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Abstract

Organohalides are a class of compounds often considered as persistent pollutants and
harmful to environmental and human health. Some bacteria, among which are representa-
tives from the Firmicutes phylum, are capable of using these compounds as terminal acceptors
in a process called organohalide respiration (OHR). To do so, organohalide-respiring bacteria
(OHRB) are equipped with enzymes called reductive dehalogenases which perform the termi-
nal reduction in the OHR respiratory chain by replacing the halide by a hydrogen. OHR is not
only interesting from a biological point of view but it also represents a powerful process for
bioremediation purposes. The present work focuses on two different fundamental aspects of
OHR which remain poorly understood.

The first part of the work focused on the transcriptional regulation of the reductive dehalo-
genase genes. OHRB can encode up to several dozens of different reductive dehalogenases
in their genome which suggest the use of a broad number of organohalides, but this diver-
sity remains largely unexplored. In Firmicutes OHRB, RdhK are transcriptional regulators
specialised in the activation of reductive dehalogenase genes upon exposure of the cell to
organohalides. Thus, the identification of RdhK binding partners (organohalide effector and
DNA target sites) represents an interesting alternative to identify new OHR substrates while
preventing the tedious and challenging characterisation of the complex membrane-associated
and oxygen-sensitive reductive dehalogenases. Here, a strategy based on RdhK hybrid pro-
teins was designed and optimised, and is proposed to serve to improve the efficiency of RAhK
characterisation. The approach enabled a functional decoupling of the two domains of RdhK
regulators targeting either the effector or the DNA target site. Therefore, it reduces the com-
plexity of the screening procedure in the identification of RdhK binding partners. Further
implementation of the hybrid strategy will increase the global comprehension of Firmicutes
OHR regulatory networks and ultimately provide an indirect way to explore the reductive
dehalogenase substrate diversity.

The second part of the thesis aimed to increase knowledge in the energy metabolism of
Firmicutes OHRB. Quantitative comparative proteomics was applied to Desulfitobacterium
hafniense strain DCB-2, which revealed the proteome adaptations to the growth on different
substrates promoting either fermentation or respiration. In addition, possible roles of the
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complex I-like enzyme was investigated using physiological and biochemical approaches.
Respiratory complex I is the entry point of electrons produced by cytoplasmic metabolic
activity in the respiratory chain and is composed of three modules. Most OHRB express a
version of the complex which lacks the N-module responsible for the electron uptake from
NADH, suggesting the use of alternative electron donors. While a few candidate partners for
the OHR complex I-like enzyme were proposed based on proteomics results, the study of the
physiological role of the enzyme helped in developing different respiratory models for strain
DCB-2, which mainly differ in their dependence on the complex I-like enzyme.

Key words: Organohalide respiration, Desulfitobacterium, reductive dehalogenase, transcrip-
tion regulation, RdhK regulators, hybrid protein design, comparative proteomics, energy
metabolism, complex I, respiratory chain models.



Résumé

Les composés organohalogénés (OH) sont souvent considérés comme polluants persistants
et nocifs pour 'environnement et la santé humaine. Des bactéries, certaines appartenant au
phylum des Firmicutes, peuvent utiliser ces composés comme accepteurs terminaux dans
le processus de respiration des composés OH (ROH). Ces bactéries (abrégées BROH) pos-
sedent des enzymes appelées déshalogénases réductrices (RdhA, en anglais) qui catalysent
la réduction de I'’halogénure et son remplacement par un atome d’hydrogene. La ROH n’est
pas seulement intéressant d'un point de vue biologique, mais aussi a des fins de bioremédia-
tion. Cette these aborde deux aspects fondamentaux de la ROH qui restent encore mal compris.

La premiere partie porte sur la régulation transcriptionnelle des genes rdh. Les BROH con-
tiennent plusieurs dizaines de RdhA dans leur génome, suggérant I'utilisation d’'un grand
nombre de composés OH, une diversité qui est encore méconnue. Chez les BROH parmi les
Firmicutes, les protéines RdhK sont des régulateurs qui activent la transcription des génes rdh
en présence de composés OH. Ainsi, I'identification des partenaires des RdhK (le composé OH
qui agit en tant qu’effecteur et les sites de liaison sur ’ADN) est une alternative intéressante
pour découvrir des nouveaux substrats de la ROH, tout en évitant la caractérisation fastidieuse
des enzymes RdhA (associées aux membranes et sensibles a 1'oxygéne). Une stratégie basée
sur des RdhK hybrides a été concue et optimisée pour accroitre I'efficacité du processus de
caractérisation des RdhK. L'approche permet de découpler les deux domaines fonctionnels
des régulateurs qui ciblent I’effecteur ou I’ADN, et de faciliter I'identification des partenaires
de liaison des RdhK. L'application de la stratégie d’hybrides permet une compréhension glo-
bale des réseaux de régulation chez les BROH et représente un moyen indirect d’explorer la
diversité des substrats des enzymes RdhA.

La deuxiéme partie de la thése s’intéresse au métabolisme énergétique des BROH parmi les
Firmicutes. La souche DCB-2 de Desulfitobacterium hafniense a été soumise a une méthode
de protéomique comparative et quantitative qui a révélé les adaptations du protéome de cette
bactérie lorsqu’elle est cultivée sur différents substrats favorisant soit la fermentation soit la
respiration. De plus, I'enzyme homologue au complexe I a été étudiée a I'aide d’approches phy-
siologiques et biochimiques. Le complexe I respiratoire est composé de trois modules et sert
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de point d’entrée dans la chaine respiratoire aux électrons produits par I'activité métabolique
du cytoplasme. La plupart des BROH expriment une version du complexe auquel manque le
module N, qui recoit les électrons du NADH, ce qui suggere I'utilisation d’autres donneurs
d’électrons. A partir des données protéomiques, des candidats de donneur d’électrons pour le
complexe ont été identifiés. De plus, différents modéles respiratoires pour la souche DCB-2,
qui different principalement par leur dépendance a '’homologue du complexe I, sont proposés
grace a plusieurs expériences testant le role physiologique de ’enzyme.

Mots clefs : respiration des composés organohalogénés, Desulfitobacterium, déshalogénase
réductrice, régulation de la transcription, régulateurs RdhK, conception de protéines hy-
brides, protéomique comparative, métabolisme énergétique, complexe I, modeles de chaines
respiratoires.
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1§ General Introduction

1.1 Organohalides and the environment

Organohalides are organic compounds with at least one covalently bound halogen atom which
are extensively used in chemical industry and manufacture for different purposes like the syn-
thesis of different types of biocides or as degreasing agents, among others. Many of them are
considered as persistent organic pollutants (POPs) and as major threats for environmental and
human health. As examples, some chlorophenols or aliphatic molecules like tetrachloroethene
(perchloroethylene, PCE) are recognised as potential carcinogenic compounds with associated
genotoxicity and mutagenicity effects on human and/or animals [1, 2].

Organohalide occurrence in nature was for long believed to be mostly the result of anthro-
pogenic activities. Although most of polluted sites clearly appeared after improper industrial
disposals, organohalides are also naturally present in the environment. Indeed, several biotic
and abiotic processes are known as being natural sources of organohalides in both marine
and terrestrial environments [3]. Moreover, organohalides were shown to play an important
role in the natural cycles of halogens [4]. Microorganisms exposition to organohalides is thus
dated way before the industrial development era which is at the origin of major polluted
sites. The discovery of organisms that have adapted to either use those compounds in co-
metabolic processes or use them to sustain growth either as carbon and energy source or
as terminal electron acceptor is the witness of this long-term exposition [5]. The so-called
organohalide-respiring bacteria (OHRB) are particularly interesting as they define a subgroup
of bacteria capable of using organohalides as terminal electron acceptor in their respiratory
chain while conserving energy [6, 7]. This type of organisms, in the centre of the present
work, are studied for their potential application in the bioremediation of polluted sites as their
metabolic activity eventually leads to the transformation of organohalides to halogen-free
organics (most of the time much less or no more toxic). The environmental distribution of
OHRB is not restricted to polluted sites (from where most of them where isolated) as different
species where also successively identified in pristine environments (for more detailed review,
see [4, 5]). Moreover, organohalide respiration (OHR) represents a fascinating and yet poorly
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understood energy metabolism.

1.2 Organohalide respiration and organohalide-respiring bacteria

The discovery of organisms using organohalides in their metabolism started in the 1960’s
[8]. More than 20 years passed before the first evidences of a process coupling reductive
dehalogenation and energy conservation was published [9-12]. More recently, the term
"organohalide respiration" (OHR) was proposed to universally define this bacterial process
which was by the time also sometimes named halorespiration or dehalorespiration [7, 8,
13]. Today, the number of strains considered as organohalide-respiring bacteria (OHRB) (i.e.
capable of OHR) is substantial and they include a few bacterial genera from three major
phyla: Chloroflexi, Firmicutes and Proteobacteria (gamma-,delta- and epsilon-) [5]. On top
of their phylogenetic affiliation, another level of classification is often employed to define
an OHRB. Indeed, a given organism can be obligate or facultative OHRB, by reference to its
ability to perform alternative energy metabolisms. As an example, Dehalobacter spp. and
Desulfitobacterium spp. are both part of the Firmicutes phylum. However, while the first
one is restricted to the use of molecular hydrogen as electron donor and organohalides as
electron acceptors, the latter can use sulfite (as indicated by its name) but also fumarate,
nitrate and more as electron acceptors while using hydrogen, lactate, formate or others as
electron source (for a detailed reviews of each species, see [14] and [15], respectively). Figure
1.1 present a phylogenetic tree of OHRB where the major species of each phylum is displayed
with an indication of whether a specific species is part of the obligate or the facultative OHRB.
As shown in this figure, Firmicutes, which are at the centre of this present thesis, is the only
phylum with representatives displaying both obligate and facultative OHR metabolism. This
feature makes Firmicutes OHRB particularly interesting to investigate the major differences
between these two metabolic strategies. OHRB from the others phyla are either in the obligate
OHRB (Chloroflexi) or the facultative category (Proteobacteria).

Among Firmicutes, one strain of Desulfitobacterium hafniense, strain DCB-2, was particularly
studied during this thesis. The metabolic versatility of Desulfitobacterium spp. enables the ap-
plication of experimental strategies that are not possible with Dehalobacter spp. For example,
the variation of the cultivation conditions can lead to the identification of substrate-specific
adaptations. Strain DCB-2 was the first member of its genus to be isolated and was obtained
from a stable trichlorophenol-dechlorinating consortium selected from municipal sludge
[16]. Since 3-chloro-4-hydroxyphenylacetic acid (CIOHPA) was shown to be an organohalide
substrate for D. dehalogenans [17], CIOHPA, a highly soluble organohalide in comparison to
chlorinated phenols, was used as a model compound to cultivate other Desulfitobacterium
spp., among which strain DCB-2 [18]. Today, strain DCB-2 represents the most studied strain
among Desulfitobacterium spp. on many aspects that are relevant for the present work.
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Figure 1.1 — Phylogenetic tree of organohalide-respiring bacteria. Adapted from [5].

The minimal gene set that defines putative OHRB is an operon constituted by one reductive
dehalogenase homologous (rdhA) gene usually accompanied by the rdhB gene, both encoding
the key catalytic enzyme in OHR (reductive dehalogenase, RdhA) and its putative membrane
anchor (RdhB), respectively [7, 19, 20]. However, the presence of such an operon in the genome
of an organism does not per se constitute the ultimate proof of a capacity to sustain growth
by using organohalides as electron acceptors. Similarly, not every reductive dehalogenase
(catalytic subunit) (RdhA) is necessarily involved in a respiration process (this will be further
introduced in a later stage of the thesis). The physiological approach remains the most reliable
way to identified a true OHRB.

1.3 Diversity of reductive dehalogenases

Not all OHRB have the same dehalogenation potential. One single OHRB can contain up to 36
rdhA copies [21]; a number that is generally higher in the obligate OHRB which reflect their
dedication to this peculiar metabolic process. The scope of dehalogenation by one organism
is determined by the number but also the nature of reductive dehalogenase enzymes (RDases)
encoded in its genome. The reductive dehalogenation of PCE (see Figure 1.2, upper panel) is a
good example to illustrate this concept. In this reduction reaction, the four chlorine atoms are
sequentially removed from the organic backbone and replaced by a hydrogen. As indicated in
the figure, some bacterial strains can perform the complete dechlorination of PCE, while the
others are limited to one or more steps [22].
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Figure 1.2 — Sequential reductive dechlorination of PCE to ethene by organohalide-respiring
bacteria. The reactions is displayed at the top of the figure. The strains able to perform part or
the complete reduction of PCE to ethene are indicated at the bottom (dash arrows indicate
co-metabolic transformation). Figure from [22]

When the substrate for a given reductive dehalogenase enzyme (RDase) has been clearly
identified, the general acronym "reductive dehalogenase homologous (Rdh)" is often replaced
by one referring to the identified substrate (ex: pceA encodes for the catalytic subunit of
the reductive dehalogenase dedicated to PCE). Despite the vast diversity of reductive de-
halogenase genes recognised today [6, 19, 23], the number of biochemically characterised
enzymes remains very limited. The sensitivity of RdhA to oxygen and the nature of the OHRB
themselves (slow growing, strict anaerobes, genetically intractable) as well as the lack of
sequence-substrate relationships are continuous challenges that have certainly contributed
to slow down the progress in the OHR research topic [7]. For example, the structure of only
one respiratory RdhA catalytic enzyme has been obtained so far [24].

Nevertheless, some common features obtained from sequence analysis and biochemical
studies were established to define RdhA enzymes. First, RdhA enzymes are characterised by
an N-terminal signal peptide for the Twin-arginine translocation (Tat) system. This latter
transports RdhA enzymes in their already folded state across the cytoplasmic membrane
[25]. Second, their active site is equipped by two types of redox cofactors: two iron-sulfur
(FeS) centres and one cobamide cofactor, as shown in the crystal structure of S. multivorans
PceA [24]. Third, as already mentioned, rdhA genes are usually co-transcribed (i.e. form an
operon) with rdhB [20], a small protein displaying generally three trans-membrane helices
and proposed to be the membrane anchor of RdhA (Note: recently, example of "orphan" RdhA

4
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were reported [26, 27]). Finally, rdhA and rdhB are often part of larger gene clusters together
with OHR-related accessory genes (so-called rdh gene clusters), which are found in restricted
area of the genome [7, 21, 28, 29].

1.4 Composition and organisation of rdh gene clusters

The numerous rdh gene clusters present in the genomes of OHRB harbour different gene
composition and organisation; a diversity that has been reviewed in the past (for recent work,
see [7, 30]. In Figure 1.3 is displayed a selection of representative rdh gene clusters coming
from different OHRB strains.

(1
2
3)
4)
)
(6)
(7
®)

FIFo4888
28325888
[£888988

3
:

Figure 1.3 — Representatives reductive dehalogenase rdh gene clusters. Besides the minimal
rdh gene cluster (1), the composition and organisation of rdh gene clusters vary significantly
within and across OHRB phylogenetic groups. Examples for rdh gene clusters: (2) vcrABC
of Dehalococcoides mccartyi strain VS [31]; (3) pceABCT of Dehalobacter restrictus [32]; (4)
pceAB of D. mccartyi strain 195 [33]; (5) rdh cluster 1 of Desulfitobacterium hafniense strain
DCB-2 [34]; (6) cbdbA1452-6 of D. mccartyi strain CBDB1 [35]; (7) pce gene cluster of Geobacter
lovleyi SZ. [36]; (8) cpr gene cluster of D. dehalogenans [371; (9) pce gene cluster of Sulfurospir-
illum multivorans [38]. The annotation of individual rdh genes follows the one proposed by
Kruse et al. [39]. The (predicted) function of rdh genes is the following: (A) catalytic subunit;
(B) membrane anchor for the catalytic subunit; (C) membrane-bound electron-transferring
flavoprotein; (D) and (E) GroEL-type molecular chaperone; (K) CRP/FNR-type transcriptional
regulator; (M) and (N) NapGH-like quinol dehydrogenase; (O) membrane-bound methyl-
accepting chemotaxis sensor; (P) DNA-binding response regulator of a two-component sys-
tem; (R) MarR-type transcriptional regulator; (S) histidine-kinase sensor of a two-component
system; (T) trigger factor-like molecular chaperone; (Z) molecular chaperone. Taken from [7].

As shown in the figure, rdhAB gene clusters are often surrounded by a various number of
accessory genes. A description of their associated function can be found in [30]. The rdh
cluster dedicated to the ortho-substituted chlorophenols of Desulfitrobacterium dehalogenans

5
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strain JW/IU-DCI1 constitutes a relevant example in the context of this thesis. It is composed
by a total of eight genes forming the chlorophenol respiration (cpr)TKZEBACD gene cluster
[37], which is conserved in other Desulfitobacterium strains [40]. Thus, beside the minimal set
of reductive dehalogenase proteins (RdhA and B), this cluster encodes for proteins for which
the predicted function is described below.

Briefly, RAhC proteins form a family of membrane-bound flavoproteins which show sequence
similarities with the regulatory proteins NosR/Nirl [37]. Despite this latter property and given
the presence of a flavin mononucleotide (FMN)-binding domain, RdhC has recently been
proposed as an electron-transferring protein to RdhA [41]. The RdhD and RdhE proteins have
sequence similarities to GroEL-type molecular chaperones and were thus suggested to play a
role in the maturation of the complex redox RdhA enzymes [30, 37]. RdhK proteins are defined
as a subfamily of transcriptional regulators from the CRP/FNR superfamily [7, 42]. A whole
section of this thesis is devoted to the transcriptional regulation in OHR with a particular
focus on RdhK regulators and therefore will not be further discussed here (see Chapters 2 to 4).
Finally, RAdhT and RdhZ are both proposed to be active in the maturation of RdhA enzymes.
RdhT proteins are described as trigger factor-like proteins that are binding to the Tat signal
peptide of RdhA in order to delay its translocation across the membrane until the protein is
properly folded [25, 43]. RdhZ is, for its part, not characterised, but was proposed to be a
molecular chaperone based on the crystal structure of a homologous protein [30].

The multiplicity of rdh gene clusters in single OHRB are probably the result of a combination
of adaptations to new substrates, horizontal gene acquisitions and duplication events [23,
44], maybe sometimes facilitated by the high plasticity of the genome region they occupy
[21]. Despite the relatively large functional diversity of the proteins encoded in rdh gene
clusters, only a few of them were proposed to be actively involved in the OHR electron transfer
process. In fact, the biochemical characterisation of the global bacterial process remains
poorly understood. The next section summarises the important findings and hypotheses
published so far.

1.5 Energymetabolism of OHRB: physiological and biochemical con-
siderations

Based on different genomic and proteomic studies available in the OHR field, the compo-
sition and the organisation of the OHR respiratory chain is believed to be variable between
different bacterial genera which gave rise to several models [45, 46]. Although none of them
is completely satisfying as they still contain a relatively high level of uncertainty, two main
types of theoretical electron transport models can be distinguished: quinone-dependent and
quinone-independent [45, 47, 48]. The latter is proposed for the Chloroflexi phylum and is first
based on the fact that the genomes of organisms part of this phyla generally lack the quinone
synthesis pathway and yet some were shown to grow in OHR conditions in quinone-depleted
medium [49]. In addition, work performed with quinone analogues and/or antagonists on
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different strains of Dehalococcoides mccartyi strongly supports this assumption (see detailed
review in [50]. The current model for quinone-independent electron transport in D. mccartyi
involves a supercomplex composed by the uptake hydrogenase (Hup), the RDase (RdhAB) and
a member of the complex iron-sulfur molybdoenzyme (CISM) family [51, 52] (see Figure 1.4).
This proposition was made after the results of recent biochemical cross-linking experiments
and bolstered by the available proteomic data (for relevant reviews, see [45, 46, 50]).

N R-X +2 H*

R-H+ H*X

v

out

™

Ho

Figure 1.4 - Model of quinone-independent organohalide respiration in D. mccartyi. Adapted
from [52].

Contrasting with the data obtained for some Chloroflexi OHRB representatives, the involve-
ment of quinones as electron shuttle in the OHR respiratory metabolism was revealed in
the earliest year by showing the inhibition of OHR by addition of quinone antagonists in
Dehalobacter restrictus [12], Desulfomonile tiedjei [53] and Sulfurospirillum multivorans [45].
Furthermore, in D. restrictus, PCE dechlorination was shown to be induced after addition of
quinone analogues and the quinone reduction was observed during electron transfer by spec-
trophotometry analysis [12]. As in other anaerobic respiratory metabolisms, menaquinones
are most likely to be involved [54]. Indeed, this is supported by the presence of different types
of menaquinones in D. restrictus [55] and S. multivorans [56]. Additionally, the identification
of complete menaquinone synthesis pathways in several OHRB genomes, which, on the other
hand, often lack the ubiquinone synthesis pathway, highly suggests that way [29, 34, 57].
The consensus model for quinone-dependent OHR electron transport chain thus show the
electron donor machinery (which may vary depending on the nature of the electron donor in

7
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use) linked to the terminal reductase by the menaquinone intermediate. As an example, in the
model proposed for PCE respiration by Dehalobacter restrictus, displayed in Figure 1.5, the
electrons are taken up from molecular hydrogen by the membrane bound Hup hydrogenase
and serve to reduce the quinone to quinol. The quinol pool is shuttling the electrons further
to the reductive dehalogenase which perform the terminal reduction of PCE [14].

theoretical H*/e"= 1.5

(measured for D. restrictus: 1.25+0.2)

% PCE % 1,2-cis-DCE + CI

H, 2H*

2H*

Figure 1.5 — Model of PCE reductive dechlorination by Dehalobacter restrictus. Example of
quinone-dependent OHR electron transport in which meanaquinone shuttle electron from
the hydrogenase to the reductive dehalogenase. Figure from [14]

However, this model is challenged by a thermodynamic issue which has not been resolved so
far. Indeed, the redox potential of the RDase corrinoid cofactor was measured for a few strains
and the consensus value is situated around -370 mV [58-60]. In addition, the FeS clusters of
D. restrictus were shown to be even lower in potential (-480 mV). Yet a direct transfer from
menaquinol (-74 mV) [54] to the RDase redox cofactors is difficult to explain. Reverse electron
flow, a mechanism which uses the proton motive force to lower the potential of electrons, was
proposed to solve this problem [61]. More recently, with the discovery of electron bifurcation
[62, 63] the involvement of additional redox players, like the FMN-binding protein PceC, was
proposed [41].

Another surprising feature of OHR is the low growth yield achieved by OHRB in relation to
the amount of free energy available. The relatively high redox potential of organohalides
makes them very good electron acceptors [64]. The evidence for the establishment of a
proton motive force (pmf) coupled to the RDase activity (i.e. to organohalide reduction) was
obtained for a limited number of strains [11, 12, 65]. When the electrons are transferred
from molecular hydrogen, the amount of energy from each electron transport is theoretically
sufficient to translocate a minimum of three protons across the membrane [45, 54]. Yet,

8
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from the above mentioned early studies, a relatively poor H*/e™ ratio of 1 to 1.5 protons
translocated per electron transferred was established. Taking the proposed model for PCE
reductive dechlorination in Dehalobacter restrictus [14] (see Figure 1.5), such a ratio would
correspond to one mole of adenosine triphosphate (ATP) produced per mole of released
chloride, which fits with the published growth yields [14]. All this indicates that the OHR
metabolism is under some constraints which prevents the whole available energy to be used
for bacterial growth [45].

Except for the proton translocation that is likely coming from the quinone redox loop [48,
54], no actual active proton-pumping complex are known to take place in OHR metabolism.
Anaerobic respiratory chains are known to be usually shorter than in aerobic respiration,
conserving a lower amount of energy [54]. Then, OHR might represent a really good example
to illustrate this phenomenon. Nevertheless, based on genomic and/or proteomic data, some
potential redox intermediates have been proposed. As already mentioned, PceC was proposed
to be delivering the electrons to the RDase through its FMN cofactor [41]. Similarly, a putative
quinol dehydrogenase homologous to NapGH has been proposed as the missing link in S.
multivorans [66]. Another example are the homologues of respiratory complex I which are
found in most OHRB genomes (variable cluster compositions do exist, see details in Chapter
5) and detected in the proteome of cells cultivated in OHR conditions [33, 57, 66-68]. In
aerobic respiration, complex I couples the transfer of electrons from nicotinamide adenine
dinucleotide (reduced form) (NADH) to the quinone pool along with proton translocation
[69]. The potential involvement of such proton-pumping machinery in OHR is at the centre of
the second part of this thesis. Therefore, it will be further introduced and explored in Part II
(Chapters 5 and 7).
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1.6 Thesis objectives and outline

The objectives of this thesis concerned two main aspects of OHR in Firmicutes. Although
some connections between the two aspects exist, it was decided to treat them separately and
the thesis is thus divided in two main parts (Note: Chapters 1 and 8 correspond to the general
introduction and to concluding remarks and perspectives, respectively, and are not listed
here).

PartI: Transcription regulation of organohalide respiration in Firmicutes. The objective
of this part was to develop a tool in order to use the transcriptional regulators RdhK as
indirect way to explore the diversity of rdh gene clusters in Firmicutes and ultimately their
dehalogenation potential. Indeed, the limited number of characterised clusters mainly come
from the very nature of the OHRB. As strict anaerobes, slow growing and genetically intractable
organisms, many biochemical approaches are challenging. RdhK represent an interesting
alternative as they usually are activated upon binding to an organohalide compound and
positively regulate the transcription of the genes involved in the respiration of this same
compound through promoter binding. Thus, the goal was to develop a tool to efficiently
screen the binding partners of yet uncharacterised RdhK regulators. Part I is divided in three
chapters:

Chapter 2 presents a literature review to introduce the OHR transcriptional regulation with a
special emphasis on RdhK proteins. The content of this chapter was published in an extended
form in 2019 [7].

In Chapter 3, a proof of concept of the RdhK hybrid proteins strategy is described, an approach
which enables a more efficient characterisation of new RdhK proteins by the decoupling of
the two domains of the regulators. The binding properties of two different versions of the
RdhK hybrid composed by parts from two characterised RdhK proteins from strain DCB-2
(RdhK6 and RdhK1) were compared in order to define which design better serves the goal of
this approach. The work presented in this chapter was published in 2020 [70].

In Chapter 4, different applications of the RdhK hybrid strategy are proposed. At first, the
aim was to apply the RdhK hybrid strategy to the characterisation of new RdhK proteins from
D. restrictus. Secondly, preliminary data on the adaptation of a genome-wide DNA-binding
sites screening methodology for the RdhK hybrid system is presented in order to provide an
efficient screening solution. Preliminary data obtained for both parts are discussed.

10
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Part II: Energy metabolism and complex I-like enzymes in organohalide-respiring Firmi-
cutes. The initial objective of the second part of the thesis was to further understand the OHR
metabolic pathway with the characterisation of new players in the respiratory chain. Indeed,
as presented in the general introduction (Chapter 1), the exact enzyme composition of the
respiratory chain of Firmicutes OHRB remains elusive and the models available today fail to
conciliate important thermodynamic aspects. In that context, a comparative proteomic study
was conducted on D. hafniense strain DCB-2 in different growth conditions. As a facultative
OHRB, the use of D. hafniense strain DCB-2 as model organism allowed to identify proteome
adaptations specific to different types of energy metabolism, including OHR. This proteomic
analysis gave access to a large dataset which was exploited to help a better understanding of
the global metabolism of D. hafniense as well as to answer specific research questions such as
the involvement of yet unconsidered enzymatic players in the different respiratory chains. In
particular, the role of an 11-subunits complex-I like enzyme was investigated in strain DCB-2.
This enzyme is expressed by most OHRB and the presence of such an important enzyme was
often reported although its direct implication was never investigated. Part II is composed of
three chapters:

Chapter 5 presents a literature review to introduce the physiology and the metabolism of
Firmicutes OHRB as well as a detailed introduction to respiratory complex I and complex
I-like enzymes in OHRB.

In Chapter 6 the results of the quantitative proteomic study performed on D. hafniense strain
DCB-2 cultivated in six different growth conditions are presented. The growth conditions
were chosen in order to highlight the proteome adaptations to different electron donors and
acceptors through the comparison of cross-over electron donors/acceptors combinations.
The results presented in this chapter form the basis for a manuscript in preparation.

Finally, Chapter 7 presents the physiological and tentative biochemical characterisation of
the complex I-like enzyme from strain DCB-2. A physiological approach was applied following
the same different growth conditions as applied in Chapter 6 in order to reveal which specific
energy metabolism relies on the activity of the complex I-like enzyme. Hypotheses formulated
based on the physiological approach are being supported by the use of the proteomic dataset
from Chapter 6. The data presented in Chapter 7 lay the foundation for a manuscript in
preparation which specifically addresses the question of the role of complex I-like enzymes in
the metabolism of OHRB.
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4 A review of transcription regulation in
organohalide respiration

This chapter corresponds to a modified version of the following publication :

Maillard J. and Willemin M. S.!, "Regulation of organohalide respiration", Advances in Micro-
bial Physiology, 2019, 74, 191-238 [7]

2.1 Introduction

The study of regulatory mechanisms can be approached differently ranging from global
proteomic and/or transcriptomic analysis in response to the presence of a given compound
to the molecular characterisation of a specific regulatory protein. Each technique has its
pros and cons and a combination of global and targeted approaches remains necessary for
a complete understanding. Following the first mention of gene transcription regulation in
the context of OHR research [37], many studies have been focusing on the cellular level
of expression of rdhA genes after exposure to organohalide molecules using both targeted
and broader methods (note that most of them were carried out in either Dehalococcoides or
Desulfitobacterium, for more details, see [7]). These different studies have revealed that the
transcription patterns of rdhA genes follow two general trends. In Desulfitobacterium spp. the
transcription of individual rdhA genes were shown generally to respond strongly to specific
organohalides [34, 37, 71-73] (note that some examples of non-regulated rdhA were reported
in Desulfitobacterium spp., which were explained by the presence of an insertion sequence
harbouring a strong promoter directly upstream of the rdhA genes [32, 74]), while in Chloroflexi
(Dehalococcoides and Dehalogenimonas spp.), studies based on the presence/absence of
transcripts highlighted seemingly unregulated steady transcription patterns for most of rdhA
genes, independently of the organohalides tested [75-77]. Indeed, exposing D. mccartyi strain
CBDBI to different trichlorobenzenes or chlorinated dioxins revealed the transcription of
most of (if not all) 32 rdhA genes present in that strain [76, 77]. Similarly, 19 out of 24 rdhA
genes were detected on mRNA level in another obligate OHRB, D. restrictus strain PER-K23,
growing on tetrachloroethene [57]. This general trend suggested that obligate OHRB, which
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strictly depends on the presence of organohalides for growth, developed a strategy of low and
steady transcription level for many different rdhA genes in order to be ready upon exposure to
any new organohalide substrate.

Overall, studies of OHR regulation highlighted the existence of various regulatory strategies
depending on the type of OHRB. This can be partially explained by the fact that, depending on
the organism, different types of regulators are involved in the OHR regulatory networks. The
next sections aims to give an exhaustive overview of the different OHR regulation strategies.

2.2 Transcriptional regulators involved in organohalide respiration

Obligate OHRB encode up to three dozens of rdh gene clusters, suggesting that there is a need
for an efficient regulatory system. Indeed, inducing gene expression of a particular cluster only
when the corresponding substrate is available represents an important advantage in order
to avoid producing unnecessary proteins and therefore to save energy. Likewise, facultative
OHRB may use alternative metabolic pathways in absence of halogenated compounds or
may repress rdh gene clusters in presence of more favourable electron acceptors. To do
so, three main types of regulatory proteins have emerged in distinct OHRB phyla, and their
distribution is not related to their energetic lifestyle. CRP/FNR-like regulators were found in
the close vicinity of many rdh gene clusters of OHRB Firmicutes (i.e. Dehalobacter spp. and
Desulfitobacterium spp.). In contrast, epsilon-Proteobacteria represented by Sulfurospirillum
spp. seem to harbour regulators belonging to the family of two-component system (TCS).
Finally, OHRB members of the Chloroflexi (Dehalococcoides spp. and Dehalogenimonas spp.)
display a combination of TCS and MarR-type regulators. Even though our knowledge is limited
only to a few studied regulators, experimental evidence has been obtained for the implication
of MarR-type and CRP/FNR-type regulators. This section offers a survey of transcriptional
regulators involved in OHR and addresses their mechanism of action.

Investigating the function of transcriptional regulators makes use of complementary tech-
niques, the combinations of which have been applied to understand OHR regulation at the
molecular level. While the use of in vitro analyses such as electrophoretic mobility shift
assay (EMSA), isothermal titration calorimetry (ITC) or electrospray ionisation mass spec-
trometry (ESI-MS) gives valuable information on the affinity of regulators for their effector
and deoxyribonucleic acid (DNA) partners, the production and purification of the regulatory
proteins are a prerequisite and represent major bottlenecks in their characterisation. Alter-
natively, in vivo reporter assays were developed in E. coli to study OHR regulatory proteins
offering the opportunity to screen more easily for possible binding partners. The nature of the
different experimental approaches, however, requires a careful comparison and interpretation
of the data obtained.
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2.2.1 Two-component systems

Regulators of the two-component system (TCS) family are highly abundant in signalling
pathways. They rely on the transfer of one phosphoryl group between two distinct proteins.
The prototypical TCS is composed by a sensory histidine kinase (HK) component capable
of auto-phosphorylation on a conserved histidine residue. The phosphoryl group is then
transferred to a conserved asparagine residue on the response regulator (RR) component.
The latter event will drive conformational change in the RR protein to activate the output
response (for details on the mechanism, see [78]). HK components are sensing a large variety
of signals (including small molecules and physico-chemical signals) via its sensor domain
[79]. It was recently reported that a majority of HK proteins are membrane-associated which
allow the systems to sense extracellular signals [78]. The signals can either induce or repress
HK kinase activity and therefore control the level of RR phosphorylation via its kinase and
phosphatase activities. The RR proteins are equipped with an effector domain in order to
translate the stimuli into a response. The majority of RR components have a DNA-binding
domain and thus act as transcriptional regulators (either as activator or repressor, or both).
Since the targeted DNA sequences show only low conserved sequence motifs, experimental
evidence is necessary for their identification [79].

Two-component systems in organohalide respiration

Until very recently, no experimental evidence was available showing the implication of TCS
in rdh gene regulation. Only one TCS had been associated with the transcription activa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>