite element

meshes as shown in Figure 1.2. The influence of the chosen mesh on the solution obtained

by the algorithm is also discussed. For all the numerical experiments we consider f = (0,0)T ,

ε2 = 5×10−10,∆t = ε2/2, C = 10, and ε1 = h2

5∆t (unless stated otherwise). The stopping criterion

we use to decide on the flow stationarity is either n ≤ 1000, or ||pn+1−pn ||L2(Ω) ≤ 5×10−4 (unless

stated otherwise). We observe numerically that, for this stopping criterion, ||un+1 −un ||L2(Ω) is

of the order of 10−7.

The choice of f allows to give an a priori estimate of the solution. With another choice of f,

another solution may be obtained, and numerical experiments have shown some sensitivity

with respect to the parameters f and C . The penalization constant ε2 is chosen in order to

guarantee that the orthogonality conditions are satisfied accurately. Values of ε2 ranging from

10−5 to 10−10 are suitable. The number of iterations of the Newton method in Section 1.2.4

may decrease when ε2 is larger. The choice of ε1 allows to have a regularization term in

(1.23) of the order h2. In the light of these comments, a thorough sensitivity analysis has not

been performed, but the influence of some parameters will be discussed in the numerical

experiments.

1.4.1 Smooth validation example

In the first experiment, the algorithm is validated with a boundary condition that corresponds

to a smooth mapping, without any singularities. We consider

g(x) = x, ∀x ∈ ∂Ω.

An exact solution corresponding to this given boundary is the identity mapping u(x) = x. This

corresponds to an origami without folding.

For such an example, when choosing ε1 = 0.0 as a smoothing parameter, the problem is solved

up to machine precision for all meshes. Figure 1.3 visualizes the graph of the two components

of the computed approximate solution. Since the two components of the solution are piece-

wise affine, the continuous piecewise affine finite element approximation we advocated in

Section 1.3 is ideally suited to the solution of the problem under consideration.

Note that a very accurate (up to machine precision) approximation of the solution can be

obtained with ε1 of the order h2, together with ε2 ' 10−7 and a stopping criterion of ||pn+1 −
pn ||L2(Ω) ≤ 5×10−10. Table 1.1 illustrates the results obtained with the same setup as described

previously. It shows that orthogonality conditions are not jeopardized by the introduction of

the well-chosen smoothing parameter.
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Figure 1.2 – Finite element triangulations used for the numerical experiments. Top left:
Structured asymmetric mesh (Ω = (0,1)2, h = 0.04); top right: Structured symmetric mesh
(Ω= (0,1)2, h = 0.125); bottom left: isotropic unstructured mesh (Ω= (0,1)2, h ' 0.02); bottom
right: isotropic unstructured mesh (Ω= {(x, y) ∈R2 : x2 + y2 < 1}, h ' 0.08).

Table 1.1 – Smooth validation example (ε1 ' h2). (i) Variations with respect to h of the approxi-
mate orthogonality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations
with respect to h of the L2(Ω) norm of the computed approximation error u−uh and related
convergence orders (columns 5 and 6). (iii) Variations with respect to h of the number of
time steps necessary to achieve convergence (column 7). (Ω= (0,1)2, structured asymmetric
meshes).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.02 1.0 1.0 1.89e-6 2.35e-07 - 31
0.01 1.0 1.0 8.94e-7 1.04e-07 1.17 36

0.005 1.0 1.0 4.38e-7 4.93e-08 1.07 40
0.0025 1.0 1.0 2.46e-7 2.72e-08 0.85 43

1.4.2 Simple folding and mesh dependency

For the second experiment, we consider the unit square and the boundary data g given by:
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Figure 1.3 – Smooth validation example. Graphs of the two components of the computed
approximate solution of (1.1) with g(x) = x on ∂Ω; left: approximation of the first component
u1 ; right: approximation of the second component u2. These results have been obtained
using an structured asymmetric triangulation with h = 0.01.

g1(x1, x2) =


x1 if x1 < 0.5 and x2 = 0 or x2 = 1,

1−x1 if x1 ≥ 0.5 and x2 = 0 or x2 = 1,

0 otherwise,

g2(x1, x2) = x2 on ∂Ω.

(1.30)

In this case, the exact solution to (1.1) in Ω is given by u = (u1,u2)T , with

u1(x1, x2) =
{

x1 if x1 < 0.5,

1−x1 if x1 ≥ 0.5,

u2(x1, x2) = x2.

(1.31)

The function u defined by (1.31) corresponds to a single folding of the domain Ω along the

middle line. This implies that the singularity is a line singularity along x1 = 0.5. Thus, when

choosing ε1 = 0, the algorithm obtains a discretized solution that is accurate up to machine

precision. In the case of the structured meshes of Figure 1.2, the mesh edges can be aligned

with this line singularity or not, depending if the vertical mesh edges are along x1 = 0.5. In the

case of unstructured meshes, the edges are never aligned with the line x1 = 0.5. Tables 1.2,

1.3 and 1.4 show results using ε1 = h2

5∆t . One can observe that the results are more accurate

when using a structured mesh with edges aligned with the line singularity; when the line

singularity is not aligned with the (structured) mesh edges, the behavior of the algorithm is

actually similar to when the mesh is unstructured. Moreover, the number of iterations (time

steps) to obtain a stationary solution is larger for the two latter cases. Finally, the convergence

to the exact solution is super-linear when h → 0, but more stable for structured meshes in
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Table 1.2.

We have visualized on Figure 1.4: (i) The graphs of the two components of the computed

approximate solution (first row). (ii) The values of det∇u (second row (left)). (iii) The image

u(Ω) ⊂R2 (second row (right)), which shows that the initial domain Ω is folded in half (note

that this illustration is post processed from the computed approximations of u1 and u2).

Table 1.2 – Simple folding. (i) Variations with respect to h of the approximate orthogonality
conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations with respect to h of
the L2(Ω) norm of the computed approximation error u−uh and related convergence orders
(columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary to
achieve convergence (column 7). (Ω= (0,1)2, structured asymmetric meshes, line singularity
aligned with mesh edges).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.02 0.9732 1.0 0.0028 1.87e-03 - 57
0.01 0.9866 1.0 0.0008 6.43e-04 1.54 65

0.005 0.9933 1.0 0.0002 2.22e-04 1.53 72
0.0025 0.9966 1.0 5.92e-05 7.76e-05 1.51 79

Table 1.3 – Simple folding. (i) Variations with respect to h of the approximate orthogonality
conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations with respect to h of
the L2(Ω) norm of the computed approximation error u−uh and related convergence orders
(columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary to
achieve convergence (column 7). (Ω= (0,1)2, isotropic unstructured meshes).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.05 0.9413 1.0 0.0167 6.20e-03 - 48
0.026 0.9700 1.0 0.0024 2.45e-03 1.33 96
0.013 0.9849 1.0 0.0011 1.10e-03 1.15 184
0.006 0.9925 1.0 0.0003 3.13e-04 1.82 117

1.4.3 Double diagonal folding

Let us consider now the unit square Ω= (0,1)2 and the boundary data defined by:

g(x1, x2) = (0, |x1 −x2|), (x1, x2) ∈ ∂Ω. (1.32)
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Figure 1.4 – Simple folding. Visualization of the graph of the first and second component of
the computed approximate solution uh (= (u1,h ,u2,h)) of (1.1) with Ω= (0,1)2 and g given by
(1.30). Top left: First component of the computed approximate solution u1,h ; top right: Second
component of the computed approximate solution u2,h ; bottom left: visualization of det∇uh ;
bottom right: visualization of the domain uh(Ω).
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Table 1.4 – Simple folding. (i) Variations with respect to h of the approximate orthogonality
conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations with respect to h of
the L2(Ω) norm of the computed approximation error u−uh and related convergence orders
(columns 5 and 6). (iii) Variations with respect to h of the number of time steps necessary to
achieve convergence (column 7). (Ω= (0,1)2, structured asymmetric meshes, line singularity
not aligned with mesh edges).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.0196 0.9724 1.0 0.0094 4.72e-03 - 58
0.0099 0.9864 1.0 0.0048 2.44e-03 0.95 66
0.0049 0.9932 1.0 0.0024 1.25e-03 0.96 157
0.0024 0.9966 1.0 0.0027 4.39e-04 1.50 553

A corresponding exact solution is

u1(x1, x2) = d(x,∂Ω) ∀x in Ω,

u2(x1, x2) =
{

min(x2,1−x1) if x1 < x2,

min(x1,1−x2) otherwise .

(1.33)

For this test example, the line singularities are aligned with the two diagonals of Ω (x1 = x2 and

1−x1 = x2). When using the structured symmetric mesh (see Figure 1.2, top right) and ε1 = 0.0,

the algorithm obtains an approximated solution that is highly accurate, since the singularities

are aligned with mesh edges. Indeed after 170 iterations (time steps of the splitting algorithm),

the numerical solution satisfies ||u−uh ||L2(Ω) = 1.45×10−8,
∫
Ω |∇u1|dx = 1.0,

∫
Ω |∇u2|dx = 1.0,

and
∫
Ω |∇u1 ·∇u2|dx = 3.88×10−8.

Numerical results are reported in Tables 1.5 and 1.6 for the structured asymmetric and un-

structured triangulations, respectively. Similar convergence orders are observed for both types

of triangulations, since none of them match exactly the singularity of the gradient solution.

Figure 1.5 illustrates the approximate solution uh . One can see that the two components actu-

ally satisfy the orthogonality conditions. Figure 1.5 (bottom left) visualizes det∇uh and shows

that the angle condition is satisfied. Figure 1.5 (bottom right) visualizes the image u(Ω) of Ω

through the mapping u. Table 1.7 illustrates the dependency of the solution with respect to

the smoothing parameter ε1. One observes, that, as ε1 → 0, the L2(Ω)-approximation error de-

creases and the orthogonality properties verified by ∇u1 and ∇u2 are better satisfied by ∇u1,h

and ∇u2,h . On the other hand, the number of iterations necessary to achieve convergence

increases as ε1 → 0. This numerical example shows that the introduction of the regularization

term, such that ε1 6= 0, lead to, overall, better convergence properties of the time-stepping

algorithm. Numerical results have consistently shown that the introduction of this term not

only helps the convergence of the time stepping algorithm towards a stationary solution, but

also allows to reduce drastically the number of time iterations in some cases.
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Table 1.5 – Double diagonal folding. (i) Variations with respect to h of the approximate
orthogonality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations
with respect to h of the L2(Ω) norm of the computed approximation error u−uh and related
convergence orders (columns 5 and 6). (iii) Variations with respect to h of the number of
time steps necessary to achieve convergence (column 7) (Ω= (0,1)2, structured asymmetric
meshes).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.02 0.9672 0.9615 0.0710 3.86e-03 - 64
0.01 0.9837 0.9804 0.0370 1.55e-03 1.31 71

0.005 0.9918 0.9901 0.0189 6.58e-04 1.23 75
0.0025 0.9959 0.9950 0.0095 2.95e-04 1.15 84

Table 1.6 – Double diagonal folding. (i) Variations with respect to h of the approximate
orthogonality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations
with respect to h of the L2(Ω) norm of the computed approximation error u−uh and related
convergence orders (columns 5 and 6). (iii) Variations with respect to h of the number of
time steps necessary to achieve convergence (column 7) (Ω= (0,1)2, isotropic unstructured
meshes).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.05 0.9346 0.9279 0.1305 9.93e-03 - 61
0.026 0.9677 0.9618 0.0724 3.93e-03 1.33 83
0.013 0.9840 0.9805 0.0393 1.73e-03 1.18 313
0.006 0.9920 0.9901 0.0208 7.63e-04 1.18 292

The sensitivity of the results with respect to the target function f is now investigated. When

modifying the target function f, the algorithm is able to track different solutions of the or-

thogonal maps problem. Let us consider f1(x1, x2) = (−2000,0)T . Figure 1.6 (left column)

illustrates snapshots of the two components of the numerical solution uh , for h = 0.01, and

of the determinant det∇uh , and shows that the first component is the concave up version of

the one illustrated in Figure 1.6 when f = 0, while the second component remains unchanged.

The numerical solution satisfies∫
Ω
|∇u1|dx = 1.01,

∫
Ω
|∇u2|dx = 0.98,

∫
Ω
|∇u1 ·∇u2|dx = 0.047

after 120 iterations. A second variation in the fidelity term is illustrated by a perturbation

of the target function f around the null function 0, through a local perturbation around the

mid-point (0.5,0.5). Figure 1.6 (right column) illustrates the snapshots of the two components
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Figure 1.5 – Double diagonal folding. Snapshots of the numerical stationary solution of (1.1)
with g given by (1.32). Top left: First component u1; top right: Second component u2; bottom
left: visualization of det∇u =±1; bottom right: visualization of the domain u(Ω).

of the numerical solution uh , and of the determinant det∇uh , obtained when

f2(x1, x2) =
 −2000 if (x1 −0.5)2 + (x2 −0.5)2 ≤ 2h,

0 otherwise,

where h = 0.01 is the mesh size. The numerical solution satisfies∫
Ω
|∇u1|dx = 0.96,

∫
Ω
|∇u2|dx = 0.97,

∫
Ω
|∇u1 ·∇u2|dx = 0.040

after 615 iterations. We can observe that the local perturbation of the target function induces

a local perturbation of the approximation of the first component of the solution, which

corresponds to an additional folding in the mapping. The sensitivity of the solution with

respect to the target function is thus limited to the neighborhood of the perturbation. This is a

consequence the low regularity of the, piecewise affine, solutions.
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1.4. Numerical Experiments

Figure 1.6 – Double diagonal folding. Snapshots of the numerical stationary solution of (1.1)
with g given by (1.32) and non-zero target functions f (first row: first component: u1,h , second
row: second component: u2,h , third row: det∇uh). Left column: numerical results when f = f1;
Right column: numerical results when f = f2.

31



Chapter 1. Numerical Approximation of Orthogonal Maps

Table 1.7 – Double diagonal folding. (i) Variations with respect to ε1 of the approximate
orthogonality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) Variations with
respect to ε1 of the L2(Ω) norm of the computed approximation error u−uh and related
convergence orders (column 5). (iii) Variations with respect to ε1 of the number of time
steps necessary to achieve convergence (column 6) (Ω= (0,1)2, structured asymmetric mesh,
h = 0.01).

ε1

∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 iter

2×10−3 0.8337 0.8554 0.2242 2.99e-02 37
10−3 0.8873 0.8880 0.1878 1.87e-02 41

2×10−4 0.9517 0.9444 0.1023 6.32e-03 52
10−4 0.9658 0.9595 0.0758 4.03e-03 55
0.0 0.9960 0.9965 0.0142 1.84e-03 413
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1.4.4 A non-smooth example with a point singularity

For this example, we haveΩ= (0,1)2, and the boundary data g defined by

g1(x1, x2) =
{

min(x1,1−x1) if x2 = 1,

0 otherwise,

g2(x1, x2) =


x2 if x2 ≥ x1 and x1 ≤ 0.5,

x2 if x1 > 0.5 and x2 >−x1 +1,

x1 if x2 ≤ x1 and x1 ≤ 0.5,

1−x1 if x2 > x1 and x2 ≤−x1 +1.

(1.34)

An exact solution to the related problem (1.1) is

u1(x1, x2) =


x1 if x2 ≥ x1 and x1 ≤ 0.5,

1−x1 if x1 > 0.5 and x2 >−x1 +1,

x2 if x2 ≤ x1 and x2 ≤−x1 +1,

u2(x1, x2) =


x2 if x2 ≥ x1 and x1 ≤ 0.5,

x2 if x1 > 0.5 and x2 >−x1 +1,

x1 if x2 ≤ x1 and x1 ≤ 0.5,

1−x1 if x2 > x1 and x2 ≤−x1 +1.

(1.35)

The main numerical difficulty here is the point singularity, located at (0.5,0.5). In the neighbor-

hood of this point, the numerical approximation of det∇u oscillates between the values +1 and

−1, which increases significantly the number of iterations required to achieve convergence.

However, using the structured symmetric mesh, the line singularities are again aligned with

the mesh edges, and a very accurate solution is obtained. Indeed, with ε1 = 0, and after 130

time steps, we have

||u−uh ||L2(Ω) = 2.77 ·10−10,∫
Ω
|∇u1,h |dx = 1.0,

∫
Ω
|∇u2,h |dx = 1.0,

∫
Ω
|∇u1,h ·∇u2,h |dx = 1.25 ·10−9.

We obtained the results reported in Table 1.8 using structured asymmetric meshes. These

results show a convergence of order 0.9− 1.0, approximately. One observes also that the

number of time steps required to achieve quasi-stationarity increases with 1/h; this is due to

the oscillatory behavior of function t → uh(t ). Various geometrical aspects of the computed

approximate solution have been visualized in Figure 1.7. In particular, Figure 1.7 (bottom

left) shows that det∇u satisfies accurately the angle condition, however, accuracy deteriorates

close to the singular point (0.5,0.5).
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Table 1.8 – Non-smooth example with point singularity. (i) Variations with respect to h of the
approximate orthogonality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii)
Variations with respect to h of the L2(Ω) norm of the computed approximation error u−uh

and related convergence orders (columns 5 and 6). (iii) Variations with respect to h of the
number of time steps necessary to achieve convergence (column 7). (Ω= (0,1)2, structured
asymmetric meshes).

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.02 0.9703 0.9667 0.0422 5.71e-03 - 333
0.01 0.9852 0.9831 0.0219 2.89e-03 0.98 675

0.005 0.9926 0.9915 0.0113 1.52e-03 0.93 1438
0.0025 0.9963 0.9957 0.0058 7.88e-04 0.94 3316
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Figure 1.7 – Non-smooth example with point singularity. Visualization of the solution uh of
problem (1.1) with g given by (1.34). Top left: component u1,h ; top right: component u2,h ;
bottom left: visualization of det∇uh ; bottom right: visualization of the domain uh(Ω).
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1.4.5 Curved boundaries

Finally, in order to investigate the capabilities of our methodology at handling domainsΩwith

curved boundaries, we consider the particular problem (1.1) where Ω is the open unit disk

centered at (0,0), and g is the restriction to ∂Ω of the vector-valued function u defined by

u1(x1, x2) =
{

x1 if x1 < 0.5,

1−x1 if x1 ≥ 0.5,

u2(x1, x2) =
{

x2 if x2 < 0.5,

1−x2 if x2 ≥ 0.5.

(1.36)

with (x1, x2) ∈Ω. The function u we just defined is an exact solution to the above problem.

Actually, this solution corresponds to a double folding: one folding along the horizontal

diameter of Ω (Ox1 axis) and one folding along the vertical diameter of Ω (Ox2 axis). For

various values of h, we have reported in Table 1.9, the results we obtained, taking ε1 = h2

5∆t .

These results (obtained using isotropic unstructured meshes) show first order convergence

(actually, slightly better than first). They show also that the gradients of the components u1,h

and u2,h of uh verify accurately the orthogonality properties of ∇u1,h and ∇u2,h . Geometrical

aspects of uh have been visualized in Figure 1.8, uh(Ωh) in particular (in Figure 1.8 (bottom

right)),Ωh being a polygonal approximation ofΩ.

Table 1.9 – Double folding of the unit disk. Variations with h of the: (i) Approximate orthog-
onality conditions verified by ∇u1,h and ∇u2,h (columns 2,3 and 4). (ii) L2(Ω)-norm of the
approximation error u−uh and related convergence rates (columns 5 and 6). (iii) Number of
iterations necessary to achieve convergence (column 7). These results have been obtained
using an isotropic unstructured triangulation of the unit disk.

h
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx ||u−uh ||L2 rate iter

0.05 0.9623 0.9623 0.0719 1.27e-02 - 75
0.025 0.9807 0.9807 0.0430 5.76e-03 1.03 379
0.013 0.9902 0.9902 0.0217 2.72e-03 1.08 557
0.006 0.9949 0.9949 0.0110 1.11e-03 1.29 427
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Figure 1.8 – Double folding of the unit disk. Visualization of the computed approximate
solution uh = (u1,h ,u2,h) of problem (1.1) (1.32),Ω being the unit disk centered at (0,0). Top
left: Graph of u1,h ; top right: Graph of u2,h ; bottom left: visualization of det∇uh ; bottom right:
visualization (post-processing) of the domain uh(Ωh). These results have been obtained using
an isotropic unstructured triangulation with h = 0.08.

1.5 The Dirichlet problem with homogeneous boundary conditions

In this section, we will elaborate on the solution of the orthogonal map problem (1.1) with

homogeneous Dirichlet boundary conditions, that is: Find a vector-valued function u(=
[u1,u2]T ) :Ω→R2 verifying

{ ∇u ∈O (2) inΩ,

u = 0 on ∂Ω.
(1.37)

The choice of homogeneous boundary conditions actually corresponds to the case where the

image of the whole boundary ∂Ω is the single point 0 = (0,0). If the condition ∇u∇uT = I is

incompatible with the homogeneous boundary condition (as it is the case ifΩ is a rectangle),

the solution of the regularized least-squares problem (1.9) will develop a fractal behavior near

the boundaryΩ [Dacorogna and Marcellini, 1999; Dacorogna et al., 2010b], in a similar fashion
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as in [Caboussat et al., 2015; Dacorogna et al., 2004; Glowinski, 2015b] for a scalar Eikonal

equation. Such a fractal behavior makes the convergence of our time-stepping method not

possible, and makes this example a very stringent one.

For this test example, we use a uniform asymmetric triangulation with h = 1/200 and ε1 = 0.

In Figure 1.9 is visualized the numerical solution. A close inspection shows that the angle

condition is not satisfied everywhere, therefore a another approach must be favored.

Figure 1.9 – Homogeneous orthogonal map-Dirichlet problem (1.37) with Ω= (0,1)2. Visu-
alization of the approximate solutions computed without and with mesh adaptation. Top:
component u1,h . Bottom: component u2,h . Results obtained using a uniform asymmetric
triangulation with 40,401 vertices and 80,000 triangles.

We are going to describe a first approach to solve (1.37). The approach would be to first fold the

domainΩ into the segment, e.g. {0}× [0,1]. This could be achieved by first folding repeatedly
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along the axis Ox2, as illustrated in Figure 1.10 when folding once, twice and three times.

Figure 1.10 – Multiple folding for the construction of a sequence of numerical approximations
of (1.1), with boundary data converging to g = 0. Snapshots of the numerical stationary
solution (left: first component: u1,h , right: second component: u2,h), when folding once, twice
or three times along one axis (first through third row), and when folding three times along one
axis, and once along the other axis (fourth row).

However, the limit solution obtained when proceeding like this iteratively will not be a solution

to (1.37) as the solution mapping is the null mapping, with a range restricted to the point

(0,0). In the end of this Chapter we present an effective approach that can solve (1.37). We

see in Figure (1.10), the method has a limitation when it comes to solutions of complicated

problems like (1.37). In order to increase the robustness of the method, we equip it with

adaptive techniques, as presented in the next section.
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1.6 An anisotropic adaptive algorithm

Following [Picasso, 2003a,b], our goal is now to build an anisotropic mesh such that the

estimated relative error is close to a preset tolerance T OL, namely:

0.75 T OL ≤ ηA,n+1∣∣∣∣∇un+1
h

∣∣∣∣
L2(Ω)

≤ 1.25 T OL, (1.38)

where the anisotropic error estimation ηA,n+1 is described hereafter.

In order to construct the anisotropic error estimate ηA,n+1, we set the smoothing term ε1 = 0,

since the adaptive algorithm is dedicated to capturing non-smooth solutions and C = 0.

Therefore, (1.23) writes: find un+1 ∈ Vg∫
Ω
∇un+1 : ∇vdx =

∫
Ω

pn+1/2 : ∇vdx, ∀v ∈ (
H 1

0 (Ω)
)2

(1.39)

and the corresponding discrete equation from (1.29) as: find un+1
h ∈ Vg,h∫

Ωh

∇un+1
h : ∇vhdx =

∫
Ωh

pn+1/2
h : ∇vdx, ∀vh ∈ V0,h . (1.40)

To simplify the notation from now on we denote u := u(t n+1), uh := un+1
h , p := pn+1/2 and

ph := pn+1/2
h

Before constructing ηA,n+1, let us first recall some required geometrical definitions of the finite

element method. For any triangle K of the discretization Th , let TK : K̂ → K be the affine

transformation which maps the reference triangle K̂ into K . Let MK be the Jacobian of the

mapping TK . Since MK is invertible, it admits a singular value decomposition MK = RT
KΛK PK ,

where RK and PK are orthogonal and where ΛK is diagonal with positive entries. In the

following, we set

ΛK =
(
λ1,K 0

0 λ2,K

)
, RK =

(
rT

1,K

rT
2,K

)
, (1.41)

with the choice λ1,K ≥λ2,K . These geometrical quantities are illustrated in Figure 1.11.

Moreover, let us recall some interpolation results from [Formaggia and Perotto, 2001]. Let

Ih :
(
H 1 (Ω)

)2 → Vh be the Clément interpolant [Clément, 1975; Carstensen, 2006]; there is a

constant C0 =C0
(
K̂

)
such that, ∀v ∈ (

H 1 (Ω)
)2

(Ω) and ∀K ∈Th we have
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Figure 1.11 – Reference element, main directions, and element dimensions

‖v− Ihv‖L2(K ) 6C0
(
λ2

1,K

(
rT

1,K GK (v)r1,K
)+λ2

2,K

(
rT

2,K GK (v)r2,K
))1/2

, (1.42)

‖v− Ihv‖L2(∂K ) 6C0h1/2
K

(
λ1,K

λ2,K

(
rT

1,K GK (v)r1,K
)+ λ2,K

λ1,K

(
rT

2,K GK (v)r2,K
))1/2

, (1.43)

where the error gradient matrix GK (·) is defined as:

GK (v) = ∑
T∈∆K


∫

T

(
∂v

∂x1

)2

dx
∫

T

∂v

∂x1

∂v

∂x2
dx∫

T

∂v

∂x1

∂v

∂x2
dx

∫
T

(
∂v

∂x2

)2

dx

 ,

with ∆K to be set as all triangles T that have a vertex common with K .

The anisotropic error estimate is based on the residual. Thus we can show for u and uh , we

have

||∇ (u−uh)||2L2(Ω) =
∫
Ω

p : ∇ (u−uh)dx−
∫
Ω
∇uh : ∇ (u−uh)dx,

=
∫
Ω

(
ph −∇uh

)
: ∇ (u−uh)dx+

∫
Ω

(
p−ph

)
: ∇ (u−uh)dx

1

2
||∇ (u−uh)||2L2(Ω) ≤

∫
Ω

(
ph −∇uh

)
: ∇ (u−uh)dx+ 1

2

∣∣∣∣p−ph
∣∣∣∣2

L2(Ω)

Taking v = u−uh and using (1.40), we have

1

2
||∇ (u−uh)||2L2(Ω) ≤

∫
Ω

(
ph −∇uh

)∇ (v− Ihvh)dx,

≤ ∑
K∈Th

(∫
K

div
(∇uh −ph

)
(v− Ihvh)dx + 1

2

∫
∂K

[(∇uh −ph
) ·n

]
(v− Ihvh)dx

)
+ 1

2

∣∣∣∣p−ph
∣∣∣∣2

L2(Ω) ,

where [·] denotes the jump of the bracketed quantity across an internal edge ([·] = 0 for an
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edge on the boundary ∂Ω). Using Cauchy-Schwarz inequality and the interpolation results in

(1.42), we get

1

2
||∇ (u−uh)||2L2(Ω) ≤C0

∑
K∈Th

(∣∣∣∣div
(∇uh −ph

)∣∣∣∣
L2(K ) +

1

2

(
hk

λ1,Kλ2,K

)1/2 ∣∣∣∣[(∇uh −ph
) ·n

]∣∣∣∣
L2(∂K )

)

× (
λ2

1,K

(
rT

1,K GK (v)r1,K
)+λ2

2,K

(
rT

2,K GK (v)r2,K
))1/2 + 1

2

∣∣∣∣p−ph
∣∣∣∣2

L2(Ω) ,

then it is sufficient to take λ2,K hK̂ 6 hK 6λ1,K hK̂ to obtain

1

2
||∇ (u−uh)||2L2(Ω) ≤C0

∑
K∈Th

(∣∣∣∣div
(∇uh −ph

)∣∣∣∣
L2(K ) +

1

2λ1/2
2,K

∣∣∣∣[(∇uh −ph
) ·n

]∣∣∣∣
L2(∂K )

)

× (
λ2

1,K

(
rT

1,K GK (v)r1,K
)+λ2

2,K

(
rT

2,K GK (v)r2,K
))1/2 + 1

2

∣∣∣∣p−ph
∣∣∣∣2

L2(Ω) .

the first term of the residual could practically become negligible when using piecewise linear

finite elements

The first term of the residual is zero since we use P1 polynomials. Moreover, we recall that p

and ph are the solutions of (1.20) and (1.27),respectively. Therefore we neglect
∣∣∣∣p−ph

∣∣∣∣2
L2(Ω)

term because the approximation ph is solved exactly. We conclude by replacing v to u−uh

and we define our error estimate by:

(
ηA,n+1)2 = ∑

K∈Th

(
ηA,n+1

K

)2
where

(
ηA,n+1

K

)2 = ρK (uh) × ωK (u−uh),

with

ρK (uh) = 1

2λ1/2
2,K

∣∣∣∣[(∇uh −ph
) ·n

]∣∣∣∣
L2(∂K )

and

ωK (u−uh)2 = λ2
1,K (rT

1,K GK (u−uh)r1,K )

+λ2
2,K (rT

2,K GK (u−uh)r2,K ).

The estimate ηA,n+1
K still contains the exact solution u in ωK (u−uh). In order to overcome this

we apply the Zienkiewicz-Zhu (ZZ) post-processing technique to approximate GK (u−uh), see

[Zienkiewicz and Zhu, 1987, 1992]. Thus, we estimate

∂ (u−uh)

∂xi
by ΠZ Z

h

∂uh

∂xi
− ∂uh

∂xi
, i = 1,2
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where, for any vh ∈ Vh , and for any vertex P of the mesh

ΠZ Z
h

∂vh

∂xi
(P ) =

∑
K∈Th

|K | ∂vh

∂xi

∣∣∣∣
K∑

K∈Th

|K |

is an approximate L2(Ω) projection of ∂vh/∂xi onto Vh .

Ultimately, we use BL2D mesh generator [Laug and Borouchaki, 1996] to reconstruct an

adapted mesh at each iteration. It requires a metric to be given at the vertices of Th for

the update of the mesh, and thus the anisotropic error estimate on the elements is translated

into an error estimate on each node of the mesh, as detailed, e.g., in [Picasso, 2003a].

1.6.1 General algorithm

The time splitting algorithm (1.26) (1.27) is revisited with additional mesh adaptivity tech-

niques. Unlike what has been done in [Bourgault et al., 2009; Hassan and Picasso, 2015], the

algorithm relies on the fact that the mesh is refined at each time step. When the stationary

solution is reached, it is stabilized by performing additional iterations with the final adapted

mesh. Let us consider given values of ∆t , ε1 and ε2; and let us denote by nmesh the number of

time iterations achieved with mesh adaptation at each time step, and by n f i nal the (maximal)

number of additional time steps performed with the given final adapted mesh. The general

time stepping algorithm is sketched as follows:

. Set given initial conditions, with the initial finite element mesh T 0
h .

. For n = 0,1, . . . ,nmesh , do

1. (Local optimization) Solve the local algebraic optimization problems (1.26) at

each grid point of T n
h ;

2. (Variational) Solve the global linear variational problem (1.29) with the current

discretization T n
h ;

3. (Adapt) Update the finite element mesh T n
h →T n+1

h ;

. For n = nmesh , . . . ,n f i nal (or until
∣∣∣∣un+1

h −un
h

∣∣∣∣
0h

< 10−7), solve (1.26) and (1.27) on the

fixed final adapted mesh T
nmesh

h .

Numerical experiments have shown that adapting the finite element mesh at each time step

helps to converge faster to a stationary solution. This effect is documented in the next section.
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1.7. Numerical experiments

1.7 Numerical experiments

We present some test cases to illustrate the convergence of our algorithm, and to perform a

sensitivity analysis. For all examples considered, the computational domain is the unit square

Ω= (0,1)2, and the parameters in (1.19) (1.20) are given by ε2 = 10−11 and ∆t = ε2/2. Although

to construct the estimator we used ε= 0, in the numerical section we conduct experiments for

various values of it. Because of the low regularity of the solution, small oscillations are created

when the mesh is adapted and the stationary solution is difficult to catch. Therefore, the

stopping criterion for the iterative method reads as follows: the number of time steps is fixed

as nmesh = 450 and n f i nal = 500 for all test cases. All error indicators are averaged over the last

200 time steps in the tables detailing the convergence behavior of the algorithm. Finally, the

results on the effectivity index are given with a margin of error (± standard deviation).

1.7.1 Single fold

The first example corresponds to a single fold, for which the singular set consists of the

segment {1/2}× [0,1]. The exact solution of this problem is

u1(x1, x2) =
{

x1 if x1 < 0.5,

1−x1 if x1 ≥ 0.5,

u2(x1, x2) = x2,

∀(x1, x2) ∈Ω,

and the boundary conditions are defined accordingly. Figure 1.12 illustrates a snapshot of

the stationary solution, together with an illustration of an adaptive mesh (in that case, hmin =
4.53 ·10−3,hmax = 9.81 ·10−1,T OL = 0.03125, ε1 = 0). We can observe that the orthogonality

conditions are accurately satisfied (
∫
Ω |∇u1,h | = 1.000407,

∫
Ω |∇u2,h | = 1.000000, and

∫
Ω∇u1,h ·

∇u2,h = 0.0001).

Figure 1.12 – Single folding. Snapshots of the approximated solution (left: first component
u1,h ; right: second component u2,h), with illustration of the final adapted mesh.

The method we advocate adapts the mesh at each time iteration. Figure 1.13 illustrates the

evolution of the finite element discretization after 20,21 and 40 time iterations. Even though

43



Chapter 1. Numerical Approximation of Orthogonal Maps

the transient solution at one given time step is not accurate and has not converged yet to the

stationary solution, the mesh refinement allows to track for the singularities and obtain more

robust convergence properties of the global outer loop algorithm.

Step 20 Step 21 Step 40

Figure 1.13 – Iterative mesh adaptation within the time stepping algorithm (∆t = 0.5·10−11,ε1 =
0.0,T OL = 0.03125). Left: mesh at time step n = 20; middle: mesh at time step n = 21; right:
mesh at time step n = 40.

Figures 1.14 and 1.15 illustrate the snapshots of the solution for various values of T OL (ε1 = 0

fixed), and various values of ε1 (T OL fixed). The conclusions are the following: i) Figure 1.14

shows that the smaller the tolerance, the thinner the region where elements are generated

along the discontinuity line, and the larger the number of those elements; ii) Figure 1.15 shows

that, for a given tolerance, if ε1 is too large the solution becomes very smooth and thus the

anisotropic mesh refinement is not accurate anymore as there is no privileged direction in the

solution. Actually, when ε1 becomes smaller, the mesh converges to the same mesh as when

ε1 = 0. Numerical results confirm that the jump terms in ρK (uh) andΩK (u−buh) in (1.44) are

the crucial ones for mesh adaptation.

Table 1.10 shows the numerical behavior of the algorithm for varying parameters, namely the

values of the parameters and final adapted meshes for all tolerances and for ε1 = 2 ·10−6 and

ε1 = 0. The mesh sizes are defined as hmi n = minK∈Th λ1,K and hmax = maxK∈Th λ2,K . The

aspect ratio AR represents the maximal aspect ratio defined as AR = maxK∈Th

λ1,K

λ2,K

As illustrated, the aspect ratio, the number of elements and the number of nodes increase

when the tolerance decreases. The number of elements and nodes is larger when ε1 = 0,

showing that the convergence of the mesh adaptive algorithm is more difficult to reach. On

the other hand, for the same number of time iterations, the L2-error is smaller when ε1 = 0.

We observe that the effectivity index becomes smaller than one when the tolerance decreases,

meaning that the H 1-error is not bounded by the estimator ηA
K . This effect will be observed in

all numerical experiments in the sequel. This behavior means that a contribution is missing in

the estimator to have optimal convergence orders. This effect is actually expected, since we are

not incorporating neither the splitting error, nor the contribution from the nonlinear operators

in the estimator ηA
K , but only the linear variational operator. Table 1.11 shows an appropriate
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TOL = 0.125 TOL = 0.06125 TOL =0.03125

Figure 1.14 – Single folding. Snapshots of the final adapted mesh after 500 time iterations, for
various values of the tolerance TOL (ε1 = 0.0). The colormap represents the values of the first
component u1,h . The second row corresponds to a zoom in the squared region indicated in
the first row.

convergence behavior for the orthogonality conditions, with even some super-convergence

behavior in some cases.

Finally, Figure 1.16 illustrates the iterative behavior of the time-stepping algorithm for various

tolerances when ε1 = 0; it shows that the time evolution of indicators is indeed oscillating

when the mesh is adapted, due to the low regularity of the solution. The top left figure shows

the time evolution of the number of elements; the top right figure shows the time evolution

of the error ||u−uh ||L2(Ω); both allow to conclude to the convergence of the algorithm when

the tolerance decreases. The bottom left figure shows the relationship between the error

||u−uh ||L2(Ω) and the number of elements (at each time iteration). It shows that, in average in

time, a smaller tolerance leads to a smaller error and a larger number of elements, and the

relationship seems to be linear but with a high variability. The bottom right figure illustrates

the behavior of hmin versus time.

45



Chapter 1. Numerical Approximation of Orthogonal Maps

ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

Figure 1.15 – Simple folding. Snapshots of the final adapted mesh after 500 time iterations, for
various values of the regularization parameter ε1 (T OL = 0.03125). The colormap represents
the values of the first component u1,h . The second row corresponds to a zoom in the squared
region indicated in the first row.

Table 1.10 – Simple folding. Convergence behavior of the algorithm for various values of
parameter ε1, as a function of the tolerance T OL. The columns contain the final minimal and
maximal mesh size, the final numbers of elements and nodes, the maximal value of the aspect
ratio, the value of the estimator, the effectivity index, and the L2-norm on the approximation
uh of the solution map u.

Regularization term: ε1 = 2 ·10−6

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 7.86e-02 9.96e-01 10.57 24 19 4.49e-01 1.33 ± 0.4224 1.52e-02
0.125000 3.50e-02 1.00e+00 11.11 35 26 2.34e-01 1.18 ± 0.2705 4.56e-03
0.006250 1.09e-02 9.84e-01 29.27 40 28 1.38e-01 1.11 ± 0.3452 2.03e-03
0.031250 3.22e-03 9.83e-01 94.54 64 43 6.51e-02 0.86 ± 0.1584 8.88e-04
Regularization term: ε1 = 0.0

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 1.09e-01 1.00e+00 5.10 21 17 4.46e-01 1.39 ± 0.3156 1.36e-02
0.125000 2.45e-02 9.95e-01 19.24 39 28 2.14e-01 1.03 ± 0.2432 4.89e-03
0.006250 1.20e-02 9.90e-01 26.58 53 36 1.34e-01 0.93 ± 0.2517 2.85e-03
0.031250 4.53e-03 9.81e-01 46.53 61 40 7.47e-02 0.86 ± 0.1453 1.12e-03
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Table 1.11 – Simple folding. Convergence behavior of the algorithm for various regularization
parameters ε1, as a function of the tolerance T OL. The columns contain the constraints for
the orthogonality of the solution.

Regularization term: ε1 = 2 ·10−6

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.2500 0.9914 1.0002 0.0417
0.1250 0.9975 1.0001 0.0192
0.0625 0.9950 1.0000 0.0101

0.03125 0.9982 1.0000 0.0049

Regularization term: ε1 = 0.0

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.0312 0.9982 1.0000 0.0049
0.1250 0.9929 1.0000 0.0221
0.0625 0.9959 1.0000 0.0165

0.03125 1.0004 1.0000 0.0010
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Figure 1.16 – Simple folding (case ε1 = 0.0). Visualization of the behavior of the iterative
algorithm. Top left: Visualization of the time evolution of the number of elements; Top right:
Visualization of the time evolution of the error ||u−uh ||L2(Ω); Bottom left: Visualization of
the relationship between the error ||u−uh ||L2(Ω) vs the number of elements; Bottom right:
Visualization of the time evolution of hmin.
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1.7.2 Double diagonal folding

The second example corresponds to a double folding, along the diagonals of the unit square

domain. The exact solution of this problem is

u1(x1, x2) = d(x,∂Ω),

u2(x1, x2) =
{

min(x2,1−x1) if x1 < x2,

min(x1,1−x2) otherwise ,

∀x = (x1, x2) ∈ Ω,

and the boundary conditions are set accordingly. The additional difficulty lies in the intersec-

tion of two lines of the singular set. Figure 1.17 illustrates a snapshot of the stationary solution,

together with an illustration of an adaptive mesh (in that case, hmin = 1.57 · 10−3, hmax =
5.14 ·10−1, T OL = 0.03125, ε1 = 0.0).

Figure 1.18 illustrates, for ε1 = 0.0, the refined mesh when the tolerance decreases. Again,

the number of elements increases in a narrow neighborhood around the line singularities.

Table 1.12 numerically confirms this statement. It also emphasizes that the convergence

properties are comparable when ε1 6= 0 and when ε1 = 0 (both in terms of accuracy and

convergence rate).

Remark. Using smaller tolerances usually requires a larger number of iterations, and may

require a continuation approach (namely starting the time iterations with a larger tolerance

and decreasing it as the iterations go, as, e.g., in [Caboussat et al., 2019]).

Figure 1.19 illustrates the influence of the regularization parameter ε1. When ε1 too large, the

singularities of the solution are lost, and the anisotropic mesh adaptation algorithm does not

converge easily.

Table 1.12 numerically confirms that (i) the smaller the tolerance, the larger the number of

elements, nodes and aspect ratio; (ii) the estimator ηA
K and the error in the L2-norm are divided

by 1.8 ∼ 2.6 when the tolerance is divided by two; (iii) however, the effectivity index does not

remain constant.

Table 1.13 shows that the orthogonality constraints are satisfied and converge asymptotically.

The accuracy in approximating the orthogonality conditions is better when ε1 = 0.0.

Figure 1.20 illustrates the iterative behavior of the time-stepping algorithm for various toler-

ances when ε1 = 0.0; it shows that the time evolution of indicators is indeed oscillating when

the mesh is adapted, due to the low regularity of the solution. The conclusions are similar to

those of the single folding example.
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Figure 1.17 – Double diagonal folding. Snapshots of the approximated solution (left: first
component u1,h ; right: second component u2,h), with illustration of the final adapted mesh.

TOL = 0.125 TOL = 0.06125 TOL =0.03125

TOL = 0.125 TOL = 0.06125 TOL =0.03125

Figure 1.18 – Double diagonal folding. Snapshots of the final adapted mesh after 500 time
iterations, for various values of the tolerance TOL (ε1 = 0.0). The colormap represents the
values of the first component u1,h . The second row corresponds to a zoom in the squared
region indicated in the first row.

1.7.3 Comparison with a standard adaptive approach

We actually advocate here a non-standard adaptive method when compared to the literature

about mesh adaptive methods for elliptic problems. Indeed, the more standard approach

[Bourgault et al., 2009; Hassan and Picasso, 2015] would be to solve the entire time-stepping

problem, then to adapt the mesh and re-apply the whole solution method for the time-
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ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

Figure 1.19 – Double diagonal folding. Snapshots of the final adapted mesh after 500 time
iterations, for various values of the regularization parameter ε1 (T OL = 0.03125). The colormap
represents the values of the first component u1,h . The second row corresponds to a zoom in
the squared region indicated in the first row.

dependent problem. In the adaptive strategy described in Section 1.6.1, a few time iterations

are performed without reaching the stationary solution with a fixed mesh, then the mesh is

adapted at each time iteration. Actually the variations in the solution occur slowly and locally

(on the edges where the singularities are formed), which favors a mesh adaptivity at each

iteration. The other advantage of the adaptive approach described in Section 1.6.1 is that it

allows to recover a suitable mesh faster compare to the standard strategy.

Figure 1.21 illustrates a comparison between the different approaches (with T OL = 0.625

and ε1 = 0). The figure on the left shows the numerical solution using the adaptive approach

(Section 1.6.1) after 500 iterations (total of time iterations and adaptive remeshing steps at each

time iteration). The figure on the right shows the numerical solution applying the standard

approach after 4000 iterations (same total). Figure 1.21 indicates that the mesh obtained with

the adaptive approach tracks more efficiently the singularities with a smaller total number of

iterations.

Table 1.14 shows the numerical behavior of the algorithm using the standard adaptive ap-

proach for varying parameters, namely the values of the parameters and final adapted meshes

for all tolerances and ε1 = 2 ·10−6 and ε1 = 0.
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Table 1.12 – Double diagonal folding. Convergence behavior of the algorithm for various
values of parameter ε1, as a function of the tolerance T OL. The columns contain the final
minimal and maximal mesh size, the final numbers of elements and nodes, the maximal value
of the aspect ratio, the value of the estimator, the effectivity index, and the L2-norm on the
approximation uh of the solution map u.

Regularization term: ε1 = 2 ·10−6

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 4.48e-02 4.80e-01 8.72 82 54 5.28e-01 1.18 ± 0.2049 1.74e-02
0.125000 1.42e-02 4.96e-01 18.63 157 93 2.96e-01 0.97 ± 0.0853 6.75e-03
0.006250 3.65e-03 4.81e-01 66.06 309 173 1.48e-01 0.81 ± 0.0993 2.92e-03
0.031250 7.75e-04 4.97e-01 208.35 537 300 7.42e-02 0.61 ± 0.0518 1.09e-03
Regularization term: ε1 = 0.0

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 4.42e-02 4.53e-01 7.69 86 56 5.25e-01 1.15 ± 0.1645 1.70e-02
0.125000 1.52e-02 4.71e-01 15.93 164 97 2.97e-01 1.03 ± 0.1109 6.60e-03
0.006250 4.82e-03 5.05e-01 50.25 265 150 1.56e-01 0.88 ± 0.1259 2.63e-03
0.031250 1.57e-03 5.14e-01 120.01 456 248 7.76e-02 0.69 ± 0.0767 1.15e-03

Table 1.13 – Double diagonal folding. Convergence behavior of the algorithm for various
regularization parameters ε1, as a function of the tolerance T OL. The columns contain the
constraints for the orthogonality of the solution.

Regularization term: ε1 = 2 ·10−6

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.2500 0.9785 0.9899 0.1111
0.1250 0.9957 0.9960 0.0432
0.0625 0.9961 0.9957 0.0288

0.03125 0.9957 0.9946 0.0180
Regularization term: ε1 = 0.0

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.2500 0.9896 0.9893 0.0763
0.1250 0.9976 0.9988 0.0409
0.0625 0.9988 0.9986 0.0237

0.03125 0.9997 0.9995 0.0100

1.7.4 Non-smooth example with a point singularity

The third example also corresponds to a double, re-entrant, folding. The exact solution of this

problem is
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Figure 1.20 – Double diagonal folding (case ε1 = 0.0). Visualization of the behavior of the
iterative algorithm. Top left: Visualization of the time evolution of the number of elements; Top
right: Visualization of the time evolution of the error ||u−uh ||L2(Ω); Bottom left: Visualization
of the relationship between the error ||u−uh ||L2(Ω) vs the number of elements; Bottom right:
Visualization of the time evolution of hmin;

u1(x1, x2) =


x1 if x2 ≥ x1 and x1 ≤ 0.5,

1−x1 if x1 > 0.5 and x2 >−x1 +1,

x2 if x2 ≤ x1 and x2 ≤−x1 +1,

u2(x1, x2) =


x2 if x2 ≥ x1 and x1 ≤ 0.5,

x2 if x1 > 0.5 and x2 >−x1 +1,

x1 if x2 ≤ x1 and x1 ≤ 0.5,

1−x1 if x2 > x1 and x2 ≤−x1 +1,

∀(x1, x2) ∈Ω,

and the boundary conditions are set accordingly. We consider a fixed number of nmesh = 500

time steps, and, for this example, we take C = 0. The additional difficulty lies in the refolding

with a re-entrant corner, which causes a new type of point singularity. For this specific test

problem, in the case when T OL = 0.03125, the algorithm fails to converge for nmesh = 500.

Therefore to accelerate the convergence of the adaptive algorithm, it uses gradually decreasing

tolerances T OL (i.e. first a few iterations are performed with T OL = 0.125 then the tolerance
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Figure 1.21 – Double diagonal folding. Snapshots of the final adapted mesh (the colormap
represents the values of the first component u1,h). Left: non-standard approach advocated
here, after 500 time iterations; right: standard approach, after 4000 time iterations. (T OL =
0.625, ε1 = 0).

Table 1.14 – Double diagonal folding. Convergence behavior of the algorithm for various
values of parameter ε1, as a function of the tolerance using the standard adaptive strategy. The
columns contain the final minimal and maximal mesh size, the final numbers of elements and
nodes, the maximal value of the aspect ratio, the value of the estimator, the effectivity index,
and the L2-norm on the approximation uh of the solution map u.

Regularization term: ε1 = 2 ·10−6

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 5.00e-02 4.82e-01 7.34 72 47 5.51e-01 1.44 ± 0.2884 1.42e-02
0.125000 1.54e-02 5.20e-01 20.72 161 95 2.74e-01 1.16 ± 0.1154 4.61e-03
0.006250 4.42e-03 3.96e-01 27.64 447 242 1.51e-01 0.81 ± 0.0623 4.05e-03
0.031250 1.48e-03 2.86e-01 23.36 1564 815 7.43e-02 0.67 ± 0.0597 7.96e-04
Regularization term: ε1 = 0.0

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 4.86e-02 4.56e-01 5.52 95 59 5.45e-01 1.37 ± 0.1456 1.35e-02
0.125000 1.65e-02 4.65e -01 13.18 157 92 2.90e-01 1.05 ± 0.1022 7.49e-03
0.006250 3.60e-03 3.98e-01 25.83 514 277 1.49e-01 0.84 ± 0.0618 2.35e-03
0.031250 1.07e-03 2.84e-01 30.35 1462 759 7.60e-02 0.55 ± 0.0357 1.62e-03

decreases to T OL = 0.0625 and T OL = 0.03125 successively).

Figure 1.22 illustrates a snapshot of the stationary solution, together with an illustration of

an adaptive mesh (in that case, hmin = 1.78 ·10−3,hmax = 5.81 ·10−1,T OL = 0.03125,ε1 = 0.0).

Figures 1.23 and 1.24 illustrate the adapted mesh for ε1 = 0.0 when the tolerance decreases,

and for T OL = 0.03125 when the penalization parameter varies. Similar conclusions to the

previous test cases hold.
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Figure 1.22 – Non-smooth folding with point singularity. Snapshots of the approximated
solution (left: first component u1,h ; right: second component u2,h), with illustration of the
final adapted mesh.

TOL = 0.125 TOL = 0.06125 TOL =0.03125

Figure 1.23 – Non-smooth folding with point singularity. Snapshots of the final adapted mesh
after 500 time iterations, for various values of the tolerance TOL (ε1 = 0.0). The colormap
represents the values of the first component u1,h . The second row corresponds to a zoom in
the squared region indicated in the first row.

Table 1.15 numerically confirms the conclusions reached earlier. Table 1.16 shows an ap-

propriate behavior for the orthogonality constraints that converge asymptotically when the

tolerance decreases (except for one result for the smaller tolerance and ε1 6= 0.0). As expected,

the accuracy in approximating the orthogonality conditions is higher when ε1 = 0.0.

Figure 1.25 illustrates the iterative behavior of the time-stepping algorithm for various toler-

ances when ε1 = 0.0 respectively; it confirms the oscillatory behavior of the time evolution

of indicators when the mesh is adapted, due to the low regularity of the solution. Table 1.17
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ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

ε1 = 2.0 ·10−4 ε1 = 2.0 ·10−6 ε1 = 0

Figure 1.24 – Non-smooth folding with point singularity. Snapshots of the final adapted mesh
after 500 time iterations, for various values of the regularization parameter ε1 (T OL = 0.03125).
The colormap represents the values of the first component u1,h . The second row corresponds
to a zoom in the squared region indicated in the first row.

Table 1.15 – Non-smooth folding with point singularity. Convergence behavior of the algorithm
for various values of parameter ε1, as a function of the tolerance T OL. The columns contain
the final minimal and maximal mesh size, the final numbers of elements and nodes, the
maximal value of the aspect ratio, the value of the estimator, the effectivity index, and the
L2-norm on the approximation uh of the solution map u.

Regularization term: ε1 = 2 ·10−6

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 4.83e-02 6.66e-01 8.14 60 41 5.11e-01 1.15 ± 0.1605 2.00e-02
0.125000 1.55e-02 6.58e-01 11.97 136 82 2.86e-01 0.98 ± 0.0875 8.18e-03
0.006250 4.59e-03 6.81e-01 37.89 259 149 1.44e-01 0.81 ± 0.1469 3.39e-03
0.031250 6.55e-04 5.81e-01 225.45 545 301 7.71e-02 0.64 ± 0.0697 1.48e-03
Regularization term: ε1 = 0.0

T OL hmi n hmax AR # elem # nodes ηA
K

ηA
K

||∇ (u−uh) ||L2
||u−uh ||L2

0.250000 3.59e-02 6.92e-01 15.49 64 44 5.08e-01 1.08 ± 0.1142 2.16e-02
0.125000 1.61e-02 7.11e-01 15.97 122 75 2.88e-01 1.06 ± 0.1573 6.25e-03
0.006250 4.81e-03 6.82e-01 33.88 233 134 1.52e-01 0.86 ± 0.0989 2.59e-03
0.031250 1.78e-03 5.81e-01 49.02 427 234 7.71e-02 0.77 ± 0.1375 9.73e-04

illustrates the numerical behavior of the approximated solution for various ε1. Again, when
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Table 1.16 – Non-smooth folding with point singularity. Convergence behavior of the algorithm
for various regularization parameters ε1, as a function of the tolerance T OL. The columns
contain the constraints for the orthogonality of the solution.

Regularization term: ε1 = 2 ·10−6

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.2500 0.9780 0.9907 0.0826
0.1250 0.9933 0.9945 0.0489
0.0625 0.9968 0.9979 0.0174

0.03125 0.9959 0.9951 0.0092

Regularization term: ε1 = 0.0

T OL
∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

0.2500 0.9754 0.9947 0.1126
0.1250 0.9899 0.9956 0.0493
0.0625 0.9984 0.9994 0.0187
0.0312 0.9992 0.9995 0.0074

ε1 is too large, the algorithm under-performs. Then, we can observe that, when ε1 → 0.0, the

number of elements and nodes remains bounded despite the loss of regularity of the solution.

Similarly the orthogonality conditions become more accurate when ε1 → 0.0.

Table 1.17 – Non-smooth folding with point singularity. Convergence behavior of the algorithm
as a function of the regularization parameter ε1 (tolerance: T OL = 0.3125).

ε1 hmi n hmax # elem # nodes ||u−uh ||L2

2.0e-04 7.66e-04 2.35e-01 3869 2095 1.25e-04
2.0e-06 6.55e-04 5.81e-01 545 301 1.48e-03
2.0e-08 1.70e-03 4.70e-01 422 232 4.16e-04

0.0 1.78e-03 5.81e-01 427 234 9.73e-04

ε1

∫
Ω
|∇u1,h |dx

∫
Ω
|∇u2,h |dx

∫
Ω
|∇u1,h ·∇u2,h |dx

2.0e-04 0.9529 0.9496 0.0641
2.0e-06 0.9960 0.9954 0.0113
2.0e-08 0.9992 0.9996 0.0117

0.0 0.9991 0.9998 0.0074
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Figure 1.25 – Non-smooth folding with point singularity (case ε1 = 0.0). Visualization of
the behavior of the iterative algorithm. Top left: Visualization of the time evolution of the
number of elements; Top right: Visualization of the time evolution of the error ||u−uh ||L2(Ω);
Bottom left: Visualization of the relationship between the error ||u−uh ||L2(Ω) vs the number of
elements; Bottom right: Visualization of the time evolution of hmin;

1.8 A decomposition approach for the homogeneous Dirichlet Prob-

lem

In this final section, let us consider the homogeneous Dirichlet problem:

{ ∇u ∈O (2) a.e. inΩ,

u = 0 on ∂Ω.
(1.44)

In this particular case, the solution becomes fractal near the boundary (see, e.g., [Dacorogna

et al., 2018], but also [Caboussat et al., 2015] for a similar behavior for a scalar Eikonal equa-

tion). Preliminary numerical results reported in [Caboussat et al., 2019] have shown that

adaptive mesh refinement is required to obtain the convergence of the time-stepping algo-

rithm, and recover a admissible solution. Figure 1.26 illustrates the snapshot of the numerical

approximation uh of u, obtained with the anisotropic mesh adaptivity algorithm. However,
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1.8. A decomposition approach for the homogeneous Dirichlet Problem

sharp edges cannot be recovered exactly near the boundary where strong oscillations arise.

One property of the solution is that every singular point should be adjacent an even number

of edges, and this number is at least four. This property is not satisfied for the numerical

approximation in Figure 1.26 due to these inaccuracies near the boundary.

In order to overcome the introduction of such inaccuracies and numerically capture one

solution, we advocate a domain decomposition algorithm to approximate one given solution

of (1.44). Let us consider Ω = (0,4)2, using the geometric information about the expected

oscillatory behavior of the solution near the boundary, we define a sequence of domainsΩk ,

k ≥ 0, such that

Ω= ⋃
k≥0

Ωk ,

with

Ω0 = (1,3)2 , and Ωk =
(
1− 1

k
,3+ 1

k

)2

\Ωk−1, k ≥ 1.

Numerically, the sequence is truncated to M domains, and ΩM = (0,4)2\ΩM−1. Figure 1.27

(left) illustrates the situation for a decomposition in four domains. This decomposition allows

to enforce the fractal behavior through boundary conditions. Figure 1.27 (right) illustrates

schematically the shape of successive boundary conditions (only on half of the boundary).

The algorithm reads as follows: for each k, the orthogonal maps problem is solved onΩk with

given boundary conditions. We use the following notation: Ωk = (ak ,bk )2, Nk = 2Nk−1 +4 for

k ≥ 1, N0 = 4, hk = bk −ak

Nk
and p j = ak + j hk , where j = 2`+1, `= 0, . . . , Nk

2 −1.

The boundary conditions are written, for all x = (x1, x2) on ∂Ωk as u = gk in ∂Ωk , with

gk =
(

g1,k

g2,k
,

)
where

g1,k (x1, x2) = 0 (1.45)

and

g2,k (x1, x2) =
{

y −p2`, if p2` ≤ y ≤ p2`+1,

p2`+2 − y, if p2`+1 ≤ y ≤ p2`+2,
∀`= 0,1,2, . . . ,

Nk

2
−1, (1.46)

where

y =
{

x1 when x2 = ak or x2 = bk ,

x2 when x1 = ak or x1 = bk .
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Figure 1.26 – Homogeneous Dirichlet test case. Snapshots of the approximated solution (top:
first component u1,h ; bottom: second component u2,h), with illustration of the final adapted
mesh consisting of an unstructured adapted triangulation with 22,871 vertices and 42,987
triangles (C = 0, ∆t = 5 ·10−12, ε1 = 0, T OL = 0.625, approx. 3000−5000 time steps).

On the internal boundary, the external boundary conditions gk−1 are reproduced.

Figures 1.28-1.29 illustrate the snapshot of the numerical approximation uh obtained by

coupling the anisotropic adaptive algorithm with this domain decomposition method and
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1.8. A decomposition approach for the homogeneous Dirichlet Problem

M = 4. Results show that the symmetries are perfectly respected, and that the spurious

oscillations are controlled. As a side effect, let us note that this approach allows us to observe

that the proposed adapted algorithm behaves well when solving the orthogonal maps problem

in non-convex domains, as emphasized in Figure 1.30. Finally, Figure 1.31 visualizes det∇uh

and shows that the angle conditions is satisfied.
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Figure 1.27 – Decomposition approach for the solution of the homogeneous Dirichlet problem.
Left: sketch of the sequence of domainsΩk ; Right: sketch of the shape of (piecewise linear)
boundary conditions.
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Figure 1.28 – Decomposition approach for the solution of the homogeneous Dirichlet problem.
Snapshot of the approximated solution u1,h , with illustration of the final adapted mesh after
4150 time iterations on each subdomain, superimposed after individual computation on
each subdomain. The resulting mesh obtained by superimposition of the several meshes is
non-conforming.
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Figure 1.29 – Decomposition approach for the solution of the homogeneous Dirichlet problem.
Snapshot of the approximated solution u2,h , with illustration of the final adapted mesh after
4150 time iterations on each subdomain, superimposed after individual computation on
each subdomain. The resulting mesh obtained by superimposition of the several meshes is
non-conforming.
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Figure 1.30 – Decomposition approach for the solution of the homogeneous Dirichlet problem.
Snapshots of the individual solution computed on each subdomain. The colormap represents
the values of the first component u1,h .
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Figure 1.31 – Decomposition approach for the solution of the homogeneous Dirichlet problem.
Visualization of det∇uh .
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2 Numerical Approximation of the Pre-
scribed Jacobian Equation/Inequality

2.1 Problem Formulation

Let Ω be a bounded domain of R2; we denote by Γ the boundary of Ω. Let f : Ω→ R+ and

g : Γ→R2 be given sufficiently regular functions. The partial differential equation involving

the Jacobian determinant we want to solve reads as follows: find u :Ω→R2 satisfying

{
det∇u = f inΩ,

u = g on Γ.
(2.1)

In particular, we are interested in the identity boundary condition (i.e. g (x) = x for x ∈ Γ) that

has been considered in [Caboussat and Glowinski, 2018], and in [Dacorogna and Moser, 1990]

from a theoretical point of view. The problem is of the following type:{
det∇u = f inΩ,

u (x) = x a.e.x on Γ.
(2.2)

This problem has been addressed in [Caboussat and Glowinski, 2018] with a numerical ap-

proach based on augmented Lagrangian techniques, which will be revisited here with a

least-squares approach. Problem (2.2) corresponds to finding a mapping u that preserves

both the boundary data and some kind of volume (up to some stretching of the mapping).

Note that the solution to (2.2) is not necessarily unique and the same remark holds for (2.1).

Indeed, let us consider (2.2) with f = 1 andΩ the unit disk centered at the origin; in this case,

u (x) = x is an obvious solution. However, when using the polar coordinates
(
ρ,θ

)
, one can see

that v defined by v
(
ρ,θ

)= (
ρ cos

(
θ+2kπρ2

)
, ρ sin

(
θ+2kπρ2

))T
is also a solution.

The proof of the existence of a solution to (2.1) (via the divergence theorem) requires data

to be compatible with the geometrical domain, see [Dacorogna and Moser, 1990]. When the
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boundary conditions are given by u (x) = x on Γ, this compatibility condition reads as:

∫
Ω

f dx = measure (Ω) . (2.3)

The positiveness of the right-hand side f is useful from an analytical point of view to prove

existence results; however, it has been recently loosened slightly to accept locally negative

data (see [Cupini et al., 2009]). Moreover, it makes problem (2.1) elliptic, an important feature

for the solution methodology discussed in this chapter. From now on we will assume that (2.3)

holds.

In parallel, in this chapter we will also consider the following partial differential inequality :

find u :Ω→R2 satisfying

{
det∇u ≥ f inΩ,

u = g on Γ.
(2.4)

with, in particular, the case of the identity boundary condition (i.e. g (x) = x for x ∈ Γ). This

problem has been addressed in [Fischer and Kneuss, 2019] where existence results have been

established under the condition ∫
Ω

f dx ≤ measure (Ω) . (2.5)

We will show that the numerical techniques developed for (2.1) also apply naturally to (2.4),

with small modifications. Thus, in the sequel, the least-squares method we advocate is

described when applied to the initial problem (2.1), and variations in the algorithms to address

(2.4) are highlighted.

2.2 Numerical Algorithm

We propose a numerical algorithm based on the least-squares approach. The iterative relax-

ation algorithm allows to split the minimization problem into two separate sub problems.

The first problem consist of a sequence of low dimensional local nonlinear problems, the

number of them being determined from the chosen mesh grid. The second problem is a linear

variational problem and it results in a fourth-order partial differential equation.

2.2.1 Least squares method

Let us define

Q f =
{

q ∈ (
L2 (Ω)

)2×2
, detq = f

}
,

Vg =
{

v ∈ (
H 1 (Ω)

)2
, v|∂Ω = g

}
.
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2.2. Numerical Algorithm

The regularity of f and g implies that Q f and Vg are non-empty.

The main idea of the numerical method is to find a solution at the intersection of Q f and

∇Vg (if there is an intersection). Finding the intersection is equivalent to solving (2.1). The

least-squares method thus relies on the introduction of an auxiliary variable q ∈ Q f , and reads

as: find
{

u,p
} ∈ Vg × Q f such that

J
(
u,p

)≤ J
(
v,q

)
, ∀{

v,q
} ∈ Vg ×Q f , (2.6)

where, in (2.6), J is defined by

J
(
v,q

)= 1

2

∫
Ω

∣∣∇v−q
∣∣2 dx, (2.7)

and | · | denotes the Frobenius norm |T| = (T : T)1/2, with the inner product S : T =∑2
i , j=1 si j ti j

where T,S are 2×2 matrices with elements si j , ti j for i , j = 1,2, respectively.

We propose a biharmonic regularization of the objective function. The added term is motivated

by previous works that involve first-order elliptic equations, see [Caboussat and Glowinski,

2015b, 2018; Caboussat et al., 2019]. As illustrated in the numerical experiments introducing

the biharmonic regularization accelerates the convergence of the numerical algorithm. The

modified objective function is defined as

Jε
(
v,q

)= J
(
v,q

)+ ε

2

∫
Ω

∣∣∇2v
∣∣2

d x, (2.8)

where ε≥ 0. The modified minimization problem reads as: find
{

u,p
} ∈ V̄g × Q f such that

Jε
(
u,p

)≤ Jε
(
v,q

)
, ∀{

v,q
} ∈ V̄g ×Q f , (2.9)

where V̄g = Vg ∩
(
H 2 (Ω)

)2
.

In the case the inequality (2.4), we modify the functional space Q f as

Q̃ f =
{

q ∈ (
L2 (Ω)

)2×2
,detq ≥ f

}
.

The objective function Jε
(
v,q

)
remains the same as in (2.8), and the minimization problem

reads as: find
{

u,p
} ∈ V̄g × Q̃ f such that

Jε
(
u,p

)≤ Jε
(
v,q

)
, ∀{

v,q
} ∈ V̄g × Q̃ f . (2.10)

2.2.2 Relaxation algorithm

For the solution of the minimization problems (2.9) and (2.10) respectively, we propose a

relaxation algorithm. It reads as follows
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Step 1. The initial guess of the algorithm is obtained by solving:{
−∆u1 = f̃ inΩ,

u1 = g on Γ,
(2.11)

where f̃ = (1,1)T ∀x ∈Ω. The solution of (2.11) is smooth, convex, and matches the boundary

conditions of (2.1).

For n ≥ 1;

Step 2. Assuming that un is known, we look for

pn = arg min
q∈Q f

Jε
(
un ,q

)
; (2.12)

Step 3. Assuming that pn is known, we look for

un+1/2 = argmin
v∈Vε

g

Jε
(
v,pn)

; (2.13)

Step 4. Update the solution as

un+1 = un +ω(
un+1/2 −un)

, (2.14)

where ω ∈ (0,2) is a relaxation parameter that helps controlling the convergence speed of the

algorithm.

For the Jacobian inequality (2.4), the solution can be found by replacing in (2.12) the functional

space Q f by Q̃ f defined in (2.10). Therefore, the only modification needed in the algorithm is

in Step 2.

2.2.3 Numerical solution of the local nonlinearly constrained minimization prob-
lems

The main focus of this subsection is the solution of (2.12) in the relaxation algorithm. Since un

is known, we have

Jε
(
un,q

)= 1

2

∫
Ω

∣∣∇un −q
∣∣2 dx+ ε

2

∫
Ω

∣∣∇2un
∣∣2

d x, (2.15)

and expanding the first term we get

Jε
(
un,q

)= 1

2

∫
Ω
|∇un |2 −

∫
Ω
∇un : qdx+ 1

2

∫
Ω
|q|2dx+ ε

2

∫
Ω

∣∣∇2un
∣∣2

d x. (2.16)
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Then, the solution of pn is obtained by solving the following minimization problem

min
q∈Q f

[
1

2

∫
Ω
|∇un |2 −

∫
Ω
∇un : qdx+ 1

2

∫
Ω
|q|2dx+ ε

2

∫
Ω

∣∣∇2un
∣∣2

d x

]
, (2.17)

Problem (2.17) is equivalent to the following optimization problem where we remove the

constant terms.

pn = arg min
q∈Q f

[∫
Ω

1

2

∣∣q∣∣2 dx−
∫
Ω
∇un : qdx

]
. (2.18)

Problem (2.18) can be solved pointwise because it does not involve any derivative for the

variable q. The solution can be obtained for all x ∈Ω as

p (x) = arg min
q∈E f (x)

[
1

2

∣∣q∣∣2 −b : q
]

, (2.19)

where b =∇un−1 (x) and E f (x) =
{

q (x) ∈R2×2 , q11 (x) q22 (x)−q12 (x) q21 (x) = f (x)
}
, with

q =
(

q11 q12

q21 q22

)
.

Following [Glowinski and Tallec, 1989; Caboussat and Glowinski, 2018] with a proper change

of variables, we can reduce the dimension of the problem and the corresponding solution.

Let us denote the vectors ~b = (b11,b22,b12,b21), bi j , i , j = 1,2 to be the elements of b, ~q =(
q11, q22, q12, q21

)
and a 4×4 matrix as

S =


1/
p

2 1/
p

2 0 0

1/
p

2 −1/
p

2 0 0

0 0 1/
p

2 1/
p

2

0 0 1/
p

2 −1/
p

2

 .

We then introduce the new variables y = S~qT and a = S~bT , so that the minimization problem

in (2.19) is equivalent to

min
y∈F f

[
1

2

∣∣y∣∣2 −a ·y
]

, (2.20)

with F f = {
y ∈R4 , y2

1 − y2
2 − y2

3 + y2
4 = 2 f (> 0)

}
. In order to solve (2.20), we define the La-

grangian functional

L
(
y, λ̃

)= 1

2

∣∣y∣∣2 −a ·y− λ̃

2

(
y2

1 − y2
2 − y2

3 + y2
4 −2 f

)
. (2.21)

Let z denotes the solution of (2.20) and λ is the corresponding Lagrange multiplier. The first
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order optimality conditions of (2.21) read:

z1 −a1 =λz1,

z2 −a2 =−λz2,

z3 −a3 =−λz3,

z4 −a4 =λz4,

z2
1 − z2

2 − z2
3 + z2

4 = 2 f .

(2.22)

We re-write the first 4 equations of (2.22) in terms of z and we replace the variables z1, . . . , z4

into the fifth equation

z1 = a1

1−λ ,

z2 = a2

1+λ ,

z3 = a3

1+λ ,

z4 = a4

1−λ ,

a2
1 +a2

4

(1−λ)2 − a2
2 +a2

3

(1+λ)2 = 2 f .

(2.23)

Finding the value of λ from the last equation allows to obtain z, and then q. Actually, the last

equation of (2.23) can be written as a polynomial function of the variable λ

Aλ4 +Bλ2 +Cλ+D = 0, (2.24)

where

A = − f ,

B = 1

2

(
a2

1 −a2
2 −a2

3 +a2
4 +2 f

)
,

C = a2
1 +a2

2 +a2
3 +a2

4,

D = 1

2

(
a2

1 −a2
2 −a2

3 +a2
4 −2 f

)
.

One can solve (2.24) exactly, although this task can be complex. We favor the use of the Newton

method, and we target a solution λ that is close to zero. The underlying idea is that, if λ= 0,

then the coefficient D should also be zero. The rationale behind targeting D = 0 is that D is

actually equal to

D = 1

2

(
det∇un−1 (x)− f (x)

) ∀x ∈Ω,

and therefore D = 0 implies that un−1 is the solution of (2.1) and λ= 0 from (2.23) implies that

q =∇u. In the mentioned experiments, we observe that λ is close to zero.

When we consider the Jacobian inequality (2.4), the solution of the minimization problem for
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all x ∈Ω reads as

pn (x) = arg min
q∈Ẽ f (x)

[
1

2

∣∣q∣∣2 −b : q
]

, (2.25)

where

Ẽ f (x) =
{

q (x) ∈R2×2 , detq = q11 (x) q22 (x)−q12 (x) q21 (x) ≥ f (x)
}

and b = ∇un−1. The minimization problem (2.25) has four unknowns and one inequality

constraint. In order to solve it, we introduce a slack variable and re-write (2.25) as

min
q∈R2×2

[
1

2

∣∣q∣∣2 −b : q
]

s.t. detq− f − s = 0,

s ≥ 0.

(2.26)

We use a logarithmic barrier function to eliminate the inequality constraint (see e.g. [Nocedal

and Wright, 2006])

min
q∈Ẽ f

[
1

2

∣∣q∣∣2 −b : q
]
−µ log s

s.t. detq− f − s = 0,

(2.27)

where µ≥ 0.

The minimization problem (2.27) has the same form as in (2.19), thus we can introduce the

same change of variables. Namely, y = S~qT and a = S~bT , therefore, the modified problem

reads as

argmin
y∈F̃ f

[
1

2

∣∣y∣∣2 −a ·y
]

, (2.28)

with F̃ f = {
y ∈R4 , y2

1 − y2
2 − y2

3 + y2
4 = 2 f +2s

}
. As before, in order to minimize the objective

function subjected to the constraint y ∈ F̃ f we define the Lagrangian functional

L
(
y, λ̃, s

)= 1

2

∣∣y∣∣2 −a ·y− λ̃

2

(
y2

1 − y2
2 − y2

3 + y2
4 −2 f −2s

)−µ log s. (2.29)

Let z to be the solution of (2.28) and λ is associated to Lagrange multiplier. Applying the first

order optimality conditions we have:

z1 −a1 = λz1,

z2 −a2 = −λz2,

z3 −a3 = −λz3,

z4 −a4 = λz4,
µ

s
= λ,

z2
1 − z2

2 − z2
3 + z2

4 = 2 f +2s.
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We isolate the first 5 equations with respect of z and replace them in the sixth equation

z1 = a1

1−λ ,

z2 = a2

1+λ ,

z3 = a3

1+λ ,

z4 = a4

1−λ ,

s = µ

2λ
,

a2
1 +a2

4

(1−λ)2 − a2
2 +a2

3

(1+λ)2 = 2 f +2s.

The last equation of the above system can be written as a polynomial degree five

Aλ5 +Bλ4 +Cλ3 +Dλ2 +Eλ+F = 0 (2.30)

where

A = 2 f ,

B = 2µ,

C = −a2
1 +a2

2 +a2
3 −a2

4 −4 f ,

D = −2a2
1 −2a2

2 −2a2
3 −2a2

4 −4µ,

E = −a2
1 +a2

2 +a2
3 −a2

4 +2 f ,

F = 2µ.

Again we use a Newton method to solve (2.30).

2.2.4 Numerical solution of the linear variational problems

In this subsection we focus on the solution of Step 3 of the relaxation algorithm. With the as-

sumption that pn is known, we look for the solution of un by solving the following optimization

problem

min
v∈V̄g

[
1

2

∫
Ω

∣∣∇v−pn
∣∣2 dx+ ε

2

∫
Ω

∣∣∇2v
∣∣2

d x

]
. (2.31)

In order to solve (2.31), we derive the first optimality conditions which read as: find un+1/2 ∈ V̄g

such that

ε

∫
Ω
∇2un+1/2 ·∇2vdx+

∫
Ω
∇un+1/2 : ∇vdx =

∫
Ω

pn : ∇vdx, (2.32)

for all v ∈ V0, where V0 =
{

v ∈ (
H 1

0 (Ω)∩H 2 (Ω)
)2

}
. Problem (2.32) is a fourth order partial

differential equation. We solve it using a mixed method by introducing an auxiliary variable
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w =−∇2un+1/2, see [Ciarlet, 2002].

Problem (2.32) becomes : find w ∈ (
H 1

0 (Ω)
)2

such that

ε

∫
Ω
∇w : ∇vdx+

∫
Ω

w ·vdx =
∫
Ω

pn : ∇vdx, ∀v ∈ (
H 1

0 (Ω)
)2

, (2.33)

together with: find un+1/2 ∈ Vg such that∫
Ω
∇un+1/2 : ∇vdx =

∫
Ω

w ·vdx,∀v ∈ (
H 1

0 (Ω)
)2

. (2.34)

Problem (2.32) now splits in two well-posed second order elliptic equations (2.33) and (2.34),

which can be solved using a standard piecewise linear finite element method.

2.3 Finite Element Approximation

Let h > 0 be a space discretization step and let {Th}h be family of conformal triangulations ofΩ

(see [Glowinski, 2008, Appendix 1]). On Qh = {
q ∈ L2 (Ω)2×2 , ∀T ∈Th

}
, we define, respectively,

the corresponding discrete inner product and corresponding norm as

((
p,q

))
0h = ∑

T∈Th

|T | p
∣∣
T : q

∣∣
T ,

∣∣∣∣∣∣q∣∣∣∣∣∣
0h =

√((
q,q

))
0h .

Let Q f h and Q̃ f h be the finite dimensional subspaces of Q f and Q̃ f given by

Q f h = {
q ∈ Qh , q

∣∣
T ∈R2×2, detq

∣∣
T = f̄T , ∀T ∈Th

}
,

Q̃ f h = {
q ∈ Qh , q

∣∣
T ∈R2×2, detq

∣∣
T ≥ f̄T , ∀T ∈Th

}
,

where f̄T = 1

|T |
∫

T
f (x)dx. Let Vg,h and V0h be the finite dimensional subspaces of Vg and V0

given by

Vg,h =
{

v ∈
(
C 0

(
Ω

))2
, v|T ∈ (P1)2 , ∀T ∈Th , v|Γh = gh

}
,

V0h =
{

v ∈
(
C 0

(
Ω

))2
, v|T ∈ (P1)2 , ∀T ∈Th , v|Γh = 0

}
,

where P1 the space of the two-variable polynomials of degree ≤ 1, and gh is a piecewise linear

interpolation of g. We denote a discrete inner product and norm of Vg,h and V0h as

(u,v)0h = ∑
T∈Th

m∑
i=1

Wi u (ζi ) ·v (ζi ) , ||u||0h =
√

(u,u)0h ,

with Wi the weights and ζi the evaluation points of a Gauss quadrature rule, m denotes the

number of points of the quadrature rule.
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The discrete formulation of the least squares method to solve (2.9) reads as: find
{

u,p
} ∈

Vg,h × Q f ,h such that

Jε,h
(
u,p

)≤ Jε,h
(
v,q

)
,∀{

v,q
} ∈ Vg,h × Q f ,h ,

with

Jε,h
(
u,p

)= ∣∣∣∣∣∣∇uh −ph
∣∣∣∣∣∣2

0h .

Similarly, the discrete formulation of the least squares method to solve (2.10) reads as: find{
u,p

} ∈ Vg,h × Q̃ f ,h such that

Jε,h
(
u,p

)≤ Jε,h
(
v,q

)
,∀{

v,q
} ∈ Vg,h × Q̃ f ,h .

The discrete formulation of the ADMM method that is described in Section 2.2.2 becomes:

Step 1. The initialization of the algorithm reads as: find u1
h ∈ Vg,h((∇u1

h ,∇vh
))

0h = (
f̃ ,vh

)
, ∀vh ∈ V0h , (2.35)

where f̃ = (1,1) ∀ x ∈ Ω.

For n ≥ 1,

Step 2. The discrete minimization problem of problem (2.18) is written as

pn
h = arg min

qh∈Q f h

[
1

2

∣∣∣∣∣∣ph
∣∣∣∣∣∣2

0h − ((
un

h ,qh
))

0h

]
, (2.36)

while in the case of Jacobian inequality (2.4), we replace Q f h in (2.36) by Q̃ f h . The solution

of the minimization problem pn
h can be obtained as described in Section 2.2.3. We could

compute a solution of pn
h for multiple points in any T ∈Th however, because ∇un

h is a constant

per T ∈ Th , it is sufficient to compute pn
h only once per T . Therefore, we look for solution

pn
h (T ) ,∀T ∈Th , by providing ∇un

h (T ) and f̄T for every triangle in the given mesh.

Step 3. To obtain un+1/2
h , we discretize (2.32) and get

ε
(∇2un+1/2

h ,∇2vh
)

0h + ((∇un+1
h ,∇vh

))
0h = ((

pn
h ,∇vh

))
0h . (2.37)

By applying a mixed finite element method to (2.37), as applied to (2.32) in Section 2.2.4, we

obtain: find
(
un+1/2

h ,wn
h

) ∈ Vg,h ×V0h such that,


ε
((∇wn

h ,∇vh
))

0h
+ (

wn
h ,vh

)
0h

= ((
pn

h ,∇vh
))

0h
, ∀vh ∈ V0h , and((∇un+1/2

h ,∇ϕh
))

0h
= (

wn
h ,ϕh

)
0h

, ∀ϕh ∈ V0h .
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Step 4. The update of the solution is given by

un+1
h = un

h +ω(
un+1/2

h −un
h

)
.

We study the convergence properties of the above algorithm in the next section with several

numerical experiments.

2.4 Numerical Experiments

In this section, we test our algorithm for different numerical examples. We consider the

following domains: the unit square

Ωq = (0,1)2 ,

the unit disk domain,

Ωd = {
x ∈R2, ||x||2 < 1

}
,

the so-called, pacman domain

Ωp =Ωd \
{
(x1, x2) ∈R2, x > 0, |x2| < x1

}
,

and the cracked unit disk

Ωc =Ωd \
{

(x1, x2) ∈R2, x > 0, |x2| < tan
( π

100

)
x1

}
.

The discretization (meshes) of these domains are showed in Figure 2.1.

The algorithm initialization is performed as following: for the coarsest mesh, we solve equation

(2.35) with the given boundary data. For every other mesh size, we use the numerical solution

obtained by the coarser mesh. In all experiments the smoothing parameter ε is chosen as h2

unless otherwise specified.

The relaxation parameterω is chosen to be initially close to 1, and gradually increases to 2. The

stopping criterion for the relaxation algorithm is when the difference between two successive

iterations are smaller than the tolerance 10−8, i.e., ||un −un−1||L2(Ω) < 10−8.

Newton’s method stopping criterion for the local nonlinear problems is when two successive

iterations are smaller than 10−15. Usually, the number of iterations of the Newton method

does not exceed 5. In order to have an estimation of the multipliers λ on each mesh based

on values associated with every triangle we denote λT to be the value of the λ for the triangle

T ∈Th and N the number of triangles in the mesh then

λ̄=

∑
T∈Th

λT

N
,
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is the average value. Another relevant quantity that describes λ̄ is the standard deviation,

estimated by

σ̄=

√√√√√ ∑
T∈Th

(
λT − λ̄)2

N −1
.

The parameter µ used to solve (2.4) will specified later.
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2.4. Numerical Experiments

Figure 2.1 – Finite element meshes used for the numerical experiments. Top left: structured
mesh for the unit square (Ωq = (0,1)2, h = 0.0125); Top right: unstructured mesh for the
unit square (Ωq = (0,1)2, h = 0.01882); Middle left: structured mesh for the unit disk (Ωd =
{(x1, x2) ∈ R2 : x2

1 + x2
2 < 1}, h ' 0.0209); Middle right: unstructured mesh for the unit disk

(Ωd = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}, h ' 0.08); Bottom left: unstructured mesh for the pacman
domain (Ωp = Ωd \

{
(x1, x2) ∈R2, x1 > 0, |x2| < x1

}
, h = 0.0252); Bottom right: unstructured

mesh for the cracked unit disk (Ωc =Ωd \
{
(x1, x2) ∈R2, x1 > 0, |x2| < tan

(
π

100

)
x1

}
, h = 0.0486).
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2.4.1 Identity map

The first experiment corresponds to considering the identity map, u(Ω) = Ω as the exact

solution. The data are chosen as f = 1 and u (x) = x on Γ. The problem can be written asdet∇u (x) = 1 inΩ,

u (x) = x on Γ.
(2.38)

WhenΩ= (0,1)2, we use structured meshes with mesh size h = {0.00625,0.025, 0.0125,0.05},

and obtain estimations in the L2 (Ω) error norm of order 10−10 and H 1 (Ω) error norm of

order 10−9 to 10−10. In addition, ||∇uh −ph ||L2(Ω) and λ̄ are of the order of 10−10. Figure 2.2

illustrates the two components of the numerical solution when using the structured mesh.

More precisely, with h = 0.025, after 29 iterations, we obtain

||u−uh ||L2(Ω) = 1.24 ·10−10, |u−uh |H 1(Ω) = 7.09 ·10−10,

and

||∇uh −ph ||L2(Ω) = 4.21 ·10−10, λ̄= 2.96 ·10−10.

When

Ω= {
(x1, x2) ∈R2, x2

1 +x2
2 < 1

}
,

we use structured meshes with mesh size h = {0.0831,0.0421, 0.0209,0.0104}. Similar to the

previous setting, we get estimations in the L2 (Ω) error norm of order 10−10 and H 1 (Ω) error

norm of order 10−9 to 10−10. As well, ||∇uh −ph ||L2(Ω) and λ̄ are of the order of 10−10 to 10−11.

Figure 2.3 illustrates the two components of the numerical solution in the disk structured

mesh. In particular, for h = 0.025, and after 29 iterations, we obtain

||u−uh ||L2(Ω) = 2.06 ·10−10, |u−uh |H 1(Ω) = 7.24 ·10−10,

and

||∇uh −ph ||L2(Ω) = 2.06 ·10−10, λ̄= 9.77 ·10−11.

Remark. Note that solving the above test case is the same as solving (1.1) in Chapter 1 with

data { ∇u ∈O (2) in Ω,

u = x on ∂Ω.

We showed that (1.1) satisfies (1.7), that is det∇u(x) =±1, a.e. x ∈Ω. In this specific test case,

we have only the positive sign det∇u(x) = 1, x ∈Ω, which is equivalent to (2.38).

Next, we test the algorithm when (2.4) is considered. Therefore we examine the identity map
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Figure 2.2 – Identity map test case with data f = 1 and g = x. Visualization of the numerical
approximation of the solution uh ; Left: the component u1,h ; Right: the component u2,h .
Results are obtained on structured mesh with h = 0.0125.

Figure 2.3 – Identity map test case with data f = 1 and u = x on Γ. Visualization of the
numerical approximation of the solution uh ; Left: the component u1,h ; Right: the component
u2,h . Results are obtained on structured mesh with h = 0.0209.

test case with f = 0. The problem is written asdet∇u (x) ≥ 0 inΩ,

u (x) = x on Γ,
(2.39)

withΩ= {(x1, x2) ∈R2, x2
1 +x2

2 < 1}.

In (2.39) there is no information on the right-hand side since f = 0, the only available informa-
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tion is on the boundary. Despite this lack of information, the algorithm converges to an exact

solution u (x) = x, similarly as in (2.38). The results obtained solving (2.39) are similar to those

obtained by solving (2.38).

By contrast to solving the Jacobian equality in (2.38), numerical errors in L2 (Ω) and H 1 (Ω)

norms of solving the inequality (2.39) using the same mesh size values are of the order of 10−2

and 10−3, respectively. These parameters depend on the choice of the µ. If initially µ is chosen

to be large ||∇uh −ph ||L2(Ω) will be also large. On the other hand, if µ is small, this may cause

some convergence problems. In this test case we choose µ = 0.1 and we decrease it with a

factor of
p

h. For example, for h = 0.025, after 69 iterations we obtain

||u−uh ||L2(Ω) = 6.86 ·10−10, |u−uh |H 1(Ω) = 2.67 ·10−9,

and

||∇uh −ph ||L2(Ω) = 1.04 ·10−2, λ̄= 2.08 ·10−3.

2.4.2 Identity map with periodic perturbation

In this test case, we have the same boundaries as before, and we introduce some perturbation

inside the domain. We define the right-hand side to be the following function

f (x) =1+απ[cos(πx1)sin(2πx2)+ sin(2πx2)cos(πx2)]

+α2π2[cos(πx1)cos(πx2)sin(2πx1)sin(2πx2)]

−4sin(πx1)sin(πx2)cos(2πx1)cos(2πx2) ,

(2.40)

with α= 1/(5π), chosen to ensure that f is greater than 0 for all x ∈Ω. Then, the problem is

written as det∇u = f inΩ,

u (x) = x on Γ.
(2.41)

The exact solution of (2.41) is

u (x) =
(

x1 +a sin(πx1)sin(2πx2)

x2 +a sin(2πx1)sin(πx2)

)
.

Although the algorithm converges to the provided exact solution, we can not prove the unique-

ness of the solution of (2.41). Table 2.1 illustrates the convergence of the numerical solution

and gives information about the relaxation algorithm with a structured mesh on the unit

square. More precisely, Table 2.1 shows that :

i the numerical solution converges in L2-norm with a rate of O (h) to O
(
h1.4

)
and in H 1-semi

norm with an optimal rate of O (h) when h → 0.

ii the error between of the numerical solution ∇uh and the auxiliary variable ph in L2-norm
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is decreasing with an order greater than O(h).

iii the number of iterations of the relaxation algorithm is linearly increasing.

iv based on the estimated average and standard deviation λ̄ and σ̄, the range of the 95%

confidence interval [λ̄−2σ̄, λ̄+2σ̄] converges to zero when h → 0. This is in adequation

with the theory outlined before.

Similar results are observed in Table 2.2, where the unstructured mesh is used. We observe

that the numerical solution converges in L2-norm and H 1-semi norm with a rate greater than

O (h). Note that the error between the numerical solution uh and the auxiliary variable ph in

L2-norm decreases for decreasing h. The iterations of the relaxation algorithm are linearly

increasing. Although we cannot directly compare the results of Table 2.1 and Table 2.2 because

of the difference in mesh size and the number of elements, we can claim that the algorithm is

not sensitive to the structure of the mesh.

Table 2.1 – Identity map with periodic perturbation test case with data f given in (2.40)
and u = x on Γ. Computations with various mesh sizes h; L2 and H 1 error norms with the
corresponding rates; Computation of the difference between ∇uh and ph in L2 norm; Average
value of λ̄ with its standard deviation σ̄; Iterations of the relaxation algorithm. The results are
obtained with a structured mesh.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
1/20 2.71e-02 1.93e-01 7.58e-02 -6.97e-03(0.054) 19
1/40 1.29e-02 1.03 9.37e-02 1.00 3.42e-02 -3.08e-03(0.024) 49
1/80 4.84e-03 1.40 3.85e-02 1.18 1.11e-02 -8.19e-04(0.008) 149

1/160 2.22e-03 1.18 2.26e-02 0.94 3.76e-03 -1.35e-04(0.002) 359

Table 2.2 – Identity map with periodic perturbation test case with data f given in (2.40)
and u = x on Γ. Computations with various mesh sizes h; L2 and H 1 error norms with the
corresponding rates; Computation of the difference between ∇uh and ph in L2 norm; Average
value of λ̄ with its standard deviation σ̄; Iterations of the relaxation algorithm. The results are
obtained with a unstructured mesh.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.0622 3.49e-02 2.45e-01 1.02e-01 -2.13e-02(0.076) 19
0.0377 2.06e-02 0.76 1.46e-01 0.74 5.76e-02 -8.35e-03(0.046) 39
0.0188 8.57e-03 1.26 6.33e-02 1.20 2.24e-02 -4.38e-03(0.018) 89
0.0094 3.28e-03 1.38 2.87e-02 1.14 7.06e-03 -6.75e-04(0.005) 249

Figure 2.4 illustrates the two components of the numerical solution on the quad structured

mesh. Figure 2.5 visualizes det∇uh (top left) and detph (top right), where we can observe that

both quantities are similar with small difference on the boundaries. On the bottom left shows
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the normalized numerical solution of ||uh ||. On the bottom right the vectors are defined by

the components [u1(x1, x2),u2(x1, x2)] and are displayed at the node of the mesh [x1, x2] ∈Ω.

The direction of the vectors shows the stretch ofΩ that results to the map u (Ω).

Figure 2.4 – Identity map with periodic perturbation test case with data f given in (2.40)
and u = x on Γ. Visualization of the numerical approximation of the solution uh ; Left: the
component u1,h ; Right: the component u2,h . The results are obtained on structured mesh
with h = 0.0125.

2.4.3 Smooth solution with radial symmetric right-hand side

LetΩ= {(x1, x2) ∈R2, x2
1 +x2

2 < 1} be the unit disk. We consider the following problemdet∇u = 2
(
x2

1 +x2
2

)
inΩ,

u (x) = g (x) on Γ,
(2.42)

where

g (x) =
p

2

(
1
2

(
x2

1 −x2
2

)
x1x2

)
.

The exact solution satisfies

u (x) =
p

2

(
1
2

(
x2

1 −x2
2

)
x1x2

)
. (2.43)

The non-uniqueness of the solution of equation (2.42) makes this test case challenging. For

instance, this may cause the algorithm to ascilate between two different solutions. Later on,

we show that our algorithm converges to a solution for every different set of parameters. The

numerical solution of (2.42) is illustrated in the top row of Figure 2.6. Note that both the

right-hand side of this equation, 2(x2
1 +x2

2), and ||uh || (bottom left), are radial symmetric while

the solution, uh , does not have the same symmetry pattern. The numerical approximation of

det∇uh and detph are presented in the second row, we see that the solutions are identical.
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Figure 2.5 – Identity map with periodic perturbation test case with data f given in (2.40) and
u = x on Γ. Top left: Numerical approximation of the solution det∇uh . Top right: Numerical
approximation of the solution det∇ph . Bottom left: Numerical approximation of the solution
||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on structured
mesh with h = 0.0125.

Table 2.3 provides insights about the convergence of the numerical solution and the relaxation

algorithm on the structured mesh for the unit disk. The numerical aspects of the algorithm

enumerated in the previous section still holds with the only difference being that the numerical

solution converges in L2-norm with a rate of O
(
h1.7

)
to O

(
h2

)
and in H 1 semi-norm with an

optimal rate of O (h).

Similar results are observed in Table 2.4, where the unstructured mesh is used. We observe

that the numerical solution converges in L2-norm and H 1-semi norm with rate of O
(
h1.9

)
and

O(h), respectively. This confirms that the algorithm does not depend on the structure of the

mesh.
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Table 2.3 – Smooth solution with radial symmetric right-hand side test case with data f =
2
(
x2 + y2

)
and u =p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Computations with various mesh sizes h; L2

and H 1 error norms with the corresponding rates; Computation of the difference between
∇uh and ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the
relaxation algorithm. The results are obtained on a structured mesh.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.0831 5.95e-03 2.14e-01 9.05e-02 1.37e-02(0.063) 19
0.0421 1.27e-03 2.19 1.03e-01 1.05 4.25e-02 7.50e-03(0.036) 39
0.0209 3.38e-04 1.91 5.22e-02 0.98 2.17e-02 3.58e-03(0.020) 79
0.0104 1.05e-04 1.70 2.63e-02 0.98 1.10e-02 1.76e-03(0.011) 219

Table 2.4 – Smooth solution with radial symmetric right-hand side test case with data f =
2
(
x2 + y2

)
and u =p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Computations with various mesh sizes h; L2

and H 1 error norms with the corresponding rates; Computation of the difference between
∇uh and ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the
relaxation algorithm. The results are obtained on an unstructured mesh.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.1327 5.79e-03 2.25e-01 1.14e-01 1.31e-02(0.062) 19
0.0665 1.53e-03 1.92 1.13e-01 1.00 5.74e-02 5.88e-03(0.038) 29
0.0332 4.06e-04 1.92 5.65e-02 1.00 2.85e-02 2.15e-03(0.022) 69
0.0166 1.30e-04 1.64 2.83e-02 1.00 1.42e-02 1.02e-03(0.012) 199

Let us briefly consider the same problem without providing the right-hand side
(

f = 0
)
, and

we solve the Jacobian inequality. Again, let Ω= {(x1, x2) ∈ R2, x2
1 + x2

2 < 1} to be the unit disk,

the right-hand side is given by f = 0, and we have the same function g(x) on the boundary.

The problem reads as det∇u ≥ 0 inΩ,

u (x) = g (x) on Γ.
(2.44)

The exact solution is estimated numerically, and it is equal to the solution of solving the

Jacobian equality (2.43). Table 2.5 shows results obtained on the structured mesh. The

parameter µ for the solution of the local non-linear problems is chosen to be 0.1 and we

decrease it by 0.001
p

h at each iteration of the interior point method. We can observe that

the numerical solution in this case converges in L2-norm and H 1-semi norm with a rate of

O
(
h1.9

)
and O(h), respectively.
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Table 2.5 – Smooth solution with radial symmetric right-hand side inequality test case with

data f = 0 and u =p
2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Computations with various mesh sizes h; L2

and H 1 error norms with the corresponding rates; Computation of the difference between
∇uh and ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the
relaxation algorithm. The results are obtained on the unit disk equipped by a structured mesh.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.0831 6.12e-03 2.14e-01 1.08e-03 7.42e-04(0.010) 59
0.0421 1.33e-03 2.20 1.03e-01 1.05 4.74e-04 2.94e-04(0.007) 99
0.0209 3.48e-04 1.93 5.23e-02 0.98 3.20e-04 2.42e-04(0.007) 119
0.0104 9.36e-05 1.89 2.63e-02 0.99 2.09e-04 1.62e-04(0.005) 219

2.4.4 Smooth radial symmetric solution with non-smooth gradient

LetΩ= {(x1, x2) ∈R2, x2
1 +x2

2 < 1} be the unit disk, the right hand side is given by f = 2
(
x2

1 +x2
2

)
,

the boundary data is given by g (x) = x. The problem (2.1) with these data reads asdet∇u = 2
(
x2

1 +x2
2

)
inΩ,

u (x) = x on Γ.
(2.45)

Problem (2.45) admits an exact solution

u (x) =
√

x2
1 +x2

2

(
x1

x2

)
,

and the gradient is

∇u (x) = 1√
x2

1 +x2
2

(
2x2

1 +x2
2 x1x2

x1x2 x2 +2x2
2

)
.

Note that the solution u is a smooth radial function, but ∇u is not defined at the origin (0,0);

this will be observed later when we compare this case with the previous test case.

The numerical solution of (2.45) is illustrated in Figure 2.7. As the previous test cases, the

main comments are: (1) the smoothness of the solutions (first row), (2) the similarity between

numerical solutions of det∇uh and detph (second row), and (3) the radial symmetry of ||uh ||
(bottom right), along with the direction of the arrows (bottom left), which point to the center of

the domain. Converges properties of the relaxation algorithm on the disk structured mesh are

presented in Table 2.6 where we see that the numerical solution converges in L2-norm with a

rate of O
(
h1.1

)
to O

(
h1.5

)
and in H 1 semi norm with an optimal rate of O (h). The number of it-

erations in this test case may reach the maximum allowed number of iterations corresponding

to the stopping criterion of 1000 iterations. This is relatively more computationally expensive

than the previous cases. Similar results are reported in Table 2.7 for the unstructured mesh.
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Table 2.6 – Smooth radial symmetric solution with non-smooth gradient test case with data
f = 2

(
x2 + y2

)
and u = x on Γ. Computations with various mesh sizes h; L2 and H 1 error

norms with the corresponding rates; Computation of the difference between ∇uh and ph in L2

norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the relaxation algorithm.
The results are obtained on a structured mesh on the unit disk.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.0831 1.57e-01 6.44e-01 3.84e-01 -2.72e-01(0.270) 999
0.0421 6.60e-02 1.25 3.18e-01 1.02 1.73e-01 -1.13e-01(0.129) 199
0.0209 2.62e-02 1.33 1.56e-01 1.02 7.87e-02 -3.72e-02(0.057) 309
0.0104 9.20e-03 1.51 7.07e-02 1.14 3.31e-02 -1.07e-02(0.023) 999

Table 2.7 – Smooth radial symmetric solution with non-smooth gradient test case with data
f = 2

(
x2 + y2

)
and u = x on Γ. Computations with various mesh sizes h; L2 and H 1 error

norms with the corresponding rates; Computation of the difference between ∇uh and ph in L2

norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the relaxation algorithm.
The results are obtained on an unstructured mesh on the unit disk .

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.1327 1.71e-01 6.77e-01 4.40e-01 -9.82e-02(0.244) 359
0.0665 7.39e-02 1.21 3.19e-01 1.09 1.93e-01 -5.24e-02(0.130) 259
0.0332 2.65e-02 1.48 1.39e-01 1.20 7.44e-02 -1.86e-02(0.059) 489
0.0166 9.51e-03 1.48 6.17e-02 1.17 2.87e-02 -5.31e-03(0.026) 999
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Figure 2.6 – Smooth solution with radial symmetric right-hand side test case with data

f = 2
(
x2 + y2

)
and u = p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Graphs of the numerical approxima-

tions; Top Left: Numerical approximation of the solution of the component u1,h . Top right:
Numerical approximation of the solution of the component u2,h . Middle left: Numerical
approximation of det∇uh . Middle right: Numerical approximation of detph . Bottom left:
Numerical approximation of ||uh ||. Bottom right: Visualization of the vector field uh . The
results are obtained on structured mesh on the unit disk with h = 0.0209.
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Figure 2.7 – Smooth radial symmetric solution with non-smooth gradient test case with data
f = 2

(
x2 + y2

)
and u = x on Γ. Graphs of the numerical approximations; Top Left: Numerical

approximation of the solution of the component u1,h . Top right: Numerical approximation of
the solution of the component u2,h . Middle left: Numerical approximation of det∇uh . Middle
right: Numerical approximation of detph . Bottom left: Numerical approximation of ||uh ||.
Bottom right: Visualization of the vector field uh . The results are obtained on a structured
mesh on the unit disk with h = 0.0209.
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2.4.5 Identity map on non-convex domains

In this subsection, we consider the identity map as in the first experimentdet∇u (x) = 1 in Ω̄,

u (x) = x on Γ.
(2.46)

The exact solution of (2.46) is u (x) = x. We will choose two non-convex domains. The first one

is a pacman shaped domain obtained by eliminating a piece of angular size 2a where a =π/4,

from a unit disk, so

Ω̄= {
(x1, x2) ∈R2, x2

1 +x2
2 < 1

}
\
{
(x1, x2) ∈R2, x1 > 0, |x2| < x1

}
.

The finite element triangulation of Ω̄ is displayed in Figure 2.1(bottom right). By using the

pacman unstructured mesh with a size h ∈ {0.0747,0.0503,0.0252,0.0126}, we get estimations

in the L2 (Ω) and H 1 (Ω) error norms of order 10−10 and 10−9 to 10−10, respectively. Figure 2.8

illustrates the two components of the numerical solution. In addition, ||∇uh −ph ||L2(Ω) and λ̄

are of the order of 10−10. For h = 0.0252, after 29 iterations we obtain

||u−uh ||L2(Ω) = 2.39 ·10−10, |u−uh |H 1(Ω) = 9.44 ·10−10,

and

||∇uh −ph ||L2(Ω) = 6.51 ·10−10, λ̄= 1.55 ·10−10.

The second domain Ω̄ that we consider is a cracked unit disk domain. It is obtained by

removing a piece of angular size 2a where a =π/100. The domain is then

Ω̄= {
(x1, x2) ∈R2, x2

1 +x2
2 < 1

}
\
{

(x1, x2) ∈R2, x1 > 0, |x2| < tan
( π

100

)}
,

The finite element triangulation of Ω̄ is displayed in Figure 2.1 (bottom right). We consider

a mesh size h ∈ {0.1525,0.0971,0.0486,0.0243}, for which we obtained error estimates in the

L2 (Ω) and H 1 (Ω) of order 10−10 and 10−9, respectively. As well, ||∇uh −ph ||L2(Ω) and λ̄ are

of the order of 10−10. Figure 2.9 shows the two components of the numerical solution. For

instance, for h = 0.0243 after 29 iterations, we obtain

||u−uh ||L2(Ω) = 3.74 ·10−10, |u−uh |H 1(Ω) = 1.23 ·10−09,

and

||∇uh −ph ||L2(Ω) = 8.13 ·10−10, λ̄= 1.84 ·10−10.

To summarize, the behavior of our algorithm is similar of such non convex domains, both in

terms of accuracy and efficiency.
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Figure 2.8 – Identity map on non-convex domains (pacman domain) with data f = 1 and g = x.
Visualization of the numerical approximation of the solution uh ; Left: the component u1,h ;
Right: the component u2,h . Results are obtained with an unstructured mesh with h = 0.0252.

Figure 2.9 – Identity map on non-convex domains (cracked domain) with data f = 1 and
g = x. Visualization of the numerical approximation of the solution uh ; Left: the component
u1,h ; Right: the component u2,h . The results are obtained with an unstructured mesh with
h = 0.0486.

2.4.6 Smooth solution with radial symmetric right-hand side on non-convex do-
mains

In this experiment we use the same non-convex domains as in the previous section, and we

focus on the following problem det∇u = 2||x||22 in Ω̄,

u (x) = g (x) on Γ.
(2.47)

92



2.4. Numerical Experiments

where

g (x) =
p

2

(
1
2

(
x2

1 −x2
2

)
x1x2

)
.

In this case, the exact solution is

u (x) =
p

2

(
1
2

(
x2

1 −x2
2

)
x1x2

)

For both domains (pacman with unstructured mesh, and cracked disk with an unstructured

mesh ), results are reported in Table 2.8 and Table 2.9, respectively . We see that the numerical

solution converges in L2-norm with a rate of O
(
h1.9

)
to O

(
h1.7

)
and O

(
h1.8

)
, respectively.

Convergence in H 1 semi norm is of order of O(h) on both domains. The number of iterations

of the relaxation algorithm is linearly increasing for decreasing h. Comparing these two tables,

we can say that the performance of algorithm is the same for the two non-convex domains.

Recall that in Table 2.3, we solved the same problem on a convex domain. We can conclude

that the algorithm has the same level of performance for both algorithms, on either convex

and non-convex domains.

The numerical solution of (2.47) on both domains is illustrated in the top row of Figure 2.10

and 2.11, respectively. The numerical approximation of det∇uh and detph in the second row

of both figures are identical on both domains, and the vector field uh (bottom right) of the

figures point towards the origin

Table 2.8 – Smooth solution with radial symmetric right-hand side test case with data

f (x1, x2) = 2
(
x2

1 +x2
2

)
and u(x) = p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Computations with various

mesh sizes h; L2 and H 1 error norms with the corresponding rates; Computation of the dif-
ference between ∇uh and ph in L2 norm; Average value λ̄ and the corresponding standard
deviation σ̄; Iterations of the relaxation algorithm. The results are obtained on unstructured
mesh for the pacman domain.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.0747 3.24e-03 1.51e-01 7.68e-02 3.43e-03(0.045) 19
0.0503 8.65e-04 1.90 7.59e-02 1.00 3.90e-02 1.47e-03(0.025) 29
0.0252 2.26e-04 1.94 3.80e-02 1.00 1.95e-02 7.16e-04(0.013) 59
0.0126 6.67e-05 1.76 1.90e-02 1.00 9.73e-03 2.99e-04(0.007) 119
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Table 2.9 – Smooth solution with radial symmetric right-hand side test case with data

f (x1, x2) = 2
(
x2

1 +x2
2

)
and u =p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Computations with various mesh

sizes h; L2 and H 1 error norms with the corresponding rates; Computation of the difference
between ∇uh and ph in L2 norm; Average value λ̄ and the corresponding standard deviation
σ̄; Iterations of the relaxation algorithm. The results are obtained on unstructured mesh for
the pacman domain.

h ||u−uh ||L2(Ω) |u−uh |H 1(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
0.1525 1.42e-02 3.44e-01 1.81e-01 1.89e-02(0.101) 19
0.0971 3.98e-03 1.83 1.72e-01 1.00 9.15e-02 1.11e-02(0.056) 19
0.0486 1.12e-03 1.83 8.63e-02 1.00 4.53e-02 5.62e-03(0.030) 39
0.0243 3.33e-04 1.75 4.32e-02 1.00 2.23e-02 2.89e-03(0.016) 69
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Figure 2.10 – Smooth solution with radial symmetric right-hand side on non-convex domains

test case with data f (x1, x2) = 2
(
x2 + y2

)
and u(x1, x2) =p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Top Left:

Numerical approximation of the solution of the component u1,h . Top right: Numerical ap-
proximation of the solution of the component u2,h . Middle left: Numerical approximation of
det∇uh . Middle right: Numerical approximation of detph . Bottom left: Numerical approxi-
mation of ||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on
pacman unstructured mesh with h = 0.0252.
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Figure 2.11 – Smooth solution with radial symmetric right-hand side on non-convex domains

test case with data f (x1, x2) = 2
(
x2 + y2

)
and u(x1, x2) =p

2
(1

2

(
x2

1 −x2
2

)
, x1x2

)T
on Γ. Graphs

of the numerical approximations; Top Left: Numerical approximation of the solution of the
component u1,h . Top right: Numerical approximation of the solution of the component u2,h .
Middle left: Numerical approximation of det∇uh . Middle right: Numerical approximation of
detph . The results are obtained on cracked disk unstructured mesh with h = 0.0486.

96



2.4. Numerical Experiments

2.4.7 Nonsmooth right-hand side with a jump

LetΩ be the unit disk

Ω= {(x1, x2) ∈R2, x2
1 +x2

2 < 1}.

In this experiment, we validate the algorithm with a non-smooth right hand side by introducing

a jump on f given by

f (x) =
0.1 if x1 ≤ 0,

1.9 if x1 > 0.
(2.48)

Note that f still satisfies the necessary condition
∫
Ω

f = measure(Ω). On the boundary we

enforce the identity function g = x, and the problem reads asdet∇u = f inΩ,

u = g on Γ.
(2.49)

It is important to mention that an exact solution of problem (2.49) is unknown. However, the

low regularity on the right-hand side indicates that the solution, if it exists, will also have low

regularity.

Table 2.10 shows results for ε= 0 and ε= h2 for the disk structured meshes. We observe that

the error between the numerical solution ∇uh and the auxiliary variable ph in L2 is of the order

of O (h) for both values of ε, although, more accurate for ε = 0. Same observations can be

made for λ̄ and σ̄. In addition, the iterations of the relaxation algorithm are reaching the limit

of stopping criterion for ε= 0. and for ε= h2, the iterations are well controlled. This shows

that the ε-regularization helps the convergence of the algorithm.

The numerical solution of (2.49) on the disk domain with ε= 0 is illustrated in Figure 2.12 (top

row). A close inspection of this figure shows that the u1,h component (top left) is discontin-

uous in x2 = 0, as expected, and the u2,h component (top right) is smooth. The numerical

approximation of det∇uh and detph are displayed in the second row, and are identical. In the

bottom row, we illustrate ||uh ||2 on the left side, and we see on the right side that the vector

fields

The numerical solution of (2.49) with ε set to h2 is displayed in the top row of Figure 2.13,

where both components can be regarded as smooth. The second row on the other side, shows

the numerical solution of det∇uh and detph . These solutions look different, for instance

det∇uh is smoother in x2 = 0. The left panel in the bottom row of Figure 2.13 represents ||uh ||2,

where we see that vector fields is directed towards the center.

A comparison with respect to the different figures associated with the choice of ε is made in

Figure 2.14, where we plot the solutions as a function of x1 for x2 = 0. In the top row, we plot the

solution of the component u1,h (left) and ||uh || (right). We can see a slight difference between

the two curves along with the discontinuity point mentioned above. In the bottom row, we
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Table 2.10 – Nonsmooth right-hand side with a jump test case with the data f given by (2.48).
Results for ε = 0 and ε = h2; Computations with various mesh sizes h; Computation of the
difference of ∇uh and ph in L2 norm; Average value of λ̄ and the corresponding standard
deviation σ̄; Number of iterations of the relaxation algorithm. The results are obtained with
structured meshes.

h ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
ε= 0

0.0831 3.61e-02 7.27e-04(0.007) 999
0.0421 1.77e-02 1.81e-04(0.005) 999
0.0209 1.15e-02 -1.52e-05(0.003) 999
0.0104 8.65e-03 -1.40e-05(0.002) 999

ε= h2

0.0831 4.68e-01 -1.31e-01(0.166) 189
0.0421 2.69e-01 -3.36e-02(0.090) 129
0.0209 1.73e-01 -8.84e-03(0.059) 269
0.0104 1.14e-01 -2.42e-03(0.041) 779

represent det∇uh (on the left), where we see the effect of increasing ε on the smoothness of

the corresponding solution. The visualization of detph (right) shows that the choice of ε is

irrelevant, as the two curves coincides pointwise.
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Figure 2.12 – Nonsmooth right-hand side with a jump test case with data f as in (2.48). Top
Left: Numerical approximation of the solution of the component u1,h . Top right: Numerical
approximation of the solution of the component u2,h . Middle left: Numerical approximation
of det∇uh . Middle right: Numerical approximation of detph . Bottom left: Numerical approxi-
mation of ||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on
a disk structured mesh with h = 0.0209 and ε= 0.
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Figure 2.13 – Nonsmooth right-hand side with a jump test case with data f as in (2.48). Top
Left: Numerical approximation of the solution of the component u1,h . Top right: Numerical
approximation of the solution of the component u2,h . Middle left: Numerical approximation
of det∇uh . Middle right: Numerical approximation of detph . Bottom left: Numerical approxi-
mation of ||uh ||. Bottom right: Visualization of the vector field uh . The results are obtained on
a disk structured mesh with h = 0.0209 and ε= h2.
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Figure 2.14 – Nonsmooth right-hand side with a jump test case with data f as in (2.48).
Comparing plot between ε= 0 and ε= h2. Computation on a structured mesh with h = 0.00209.
All data extracted along the line x2 = 0 line; Top left : u1,h component versus x1. Top right:
||uh || vs x1. Bottom left: det∇uh vs x1. Bottom right: detph vs x1.
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2.4.8 Nonsmooth right-hand side with a Dirac delta function

LetΩ be the unit disk defined by

Ω= {(x1, x2) ∈R2, x2
1 +x2

2 < 1}.

In this experiment, we consider for the right hand side a Dirac delta function centered at the

origin, i.e.,

f =πδ(0,0)

and g(x) = x on Γ; therefore the problem reads :det∇u = f in Ω,

u = g on Γ.
(2.50)

The exact solution of problem (2.50) is

u (x) = x

||x||2
. (2.51)

In order to apply our methodology, we approximate f by fη defined by

fη (x) = η2(
η2 +||x||22

)2 ,

where η is a small positive value, see [Caboussat et al., 2013; Liu et al., 2019]. When η→ 0, the

approximate solution fη converges to f . Note also that fη, satisfies the necessary condition∫
Ω

fhdx = π

η+1
= measure(Ω) , when η→ 0.

The modified problem reads as det∇u = fη in Ω,

uη (x) = x on Γ,
(2.52)

and the exact solution is

uη (x) = x

√
1+η2

η2 + ∣∣|x|22∣∣ . (2.53)

We can also show that

lim
η→0

uη(x) = u (x) , ∀x ∈Ω.
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We will examine this test case for various values of η,ε and h. Table 2.11 shows compu-

tations with different η and h for a unstructured mesh on a unit disk. We can see, for

η ∈ {1/8,1/16,1/32,1/64}, the error of the numerical solution in L2 norm decreases with

an order equal or larger than O(h). For η = 1/4, the convergence rate drops to 0.83 when

h = 0.0104. The same comments hold for the difference between ∇uh and ph in L2 norm, and

the estimates of λ and σ̄. For most values of η, the maximum number of iterations is reached

when the mesh size is equal to the coarsest and finest values, i.e., h = 0.0571 and h = 0.0104.

For other choices of h, we obtained a reasonable number of iterations.

It is worth mentioning that large values of η such as 1/4, do not satisfy the necessary condition∫
Ω fη ≤π. This eventually causes numerical problems when it comes to the convergence of

the algorithm. Small values on the other hand, such as η = 1/64, are associated with large

gradients which consequently implies that we need a finer mesh in order to have a better

convergence.
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Table 2.11 – Nonsmooth right-hand side with a Dirac delta function test case with data f =
η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
;Results for different η. Computations with various mesh sizes h;

L2 error norm with the corresponding rates; Computation of the difference between ∇uh and
ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the relaxation
algorithm.

h ||u−uh ||L2(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
η= 1/4

0.0831 1.69e-01 5.69e-01 -4.94e-02(0.178) 59
0.0421 5.80e-02 1.54 2.01e-01 -2.87e-02(0.057) 99
0.0209 2.33e-02 1.31 8.55e-02 -2.16e-02(0.019) 239
0.0104 1.31e-02 0.83 6.01e-02 -1.87e-02(0.006) 999

η= 1/8
0.0831 2.13e-01 9.20e-01 -1.09e-01(0.181) 119
0.0421 7.73e-02 1.46 4.19e-01 -4.60e-02(0.069) 39
0.0209 2.66e-02 1.54 1.64e-01 -1.79e-02(0.026) 299
0.0104 9.71e-03 1.45 5.66e-02 -7.54e-03(0.009) 999

η= 1/16
0.0831 2.68e-01 1.43e+00 -2.08e-01(0.177) 359
0.0421 1.14e-01 1.23 8.40e-01 -9.08e-02(0.083) 249
0.0209 4.37e-02 1.39 4.11e-01 -3.37e-02(0.035) 329
0.0104 1.47e-02 1.57 1.61e-01 -1.09e-02(0.013) 999

η= 1/32
0.0831 3.21e-01 2.03e+00 -3.04e-01(0.167) 999
0.0421 1.61e-01 0.99 1.38e+00 -1.46e-01(0.092) 79
0.0209 7.33e-02 1.14 8.37e-01 -6.16e-02(0.044) 589
0.0104 2.85e-02 1.36 4.11e-01 -2.26e-02(0.018) 379

η= 1/64
0.0831 3.68e-01 2.39e+00 -3.88e-01(0.153) 999
0.0421 2.09e-01 0.81 1.99e+00 -2.05e-01(0.097) 229
0.0209 1.13e-01 0.89 1.38e+00 -1.00e-01(0.051) 999
0.0104 5.29e-02 1.09 8.36e-01 -4.39e-02(0.023) 999

Results reported in Table 2.12 are for fixed h = 0.0209 and different η. We note that for η

decreasing, the estimated errors ||u−uh ||L2(Ω), ||∇uh −ph ||L2(Ω) , the sample mean λ̄, and the

sample standard deviation σ̄ along with the number of iterations are consistently increasing.

Table 2.13 represents the L∞ norm of fη, detph and det∇uh . We observe that the values

of detph are close to fη for η = {1/4,1/8,1/16,1/32}. Last row of Table 2.13 exhibits large

difference from
∣∣∣∣ fη

∣∣∣∣
L∞(Ω), and as mentioned above, refining the mesh will fix this problem.

Large differences between ||det∇uh ||L∞(Ω) and the other columns are mainly due to the choice

of ε= h2.
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Table 2.12 – Nonsmooth right-hand side with a Dirac delta function test case with data f =
η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
; Results for different η. Computations with various mesh sizes h;

L2 error norms with the corresponding rates; Computation of the difference between ∇uh and
ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the relaxation
algorithm.

η ||u−uh ||L2(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
h = 0.0209

1/4 2.33e-02 8.55e-02 -2.16e-02(0.019) 239
1/8 2.66e-02 1.64e-01 -1.79e-02(0.026) 299

1/16 4.37e-02 4.11e-01 -3.37e-02(0.035) 329
1/32 7.33e-02 8.37e-01 -6.16e-02(0.044) 589
1/64 1.13e-01 1.38e+00 -1.00e-01(0.051) 999

In Table 2.14, the parameter η is fixed and we vary h and ε. We observe that for ε = {0,h2},

the numerical solution converges in L2-norm at least with a rate O (h). Moreover, we note

that the error between the numerical solution ∇uh and the auxiliary variable ph in L2 norm

decreases with an order of O (h). Same occurs to λ̄ and σ̄. The number of iterations for the

relaxation algorithm reaches the maximum that corresponds to the stopping criterion for

ε= 0. Perturbations in the number of iteration for ε= h2 are due to large gradients.

Table 2.13 – Nonsmooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x|22| ; Results for different η. L∞-norm for detph ,det∇uh , and fη;

Computations with mesh size h = 0.0209.

η ||detph ||L∞(Ω) ||det∇uh ||L∞(Ω) || fη||L∞(Ω)

h = 0.0209
1/4 15.99 14.81 16
1/8 63.88 46.97 64

1/16 254.23 119.25 256
1/32 996.13 218.06 1024
1/64 3676.18 280.17 4096
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Table 2.14 – Nonsmooth right-hand side with a Dirac delta function test case with data f =
η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
;Results for different η. Computations with various mesh size h; L2

and H 1 error norms with the corresponding rate; Computation of the difference of ∇uh and
ph in L2 norm; Average value of λ̄ and the standard deviation σ̄; Iterations of the relaxation
algorithm.

h ||u−uh ||L2(Ω) ||∇uh −ph ||L2(Ω) λ̄(σ̄) iter
η= 1/32, ε= 0

0.0831 7.90e-01 4.98e-01 9.51e-03(0.042) 999
0.0421 2.14e-01 1.89 3.08e-01 -1.24e-02(0.026) 999
0.0209 9.60e-02 1.16 1.65e-01 -7.98e-04(0.013) 999
0.0104 4.87e-02 0.98 9.73e-02 -2.04e-04(0.007) 999

η= 1/32, ε= h2

0.0831 3.21e-01 2.03e+00 -3.04e-01(0.167) 999
0.0421 1.61e-01 0.99 1.38e+00 -1.46e-01(0.092) 79
0.0209 7.33e-02 1.14 8.37e-01 -6.16e-02(0.044) 589
0.0104 2.85e-02 1.36 4.11e-01 -2.26e-02(0.018) 379
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The numerical solutions of (2.47) for all η examined here are illustrated in Figures 2.15-2.19.

We see from the figures that the solution of the two components u1,h and u2,h are smooth for

η = {1/4,1/8} and the singularity in (0,0) is visible for η = {1/16,1/32,1/64}. The numerical

solution of det∇uh and detph illustrated in the second row of all figures, show that as η gets

smaller, both determinants become larger. The largest values of these determinants are shown

on Table 2.13.

A comparison of the different figures associated with the choice of η is made in Figure 2.20,

where we plot the solutions as a function of x1 for x2 = 0. In the top row, we plot both, the

solution of the component u1,h (on the left) and ||uh || (on the right). As η gets smaller, we see

that the tangent of u1,h at the singularity point (0,0) becomes vertical, which implies that the

gradient of the curve is undefined. This singularity point significantly appears on the right

panel in the plot of ‖uh‖. The bottom row of Figure 2.20 shows det∇uh (left) and detph(right).

In our case, the determinant of the corresponding quantities is related to the Dirac delta

function which is better approximated by small η, as shown in both figures.

In Figure 2.21 we report the numerical solution of (2.47) for the following case scenario:

η= 1/32, ε= 0, h = 0.0209. In the first row, we remark that the solutions of the two components

u1,h and u2,h are non-smooth and the singularity at the origin is visible, this point also appears

in the plots of det∇uh and detph in the second row.

For the same case scenario, a comparison between the solution associated with ε = {0,h2}

is made in Figure 2.22, where we plot the data as a function of x1 for x2 = 0. In the top row

we plot the u1,h component (left) and ||uh || (right), and we see that the curves of ε= 0 have

oscillations and look less smooth than those of ε= h2. The same observation holds for det∇uh

illustrated in the bottom right. In the bottom left of Figure 2.22, the choice of ε seems to be of

second importance since both curves when ε= 0 and ε= h2 are identical.
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Figure 2.15 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η= 1/4. Top Left: Numerical approximation of the solution

of the component u1,h . Top right: Numerical approximation of the solution of the component
u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical approxima-
tion of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visualization of
the vector field uh . The results are obtained on structured mesh of the unit disk with h = 0.0209
and ε= h2.
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Figure 2.16 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η= 1/8. Top Left: Numerical approximation of the solution

of the component u1,h . Top right: Numerical approximation of the solution of the component
u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical approxima-
tion of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visualization of
the vector field
buh . The results are obtained on structured mesh of the unit disk with h = 0.0209 and ε= h2.
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Figure 2.17 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η = 1/16. Top Left: Numerical approximation of the so-

lution of the component u1,h . Top right: Numerical approximation of the solution of the
component u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical
approximation of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visual-
ization of the vector field uh . The results are obtained on structured mesh of the unit disk with
h = 0.0209 and ε= h2.
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Figure 2.18 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η = 1/32. Top Left: Numerical approximation of the so-

lution of the component u1,h . Top right: Numerical approximation of the solution of the
component u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical
approximation of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visual-
ization of the vector field uh . The results are obtained on structured mesh of the unit disk with
h = 0.0209 and ε= h2.
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Figure 2.19 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η = 1/64. Top Left: Numerical approximation of the so-

lution of the component u1,h . Top right: Numerical approximation of the solution of the
component u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical
approximation of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visual-
ization of the vector field uh . The results are obtained on structured mesh of the unit disk with
h = 0.0209 and ε= h2.
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Figure 2.20 – Non-smooth right-hand side with a Dirac delta function test case with data f =
η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and various value of the parameter η. Computation on structured

mesh of the unit disk with h = 0.00209. Comparing profiles for different values of η along
the line x2 = 0; Top left : u1,h component versus x1. Top right: ||uh || versus x1. Bottom left:
det∇uh versus x1. Bottom right: detph versus x1.
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Figure 2.21 – Non-smooth right-hand side with a Dirac delta function test case with data

f = η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and η = 1/32. Top Left: Numerical approximation of the so-

lution of the component u1,h . Top right: Numerical approximation of the solution of the
component u2,h . Middle left: Numerical approximation of det∇uh . Middle right: Numerical
approximation of detph . Bottom left: Numerical approximation of ||uh ||. Bottom right: Visual-
ization of the vector field uh . The results are obtained on structured mesh of the unit disk with
h = 0.0209 and ε= 0.
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Figure 2.22 – Non-smooth right-hand side with a Dirac delta function test case with data f =
η2

(η2+||x||22)2 , uη = x
√

1+η2

η2+||x||22
and various value of the parameter η. Computation on structured

mesh of the unit disk with h = 0.00209. Comparing plots between ε= 0 and ε= h2 along the
line x2 = 0; Top left : u1,h component versus x1. Top right: ||uh || versus x1. Bottom left: det∇uh

versus x1. Bottom right: detph versus x1.
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3 Numerical Approximation of Monge-
Ampère Equation

3.1 Mathematical Formulation and Least-Squares Approach

LetΩ be a bounded convex domain of R3; we denote by Γ the boundary ofΩ. The Dirichlet

problem for the elliptic Monge-Ampère equation reads as follows:

{
det D2u = f (> 0) inΩ,

u = g on Γ,
(3.1)

where D2u =
(

∂2u
∂xi∂x j

)
1≤i , j≤3

is the Hessian of the unknown function u.

As in the previous chapter, we consider a nonlinear least-squares method that relies on the

introduction of an additional auxiliary variable. We define the functional spaces by :

Vg = {
ϕ ∈ H 2(Ω) ,ϕ= g on Γ

}
,

Q = {
q ∈ L2(Ω)3×3, q = qt } ,

Q f = {
q ∈ Q , detq = f , q is a positive definite matrix-valued function

}
.

The problem is written as

Find (u,p) ∈Vg ×Q f such that J (u,p) ≤ J (v,q), ∀(v,q) ∈Vg ×Q f , (3.2)

where

J (v,q) = 1

2

∫
Ω

∣∣D2v −q
∣∣2

dx, (3.3)

and | · | denotes the Frobenius norm |T| = (T : T)1/2, with the inner product S : T =∑2
i , j=1 si j ti j

where T,S are 3×3 matrices with elements si j , ti j for i , j = 1,2,3, respectively.
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We assume that f ∈ L2/3(Ω) and g ∈ H 3/2(Γ), so that Vg and Q f are both non-empty. The space

Q is a Hilbert space for the inner product (q,q′) → ∫
Ωq : q′dx, and the associated norm.

3.2 Relaxation Algorithm

For the solution of the minimization problem (3.2), we propose a relaxation algorithm, which

decouples the differential operators from the nonlinearities. Moreover the proposed algorithm

allows to compute convex solutions or to force the convexity of the solution.

Step 1. The initialization is performed by solving:

{
∆u0 = 3 3

√
f inΩ,

u0 = g on Γ.
(3.4)

For the rationale behind this problem see the remark below.

Then, for n ≥ 0

Step 2. Assuming that un is known, we look for

pn = arg min
q∈Q f

J (un ,q); (3.5)

Step 3. Assuming that pn is known, we look for

un+1/2 = argmin
v∈Vg

J (v,pn); (3.6)

Step 4. Update the solution as

un+1 = un +ω(un+1/2 −un), (3.7)

with 1 ≤ω≤ωmax < 2. For the numerical experiments presented in Section 3.6, we have used

ω≡ 1 (unless otherwise specified).

In the next section, we discuss the numerical algorithms that are used for the solution of

problems (3.5) and (3.6). The question of the uniqueness of the solution to the local problem

(3.5) still remains an open question and it is not addressed here.

Remark. The initialization procedure (3.4) is based on the following assumption: If we denote

the eigenvalues of D2u by λi , i = 1,2,3, the Monge-Ampère equation reads λ1λ2λ3 = f . If λ1,λ2

and λ3 are ’close’ from each other (and thus all equal to, let’s say, λ), we have λ3 = f , and thus

λ= 3
√

f . Therefore:
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∆u =λ1 +λ2 +λ3 = 3λ= 3 3
√

f .

Note here that the case when the eigenvalues are very different, the efficiency of this initialization

is not guaranteed.

3.3 Numerical Approximation of the Local Nonlinear Problems

3.3.1 Explicit Formulation of the Local Nonlinear Problems

An explicit formulation of problem (3.5) reads as

pn = arg min
q∈Q f

[
1

2

∫
Ω

∣∣q∣∣2 dx−
∫
Ω

D2un : qdx
]

. (3.8)

Since the objective function in (3.8) does not contain derivatives of q, this minimization

problem can be solved point-wise (in practice at the vertices of a finite element or finite

difference grid). This leads, a.e. in Ω, to the solution of the following finite dimensional

minimization problem:

pn(x) = arg min
q∈E f (x)

[
1

2

∣∣q∣∣2 −D2un(x) : qdx
]

, (3.9)

where

E f (x) = {
q ∈R3×3 , q = qt , detq = f (x), q is positive definite

}
.

Problem (3.9) is similar to the nonlinear problem examined in Chapter 2. In that case, the

problem was in 2D, and it did not require q to be a positive definite symmetric matrix. There-

fore the approach that is considered in Chapter 2 can not be applied here. The same problem

as in (3.9) but in the 2D case is consider in [Caboussat et al., 2013; Sorensen and Glowinski,

2010]. The methods that are developed there consist of a proper change of variables and the

use of a class of quadratically constrained minimization problems. None of these two methods

can be extended for the 3D case since the nonlinearity λ1λ2λ3 = f is cubic, implying that

other approaches must be considered. The two approaches that we develop below rely on an

appropriate re-parameterization of the problem, which allows transforming the constrained

minimization problem into an unconstrained one. Finally, both approaches end up using

Newton methods. Moreover, the approaches below can be applied to the case of the 2D

Monge-Ampère equation with small modifications.
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3.3.2 A Reduced Newton Method

For a.e. x ∈Ω, (3.9) is an algebraic optimization problem. Using a Cholesky decomposition of

q, we write q = LDLt , where

L =

 1 0 0

a 1 0

b c 1

 , D =


3
√

f (x)eρ1 0 0

0 3
√

f (x)eρ2 0

0 0 3
√

f (x)e−ρ1−ρ2

 . (3.10)

This re-parameterization is arbitrary but serves two purposes: first, it guarantees that all

eigenvalues are strictly positive (convexity of the local solution). Second, the constraint

detq = f (x) is automatically satisfied. It thus allows one to replace (3.9) by an unconstrained

minimization problem in the variable X := (a,b,c,ρ1,ρ2). For the sake of simplicity, we do not

write the dependency on x ∈Ω anymore. The problem becomes:

min
X∈R5

G(X) =
{

1

2
LDLt : LDLt −LDLt : D2un

}
. (3.11)

The first order optimality conditions corresponding to (3.11) can formally be written as

∇XG(X) = 0.

This nonlinear system can be solved with a safeguarded Newton method for the variable X.

Namely, given X0 ∈R5, solve, for k ≥ 0:

∇2
XG(Xk+1)δXk =−∇XG(Xk ),

followed by

Xk+1 = Xk +λkδXk ,

where λk ∈R+ is a step-length to be adapted according to some Armijo rule (see, e.g., Botsaris

[1978]). Typically, we update the step-length if
∣∣∣∣∇G(Xk+1)

∣∣∣∣ > (1−αλk )
∣∣∣∣∇G(Xk )

∣∣∣∣, where

α= 10−4 and ||·|| denotes the canonical Euclidean norm of R5, and set in that case λk+1 = 1
2λ

k .

The stopping criterion is based on the residual value
∣∣∣∣∇G(Xk )

∣∣∣∣, and the iterations are stopped

if
∣∣∣∣∇G(Xk )

∣∣∣∣< εNewton, where εNewton is a given tolerance.

3.3.3 A Runge-Kutta Method for the Dynamical Flow Problem

An alternative for the re-parameterization of the nonlinear problem (3.9) can be considered,

based on a eigenvalues-eigenvectors decomposition, in the spirit of the approach in Sorensen

and Glowinski [2010]. Namely, consider q = QΛQt , where Q ∈O (3) ⊂R3×3 is the orthogonal

matrix whose columns represent the eigenvectors of q (O (3) being the group of the 3× 3
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orthogonal matrices), andΛ ∈R3×3 is the diagonal matrix whose diagonal elements are the

corresponding eigenvalues. We can denote

Q =
(

T1 T2 T3

)
, Λ=


3
√

f (x)eρ1 0 0

0 3
√

f (x)eρ2 0

0 0 3
√

f (x)e−ρ1−ρ2


This parameterization is not unique; it ensures that the relation detq = f (x) is automatically

satisfied and that the eigenvalues are positive in order to ensure convexity of the local solutions.

The property Q ∈ O (3) implies the following constraints for its column vectors Ti , i = 1,2,3

(where Ti ·T j denotes the dot product of vectors Ti and T j ):

Ti ·T j = δi j , i , j = 1,2,3.

Let us define the variables Y = (ρ1, ρ2, T1, T2,T3) ∈R11. Problem (3.9) can be rewritten as

min
Y∈R11

{
1

2
QΛQt : QΛQt −QΛQt : D2un

}
s. t. T1 ·T1 = T2 ·T2 = T3 ·T3 = 1

T1 ·T2 = T1 ·T3 = T2 ·T3 = 0

Below, for i = 1,2,3, we will denote by |Ti | the quantity (Ti ·Ti )1/2. We penalize the equality

constraints in order to obtain an unconstrained problem that can be solved by a Newton

approach. Let ε1,ε2 > 0 be two given (small) parameters. The constraints are taken into

account by penalization, leading to the following unconstrained minimization problem:

min
Y∈R11

Gε1,ε2 (Y) (3.12)

where

Gε1,ε2 (Y) = 1

2
QΛQt : QΛQt −QΛQt : D2un

+ 1

ε1
((|T1|2 −1)2 + (|T2|2 −1)2 + (|T3|2 −1)2)

+ 1

ε2
((T1 ·T2)2 + (T1 ·T3)2 + (T2 ·T3)2).

Similarly to the solution of (3.11), the first order optimality conditions associated with (3.12)
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can be written as

∇Gε1,ε2 (Y) = 0.

In order to smoothen the transition to critical point(s), we favor an evolutive formulation of

the first order optimality conditions (in the sense of a flow problem in the dynamical systems

terminology), which read as follows: find Y : (0,+∞) →R11 such that

dY

d t
+∇Gε1,ε2 (Y) = 0, t ∈ (0,+∞) (3.13)

Y(0) = Y0 given. (3.14)

The steady state solution of (3.13) (3.14) corresponds to the desired critical point. In order

to increase the stability of the numerical scheme and allow larger time steps and therefore

a faster convergence to the steady state solution, it is customary to modify (3.13) into an

equivalent modified flow problem [Kelley, 1995], namely: find Y : (0,+∞) →R11 such that

dY

d t
+ (∇2Gε1,ε2 (Y)

)−1∇Gε1,ε2 (Y) = 0, t ∈ (0,+∞) (3.15)

with the same initial condition. The stability of the scheme is important here since we are

aiming at solving such a flow problem for a.e. x ∈ Ω, which requires an efficient numeri-

cal algorithm. The additional computational cost induced by the introduction of the term(∇2Gε1,ε2 (Y)
)−1

is estimated in the sequel.

System (3.15) is solved by a two-stage (second order explicit) Runge-Kutta method (see, e.g.,

[Hairer et al., 1993]) in order to capture steady state solutions to quickly reach the stationary

solution. Let∆t be a given time step, tn = n∆t and Yn ' Y(tn), n = 0,1, . . .. Let us define Y0 = Y0;

then, at each time step, solve

k1 = −(∇2Gε1,ε2 (Yn)
)−1∇Gε1,ε2 (Yn),

k2 = −
(
∇2Gε1,ε2 (Yn + 2

3
∆t k1)

)−1

∇Gε1,ε2

(
Yn + 2

3
∆t k1

)
,

Yn+1 = Yn +∆t

(
1

4
k1 + 3

4
k2

)
.

An adaptive time stepping strategy for Runge-Kutta methods is incorporated to the numerical

algorithm; numerical experiments will show that the adaptive time step is particularly useful

at the beginning of the outer iterations loop, when the initial solution is not close to the final

steady state solution.
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Remark. If we treat the modified flow problem with a first order Euler explicit scheme, it leads

to solving at each time step

(∇2Gε1,ε2 (Yn)
) Yn+1 −Yn

∆t
=−∇Gε1,ε2 (Yn);

this problem corresponds actually to a classical safeguarded Newton method, reminiscent to the

one we presented in Section 3.3.2, with∆t playing the role of the step-length λ. With this remark,

the adaptive time stepping algorithm for Runge-Kutta schemes can be seen as an adaptive

Armijo-like rule, with ∆t = λ. Furthermore, one can see that the Runge-Kutta approach is

slower than the reduced Newton strategy (since it corresponds to solving two Newton-type

systems at each time step), but it is more accurate since the two-step Runge-Kutta scheme is

a higher order method than the Euler scheme. Finally, a study of the stability of Runge-Kutta

schemes [Hairer et al., 1993] shows that their stability properties are better than those of the

Euler scheme.

3.4 Numerical Solution of the Linear Variational Problems

Written in variational form the Euler-Lagrange equation of the sub-problem (3.6) reads as

follows: find un+1/2 ∈Vg satisfying:

∫
Ω

D2un+1/2 : D2ϕdx =
∫
Ω

pn : D2ϕdx, ∀ϕ ∈V0, (3.16)

where V0 = H 2(Ω)∩H 1
0 (Ω). The linear variational problem (3.16) is well-posed and belongs to

the following family of linear variational problems:

Find u ∈Vg such that
∫
Ω

D2u : D2vdx = L(v), ∀v ∈V0, (3.17)

with the functional L(·) linear and continuous over H 2(Ω); problem (3.17) is a bi-harmonic

type problem, which can be solved by a conjugate gradient algorithm operating in well-chosen

Hilbert spaces (see, e.g., [Glowinski, 2003, Chapter 3]). Here, our conjugate gradient algorithm

operates in the spaces V0 and Vg , both spaces being equipped with the inner product defined

by (v, w) → ∫
Ω∆v∆wdx, and the corresponding norm. It reads as follows:

Step 1

u0 ∈Vg given. (3.18)

Step 2 Solve: find g 0 ∈Vg satisfying

∫
Ω
∆g 0∆vdx =

∫
Ω

D2u0 : D2vdx−L(v), ∀v ∈V0, (3.19)
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and set

w0 = g 0. (3.20)

Then, for k ≥ 0, uk , g k and wk being known, the last two different from zero, we compute

uk+1, g k+1 and, if necessary, wk+1 as follows.

Step 3 Solve: find ḡ k ∈V0 satisfying

∫
Ω
∆ḡ k∆vdx =

∫
Ω

D2wk : D2vdx, ∀v ∈V0, (3.21)

and compute

ρk =
∫
Ω

∣∣∆g k
∣∣2

dx∫
Ω∆ḡ k∆wk dx

, (3.22)

uk+1 = uk −ρk wk , (3.23)

Step 4 Compute

g k+1 = g k −ρk ḡ k . (3.24)

δk =
∫
Ω

∣∣∆g k+1
∣∣2

dx∫
Ω

∣∣∆g 0
∣∣2 dx

. (3.25)

If δk < ε, take u = uk+1; otherwise, compute:

γk =
∫
Ω

∣∣∆g k+1
∣∣2

dx∫
Ω

∣∣∆g k
∣∣2 dx

; (3.26)

and

wk+1 = g k+1 +γk wk . (3.27)

Step 5 Do k +1 → k and return to Step 3.

Steps 1,2 are the initialization of the algorithm; Step 3 computes the steepest descent and

updates the solution; Step 4 checks the convergence and constructs the new descent direction.
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3.5 Mixed Finite Element Approximation

We use a mixed finite element approximation (similarly discussed in, e.g., [Glowinski, 2015a]

for the solution of linear and nonlinear bi-harmonic problems) with low order P1 (piecewise

linear and globally continuous) finite elements on a partition ofΩmade of tetrahedra. More-

over, for comparison, we also provide numerical examples based onQ1 finite elements on a

partition ofΩmade of hexahedra, in Section 3.7.

3.5.1 Finite Element Spaces

For simplicity, let us assume thatΩ is a bounded polyhedral domain of R3, and define Th as

a finite element partition ofΩmade out of tetrahedra (see, e.g., [Glowinski, 2008, Appendix

1]). Let Σh be the set of the vertices of Th ,Nh = Card(Σh), Σ0h = {P ∈Σh , P ∉ Γ}, and N0h =
Card(Σ0h). We suppose that Σ0h = {

P j
}N0h

j=1 and Σh =Σ0h ∪{
P j

}Nh

j=N0h+1.

From Th , we approximate the spaces L2(Ω), H 1(Ω) and H 2(Ω) by the finite dimensional space

Vh defined by:

Vh = {
v ∈C 0(Ω̄) , v |T ∈P1, ∀T ∈Th

}
,

with P1 the space of the three-variable polynomials of degree ≤ 1. We define also V0h as

V0h =Vh ∩H 1
0 (Ω) = {v ∈Vh , v = 0 on Γ} .

In the sequel, V0h will be used to approximate both H 1
0 (Ω) and H 2(Ω)∩H 1

0 (Ω).

3.5.2 Finite Element Approximation Tools of the Monge-Ampère Equation

To use first-order P1 finite elements, we require to be able to compute second derivatives. For

instance, when solving (3.17) by the conjugate gradient algorithm (3.18)-(3.27), one has to i)

compute the discrete analogues of the second order derivatives, e.g., D2wk and D2u0, and ii)

solve biharmonic problems such as (3.19) and (3.21).

Concerning i) we will approximate the second order derivatives by functions belonging to V0h .

For a function ϕ belonging to H 2(Ω), it follows from Green’s formula that, for i , j = 1,2,3:

∫
Ω

∂2ϕ

∂xi∂x j
vdx =−1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈ H 1

0 (Ω), (3.28)

Consider now ϕ ∈Vh . We define the discrete analogue D2
hi jϕ ∈V0h of the second derivative

∂2ϕ
∂xi∂x j

by : for all i , j , 1 ≤ i , j ,≤ 3, D2
hi jϕ ∈V0h is defined by
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∫
Ω

D2
hi jϕvdx =−1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈V0h . (3.29)

The functions D2
hi jϕ are thus uniquely defined; Since the Hessian matrix D2u is in (L2(Ω))3×3,

and since H 1
0 (Ω) is dense in L2(Ω), the approximation D2

hu is considered to be in V0h .

As emphasized in [Caboussat et al., 2013; Picasso et al., 2011], when using piecewise linear

mixed finite elements, the approximation of the error on the second derivatives of the solution

u is, in general, O (1) in the L2-norm. Therefore, the convergence properties of the global

algorithm strongly depends on the type of partition of Ω one employs. A way to improve

the approximation properties of the discrete second order derivatives D2
hi jϕ is to use, a

Tychonoff-like regularization [Tychonoff, 1963], as in [Caboussat et al., 2013]. Let us introduce

a stabilization constant C , and replace the previous variational problem by: for all i , j , 1 ≤
i , j ≤ 3, D2

hi jϕ ∈V0h and verifies

∫
Ω

D2
hi jϕvdx+C

∑
K∈Th

|K |2/3
∫

K
∇D2

hi jϕ ·∇vdx

=−1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx, ∀v ∈V0h . (3.30)

The regularization is shown in numerical examples that it is essential for the algorithm to

converge when we use an unstructured partition ofΩ. Similar ideas have been used for approx-

imations of the Stokes problem in incompressible fluid mechanics when using essentially the

same finite element spaces for the velocity components and the pressure (see, e.g., [Glowinski,

2008, Chapter 5]).

Concerning issue ii), that is the solution of the bi-harmonic problems encountered in the

conjugate gradient algorithm (18)-(27), after space discretization the resulting discrete bi-

harmonic problems are all particular cases of

Find r ∈V0h such that
∫
Ω
∆hr∆hϕdx =Λh(ϕ), ∀ϕ ∈V0h , (3.31)

withΛh ∈L (V0h ,R) and ∆h ∈L (V0h ,V0h) defined by

∆hϕ ∈V0h , −
∫
Ω
∆hϕθdx =

∫
Ω
∇ϕ ·∇θdx ∀(ϕ,θ) ∈V0h ×V0h ,

It follows from this definition that the discrete bi-harmonic problem (3.31) is equivalent to the

following system of discrete Poisson-Dirichlet problems:
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Find ω ∈V0h ,
∫
Ω
∇ω ·∇ϕdx =Λ(ϕ), ∀ϕ ∈V0h ,

Find r ∈V0h ,
∫
Ω
∇r ·∇ϕdx =

∫
Ω
ωϕdx, ∀ϕ ∈V0h .

3.5.3 Discrete Formulation of the Least-Squares Method

We define the discrete analogues of spaces Q and Q f as follows:

Qh = {
qh ∈ (V0h)3×3, qh(Pk ) = qt

h(Pk ), k = 1, . . . , N0h
}

,

Q f h = {
qh ∈ Qh , detqh(Pk ) = fh(Pk ),

qh(Pk ) is positive definite , k = 1, . . . , N0h
}

.

We associate with Vh (or V0h and Vg h) and Qh , the discrete inner products with corresponding

norm as:

(v, w)0h = 1

4

Nh∑
k=1

Ak v(Pk )w(Pk ), ||v ||0h =
√

(v, v)h ∀ v, w ∈V0h ,

and

((S,T))0h = 1

4

Nh∑
k=1

Ak S(Pk ) : T(Pk ), |||S|||0h =
√

((S,S))0h ∀ S,T ∈ Qh ,

where Ak is the volume of the polyhedral domain which is the union of those tetrahedra of Th

which have Pk as a common vertex.

The discrete nonlinear least-squares method is addressed as: find (uh ,ph) ∈Vg h ×Q f h such

that

Jh(uh ,ph) ≤ Jh(ϕh ,qh), ∀(ϕh ,qh) ∈Vg h ×Q f h (3.32)

where:

Jh(ϕh ,qh) = 1

2

∣∣∣∣∣∣D2
hϕh −qh

∣∣∣∣∣∣2
0h (3.33)

3.5.4 A Discrete Relaxation Algorithm

The discrete relaxation algorithm we employ reads as follows:

Step 1. The initialization is performed by solving:

u0
h ∈Vg h such that

∫
Ωh

∇u0
h ·∇ϕhdx =−(3 3

√
fh ,ϕh)0h , ∀ϕh ∈V0h .
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Then, for n ≥ 0

Step 2. Assuming that un
h is known, we look for

pn
h = arg min

qh∈Q f h

Jh(un
h ,qh); (3.34)

Step 3. Assuming that pn is known, we look for

un+1/2
h = arg min

ϕh∈Vg h

Jh(ϕh ,pn
h ); (3.35)

Step 4. Update the solution as

un+1
h = un

h +ω(un+1/2
h −un

h ), (3.36)

with 1 ≤ω≤ωmax < 2.

3.5.5 Finite Element Approximation of the Local Nonlinear Problems

The finite dimensional minimization problems, discrete analogues of (3.9), are approximated,

at each grid point Pk ∈Σ0h , by:

pn
h (Pk ) = arg min

q∈E f (Pk )

[
1

2

∣∣q∣∣2 −D2
hun(Pk ) : q

]
.

The methods discussed in Section 3.3 still apply.

3.5.6 Finite Element Approximation of the Linear Variational Problems

The variational problems arising in the discrete version of the relaxation algorithm can be

solved similarly as in the continuous case using a conjugate gradient algorithm. Let us point

out however a particularity that arises in the discrete case. The discrete version of (3.16) reads

as follows: find un+1/2
h ∈Vg h satisfying:

((D2
hun+1/2

h ,D2
hϕh))0h = ((pn

h ,D2
hϕh))0h , ∀ϕh ∈V0h . (3.37)

The linear problem (3.37) leads to excessive computer resource requirements, which could

be acceptable for two-dimensional problems, but become prohibitive for three dimensional

ones. (Indeed, to derive the linear system equivalent to (3.37), we need to compute-via the

solution of (3.30)-the matrix-valued functions D2
h w j , where the functions w j form a basis of

V0h .) To avoid this difficulty, we are going to employ, as previously discussed in [Caboussat

et al., 2013], an adjoint equation approach (see, e,g., [Glowinski et al., 2008]) to derive an

equivalent formulation of (3.37), well-suited to a solution by a conjugate gradient algorithm.
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This adjoint approach reads as

Find un+1/2
h ∈Vg h such that 〈∂Jh

∂ϕ
(un+1/2

h ,pn
h ),θh〉 = 0, ∀θh ∈V0h , (3.38)

where 〈∂Jh
∂ϕ (ϕ,q),θ〉 denotes the action of the partial derivative ∂Jh

∂ϕ (ϕ,q) on the test function

θ. In order to solve (3.38), we first determine D2
hi jϕ via (3.30). Then, we find λhi j ∈ V0h ,

1 ≤ i , j ≤ 3, by solving the (adjoint) systems:

(λhi j ,θh)0h +C
∑

K∈Th

|K |2/3
∫

K
∇λhi j ·∇θhdx = (phi j −D2

hi jϕ,θh)0h , ∀θh ∈V0h ,

and we can show (see, e.g., [Glowinski et al., 2008]) that, for all (ϕh ,ph) ∈Vg h ×Qh :

〈∂Jh

∂ϕ
(ϕh ,ph),θh〉 =

∫
Ω

[
3∑

i=1

3∑
j=1

∂λhi j

∂xi

∂θh

∂x j

]
dx, ∀θh ∈V0h .

3.5.7 Discrete Conjugate Gradient Algorithm

The relations that are developed in (3.30),(3.31) and (3.38) can be used directly in the conjugate

gradient algorithm (3.18)–(3.27).

Step 1.

un+1/2,0
h = un

h ∈Vg h .

Step 2.

• Compute D2
hi j un+1/2,0

h ∈V0h , 1 ≤ i , j ≤ 3, by solving

∫
Ω

D2
hi j un+1/2,0

h vdx+C
∑

K∈Th

|K |2/3
∫

K
∇D2

hi j un+1/2,0
h ·∇vdx

=−1

2

∫
Ω

[
∂un+1/2,0

h

∂xi

∂v

∂x j
+
∂un+1/2,0

h

∂x j

∂v

∂xi

]
dx, ∀v ∈V0h .

• Compute λhi j ∈V0h , 1 ≤ i , j ≤ 3, by solving

(λhi j ,θh)0h +C
∑

K∈Th

|K |2/3
∫

K
∇λhi j ·∇θhdx = (phi j −D2

hi j un+1/2,0
h ,θh)0h , ∀θh ∈V0h .

• Find g 0
h ∈V0h satisfying
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(∆g 0
h ,∆θh)0h =

∫
Ω

[
3∑

i=1

3∑
j=1

∂λk
i j

∂xi

∂θh

∂x j

]
dx, ∀θh ∈V0h .

• Set w0
h = g 0

h

Then, for k ≥ 0, un+1/2,k
h , g k

h and wk
h being known, the last two different from zero, we compute

un+1/2,k+1
h , g k+1

h and, if necessary, wk+1
h as follows.

Step 3.

• Compute D2
hi j wk

h ∈V0h , 1 ≤ i , j ≤ 3, by solving

∫
Ω

D2
hi j wk

h vdx+C
∑

K∈Th

|K |2/3
∫

K
∇D2

hi j wk
h ·∇vdx

=−1

2

∫
Ω

[
∂wk

h

∂xi

∂v

∂x j
+ ∂wk

h

∂x j

∂v

∂xi

]
dx, ∀v ∈V0h .

• Compute λ̄hi j ∈V0h , 1 ≤ i , j ≤ 3, by solving

(λ̄hi j ,θh)0h +C
∑

K∈Th

|K |2/3
∫

K
∇λ̄hi j ·∇θhdx =−(D2

hi j wk
h ,θh)0h , ∀θh ∈V0h .

• Find ḡ k
h ∈V0h satisfying

(∆ḡ k
h ,∆θh)0h =

∫
Ω

[
3∑

i=1

3∑
j=1

∂λ̄k
i j

∂xi

∂θh

∂x j

]
dx, ∀θh ∈V0h .

• Compute the steepest descent

ρk =
∥∥∆h g k

h

∥∥2

0h(
∆h ḡ k

h ,∆h wk
h

)
0h

.

• Update the solution

un+1/2,k+1
h = un+1/2,k

h −ρk wk
h .

Step 4.

• Compute

g k+1
h = g k

h −ρk ḡ k
h .
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• Compute

δk =
∥∥∆h g k+1

h

∥∥2

0h∥∥∆h g 0
h

∥∥2
0h

.

• Check the convergence

if δk < ε then take un+1/2
h = un+1/2,k+1

h ; otherwise compute

γk =

∥∥∥∆h g n+1/2,k+1
h

∥∥∥2

0h∥∥∥∆h g n+1/2,k
h

∥∥∥2

0h

,

and

wk+1
h = g k+1

h +γk wk
h .

Step 5.

• Do k ← k +1 and go to Step 3.

3.6 Numerical Results

The first numerical results we are going to report, in order to validate our methodology, are as-

sociated with the unit cubeΩ= (0,1)3. Two types of partitions of the unit cube are considered,

in order to study the mesh-dependence of our methods. These partitions have been con-

structed by using either advancing front 3D procedures, or successive extrusions [Geuzaine

and Remacle, 2009], and are visualized in Figure 3.1. All experiments were performed on a

desktop computer with Intelcx Xeon(R) CPU E5-1650 v3 @ 3.50GHz × 12.

Figure 3.1 – Typical partitions of the unit cubeΩ= (0,1)3; left: isotropic mesh (h ' 0.01826);
right: structured mesh (h ' 0.00938).
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In the numerical examples presented hereafter, we consider C = 0 for the structured mesh and

C = 1 for the isotropic mesh. The local nonlinear problems are solved with a stopping criterion

of εNewton = 10−9 on the residual for the Newton method, with a maximal number of iterations

equal to 1000. When using the Runge-Kutta method for the dynamical flow approach, the

time step is set to ∆t = 0.1, and is reduced only if needed (only for the first 2-3 times steps

usually); the maximal number of iterations is 20000 and the stopping criterion is ε= 10−7 on

two successive iterates.

Unless otherwise specified, the relaxation parameter is set toω= 1 at the beginning of the outer

iterations, and gradually increased to 2. The conjugate gradient algorithm for the solution

of the variational problems has a stopping criterion of ε= 10−8 on successive iterates, with a

maximal number of iterations equal to 100. Numerical experiments show that the number

of conjugate gradient iterations is never larger than 35. The outer relaxation algorithm has a

stopping criterion of ε= 5×10−4 on the residual
∣∣∣∣∣∣D2

hun
h −pn

h

∣∣∣∣∣∣
0h

, or on successive iterates if

the problem does not admit a classical solution (see Section 3.6.3), with a maximal number of

iterations equal to 5000.

3.6.1 Polynomial Examples

Let us consider a first example involving a smooth exact solution. More precisely, let us

consider as exact solution

u(x, y, z) = 1

2

(
x2 +5y2 +15z2) , (x, y, z) ∈Ω. (3.39)

By a direct calculation, one obtains λ1 = 1,λ2 = 5,λ3 = 15, and, therefore the data for the

Monge-Ampère problem correspond to

f (x, y) = 75 and g (x, y, z) = 1

2
(x2 +5y2 +15z2).

Figure 3.2 visualizes the L2(Ω) and H 1(Ω) computed approximation errors obtained by using

both approaches for the solution of the local nonlinear problems (Newton stands for the

reduced Newton approach presented in Section 3.3.2, while RK stands for the dynamical

flow approach presented in Section 3.3.3). Both Newton and Runge-Kutta algorithms provide

exactly the same results. For the structured mesh, the method is globally second-order, resp.

first-order, convergent for the L2 (resp. H 1) norm of the approximation error. Table 3.1

confirms those convergence results, for both structured and isotropic meshes and for the

approach based on the Runge-Kutta approximation for the dynamical flow problem in R11. We

observe that, for the structured meshes, we have text-book second and first order convergence,

while the orders of convergence deteriorate for the isotropic unstructured meshes.

Table 3.2 provides CPU times vs the number of degrees of freedom involved in the numerical

approximation. Comparing mainly with [Brenner and Neilan, 2012; Liu et al., 2017] (who also
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3.6. Numerical Results

performed CPU times investigations), this test case is more stringent since the eigenvalues

of the Hessian are not close from each other, which makes the problem less isotropic than

examples used in the literature (typically the example presented in Section 3.6.2).
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Figure 3.2 – Visualization of the variations with respect to h of the L2(Ω) and H 1(Ω) norms
of the computed approximation error uh −u, with u(x, y, z) = 1

2

(
x2 +5y2 +15z2

)
(Ω= (0,1)3).

Both Newton and Runge-Kutta algorithms provide exactly the same results.

Table 3.1 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh−u, with u(x, y, z) = 1

2

(
x2 +5y2 +15z2

)
and related convergence orders.

(ii) Variations with respect to h of the number of relaxation iterations necessary to achieve
convergence. The local optimization problems are solved using the Runge-Kutta based method
described in Section 3.3.3 (Ω= (0,1)3).

Structured mesh
h ||uh −u||L2 |uh −u|H1 iter

2.00e-01 7.19e-02 - 1.58e-00 - 71
1.00e-01 1.80e-02 1.99 7.91e-01 0.99 228
6.25e-02 7.06e-03 1.99 4.95e-01 1.00 314
4.00e-02 2.89e-03 1.99 3.16e-01 0.99 375

Isotropic unstructured mesh
h ||uh −u||L2 |uh −u|H1 iter

1.57e-01 1.97e-02 - 9.39e-01 - 84
1.03e-01 1.01e-02 1.75 6.11e-01 1.03 137
6.58e-02 5.44e-03 1.63 3.84e-01 1.03 220
4.10e-02 3.35e-03 1.38 2.35e-01 1.03 314

The second test problem that we consider still has a polynomial exact solution, but this
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Chapter 3. Numerical Approximation of Monge-Ampère Equation

Table 3.2 – CPU time results and numbers of degrees of freedom for the smooth test case with
u(x, y, z) = 1

2

(
x2 +5y2 +15z2

)
(the number of DOFs specified corresponds to the number of

vertices of the finite element mesh). The reduced Newton method is used for the solution of
the local nonlinear problems.

Structured mesh
h #DOFs Algebraic Variational # outer Max # Total

solver [s] solver [s] iter. CG iter. CPU [s]
0.2000 216 0 16 71 12 16
0.1000 1331 3 655 228 19 658
0.0625 4913 26 6070 314 16 6096
0.0400 17576 163 38993 375 15 39156

solution is much more anisotropic than the one in (3.39), since it is given by

u(x, y, z) = 1

2

(
x2 +10y2 +100z2) , (x, y, z) ∈Ω. (3.40)

Here λ1 = 1,λ2 = 10,λ3 = 100, and, the data for the Monge-Ampère problem are given by

f (x, y) = 1000 and g (x, y, z) = 1
2 (x2 +10y2 +100z2). This time, the initialisation (3.4) of the

relaxation algorithm is not close to the solution, implying, as expected, that more iterations are

needed to achieve convergence. Figure 3.3 illustrates the convergence orders for the computed

approximation error for both types of meshes. Despite the anisotropy of the solution of this

second test problem, the approximation errors are similar to those associated with the first test

problem, that is perfect second and first orders with the structured meshes and slightly lower

convergence orders for the anisotropic unstructured meshes. Note that here we have to choose

ω= 0.5 initially (under-relaxation), and increase it gradually to 2, to ensure convergence of the

relaxation algorithm, and C = 2.5 for the isotropic mesh.

3.6.2 A Smooth Exponential Example

The third test problem we consider has a smooth exponential exact solution, namely the radial

function u defined by

u(x, y, z) = e
1
2 (x2+y2+z2), (x, y, z) ∈Ω. (3.41)

This test problem generalizes to three dimensions a two-dimensional one commonly used

in the community for Monge-Ampère solver benchmarking (see, e.g., [Caboussat et al., 2013;

Feng and Neilan, 2009c]). Let us denote
√

x2 + y2 + z2 by r . The data for the Monge-Ampère-

Dirichlet problem (3.1) associated with the above function u are f (x, y, z) = (1+ r 2)e3r 2/2, and

g (x, y, z) = er 2/2. The stopping criterion for the relaxation algorithm is
∣∣∣∣∣∣D2

hun
h −pn

h

∣∣∣∣∣∣
0h

<
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Figure 3.3 – Visualization of the variations with respect to h of the L2(Ω) and H 1(Ω) norms of
the computed approximation error uh −u, with u(x, y, z) = 1

2

(
x2 +10y2 +100z2

)
(Ω= (0,1)3).

5×10−4, and C = 1 for the isotropic unstructured mesh (as for the first test problem).

Figure 3.4 visualizes the L2(Ω) and H 1(Ω) computed approximation errors for both approaches

for the solution of the local nonlinear problems. The conclusions are similar: both Newton

and Runge-Kutta methods provide exactly the same results, and the method is globally second-

order convergent for the L2 norm. Table 3.3 confirms these convergence results, showing in

particular no loss of convergence orders for the unstructured isotropic mesh.

Table 3.4 provides CPU times vs the number of degrees of freedom involved in the numerical

approximation for both structured and unstructured discretizations of the unit cube. When

using a structured mesh of the unit cube, the performance of the algorithm is comparable to

the other algorithms from the literature, albeit slightly less efficient. Using an unstructured

isotropic mesh degrades the performance of the algorithm; computational performance for

the algebraic part is identical, the difference coming from the increased number of conjugate

gradient iterations. Note that, for this test case, the Hessian matrix D2u admits the eigen-

values λ1 = er 2/2, λ2 = er 2/2 and λ3 = (1+ r 2)er 2/2. This example is thus rather isotropic (the

eigenvalues of the Hessian are close to each other).

3.6.3 Non-Smooth Test Problems

Some of the test problems we are going to consider in this section do not have exact solution

with the H 2(Ω)-regularity or may have no solution at all (but may have generalized solutions).

These non-smooth problems are therefore suited to test the robustness of our methodology,

and its ability at capturing generalized solutions when no exact solution does exist.

WithΩ still being the unit cube (0,1)3, the first problem that we consider is the particular case
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Figure 3.4 – Visualization of the variations with respect to h of the L2(Ω) and H 1(Ω) norms of
the computed approximation error uh −u, with u(x, y, z) = e

1
2 (x2+y2+z2) (Ω= (0,1)3).

Table 3.3 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh − u, with u(x, y, z) = e

1
2 (x2+y2+z2) and related convergence orders.

(ii) Variations with respect to h of the number of relaxation iterations necessary to achieve
convergence. The local optimization problems are solved using the Runge-Kutta based method
described in Section 3.3.3 (Ω= (0,1)3).

Structured mesh
h ||uh −u||L2 |uh −u|H1 iter

2.00e-01 2.74e-02 - 5.16e-01 - 12
1.00e-01 7.52e-03 1.87 2.81e-01 0.87 20
6.25e-02 3.06e-03 1.91 1.83e-01 0.91 25
4.00e-02 1.26e-03 1.98 1.20e-01 0.95 28

Isotropic mesh
h ||uh −u||L2 |uh −u|H1 iter

1.57e-01 1.58e-02 - 3.19e-01 - 24
1.03e-01 8.07e-03 1.61 2.05e-01 1.05 34
6.58e-02 3.54e-03 1.83 1.22e-01 1.15 41
4.57e-02 1.64e-03 2.11 7.67e-02 1.28 42

of problem (3.1) which has the convex function u defined, for R ≥p
3, by

u(x, y, z) =−
√

R2 − (x2 + y2 + z2), ∀(x, y, z) ∈Ω.

When R >p
3, this function u belongs to C∞(Ω̄), while u ∈ C 0(Ω̄)∩W 1,s(Ω), with 1 ≤ s < 2,

if R = p
3. It is therefore interesting to see how our methodology can handle the possi-
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Table 3.4 – CPU time results and numbers of degrees of freedom for the smooth test case with
u(x, y, z) = e

1
2 (x2+y2+z2) (the number of DOFs specified corresponds to the number of vertices

of the finite element mesh). The reduced Newton method is used for the solution of the local
nonlinear problems.

h #DOFs Algebraic Variational # outer Max # Total
solver [s] solver [s] iter. CG iter. CPU [s]

Structured mesh
0.2000 216 0 1 12 5 1
0.1000 1331 0 19 20 5 19
0.0625 4913 1 90 25 4 92
0.0400 17576 8 423 28 4 431

Isotropic unstructured mesh
0.1570 1043 1 70 24 19 71
0.1030 3339 1 525 34 20 526
0.0658 12191 5 3568 41 22 3573
0.0457 42176 24 20926 42 22 20950

ble non-smoothness of the particular problem (3.1) associated with f and g defined by

f (x, y, z) = R2

(R2 − r 2)5/2
and g (x, y, z) =−

p
R2 − r 2, with, as earlier, r =

√
x2 + y2 + z2. Of par-

ticular interest will be the behavior of our methodology when R →p
3 from above (or even

when R =p
3).

On Tables 3.5 and 3.6, we have reported, for R =p
6 and R =p

3, computed approximation

errors and orders of convergence as h varies, together with the number of iterations necessary

to achieve convergence of the relaxation algorithm. For R =p
6, the convergence orders of the

approximation errors are the ones we expect, namely second order (resp., first order) for the

L2-norm (resp., H 1-norm), the number of iterations being pretty low. The case R =p
3 is more

challenging; indeed despite the solution singularity at point (1,1,1), the L2(Ω)-norm of the

computed approximation error uh −u still decreases super-linearly with respect to h (for both

mesh families), while the related H 1(Ω)-norm stays stable around 0.62 for the same values of

h and shows no convergence order.

To conclude this section, we will consider the particular problem (3.1) associated with Ω=
(0,1)3, f = 1 and g = 0. For these particular data, problem (3.1) has no smooth solution

(the arguments developed in [Caboussat et al., 2013; Glowinski, 2008] for the related two-

dimensional problem still apply here).

Figure 3.5 shows different features of the approximated solution inside the unit cube. The

stopping criterion for this particular case without a classical solution is
∣∣∣∣un+1

h −un
h

∣∣∣∣
0,h

< 10−5.

When studying the number of outer iterations of the relaxation algorithm, we observe that the

number of iterations is larger for structured meshes than isotropic ones, and that it increases
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Table 3.5 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh−u, with u(x, y, z) =−

√
R2 − (x2 + y2 + z2) (R =p

6) and related conver-
gence orders. (ii) Variations with respect to h of the number of relaxation iterations necessary
to achieve convergence. The local optimization problems are solved using the Runge-Kutta
based method described in Section 3.3.3 (Ω= (0,1)3).

Structured mesh
h ||uh −u||L2 |uh −u|H1 iter

2.00e-01 4.96e-03 - 8.60e-02 - 4
1.00e-01 1.28e-03 1.95 4.41e-02 0.96 5
6.25e-02 5.09e-04 1.96 2.78e-02 0.97 6
4.00e-02 2.10e-04 1.97 1.79e-02 0.98 7

Isotropic unstructured mesh
h ||uh −u||L2 |uh −u|H1 iter

1.57e-01 3.81e-03 - 8.60e-02 - 13
1.03e-01 1.81e-03 1.78 3.62e-02 2.07 16
6.58e-02 7.51e-04 1.94 2.12e-02 1.18 19
4.10e-02 3.35e-04 2.21 1.30e-02 1.33 19

Table 3.6 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh−u, with u(x, y, z) =−

√
R2 − (x2 + y2 + z2) (R =p

3) and related conver-
gence orders. (ii) Variations with respect to h of the number of relaxation iterations necessary
to achieve convergence. The local optimization problems are solved using the Runge-Kutta
based method described in Section 3.3.3 (Ω= (0,1)3).

Structured mesh
h ||uh −u||L2 |uh −u|H1 iter

2.00e-01 1.15e-02 - 6.60e-01 - 9
1.00e-01 3.06e-03 1.91 6.31e-01 - 14
6.25e-02 1.24e-03 1.92 6.25e-01 - 17
4.00e-02 5.17e-04 1.96 6.22e-01 - 19

Isotropic unstructured mesh
h ||uh −u||L2 |uh −u|H1 iter

1.57e-01 6.76e-03 - 6.31e-01 - 13
1.03e-01 3.31e-03 1.69 6.25e-01 - 16
6.58e-02 1.39e-03 1.93 6.22e-01 - 19
4.10e-02 6.41e-04 1.63 6.21e-01 - 19

as expected when h → 0. Figure 3.5 (bottom row) visualizes graphs of the computed solutions

restricted to the lines y = z = 1/2 and x = y, z = 1/2 for x ∈ (0,1), and shows little influence of

the type of partition on the solution.
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We can also observe that D2u is symmetric positive definite for 100% of the grid points,

independently of the nature of the discretization when h ' 0.04, even though the Monge-

Ampère equations does not have a classical solution, that is D2u 6= p. The (necessary) loss

of convexity of the solution is thus located (near the corners) in a region smaller than the

mesh size. When arbitrarily refining the mesh in a corner of the domain, we observe that

the Hessian D2u is not symmetric positive definite when evaluated in some grid points in a

neighborhood of size 10−3 around that corner. This effect is highlighted when calculating∣∣∣∣D2uh −ph
∣∣∣∣

L2 , using a structured mesh of the unit cube, both on Ω, but also on Ω′ ⊂Ω, as

illustrated in Table 3.7 forΩ′ = (0.2,0.8)3. These results show that the error inside the domain

Ω′ = (0.2,0.8)3 is significantly smaller than the error on Ω, implying that the error is mainly

committed near the boundary.

Table 3.7 – (i) Variations with respect to h of the norm of the residuals
∣∣∣∣D2uh −ph

∣∣∣∣
L2(Ω) and∣∣∣∣D2uh −ph

∣∣∣∣
L2(Ω′) whenΩ= (0,1)3,Ω′ = (0.2,0.8)3, f = 1 and g = 0. (ii) Variations with respect

to h of the number of relaxation iterations necessary to achieve convergence.

h
∣∣∣∣D2uh −ph

∣∣∣∣
L2((0,1)3)

∣∣∣∣D2uh −ph
∣∣∣∣

L2((0.2,0.8)3) # iter.

1.00e-01 4.29931e-04 4.20694e-05 467
6.25e-02 4.32211e-04 8.47222e-06 1857
4.00e-02 4.32995e-04 2.42009e-06 37522

3.6.4 Curved Boundaries and Non Convex Domains

In order to further validate the robustness and flexibility of our methodology, we are going to

consider test problems whereΩ has a curved boundary and/or is non-convex. The first do-

main with a curved boundary we consider is the unit ball B1 =
{
(x, y, z) ∈R3 , x2 + y2 + z2 < 1

}
.

Assuming thatΩ= B1, f = 1
3
p

3
and g = 0, the convex solution u of the related Monge-Ampère-

Dirichlet problem (3.1) is given by

u(x, y, z) =− 1

2
p

3

(
1−x2 − y2 − z2) . (3.42)

On Figure 3.6 (left) we have visualized a typical finite element mesh used for computation and

some cuts of the computed solution. On Figure 3.6 (right) and Table 3.8 we have provided

information on the L2(Ω) and H 1(Ω)-norms of the approximation error uh −u and of the

related rates of convergence, and on the number of relaxation iterations necessary to achieve

convergence. Albeit the L2(Ω)-approximation error is O (h1.8), approximately, these numerical

results show that our methodology can handle rather accurately domains Ω with curved

boundaries. Table 3.9 provides CPU times vs the number of degrees of freedom involved in the

numerical approximation of the solution on the unit sphere. Results are comparable to those

obtained when using unstructured meshes on the unit cube, and thus show that the curved

boundaries are handled appropriately.
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Figure 3.5 – Visualization of the numerical solution uh for f (x, y, z) = 1, g (x, y, z) = 0 on the
unit cube; top left: along cuts for x = 1/2 and y = 1/2 (h ' 0.0625); top right: number of
iterations needed for the convergence of the relaxation method for the stopping criterion∣∣∣∣un+1

h −un
h

∣∣∣∣
0,h

< 10−5; bottom left: graphs of the computed solutions restricted to the line
y = z = 1/2; bottom right: graphs of the computed solutions restricted to the lines x = y ,
z = 1/2.

The non-convexity of Ω may prevent problem (3.1) to have solutions (see, e.g., [Caffarelli

and Cabré, 1995]). However, it makes sense to assess the capabilities of our methodology at

handling problems having smooth solutions despite the non-convexity of Ω. To do so, we

consider the particular problem (3.1) where: (i) Ω is the subset of B1 obtained by removing

from this ball a part of angular size θ, symmetric about Ox and oriented along the Oz axis (as

shown on Figure 3.7 for θ =π/2 and θ =π/9), (ii) f = 1/(3
p

3), g being the restriction to ∂Ω of

the function u defined by (3.42). The function u defined by (3.42) is clearly a convex solution
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Figure 3.6 – Left: Visualization of the finite element mesh and of computed solution cuts
(h ' 0.1610) Right: Visualization of the variations with respect to h of the L2(Ω) and H 1(Ω)
norms of the computed approximation error uh −u, with u(x, y, z) =− 1

2
p

3

(
1−x2 − y2 − z2

)
(Ω= B1).

Table 3.8 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh −u, with u(x, y, z) =− 1

2
p

3

(
1−x2 − y2 − z2

)
and related convergence

orders. (ii) Variations with respect to h of the number of relaxation iterations necessary to
achieve convergence. The local optimization problems are solved using the reduced Newton
method described in Section 3.3.2 (Ω= B1).

h ||uh −u||L2 |uh −u|H1 iter
2.98e-01 3.26e-02 2.60e-01 - 14
1.61e-01 1.11e-02 1.74 1.28e-01 1.14 19
8.32e-02 3.22e-03 1.88 6.16e-02 1.11 21
4.34e-02 9.89e-04 1.80 2.86e-02 1.17 20

Table 3.9 – CPU time results and numbers of degrees of freedom for the smooth test case
with u(x, y, z) = − 1

2
p

3

(
1−x2 − y2 − z2

)
on the unit sphere (the number of DOFs specified

corresponds to the number of vertices of the finite element mesh). The reduced Newton
method is used for the solution of the local nonlinear problems.

Structured mesh
h #DOFs Algebraic Variational # outer Max # Total

solver [s] solver [s] iter. CG iter. CPU [s]
0.2980 631 0 34 14 25 34
0.1610 3570 0 327 19 19 327
0.0832 22640 4 4385 21 22 4399
0.0434 184034 23 66027 20 23 66050
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of the above problem (3.1). The solution methodology discussed in Sections 3.2 to 3.5 still

applies for this case where an exact smooth solution does exist, some of the numerical results

we obtained being reported in Figure 3.7. We observe in particular that the convergence orders

are essentially independent of the value of the re-entrant angle θ.
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Figure 3.7 – First row: Visualization of the variations with respect to h of the L2(Ω) and H 1(Ω)
norms of the computed approximation error uh −u, with u defined by (3.42), Ω being the
truncated unit ball (left: θ =π/2, right: θ =π/9). Second row: Visualization of the truncated
balls (left: θ =π/2, right: θ =π/9). Third row: Visualization of the restrictions of the computed
solutions to the plane z = 0 (left: θ =π/2, right: θ =π/9).
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3.7 An Alternative Discretization Method based onQ1 Finite Eleme-

nts

We finally report some numerical results that were obtained usingQ1 finite elements for the

space discretization instead of the P1 finite elements used earlier. The finite element library

libmesh [Kirk et al., 2006] has been used for implementation. The discretization of the unit

cubeΩ= (0,1)3 is based on a structured mesh of elementary cubes, as visualized in Figure 3.8.

The least-squares/relaxation methodology is still applicable. The nonlinear problems (3.9)

are solved for each vertex of the hexahedral mesh with the Newton and Runge-Kutta methods

discussed in Sections 3.3.2 and 3.3.3, respectively. The variational problem (3.17) is solved

by a conjugate gradient algorithm, using Gauss quadrature rules (of order up to 4) for the

numerical computation of integrals; all other techniques and approaches remain the same.

All the numerical results reported below are related to Ω= (0,1)3. On Table 3.10 we have re-

ported the variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed approxi-

mation error uh−u, for u defined by u(x, y, z) = e
1
2 (x2+y2+z2) and u(x, y, z) = 1

2

(
x2 +5y2 +15z2

)
,

the related convergence orders, and the number of relaxation iterations necessary to achieve

convergence. The local optimization problems are solved using the Newton method described

in Section 3.3.2. As expected, nearly optimal orders of convergence are obtained for both the

L2(Ω) and H 1(Ω) norms of the computed approximation error. Both solutions exhibit compa-

rable orders of convergence, however, the larger anisotropy of the second one implies a larger

number of iterations for the relaxation algorithm to achieve its convergence. Approximation

errors and iteration numbers are consistent with those reported in Section 3.6.2 for the same

test problems.

Figure 3.8 – A uniform structured hexahedral partition of the unit cubeΩ= (0,1)3 (h = 0.1).

The next test problem we consider, is the one, already investigated in Section 3.6.3, whose

exact solution u is given by u(x, y, z) = −
√

R2 − (x2 + y2 + z2), with R ≥p
3, Ω still being the
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Table 3.10 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh −u, with u(x, y, z) = e

1
2 (x2+y2+z2) and u(x, y, z) = 1

2

(
x2 +5y2 +15z2

)
and related convergence orders. (ii) Variations with respect to h of the number of relaxation
iterations necessary to achieve convergence. The space approximation relies on Q1 based
finite element spaces while the local optimization problems are solved using the Newton
method described in Section 3.3.2 (Ω= (0,1)3).

Exact solution u(x, y, z) = e
1
2 (x2+y2+z2)

h ||uh −u||L2 |uh −u|H1 iter
1/10 8.09e-03 - 1.18e-01 - 56
1/20 2.28e-03 1.82 5.67e-02 1.06 50
1/30 1.05e-03 1.90 3.71e-02 1.04 46
1/40 3.90e-04 1.93 2.75e-02 1.03 44
1/50 6.02e-04 1.95 2.18e-02 1.03 42

Exact solution u(x, y, z) = 1
2

(
x2 +5y2 +15z2

)
h ||uh −u||L2 |uh −u|H1 iter

1/10 1.26e-02 - 1.65e-01 - 713
1/20 3.62e-03 1.79 7.88e-02 1.06 716
1/30 1.71e-03 1.85 5.15e-02 1.05 696
1/40 9.91e-04 1.88 3.82e-02 1.03 681
1/50 6.48e-04 1.90 3.03e-02 1.03 671

unit cube (0,1)3. Tables 3.11 and 3.12 show that, for R =p
6 and R =p

3, the L2(Ω) and H 1(Ω)-

norms of the approximation error uh −u are nearly of optimal order; moreover, the above

tables show that ||D2
hun

h −D2u||L2(Ω) ' O (h3/2) if R = p
6, while ||D2

hun
h −D2u||L2(Ω) ' O (1) if

R =p
3.

Table 3.11 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh−u, with u(x, y, z) =−

√
R2 − (x2 + y2 + z2) with R =p

6; related conver-
gence orders. (ii) Variations with respect to h of the number of relaxation iterations necessary
to achieve convergence. The space approximation relies onQ1 based finite element spaces
while the local optimization problems are solved using the Newton method described in
Section 3.3.2 (Ω= (0,1)3).

h ||uh −u||L2 |uh −u|H1 ||D2
hun

h −D2u||L2 iter
1/10 1.63e-03 2.24e-02 - 8.18e-03 - 22
1/20 4.49e-04 1.85 1.06e-02 1.07 2.95e-03 1.47 18
1/30 2.06e-04 1.91 6.94e-03 1.05 1.62e-03 1.48 16
1/40 1.18e-04 1.94 5.14e-03 1.03 1.05e-03 1.48 15
1/50 7.65e-05 1.94 4.09e-03 1.03 7.55e-04 1.49 15

The numerical results we have just reported show that, as long as accuracy and number of
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Table 3.12 – (i) Variations with respect to h of the L2(Ω) and H 1(Ω) norms of the computed
approximation error uh−u, with u(x, y, z) =−

√
R2 − (x2 + y2 + z2) with R =p

3; related conver-
gence orders. (ii) Variations with respect to h of the number of relaxation iterations necessary
to achieve convergence. The space approximation relies onQ1 based finite element spaces
while the local optimization problems are solved using the Newton method described in
Section 3.3.2 (Ω= (0,1)3).

h ||uh −u||L2 |uh −u|H1 ||D2
hun

h −D2u||L2 iter
1/10 3.06e-03 4.70e-02 - 2.71e-01 35
1/20 8.66e-04 1.82 2.30e-02 1.02 2.59e-01 34
1/30 4.00e-04 1.90 1.53e-02 1.01 2.55e-01 31
1/40 2.29e-04 1.93 1.14e-02 1.00 2.55e-01 30

iterations are concerned,Q1 based finite element approximations of problem (3.1) compared

well with P1 based ones if Ω is a cube and uniform structured partitions of Ω are used to

define the finite element spaces. However the P1 based methods can easily handle domains Ω

of arbitrary shapes and unstructured finite element partitions, properties that theQ1 based

methods do not share.
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4 Numerical Approximation of a 2D
Parabolic Monge-Ampère Equation

4.1 Model problem

Let Ω be a smooth bounded convex domain of R2, and T > 0 a fixed time horizon. We

consider a time evolutive two-dimensional Monge-Ampère equation, with Dirichlet boundary

conditions, which reads as follows: find u : Ω× (0,T ) →R satisfying


∂u

∂t
−detD2u = f inΩ× (0,T ),

u = g in ∂Ω× (0,T ),

u(0) = u0 inΩ.

(4.1)

In (4.1), f = f (x, t ), g = g (x, t ) and u0 = u0(x) are given functions with the required regularity,

and D2u(:= D2
xu) is the Hessian of the unknown function u (with respect to the space variable

x), defined by D2u = (D2
i j u)1≤i , j≤2, and D2

i j u = ∂2u

∂xi∂x j
.

We assume in the sequel that u0 is convex. (Note that a constraint on the time step may have

to be enforced to make sure that the numerical solution remains convex at all times). The

right-hand side f may change sign when u depends on time, otherwise f should be negative.

Moreover, if u does not depend on time, equation (4.1) reads as: find u : Ω→R satisfying

 −detD2u = f ≤ 0 inΩ,

u = g in ∂Ω,
(4.2)

where it is the steady state Monge-Ampère equation. In numerical experiments we will tackle

separately the cases of solutions that depend on time from those that are time independent.

It can be shown that the Monge-Ampère operator can be rewritten under a divergence form,
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as follows,

detD2u = 1

2
∇· (cof(D2u)∇u

)
. (4.3)

Then (4.1) is equivalent to

∂u

∂t
− 1

2
∇· (cof(D2u)∇u

)= f inΩ× (0,T ), (4.4)

Equation (4.1) is a fully non-linear parabolic equation, and its equivalent form (4.4) is a some

type of nonlinear heat equation. Equation (4.4) is well-posed when the nonlinearity cof(D2u)

remains positive definite. This implies that D2u should remain positive definite. It is thus

crucial that the numerical method maintains the positive definiteness of the Hessian D2u. Like

in Chapter 3, when we have solved the elliptic Monge-Ampère equation, we force the convexity

of the Hessian matrix when solving constrained local non-linear minimization problems.

Remark. Following [Liu et al., 2019], one can consider an alternative formulation that consists

in augmenting the differential equation into a differential system. By introducing an auxiliary

variable p := D2u, and a penalization parameter ε > 0, (4.1) is weakly equivalent to: find

(u,p) : (Ω× (0,T )) →R×R2×2 satisfying:


∂u

∂t
−detp = f inΩ× (0,T ),

∂p

∂t
+ 1

ε

(
p−D2u

)= 0, inΩ× (0,T ),
(4.5)

together with the additional initial condition p(0) = D2u0. This approach has proved to be very

efficient in capturing the stationary solution. However, accordingly to numerical experiments it

is not clear if it is able to approximate accurately the whole transient trajectory of the evolutive

problem. The parameter ε would have to be fine tuned with respect to the time-step.

In the sequel, we thus propose a second-order numerical method for the numerical approxi-

mation of the solution of (4.1), which relies on an implicit time-stepping scheme and a Newton

method.

4.2 Numerical algorithm

Let ∆t > 0 be a constant given time step, t n = n∆t , n = 1,2, . . ., to define the approximations

un ' u(t n). The numerical algorithm proposed hereafter relies on a discretization of the

formulation (4.1). In order to handle the stiff behavior of the Monge-Ampère operator, a

semi-implicit time discretization of (4.1) is considered. In this case, we advocate a midpoint

rule and, un being known, we look for the next time step approximation un+1 satisfying

un+1 −un

∆t
−det

(
D2un+1/2)= f n+1/2, n = 0,1, . . . , (4.6)
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4.2. Numerical algorithm

where un+1/2 := un+1 +un

2
and f n+1/2 := f

(
t n+1 + t n

2

)
. Then (4.6) can be written as

un+1/2 − 1

2
∆t detD2un+1/2 = un + 1

2
∆t f n+1/2, (4.7)

and

un+1 = 2un+1/2 −un . (4.8)

Let us define bn := un + 1
2∆t f n+1/2. Relationship (4.7) is rewritten at each time step as

F (un+1/2) := un+1/2 − ∆t

2
det(D2un+1/2)−bn = 0.

At each time step this nonlinear problem is solved with a safeguarded Newton method. For the

ease of notation, we denote un+1/2 by v . Starting from the initial guess v0 = un , the increments

δvk of the Newton method are obtained by solving

DF (vk )δvk =−F (vk ), k = 0,1,2, . . . , (4.9)

then, the next iterate is given by vk+1 = vk +δvk , until some stopping criterion is satisfied at

step M ; then we set un+1/2 := v M . At the end of the Newton iteration loop, the approximation of

the solution at the next time step is given by (4.8). In order to write the variational formulation

corresponding to (4.9) we use the following identity which holds for 2×2 symmetric matrices

(see, e.g., [Brenner and Neilan, 2012]):

detD2(a +b) = det(D2a)+det(D2b)+ tr(A∗D2b), (4.10)

where A∗ = cof(D2a) = det(D2a)(D2a)−1. This yields

tr(A∗D2b) = cof(D2a):D2b =∇· (cof(D2a)∇b),

where A : B := tr(AT B) is the Frobenius inner product for A, B ∈R2×2. Equation (4.10) becomes,

detD2(a +b) = det(D2a)+∇· (cof(D2a)∇b)+det(D2b). (4.11)

We thus have, for s ∈R,

F (vk + sδv) = vk + sδv − ∆t

2

(
det(D2vk )+∇· (cof(D2vk )s∇δv)+ s2 det(D2δv)

)
−bn .

149



Chapter 4. Numerical Approximation of a 2D Parabolic Monge-Ampère Equation

We thus compute DF (vk ) as follows:

DF (vk )δv = lim
s→0

F (vk + sδv)−F (vk )

s
= δv − ∆t

2
∇·

(
cof(D2vk )∇δv

)
. (4.12)

In order to incorporate (4.12) in the variational formulation corresponding to (4.9), let us

define Vg = {
w ∈ H 1(Ω) : w |∂Ω = g

}
, and V0 = H 1

0 (Ω). Using (4.12), the variational formulation

corresponding to the Newton system (4.9) can be explicit into : find δvk ∈V0, for k = 0,1,2, . . .,

such that∫
Ω
δvk wdx+ ∆t

2

∫
Ω

cof(D2vk )∇(δvk ) ·∇wdx =−
∫
Ω

(
vk − ∆t

2
det(D2vk )−bn

)
wdx, (4.13)

for all w ∈ V0. This Newton’s variational problem is coupled with a safeguarding strategy

(Armijo’s rule) when needed.

In addition, we make sure that the method guarantees that the matrix cof(D2vk ) remains posi-

tive definite. This procedure is achieved by computing the SVD of this matrix, and truncating

its negative eigenvalues to zero. More precise, let A to be 2×2 symmetric matrix then we can

compute A =U SU T , where S is the diagonal matrix with eigenvalues λ1,λ2 in the diagonal

and U is an orthogonal matrix with columns that represent the eigenvectors of A . We then set

λi := max(0,λi ), for i = 1,2 and we recompute A =U SU T . The procedure is important for the

first iterations of the algorithm when looking for a solution of the steady state Monge-Ampère

equation.

4.3 Finite Element Discretization

In order to avoid the construction of finite element sub-spaces of H 2(Ω) and to handle arbitrary

shaped domains, we consider a mixed low order finite element method for the approximation

of (4.13) see, e.g., [Caboussat et al., 2013, 2018]. Let us thus denote by Th a regular finite

element discretization of Ω ⊂ R2 in triangles. From Th , we approximate the spaces L2(Ω),

H 1(Ω) and H 2(Ω), respectively H 1
0 (Ω) and H 2(Ω)∩H 1

0 (Ω), by the finite dimensional space Vh ,

respectively V0h , defined by:

Vh =
{

v ∈C 0
(
Ω

)
, v |K ∈P1, ∀K ∈Th

}
, V0,h =Vh ∩H 1

0 (Ω), (4.14)

with P1 the space of the two-variables polynomials of degree one. Moreover, let us define

Vg ,h =
{

v ∈C 0
(
Ω

)
, v |K ∈P1, ∀K ∈Th , v |∂Ω =πh g

}
where πh g the interpolant of g .

In order to approximate second derivatives with low order polynomials we proceed as in

Chapter 3 or [Caboussat et al., 2013]. Therefore, let a function ϕ being given in H 1(Ω), we

approximate the differential operators D2
i j by D2

h,i j , for 1 ≤ i , j ≤ 2, defined by D2
h,i j (ϕ) ∈V0h

and
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∫
Ω

D2
h,i j (ϕ)vdx+C

∑
K∈Th

|K |
∫

K
∇D2

h,i j (ϕ) ·∇vdx =−1

2

∫
Ω

[
∂ϕ

∂xi

∂v

∂x j
+ ∂ϕ

∂x j

∂v

∂xi

]
dx,

where C ≥ 0 and |K | = meas(K ),

Set u0
h be an approximation of u0 in Vg ,h . At each time step, the numerical approximation of

(4.13) is computed as follows: let v0
h := un

h at each time iteration; then, for k = 0,1,2, . . ., we

search for δvk
h ∈V0,h such that:

∫
Th

δvk
h whdx+ ∆t

2

∫
Th

cof(D2
h vk

h )∇(δvk
h ) ·∇whdx =−

∫
Th

(
vk

h − ∆t

2
det(D2

h vk
h )−bn

h

)
whdx,

(4.15)

for all wh ∈ V0,h . Then we set vk+1
h := vk

h +δvk
h ; when some stopping criterion is satisfied at

step M , we set un+1/2
h := v M

h . To progress to the next time step, we set un+1
h = 2un+1/2

h −un
h .

4.4 Numerical Experiments for Time Dependent Solutions

Numerical results are presented to validate the method for convex solutions. In the following

examples, Ω = (0,1)2 and T = 1. Both a triangular structured asymmetric mesh and an un-

structured isotropic mesh are used. The mesh size h and the time step ∆t vary together. The

stopping criterion for the Newton method is ||vk+1
h −vk

h ||L2(Ω) ≤ 10−12, with a maximal number

of 200 Newton iterations. The Newton method typically needs 9−12 iterations to converge,

depending on the mesh size and the time step. The parameter C is set to 1 (unless specified

otherwise). The convergence of the error e = u −uh is quantified by the following quantities

||e||L2(L2) :=
∫ T

0
‖u −uh‖L2 d t , ||e||L2(H 1) :=

∫ T

0
‖∇u −∇uh‖L2 d t ,

In the tables below, those norms are approximated using the trapezoidal rule in time, and

quadrature formulas in space (see [Caboussat et al., 2019]).

4.4.1 A polynomial example

Let us consider T = 1, and the exact solution:

u(x, y, t ) = 0.5(0.5+ t ) (x2 +5y2),
(
x, y

) ∈Ω, t ∈ (0,T ) . (4.16)

This function is the solution of (4.1) with the data

f (x, y, t ) := 0.5
(
x2 +5y2)−5(0.5+ t )2 ,
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g (x, y, t ) := 0.5(0.5+ t ) (x2 +5y2),

and

u0(x, y) := 0.25(x2 +5y2).

The solution (4.16) is convex for all t ∈ (0,T ). Note that the eigenvalues of the Hessian D2u are

λ1 = (0.5+ t )2 and λ2 = 5(0.5+ t )2, and are both positive for all t ∈ (0,T ). Figure 4.1 illustrates

u0(x, y) (left) and uh(x, y,T ) (right), while Table 4.1 shows that the solution method exhibits

appropriate convergence orders (for the discrete version of the norms ||u −uh ||L2(0,T ;H 1(Ω))

and ||u −uh ||L2(0,T ;L2(Ω))).

Figure 4.1 – A polynomial example corresponding to the exact solution (4.16). Numerical
approximation of the solution for h = 1/80 and ∆t = 0.25 ·10−3. Left: initial condition at time
t = 0. Right: final solution at time t = 1.

Table 4.1 – A polynomial example. Estimated errors of u −uh in corresponding norms, and
related convergence orders for various h and ∆t . Top: structured meshes (with C = 0), Bottom:
unstructured meshes.

St
ru

ct
u

re
d

h ∆t ||e||L2(L2) ||e||L2(H 1)

1/20 1.00e-03 1.55e-03 - 7.37e-02 -
1/40 0.50e-03 3.81e-04 2.02 3.68e-02 1.00
1/80 0.25e-03 9.01e-05 2.08 1.84e-02 1.00

1/160 0.125e-03 1.99e-05 2.17 9.20e-03 1.00

U
n

st
ru

ct
u

re
d h ∆t ||e||L2(L2) ||e||L2(H 1)

0.062 2.00e-03 2.10e-02 - 3.19e-01 -
0.031 1.00e-03 7.28e-03 1.52 1.51e-01 1.07
0.015 0.50e-03 1.90e-03 1.93 6.14e-02 1.29
0.010 0.33e-03 8.29e-04 2.04 3.49e-02 1.39
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4.4.2 An exponential example

Let us consider T = 1, and the exact solution

u(x, y, t ) = e−t e
1
2 (x2+y2),

(
x, y

) ∈Ω, t ∈ (0,T ) . (4.17)

This function is the solution of (4.1) with the data

f (x, y, t ) :=−e−t e
1
2 (x2+y2)

(
1+e−t (

x2 + y2 +1
)

e
1
2 (x2+y2)

)
,

g (x, y, t ) := e−t e
1
2 (x2+y2),

u0(x, y) := e
1
2 (x2+y2).

The solution (4.17) is convex for all time t ∈ (0,T ), since the eigenvalues of D2u are λ1 =
e−t e

1
2 (x2+y2), and λ2 = e−t e

1
2 (x2+y2) (

x2 + y2 +1
)
, which are both positive for all times t ∈ (0,T ).

Figure 4.2 illustrates u0(x, y) (left) and uh(x, y,T ) (right), while Table 4.2 shows that the solution

method exhibits nearly optimal convergence orders (for structured and unstructured mesh

we have O (h) and O (h1.5) for the discrete version of the norm ||e||L2(H 1) and O (h1.8) and O (h2)

for ||e||L2(L2), respectively)

Figure 4.2 – Exponential example corresponding to the exact solution (4.17). Numerical
approximation of the solution for h = 1/80 and ∆t = 0.25 ·10−3. Left: initial condition at time
t = 0. Right: the final solution at time t = 1.

4.5 Numerical Experiments for Time Independent Solutions

In this section, we consider the numerical solutions that are not depend on time. As in the

beginning of this Chapter, we said this corresponds to solving the steady state Monge-Ampère

equation (4.2).

We check the efficiency of the numerical algorithm for various test cases. The test cases of

primary importance in this section are degenerate solutions, solutions with non-smooth
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Table 4.2 – Exponential example. Estimated errors of u −uh in corresponding norms, and
related convergence orders for various h and ∆t . Top: structured meshes (with C = 0 when
h ≥ 1/80, and C = 0.1 when h = 1/160), Bottom: unstructured meshes.

St
ru

ct
u

re
d

h ∆t ||e||L2(L2) ||e||L2(H 1)

1/20 1.00e-03 8.96e-04 - 3.58e-02 -
1/40 0.50e-03 2.40e-04 1.90 1.79e-02 1.00
1/80 0.25e-03 6.69e-05 1.80 8.96e-03 0.99

1/160 1.25e-03 9.97e-06 2.74 4.44e-03 1.01

U
n

st
ru

ct
u

re
d h ∆t ||e||L2(L2) ||e||L2(H 1)

0.062 2.00e-03 1.49e-02 - 2.02e-01 -
0.031 1.00e-03 5.31e-03 1.48 8.93e-02 1.17
0.015 0.50e-03 1.25e-03 2.08 3.27e-02 1.44
0.010 0.33e-03 5.26e-04 2.13 1.81e-02 1.45

data or data with Dirac function, etc. These cases are considered as challenging ones in the

literature [Caboussat et al., 2013; Glowinski et al., 2019].

LetΩ= (0,1)2 be the unit square. In all the test cases we use a triangular structured asymmetric

mesh. The mesh size h and the time step ∆t vary together. The stopping criterion for the

Newton method is ||vk+1
h − vk

h ||L2(Ω) ≤ 10−9, with a maximal number of 400 iterations. The

parameter C is set to 1. We consider T =∞, and we stop the algorithm when ||un+1
h −un

h ||L2(Ω) ≤
5×10−8. The initial guess of the algorithm u0(x, y) is obtained by solving the following problem.

{
∆u0 = a inΩ,

u0 = g on Γ.
(4.18)

We use a = 5 in most of the examples except the ones with Dirac right-hand sides where we

choose a = 10. In the literature, the initialization is usually chosen as a solution of ∆u0 = 2
√

f ,

see, for example, [Caboussat et al., 2013]. Here we need an initial condition that is more convex

than the one from solving ∆u0 = 2
√

f . The choice of a influences the computational time of

the algorithm, to obtain a stationary solution.

In order to simplify the notation we set u := uN and uh := uN
h where N is the last time-step. In

the sequel, we define f
(
x, y

)
inΩ, g

(
x, y

)
on Γ and u

(
x, y

)
in Ω̄=Ω∩Γ.

4.5.1 Smooth examples

First we consider f
(
x, y

)
to be a smooth function. The test cases we consider are:

(A) f
(
x, y

)=−5 and g
(
x, y

)= 1
2

(
x2 +5y2

)
.
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(B) f
(
x, y

)=−(
x + y +1

)
e(x2+y2) and g

(
x, y

)= e
1
2 (x2+y2).

These examples are similar to those used in the previous section. Example (A) corresponds to

a polynomial smooth solution, namely,

u
(
x, y

)= 1

2

(
x2 +5y2) . (4.19)

The eigenvalues of the Hessian D2u are λ1 = 1 and λ2 = 5.

Example (B) is a classical example that is often seen in the literature. It corresponds to an

exponential smooth solution

u
(
x, y

)= e
1
2 (x2+y2). (4.20)

The eigenvalues of the Hessian D2u are λ1 = e
1
2 (x2+y2), and λ2 = e

1
2 (x2+y2) (

x2 + y2 +1
)
.

Table 4.3 illustrates the convergence of the numerical solutions and the number of timesteps

for examples (A) and (B). Table 4.3 shows that the numerical solutions for both test cases

converge in L2-norm with a rate of O
(
h1.9

)
and in H 1 semi norm with an optimal rate of

O
(
h1.2

)
when h,∆t → 0. The number of timesteps is multiplied by 2 as h and∆t are divided by

two.

Figure 4.3 shows the obtained numerical solution for example (A) on the left and example (B)

on the right.

Table 4.3 – Smooth examples. Estimated errors of u −uh in corresponding norms, and related
convergence orders for various h and ∆t . Number of timesteps of the algorithm. Top table:
(A) f

(
x, y

) = 5 and g
(
x, y

) = 1
2

(
x2 +5y2

)
; Bottom table: (B) f

(
x, y

) = (
x + y +1

)
e(x2+y2) and

g
(
x, y

)= e
1
2 (x2+y2).

(A)

h ∆t ||u −uh ||L2(Ω) |u −uh |H 1(Ω) Timesteps
1/20 1.00e-03 4.28e-03 - 1.15e-01 - 201
1/40 0.50e-03 1.15e-03 1.89 5.12e-02 1.16 320
1/80 0.25e-03 2.96e-04 1.95 2.22e-02 1.20 576

(B)

h ∆t ||u −uh ||L2(Ω) |u −uh |H 1(Ω) Timesteps
1/20 1.00e-03 4.56e-03 - 9.49e-02 - 298
1/40 0.50e-03 1.19e-03 1.93 3.99e-02 1.25 550
1/80 0.25e-03 3.10e-04 1.94 1.74e-02 1.19 1018

4.5.2 Non-smooth examples

We consider examples that often appear in the literature on the numerical solution of two

dimensional Monge-Ampère equation. The problems we consider are:
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(A) (B)

Figure 4.3 – Smooth examples. Left: Numerical approximation of the solution of test case (A)
f
(
x, y

)=−5 and g
(
x, y

)= 1
2

(
x2 +5y2

)
. Right: Numerical approximation of the solution of test

case (B) f
(
x, y

)=−(
x + y +1

)
e(x2+y2) and g

(
x, y

)= e
1
2 (x2+y2). The results are obtained with

h = 1/40 and ∆t = 0.50 ·10−3.

(C) f
(
x, y

)= 0 and g
(
x, y

)= |x −0.5|.

(D) f
(
x, y

)=−1 and g
(
x, y

)= 0.

Test case (C) is a degenerate case where the solution has low regularity properties, and we

expect the convergence order in L2-norm to be of order one or less. Table 4.4 illustrates the

numerical solutions of example (C) for various h and∆t . We observe that, in L2-norm although

the numerical solution is accurate of order 10−3, there is no convergence order. Moreover, we

measure the absolute error at (0.5,0.5), and we see that it goes to zero as h,∆t → 0. Concerning

the timesteps, we note that they increase as h decreases.

In order to improve the results and reduce the number of timesteps, we use a simple adaptive

strategy heuristics in time. We reduce the time-step when the Newton iterations are smaller

than five. The results are reported in Table 4.5. We observe that the convergence in L2-error

norm is of the order of O(h), and the number of timesteps are reduced remarkably. The point

error at (0.5,0.5) remained the same. In Table 4.5, we report the first time-step ∆t0 and the last

time-step∆tN . Graphs of the numerical solution of test case (C) without an adaptive time-step

strategy are illustrated in Figure 4.4.

Example (D) does not have a classical solution but only admits a generalized one, even

though the data are smooth. This problem is theoretically discussed in [Gutiérrez, 2001]

and numerically investigated in numerous works e.g. [Feng and Neilan, 2009c; Oberman,

2008; Benamou et al., 2010; Caboussat et al., 2013; Awanou, 2014; Glowinski et al., 2019]. We

compare our numerical solution with the numerical solution given in the previously cited
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Table 4.4 – Non-smooth examples. Test case (C) with data f
(
x, y

)= 0 and g
(
x, y

)= |x −0.5|.
Estimated errors u −uh in corresponding norms, and related convergence orders for various
h and ∆t . Number of timesteps of the algorithm.

(C)

h ∆t ||u −uh ||L2(Ω) |u(0.5,0,5)−uh(0.5,0.5)| Timesteps
1/20 1.00e-03 2.00e-03 - 0.0138 3957
1/40 0.50e-03 1.19e-03 0.74 0.0092 6991
1/80 0.25e-03 1.16e-03 - 0.0057 10991

Table 4.5 – Non-smooth examples. Test case (C) with data f
(
x, y

)= 0 and g
(
x, y

)= |x −0.5|.
Estimated errors u −uh in corresponding norms, and related convergence orders for various
h and adaptive time-step. First and the last time-step. Number of timesteps of the algorithm.

(C)

h ∆t0 ∆tN ||u −uh ||L2(Ω) |u(0.5,0,5)−uh(0.5,0.5)| Timesteps
1/20 1.00e-03 4194.3 1.98e-03 - 0.0138 358
1/40 0.50e-03 8388.61 1.01e-03 0.97 0.0093 536
1/80 0.25e-03 8388.61 4.85e-04 1.05 0.0057 755

(C)

Figure 4.4 – Non-smooth examples. Numerical approximation of the solution of (C) f
(
x, y

)= 0
and g

(
x, y

)= |x−0.5|. Left: Graph of the numerical solution( with h = 1/40 and∆t = 0.50·10−3).
Right: Profile plot of u as a function x and y = 0.5.

articles. The numerical solution of (D) is illustrated in Figure 4.5 (top left) and contours of the

solution are given in Figure 4.5 (top right). Comparison of the amplitude of the numerical

solution for different h is done in the bottom row of Figure 4.5, where we plot the solutions as

a function of x for y = 0.5 on the left (resp x = y on the right). The numerical solution obtained

aligns with the ones given in the above mentioned references. In [Glowinski et al., 2019] by
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comparing [Oberman, 2008; Benamou et al., 2010], the authors provide a range of points

for the minimal solution that is [−0.184475,−0.17315]. In Table 4.6, we show that we are in

that range for different h and ∆t . Moreover, the tables show that the number of timesteps is

doubled as h and ∆t decrease by half.

(D)

Figure 4.5 – Non-smooth examples. Numerical approximation of the solution of (D) f
(
x, y

)= 0
and g

(
x, y

)= |x−0.5|. Top row: Graph of the numerical solution and contours of the numerical
solution. Bottom row: Profile plot of uh(x,0.5) and uh(0.5, y) . The results are obtained with
h = 1/40 and ∆t = 0.50 ·10−3.

Table 4.6 – Non-smooth examples. Example (D) with data f
(
x, y

)=−1 and g
(
x, y

)= 0. Esti-
mation of the minimal solution uh along with number of timesteps for various h and ∆t .

(D)

h ∆t min(u) timesteps
1/20 1.00e-03 -0.1730 640
1/40 0.50e-03 -0.1780 1238
1/80 0.25e-03 -0.1814 2349
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4.5.3 Examples with singularities

We consider examples with singularities. The problems are defined as

(E) f
(
x, y

)=− R2(
R2 − (x −0.5)2 − (y −0.5)2

)2 and g
(
x, y

)=−
√

R2 − (x −0.5)2 − (y −0.5)2.

(F) f
(
x, y

)=−1− (1−2x)2
(
1−2y

)2

16x y (1−x)
(
1− y

) and g
(
x, y

)= 0.

Test case (E) is a classical example with the exact solution given by

u
(
x, y

)=−
√

R2 − (x −0.5)2 − (y −0.5)2, (4.21)

we also considered a similar test case for the three dimensional Monge-Ampère in Chapter

3. For R > 1/
p

2, the solution belongs to C∞ (
Ω̄

)
. Here we are going to consider the case that

R = 1/
p

2 where ∇u is discontinuous in the four corners of Ω̄, while the solution remains

smooth.

Test case (F) has the following the exact solution

u
(
x, y

)=−√
x(1−x)y(1− y). (4.22)

Similarly to the previous test case, the solution is smooth, but ∇u is discontinuous on the

whole boundary.

Graphs of the numerical solution of test cases (E) and (F) are presented in Figure 4.6 for

h = 1/40 and ∆t = 0.50×10−3. Table 4.7 provides information about the error norms with the

corresponding rates and the number of timesteps for various h and ∆t , for the test cases (E)

and (F). In the top table for the test case (E), the L2 error norm decreases with an order of

O(h1.8), and the H 1 error norm decreases with an order of O(h0.7). Since ∇u is not regular, it is

logical to expect a convergence order less than one. In the top table for the test case (F), we see

that it is more challenging than the previous one. The convergence order in the L2 error norm

drops to 0.5, while there is no convergence order for the H 1 error norm. Finally, we observe

that for both test cases, the number of timesteps is increasing linearly.
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(E) (F)

Figure 4.6 – Examples with singularities. Left: Graph of the numerical approxima-
tion of the solution of test case (E) with f

(
x, y

) = − R2

(R2−(x−0.5)2−(y−0.5)2)2 , g
(
x, y

) =
−

√
R2 − (x −0.5)2 − (y −0.5)2 and R = 1p

2
. Right: Graph of the numerical approximation of

the solution of test case (F) with f
(
x, y

) = −1−(1−2x)2(1−2y)2

16x y(1−x)(1−y) and g
(
x, y

) = 0. The results are

visualized with h = 1/40 and ∆t = 0.50 ·10−3.

Table 4.7 – Examples with singularities on the data. Estimated errors u −uh in correspond-
ing norms, and related convergence orders for various h and ∆t . Number of timesteps of
the algorithm. Top table: Test case (E) with data f

(
x, y

) = − R2

(R2−(x−0.5)2−(y−0.5)2)2 , g
(
x, y

) =
−

√
R2 − (x −0.5)2 − (y −0.5)2 and R = 1p

2
; Bottom table: Test case (F) with data f

(
x, y

) =
−1−(1−2x)2(1−2y)2

16x y(1−x)(1−y) and g
(
x, y

)= 0.

(E)

h ∆t ||u −uh ||L2(Ω) |u −uh |H 1(Ω) Timesteps
1/20 1.00e-03 8.47e-03 - 2.88e-01 - 277
1/40 0.50e-03 2.41e-03 1.77 1.79e-01 0.68 512
1/80 0.25e-03 6.90e-04 1.80 1.11e-01 0.68 943

(F)

h ∆t ||u −uh ||L2(Ω) |u −uh |H 1(Ω) Timesteps
1/20 1.00e-03 2.07e-02 - 4.12e-01 - 428
1/40 0.50e-03 1.46e-02 0.50 4.03e-01 - 803
1/80 0.25e-03 9.41e-03 0.63 3.99e-01 - 1477
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4.5.4 Examples with Dirac functions on the right hand side

We consider examples with Dirac functions on the right hand side. The problems are defined

as

(G) f
(
x, y

)=−2δ(1/2,1/2) and g
(
x, y

)= 0.

(H) f
(
x, y

)=−πδ(1/2,1/2) and g
(
x, y

)=√
(x −0.5)2 + (

y −0.5
)2.

(I) f
(
x, y

)=−π
2δ(1/4,1/2) − π

2δ(3/4,1/2) and

g
(
x, y

)=


∣∣y −0.5
∣∣ if 1/4 < x < 3/4,

min

(√
(x −1/4)2 + (

y −0.5
)2,

√
(x −3/4)2 + (

y −0.5
)2

)
Otherwise .

In order to apply our methodology, we approximate the Dirac function δ(α,β) by

f (α,β)
η

(
x, y

)= η2

π
(
η2 + (x −α)2 + (

y −β)2
)2 ,

where η is a small positive value.

In example (G) we approximate −2δ(1/2,1/2) by −2 f (1/2,1/2)
η (x, y). The exact solution given in

[Glowinski et al., 2019] is

u =−min(x,1−x, y,1− y). (4.23)

The solution has low regularity properties. To estimate the error norms, we assume that

lim
h→0

lim
η→0

uη

h = u. For this test case, we choose η = 10−3/2 as suggested in [Glowinski et al.,

2019]. Figure 4.7 displays the graph of the numerical solution for h = 1/40 and δ= 0.5×10−3.

Moreover, the profile of the numerical solutions as a function of (x, y = 0.5) and (x, y = x)

shows the behavior of the numerical solution for different h and ∆t . In Table 4.8, we observe

that the convergence in L2-norm drops to O(h0.5) and the minimal numerical solution does

not consistently converges to −0.5 as expected. In order to reduce the timesteps we can use

the adaptive strategy that we described for the test case (D). To improve the convergence order

of the method we would need to investigate a better choice of the parameter η.

Test case (H) and (I) are the so-called Pogorelov solutions [Benamou et al., 2014; Benamou and

Froese, 2014], involving one and then two Dirac functions. Numerical investigation for test

case (H) and (I) is done in [Glowinski et al., 2019] and [Awanou and Leopold, 2015], respectively.

In test cases (H) and (I) we respectively approximate −πδ(1/2,1/2) and −π
2
δ(1/4,1/2) −

π

2
δ(3/4,1/2)

by −π f (1/2,1/2)
η (x, y) and −π

2
f (1/4,1/2)
η (x, y)− π

2
f (3/4,1/2)
η (x, y).
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(G)

Figure 4.7 – Examples with Dirac function on right hand side. Numerical approximation of the
solution of test case (G) f

(
x, y

)=−2δ(1/2,1/2) and g = 0. Left: Graph of the numerical solution.
Middle: Profile plot of u as a function x and y = 0.5. Right: Profile plot of u along the diagonal
x = y . The results are obtained with h = 1/40, ∆t = 0.50 ·10−3 and η= 10−3/2.

Table 4.8 – Examples with Dirac function on right hand side. Test case (G) with data f
(
x, y

)=
−2δ(1/2,1/2) and g = 0. Estimated error u−uh in corresponding norm, and related convergence
orders for various h and ∆t . Estimation of the minimal solution uh along with number of
timesteps.

(G)

h ∆t ||u −uh ||L2(Ω) min(uh) Timesteps
1/20 1.00e-03 2.12e-02 - -0.4798 559
1/40 0.50e-03 9.40e-03 1.17 -0.4636 4658
1/80 0.25e-03 6.74e-03 0.47 -0.4645 9930

Example (H) admits the exact solution

u
(
x, y

)=√
(x −0.5)2 + (

y −0.5
)2, (4.24)

and test case (I) admits the exact solution

u
(
x, y

)=


∣∣y −0.5
∣∣ if 1/4 < x < 3/4,

min

(√
(x −1/4)2 + (

y −0.5
)2,

√
(x −3/4)2 + (

y −0.5
)2

)
Otherwize .

(4.25)

As before, we assume that lim
h→0

lim
η→0

uη

h = u, in order to compute error norms.

For the example (H), we use η= 10−3/2 as suggested in [Glowinski et al., 2019] and results are

reported in Table 4.9. We observe that the L2 error norm converges as O(h0.8). Moreover, the

provided minimal solution is close to zero, as expected. We are able to reduce the number of

timesteps by using the adaptive strategy as described before. The results are reported in Table

4.10.
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For h = 1/40 and ∆t = 0.5×10−3, Figure 4.8 displays the graph of the numerical solution .

Moreover, we profile the solutions as function of (x, y = 0.5) and (x, y = x), in order to show

the behavior of numerical solution along these cuts for various h and ∆t .

For the test case (G), we use η= h. The results are reported in Table 4.11. The same observa-

tions made before hold in this case. Moreover, we use the the adaptive strategy to reduce the

number of timesteps, the results reported in Table 4.12.

Figure 4.9 displays the graph of the numerical solution for h = 1/40 and δ= 0.5×10−3. More-

over, we show the solutions as a function of y for x = 0.5 in order to show the behavior of the

numerical solution for different h and ∆t .

Table 4.9 – Examples with Dirac function on the right hand side. Test case (H) with data

f
(
x, y

) = −πδ(1/2,1/2) and g
(
x, y

) = √
(x −0.5)2 + (

y −0.5
)2. Estimated error u −uh in corre-

sponding norms, and related convergence orders for various h and ∆t . Estimation of the
minimal solution uh along with the number of timesteps.

(H)

h ∆t ||u −uh ||L2(Ω) min(uh) Timesteps
1/20 1.00e-03 8.24e-03 - -0.0263 337
1/40 0.50e-03 4.17e-03 0.98 0.0178 564
1/80 0.25e-03 2.42e-03 0.78 0.0283 1055

Table 4.10 – Examples with Dirac function on the right hand side. Test case (H) with data

f
(
x, y

) = −πδ(1/2,1/2) and g
(
x, y

) = √
(x −0.5)2 + (

y −0.5
)2. Estimated error u −uh in cor-

responding norms, and related convergence orders for various h and adaptive time-step.
Indication of the first and the last time-step. Estimation of the minimal solution uh along with
the number of timesteps.

(H)

h ∆t0 ∆tN ||u −uh ||L2(Ω) min(uh) Timesteps
1/20 1.00e-03 0.256 8.24e-03 - -0.0263 165
1/40 0.50e-03 16.384 4.17e-03 0.98 0.0178 195
1/80 0.25e-03 0.512 2.42e-03 0.78 0.0283 257
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(H)

Figure 4.8 – Examples with Dirac function on the right hand side. Numerical approx-
imation of the solution of test case (H) with data f

(
x, y

) = −πδ(1/2,1/2) and g
(
x, y

) =√
(x −0.5)2 + (

y −0.5
)2. Left: Graph of the numerical solution. Middle: Profile plot of u

as a function x and y = 0.5. Right: Profile plot of u along the diagonal x = y . The results are
obtained with h = 1/40, ∆t = 0.50 ·10−3 and η= 10−3/2.

Table 4.11 – Examples with Dirac function on the right hand side. Bottom table: Test case
(I) with data f

(
x, y

)=−π
2δ(1/4,1/2) − π

2δ(3/4,1/2) and g
(
x, y

)= u
(
x, y

)
where u

(
x, y

)
is given in

(4.25). Estimated error u −uh in corresponding norms, and related convergence orders for
various h and ∆t . Estimation of the minimal solution uh along with the number of timesteps.

(I)

h ∆t ||u −uh ||L2(Ω) min(uh) timesteps
1/20 1.00e-03 1.08e-02 - 0.0024 468
1/40 0.50e-03 7.05e-03 0.61 0.0039 1261
1/80 0.25e-03 4.04e-03 0.80 0.0047 3451

Table 4.12 – Examples with Dirac function on the right hand side. Test case (I) with data
f
(
x, y

) = −π
2δ(1/4,1/2) − π

2δ(3/4,1/2) and g
(
x, y

) = u
(
x, y

)
where u

(
x, y

)
is given in (4.25). Esti-

mated error u −uh in corresponding norms, and related convergence orders for various h and
adaptive time-step. Indication of the first and the last time-step. Estimation of the minimal
solution uh along with the number of timesteps.

(I)

h ∆t0 ∆tN ||u −uh ||L2(Ω) min(uh) timesteps
1/20 1.00e-03 0.512 1.08e-02 - 0.0024 166
1/40 0.50e-03 0.512 7.05e-03 0.61 0.0039 249
1/80 0.25e-03 4.096 4.04e-03 0.80 0.0047 352
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(I)

Figure 4.9 – Examples with Dirac function on the right hand side. Numerical approximation of
the solution of test case (I) with data f

(
x, y

)=−π
2δ(1/4,1/2) − π

2δ(3/4,1/2) and g
(
x, y

)= u
(
x, y

)
where u

(
x, y

)
is given in (4.25). Left: Graph of the numerical solution. Right: Profile plot of u

as a function x and y = 0.5. The results are obtained with h = 1/40, ∆t = 0.50 ·10−3 and η= h.
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4.6 An adaptive algorithm for the elliptic Monge-Ampère equation

In this section we design an adaptive algorithm for the steady state Monge-Ampère equa-

tion. We use two different solvers to test the adaptive algorithm. The first solver, described

throughout this chapter, has shown its efficiency in capturing the stationary solution of Monge-

Ampère equation; we will refer to it as Parabolic Monge-Ampère (PMA). The second one is the

two-dimensional version of the solver developed in Chapter 3, we will refer it as Least-squares

Monge-Ampère (LSMA) and we describe it briefly in the subsequent paragraph.

LSMA is an iterative method that is based on the least-squares approach. Let the functional

spaces be defined as

V 2
g = {

ϕ ∈ H 2(Ω) ,ϕ= g on ∂Ω
}

,

Q f = {
q ∈ L2(Ω)2×2, q = qt , detq = f , qi i > 0, i = 1,2

}
.

The method relies on introducing an auxiliary variable q ∈ Q f : find (u,p) ∈V 2
g ×Q f such that

J (u,p) ≤ J (v,q), ∀(v,q) ∈V 2
g ×Q f , (4.26)

where

J (v,q) = 1

2

∫
Ω

∣∣D2v −q
∣∣2

dx.

In order to solve (4.26) we advocate a relaxation algorithm of the Gauss-Seidel-type. First, the

initialization is obtained by solving:

∆u0 = 2
√

f inΩ,

u0 = g on ∂Ω.

Then, for n ≥ 0, un → pn → un+1/2 → un+1:

pn = arg min
q∈Q f

J (un ,q); (4.27)

un+1/2 = arg min
v∈V 2

g

J (v,pn); (4.28)

un+1 = un +ω(un+1/2 −un); (4.29)

with 1 ≤ω≤ 2.

The minimization problem (4.27) can be solved point-wise and it is solved with the Qmi n

algorithm, see [Sorensen and Glowinski, 2010]. The minimization problem (4.28) is a linear

variational problem and results in a fourth-order partial differential equation, namely find
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un+1/2 ∈V 2
g satisfying

∫
Ω

D2un+1/2 : D2vdx =
∫
Ω

pn : D2vdx, ∀v ∈V 2
0 , (4.30)

where V 2
0 = H 2(Ω)∩H 1

0 (Ω). Equation (4.30) is solved by using a conjugate gradient algorithm.

The details of the method are in [Caboussat et al., 2013], where they show that it is robust. The

solvers PMA and LSMA are both using low-order finite elements and compute the Hessian

matrix as described in Section 4.3.

Our goal, like in Chapter 1, is to build an adaptive mesh such that the estimated relative error

is close to a preset tolerance T OL, namely:

0.5 T OL ≤ ηI

||∇uh ||L2(Ω)
≤ 1.5 T OL,

where the error estimate ηI is based on the finite element mesh and uh computed either

by PMA or LSMA. There are many options for estimating ηI . For instance for PMA, we can

derive an estimate to the linearized equation (4.13). A posteriori error estimates for similar

equations are developed in [Verfürth, 1994]. For LSMA, we can derive an estimate to the linear

variational problem (4.30). Although, a posteriori error estimates for fourth-order elliptic

problems exist in the literature e.g [Georgoulis et al., 2009], to the best of our knowledge, they

consider high-order finite element approximations.

Another feasible option for estimating ηI is the following: in the conjugate gradient algorithm

that is used to solve (4.30), we have to solve in the following problem several times: findϕ ∈V 2
g

satisfying ∫
Ω
∆ϕ∆vdx =

∫
Ω

D2u : D2vdx−
∫
Ω

pn : D2v, ∀v ∈V 2
0 . (4.31)

To solve (4.31) we use mixed finite elements methods. For equation (4.31) with a mixed

method formulation a posteriori and a priori error estimates are given in [Charbonneau et al.,

1997]. However, as mentioned above, the obtained estimates cannot be used directly since the

authors also consider high-order finite element approximations.

The estimate of ηI we propose here is derived directly from the Monge-Ampère equation. Let

us re-write this equation using the expression in (4.3). The problem reads as follows: find

u :Ω→R such that 
1

2
∇· (cof(D2u)∇u

)= f inΩ,

u = g on ∂Ω,
(4.32)

where f , g are given. The weak formulation of this equation can be obtained by multiplying
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(4.32) by v ∈ H 1
0 (Ω) and integrate by parts overΩ

−1

2

∫
Ω

cof(D2u)∇u ·∇vdx =
∫
Ω

f vdx. (4.33)

The error estimate that we derive is based on the residual. Therefore, we re-express the residual

based on an integral term for which we can provide an upper bound

1

2

∫
Ω

(
cof(D2u)∇u −cof(D2

huh)∇uh
) ·∇ (u −uh)dx =−

∫
Ω

f (u −uh)dx

− 1

2

∫
Ω

cof(D2
huh)∇uh ·∇ (u −uh)dx,

= R(u −uh).
(4.34)

Following [Verfürth, 2013], an upper bound of R(u −uh) is given by

R(u −uh) ≤ c

( ∑
K∈Th

(
h2

K ||− f + 1

2
∇· (cof(D2

huh)∇uh
) ||2L2(K )

+ 1

16
hK ||

[
cof(D2

huh)∇uh ·n
] ||2L2(∂K )

)) 1
2 ||∇ (u −uh) ||L2(Ω),

where c is a constant that depends the mesh aspect ratio. Recall that the second order deriva-

tives D2
huh are approximated as discussed in Section 4.3.

We denote the error estimate by ηI which is given by

ηI =
( ∑

K∈Th

(ηI
K )2

) 1
2

, (4.35)

where

(ηI
K )2 = h2

K ||− f + 1

2
∇· (cof(D2

huh)∇uh
) ||2L2(K ) +

1

16
hK ||

[
cof(D2

huh)∇uh ·n
] ||2L2(∂K ). (4.36)

If we plug expression (4.3) in (4.36), we get

(ηI
K )2 = h2

K ||− f +detD2
huh ||2L2(K ) +

1

16
hK ||

[
cof(D2

huh)∇uh ·n
] ||2L2(∂K ).

This provides us with an upper bound for the residual in terms of ηI

R(u −uh) ≤ c

( ∑
K∈Th

(ηI
K )2

) 1
2

||∇ (u −uh) ||L2(Ω). (4.37)

Next, we find a lower bound of the residual throughout its integral re-expression in (4.34) in

order to investigate the relationship between the error estimate and the H 1 (Ω) error semi-
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norm.

Another expression for the residual can be obtained by adding and subtracting cof(D2u)∇uh

in the integral (4.34) and proceeding as following

1

2

∫
Ω

(
cof(D2u)∇u −cof(D2

huh)∇uh
) ·∇ (u −uh)dx = 1

2

∫
Ω

cof(D2u)∇ (u −uh) ·∇ (u −uh)

+ 1

2

∫
Ω

(
cof(D2u)−cof(D2

huh)
)∇uh ·∇ (u −uh)dx.

A lower bound for this term can be obtained as a sum of two lower bounds of the right terms.

Assuming that u is strictly convex we obtain

1

2

∫
Ω

(
cof(D2u)∇u −cof(D2

huh)∇uh
) ·∇ (u −uh)dx ≥ λ1

2
||∇ (u −uh)||2L2(Ω)

− 1

2
||(cof(D2u)−cof(D2

huh)
)∇uh ||L2(Ω) ||∇ (u −uh)||L2(Ω) ,

where λ1 is the smallest eigenvalue of cof(D2u). Last, we plug into the above inequality

expression (4.34) and (4.37) to get

λ1

2
||∇ (u −uh)||L2(Ω) ≤ c

( ∑
K∈Th

(ηI
K )2

) 1
2

+ 1

2
||(cof(D2u)−cof(D2

huh)
)∇uh ||L2(Ω), (4.38)

The decision of mesh refinement in the adaptive algorithm will be based on the first term of

(4.38). In [Picasso et al., 2011], the authors consider a P1 finite elements method and they

compute the second derivatives similar to this setting. They show that they can obtain an

order of convergence O(h) for the H 2 error semi-norm for various mesh types. Therefore,

the second term in (4.38) that involves the cofactor of the Hessian is expected to have rate of

convergence O(h). However, in special cases it can be O(h2) (see [Picasso et al., 2011, Remark

2.1]) then the left term in (4.38) could become negligeable.

4.7 General Algorithm and Numerical Experiments

In this section, we present different test cases in order to examine the efficiency of the estimator

ηI . The examples we consider here have already been presented in the previous section,

therefore, we focus on interpreting the numerical results. For all test cases, the computational

domain is the unit square Ω= (0,1)2. For the PMA solver, the initial time step is ∆t = 5×10−4.

We decrease this timestep in the Newton method if the number of iterations exceed 100, and

we increase it if the number of iterations is below 5. For the LSMA solver, ω is initially chosen

to be one and gradually increases to two. For both solvers the parameter C is set to one.

We initially consider a structured asymmetric mesh of size hK = 1/20, then we perform the

first mesh refinement when ||un+1
h −un

h ||L2(Ω) ≤ ν, where ν = 5×10−4 for PMA and 5×10−5
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for LSMA. Both solvers reach this condition in 50 to 100 iterations or timesteps. Then, we

adapt the mesh every 50 iterations (timesteps) or if the previous condition is satisfied. The

algorithm stops when reaches 800 timesteps for PMA or 500 iterations for LSMA. The adaptive

strategy will have to be improved in a future work, but the aim of this part is to investigate the

performance of the estimator ηI .

We define the second term of (4.38)

γ= 1

2
||(cof(D2u)−cof(D2

huh)
)∇uh ||L2(Ω).

For the sequel, we define as hmi n = min
K∈Th

hK and hmax = max
K∈Th

hK . In order to prevent the

adaptive algorithm to infinitely refine, we set (hmax /hmi n) ≤ 40.

4.7.1 Smooth exponential example

First we consider a smooth exponential example{
det D2u = (

x + y +1
)

e(x2+y2) inΩ,

u = e
1
2 (x2+y2) on ∂Ω.

The convex solution u is defined by u(x, y) = e
1
2 (x2+y2), ∀(x, y) ∈Ω.

In this example we use a triangular unstructured mesh and we vary hK uniformly. We do not

consider a mesh refinement, instead our stopping criterion is ||un+1
h −un

h ||L2(Ω) ≤ 10−7, for

both solvers. The purpose of this example is to verify that the error estimator ηI works on

smooth solutions and unstructured refined mesh. Table 4.13 shows that the H 2 error norm,

the estimations γ, and the error estimator ηI converge with order O(h) for both solvers. The

effectivity index settles at around 14. For both solvers we observe that the estimator ηI exhibits

similar behavior.

4.7.2 Non-smooth examples

The first non-smooth problem reads as det D2u = R2(
R2 − (x −0.5)2 − (y −0.5)2

)2 inΩ,

u =−
√

R2 − (x −0.5)2 − (y −0.5)2 on ∂Ω,

(4.39)

where R = 1/
p

2. The exact solution u of problem (4.39) is given by

u(x, y) =−
√

R2 − (x −0.5)2 − (y −0.5)2, ∀(x, y) ∈ Ω̄,

Note that the solution u is smooth in Ω but ∇u is discontinuous in the four corners of Ω.
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Table 4.13 – Smooth exponential example with uniformly refined mesh. Estimated errors of
u−uh in H 1 error norm, values of the estimator ηI and the corresponding convergence orders
for various hK . Number of timesteps or iterations. Top table: Numerical results obtained with
PMA solver; Bottom table: Numerical results obtained with LSMA solver .

P
M

A

hK ηI ηI

|u −uh |H 1(Ω)
|u −uh |H 2(Ω) γ Timesteps

0.03125 6.29e-01 - 8.51 7.17e-01 - 4.81e-01 - 150
0.01561 3.33e-01 0.91 11.40 4.74e-01 0.59 3.42e-01 0.49 247
0.01035 2.18e-01 1.04 12.72 3.06e-01 1.07 2.26e-01 1.02 378
0.00776 1.63e-01 1.01 13.60 2.30e-01 0.99 1.69e-01 1.01 379

LS
M

A

hK ηI ηI

|u −uh |H 1(Ω)
|u −uh |H 2(Ω) γ Iterations

0.03125 4.90e-01 - 9.73 5.96e-01 - 3.21e-01 15
0.01561 2.77e-01 0.82 12.55 3.44e-01 0.79 2.18e-01 0.56 16
0.01035 1.84e-01 1.00 13.43 1.91e-01 1.45 1.39e-01 1.10 16
0.00776 1.38e-01 1.00 14.07 1.47e-01 0.91 1.05e-01 0.97 15

According to the regularity of the solution, the adaptive algorithm is supposed to track the

discontinuities and refine the mesh in the corners. This is indeed observed in Figure 4.10

which illustrates the refined meshes for various T OL and for both solvers.

Numerical results obtained by both solvers are displayed in Table 4.14. When T OL decreases,

hmi n , hmax and the L2 error norm decrease while the number of elements and nodes increase

for both solvers. Unlike LSMA, for PMA, the estimator ηI
K and the H 1 error norm do not

decrease for decreasing T OL and L2 error norm. More specifically, for LSMA if we estimate

the effectivity index ηI /|u−uh |H 1 , we get a value close to 10 for all T OL. For T OL = 0.25, we

can observe that for PMA the number of elements and nodes are larger than LSMA.

Another non-smooth problem that we consider is{
det D2u = 1 inΩ,

u = 0 on ∂Ω,
(4.40)

Despite the smooth data, as highlighted in the previous section, this problem does not admit

a classical solution but only a generalized one. In this example, as mentioned in [Dean and

Glowinski, 2006], the main difficulties occur nearby the boundary of the domain. This is

confirmed in Figure 4.11, where we display the refined meshes for both solvers and different

T OL. In this figure, we see that for a tolerance level smaller than 0.5, the algorithm successfully

refines the mesh around the boundary and keeps a coarser mesh in the center of the domain.

Table 4.15 shows numerical results obtained using PMA and LSMA solvers. Observations made

about hmi n , hmax ,the number of elements and nodes holds in this setting. The estimator ηI

does not decreases for decreasing T OL. One possible explanation could be that the bound we
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Table 4.14 – Non-smooth example with data f (x, y) = R2

(R2−(x−0.5)2−(y−0.5)2)2 , g (x, y) =
−

√
R2 − (x −0.5)2 − (y −0.5)2 and R = 1p

2
. Convergence behavior of the algorithm for vari-

ous values of parameter T OL. The columns contain the final minimal and maximal mesh
size, the final numbers of elements and nodes, the value of the estimator, the H 1 and L2 error
norms. Top table: Results obtained with PMA solver after 800 timesteps. Bottom table: Results
obtained with LSMA solver after 500 iterations.

P
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||H 1 ||u−uh ||L2

1.0 6.65e-03 1.43e-01 916 523 0.36e+01 1.32e-01 4.41e-03
0.5 3.00e-03 9.60e-02 2949 1612 0.65e+01 9.30e-02 1.23e-03

0.25 2.03e-03 5.57e-02 9217 4889 1.18e+01 1.03e-01 5.75e-04

LS
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||H 1 ||u−uh ||L2

1.0 4.81e-03 1.89e-01 825 471 1.31e+00 1.23e-01 2.21e-02
0.5 3.41e-03 9.33e-02 2565 1399 0.92e+00 9.32e-02 6.49e-03

0.25 1.74e-03 6.41e-02 7281 3862 0.81e+00 8.84e-02 3.48e-03

set for refinement
hmax

hmi n
≤ 40 prevents ηI from decreasing. For the minimal solution presented

in the table, we see that it alligns with the discussion in subsection 4.5.2

Table 4.15 – Non-smooth example with data f (x, y) = 1 and g (x, y) = 0. Convergence behavior
of the algorithm for various values of parameter T OL. The columns contain the final minimal
and maximal mesh size, the final numbers of elements and nodes, the value of the estimator,
and the minimal solution of uh error norm. Top table: Results obtained with PMA solver after
800 timesteps. Bottom table: Results obtained with LSMA solver after 500 iterations.

P
M

A

T OL hmi n hmax # elem # nodes ηI ||uh ||L∞(Ω)

1.0 1.31e-01 3.16e-01 46 30 4.41e-01 -0.168726
0.5 2.89e-03 8.61e-02 4454 2496 2.82e-01 -0.173368

0.25 2.76e-03 5.40e-02 9916 5279 5.83e-01 -0.179461

LS
M

A

T OL hmi n hmax # elem # nodes ηI ||uh ||L∞(Ω)

1.0 7.13e-02 2.55e-01 110 69 4.02e-01 -0.166722
0.5 1.03e-02 5.90e-01 1189 663 1.96e-01 -0.167842

0.25 1.33e-03 7.41e-02 5516 3059 2.72e-01 -0.174659
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TOL = 1.0 TOL = 0.5 TOL =0.25

TOL =1.0 TOL = 0.5 TOL =0.25

Figure 4.10 – Non-smooth example with data f (x, y) = R2

(R2−(x−0.5)2−(y−0.5)2)2 , g (x, y) =
−

√
R2 − (x −0.5)2 − (y −0.5)2 and R = 1p

2
. Graphs of the final adapted mesh and zoomed

in parts of the corresponding graphs for various values of T OL. Top row: Graphs obtained
with PMA solver after 800 timesteps. Bottom row: Graphs obtained with LSMA solver after 500
iterations.
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TOL = 1.0 TOL = 0.5 TOL =0.25

TOL =1.0 TOL = 0.5 TOL =0.25

Figure 4.11 – Non-smooth example with data f (x, y) = 1 and g (x, y) = 0. Graphs of the final
adapted mesh and zoomed in parts of the corresponding graphs for various values of T OL.
Top row: Graphs obtained with PMA solver after 800 timesteps. Bottom row: Graphs obtained
with LSMA solver after 500 iterations.
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4.7.3 Examples with data involving a Dirac function

The first problem with a Dirac function on the right hand side reads as{
det D2u =πδ(1/2,1/2) inΩ,

u =
√

(x −0.5)2 + (
y −0.5

)2 on ∂Ω,
(4.41)

The exact solution u of problem (4.41) is defined by

u(x, y) =
√

(x −0.5)2 + (
y −0.5

)2 ∀(x, y) ∈ Ω̄,

As in subsection 4.5.4 for both solvers we approximate the Dirac function δ(α,β) by

f (α,β)
ε

(
x, y

)= ε2

π
(
ε2 + (x −α)2 + (

y −β)2
)2 ,

where ε is a small positive value. Therefore, we approximate πδ(1/2,1/2) by f (1/2,1/2)
ε (x, y). To

estimate the error norms, we assume that lim
h→0

lim
ε→0

uη
ε = u. Moreover, as in subsection 4.5.4, we

set ε= 10−3/2.

In this experiment, we expect the adaptive algorithm to refine the mesh around (0.5,0.5), i.e.,

where the Dirac function occurs. Figure 4.12 shows indeed the refined meshes for both solvers

and different T OL.

Table 4.16 shows numerical results obtained by PMA and LSMA solvers. For both solvers, when

T OL decreases, hmi n , hmax , ηI
K , L2 error norm decrease, and the number of elements and

nodes increase. For PMA, the number of elements and nodes is larger than LSMA. — Figure

4.13 displays the refined meshes for LSMA with fixed T OL = 0.25 and different values of ε. In

this figure, we observe that the smaller the parameter ε is, the larger the number of elements.

More precisely, Table 4.17 shows that as ε decreases, the hmi n , hmax , L2 error norm decreases

and the number of elements and nodes increases. As ε gets smaller, the problem becomes

more challenging, and therefore, ηI
K increases.

In this problem we consider two Dirac function on the right hand side

{
det D2u = π

2δ(1/4,1/2) + π
2δ(3/4,1/2) inΩ,

u = g on ∂Ω,
(4.42)
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T OL = 0.5 T OL = 0.25 T OL = 0.125

T OL = 0.5 T OL = 0.25 T OL = 0.125

Figure 4.12 – Examples with Dirac function for data f (x, y) = πδ(1/2,1/2) and g (x, y) =√
(x −0.5)2 + (

y −0.5
)2. Graphs of the final adapted mesh for various values of T OL and

fixed ε= 10−3/2. Top row: Graphs obtained with PMA solver after 800 timesteps. Bottom row:
Graphs obtained with LSMA solver after 500 iterations.

ε= 10−3/2 ε= 10−2 ε= 10−5/2

Figure 4.13 – Examples with Dirac function for data f (x, y) = πδ(1/2,1/2) and g (x, y) =√
(x −0.5)2 + (

y −0.5
)2. Graphs of the final adapted mesh for various values of ε and fixed

T OL = 0.25. The graphs obtained with LSMA solver after 500 iterations.
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Table 4.16 – Examples with Dirac function for data f (x, y) = πδ(1/2,1/2) and g (x, y) =√
(x −0.5)2 + (

y −0.5
)2. Convergence behavior of the algorithm for various values of parame-

ter T OL and fixed ε= 10−3/2. The columns contain the final minimal and maximal mesh size,
the final numbers of elements and nodes, the value of the estimator, and L2 error norms. Top
table: Results obtained with PMA solver after 800 timesteps. Bottom table: Results obtained
with LSMA solver after 500 iterations.

P
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||L2

0.5 1.21e-02 1.90e-01 627 328 7.24e-01 3.71e-02
0.25 7.85e-03 1.23e-01 1331 739 5.23e-01 1.37e-02

0.125 3.58e-03 5.57e-02 3425 1748 3.50e-01 6.68e-03

LS
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||L2

0.5 1.36e-02 1.77e-01 509 269 8.71e-01 7.73e-02
0.25 8.41e-03 1.24e-01 1128 582 5.50e-01 3.84e-02

0.125 4.89e-03 7.78e-02 2920 1489 3.70e-01 1.92e-02

Table 4.17 – Examples with Dirac function for data f (x, y) = πδ(1/2,1/2) and g (x, y) =√
(x −0.5)2 + (

y −0.5
)2. Convergence behavior of the algorithm for various values of param-

eter ε= 10−3/2 and fixed T OL = 0.25. The columns contain the final minimal and maximal
mesh size, the final numbers of elements and nodes, the value of the estimator, and L2 error
norms. The results obtained with LSMA solver after 500 iterations.

LS
M

A

ε2 hmi n hmax # elem # nodes ηI ||u−uh ||L2

1e-03 8.41e-03 1.24e-01 1128 582 5.50e-01 3.84e-02
1e-04 7.93e-03 1.40e-01 1224 636 0.12e-01 2.29e-02
1e-05 4.19e-03 7.02e-02 2986 1544 0.15e-01 1.29e-02

where

g
(
x, y

)=


∣∣y −0.5
∣∣ if 1/4 < x < 3/4,

min

(√
(x −1/4)2 + (

y −0.5
)2,

√
(x −3/4)2 + (

y −0.5
)2

)
Otherwise .

(4.43)

The exact solution is given as u = g inΩ.

We approximate
π

2
δ(1/4,1/2) +

π

2
δ(3/4,1/2) by

π

2
f (1/4,1/2)
ε (x, y)+ π

2
f (3/4,1/2)
ε (x, y). To estimate the

error norms, we assume that lim
h→0

lim
ε→0

uη
ε = u. Moreover, as before we set ε= 10−3/2.

In this experiment, we expect the adaptive algorithm to refine the mesh around the neighbor-
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hood of the line between (1/4,1/2) and (3/4,1/2). Figure 4.12 displays the refined meshes for

both solvers and different T OL, which shows the expected behavior.

Table 4.16 shows numerical results obtained by PMA and LSMA solvers. For the PMA, although

the L2 error norm is accurate to the order of 10−3, it does not decrease with T OL. On the other

hand, for LSMA, the L2 error norm is of order 10−2, and it decreases monotonically with T OL.

T OL = 0.5 T OL = 0.25 T OL = 0.125

T OL = 0.5 T OL = 0.25 T OL = 0.125

Figure 4.14 – Examples with Dirac function for data f (x, y) = π
2δ(1/4,1/2)+ π

2δ(3/4,1/2) and g (x, y)
is giver in (4.43). Graphs of the final adapted mesh for various values of T OL and fixed
ε = 10−3/2. Top row: Graphs obtained with PMA solver after 800 timesteps. Bottom row:
Graphs obtained with LSMA solver after 500 iterations.
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Table 4.18 – Examples with Dirac function for data f (x, y) = π
2δ(1/4,1/2) + π

2δ(3/4,1/2) and g (x, y)
is giver in (4.43). Convergence behavior of the algorithm for various values of parameter T OL
and fixed ε= 10−3/2. The columns contain the final minimal and maximal mesh size, the final
numbers of elements and nodes, the value of the estimator, and L2 error norms. Top table:
Results obtained with PMA solver after 800 timesteps. Bottom table: Results obtained with
LSMA solver after 500 iterations.

P
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||L2

0.5 1.11e-02 3.27e-01 722 373 7.72e-01 7.75e-03
0.25 5.96e-03 2.00e-01 1886 969 4.85e-01 7.71e-03

0.125 3.96e-03 1.26e-02 4664 2371 2.85e-01 8.42e-03

LS
M

A

T OL hmi n hmax # elem # nodes ηI ||u−uh ||L2

0.5 1.23e-02 2.17e-01 687 356 5.98e-01 3.84e-02
0.25 8.14e-03 2.25e-01 1617 828 4.82e-01 2.08e-02

0.125 4.89e-03 7.78e-02 2920 1489 3.70e-01 1.92e-02
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5 Conclusion

In this thesis, numerical methods for solutions of first and second-order fully nonlinear

equations have been presented. We have discussed an operator-splitting/ finite element

method for the numerical solution of the Dirichlet problem for orthogonal maps, and we have

extended it by introducing an anisotropic space adaptivity method. Then, we have derived

least-squares/relaxation methods for the numerical solutions of Jacobian equation/inequality,

and the three dimensional Monge-Ampère equation. We have also developed a second order

time integration method for the approximation of a parabolic and elliptic 2D Monge-Ampère

equation. Lastly, we have introduced an isotropic adaptive method for the two dimensional

elliptic Monge-Ampère equation.

In Chapter 1, we tackled the orthogonal map equation and we proposed an operator-splitting/

finite element method for the numerical solution of the Dirichlet problem. This method

is based on a variational principle, the introduction of the associated flow problem, and

a time-stepping splitting algorithm. Results show the robustness and the flexibility of this

method and its ability to approximate solutions with line singularities on convex domains, with

convergence of order one for the L2(Ω) norm of the approximation error. Then the method

has been extended by proposing an anisotropic adaptive mesh algorithm that allows to track

the singularities of the gradient of the solution more accurately. Numerical experiments have

shown the robustness of the derived estimator and the adaptive algorithm.

In Chapter 2, we focused on the numerical approximation of the solutions of the prescribed Ja-

cobian equation and inequality. The proposed method relies on a least-squares reformulation

of the original problem and on a relaxation algorithm. The method is based on variational

approaches where the use of relaxation algorithm allows the decoupling of the least-squares

problem into local nonlinear and to variational problems. We have presented the implemen-

tation in the finite element space and numerical examples to validate the method.

In Chapter 3, a least-squares/relaxation finite element method also has been introduced

to solve the Dirichlet problem for the three-dimensional elliptic Monge-Ampère equation.

The method resembles the least squares framework that has been developed for several fully
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Chapter 5. Conclusion

nonlinear equations, and in Chapter 2. In this case, new solvers have been derived to provide

solutions for the local nonlinear and variational problems. Numerical results have been

validated by various test cases using P1 and Q1 polynomials. The method achieves nearly

optimal orders for the L2(Ω) and H 1(Ω) error norms when smooth solutions are approximated.

In Chapter 4, we presented a numerical method for the solution of a parabolic 2D Monge-

Ampère equation. Moreover, we have shown the efficiency of the method in capturing station-

ary solutions, such as the solutions of the elliptic Monge-Ampère equation. In the numerical

examples, when tested to smooth solutions, the method had nearly optimal orders for the

L2(Ω) and H 1(Ω) error norms. The method proved to be also robust at approximating non-

smooth solutions. We have derived a heuristic error estimate, and we have designed an

adaptive algorithm for the two-dimensional elliptic Monge-Ampère equation. Numerical

experiments confirmed the robustness of the estimators and adaptive algorithm by using two

different solvers.

It is possible to extent this work in different directions by working further on the following

subtopics. For example, the operator-splitting/finite element method that used to solve the

orthogonal maps can be broadened to include the rigid maps problems. The prescribed

Jacobian equation can be extended to include a transformation map of the form u :Ω⊂R3 →
R3. This will allow us to tackle problems in optimal transportation in 3 dimensional setting.

The parabolic and elliptic Monge-Ampère equation can also be extended to solve not only

applications in optimal transport, but also financial ones. Last, the derived error estimates and

the adaptive algorithms that are essentially designed for orthogonal maps and Monge-Ampère

equation can be improved and extended to include other fully nonlinear equations such as

Eikonal and Pucci equations.
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