
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Efficient Parsing with Derivatives and Zippers

Romain EDELMANN

Thèse n° 7357

2021

Présentée le 9 juillet 2021

Prof. C. Koch, président du jury
Prof. V. Kuncak, directeur de thèse
Prof. F. Pottier, rapporteur
Prof. M. Might, rapporteur
Prof. M. Odersky, rapporteur

Faculté informatique et communications
Laboratoire d’analyse et de raisonnement automatisés
Programme doctoral en informatique et communications 





Correspondances

La Nature est un temple où de vivants piliers

Laissent parfois sortir de confuses paroles;

L’homme y passe à travers des forêts de symboles

Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent

Dans une ténébreuse et profonde unité,

Vaste comme la nuit et comme la clarté,

Les parfums, les couleurs et les sons se répondent.

II est des parfums frais comme des chairs d’enfants,

Doux comme les hautbois, verts comme les prairies,

— Et d’autres, corrompus, riches et triomphants,

Ayant l’expansion des choses infinies,

Comme l’ambre, le musc, le benjoin et l’encens,

Qui chantent les transports de l’esprit et des sens.

Charles Baudelaire, Les Fleurs du mal





Correspondences

Nature is a temple in which living pillars

Sometimes give voice to confused words;

Man passes there through forests of symbols

Which look at him with understanding eyes.

Like prolonged echoes mingling in the distance

In a deep and tenebrous unity,

Vast as the dark of night and as the light of day,

Perfumes, sounds, and colors correspond.

There are perfumes as cool as the flesh of children,

Sweet as oboes, green as meadows

— And others are corrupt, and rich, triumphant,

With power to expand into infinity,

Like amber and incense, musk, benzoin,

That sing the ecstasy of the soul and senses.

Charles Baudelaire, Les Fleurs du mal

English translation by William Aggeler





Acknowledgements
First of all, I want to thank my advisor, Viktor Kunčak, for his ever-excellent advice, commu-

nicative energy, and most of all, for his trust in me and my research. This thesis would not have

been possible if not for the unparalleled freedom and trust Viktor awarded me throughout

these past years. I also want to thank the members of my thesis committee, Christoph Koch,

Martin Odersky, François Pottier, and Matthew Might, for their time and input on the present

thesis.

I thank my past and present fellow LARA researchers Jad Hamza, Nicolas Voirol, Georg Schmid,

Dragana Milovancevic, Rodrigo Raya, Simon Guilloud, Romain Ruetschi, Manos Koukoutos,

Régis Blanc, Ravichandhran Kandhadai Madhavan, Etienne Kneuss, Mikaël Mayer, Marco

Antognini, Sarah Sallinger, Nataliia Stulova, and Andreas Pavlogiannis for the insightful discus-

sions we had and the many laughs we shared. I am particularly grateful to Jad Hamza, who had

the patience and trust to work with me on some the large formalisation efforts mentioned in

this thesis. I also thank Jad for his insightful review of this thesis. I want to thank Sylvie Buchard

and Fabien Salvi for the administrative, technical and otherwise general support they have

offered me throughout the years. I also want to extend my thanks the people and friends in

other labs I have had the chance to be in contact with as part of my PhD, most notably Joachim

Hugonot, Ariane Staudenmann, Nicolas Stucki, Fengyun Liu, Olivier Blanvillain, Guillaume

Martres, Natascha Fontana, Sébastien Doeraene, Darja Jovanovic and Julien Richard-Foy. I

also thank Simon Bliudze and Joseph Sifakis for starting me on the path to research.

I would also like to thank my friends for their unfailing support during my time at EPFL. The

many gaming sessions, philosophical discussions, and joyful events we shared over the years

have allowed me to stay relatively sane!

I thank my parents, my sister, my sisters and brothers in law, and my parents in law, as well as

all other members of my family, for their unconditional love and support throughout my years

at EPFL. I consider myself lucky to have been given such a caring and nurturing environment.

In the time that it took to complete my PhD, I have have had the great honour of becoming an

uncle to Isaac, Séphora, Daphné, and Clément, and the even greater joy to become a father

to Margot. Ever since she came into my life on 18th May 2020, Margot has been a source of

immeasurable joy and pride.

Finally, I would like to thank my wife, Naomi, for all the sacrifices she made so that I could

complete this thesis. Naomi provides the immovable foundation upon which I build my life.

For that and countless other reasons, I thank you. I dedicate this thesis to you.

i





Abstract
Parsing is the process that enables a computer system to make sense of raw data. Parsing

is common to almost all computer systems: It is involved every time sequential data is read

and elaborated into structured data. The theory of parsing usually focuses on the binary

recognition aspect of parsing and eschews this essential data-elaboration aspect. In this

thesis, I present a declarative framework for value-aware parsing that explicitly integrates data

elaboration.

Within the framework of the thesis, I present parsing algorithms that are based on the concept

of Brzozowski’s derivatives. Derivative-based parsing algorithms present several advantages:

they are elegant, amenable to formal reasoning, and easy to implement. Unfortunately, the

performance of these algorithms in practice is often not competitive with other approaches.

In this thesis, I show a general technique inspired by Huet’s Zipper to greatly enhance the

performance of derivative-based algorithms, and I do so without compromising their elegance,

amenability to formal reasoning, or ease of implementation.

First, I present a technique for building efficient tokenisers that is based on Brzozowski’s deriva-

tives and Huet’s zipper and that does not require the usual burdensome explicit conversion

to automata. I prove the technique is correct in Coq and present SILEX, a Scala lexing library

based on the technique. I demonstrate that the approach is competitive with state-of-the-art

solutions.

Then, I present a characterisation of LL(1) languages based on the concept of should-not-

follow sets. I present an algorithm for parsing LL(1) languages with derivatives and zippers.

I show a formal proof of the algorithm’s correctness and prove its worst-case linear-time

complexity. I show how the LL(1) parsing with derivatives and zippers algorithm corresponds

to the traditional LL(1) parsing algorithm.

I then present SCALL1ON, a Scala parsing combinators library for LL(1) languages that incor-

porates the LL(1) parsing with derivatives and zippers algorithm. I present an expressive and

familiar combinator-based interface for describing LL(1) languages. I present techniques that

help precisely locate LL(1) conflicts in user code. I discuss several advantages of the parsing

with derivatives approach within the context of a parsing library. I also present SCALL1ON’s

enumeration and pretty-printing features and discuss their implementation. Through a series

of benchmarks, I demonstrate the good performance and practicality of the approach.

Finally, I present how to adapt the LL(1) parsing with derivatives and zippers algorithm to

support arbitrary context-free languages. I show how the adapted algorithm corresponds to

general parsing algorithms, such as Earley’s parsing algorithm.

iii



Abstract

Keywords: Syntactic analysis, lexical analysis, parsing algorithms, formally verified parsing,

context-free expressions, LL(1) expressions, Brzozowski’s derivatives, Huet’s zipper

iv



Résumé
L’analyse syntaxique est le processus qui permet à un système informatique de donner du

sens à des données brutes. L’analyse syntaxique est commune à presque tous les systèmes

informatiques : elle intervient chaque fois que des données séquentielles sont lues et élabo-

rées en données structurées. La théorie de l’analyse syntaxique se concentre généralement

uniquement sur l’aspect de reconnaissance et néglige cet aspect essentiel d’élaboration des

données. Dans cette thèse, je propose un cadre déclaratif pour l’analyse syntaxique qui intègre

explicitement l’élaboration de données structurées.

Dans ce cadre, je présente des algorithmes d’analyse syntaxique qui sont basés sur le concept

des dérivées de Brzozowski. Les algorithmes d’analyse syntactique basés sur les dérivées

présentent plusieurs avantages : ils sont élégants, se prêtent au raisonnement formel et sont

faciles à mettre en œuvre. Malheureusement, la performance en pratique n’est souvent pas

compétitive avec d’autres approches. Dans cette thèse, je montre une technique générale

inspirée du zipper de Huet pour améliorer considérablement les performances des algorithmes

basés sur les dérivées, et ce sans compromettre leur élégance, leur affinité au raisonnement

formel et leur facilité d’implémentation.

Tout d’abord, je présente une technique efficace basée sur les dérivées de Brzozowski et le

zipper de Huet pour construire des analyseurs lexicaux. Cette technique ne nécessite pas

l’habituelle et fastidieuse conversion explicite en automates. Je prouve que la technique est

correcte dans Coq et je présente SILEX, une bibliothèque d’analyse lexicale en Scala basée

sur cette technique. Je démontre que l’approche est compétitive par rapport aux solutions

existantes.

Ensuite, je présente une caractérisation des langages LL(1) basée sur le concept des ensembles

"should-not-follow". Je présente un algorithme d’analyse syntaxique des langages LL(1) basé

sur les dérivées et les zippers. Je montre une preuve formelle de l’exactitude de l’algorithme et

je prouve que sa complexité en temps est au pire linéaire. Je montre comment l’algorithme

d’analyse syntaxique LL(1) avec dérivées et zippers correspond à l’algorithme d’analyse syn-

taxique LL(1) traditionnel.

Je présente ensuite SCALL1ON, une bibliothèque Scala d’analyse syntaxique pour les langages

LL(1) à base de combinateurs. La bibliothèque incorpore l’algorithme d’analyse syntaxique

LL(1) avec dérivées et zippers présenté dans cette thèse. Je présente une interface expressive

et familière basée sur les combinateurs pour décrire les langages LL(1). Je présente des tech-

niques qui aident à localiser précisément les conflits LL(1) dans le code utilisateur. Je discute

de plusieurs avantages de l’approche d’analyse syntaxique avec dérivées dans le contexte

v



Résumé

d’une bibliothèque d’analyse syntaxique. Je présente également les fonctionnalités d’énumé-

ration et de sérialisation de SCALL1ON et je discute de leur mise en œuvre. À travers une série

de benchmarks, je démontre les bonnes performances et l’aspect pratique de l’approche.

Enfin, je présente comment adapter l’algorithme d’analyse syntaxique LL(1) avec dérivées

et zippers pour supporter des langages non-contextuels arbitraires. Je montre comment l’al-

gorithme adapté correspond aux algorithmes généraux d’analyse syntaxique, tels que l’algo-

rithme d’analyse syntaxique de Earley.

Mots clés : Analyse syntaxique, analyse lexicale, algorithmes d’analyse syntaxique, analyse

syntaxique vérifiée formellement, expressions non-contextuelles, expressions LL(1), dérivées

de Brzozowski, zipper de Huet

vi



Contents
Acknowledgements i

Abstract (English/Français) iii

1 Introduction 1

1.1 Writing Parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Writing Pretty Printers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Teaching about Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Formally Reasoning about Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Regular Expressions 11

2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Tree Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Conversion to Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Brzozowski’s Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Interpreter-style Membership Checking . . . . . . . . . . . . . . . . . . . 18

2.5 Huet’s Zipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Revisiting Brzozowski’s Derivatives using Huet’s Zipper . . . . . . . . . . . . . . 23

2.6.1 A Zipper for Regular Expressions Derivatives . . . . . . . . . . . . . . . . . 23

2.6.2 Zipper-based operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.3 Finiteness of Explorable Zippers . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.4 Going Beyond Membership Checking . . . . . . . . . . . . . . . . . . . . . 30

2.6.5 To Automata via Memoization . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.7 Building a Domain-Specific Interface . . . . . . . . . . . . . . . . . . . . . 39

2.6.8 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6.9 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Pumping Lemma on Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Value-Aware Context-Free Expressions 49

vii



Contents

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.1 Values and Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 Tokens and Token Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Context-Free Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 Language of a Context-free Expression . . . . . . . . . . . . . . . . . . . . 56

3.3 Correspondence with Context-free Grammars . . . . . . . . . . . . . . . . . . . . 56

3.3.1 From Grammars to Expressions . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 From Expressions to Grammars . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Canonical Representation of Expressions . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Comparing Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Equivalence-Preserving Transformations . . . . . . . . . . . . . . . . . . . 61

3.6.3 Prefix-Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Properties of Context-Free Expressions . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.1 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7.2 Nullability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.3 First Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7.4 Left-Recursivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Computing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8.1 Computing Properties with Propagation Networks . . . . . . . . . . . . . 71

3.9 Parsing with Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9.1 Nullifying Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 LL(1) Context-Free Expressions 77

4.1 Unambiguous Context-Free Expressions . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Towards Unambiguity via Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 First Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Second Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Third Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 The LL(1) Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Should-Not-Follow Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 LL(1) Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 The LL(1) Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4 Properties of LL(1) Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 LL(1) Parsing with Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.1 Values from Nullable LL(1) Expressions . . . . . . . . . . . . . . . . . . . . 89

viii



Contents

4.4.2 An Induction Principle for LL(1) Expressions . . . . . . . . . . . . . . . . . 90

4.4.3 Derivatives of LL(1) Expressions . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.4 On the Correctness of LL(1) Derivation . . . . . . . . . . . . . . . . . . . . 93

4.4.5 Should-Not-Follow Completeness . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.6 Parsing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.7 Example Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.8 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Zippy LL(1) Parsing with Derivatives 99

5.1 Zipper-based Representation of LL(1) Expressions . . . . . . . . . . . . . . . . . 100

5.1.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.3 Weight of Layers and Contexts . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.4 Focused Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.5 LL(1) Property of Focused Expressions . . . . . . . . . . . . . . . . . . . . 102

5.1.6 The Essence of LL(1) Derivation . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Zipper Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Focus Movement Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Focus Replacement Operations . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Zippy LL(1) Parsing with Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Moving the Focus Downwards with pierce . . . . . . . . . . . . . . . . . 113

5.3.2 Moving the Focus Upwards . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.3 The plug function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.4 The locate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.5 Zippy LL(1) Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3.6 The result function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.7 Zippy LL(1) Parsing with Derivatives Algorithm . . . . . . . . . . . . . . . 122

5.3.8 On the Correctness of Zippy LL(1) Parsing with Derivatives . . . . . . . . 123

5.4 Example Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Memoisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6.2 Calls to piercek
Γ(·, ·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 Comparison with Traditional LL(1) Parsing . . . . . . . . . . . . . . . . . . . . . . 133

5.7.1 Presentation of Traditional LL(1) Parsing . . . . . . . . . . . . . . . . . . . 133

5.7.2 Similarities and Differences between the two Approaches . . . . . . . . . 134

5.7.3 Advantages over the Traditional LL(1) Parsing Approach . . . . . . . . . . 136

6 SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages 137

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2 Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.1 The Parsers trait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.2 The Syntax Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

ix



Contents

6.2.3 Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.4 Parser Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.6 LL(1) Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.7 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.1 Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Pretty Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.1 Basic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4.3 Linear-Time Pretty Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.4 Syntax Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.5 Optimised Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.1 Parsing JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.2 Lexing and Parsing JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.5.3 Pretty Printing JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5.4 Lexing and Parsing Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Generalising Zippy Parsing with Derivatives 177

7.1 Overview of Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Data Structure Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.1 Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2.4 The Zipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Derivation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3.1 Plug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3.2 Locate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3.3 Pierce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3.4 Derive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4 Parsing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.1 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.3 Parse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5 Producing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.6 On Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.7 Correspondence with Other Parsing Techniques . . . . . . . . . . . . . . . . . . . 189

7.7.1 Earley Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.7.2 GLR Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

x



Contents

7.7.3 GLL Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.8.1 On JSON Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.8.2 On Highly Ambiguous Grammars . . . . . . . . . . . . . . . . . . . . . . . 193

7.9 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.9.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.9.2 Context Lookahead Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.9.3 Memoisation Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Related Work 195

8.1 Parser Combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2 Parsing Algorithms and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.1 Packrat Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.2 LL(1) Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.3 LL(*) Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.4 LR Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.5 Generalised Parsing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 197

8.2.6 Parsing with Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.2.7 Memoisation-based Parsing Techniques . . . . . . . . . . . . . . . . . . . 198

8.2.8 Support for Conjunction and Negation . . . . . . . . . . . . . . . . . . . . 198

8.3 Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.4 Correct-by-Construction Pretty Printing . . . . . . . . . . . . . . . . . . . . . . . 199

8.5 Formally Verified Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.6 Derivatives and Formal Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.7 Fix-Point Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.8 Datatype Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9 Conclusion 203

A Regular Expression Derivation with Compaction 207

B Haskell Implementation of a Membership Checking Procedure using Derivatives

and Zippers 209

C JSON Values, Tokens and Kinds 211

D JSON Parser and Pretty Printer in SCALL1ON 213

Bibliography 225

Curriculum Vitae 227

xi





1 Introduction

After more than half a century of theory and practice, parsing is still not a solved problem.

Poorly behaved parsers can be security risks and cause performance bottlenecks, even in

high-stakes projects. Recently, JSON parsing has been found to be the leading cause of the

infamously long loading times of Grand Theft Auto 5’s online mode (t0st, 2021). At more than

140’000’000 copies sold worldwide, Grand Theft Auto 5 is the second best-selling video game

of all times. Almost a decade after its initial release, its on-line mode still hosts around one

hundred thousand daily users. This on-line mode has generated billions of dollars of revenue

from micro-transactions over the years (Strickland, 2020). Due to a performance bug in the

manually written parsing logic of the online mode’s loading subsystem, parsing a 10MB JSON

file, an operation that should generally take less than a second, takes several long minutes. Due

to this bug, the online mode’s loading time is reportedly more than doubled (t0st, 2021). Such

long loading times are detrimental to the players’ user experience and user engagement (Wiebe

et al., 2014). We can only speculate about the financial impact this parser’s performance bug

has had over the years (Jin et al., 2017).

Parsers can also be security vulnerabilities. Recently, Barenghi et al. (2018) showed that

widely used TLS libraries can accept syntactically invalid X.509 certificates due to a bug in

their parsing logic. These authors show that this parsing bug is a serious attack channel and

demonstrate how it can be exploited to perform impersonation attacks. In another recent

parsing-related incident, a memory bug in an HTML parser used by the Cloudflare hosting

company led to private data, including passwords, being leaked (Graham-Cumming, 2017).

Most programmers eventually face the problem of converting sequential data, be it a JSON

file, an HTML webpage, an English sentence, or source code in a programming language, into

a structured representation of the data that their program can operate on. Data represented

in sequential form is often not fit for complex processing tasks, whereas a more structured

representation of the data is often more appropriate. Programmers working on natural-

language processing systems perform analyses much more efficiently on data represented

as parse trees rather than on raw sequences of characters. Programmers working on formal-

language tools, such as compilers, interpreters, and proof assistants, often spend considerable

1



Chapter 1. Introduction

effort to convert their sequential input source code into abstract syntax trees before proceeding

with their tool’s later phases. Parsing is the task of converting sequential data into structured

data, and the unit that performs this task is called a parser.

1.1 Writing Parsers

Programmers that seek to build a parser for their tool or system can adopt one of several

competing approaches:

1. Programmers can use a parser generator, such as ANTLR (Parr, 2013), Yacc (Johnson

et al., 1975), or Bison (Donnely and Stallman, 2015). Parser generators accept as input

a description of the desired syntax, generally expressed in grammar form, and output

executable code in some target language such as C or Java. Programmers that adopt

this approach do not have to worry about implementing their parser: It suffices to

describe the input language from which the parser generator automatically generates

an executable parser. Additionally, the generated parsers can generally support error

reporting features with little to no effort.

However, this approach does not come without cost. Parser generators introduce a

dependency on elaborate external tools, thus making the building process more complex

and brittle. Grammars taken as input by parser generators are expressed in a domain-

specific language that programmers working on the project must learn. Interfacing

between the parser and the rest of the codebase can require substantial work, as the

parse trees produced by the generated parsers might not match those used by the rest of

the tool. Hence, a cumbersome conversion phase is often required. Keeping the parser

and the rest of the codebase in sync as the two parts evolve could become challenging,

made worse by the fact that the two are written in different languages.

Finally, the domain-specific languages used by parser generators to describe syntaxes

are often very limited. Such domain-specific languages lack the abstraction and code-

reuse capabilities of general-purpose programming languages. Syntaxes expressed in

these languages hence tend to be low level and verbose, thus making them harder to

read and maintain than it is with syntaxes expressed using higher-level abstractions.

2. Alternatively, programmers can write their parser directly by hand, as they would for any

other phase of their project; this alleviates the need to depend on an external tool. Often,

programmers that adopt this technique write their parser as a collection of mutually

recursive procedures that form a recursive descent parser (Burge, 1975). Although this

gives programmers unparalleled freedom and flexibility, it also means that programmers

are left alone to tackle the complexity of writing a parser. This complexity can lead to

performance issues or downright design errors. And this can lead some designers

to cripple their language to facilitate a parser’s implementation. Certain syntactic

constructs, such as infix binary operators with precedence levels, are notably complex

2



1.1. Writing Parsers

to handle, to the point that some ad hoc techniques, such as Pratt parsing (Pratt, 1973),

have emerged to confront the complexity. Furthermore, adding orthogonal features,

such as error reporting and recovery, is also tricky, as changes have generally to be made

pervasively to support such features.

3. Finally, programmers can use a library to write their parser. Such libraries generally offer

a limited set of simple primitive parsers and a collection of parser combinators (Frost

and Launchbury, 1989; Hutton, 1992) to the programmers. Complex parsers are built

by composing simpler parsers together, using the various combinators offered by the

library. Due to the embedding in a general-purpose programming language, program-

mers are also free to build their own combinators and design abstractions specific to

their language. Parser code expressed using parser combinators often looks like declar-

ative grammars, which makes such code easier to read. The fact that combinators

are often instances of algebraic structures, such as applicative functors (McBride and

Paterson, 2008) and monads (Hutton and Meijer, 1996), also contributes to the ease of

comprehension. The approach has been arguably well adopted, with many languages

having access to well-maintained parsing combinators libraries (LAMP EPFL and Light-

bend, Inc, 2019; Leijen and Meijer, 2001; Haoyi, 2021). Such parsing libraries generally

implement parsing by recursive descent or by using Packrat parsing (Ford, 2004).

This approach is, however, not without its shortcomings. Most parser combinators

libraries do not support statically checking the code for ambiguities and design errors.

To detect such issues, programmers have to test their parsers on various input strings,

which is a time-consuming and incomplete process.

Even though parser code written using parser combinators can superficially look like a

declarative grammar, the parsing algorithm behaves quite differently from the program-

mers’ expectations. For grammars, the order of alternatives is irrelevant. A grammar’s

alternative rules can be reordered without altering its meaning. For a recursive descent

or Packrat parser, this is not the case. For such approaches, the order in which alterna-

tives are processed often matters. In some instances, a partial match of one alternative

can prevent another alternative from being tried.

Although code written using parser combinators looks declarative on the surface, it is

in fact imperative at its core. Most recursive descent libraries feature combinators that

instruct the algorithm if and when to backtrack. This has no equivalent in the declarative

setting of context-free grammars. In practice, controlling when and how to backtrack is

essential for performance but is, unfortunately, error prone.

It is worth noting that some parsing approaches offer a parser combinator interface that

truly and closely corresponds to context-free grammars. One such approach is Parsing

with Derivatives (Might et al., 2011; Adams et al., 2016), which relies on parser deriva-

tion (Brzozowski, 1964) for the basic operation behind parsing. This elegant and simple

approach is the basis of the various techniques presented in this thesis. Despite its

elegance, this approach has not yet seen frequent adoption. One of the possible reasons

3



Chapter 1. Introduction

for this is that its performance is generally below that of more established approaches.

In this thesis, I will show techniques for improving the performance of such approaches.

In this thesis, I will describe lexing and parsing approaches that can be classified in the third

category, that is of parser combinators libraries. I will present several distinct approaches:

one for regular languages, one tailored for LL(1) languages, and one for general context-free

languages. Instead of relying on a shallow embedding (Gibbons and Wu, 2014) of parsers

as functions, as is the case for most parser combinator libraries, the approaches I present

are based on a deep embedding of parsers as directed graphs. I will rely on Brzozowski’s

derivatives (Brzozowski, 1964) to evolve this graph as input tokens are processed. I will show

how adopting a data structure that is based on Huet’s zipper (Huet, 1997) to represent parser

states makes the approaches efficient in practice.

As I will demonstrate in this thesis, this deep embedding of parsers also facilitates the imple-

mentation of many features such as static checks of conflicts, precise parsing, error reporting

and recovery, enumeration and code completion, as well as correct-by-construction serialisa-

tion.

1.2 Writing Pretty Printers

Some tools not only have to accept strings as input, but also to respond by showing strings

back to the user; they generally must do this using the same language. For example, consider

an interactive theorem-prover system. Such systems keep track of the current assumptions

and current goals in their state and communicate them to the user. To facilitate the interaction

between the user and the system, the assumptions and goals in the state are displayed using

the same language as the users use to input their lemmas and theorems. Tools such as code

synthesisers and code repair tools are another example of such systems. In such tools, not

only must code be parsed, but it must also be produced.

Whereas parsing is the task of converting sequences into structured data, the task of pretty

printing is the inverse: displaying structured data as sequences. Although the two tasks are

generally closely related, they are (more often than not) defined in separate functional units,

even though they often share the same structure. This separation leads to duplicated code and

extra development and maintenance work. Furthermore, having two separate units increases

the risk of inconsistencies significantly. In the context of proof assistants, one such type of

inconsistency is the so-called Pollack’s inconsistency (Wiedijk, 2012), in which a user can be

led to believe a false statement due to the parser assigning a different meaning to a pretty

printed theorem. Therefore, it is crucial in such tools that parsing a pretty printed value yields

back the same value. This property is crucial for the confidence in the tool: without it, users

could mistake theorems that they have shown for other propositions. However, in practice,

this crucial property is often violated (Wiedijk, 2012).

4



1.3. Teaching about Parsing

Pretty printer

Parser

Sequential representations Structured representations

e1

e2

Figure 1.1 – Example inconsistency. Whereas the pretty printer has been given e1 as input,
the user is shown a representation that the parser would convert to e2. When e1 and e2 are
semantically different, an inconsistency arises. In the context of a theorem prover, this means
that a user could be led to erroneously believe that e2 is a true and proven proposition, when,
in fact, the semantically different proposition e1 has been shown.

In this thesis, I will show that the parsing combinators library presented here can ease the

writing of a corresponding consistent pretty printer. By merely providing partial inverses for

user-defined functions locally at the places where they are applied, users of the libraries get a

pretty printer for free, in addition to their parser. Given sound local inverses, the pretty printer

is guaranteed to produce sequences that can be, with equivalent meaning, parsed back by the

parser. As the parser and the pretty-printer share their definition, keeping them in sync as the

language evolves is a much easier task.

1.3 Teaching about Parsing

Most compiler construction courses in schools and universities around the world introduce

and use regular expressions as the de facto formalism for lexical analysis. Such courses then

switch to context-free grammars for syntactic analysis. The techniques and algorithms that are

taught, such as conversion to automata in the case of regular expressions, and LL, LR, or Earley

in the case of grammars, seem utterly unrelated to each other. This apparent gap between

the various techniques hinders their understanding. Moreover, the generation of parse trees

or parse forests is an afterthought for many traditional parsing algorithms. Consequently,

lecturers and researchers often brush over this aspect in their lectures and research papers.

In this thesis, I demonstrate that expression-based formalisms can form a cohesive approach to

teaching both lexical and syntactic analysis. I will show, in Chapter 2 of this thesis, that efficient

lexical analysis can be performed directly on regular expressions, without explicit conversion

to automata. I also argue that, in educational and academic settings, context-free expressions

are a suitable alternative to context-free grammars. Context-free expressions are easy and

natural to transition into from regular expressions, as they are a simple extension of these

kinds of expressions. The progression from regular expressions to context-free expressions

5



Chapter 1. Introduction

follows the order in which the lexical analysis and the syntactic analysis phases occur in a

typical compiler. As the order in which subjects are covered in compiler construction courses

tends to mimic the order of phases in compilers, this transition from regular to context-free

expressions is natural.

Even more importantly, the same simple technique, based on Brzozowski’s derivatives (Br-

zozowski, 1964) and Huet’s zipper (Huet, 1997), can be used to explain and understand the

various algorithms used in the context of both lexical and syntactical analysis. As I will show

in Chapter 2, in the context of regular expressions, combining derivatives with zippers yields

an algorithm that corresponds to running a finite-state automaton created on the fly. Ad-

ditionally, as I will show in Chapter 5, combining derivatives and zippers in the context of

LL(1) expressions yields an algorithm that closely corresponds to the traditional table-based

LL(1) parsing algorithm. In Chapter 7, I will show that applying the same techniques on

general context-free expressions instead yields an algorithm reminiscent of general context-

free parsing algorithms such as Earley’s algorithm. Furthermore, due to the value awareness

of context-free expressions that are used to represent the parser state in such parsing with

derivatives and zippers algorithms, parse-value generation is no longer an afterthought and is

deeply ingrained in the algorithms.

I will argue that most parsing algorithms can be viewed and understood under the unifying

lens of derivatives and zippers. This common framework shows that the dichotomy between

bottom-up and top-down parsing is not as relevant and fundamental as might be initially

thought. This common ground abstraction could enable the transfer of techniques designed

for one algorithm to other parsing algorithms. It could also be an excellent guiding principle

towards supporting richer types of expressions, such as expressions with monadic sequenc-

ing combinator as commonly found in parser combinator libraries, in traditional parsing

algorithms.

1.4 Formally Reasoning about Parsing

Expression-based formalisms such as regular expressions and context-free expressions, along

with derivatives-based algorithms, also seem particularly suited to formal proofs in proof

assistants such as Coq. The fact that the correctness of parsing with derivatives on regular

expressions is offered as an exercise in an introductory book on Coq (Pierce et al., 2018, Chap-

ter on Inductively Defined Propositions) testifies to this. To further demonstrate this, the

correctness of lexical analysis technique presented in Chapter 2 is supported by a formalisa-

tion in Coq. Moreover, the framework and parsing algorithms presented in Chapters 3 to 5

have also been implemented in Coq by Jad Hamza and myself (Hamza and Edelmann, 2019;

Edelmann et al., 2020), thus resulting in a mechanised proof of correctness of LL(1) parsing

with derivatives and zippers.

6



1.5. Thesis

1.5 Thesis

In this thesis, I will demonstrate that combining derivatives and zippers leads to lexical and

syntactic analysis algorithms that are amenable to formal reasoning, are easy to integrate,

support expressive interfaces, and display excellent performance in practice. Parsing with

derivatives and zippers approaches are the best choice for building fast and flexible parsers

that can be trusted.

1.6 Contributions

The main contributions of this thesis are the following:

• A novel technique for building lexical analysis libraries in functional programming

languages based on the concept of derivatives (Brzozowski, 1964) and zippers (Huet,

1997). The zipper-based representation provides a way to effectively classify expressions

and their derivatives into a finite number of equivalence classes, in a manner that is

reminiscent of the partial derivatives of Antimirov (1996). I show that, by employing

memoisation in combination with the technique, a lazily built deterministic finite-

state automata is obtained, without going through the burdensome traditional explicit

conversion to automata. The approach is supported by a formalisation in Coq.

• A theoretical framework for value-aware context-free expressions, in which semantics

and properties of context-free expressions are easily expressed using inductive predi-

cates. I demonstrate how such properties can be efficiently computed using propagation

networks (Radul, 2009).

• A novel characterisation of the LL(1) class for context-free expressions based on the con-

cept of should-not-follow sets. Should-not-follow sets are an alternative to the traditional

FOLLOW sets that have a more compositional nature. I arrive at this novel characterisa-

tion of the LL(1) class through the lens of Brzozowski’s derivation (Brzozowski, 1964;

Might et al., 2011).

• A novel and efficient parsing algorithm for LL(1) context-free expressions, called zippy

LL(1) parsing with derivatives. The algorithm, which is based on Brzozowski’s derivatives

and Huet’s zipper (Huet, 1997), is purely functional and incorporates value elaboration

aspects.

• A proof of correctness of the zippy LL(1) parsing with derivatives. A formal and detailed

proof is presented in this thesis. A mechanised version of the proof in Coq, written

by Jad Hamza and myself (Hamza and Edelmann, 2019; Edelmann et al., 2020), is also

available.

• A Scala implementation of an LL(1) parsing and pretty-printing combinators library

called SCALL1ON (Edelmann, 2019). The library features an efficient implementation of

7



Chapter 1. Introduction

the zippy LL(1) parsing with derivatives algorithm.

• A novel parsing algorithm for general context-free expressions based on Brzozowski’s

derivatives and Huet’s zippers. The algorithm is a generalisation of the zippy LL(1)

parsing with derivatives.

Taken together, these contributions show that parsing with derivatives and zippers is a com-

pelling alternative to more traditional parsing techniques. First of all, the technique is practical.

The approach is easy to embed in functional programming languages and integrates well into

projects that rely on parsing. With the support of combinator-based interfaces, the technique

is highly expressive. The performance of the approach is competitive with state-of-the-art

parsing techniques. Second, the approach is trustworthy. As demonstrated in this thesis,

parsing with derivatives and zippers techniques are amenable to formal proofs. Additionally,

parsing with derivatives and zippers is relatively easy to understand. Third, the approach is

widely applicable. The same zipper-based optimisation can be applied with great effects on

regular, LL(1), and general context-free expressions, thus leading to a unified presentation of

parsing.

1.7 Overview

The remainder of this thesis is structured as follows:

1. In Chapter 2, I give an introduction to the well-known concept of regular expressions

and of Brzozowski’s derivatives (Brzozowski, 1964). I show that using Huet’s zipper (Huet,

1997) to represent regular expressions and their derivatives provides a way to efficiently

classify expressions into a finite number of equivalence classes. I show that, by intro-

ducing memoisation, we obtain a way to lazily build deterministic finite-state automata

on the fly, as characters of input are processed. I show an implementation of a lexical

analysis library in Scala based on the approach. The implementation is very concise,

and its performance in practice is good. The correctness of the approach is backed by

a formalisation in Coq. For a further example of the amenability of expression-based

formalisms to formal proofs, I show a proof of the pumping lemma for regular languages

operating directly on regular expressions.

2. In Chapter 3, I present a formalisation of value-aware context-free expressions and

model their semantics as an inductive predicate. I present binary relations to semanti-

cally compare context-free expressions. Such relations will prove useful to talk about

the correctness of transformations applied to expressions. I then introduce several

properties of context-free expressions, such as nullability and first sets, and I show their

relation to the semantics of expressions. I discuss how to efficiently compute such prop-

erties by using a technique based on propagation networks (Radul, 2009). I conclude

8



1.7. Overview

this chapter by presenting how the original parsing with derivatives algorithm (Might

et al., 2011) can be expressed in the framework introduced.

3. In Chapter 4, I revisit the notion of LL(1) languages and apply it to context-free expres-

sions. I introduce the notion of should-not-follow sets, a notion dual to the FOLLOW
sets typically found in the literature on LL(1) grammars. I argue that the notion of

should-not-follow sets presents several advantages over competing notions. I then

present a simplified version of the parsing with derivatives algorithm tailored to LL(1)

expressions. A complete proof of the correctness of the algorithm is presented. Through

an example, I show that the parsing algorithm can unfortunately exhibit a quadratic

running time, compared to the guaranteed linear running time of the traditional LL(1)

parsing algorithm. I identify the cause of the issue and show that it also arises in the

context of the original parsing with derivatives algorithm by Might et al. (2011).

4. In Chapter 5, I show that introducing a zipper turns the LL(1) parsing with derivatives

algorithm presented in Chapter 4 into an efficient linear-time parsing algorithm. A

complete proof of correctness of the algorithm, as well as a careful complexity analysis,

is presented. Caching techniques are discussed to further accelerate the algorithm in

practice. I conclude that chapter by showing that the LL(1) parsing with derivatives

and zippers algorithm closely corresponds to the traditional table-based LL(1) parsing

algorithm, thus shedding new light on this well-established algorithm.

5. In Chapter 6, I present SCALL1ON, a Scala parsing combinators library for LL(1) lan-

guages based on the theory developed in earlier chapters.

I present techniques to enumerate recognised sequences of tokens from context-free

expressions. I show that, combined with derivatives-based algorithms, this enables

features such as code completion and error recovery. Finally, by presenting a technique

that produces a shortest representation of a value from a context-free expression, I show

that context-free expressions are also suitable tools for describing pretty printers.

6. In Chapter 7, I present a implementation of a parsing with derivatives and zippers

algorithm generalised to arbitrary context-free expressions. I also make connections to

well-known parsing algorithms.

7. In Chapter 8, I give references to works related to the topics covered in this thesis.

8. Chapter 9 concludes the thesis. Several pointers for future work are provided.

9





2 Regular Expressions

In this chapter, I present an introduction to regular expressions (Sipser, 2012). Not only are

regular expressions an exciting topic on their own, but they also play a significant role in

latter parts of the thesis. Indeed, the expressions at the foundation of the parsing techniques

presented in this thesis, which are called context-free expressions, are systems of these regular

expressions. The primary operation at the root of the various parsing techniques that I present

throughout this thesis are an adaptation of the derivation operation on regular expressions

proposed by Brzozowski (1964) and later transposed to context-free expressions by Might et al.

(2011).

Brzozowski’s derivatives offer an elegant way to build deterministic finite-state automata

from regular expressions. States of the automaton correspond to regular expressions, whereas

states’ transitions are obtained from a derivation operation. Although extremely simple on

the surface, to ensure the finiteness of states, the technique requires grouping expressions

into a finite set of equivalence classes. Building equivalence classes is unfortunately non-

trivial (Owens et al., 2009).

In this chapter, I also introduce the concept of zippers proposed by Huet (1997). I show that

zippers can be used to represent regular expressions and their derivatives. This zipper-based

representation of regular expressions will prove advantageous because, as I will demonstrate,

only a finite number of different zippers can be encountered through successive derivations.

Hence, structural equality of zippers can be used as a way to efficiently classify regular ex-

pressions into a finite number of equivalence classes. I show a recognition procedure that,

based on Brzozowski’s derivatives and Huet’s zipper, operates over a lazily built deterministic

finite-state automaton. In this setting, the automaton can be seen as a mere memoisation

optimisation. The technique has been implemented as part of the SILEX 1 Scala lexing library

that is used in the Computer Language Processing class at EPFL.

I conclude this chapter by showing a proof of the regular pumping lemma on regular ex-

pressions. Typical proofs of the lemma operate over automata and invoke the pigeon-hole

1https://github.com/epfl-lara/silex

11

https://github.com/epfl-lara/silex


Chapter 2. Regular Expressions

principle. Whereas the proof shown in this chapter operates by straightforward structural

induction over regular expressions. This elegant proof is a testimony to the value of regular

expressions as a formalism.

2.1 Definition

Regular expressions are an expression-based formalism for describing sets of sequences of

characters taken from some alphabet A. The set of sequences of characters described by an

expression is called its language. I will denote by L(e) the language of the regular expression e.

The various constructs of regular expressions are presented in Listing 19.

Empty expression ⊥
Empty word ε

Single character c

Sequencing e1 ·e2

Disjunction e1 ∨e2

Repetition e∗

Figure 2.1 – Regular expressions.

Three constructs describe basic regular expressions. The expression ⊥ represents the empty

language ;. The expression ε represents the singleton language containing only the empty

sequence 〈〉. Finally, for every character c in the given alphabet A, the expression c represent

the singleton language containing the singleton sequence 〈c〉:

L(⊥) :=;
L(ε) := { 〈〉 }

L(c) := { 〈c〉 }

Additionally, three combinator constructs allow the composition of small regular expressions

into larger expressions. The sequencing combinator, denoted by e1 · e2, represents the se-

quential composition of the two expressions e1 and e2. The language of e1 ·e2 is the product

concatenation of the languages of e1 and e2, that is:

L(e1 ·e2) := { cs1 ++ cs2 | cs1 ∈ L(e1)∧ cs2 ∈ L(e2) }

The second combinator is disjunction. The language of the disjunction of two expressions e1

and e2 is the union of the languages of e1 and e2:

L(e1 ∨e2) := L(e1)∪L(e2)

Finally, the last regular expression combinator is the repetition combinator, also called Kleene

12



2.2. Tree Representation

star. The expression e∗ represents an arbitrary number of repetitions of the underlying

expression e. Its language is defined as the infinite union:

L(e∗) := ⋃
i∈N

U i
e

U 0
e := { 〈〉 }

U n+1
e := { cs1 ++ cs2 | cs1 ∈ L(e)∧ cs2 ∈U n

e }

The semantics of regular expressions can be expressed elegantly using an inductive predicate

instead of set-based operations. The inductive predicate e ` cs indicates that the expression e

describes the sequence cs:

cs ∈ L(e) ⇐⇒ e ` cs

The inductive rules that define the predicate e ` cs are presented in Figure 2.2.

c ` 〈c〉 ε` 〈〉
e1 ` cs1 e2 ` cs2

e1 ·e2 ` cs1 ++ cs2

e1 ` cs

e1 ∨e2 ` cs

e2 ` cs

e1 ∨e2 ` cs e∗ ` 〈〉
e ` cs1 e∗ ` cs2

e∗ ` cs1 ++ cs2

Figure 2.2 – Semantics of regular expressions.

Inductive predicates are an excellent tool for formal reasoning. Such predicates can be de-

constructed to obtain their possible premises. Furthermore, proofs can be performed by

induction over such predicates. In this thesis, I will generally make use of such inductive

definitions to define predicates and various properties for this reason.

Note that such inductive properties do not immediately give rise to recursive definitions

of computable functions. In the above example, the e ` cs inductive predicate is merely a

specification of the semantics of regular expressions: The definition can not directly be used

as a definition for a recursive function. Indeed, there might be multiple valid ways to derive

a proposition e ` cs, and knowing which to apply given only e and cs is non-trivial. For this

reason, procedure to check membership in the language of a regular expression often look

very different from the inductive definition.

2.2 Tree Representation

Regular expressions can very naturally expressed as an algebraic datatype in functional pro-

gramming languages. Listing 1 presents a definition of regular expressions as such a datatype

in Scala.

13



Chapter 2. Regular Expressions

sealed trait RegExpr
case object Epsilon extends RegExpr
case object Failure extends RegExpr
case class Character(char: Char) extends RegExpr
case class Disjunction(left: RegExpr, right: RegExpr) extends RegExpr
case class Sequence(left: RegExpr, right: RegExpr) extends RegExpr
case class Repetition(inner: RegExpr) extends RegExpr

Listing 1 – Definition of the RegExpr algebraic datatype in Scala.

This datatype exhibits a tree-like structure, where the top-level combinator acts as the root

of the tree, and basic regular expressions such as Epsilon, Failure, and Character, appear

at the leaves. In this setting, all references flow from the top-level combinator down to the

basic expressions. Combinators have a reference to their children expressions, but expressions

have no way of referencing back to their parent (or parents). This representation of regular

expressions has the advantage that procedures operating over regular expressions can be

straightforwardly defined as recursive functions.

This canonical representation is however not the only way one can encode regular expressions.

In the rest of this thesis, I will explore different kinds of representations of regular and context-

free expressions (Chapter 3) inspired by Huet’s Zipper (Huet, 1997), that will prove more

appropriate in the context of derivatives-based approaches (Brzozowski, 1964; Might et al.,

2011). I first demonstrate the approach in Section 2.6.

2.3 Conversion to Automata

It appears that checking whether a given sequence of characters cs is part of the language

of a regular expression e is a task that can not be efficiently performed by a simple recursive

function over the structure of regular expressions. The culprit is that some expressions have

multiple ways of producing a sequence cs, many of which can not be immediately dismissed.

For instance, it is not immediately clear which side of a disjunction produced the sequence cs.

For sequencing and repetition, the situation is even worse: it is not immediately clear how to

split the sequence of characters cs to proceed with the recursive calls.

The usual solution is to build an automaton out of the regular expression e as a pre-processing

step. One way to build such an automaton is to first convert the regular expression into a non-

deterministic finite-state automaton (NFA), which can later be converted to a deterministic

finite-state automaton (DFA) through a process called determinisation. Once in automaton

form, checking whether a given sequence cs is accepted is trivial as it suffices to follow

transitions as described by the automaton.

14



2.3. Conversion to Automata

NFA Definition

Given an alphabet A, non-deterministic finite state automata are composed of:

• A set of states S,

• A starting state s0 ∈ S,

• A set of finite states F ⊆ S,

• A set of transitions ∆ of the form si
c7−→ s j for some character c ∈ A and states si and s j ∈ S.

As the automaton is non-deterministic, in any given state si there might be any number

of states s j with an existing transition si
c7−→ s j ∈∆ for the same character c.

Additionally, the set delta may contain transitions si 7−→ s j that are not labeled by any

character c. Such transitions are commonly known as ε-transitions.

NFA Construction Code

In Listing 2, I present an elegant way to convert regular expressions to non-deterministic

finite-state automata in Scala. The code to convert the non-deterministic automaton into

an efficient deterministic automaton is not shown. The code is expressed in a continuation-

passing style: when visiting an expression node, a continuation state is given to the visitor

function. This continuation-passing style allows for the definition to be rather concise and

elegant.

The Cost of Conversion

Having to convert regular expressions to automata to execute them is not without cost. I argue

that one of the main drawbacks is pedagogical. Indeed, the subject’s traditional presentation

forces teachers to introduce many different concepts: regular expressions, non-deterministic

automata and deterministic automata. Switching back and forth between those concepts and

showing how they relate can be time-consuming and may prove difficult for students to follow.

Although of similar expressiveness, regular expressions are often presented as a mere descrip-

tion tool that is unsuited for execution, whereas automata are seen as impractical to textually

describe but very efficient to execute (Brüggemann-Klein, 1993). It would seem that you can

not have your cake and eat it too. In the remainder of this chapter, I will attempt to hint at the

contrary: Regular expressions, equipped with Brzozowski’s derivation operation (Brzozowski,

1964) and represented using Huet’s Zipper (Huet, 1997), can not only act as a declarative

language description tool, but can also be efficiently executed. The presentation of the tech-

nique can be done without ever introducing automata theory. In Chapters 5 and 6, I will show

that similar techniques can be applied to LL(1) and general context-free expressions to yield

efficient parsing algorithms.

15



Chapter 2. Regular Expressions

1 def convert(expr: RegExpr): NFA = {
2 var states: Set[State] = Set.empty
3 val transitions: Buffer[Transition] =
4 new ArrayBuffer
5

6 def createState(): State = {
7 val state = freshState(states)
8 states ++= Set(state)
9 state

10 }
11

12 val finalState: State = createState()
13 val errorState: State = createState()
14

15 def go(expr: RegExpr, cont: State): State = expr match {
16 case Epsilon => cont
17 case Failure => errorState
18 case Character(char) => {
19 val state = createState()
20 transitions += LabeledTransition(state, char, cont)
21 state
22 }
23 case Disjunction(left, right) => {
24 val state = createState()
25 val leftState = go(left, cont)
26 val rightState = go(right, cont)
27 transitions += EpsilonTransition(state, leftState)
28 transitions += EpsilonTransition(state, rightState)
29 state
30 }
31 case Sequence(left, right) => {
32 go(left, go(right, cont))
33 }
34 case Repetition(inner) => {
35 val state = createState()
36 val innerState = go(inner, state)
37 transitions += EpsilonTransition(state, innerState)
38 transitions += EpsilonTransition(state, cont)
39 state
40 }
41 }
42

43 val startState = go(expr, finalState)
44

45 NFA(startState, Set(finalState), transitions)
46 }

Listing 2 – Conversion to NFA in continuation passing style.

16



2.4. Brzozowski’s Derivatives

2.4 Brzozowski’s Derivatives

Regular expression derivatives were first described by Brzozowski (1964). In his influential pa-

per, Janusz A. Brzozowski presents the operation as an elegant way to facilitate the conversion

of regular expressions to state diagrams (i.e. automata). Interestingly, the operation is shown

to be easily adapted to handle many additional regular expression operators, such as negation

or intersection.

The derivative of a regular expression e by a character c , which I will denote by δc (e), is itself a

regular expression whose language satisfies the following equality:

L(δc (e)) = { w | c :: w ∈ L(e) }

Or, expressed using the inductive predicate · ` ·:

∀w. δc (e) ` w ⇐⇒ e ` c :: w

Derivation is very naturally defined as a recursive function over the structure of the regular ex-

pression (see Figure 2.3a). The definition of derivation makes use of the concept of nullability:

An expression is nullable if it accepts the empty sequence of character as part of its language.

As seen in Figure 2.3b, nullability itself can be computed recursively.

δc (⊥) :=⊥
δc (ε) :=⊥

δc (c ′) :=
ε if c = c ′

⊥ otherwise

δc (e1 ·e2) :=
δc (e1) ·e2 ∨δc (e2) if null(e1)

δc (e1) ·e2 otherwise

δc (e1 ∨e2) := δc (e1)∨δc (e2)

δc (e∗) := δc (e) ·e∗

(a) Brzozowski’s derivatives.

null(⊥) := false
null(ε) := true
null(c) := false

null(e1 ·e2) := null(e1) && null(e2)

null(e1 ∨e2) := null(e1) || null(e2)

null(e∗) := true

(b) Nullability of regular expressions.

Figure 2.3 – Definition of regular expression nullability and Brzozowski’s derivatives as recur-
sive functions.

Intuitively, derivation of an expression consists of replacing basic nodes that appear in left-

most position by either ε or ⊥, depending on whether or not they match the parameter

character. In case of sequence expressions e1 · e2, such left-most basic nodes may appear

either:

17



Chapter 2. Regular Expressions

• in the left expression e1 and,

• in the right expression e2 if e1 is nullable.

Thus, in case e1 is nullable, a disjunction node is introduced in the derivative to cover both

cases. In case of repetition, a single iteration of the repetition is unrolled and recursively

derived.

Initially, Brzozowski’s derivatives were envisioned as a tool for building automata from regular

expressions. The initial expression and its successive derivative expressions correspond to the

states of the resulting automaton. Crucially, expressions are to be grouped together in equiva-

lence classes, so that equivalent expressions are represented by the same state in the resulting

automaton. Without this grouping of expressions in equivalence classes, the technique is not

guaranteed to lead to a finite number of states. Checking expressions for equivalence is unfor-

tunately a non-trivial task, which considerably complicates the seemingly simple approach

proposed by Brzozowski. To do so, most approaches resort to building minimal deterministic

finite-state automata, which completely defeats the purpose. Fortunately, weaker equivalence

classes based on algebraic properties of regular expressions can be used to obtain a finite, but

possible larger, number of states (Brzozowski, 1964; Owens et al., 2009). Brzozowski showed

that rewriting expressions into a normal form based on the associativity, commutativity, and

idempotence properties of disjunctions leads to a finite number of equivalence classes. Unfor-

tunately, applying global transformations to rewrite expressions in a normal form complicates

the approach.

2.4.1 Interpreter-style Membership Checking

Interestingly, Brzozowski’s derivation can be straightforwardly implemented in functional

programming languages. This natural embedding leads to the use of Brzozowski’s derivation

as part of an interpreter-style procedure for membership checking: Given an initial regular

expression and a sequence of characters, one can check if the expression accepts the sequence

of characters by iteratively applying derivation, once per input character, and then checking

nullability of the resulting expression (Might, 2010). Doing so does not require explicitly

transforming the regular expression into an automaton beforehand. Furthermore, support

for character classes is trivial: For the reminder of the section, I will assume that Character
accepts a predicate over characters instead of simple characters. This interpreter-style recog-

nition technique is shown in Listing 3.

Although very elegant and straightforward, this interpreter is unfortunately often inefficient

compared to the automaton-based approach. In the automaton-based representation, transi-

tions to the next state are local and immediate: Computing the next state is a constant-time

operation. On the other hand, computing the derivative of an expression is a seemingly global

operation: With the canonical representation of regular expression as trees, the recursive

derivation operation must always start from the root of the expression, whereas the basic

18



2.4. Brzozowski’s Derivatives

subexpressions to be converted to ε or ⊥ expressions are found at the leaves of the tree, pos-

sibly under layers and layers of accumulated operator nodes. Computing a derivation takes

time linear in the size of the regular expression.

sealed trait RegExpr {
val isNullable: Boolean = this match {

case Epsilon => true
case Disjunction(left, right) => left.isNullable || right.isNullable
case Sequence(left, right) => left.isNullable && right.isNullable
case Repetition(_) => true
case _ => false

}

def derive(char: Char): RegExpr = {
def down(expr: RegExpr): RegExpr = expr match {

case Character(pred) => if (pred(char)) Epsilon else Failure
case Disjunction(left, right) => Disjunction(down(left), down(right))
case Sequence(left, right) if left.isNullable =>

Disjunction(Sequence(down(left), right), down(right))
case Sequence(left, right) => Sequence(down(left), right)
case Repetition(inner) => Sequence(down(inner), expr)
case _ => Failure

}
down(this)

}

def accepts(word: Iterable[Char]): Boolean =
word.foldLeft(this) {

case (derivative, char) => derivative.derive(char)
}.isNullable

}

Listing 3 – Scala implementation of the derive and isNullable methods inspired by Brzo-
zowski (1964). An interpreter-style accepts method is also provided.

19



Chapter 2. Regular Expressions

Furthermore, if one is not careful, the size of derivative expressions may blow up, as would be

the case by naïvely applying Brzozowski’s derivation. Figure 2.4 shows how the size (number

of nodes) of derivatives evolves with the number of derivations for a few selected regular

expressions.

0 1 2 3 4 5

2

8

32

128

512

Derivations by a

N
u

m
b

er
o

fn
o

d
es

a∗
a∗∨ (a ·a)∗

(a∗∨ (a ·a)∗)∗

Figure 2.4 – Size of derivatives after a variable number of derivations by the character a. The
y-axis is in logarithmic scale.

Figure 2.5 shows the results obtained by applying smart constructors to eliminate or propagate

Failure and Epsilon expressions during derivation; a technique called compaction in some

works (Might et al., 2011). The code for derivation with compaction is available in Appendix A.

The figures show that, even with compaction, the size of derivatives can rapidly grow to be

problematic. Furthermore, although compaction can mitigate the issue in certain cases, it

is not able to completely eliminate it. Due to the possibly unbounded number of different

derivative expressions, optimisation techniques such as memoisation become impractical.

Later in this chapter, I will show how to completely do away with the issue by adopting a

different representation of expressions and derivatives based on Huet’s zipper.

0 1 2 3 4 5

2

8

32

128

512

Derivations by a

N
u

m
b

er
o

fn
o

d
es

a∗
a∗∨ (a ·a)∗

(a∗∨ (a ·a)∗)∗

Figure 2.5 – Size of derivatives when applying a local compaction optimisation. The y-axis is in
logarithmic scale.

20



2.5. Huet’s Zipper

2.5 Huet’s Zipper

Given that the tree structure of regular expressions makes derivation behave badly, it is

worth investigating different ways of representing regular expressions apart from top-down

trees (Section 2.2). The zipper technique presented by Huet (1997) is such a way.

Huet’s zipper is a simple technique that consists of adding a focus into a tree. The focus is a

node in the data structure from which all references flow. In traditional tree-like structures,

the focus is always located at the tree’s root: All references always flow from that root. With a

zipper, the focus can be moved around to child nodes or parent nodes.

1 sealed trait Tree[+A]
2 case class Branch[+A](left: Tree[A], right: Tree[A]) extends Tree[A]
3 case class Leaf[+A](value: A) extends Tree[A]
4

5 sealed trait Context[+A]
6 case object Empty extends Context[Nothing]
7 case class InLeft[+A](right: Tree[A], parent: Context[A]) extends Context[A]
8 case class InRight[+A](left: Tree[A], parent: Context[A]) extends Context[A]
9

10 case class Zipper[+A](focus: Tree[A], context: Context[A]) {
11 def unfocus: Tree[A] = context match {
12 case Empty => focus
13 case InLeft(right, parent) => Zipper(Branch(focus, right), parent).unfocus
14 case InRight(left, parent) => Zipper(Branch(left, focus), parent).unfocus
15 }
16

17 def moveUp: Zipper[A] = context match {
18 case Empty => this
19 case InLeft(right, parent) => Zipper(Branch(focus, right), parent)
20 case InRight(left, parent) => Zipper(Branch(left, focus), parent)
21 }
22

23 def moveLeft: Zipper[A] = focus match {
24 case Leaf(_) => this
25 case Branch(left, right) => Zipper(left, InLeft(right, context))
26 }
27

28 def moveRight: Zipper[A] = focus match {
29 case Leaf(_) => this
30 case Branch(left, right) => Zipper(right, InRight(left, context))
31 }
32

33 def replaceFocus[B >: A](newFocus: Tree[B]): Zipper[B] =
34 Zipper(newFocus, context)
35 }
36

37 def focus[A](tree: Tree[A]): Zipper[A] = Zipper(tree, Empty)

Listing 4 – Example implementation of a Zipper in Scala

21



Chapter 2. Regular Expressions

Listing 4 shows a simple Scala implementation of a Zipper operating over a generic binary

Tree. The zipper consists of a pair of a focused tree and a context. A Context is a stack of

layers, each of which representing an ancestor of the currently focused subtree. The first

layer corresponds to the tree’s direct parent in the original tree structure, while the next layer

corresponds to the parent’s parent, and so on. Each context represents a path from the focus

subexpression to the root of the expression. Layers contain information about the side of the

child in which the focus is located, and keep a reference to the other child subtree. In case the

focus is located in the left subtree, the layer keeps track of the right subtree, and conversely for

the case when the focus is located in the right subtree.

Zippers support constant-time operations to move the focus to the parent node (moveUp), to

the left child (moveLeft) or to the right child (moveRight). Trees can be converted to zippers,

with a focus on the root, using the focus function. The function simply pairs the tree with the

empty context Empty. Conversely, Zippers can be converted back to regular top-down trees by

the recursive unfocus method.

Notably, the focus of a zipper can be replaced in constant-time. The function which imple-

ments this functionality in the example code is replaceFocus. The function discards the old

focus and pairs the new focus with the current context. This focus replacement function can

be used to remove or otherwise arbitrarily modify subtrees in focus.

McBride’s Derivatives

Interestingly, McBride (2001) remarked that the context part of Huet’s zippers corresponds

to some sort of derivative of the original tree, hinting at some connection between datatypes

and calculus. Thanks to Brzozowski’s derivatives (Brzozowski, 1964), one can make a similar

connection between regular expressions and calculus. “Like prolonged echoes mingling in the

distance” (Baudelaire, 1855)2, McBride’s derivatives and Brzozowski’s derivatives correspond.

This correspondence suggests that adopting Huet’s zipper to represent regular expressions

and their derivatives might be appropriate, or at the very least worth trying!

In a later work, McBride (2008) generalised the technique to support different types for the

left and the right elements appearing in the context. Having a separate type allows context

elements to contain not only normal subtrees, but also arbitrary views of those subtrees. In this

thesis, I will present data structures for representing regular expressions, as well as context-free

expressions in Chapters 5 and 6, based on this idea. In such data structures, the elements

appearing on the left of the focus will correspond to subtrees that have already been matched

against the input.

2See the poem Correspondances by Charles Beaudelaire in the preface of this thesis.

22



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

2.6 Revisiting Brzozowski’s Derivatives using Huet’s Zipper

Zippers are, in essence, a way to record the context around nodes in a traversal of a tree-like

structure. The Zipper data structure showed in Listing 4 is a specific example of this concept.

It operates over a binary tree, supports a single focal point within that tree, and offers an

interface to move this focus around the tree. I argue that the type of data structure operated

over, the uniqueness of the focal point, as well as the interface to control the movement of the

focal point, are not fundamental to the concept of zippers but are specific to that example.

There exist instances of zippers which may vary some of those parameters.

In this section, I present an implementation in Scala of a simple lexical analysis library based

on Brzozowski’s derivatives and Huet’s zipper. This implementation serves as the foundation

to the SILEX library3. The implementation is backed by a formalisation in Coq4.

The zipper that I will use differs in almost all aspects compared to the zipper of Listing 4: The

zipper will operate on regular expressions, support multiple focal points, and will not offer

an interface to arbitrarily move the focus. Instead of moving arbitrarily, focuses follow the

recursive structure of Brzozowski’s derivation operation, splitting into multiple focuses in

case multiple recursive calls are made. As a result of following the structure of derivation,

focal points will not appear at arbitrary points within regular expressions. Intuitively, focuses

will always be on points located at the front of expressions. Indeed, derivation is only ever

recursively called on subexpressions semantically located at the front of the expression. For

this reason, there will not be any expressions to the left of the focal points. Contexts will

represent left-most paths within the expression, and zippers will represent sets of such contexts.

This set-based representation is reminiscent of the partial derivatives of Antimirov (1996).

2.6.1 A Zipper for Regular Expressions Derivatives

The type of zippers that I end up adopting is extremely simple. Each zipper is simply a

set of contexts, each context being a list of regular expressions. The definition of Zipper
and Context types is given in Listing 5. I will shortly discuss how one can arrive at this

representation.

type Context = List[RegExpr]
type Zipper = Set[Context]

Listing 5 – Definition of the Context and Zipper types.

3https://github.com/epfl-lara/silex
4https://github.com/epfl-lara/silex-proofs

23

https://github.com/epfl-lara/silex
https://github.com/epfl-lara/silex-proofs


Chapter 2. Regular Expressions

Giving Meaning to Zippers

Semantically, Contexts represent sequences of expressions, whereas Zippers repre-

sent disjunctions of such sequences. For instance, the zipper Set(List(e1, e2),
List(e3)) is to be treated as semantically equivalent to the plain regular expression

Disjunction(Sequence(e1, e2), e3).

This is reflected in the unfocus function (see Listing 6), which gives meaning to zippers

in terms of regular expressions. Although the unfocus function is not used as part of the

implementation, it is useful tool to reason about zippers.

def unfocus(zipper: Zipper): RegExpr = {
def uncontext(context: Context): RegExpr =

context.foldLeft[RegExpr](Epsilon)(Sequence)

zipper.map(uncontext).foldLeft[RegExpr](Failure)(Disjunction)
}

Listing 6 – Definition of the unfocus function. The function is not used as part of the imple-
mentation, but helps providing meaning to zippers.

Arriving at the Definition of Zippers

Zippers are a way of representing the state of a traversal within a tree-like structure. Within

zippers, focal values represent currently traversed nodes, whereas contexts represents the

above nodes in the traversal. Such focal values and contexts are a faithful representation of

the original data structure: from them, one can easily recover a corresponding unfocused tree.

In this chapter, the data structure that I operate on is RegExpr, and the traversal of interest

is Brzozowski’s derivation, or more precisely, successions of such derivations. During the

execution of derivation on a zipper, the focus will be moved following the same recursive

structure as Brzozowski’s derivation. Instead of adding constructors on top of recursive calls, I

will be recording those constructors and their already determined arguments in the contexts of

zippers. Interestingly, Brzozowski’s derivation only ever introduces two types of constructors:

• First, derivations can introduce sequences. Notice that when this happens, only the left

side of the resulting sequence is further explored. Instead of building such sequences

immediately on top of recursive calls, as would be the case in an unmodified version of

derivation, our zippers will record the information needed to build such a sequence in

the context as the focus is moved towards the left subexpression. In that case, the only

information needed to reconstruct the sequence is its already determined right side.

• Secondly, derivations can also introduce disjunctions. When this happens, none of the

sides of the resulting disjunctions is known a priori. The derivation function must be

24



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

called recursively on the two subexpressions of the tree to determine both sides of the

resulting disjunction. To support disjunctions, I will not be adding nodes to our contexts

but instead split the focus. Each recursive call will be given a reference to the same

context, upon which they can independently build. Thus, zippers will need to keep track

of multiple pairs of focal values and contexts. Zippers represent disjunctions of such

pairs.

Since disjunctions are commutative, associative and idempotent, representing zippers as sets

is very natural. Furthermore, since, in the end, the only information contained within contexts

is the right side of sequences, one can represent contexts using lists of regular expressions.

Thus, contexts represent the list of all regular expressions that follow in sequence after the

focal point.

Although typical zippers can represent arbitrary steps in a traversal of a tree, the zippers of

this chapter will only be materialised in between each derivation. Add the end of a derivation,

focal points will be only either Epsilon or Failure nodes, being the only possible results of

applying Brzozowski’s derivation on basic expressions. Interestingly, Failure nodes and their

corresponding contexts can be entirely dropped from the zipper, leaving only Epsilon nodes.

Since zippers will be materialised uniquely in between derivations, where the focal points are

on Epsilon nodes, I will omit those values from the concrete representation of the present

zippers. In the end, I obtain the very simple definition shown in Listing 5.

Converting Regular Expressions to Zippers

One can convert any regular expression into a zipper by using the focus function presented

in Listing 7. Intuitively, the function focuses on a unique imaginary Epsilon node to the left

of the expression. From that node’s perspective, its Context consists of only one subsequent

expression, which is the argument expression. Since the focal value of Epsilon bears no

information, that node does not appear in the result: only the context is kept by the zipper.

def focus(expr: RegExpr): Zipper = Set(List(expr))

Listing 7 – Definition of the focus function, which converts a regular expression to an equiva-
lent zipper.

Notice that unfocus(focus(e)) is semantically equivalent to e for any regular expression e,

ensuring that focus e is a faithful representation of e.

Theorem 2.1 (unfocus_focus). For any regular expression e and sequence of characters cs,
the following holds:

unfocus(focus(e))` cs ⇐⇒ e ` cs

25



Chapter 2. Regular Expressions

Note on Proofs

I will not present proofs of the various lemmas and theorems that I state in this section. I

instead refer interested readers to the proofs in Coq available online5. A reference to the name

of the corresponding Coq theorem is given is parentheses before the theorem’s statement.

Given the order of lemmas and theorems, such proofs generally follow straightforwardly by

induction.

2.6.2 Zipper-based operations

Now that I have an alternative way of representing regular expressions in the Zipper type,

I can port operations that worked over regular expressions to this new zipper setting. With

operations ported to zippers, I will only need to translate regular expressions to zippers once,

using focus, and from then on be able to operate entirely on zippers.

Derivation

The first and most interesting operation to be ported is Brzozowski’s derivation function. The

zipper type that I adopt was designed with derivation in mind. Listing 8 presents the function

derive, an implementation of the derivation function that operate on zippers instead of

plain regular expressions. Intuitively, the function operates in two phases: an up-phase and a

down-phase.

During the up-phase, the focuses are moved up the contexts to all regular expressions that

can be reached without consuming any input. For this reason, the up helper function stops

processing a context any further when it reaches a non-nullable expression.

During the down-phase, the focuses are moved down the regular expressions, following the

same structure as Brzozowski’s derivation. The contexts that end up reaching matching

Character expressions are collected in a set and form the resulting zipper.

5https://github.com/epfl-lara/silex-proofs

26

https://github.com/epfl-lara/silex-proofs


2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

def derive(zipper: Zipper, char: Char): Zipper = {
def up(context: Context): Zipper = context match {

case Nil => Set()
case right :: parent if right.isNullable =>

down(right, parent) ++ up(parent)
case right :: parent => down(right, parent)

}
def down(expr: RegExpr, context: Context): Zipper = expr match {

case Character(pred) if pred(char) => Set(context)
case Disjunction(left, right) =>

down(left, context) ++ down(right, context)
case Sequence(left, right) if left.isNullable =>

down(left, right :: context) ++ down(right, context)
case Sequence(left, right) => down(left, right :: context)
case Repetition(inner) => down(inner, expr :: context)
case _ => Set()

}
zipper.flatMap(up)

}

Listing 8 – Definition of the derive function on zippers.

Note the striking similarity between the down helper function of Listing 8 and the down helper

function of the original derive method as it was defined in Listing 3. The two functions share

the same exact structure. Instead of representing the result as a normal RegExpr, the zipper-

based version of down builds a set of Contexts. The empty set plays the role of Failure, while

the current context, wrapped in a set, plays the role of Epsilon. Set union is used instead

of Disjunction, while Sequence is replaced by adding the subsequent expression to the

context of recursive calls.

This zipper-based derivation function indeed computes a derivative in the sense of Brzozowski

(1964), as shown by the following theorem.

Theorem 2.2 (derive_correct_unfocus). For any zipper z, character c and sequence of
characters cs, the following holds:

unfocus(derive(z, c))` cs ⇐⇒ unfocus(z)` c :: cs

As shown in Listing 9, the derivation operation can be generalised from single characters to

words of arbitrary length. The resulting function, deriveWord, successively applies derivation

by all characters of the argument word.

27



Chapter 2. Regular Expressions

def deriveWord(zipper: Zipper, word: Iterable[Char]): Zipper =
word.foldLeft(zipper)(derive)

Listing 9 – Definition of the deriveWord function on zippers, which computes successive
derivatives.

Theorem 2.3 (derive_word_correct_unfocus). For any zipper z and sequences of charac-
ters cs1 and cs2, the following holds:

unfocus(deriveWord(z, cs1))` cs2 ⇐⇒ unfocus(z)` cs1 ++ cs2

Nullability

Nullability checks can also be easily ported to zippers. To check if a zipper is nullable, one

simply checks if it contains a context that consists solely of nullable regular expressions. The

resulting function, isNullable, is shown in Listing 10.

def isNullable(zipper: Zipper): Boolean =
zipper.exists(_.forall(_.isNullable))

Listing 10 – Definition of the isNullable function.

Theorem 2.4 (nullable_correct_unfocus). For any zipper z, the following equivalence
holds:

isNullable(z)= true ⇐⇒ unfocus(z)` 〈〉

Membership Checking

Now that I have shown an implementation of the deriveWord and isNullable functions,

everything is in place for the implementation of an accepts function operating on zippers.

The function simply converts the argument regular expression into a zipper using focus,

computes its derivative by the argument word using deriveWord, and then checks if that

resulting zipper accepts the empty word using isNullable.

def accepts(expr: RegExpr, word: Iterable[Char]): Boolean =
isNullable(deriveWord(focus(expr), word))

Listing 11 – An implementation of an accepts function using Brzozowski’s derivatives on
zippers.

Theorem 2.5 (accepts_correct). For any regular expression e and word cs, the following
equivalence holds:

accepts(e, cs)= true ⇐⇒ e ` cs

28



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

def maxZipper(zipper: Zipper): Zipper = {
def up(context: Context): Zipper = context match {

case Nil => Set()
case right :: parent => down(right, parent) ++ up(parent)

}
def down(expr: RegExpr, context: Context): Zipper = expr match {

case Character(_) => Set(context)
case Disjunction(left, right) =>

down(left, context) ++ down(right, context)
case Sequence(left, right) =>

down(left, right :: context) ++ down(right, context)
case Repetition(inner) => down(inner, expr :: context)
case _ => Set()

}
zipper.flatMap(up)

}

Listing 12 – Definition of the maxZipper function. The function returns a zipper which is a
superset of all successive derivatives of the argument zipper. The function is not used as part
of the implementation.

2.6.3 Finiteness of Explorable Zippers

In the previous part, I have shown how one can represent regular expressions as zippers and

how two crucial operations, Brzozowski’s derivation and nullability checks, can be ported

to zippers. At a first glance, operations on the zipper-inspired structure do not appear more

efficient as on plain regular expressions. Although not inherently more efficient, the zippers

from the previous part have a nice property: as I will show, the number of different zippers

that can be visited by successive derivations is bounded. This fact opens the door to efficient

memoisation.

From any zipper z, a maximal zipper maxZipper(z) can be constructed (see Listing 12).

The structure of maxZipper resembles that of derivation, except that is it not subject to the

restriction of only visiting subexpressions at the front of the regular expressions. As I shall

prove, for any zipper z, the zipper maxZipper(z) is a superset of all the successive derivatives

of z.

Lemma 2.1 (derive_max_zipper_incl). For any zipper z and character c:

derive(z, c)⊆ maxZipper(z)

Lemma 2.2 (derive_max_zipper_mono). For any zipper z and character c:

maxZipper(derive(z, c))⊆ maxZipper(z)

29



Chapter 2. Regular Expressions

Lemma 2.3 (derive_word_max_zipper). For any zipper z and non-empty sequences cs:

deriveWord(z, cs)⊆ maxZipper(z)

Theorem 2.6 (finiteness). For any zipper z, their exists of set of contexts Z , such that for any

(possibly empty) sequence of characters cs:

deriveWord(z, cs)⊆ Z

Counting Contexts

For any zipper z, the set Z of Theorem 2.6 can be constructed as the union of z with

maxZipper(z). The zipper z itself must be explicitly included, as it is not guaranteed to

appear within maxZipper(z), contrarily to all of its successive derivatives. This bounds the

number of various zippers that can be encountered starting from any regular expression e to

be at most:

1+2|maxZipper(focus(e))|

The constant 1 represents the unique context of focus(e), while 2|maxZipper(focus(e))| returns

the maximal number of different subsets of maxZipper(focus(e)).

Furthermore, one can easily see that the size of maxZipper(focus(e)) is bounded by the

number of Character nodes in the original expression e. I will denote by C this number. As

expressed with this number, the maximal number of different zippers becomes:

1+2C

When character classes are disjoint, we obtain a much better bound. I will denote by Cp the

number of instances of Character(p) within e. Assuming no two different p accept the same

character, we obtain the bound:

2+∑
p

(2Cp −1)

The constant 2 accounts for both the unique context of focus(e) and the empty zipper ;.

This empty zipper is only counted once, and removed from all elements of the sum.

The finite number of different derivatives opens the door to efficient memoization, as I will

discuss in Section 2.6.5.

2.6.4 Going Beyond Membership Checking

In practice, lexical analyzers go beyond simply checking if the input can be recognized in its

entirely by a regular expression. Lexers generally repeatedly apply a procedure matching prefix

of the input against a collection of regular expressions in a greedy fashion. Each time such a

prefix is found an action is performed. This action generally consists of the emission of zero

30



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

or more tokens. After the action is done, the process restarts on the remaining input. In this

section, I explore the features required to enable this use case.

Stopping Early

In order to efficiently support prefix matching, it is primordial that processing stops as soon as

possible. Each processing step should end as soon as all candidate regular expressions can no

longer accept further input characters. To support this feature, I introduce a function to check

if a zipper admits a least one non-empty word in its language (see Listing 13). The function

makes use of two additional methods on regular expressions. The two methods respectively

check if the expression accepts at least one word (isProductive), or at least one non-empty

word (hasFirst).

Lemma 2.4 (has_first_complete). For any regular expression e:

(∃c,cs. e ` c :: cs) =⇒ e.hasFirst

Lemma 2.5 (productive_complete). For any regular expression e:

(∃cs. e ` cs) =⇒ e.isProductive

Theorem 2.7 (has_first_zipper_complete_unfocus). For any zipper z:

(∃c,cs. unfocus(z)` c :: cs) =⇒ hasFirst(z)

Note that the converse of the above implications do not always hold. The culprit is the

presence of empty character classes, that is expressions Character(p) where the predicate p

is false for all possible characters. Such expressions are considered productive, even though

they accept no sequences of characters. However, this unique direction is sufficient for our

purposes. At the point where the lexer decides to stop processing further characters of input,

this unique direction is sufficient to guarantee that the lexer indeed has found the longest

possible match.

Specifying Rules

The behaviour of lexers is generally specified given a sequence of rules. Each rule associates a

regular expression with an action to be executed when the input matches the expression. The

action generally consists in generating tokens based on the matched string.

In the implementation, rules are simply pairs of a regular expression and an action (see List-

ing 14). The action is a function from an ActionContext to Unit. The ActionContext
object provides the capability of emitting tokens, as well as retrieving the matched sequence

of characters.

31



Chapter 2. Regular Expressions

sealed trait RegExpr {
val isNullable: Boolean = ... // As previously shown.

val hasFirst: Boolean = this match {
case Character(_) => true
case Disjunction(left, right) => left.hasFirst || right.hasFirst
case Sequence(left, right) => left.hasFirst && right.isProductive ||

left.isNullable && right.hasFirst
case Repetition(inner) => inner.hasFirst
case _ => false

}

val isProductive: Boolean = isNullable || hasFirst
}

def hasFirst(zipper: Zipper): Boolean =
zipper.exists(context => context.exists(_.hasFirst) &&

context.forall(_.isProductive))

Listing 13 – Definition of the hasFirst function on zippers, along with helper methods
hasFirst and isProductive on regular expressions.

case class Rule[+T](expr: RegExpr, action: Action[T])

type Action[+T] = ActionContext[T] => Unit

trait ActionContext[-T] {
def emit(token: T): Unit
def content: String

}

Listing 14 – Definition of rules and actions. Each rule is a pair of a regular expression and an
action. The action takes as parameter an ActionContext, which provides operations to emit
tokens and retrieve the matched string.

Tokenisation

Everything is now in place for the introduction of the tokenize function (see Listing 15). The

function is given as arguments a list of rules and a sequence of input characters. The function

repeatedly matches a prefix of the remaining input characters with any of the given regular

expressions, and executes the associated action.

To define which rule is to be applied, maximal munch is enforced: The rule that accepts

longest possible prefix is to be selected. In addition, a priority scheme is enforced to break ties:

Rules appearing earlier in the sequence are given priority over rules appearing later.

32



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

def tokenize[T](rules: List[Rule[T]], chars: String): Iterable[T] = {
val tokens = new ArrayBuffer[T]()
val zippers = rules.map(focus(_.expr))
val actions = rules.map(_.action)
val charsCount = chars.length
var index = 0
def context(result: String) = new ActionContext[T] {

override def emit(token: T): Unit = tokens += token
override val content: String = result

}
while (index < charsCount) {

var current = zippers
val startIndex = index
var lastAction: Option[Action[T]] = None
var lastIndex: Int = index
while (index < charsCount && current.exists(hasNext)) {

val nextChar = chars.charAt(index)
current = current.map(derive(_, nextChar))
val candidate = current.zip(actions).collectFirst {

case (zipper, action) if isNullable(zipper) => action
}
if (candidate.nonEmpty) {

lastIndex = index
lastAction = candidate

}
index += 1

}
lastAction match {

case None =>
index = startIndex + 1

case Some(action) =>
val content = chars.substring(startIndex, lastIndex + 1)
action(context(content))
index = lastIndex + 1

}
}
tokens

}

Listing 15 – Definition of the tokenize function, which processes sequences of characters
according to a list of rules.

33



Chapter 2. Regular Expressions

In case no accepting rule is found, the first remaining character of input is discarded, and the

process resumes one character later. It is possible to change this behaviour by introducing

a rule accepting any single character at the lowest priority level. The action associated with

such a rule is guaranteed to be executed in case no other rule matches.

Note on Backtracking

Note that backtracking may take place: The function might need to place its read pointer at an

earlier position in the input sequence after matching a rule, leading to some characters being

processed multiple times. Indeed, reading a character of input does not guarantee eventual

acceptance. The tokeniser might be required to lookahead some number of characters. This

behaviour is exhibited by most lexical analysis tools (Levine, 2009; Lesk and Schmidt, 1975;

Klein, 2010) and is largely unproblematic as the required lookahead is often small.

However, it is possible to devise regular expressions that require arbitrarily many characters

of lookahead. As a pathologic example of this, consider the behaviour of the tokeniser on

regular expression a∗ ·b (any number of a’s followed by a single b) and input consisting of n a
characters. After processing the entire input of a’s for the first time, and realising that there are

no b’s in sight, the tokeniser function resumes its execution, this time starting at the second

character of input. The process continues and on and, each time resuming one character

later in the input. In the end, the function exhibits quadratic running time. In practice, this

problematic behaviour is often easily avoided. It generally suffices to add rules that match

against prefixes of problematic rules (Klein, 2010). In this specific example, adding a rule for

a∗ suffices to fix the issue.

Reps (1998) showed a technique which completely avoids this quadratic behaviour arising

from backtracking, and so without requiring user intervention. The technique is orthogonal to

the zipper-based approach that I present in this chapter, and thus could be easily incorporated

should it be deemed appropriate.

Note on Streaming

In the interest of simplicity, the function shown in Listing 15 operates on an input String.

The function thus requires the entire input to be available in its entirety before processing

starts. However, the function can be straightforwardly adapted to operate on lazy streams of

input characters, represented for instance using Java’s Reader class6, instead. In such a case,

the methods mark and reset can be used in case of backtracking to return the reader head to

the last accepted position.

In the same vein, the resulting tokens can also be made available as soon as they are emitted.

Instead of returning an explicit collection of tokens, the function can be adapted to return

6https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html

34

https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html


2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

an iterator over emitted tokens. In this fashion, the input can be processed on demand as

elements are queried from the iterators. Those features are available in silex7, the full-fledged

implementation of the library.

2.6.5 To Automata via Memoization

The fact that only a finite number of different zippers can be encountered by successive

derivations creates an opportunity to effectively apply memoization. Indeed, the list of zippers,

as manipulated by the tokenize function of Listing 15, can only range over a finite number of

different values. In this section, I define a State class (see Listing 16) to record data associated

with each such list of zippers.

trait State[+A] {
def next(char: Char): State[A]
val hasNext: Boolean
val value: Option[A]

}

Listing 16 – Definition of the State datatype, which holds the state associated with a list of
zippers.

Each State object consists of:

• A transition function to other states.

• A boolean indicating if the state can lead to accepting states following the transition

function.

• An optional value, which is set in case the set is accepting. In the present setting, the

value associated to accepting states is a unique action.

The build function (see Listing 17) converts a list of rules into a finite-state automaton

represented by its initial state. The automaton is lazily built as transitions from the initial and

subsequent states are explored.

The build function first converts the list of rules given as parameters into a list of zippers,

which it feeds to the getState helper function. The getState helper function returns the

state associated with a given list of zippers. Importantly, the function is memoized using the

states hash map. The function is guaranteed to return the same exact state given equal lists

of zippers. In case the entry has not been already memoized, a new state is created using the

aptly named newState helper function. That function creates a new state with the appropriate

properties as computed from the list of zippers given as arguments.

7https://github.com/epfl-lara/silex

35

https://github.com/epfl-lara/silex


Chapter 2. Regular Expressions

def build[A](rules: List[Rule[A]]): State[Action[A]] = {
val states: HashMap[List[Zipper], State[Action[A]]] = new HashMap()
def newState(zippers: List[Zipper]): State[Action[A]] = new State {

val nexts: LongMap[State[Action[A]]] = new LongMap()
override def next(char: Char): State[Action[A]] =

nexts.getOrElseUpdate(char.toLong, getState(zippers.map(derive(_, char))))
override val hasNext = zippers.exists(hasFirst)
override val value: Option[Action[A]] = zippers.zip(rules).collectFirst {

case (zipper, rule) if isNullable(zipper) => rule.action
}

}
def getState(zippers: List[Zipper]): State[Action[A]] =

states.getOrElseUpdate(zippers, newState(zippers))
getState(rules.map(rule => Set(List(rule.expr))))

}

Listing 17 – Definition of the build function, which lazily builds a deterministic finite-state
automaton corresponding to a collection of rules.

For each state, the transition function computes the derivatives of the associated list of zippers

and then queries the state of the resulting list of derivative zippers using the previously defined

getState helper function. Importantly, the transitions functions of the various states are also

memoised: Results of the transitions functions are stored in a map local to each state and

indexed by characters.

Note the use of two different memoised sets of functions. On the one hand, the unique states
map, which is indexed by lists of zippers, ensures the uniqueness of the states associated with

each such list. On the other hand, the nexts maps local to each state, which significantly

decrease the cost of taking transitions in the resulting automaton.

The tokenize function can be easily adapted to operate on State automata. Listing 18

presents the adapted implementation. The only difference compared to the previous imple-

mentation of Listing 15 is that tokenize no longer manipulates lists of zippers but State
objects.

Note that the States’ transition function is called in the tight main loop of the tokeniser

function. Thanks to memoisation, taking transitions will generally be very fast: In the best

case, transitioning between states only consists of a single lookup in a character-indexed map.

36



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

def tokenize[T](initial: State[Action[T]], chars: String): Iterable[T] = {
val tokens = new ArrayBuffer[T]()
val charsCount = chars.length
var index = 0
def context(result: String) = new ActionContext[T] {

override def emit(token: T): Unit = tokens += token
override val content: String = result

}
while (index < charsCount) {

var current: State[Action[T]] = initial
val startIndex = index
var lastAction: Option[Action[T]] = None
var lastIndex: Int = index
while (index < charsCount && current.hasNext) {

val nextChar = chars.charAt(index)
current = current.next(nextChar)
if (current.value.nonEmpty) {

lastIndex = index
lastAction = current.value

}
index += 1

}
lastAction match {

case None =>
index = startIndex + 1

case Some(action) =>
val content = chars.substring(startIndex, lastIndex + 1)
action(context(content))
index = lastIndex + 1

}
}
tokens

}

Listing 18 – Definition of the memoized tokenize function. The function runs the State
automaton on the input until either the end of the input or a trap state, recording the last
accepting state.

37



Chapter 2. Regular Expressions

2.6.6 Evaluation

In this section, I evaluate the performance of the approach both in terms of speed and in

terms of number of states of the resulting automata.

Speed

Figure 2.6 shows the time taken by three different implementations of lexical analysers that

count the number of non-whitespace tokens in a collection of randomly generated JSON

files (Omanashvili, 2019). The first implementation is a simple interpreter-style derivative-

based tokeniser that implements compaction (Compaction). Note that this first implemen-

tation does not feature the zipper and memoisation techniques discussed in this chapter.

The second implementation uses the library showcased in this chapter (SILEX). Finally, the

last implementation was generated by the JFlex (Klein, 2010) generator (JFlex). All three

approaches were given an equivalent specification of the token classes. The benchmarks were

run on a 2018 MacBook Pro with a 2.2 GHz Intel Core i7 processor. I used Java 1.8 and Scala

3.0.0-RC1 running on top of the Java HotSpot™ virtual machine. Each data point corresponds

to the mean result of a hundred runs on a hot virtual machine.

100 500 1,000 5,000 10,000

1

10

100

1,000

10,000

File size (KB)

T
im

e
(m

s)

Compaction
SILEX

JFlex

Figure 2.6 – Time required to count the number of valid tokens in randomly generated JSON
files of various sizes. Both axes are in logarithmic scale.

The performance of the approach shown in this chapter is orders of magnitude better than

the simple interpreter-style implementation featuring compaction. The approach is slower

than the JFlex-generated analyser, but no more than by a factor three. This small factor is

encouraging, especially given the speed advantage and optimisation opportunities offered by

code generation.

On the JSON examples, the example implementation processes input at a rate of approximately

55-60MB per second, which seems reasonable for many practical applications.

38



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

Number of states

Table 2.1 reports the maximal number of states that the lazily built automata resulting from

the approach admit in a variety of examples. I use example regular expressions taken from

both JSON and ANSI C, as well as expressions corresponding to the full languages. I compare

the number of states encountered with the number of states created by the JFlex (Klein,

2010) parser generator. The JFlex generator first computes an NFA from the given regular

expressions, then determinises the NFA into a DFA, which is finally minimised. I report the

size of all three types of automata in the table. Automata minimised by JFlex have sizes

that are as small as theoretically possible. Both the JFlex lexers and the lexers following the

approach shown in this chapter have been written by myself and correspond closely to one

another. In the case of ANSI C, the lexers’ implementations follow that of Degener (1995).

Expressions
JFlex

SILEX
NFA DFA min. DFA

JS
O

N

Keyword true 9 7 6 6

Keyword false 10 8 7 7

Keyword null 9 7 6 6

White spaces 8 5 3 3

Number 30 14 10 10

String 32 13 10 10

Full JSON 118 47 38 43

A
N

SI
C

Comment 26 9 6 6

Integer 14 8 7 7

Float 58 25 19 23

Identifier 10 5 3 3

Full ANSI C 483 248 228 240

Table 2.1 – Number of states of the various automata. The JFlex entries correspond to the
numbers reported by the lexer generator itself during code generation. To obtain the entries
corresponding to SILEX, I forced the evaluation of the lazily built automata and reported the
number of entries in the state memoization table.

2.6.7 Building a Domain-Specific Interface

In the previous parts of this chapter, I have shown how to design an efficient lexical analysis

library in Scala based on derivatives and zippers. Thanks to the use of memoization, I arrived

at a highly efficient library. The interface to the library, although serviceable, is not very

user-friendly at this point. In this section, I show how one can take advantage of the excellent

support of Scala for defining embedded domain-specific languages to offer a polished interface

to the library.

39



Chapter 2. Regular Expressions

An Interface for Regular Expressions

The first improvement is a friendlier interface for defining regular expressions. I add a collec-

tion of infix binary and postfix unary combinators as extension methods of regular expressions.

Extensions methods are a mechanism of Scala for adding methods to a class after its def-

inition. The combinators naming scheme corresponds to the usual notation for regular

expressions Sipser (2012). I also add the elem and word functions to build regular expressions

corresponding respectively to single character and sequences of characters.

extension (expr: RegExpr) {
def ~(that: RegExpr): RegExpr = Sequence(expr, that)
def |(that: RegExpr): RegExpr = Disjunction(expr, that)
def * : RegExpr = Repetition(expr)
def ? : RegExpr = expr | Epsilon
def + : RegExpr = expr ~ expr.*
def times(n: Int): RegExpr =

if (n <= 0) Epsilon else expr ~ expr.times(n - 1)
}

def elem(pred: Char => Boolean): RegExpr = Character(pred)
def elem(char: Char): RegExpr = Character(_ == char)
def elem(chars: Iterable[Char]): RegExpr =

chars.map(elem).foldLeft[RegExpr](Failure)(_ | _)
def word(chars: Iterable[Char]): RegExpr =

chars.map(elem).foldLeft[RegExpr](Epsilon)(_ ~ _)
def inRange(low: Char, high: Char): RegExpr = elem(c => c >= low && c <= high)

Listing 19 – Combinators API for regular expressions in Scala.

An Interface for Rules

The second improvement is a polished interface for defining rules. In Listing 20, I show the

definition of the |> infix operator as an extension method of RegExpr. The operator combines

a regular expression and an action into a proper Rule object. The left-hand side of the operator

is a regular expression, which can be written using the combinators discussed in the previous

paragraphs. The |> operator binds more weakly than all defined operators.

The second argument of the |> operator is an action. In the latest released version of Scala

at the time of writing8, one can take advantage of context functions (Odersky et al., 2017) to

offer a clutter-free interface for defining such actions. The parameter action of the |> method

expects a function with an implicit parameter of type ActionContext[T]. The type of such a

function is denoted using an ?=> arrow instead of the => arrow of normal functions. I then

8Scala version 3.0.0-RC1

40



2.6. Revisiting Brzozowski’s Derivatives using Huet’s Zipper

extension (expr: RegExpr) {
def |>[T](action: ActionContext[T] ?=> Unit): Rule[T] =

Rule(expr, (context: ActionContext[T]) => action(using context))
}

def emit[T](token: T)(using context: ActionContext[T]): Unit =
context.emit(token)

def content[T](using context: ActionContext[T]): String =
context.content

Listing 20 – Using context functions to provide an interface for defining rules.

define the emit and content functions which expect an implicit ActionContext[T] in the

environment. In Listing 21, I give an example of user code making use of such an interface.

The definitions of the string, number, and spaces regular expressions is omitted.

2.6.8 Flexibility

As any interpreter-style lexer, the approach that I have shown can be easily modified to support

features such as positions, arbitrary character types, stream processing, or non-blocking

interfaces (Might, 2010). I have implemented some of those features in SILEX9, the full-fledged

lexical analysis library building on the approach shown in this chapter.

Thanks to the embedding in Scala, the definition of the lexer can make use of the abstraction

capabilities offered by a high-level general purpose language. In contrast, the abstraction

capabilities offered in the input language of code generators such as lex, flex, or JFlex, are

often very limited.

Furthermore, thanks to the flexible dynamic nature of our approach, features such as lexer

reconfiguration at runtime are made possible. Such features are often harder to implement in

static generator-based approaches.

2.6.9 Applicability

The approach can be easily implemented in most functional programming languages. In this

chapter, I have presented a simple Scala implementation. To prove the correctness of the

technique, I have also built an implementation in Coq10. To provide further evidence of the

applicability of our approach, I show an implementation of a simple membership-checking

procedure technique in 56 lines of Haskell in Appendix B.

In later chapters of this thesis, I will show how one can adapt this derivatives-and-zippers

9https://github.com/epfl-lara/silex
10https://github.com/epfl-lara/silex-proofs

41

https://github.com/epfl-lara/silex
https://github.com/epfl-lara/silex-proofs


Chapter 2. Regular Expressions

val digit = elem(_.isDigit)
val nonZero = inRange('1', '9')
val hex = digit | inRange('A', 'F') | inRange('a', 'f')
val whiteSpace = elem(_.isWhitespace)
val encodedChar = elem('u') ~ hex.times(4)
val escapedChar = elem("\"\\/bfnrt")
val stringChar =

elem(c => c != '"' && c != '\\' && !c.isControl) |
elem('\\') ~ (escapedChar | encodedChar)

val wholePart = elem('0') | nonZero ~ digit.*
val fractPart = elem('.') ~ digit.+
val exponent = elem("eE") ~ elem("+-").? ~ digit.+

val jsonRules = List[Rule[String]](
whiteSpace.+ |> { },
word("null") |> { emit(NullToken) },
word("true") |> { emit(BoolToken(true)) },
word("false") |> { emit(BoolToken(false)) },
elem('[') |> { emit(OpenSquareToken) },
elem(']') |> { emit(CloseSquareToken) },
elem('{') |> { emit(OpenCurlyToken) },
elem('}') |> { emit(CloseCurlyToken) },
elem(',') |> { emit(CommaToken) },
elem(':') |> { emit(ColonToken) },
elem('"') ~ stringChar.* ~ elem('"') |> {

emit(StringToken(content)) },
elem('"') ~ stringChar.* |> { emit(InvalidToken(content))) },
elem('-').? ~ wholePart ~ fractPart.? ~ exponent.? |> {

emit(NumberToken(content.toDouble)) },
elem(_ => true) |> { emit(InvalidToken(content)) }

)

Listing 21 – Definition of the rules of a JSON lexer using the discussed interface.

mingling technique with great effectiveness to context-free expressions, and notably LL(1)

context-free expressions.

2.7 Pumping Lemma on Regular Expressions

To conclude this chapter on regular expressions, I show a proof of the pumping lemma for

regular languages that operates on regular expressions. The proof is shown here as further

evidence that regular expressions form a sufficiently expressive framework on their own,

without needing to introduce deterministic and non-deterministic automata. Traditional

proofs of the pumping lemma for regular languages usually operate at the level of automata.

In contrast, the following proof operates directly on regular expressions. The proof is short

42



2.7. Pumping Lemma on Regular Expressions

and fully constructive. Contrary to traditional proofs of the lemma, it does not make use of the

pigeon hole principle and is easy to formalise in proof assistants such as Coq. Such a proof,

with looser constants, is offered as an advanced exercise in Pierce et al. (2018)[Chapter on

inductively defined propositions], further demonstrating the amenability of the approach to

formal proofs. Ammann (2021) also presents a mechanised proof of the lemma in Coq that

she developed as part of her bachelor project that I supervised.

Lemma 2.6 (Pumping). Given a regular expression e, there exists a constant number p ≥ 1,

called the pumping constant, such that for all words w of length at least p (that is, |w | ≥ p) in

the language of e (that is, e ` w), there exists three sequences xs, y s, and zs, with the following

properties:

1. xs ++ y s ++ zs = w

2. |y s| ≥ 1

3. |xs ++ y s| ≤ p

4. ∀n. e ` xs ++ y sn ++ zs

Where y sn is the sequence that consists of the concatenation of n instances of y s.

Proof. The proof proceeds by structural induction on the parameter regular expression e.

1. In the base cases, that is e =⊥, e = ε or e = c , there exists at most one sequence accepted

by e. In those cases, it suffices to choose a pumping constant p larger than the size of

that word, if any. The proposition, which is universally quantified over the words of at

least size p, then vacuously holds. In the case of e =⊥ and e = ε, the pumping constant

p is 1, and in case of e = c, the pumping constant p is 2.

2. Consider the case e = e1 ∨ e2. By induction hypothesis, one gets pumping constants

p1 for e1 and p2 for e2. I assert that the maximum of p1 and p2 is a valid pumping

constant p for e. The goal is now to show that any word w of sufficiently large size can

be appropriately decomposed. Let w be a word accepted by e of size at least p. By

construction, it must be the case that either:

• e1 ` w , or

• e2 ` w .

Without loss of generality, let us assume that e1 ` w . By induction hypothesis on

e1, since |w | ≥ p = max(p1, p2) ≥ p1, one gets three sequences xs1, y s2, zs2 with the

following properties:

(a) xs1 ++ y s1 ++ zs1 = w

(b) |y s1| ≥ 1

43



Chapter 2. Regular Expressions

(c) |xs1 ++ y s1| ≤ p1

(d) ∀n. e1 ` xs1 ++ y sn
1 ++ zs1

I assert that the sequences xs = xs1, y s = y s1, and zs = zs1 form a valid decomposition

of w with respect to e. Indeed:

(a) xs ++ y s ++ zs = xs1 ++ y s1 ++ zs1 = w

(b) |y s| = |y s1| ≥ 1

(c) |xs ++ y s| = |xs1 ++ y s1| ≤ p1 ≤ max(p1, p2) = p

(d) ∀n. e ` xs ++ y sn ++ zs. Indeed, for any n, e1 ` xs1 ++ y sn
1 ++ zs1 and thus, by

construction, e1 ∨e2 ` xs1 ++ y sn
1 ++ zs1.

3. Consider the case e = e1 ·e2. By induction hypothesis, one gets pumping constants p1

for e1 and p2 for e2. I assert that p1+p2−1 is a valid pumping constant p for e. Let w be

a word accepted by e of size at least p. By construction, there must exist two sequences

w1 and w2 such that:

(a) w1 ++ w2 = w

(b) e1 ` w1

(c) e2 ` w2

Trivially, either |w1| ≥ p1 or |w1| < p1.

• Consider the case |w1| ≥ p1. By induction hypothesis on e1, one gets three se-

quences xs1, y s1, zs1 with the following properties:

(a) xs1 ++ y s1 ++ zs1 = w1

(b) |y s1| ≥ 1

(c) |xs1 ++ y s1| ≤ p1

(d) ∀n. e1 ` xs1 ++ y sn
1 ++ zs1

I assert that xs = xs1, y s = y s1 and zs = zs1 ++ w2 form a valid decomposition of

w with respect to e. Indeed:

(a) xs ++ y s ++ zs = xs1 ++ y s1 ++ zs1 ++ w2 = w1 ++ w2 = w

(b) |y s| = |y s1| ≥ 1

(c) |xs ++ y s| = |xs1 ++ y s1| ≤ p1 ≤ p1 +p2 −1 = p

(d) ∀n. e ` xs ++ y sn ++ zs. Indeed, for any n, e1 ` xs1 ++ y sn
1 ++ zs1 and

e2 ` w2, thus by construction e1 ·e2 ` xs1 ++ y sn
1 ++ zs1 ++ w2.

• Consider the case |w1| < p1. By |w | ≥ p, |w1|+ |w2| = |w | and p = p1 +p2 −1, one

gets:

|w1|+ |w2| ≥ p1 +p2 −1

44



2.7. Pumping Lemma on Regular Expressions

Subtracting |w1| from the left size and the strictly larger value p1 from the right

size, one gets the following strict inequality:

|w2| > p2 −1

Or, equivalently, |w2| ≥ p2. Thus, by induction hypothesis on e2, one gets three

sequences xs2, y s2, zs2 with the following properties:

(a) xs2 ++ y s2 ++ zs2 = w2

(b) |y s2| ≥ 1

(c) |xs2 ++ y s2| ≤ p2

(d) ∀n. e2 ` xs2 ++ y sn
2 ++ zs2

I assert that xs = w1 ++ xs2, y s = y s2 and zs = zs2 form a valid decomposition of

w with respect to e. Indeed:

(a) xs ++ y s ++ zs = w1 ++ xs2 ++ y s2 ++ zs2 = w1 ++ w2 = w

(b) |y s| = |y s2| ≥ 1

(c) |xs ++ y s| = |w1 ++ xs2 ++ y s2| = |w1|+ |xs2 ++ y s2| ≤ (p1 −1)+p2 = p

(d) ∀n. e ` xs ++ y sn ++ zs. Indeed, for any n, e1 ` w1 and e2 `
xs2 ++ y sn

2 ++ zs2, thus by construction e1 ·e2 ` w1 ++ xs2 ++ y sn
2 ++ zs2.

4. Consider the case e = e1
∗. By induction hypothesis, one gets pumping constants p1 for

e1. I assert that p1 is a valid pumping constant p for e. Let w be a word accepted by e of

size at least p. Let w1, w2 be two sequences such that:

(a) e1 ` w1

(b) e1
∗ ` w2

(c) |w1| ≥ 1

The condition (c) ensures that the sequence matched by e1 is non-empty. Although

quite intuitive, such a decomposition of w into w1 and w2 would formally require an

auxiliary lemma. In the interest of space, this small lemma is omitted. It however follows

straightforwardly by induction on the derivation of e1
∗ ` w2.

Trivially, either |w1| ≥ p1 or |w1| < p1.

• Consider the case where |w1| ≥ p1. In this case, by induction hypothesis on e1, one

gets three sequences xs1, y s1, zs1 with the following properties:

(a) xs1 ++ y s1 ++ zs1 = w1

(b) |y s1| ≥ 1

(c) |xs1 ++ y s1| ≤ p1

(d) ∀n. e1 ` (xs1 ++ y sn
1 ++ zs1)

I assert that xs = xs1, y s = y s1 and zs = zs1 ++ w2 form a valid decomposition of

w with respect to e. Indeed:

45



Chapter 2. Regular Expressions

(a) xs ++ y s ++ zs = xs1 ++ y s1 ++ zs1 ++ w2 = w1 ++ w2 = w

(b) |y s| = |y s1| ≥ 1

(c) |xs ++ y s| = |xs1 ++ y s1| ≤ p1 = p

(d) ∀n. e ` xs ++ y sn ++ zs. Indeed, for any n, e1 ` xs1 ++ y sn
1 ++ zs1 and

e1
∗ ` w2, thus by construction e1

∗ ` xs1 ++ y sn
1 ++ zs1 ++ w2.

• Consider the case where |w1| < p1. I assert that xs = 〈〉, y s = w1, and zs = w2 form

a valid decomposition of w with respect to e. Indeed:

(a) xs ++ y s ++ zs = 〈〉 ++ w1 ++ w2 = w1 ++ w2 = w

(b) |y s| = |w1| ≥ 1

(c) |xs ++ y s| = |〈〉 ++ w1| = |w1| ≤ p1 = p

(d) ∀n. e ` (xs ++ y sn ++ zs).

This last fact is proven by induction on n. In the base case, one has to show:

e ` xs ++ y s0 ++ zs

Which is trivially equivalent to the assumption e1
∗ ` w2.

For the inductive case, one has to show:

e ` xs ++ y sn+1 ++ zs

With the following induction hypothesis:

e ` xs ++ y sn ++ zs

The induction hypothesis can be rewritten as:

e1
∗ ` wn

1 ++ w2

Finally, from this induction hypothesis and from e1 ` w1, one can construct:

e1
∗ ` w1 ++ wn

1 ++ w2

This proposition is trivially equivalent to the goal:

e ` xs ++ y sn+1 ++ zs

This concludes the proof of the pumping lemma by structural induction on regular expressions.

2.8 Conclusion

In this chapter, I have given an introduction to the well-known concept of regular expressions.

I have shown a short and fast lexical analysis library based on Brzozowski’s derivatives and

46



2.8. Conclusion

Huet’s zippers. The library does not require any preprocessing on regular expressions, and

ends up building a deterministic finite-state automaton as it memoises derivatives. The

zipper-based representation allows for efficient grouping of expressions and their derivatives

in equivalence classes. Interestingly, as the automaton is a mere artefact of memoisation, the

technique can be understood without any prior knowledge of the theory of deterministic and

non-deterministic automata. To further exemplify that regular expressions may not need to

be transformed into automaton form to be useful, I presented a proof of the regular pumping

lemma operating on regular expressions instead of automata as would be typically the case.

For the remainder of this thesis, we shall leave behind the realm of regular languages and enter

that of context-free languages. The formalism I will be working on, context-free expressions,

is an extension of regular expressions. Interestingly, as we will discover in later chapters, the

same combination of Brzozowski’s derivatives and Huet’s zipper will prove fruitful also in that

setting, though the reasons why will differ.

47





3 Value-Aware Context-Free Expressions

Since their description by Noam Chomsky in the 1950s (Chomsky, 1956), context-free gram-

mars have become the de-facto standard for describing the syntax of programming languages.

Context-free grammars, often represented in some flavour of Backus-Naur Form (Backus et al.,

1960), are used as inputs to many parser generator tools and as the formal description of the

syntax of most programming languages.

In practice, grammars are used only as the initial description of the language. A parser genera-

tor’s purpose is to convert this description to some representation suitable for manipulation

by a parsing algorithm. Parsers represent their states using ad hoc data structures such as

tables and stacks that often appear quite remote from grammars. I argue that this disparity

between grammars and parser states makes it more challenging to understand parsers and

parsing algorithms, and it makes it more difficult to adapt their functionality.

In this chapter, I formalise the notion of context-free expressions. Context-free expressions,

as opposed to context-free grammars, prove a suitable tool to both serve as a description of

parsers and a description of parser states. This chapter serves as a formal foundation for the

following chapters, in which I will highlight parsing algorithms that operate on context-free

expressions.

The idea of context-free expressions dates back at least to Leiß (1991). Context-free expressions

are an extension of regular expressions where the Kleene star operator has been replaced

by an ability to refer to a finite set of named expressions, typically through a least-fixed-

point operator. Contrary to grammars, context-free expressions, due to their expression-

based nature, can be encoded rather naturally by using a hierarchical tree-like data structure.

Context-free expressions also bear striking similarities with the parser combinators that are

often used to write parsers in functional programming languages (Burge, 1975; Hutton, 1992;

Hutton and Meijer, 1996; Danielsson, 2010).

The presentation of context-free expressions offered in this chapter differs however signifi-

cantly from the one found in earlier works (Leiß, 1991; Krishnaswami and Yallop, 2019):

49



Chapter 3. Value-Aware Context-Free Expressions

1. Instead of introducing a local least-fix-point combinator (µ-combinator), I rely on a

global environment of expressions. Although the two representations are equivalent,

the one adopted by this thesis is arguably simpler. The adopted version, compared to

the version using local µ-combinators, is easier to convert to and from context-free

grammars. Indeed, before a translation to grammars is possible, nested µ-combinators

need to be converted to a single top-level fix-point (via Bekić’s Lemma (Bekić, 1984)).

This representation will be closer to the one adopted in the presented implementations.

2. The context-free expressions of this thesis are value aware. They describe not only sets

of accepted sequences of tokens (languages) but also the value associated with each

such sequence. This value awareness is typical of works on parser combinators, not

context-free expressions. The fact that values can be described by and contained within

expressions enables them to be both suitable parsers’ descriptions and accurate parser

states’ representations.

Theoretical works in parsing theory often treat parsing as a decision problem and

relegate value generation to an afterthought worthy only of a quick mention. In practice,

however, values are all-important. For instance, it is not sufficient for a compiler to know

that its input represents a valid program; it must know what the program is! It is high

time that parsing theory reflects this and starts treating parsing as the transformation

process it is in practice. The approach in this thesis reflects this.

In the realm of context-free grammars, attribute grammars (Deransart et al., 1988)

have been introduced towards a similar goal of enabling value-awareness. The two

approaches however differ in several aspects:

• In their most general form, attribute grammars allow for inherited attributes, in

which attributes of a node might depend on the attributes of their parent and

siblings. For the context-free expressions of this thesis, the value associated with

an expression can depend only on the values of its children. In this aspect, context-

free expressions are most similar to S-attributed grammars that allow for only

synthesized attributes, attributes that might depend only on the attributes of the

child nodes.

• For attribute grammars, attributes and their computations have to be explicitly

specified: Each rule is to be decorated with a series of assignments that specify

the values of the various attributes. In context-free expressions, the value of an

expression is determined uniquely by its constructor and does not need to be

explicitly stated. For instance, the value of a sequence expression e1 · e2 is set to

be the pair of the values of the children expressions e1 and e2. To allow for finer

control, a map constructor is introduced so that arbitrary functions can be applied

on values.

3. The formalism presented in this thesis makes a distinction between tokens and token

kinds. Tokens represent actual values, with potential payload data, whereas token kinds

are an abstraction of tokens that only preserves aspects relevant for recognition. This

50



3.1. Preliminaries

distinction, though seldom made, is important in the light of value awareness. Tokens

and kinds are there to reconcile the fact that we want to have infinitely many different

tokens with the possibility to explicitly list ways to start valid sequences. For the latter

task, I will resort to token kinds.

Expressions as Parsing States. I argue that context-free expressions form a good formalism

not only to describe parsers but also to model the runtime state of parsers. Typically, traditional

parsing algorithms need to convert the grammar description into some ad hoc collection

of data structures. In this thesis, I will show that context-free expressions can act as both a

language specification tool and as a representation of parser states. In Chapters 4 and 5, I will

develop parsing algorithms, based around the idea of derivatives (Brzozowski, 1964; Might

et al., 2011), whose states will be encoded as context-free expressions.

Context-free expressions, as defined in this chapter, will prove, due to their value-awareness,

to be a suitable formalism for describing pretty printers. I will discuss this in more detail when

discussing SCALL1ON, the parsing and pretty printing library, in Chapter 6.

3.1 Preliminaries

Recognition is the task of determining if a given sequence of tokens is part of a language.

Parsing, on the other hand, not only encompasses recognition, but also requires a value to be

produced in case of a successful parse. Contrary to formalisms such as context-free grammars,

the formalism that I present in this chapter explicitly incorporates such values. Preliminary to

the actual description of context-free expressions, I will introduce the notion of values and

their properties, as well as the concept of tokens and token kinds.

3.1.1 Values and Types

Typically, the value produced by a parser will be of the form of a parse tree, or some other

recursive data type. For the purpose of the current formalism, the type of values is not

constrained to be some flavour of parse trees, and is instead left completely abstract. I will

denote by V this set of values. The only constraint onV is that the set must be closed under

cartesian product. In other words, for any two values v1, v2 ∈ V, the pair of the two values,

denoted by (v1, v2), should also be a value.

The formalism developed in this chapter is typed. I will denote by T the set of types. For a

value v ∈V and a type T ∈T, I will denote by v : T the fact that the value v has type T . As for

values, I will assume that types are cartesian closed. I will denote by (T1,T2) ∈T the pair of

types T1 and T2. I will assume (v1, v2) : (T1,T2) if and only if v1 : T1 and v2 : T2.

The formalism also assumes the existence of functions from and to values. The set T1 → T2

denotes total functions from values of type T1 to values of type T2. Functions may themselves

51



Chapter 3. Value-Aware Context-Free Expressions

be values, but the formalism makes no such assumption.

Finally, the notion of sequences is also of great importance to the formalism. As in Chapter 2,

the notation 〈〉 represents the empty sequence, while xs1 ++ xs2 represents concatenation of

xs1 and xs2, and x :: xs represents the prepending of x to xs.

3.1.2 Tokens and Token Kinds

The input to a parser is a sequence of tokens, generally produced by an independent lexer. For

the purposes of this formalism, tokens are considered to be actual values. I will use Token ∈T
to denote the type of tokens. The values v ∈ V such that v : Token are called tokens. I will

use the lower case letter t to denote such tokens and variations of the name t s to represent

sequences of tokens.

In practice tokens will often form an infinite set. Indeed, tokens often carry around data

that ranges over an infinite domain of values. For example, an identifier token may contain

the name of the identifier, while a number token may contain the actual number that was

written. In addition, tokens may also contain meta data, such as the position of the token

in the source file. Since this data may be used to build the actual parsed value, it is of the

uttermost importance that it is preserved. However, this data might be completely irrelevant

for the purposes of recognition.

I will use the concept of token kinds to abstract away details in tokens that are irrelevant for

recognition.1 Token kinds represent (potentially infinite) groups of tokens. I will denote by K

the finite set of all kinds. Furthermore, I will assume a function kind(·) from tokens to token

kinds. For any token t , the unique kind k = kind(t ) is called the kind of t . In chapter 4, kinds

will prove also useful in the context of LL(1) checking, providing a convenient way to list sets

of accepted tokens and check for conflicts.

As an example of tokens and kinds, the strings "hello world", "foo" and "bar" could be

considered tokens, while string would be their token kind. In the proposed formalism, a

parser would only be able to state that it expects a token of kind string as the next token,

and not a specific token such as "too specific". The actual content of the token would not

factor in whether or not it is accepted, only its kind. In the case of keywords tokens, such as

if, then or else, the associated kind generally depends on the actual keyword, such that an

if token can not be accepted in place of a else token for instance.

Token kinds are meant to abstract away details that are irrelevant for recognition. During pars-

ing, the kinds alone are sufficient to decide whether or not a sequence of tokens is recognised.

However, and importantly, the resulting value described by a context-free expression may

depend on the actual tokens and their payload.

For the remainder of this thesis, I will assume a fixed set of values, types, tokens and token

1Aho et al. (2006) use tokens in place of the token kinds of this thesis, and use lexemes to refer to actual tokens.

52



3.2. Context-Free Expressions

kinds. As a simplifying assumption, I will assume each kind k ∈K to have at least one token t

such that kind(t ) = k.

3.2 Context-Free Expressions

The main abstraction offered by the formalism is that of context-free expressions. Context-

free expressions are an expression-based formalism for describing mappings between token

sequences and values. Context-free expressions, as I define them in this thesis, can be seen

as an extension of regular expressions (see Chapter 2) along two independent axes: context-

freeness and value-awareness.

3.2.1 Expressions

For every type T ∈T, let CFET denote the set of context-free expressions that associates token

sequences with values of type T . Those sets are inductively defined by the rules in Figure 3.1.

k ∈K
elemk ∈ CFEToken

T ∈T
⊥∈ CFET

v : T
εv ∈ CFET

e1 ∈ CFET e2 ∈ CFET

e1 ∨e2 ∈ CFET

e1 ∈ CFET1 e2 ∈ CFET2

e1 ·e2 ∈ CFE(T1,T2)

e ∈ CFET1 f ∈ T1 → T2

f }e ∈ CFET2

x ∈ IdT

varx ∈ CFET

Figure 3.1 – Definition of context-free expressions.

The construct elemk , ⊥, and εv form the basic context-free expressions. Intuitively, elemk

represents a single token of kind k, ⊥ represents failure, and εv represents the empty string.

The value v attached to εv represents the value associated to the empty string by the expression.

This value is important because context-free expressions are meant not only to describe a

language (a set of sequences of tokens), but also the value associated with each recognised

sequence.

The construct e1 ∨e2 represents a disjunction, that is non-deterministic choice between the

children expressions e1 and e2. Next, the construct e1 ·e2 represents the sequence of e1 and e2,

in that specific order. The construct f }e (the map combinator) represents the application of

the function f on values produced by e, and so without altering what is recognised. Finally,

the construct varx represents a reference to an expression defined in an environment. The

variables and the environment enable mutually recursive expressions.

53



Chapter 3. Value-Aware Context-Free Expressions

3.2.2 Environments

Environments are mapping from identifiers to context-free expressions of heterogenous types.

Identifiers determine the type of context-free expressions that environments may associate to

them.

I will assume, for every type T , an infinite set of distinct identifiers denoted by IdT . I assume

that all sets IdT are disjoint. I denote the disjoint union of all such sets by Id =⊔
T∈T IdT . By

extension, I will call T the type of an identifier x ∈ IdT .

An environment Γ is a finite mapping that associates, for various types T , identifiers x ∈ IdT

with a unique context-free expression e ∈ CFET of matching type. I use Γ(x) to denote the

expression associated with x by Γ.

3.2.3 Semantics

Context-free expressions associate token sequences with values. The inductive predicate

e `Γ t s v indicates that, in a given environment Γ, the expression e associates the token

sequence t s with the value v . The inductive predicate is defined by the rules in Figure 3.2.

Note that this remarkably simple definition gives a declarative specification of value-aware

parsing.

MELEM
k = kind(t )

elemk `Γ 〈t〉 t
MEPS

εv `Γ 〈〉 v

MDISL
e1 `Γ t s v

e1 ∨e2 `Γ t s v
MDISR

e2 `Γ t s v

e1 ∨e2 `Γ t s v

MSEQ
e1 `Γ t s1 v1 e2 `Γ t s2 v2

e1 ·e2 `Γ t s1 ++ t s2 (v1, v2)

MMAP
e `Γ t s v

f }e `Γ t s f (v)
MVAR

e = Γ(x) e `Γ t s v

varx `Γ t s v

Figure 3.2 – Semantics of context-free expressions.

54



3.2. Context-Free Expressions

The semantic relation formalises the intuitive meaning of the context-free expressions con-

structs:

MELEM The construct elemk assigns to the token sequences

containing a single token t of kind k the value t , that is the

token itself is the value.

MEPS The expression εv assigns to the empty sequence of tokens

the value v .

MDISL and MDISR The expression e1 ∨e2 assigns to any sequence of tokens t s

the value v if either e1 or e2 assigns the value v to t s.

MSEQ The expression e1 ·e2 assigns to any sequences of tokens t s

the pair of values (v1, v2) if t s can be decomposed as two

sequences t s1 and t s2 such that t s = t s1 ++ t s2 and e1

assigns the value v1 to t s1 and e2 assigns the value v2 to t s2.

MMAP The construct f }e assigns the value f (v) to t s provided that

e assigns v to t s.

MVAR Lastly, the construct varx assigns to t s the value v , given that

the environment Γ contains an entry e = Γ(x) for the

identifier x and that entry e assigns to the sequence of

tokens t s the value v .

As the semantics are defined, for any sequence of tokens t s, the values v assigned to t s by a

context-free expression in CFET have the type T .

Theorem 3.1 (Type correctness). For any environment Γ, type T ∈ T, expression e ∈ CFET ,

token sequence t s and value v ∈V, if e `Γ t s v then v : T .

Proof. By induction on the derivation of e ` t s v .

1. Consider the MELEM case. In that case, the expression e is bound to be

elemk ∈ CFEToken for some kind k, and thus the type T has to be equal to Token.

In addition, the value v is bound to be a token t . Therefore, it holds that v : T .

2. Consider the MEPS case. In that case, the expression e is bound to be εv ∈ CFET . Since

the value produced is v , it is the case that v : T .

3. The MDISL and MDISR trivially hold by induction hypothesis.

4. Consider MSEQ case. In that case, the expression e is bound to be e1 ·e2 ∈ CFE(T1,T2) for

some expressions e1 ∈ CFET1 and e2 ∈ CFET2 . The value v is bound to be a pair (v1, v2),

where v1 is a value produced by e1 and v2 by e2. By induction hypothesis, it is the case

that v1 : T1 and v2 : T2. Therefore, it must be the case that (v1, v2) : (T1,T2), and thus also

that v : T .

55



Chapter 3. Value-Aware Context-Free Expressions

5. Consider MMAP case. In that case, the expression e is bound to be f } e1 ∈ CFET2 for

some expressions e1 ∈ CFET1 and function f ∈ T1 → T2. The value v is bound to be the

application of f to v1, where v1 is a value produced by e1. By induction hypothesis, it is

the case v1 : T1. Therefore the application of f to v1 results in a value f (v1) which by

definition has type T2. Therefore, v : T .

6. Finally, consider the MVAR case. In that case, the expression e is bound to be varx ∈ CFET

for some identifier x ∈ IdT . Thus, it must be the case that Γ(x) ∈ CFET . By induction

hypothesis, the value v produced by Γ(x) has type T . Since the same value v is produced

by varx , it must be the case that v : T .

3.2.4 Language of a Context-free Expression

While reasoning about context-free expressions, it is sometimes useful to abstract away values

and focus on recognised sequences only. The set of recognised sequences of an expression is

called its language. Given an environment Γ, the language of a context-free expression e is the

set of token sequences t s such that there exists a value v with e `Γ t s v.

LΓ(e) := { t s | ∃v. e `Γ t s v }

3.3 Correspondence with Context-free Grammars

Context-free expressions, as I have defined them, are straightforward to convert to and from

context-free grammars. This correspondence is useful as it allows us to transfer many theorems

on the expressiveness of context-free expressions by reduction to grammars.

3.3.1 From Grammars to Expressions

Consider a context-free grammar G = (V ,Σ,R,S), where V is a finite set of non-terminals

symbols, Σ is a finite set of terminal symbols, R ⊆ V × (V ∪Σ)∗ is a set of rewrite rules, and

finally S is the start non-terminal symbol. The rewrite rules of R are pairs assigning a non-

terminal to a sequence of terminals and non-terminals symbols.

In the proposed translation to context-free expressions, the set of terminal symbols Σ act as

the set of token kinds. The values are tokens and parse trees. Parse trees contain tokens at the

leaves. At inner nodes, parse trees indicate which rule has been applied. Parse tree are defined

as follows:

56



3.3. Correspondence with Context-free Grammars

t ∈V
TREELEAF(t ) ∈V

r = (s, s1 . . . sn) ∈ R v1 ∈V . . . vn ∈V
TREENODEr (v1 . . . vn) ∈V

Figure 3.3 – Definition of parse trees. Tokens are considered values, as well as parse trees. Each
node of a parse tree is tagged with the corresponding rule and has one child for each symbol
appearing in the right-hand side of the rule.

t : Token
TREELEAF(t ) : TREE

r = (s, s1 . . . sn) ∈ R v1 : TREE . . . vn : TREE

TREENODEr (v1 . . . vn) : TREE

Figure 3.4 – Definition of the type TREE of parse trees.

For each non-terminal symbol s ∈ V , a corresponding identifier s of type TREE is created.

The environment Γ is set to assign to every such identifier s an expression of type TREE that

is the n-ary disjunction of all expressions er for all r ∈ R where the left-hand side of r is s.

The expressions er are themselves defined to be n-ary sequences of vars (in case of a non-

terminal s) and TREELEAF(·)} elemk (in case of a terminal k), which are then enclosed in

a map combinator that wraps the result in a TREENODEr . Finally, the top level expression

simply is a varS node corresponding to the start non-terminal S.

3.3.2 From Expressions to Grammars

The translation from expressions to grammars is equally simple. Each node e of the expression

and of each expression in the environment Γ, is assigned a fresh non-terminal symbol Se .

The collection of those non-terminals forms V . The set of kinds acts as the set of terminal

symbols Σ.

Each node e contributes to the rewrite rules R. In each of the following cases, the left-hand

side of added rules always correspond to the non-terminal of the considered node:

• For ⊥ nodes, no rules are added.

• For εv nodes, a rule mapping to the empty sequence is added.

Sεv 7→ 〈〉

• For elemk nodes, a rule mapping to the terminal k is added.

Selemk 7→ 〈k〉

57



Chapter 3. Value-Aware Context-Free Expressions

• For e1 ∨e2 nodes, two rules are added. One mapping to the non-terminal of e1, and one

to the non-terminal of e2.

Se1∨e2 7→ 〈Se1〉
Se1∨e2 7→ 〈Se2〉

• For e1 · e2 nodes, a single rule is added. That rule maps to the sequence of the two

terminals corresponding to e1 and e2.

Se1·e2 7→ 〈Se1 ,Se2〉

• For f }e1 nodes, the rule mapping to the non-terminal corresponding to e1 is added.

S f}e1 7→ 〈Se1〉

• For varx nodes, the rule mapping to the non-terminal corresponding to Γ(x) is added.

Svarx 7→ 〈SΓ(x)〉

Finally, the non-terminal corresponding to the top-level expression e is assigned to be the

start symbol S of the grammar.

S = Se

3.4 Canonical Representation of Expressions

Context-free expressions are meant to be not only mathematical descriptions of parsers, but

also tangible data structures representing parser states. As representations of parser states, it

is important to specify how context-free expressions are to be represented in memory. The

canonical way to represent context-free expressions is as directed binary trees. The expression

is accessed through its top-most node, and can be traversed by following references to child

nodes. In this setting, an environment is simply a collection of such trees. Variable expressions

contain a key, an index, that refers to some entry in that collection.

Note that, in the context of this work, such a data-structure is meant to be immutable. Opera-

tions that would modify the expression instead create a new version of the expression tree.

Thanks to immutability, subtrees can be freely shared by many expressions. Operations need

not resort to copying and can freely point to already existing subtrees. This also opens the way

to persistence, in which multiple versions of a data structure simultaneously exist.

Although this representation is the canonical way of representing expressions, it is not the

only one. As I shall explain in Chapter 5, a different representation based on zippers (Huet,

1997) will prove to be especially adapted for parsing algorithms based on derivatives.

58



3.5. Example

3.5 Example

As a simple example of the theoretical framework, consider the mapping L = {(anbn ,n) | n ∈N},

which assigns to sequences of n a’s followed by n b’s the integer value n. In this example,

the tokens are a and b, while their respective kinds are A and B. Towards an expression

describing this mapping, consider the singleton environment Γ that maps the identifier x to

the expression:
f } ((elemA ·varx ) ·elemB )∨ε0

where f (((t1,n), t2)) = n +1

Intuitively, the expression Γ(x) describes sequences of the form:

• a token of kind A, followed another instance of the variable x, followed by a token of

kind B, with f applied on the produced value, or

• the empty sequence of token, with value 0.

See Figure 3.5 for the canonical representation of the expression Γ(x) as a tree.

∨
ε0f}

·
· elemB

elemA varx

Figure 3.5 – Canonical representation of the expression Γ(x).

In this environment, the mapping L is simply described by the expression varx . The following

statements about the semantics of the expression varx are all derivable:

varx `Γ 〈〉 0

varx `Γ 〈a,b〉 1

varx `Γ 〈a,a,b,b〉 2

Those three statements are witnessed by the following derivations D0, D1 and D2:

D0 = MVAR

MDISR

MEPS

ε0 `Γ 〈〉 0

f } ((elemA ·varx ) ·elemB )∨ε0 `Γ 〈〉 0

varx `Γ 〈〉 0

59



Chapter 3. Value-Aware Context-Free Expressions

D1 = MVAR

MDISL

MMAP

MSEQ

MSEQ

MELEM

elemA `Γ 〈a〉 a D0

elemA ·varx `Γ 〈a,a,b〉 (a,0)
MELEM

elemB `Γ 〈b〉 b
(elemA ·varx ) ·elemB `Γ 〈a,a,b,b〉 ((a,0),b)

f } ((elemA ·varx ) ·elemB ) `Γ 〈a,b〉 1

f } ((elemA ·varx ) ·elemB )∨ε0 `Γ 〈a,b〉 1

varx `Γ 〈a,b〉 1

D2 = MVAR

MDISL

MMAP

MSEQ

MSEQ

MELEM

elemA `Γ 〈a〉 a D1

elemA ·varx `Γ 〈a,a,b〉 (a,1)
MELEM

elemB `Γ 〈b〉 b
(elemA ·varx ) ·elemB `Γ 〈a,a,b,b〉 ((a,1),b)

f } ((elemA ·varx ) ·elemB ) `Γ 〈a,a,b,b〉 2

f } ((elemA ·varx ) ·elemB )∨ε0 `Γ 〈a,a,b,b〉 2

varx `Γ 〈a,a,b,b〉 2

On the other hand, the following statements are not derivable:

varx `Γ 〈a,a,b,b〉 17 varx `Γ 〈a,b,a,b〉 2

varx `Γ 〈a,a,b〉 2 varx `Γ 〈a,a,b,b,b〉 2

3.6 Comparing Expressions

In this section, I will introduce several relations between context-free expressions. Firstly,

I will introduce a strict equivalence binary relation that will denote that two environment

and context-free expression pairs have exactly the same meaning. This relation will prove

an important tool for parser designers as they reason about their parsers, as well as for

parsing algorithm designers as they reason about transformations of parser states encoded

as expressions. Secondly, I will introduce a weaker notion of equivalence, named prefix

equivalence. Two environment and expression pairs are prefix-equivalent if and only if they

behave the same on all token sequences starting with a given prefix. Finally, I will also

introduce the derivative binary relation. This relation, as well as prefix equivalence, will prove

useful to reason about successive states of parsers.

3.6.1 Equivalence

Two context-free expressions e1 and e2 with respective environments Γ1 and Γ2 are considered

equivalent (denoted by Γ1,e1 ≡ Γ2,e2) if and only if they associate the same token sequences

to the same values.

60



3.6. Comparing Expressions

Γ1,e1 ≡ Γ2,e2

⇐⇒
∀t s, v. (e1 `Γ1 t s v ⇐⇒ e2 `Γ2 t s v)

When two expressions e1 and e2 are equivalent in a common environment Γ, I will simply note

e1 ≡Γ e2 to mean Γ,e1 ≡ Γ,e2.

e1 ≡Γ e2

⇐⇒
∀t s, v. (e1 `Γ t s v ⇐⇒ e2 `Γ t s v)

This strict notion of equivalence offers a way for parser designers to reason about their code.

Unfortunately, checking equivalence between arbitrary context-free expressions is undecid-

able. Indeed, the problem to context-free grammar equivalence, which is undecidable (Sipser,

2012, Chapter 5), can be reduced to context-free expressions equivalence. Although checking

equivalence is undecidable in the general case, there exists many useful transformations

which preserve equivalence. Such transformations are a useful tool for safely working with

parser code.

3.6.2 Equivalence-Preserving Transformations

Programmers are often faced with the task of refactoring code, either initially while writing the

code, or even some time afterwards while revisiting the code. Refactoring without introducing

bugs or otherwise changing the intended behaviour is often a difficult task (Bavota et al., 2012).

Fortunately, as I will show in this section, parser designers working with context-free expres-

sions have at their disposition a plethora of useful equivalence-preserving transformations.

When applying such transformations, programmers are ensured that the functionality of their

parser remains unchanged.

In addition, the various equivalence-preservations transformations show that context-free

expressions are instances of many interesting algebraic structures. Such structures are well-

known in some communities, notably functional programming communities. Members of

such communities can transpose their intuitions and knowledge about such abstract struc-

tures to context-free expressions. These laws generalise the properties of formal languages to

value-aware context-free expressions.

Table 3.2 presents an overview of such equivalence-preserving transformations.

61



Chapter 3. Value-Aware Context-Free Expressions

⊥·e ≡Γ ⊥ Left-zero of sequencing

e ·⊥ ≡Γ ⊥ Right-zero of sequencing

⊥∨e ≡Γ e Left-unit of disjunction

e ∨⊥ ≡Γ e Right-unit of disjunction

e1 ∨e2 ≡Γ e2 ∨e1 Commutativity of disjunction

e1 ∨ (e2 ∨e3) ≡Γ (e1 ∨e2)∨e3 Associativity of disjunction

(e ·e1)∨ (e ·e2) ≡Γ e · (e1 ∨e2) Left-factoring

(e1 ·e)∨ (e2 ·e) ≡Γ (e1 ∨e2) ·e Right-factoring

f }⊥ ≡Γ ⊥ Zero of map

i d}e ≡Γ e Identity of map

f1} ( f2}e) ≡Γ ( f1 ◦ f2)}e Composition of map

f }εv ≡Γ ε f (v) Homomorphism of map

f } (e1 ∨e2) ≡Γ ( f }e1)∨ ( f }e2) Distributivity of map over disjunctions

( f1∗∗ f2)} (e1 ·e2) ≡Γ ( f1}e1) · ( f2}e2) Distributivity of map over sequences

Table 3.2 – Equivalence-preserving transformations.

Where i d is the identity function and where the binary operation ∗∗ on functions is defined as

( f1∗∗ f2)((v1, v2)) := ( f1(v1), f2(v2)).

Note that associativity does not always hold for sequences. Although the languages of se-

quences e1 · (e2 ·e3) and (e1 ·e2) ·e3 are the same, the actual values associated with each word

may differ. The reason for this is that values of the form (v1, (v2, v3)) may be distinct from

values of the form ((v1, v2), v3). Table 3.3 presents further equivalence-preserving relations

given a way to pair up values that obey associativity.

ε1⊗e ≡Γ e Left-unit of monoid sequencing

e ⊗ε1 ≡Γ e Right-unit of monoid sequencing

e1 ⊗ (e2 ⊗e3) ≡Γ (e1 ⊗e2)⊗e3 Associativity of monoid sequencing

Table 3.3 – Equivalence-preserving transformations involving monoids.

Assuming a monoid (T,×,1), the binary combinator ⊗ is defined as e1 ⊗e2 := f×} (e1 ·e2), with

f×((v1, v2)) := v1 × v2.

Correspondence to Functional Programming Type Classes

In the area of functional programming, some algebraic structures have emerged as useful and

general design patterns. Such algebraic structures are often referred to as type classes (Wadler

and Blott, 1989). Some languages, such as Haskell (Marlow, 2010), have built-in support for

type classes. Most functional programming languages incorporate those type classes in their

standard library and/or in third-party libraries (Typelevel, 2020; Scalaz, 2020).

Context-free expressions are instances of many widely used type classes such as Functor,

62



3.6. Comparing Expressions

Monoid, Applicative/Monoidal (McBride and Paterson, 2008), and Alternative (Yorgey,

2009). Users of such type classes could easily become familiar with context-free expressions

by the simple fact that they are instances of widely used type classes. Type classes also offer an

opportunity of code reuse, as library functions that are expressed on those abstract classes

can be applied to context-free expressions.

3.6.3 Prefix-Equivalence

Sometimes, it is also useful to talk about equivalence of two expressions for token sequences

starting with a given prefix of tokens. This weaker notion will prove useful when it comes to

reasoning about the state of parsing algorithms. Indeed, at the point when the next token is

known, parsing algorithms that represent their state as an expression are free to modify them

arbitrarily as long as they preserve the semantics for sequences starting with that particular

token.

Γ1,e1 ≡t s Γ2,e2

⇐⇒
(∀t s′, v. e1 `Γ1 t s ++ t s′ v ⇐⇒ e2 `Γ2 t s ++ t s′ v)

When both expressions share the same environment Γ, I will simply use e1 ≡t s
Γ e2 to denote

the statement Γ,e1 ≡t s Γ,e2.

e1 ≡t s
Γ e2

⇐⇒
(∀t s′, v. e1 `Γ t s ++ t s′ v ⇐⇒ e2 `Γ t s ++ t s′ v)

When the prefix is empty, prefix equivalence is equal to strict equivalence.

≡〈〉 =≡

The following theorems show that ≡t s is indeed an equivalence relation and how it may be

further weakened. All theorems follow trivially from definition.

Theorem 3.2 (Reflexivity). The relation ≡t s is reflexive.

Γ,e ≡t s Γ,e

Theorem 3.3 (Symmetry). The relation ≡t s is symmetric.

Γ1,e1 ≡t s Γ2,e2 ⇐⇒ Γ2,e2 ≡t s Γ1,e1

63



Chapter 3. Value-Aware Context-Free Expressions

Theorem 3.4 (Transitivity). The relation ≡t s is transitive.

Γ1,e1 ≡t s Γ2,e2 =⇒
Γ2,e2 ≡t s Γ3,e3 =⇒
Γ1,e1 ≡t s Γ3,e3

Theorem 3.5 (Weakening). The relation ≡t s can be weakened by enlarging the prefix t s.

Γ1,e1 ≡t s1 Γ2,e2 =⇒ Γ1,e1 ≡t s1 ++ t s2 Γ2,e2

3.6.4 Derivatives

Another useful way of comparing context-free expressions is the notion of derivatives. Intu-

itively, when an expression e1 admits an expression e2 as a derivative by a sequence of tokens

t s, the expression e2 can be seen as the state of e1 after processing the tokens t s. For environ-

ments Γ1, Γ2, expressions e1 and e2, and a token sequence t s, I will denote by Γ1,e1 Àt s Γ2,e2

the fact that the pair Γ1,e1 admits the pair Γ2,e2 as a derivative by t s.

Γ1,e1 Àt s Γ2,e2

⇐⇒
(∀t s′, v. e1 `Γ1 t s ++ t s′ v ⇐⇒ e2 `Γ2 t s′ v)

As shown by the following theorems, the relation exhibits interesting properties, notably in

relation with prefix equivalence. Those properties will come in handy when reasoning about

parsing with derivatives algorithms in the following chapters. All following theorems are

straightforwardly proven by definition.

Theorem 3.6 (Reflexivity). For any environment Γ, expression e, and token sequence t s, the

following holds:

Γ,e À〈〉 Γ,e

Theorem 3.7 (Transitivity). For any environments Γ1, Γ2, Γ3, expressions e1, e2, e3, and token

sequences t s1, t s2, the following holds:

Γ1,e1 Àt s1 Γ2,e2 =⇒
Γ2,e2 Àt s2 Γ3,e3 =⇒
Γ1,e1 Àt s1 ++ t s2 Γ3,e3

Theorem 3.8 (Left Unit). For any environments Γ1, Γ2, Γ3, expressions e1, e2, e3, and token

sequence t s, the following holds:

64



3.7. Properties of Context-Free Expressions

Γ1,e1 ≡t s Γ2,e2 =⇒
Γ2,e2 Àt s Γ3,e3 =⇒
Γ1,e1 Àt s Γ3,e3

Theorem 3.9 (Right Unit). For any environments Γ1, Γ2, Γ3, expressions e1, e2, e3, and token

sequence t s, the following holds:

Γ1,e1 Àt s Γ2,e2 =⇒
Γ2,e2 ≡〈〉 Γ3,e3 =⇒
Γ1,e1 Àt s Γ3,e3

3.7 Properties of Context-Free Expressions

In this section, I define several properties of context-free expressions. Basic properties, such as

productivity (checking if the language of the expression is non-empty) or nullability (checking

if the language contains the empty sequence) among others, will play an important role

for both classifying expressions (for instance as LL(1) in Chapter 4) and guiding parsing

algorithms (as shown in Chapters 4 and 5). Fortunately, such properties are decidable, as I will

demonstrate.

Each property will be defined using a set of simple and intuitive inductive rules. In each case,

I will show how the inductively-defined properties relate to the semantics relation e ` t s v .

Finally, I will discuss how to efficiently compute such properties. Computing those properties

in a top-down way will prove hard because of the mutually recursive nature of the environment.

The technique I will discuss instead works in a bottom-up manner, propagating information

about properties from children to parents.

3.7.1 Productivity

The first property I define is productivity. A context-free expression is said to be productive if it

associates at least one sequence of tokens with a value. I derive productivity according to the

inductive rules presented in Figure 3.6.

Not all expressions are productive. For instance ⊥, ⊥·elemk , elemk ·⊥ are all non-productive,

and so regardless of the environment. Non-productive expressions can also occur due to

non-well-founded recursion, as in the expression varx with an environment mapping x to

elemk ·varx .

Unproductive expressions are trivially all equivalent to ⊥. In practice, unproductive expres-

sions arising from a non-well-founded recursion are often symptomatic of a design or pro-

gramming error.

65



Chapter 3. Value-Aware Context-Free Expressions

PEPS
PRODUCTIVEΓ(εv )

PELEM
PRODUCTIVEΓ(elemk )

PDISL
PRODUCTIVEΓ(e1)

PRODUCTIVEΓ(e1 ∨e2)
PDISR

PRODUCTIVEΓ(e2)

PRODUCTIVEΓ(e1 ∨e2)

PSEQ
PRODUCTIVEΓ(e1) PRODUCTIVEΓ(e2)

PRODUCTIVEΓ(e1 ·e2)

PMAP
PRODUCTIVEΓ(e)

PRODUCTIVEΓ( f }e)
PVAR

e = Γ(x) PRODUCTIVEΓ(e)

PRODUCTIVEΓ(varx )

Figure 3.6 – Rules for productivity.

Theorem 3.10. For any environment Γ and context-free expression e:

PRODUCTIVEΓ(e) ⇐⇒ ∃t s, v. e `Γ t s v

Proof. By induction on the derivation of PRODUCTIVEΓ(e) for the first direction, and by induc-

tion on the derivation of e `Γ t s v for the second direction.

3.7.2 Nullability

The next property I introduce is nullability. Given an environment Γ, an expression e is said

to be nullable if it associates the empty sequence of tokens with at least one value. Rules for

nullability are given by Figure 3.7.

NEPS
NULLABLEΓ(εv )

NDISL
NULLABLEΓ(e1)

NULLABLEΓ(e1 ∨e2)
NDISR

NULLABLEΓ(e2)

NULLABLEΓ(e1 ∨e2)

NSEQ
NULLABLEΓ(e1) NULLABLEΓ(e2)

NULLABLEΓ(e1 ·e2)

NMAP
NULLABLEΓ(e)

NULLABLEΓ( f }e)
NVAR

e = Γ(x) NULLABLEΓ(e)

NULLABLEΓ(varx )

Figure 3.7 – Rules for nullability.

66



3.7. Properties of Context-Free Expressions

Disjunctions are nullable when either side is nullable. In the case of sequences, both sides

have to be nullable for the entire sequence to be nullable.

Theorem 3.11. For any expression e and value v:

NULLABLEΓ(s) ⇐⇒ ∃v. s `Γ 〈〉 v

Proof. By induction on the derivation of NULLABLEΓ(e) for the first direction, and by induction

on the derivation of e `Γ 〈〉 v for the second direction.

3.7.3 First Set

Given an environment Γ, the first set of an expression e is the set containing the kinds of all

tokens at the start of at least one sequence associated with some value by e. Rules for inclusion

in the first set are given by Figure 3.8.

FELEM
k ∈ FIRSTΓ(elemk )

FDISL
k ∈ FIRSTΓ(e1)

k ∈ FIRSTΓ(e1 ∨e2)
FDISR

k ∈ FIRSTΓ(e2)

k ∈ FIRSTΓ(e1 ∨e2)

FSEQL
k ∈ FIRSTΓ(e1) PRODUCTIVEΓ(e2)

k ∈ FIRSTΓ(e1 ·e2)
FSEQR

NULLABLEΓ(e1) k ∈ FIRSTΓ(e2)

k ∈ FIRSTΓ(e1 ·e2)

FMAP
k ∈ FIRSTΓ(e)

k ∈ FIRSTΓ( f }e)
FVAR

e = Γ(x) k ∈ FIRSTΓ(e)

k ∈ FIRST(varx )

Figure 3.8 – Rules for inclusion in the first set.

The first set of an expression is an important information that parsing algorithms may take

advantage of. The parsing algorithms that I will show in Chapters 4 and 5 all make use of this

property to guide derivation, which is the process of computing the next parser state.

Importantly, observe that all derivations of k ∈ FIRSTΓ(e) follow a linear, single-threaded, path

starting at k ∈ FIRSTΓ(e) and ending at k ∈ FIRSTΓ(elemk ). Indeed, there are no rules that have

more than a single instance of k ∈ FIRSTΓ(·) as a premise, and FELEM is the only rule without

such a premise. Note that, in the general case, due to the multiple ways membership in the first

set can be derived for disjunctions and sequences, there might be multiple such derivation

paths, even possibly infinitely many. But such paths are always linear and always end with

k ∈ FIRSTΓ(elemk ).

67



Chapter 3. Value-Aware Context-Free Expressions

Theorem 3.12. The first set of a an expression e equals the set

{ k ∈K | ∃t , t s, v. kind(t ) = k ∧e ` t :: t s v }

Proof. The proposition can be expressed as an equivalence:

k ∈ FIRSTΓ(e) ⇐⇒ ∃t , t s, v. kind(t ) = k ∧e ` t :: t s v

The first direction is shown by induction on the derivation of k ∈ FIRSTΓ(e), while the second

direction is shown by induction on the derivation of e ` t :: t s v .

In both directions, in cases involving the rules FSEQR and FSEQR, Theorem 3.10 and Theo-

rem 3.11 are used to relate the predicates PRODUCTIVEΓ(·) and NULLABLEΓ(·) with the seman-

tics relation.

3.7.4 Left-Recursivity

I will call entries in the environment left-recursive if they can be reentered without consuming

any input tokens. Such left-recursive definitions are often problematic for recursive-descent

based approaches, as it can lead to infinite recursion. Formally, an identifier x in an envi-

ronment Γ is left-recursive if x ∈ VISITABLEΓ(Γ(x)). See Figure 3.9 for rules for visitability and

left-recursivity.

x ∈ VISITABLEΓ(varx )

x ∈ VISITABLEΓ(e1)

x ∈ VISITABLEΓ(e1 ∨e2)

x ∈ VISITABLEΓ(e2)

x ∈ VISITABLEΓ(e1 ∨e2)

x ∈ VISITABLEΓ(e1)

x ∈ VISITABLEΓ(e1 ·e2)

NULLABLEΓ(e1) x ∈ VISITABLEΓ(e2)

x ∈ VISITABLEΓ(e1 ·e2)

x ∈ VISITABLEΓ(e)

x ∈ VISITABLEΓ( f }e)

e = Γ(y) x ∈ VISITABLEΓ(e)

x ∈ VISITABLEΓ(vary )

e = Γ(x) x ∈ VISITABLEΓ(e)

LEFT-RECURSIVEΓ(x)

Figure 3.9 – Rules for inclusion in the visitable set and for left-recursivity.

68



3.8. Computing Properties

3.8 Computing Properties

In this section, I discuss how to efficiently compute properties such as the ones defined

previously in this chapter, and so not only for top-level expressions, but also for all their

sub-expressions at the same time. Computing properties for all sub-expressions is useful for

two reasons:

1. Some properties may rely on other properties being computed. For instance, in order

to compute membership of a kind in a first set of an expression e, nullability of sub-

expressions appearing on the left of a sequence within the expression e is needed (rule

FSEQR in Figure 3.8). The same applies for productivity of sub-expressions appearing

on the right of sequences within e (rule FSEQL in Figure 3.8).

2. Some properties will be used extensively by the parsing algorithms I will present in this

thesis. Such algorithms will traverse expressions and will need to query properties such

as membership in the first set or nullability on sub-expressions in order to guide the

traversals.

On regular expressions, this task is straightforward. For such expressions, as properties of

an expression only depends on the properties of its children, a simple recursive procedure

following the structure of the regular expression suffices to accurately compute any such

property. In this context, the recursive calls performed on child expressions are complete

and accurate, thus their result can naturally be recorded as the value of the property for that

particular subexpression. See Figure 3.11 for how productivity can be computed on regular

expressions.

isProductive(⊥) := false
isProductive(ε) := true

isProductive(elemk ) := true
isProductive(e1 ∨e2) := isProductive(e1) || isProductive(e2)

isProductive(e1 ·e2) := isProductive(e1) && isProductive(e2)

isProductive(e∗) := true

Figure 3.10 – Computation of productivity on regular expressions using a simple recursive
function. Recursive calls accurately compute the property for the sub-expressions on which
they are applied. Such results can safely be recorded, for instance by memoisation or directly
in the expression data structure.

Unfortunately, things are not so simple for context-free expressions. For context-free expres-

sions, due to the existence of variables, recursive procedures strictly following the structure

69



Chapter 3. Value-Aware Context-Free Expressions

of expressions could end up in a loop. To avoid this issue, one must make sure entries in the

environment can not be visited infinitely many times. To do so, one simple solution is remove

the entry associated with the visited variables in the argument environment. Upon revisiting a

variable, no recursive call could be made and a conservative approximation of the property

would have to be returned.

isProductiveΓ(⊥) := false
isProductiveΓ(εv ) := true

isProductiveΓ(elemk ) := true
isProductiveΓ( f }e) := isProductiveΓ(e)

isProductiveΓ(e1 ∨e2) := isProductiveΓ(e1) || isProductiveΓ(e2)

isProductiveΓ(e1 ·e2) := isProductiveΓ(e1) && isProductiveΓ(e2)

isProductiveΓ(varx ) :=
isProductiveΓ−x (Γ(x)) if x ∈ Γ

false otherwise

Figure 3.11 – Tentative definition of computation of productivity on context-free expressions
using a simple recursive function. In case of variables, the identifier is removed from the
environment before the recursive call is made.

Interestingly, this simple technique returns correct results. Indeed, for all properties P that I

have introduced, the following holds:

∀x ∈ Γ,PΓ(Γ(x)) ⇐⇒ PΓ−x (Γ(x))

In other words, for all properties and identifiers x in the environment, if the property holds for

Γ(x), then there is a derivation of PΓ(x) that does not need to unfold any corresponding varx

node.

Although this simple recursive procedure would give back a correct result for the top-level

expression, it would also mean that, as soon as entries are removed from the environment, the

result of recursive calls to sub-expressions could potentially be incomplete.

As a example, consider a call to isProductiveΓ(varx ) in the following environment Γ:

Γ(x) := vary ∨εv

Γ(y) := varx

In this example, the sub-expression vary in Γ(x) would not be determined to be productive by

the suggested isProductive procedure, even though it clearly is, as varx is determined to be

productive in the end.

70



3.8. Computing Properties

To get an accurate result for sub-expressions, the computation would have to be restarted for

entry in the environment. On top of this, the simple recursive procedure showcased exhibits

terrible runtime complexity, which can be bounded by:

O (size(e) · ∏
x∈Γ

size(Γ(x)))

Techniques such as memoisation could be used to somewhat address this complexity problem,

but the issue of not being able to accurately compute the property for all sub-expressions in a

single pass would remain. To fix this issue, I suggest that the computation of properties be

performed not top-down, but in a bottom-up fashion, where child expressions inform their

parent. The resulting technique is able to compute inductive properties with complexity:

O (size(e)+ ∑
x∈Γ

size(Γ(x)))

In addition, the technique I will show is able to compute the property not only for the top-level

expression, but also for all its subexpressions in a single pass.

3.8.1 Computing Properties with Propagation Networks

I suggest the use of propagation networks (Radul, 2009) as a way to efficiently and globally

compute inductive properties of context-free expressions. Propagation networks are directed

networks of cells. Cells store some kind of information, which they either are initially provided

with or receive from other cells in the network. Upon reception of information, cells update

their state and propagate new information to some other cells in the network.

Propagation networks can be used to compute properties of context-free expressions. The

technique operates in three phases:

1. In the first phase, the context-free expression and all expressions in the environment

are traversed in a top-down fashion to build the propagation network.

2. In the second phase, information is propagated through the network according to the

rules local to each cell. Such rules reflect the inductive rules that define the various

properties. In this setting, information flows from child to parent nodes in the expression

trees.

3. In the third and final phase, the properties of each expression node is read from the

corresponding cell.

As cells can only gain information, information spreads monotonically over the network.

Furthermore, since cells only propagate new information, coupled with the fact that cells can

only be in a finite number of states, the process is bound to terminate.

71



Chapter 3. Value-Aware Context-Free Expressions

Interestingly, the technique supports the online addition of cells. Such an addition would

happen when a new expression is created from existing expressions. In this case, properties of

the new expression can be computed from a network of cells in which information has already

been partially propagated.

3.9 Parsing with Derivatives

In this section, I give a short presentation of the parsing with derivatives algorithm originally

described by Might et al. (2011). The algorithm uses a variant of the Brzozowski’s derivation

operation adapted to context-free expressions to iteratively process the sequence of input

tokens for left to right. The presentation that I will give here however differs in two significant

aspects:

1. First of all, the algorithm is adapted to fit the framework presented in this chapter.

Instead of relying on laziness and memoization to build cyclic structures, I will use the

explicit notion of variables and environments. This approach is most similar to the

symbolic approach of Henriksen et al. (2019). An actual implementation may still use

such techniques, but the following presentation makes this cyclic structure explicit.

2. Secondly, I will make use of the properties such as nullability and first sets as defined

earlier in this chapter to guide the various functions, notably derivation. In the case of

derivation, this will avoid creating non-productive derivative subexpressions. In the

original approach by Might et al. (2011), a technique called compaction is used to prune

those expressions after the fact. Such a technique is no longer necessary in this setting.

The presentation does not to aim to produce a practical algorithm, but instead aims to show

how the parsing with derivatives approach can be transposed to the theoretical framework

suggested by this thesis.

3.9.1 Nullifying Expressions

The first operation defined is an operation to nullify, or close, an expression. This operation will

be used by the upcoming derivation function. When applied on a sequence, that derivation

function will sometimes need to nullify the left expression. In the context of regular expres-

sions, this consisted in replacing the nullable left expression e by an ε expression, or simply

ignoring it. In the current setting, this operation is more involved due to value-awareness.

Given an expression e in an environment Γ, the resulting expression νΓ(e) is to be equivalent

to the argument expression for the empty sequence of tokens, and equivalent to ⊥ for all other

sequences. The operation is only interesting on nullable expressions, therefore the definition

assumes as a precondition that NULLABLEΓ(e), and as such will only be defined for constructs

that can be nullable.

72



3.9. Parsing with Derivatives

νΓ(εv ) := εv

νΓ(e1 ∨e2) :=


νΓ(e1) if ¬NULLABLEΓ(e2)

νΓ(e2) if ¬NULLABLEΓ(e1)

νΓ(e1)∨νΓ(e2) otherwise

νΓ(e1 ·e2) := νΓ(e1) ·νΓ(e2)

νΓ( f }e) := f }νΓ(e)

νΓ(varx ) := varxν

The operation can be understood as simply trimming away branches of disjunctions that are

not nullable, and replacing references to variables in the environment with their nullified

counterpart. Note that the operation introduces variables that refer to identifiers that may

not be present in Γ. Such entries correspond to the nullified counterparts of the original

entries, and need to be introduced. Therefore the resulting expression only makes sense in an

environment that includes such entries. The following operation augments an environment

with all nullified entries when applicable:

N (Γ) := Γ∪ { xν 7→ νΓ(e) | x 7→ e ∈ Γ, NULLABLEΓ(e)∧x 6= xν }

The identifiers used to refer to the nullified version of an identifier x is xν. I will assume that

such identifiers are not introduced anywhere apart from the previously defined ν(·) operation.

Additionally, one may use the simplifying fact that nullifying an expression is an idempotent

operation and reflect that in the identifier naming scheme:

(xν)ν = xν

Furthermore, note that in practice elements could be added to the environment in a lazy

fashion, only when the entry is actually needed. In the end, some of the entries may not need

to be computed at all.

3.9.2 Derivation

Now that the nullify operation has been defined, I can present the adapted derivation function

δt
Γ(·). The following definition requires as a precondition that the kind of t is part of the first

set of the derived expression. Derivatives by a token t of an expression that does not contain

the kind of t in its first set is bound to be unproductive.

73



Chapter 3. Value-Aware Context-Free Expressions

δt
Γ(elemk ) := εt

δt
Γ(e1 ∨e2) :=


δt
Γ(e1) if kind(t ) 6∈ FIRSTΓ(e2)

δt
Γ(e2) if kind(t ) 6∈ FIRSTΓ(e1)

δt
Γ(e1)∨δt

Γ(e2) otherwise

δt
Γ(e1 ·e2) :=


δt
Γ(e1) ·e2 if ¬NULLABLEΓ(e1)∨kind(t ) 6∈ FIRSTΓ(e2)

νΓ(e1) ·δt
Γ(e2) if kind(t ) 6∈ FIRSTΓ(e1)

δt
Γ(e1) ·e2 ∨νΓ(e1) ·δt

Γ(e2) otherwise

δt
Γ( f }e) := f }δt

Γ(e)

δt
Γ(varx t s ) := varx t s :+ t

Derivatives context-free expressions are paired with derivative environments, which are com-

puted as follows:

Γ〈〉 := Γ
Γt s :+ t := N (Γt s)∪ { x y s :+ t 7→ δt

Γt s (e) | x y s 7→ e ∈ Γt s ∧kind(t ) ∈ FIRSTΓt s (e)∧∃xs.xs ++ y s = t s }

The original expression is to be paired with the environment Γ〈〉, while derivatives of that

expression by token sequences t s are to be paired with Γt s . Note that, in the above scheme,

identifiers superscripted by 〈〉 are considered to refer the original identifier without the super-

script.

x〈〉 := x

As before, elements could be added to the environment lazily, as identifiers for such entries

are encountered.

The algorithm retains the simplicity and elegance of the original parsing with derivatives

algorithm by Might et al. (2011).

Complexity and Performance

Adams et al. (2016) showed that the complexity of parsing with derivatives is at worst cubic in

the number of input tokens. This result relies on computations being memoised, and so would

not directly apply to the algorithm showed here. I shall make no statement on the theoretical

complexity of that algorithm.

Unfortunately, despite its simplicity and elegance, the parsing with derivatives approach has

not seen wide adoption in practice. The performance of the approach has been widely seen

74



3.9. Parsing with Derivatives

as impractical: The original paper by Might et al. (2011) reports a parsing time of 3 minutes

for 31 lines of Python code, which can be reduced to 2 seconds by applying a compaction

optimisation. Over time, further optimisations have been suggested (Adams et al., 2016).

Although performance has reportedly been getting better to the point of being a relatively

small factor away from other general context-free parsing techniques, the approach also

arguably lost in elegance.

In this thesis, I will show how one can adapt the parsing with derivatives technique to the

class of LL(1) context-free expressions (Chapter 4). I will show that parsing with derivatives

algorithms can exhibit quadratic behaviour on this class of expressions, even though tradi-

tional parsing algorithms exhibit worst-case linear running time. I will show how one can use

a zipper to reduce the theoretical complexity down to linear and ameliorate the performance

in practice (Chapter 5). I will also show how one can port the zipper technique from LL(1)

expressions to general context-free expressions (Chapter 7). This last technique is reminiscent

of an other zipper-based approach by Darragh and Adams (2020) that has been developed

concurrently and independently.

75





4 LL(1) Context-Free Expressions

In this chapter, I will present LL(1) context-free expressions that are a class of context-free

expressions where all ambiguities can be resolved using only a single lookahead token. I will

present a novel formal characterisation of this class and present a procedure to efficiently and

statically check the LL(1) property.

In the second part of this chapter, I will discuss how the derivation computation can be

specialised to LL(1) expressions. From this observation, I will then present a top-down pars-

ing algorithm for LL(1) context-free expressions. Through an example, I will show that the

complexity of this algorithm is unfortunately (at least) a worst-case quadratic. However, this

algorithm proves to be an excellent stepping stone towards an efficient algorithm. In Chap-

ter 5, I will show that, by simply employing a zipper data-structure to represent the LL(1)

context-free expressions, the simple parsing algorithm presented in this chapter becomes

worst-case linear time.

Throughout this chapter and the next, I will prove lemmas and theorems about the correctness

of the approach. The lemmas and theorems follow closely those of a formalisation in Coq and

developed jointly by Jad Hamza and myself. Due to the encoding of the state as an expression

by the algorithm, the proofs are rather straightforward and, hopefully, easy to follow.

4.1 Unambiguous Context-Free Expressions

Natural languages are very often riddled with syntactic ambiguities. Sentences in natural

languages often have multiple meanings, and knowing which one is intended by the speaker

frequently depends on the context. This ambiguity allows for terseness and efficient human

communication. When parsing natural languages, handling ambiguities is primordial.

On the other hand, in the context of formal languages, non-ambiguity is the norm. One of

the very first phases of formal language tools, such as compilers, is converting input text into

a structured representation that the rest of the tool can then handle. This parsing process

is entirely deterministic: Given the same input, the same structured representation is to be

77



Chapter 4. LL(1) Context-Free Expressions

produced by the parser. In this setting, a parser is simply a function from input tokens to some

sort of structured value. Unambiguous context-free expressions, as descriptions of exactly

such functions, appear to be a perfect fit for such a task.

Given an environment Γ, unambiguous context-free expressions e are those that, for all tokens

sequences t s, assign at most a single value v to t s. Conversely, ambiguous context-free

expressions are those which are not unambiguous. Unambiguous context-free expressions

are descriptions of deterministic functions from input tokens to values.

Unfortunately, deciding whether a context-free expression is ambiguous is impossible in the

general case, as it is equivalent to the problem of context-free grammar ambiguity which is

itself undecidable (Hopcroft et al., 2001a, Theorem 9.20 on pages 405–406.). Therefore, all

hopes of precisely deciding whether a context-free expression is unambiguous vanish.

In practice, in addition to unambiguity, there are also performance requirements. The usual

target for parsers in compilers is linearity: The parsing time should be only linearly propor-

tional to the size of the input. In this chapter, I will focus on a class of context-free expressions

called LL(1) context-free expressions. I will formally describe the class and demonstrate how

to efficiently decide whether a context-free expression is part of that class. In the later parts

of the chapter, I will show a parsing algorithm for such expressions, and prove its correct-

ness. Although simple and elegant, the parsing algorithm will prove to be performing poorly.

In Chapter 5, I will demonstrate that a simple change in the data structure used to represent

expressions turns this algorithm into an efficient linear-time parsing algorithm.

Even though unambiguity is undecidable for context-free grammars, there still exists useful

subclasses of unambiguous context-free grammars that are decidable. LL(1) context-free

grammars are such a class. In addition to being unambiguous, such LL(1) grammars are know

to support linear-time parsing (Aho et al., 2006). Many programming languages, most notably

Python (Van Rossum and Drake, 2009), have their syntax described using LL(1) grammars.

The traditional LL(1) parsing algorithm, which operates on a table and a stack, runs in time

linear in the size of the input. In this chapter, I will transpose the notion of LL(1) grammars

to the realm of context-free expressions. The characterisation that I propose is not a direct

translation of that of LL(1) grammars. Indeed, I will show a novel characterisation of the class

based on the idea of should-not-follow sets as opposed to the traditional FOLLOW sets. I will

arrive at such a characterisation through the lens of derivation.

4.2 Towards Unambiguity via Derivation

In this section, I will build a class of unambiguous context-free expressions that will end up

corresponding to the class of LL(1) context-free grammars. I will arrive at this class, which I

will also call LL(1) context-free expressions, in a very natural fashion thanks to context-free

derivation.

78



4.2. Towards Unambiguity via Derivation

In the introduction of this chapter, I defined a context-free expression e with associated

environment Γ to be unambiguous if and only if, for all token sequences t s, there was at most

one value v such that e `Γ t s v .

A first observation to be made is that, in order for a context-free expression to be unambigu-

ous, it should at least be unambiguous for the empty sequence of tokens. If an expression

assigns two different values to the empty sequence of tokens, then trivially that expression is

ambiguous. That observation, as trivial as it may seem, is an important one to make.

Building on that first observation, a second observation is that if, for any token sequence t s,

there exists at least one derivative of the expression by t s that is unambiguous for the empty

sequence of tokens, then the original expression is bound to be unambiguous. Typically, this

one derivative can be the result of repeated application of a derivation function such as the

one inspired by Might et al. (2011) and shown in Section 3.9.

To substantiate this second observation, consider an expression e in an environment Γ such

that for all token sequences t s there exists a derivative by t s that is unambiguous for the

empty sequence of tokens. Towards a contradiction, assume that the original expression is

ambiguous. Therefore, let t s be a sequence of tokens and v1, v2 be two distinct values that

witness an ambiguity.

e `Γ t s v1

e `Γ t s v2

Let e ′ in environment Γ′ be a derivative of the first expression by the token sequence t s that is

unambiguous for the empty sequence of tokens.

Γ,e Àt s Γ′,e ′

From the fact that it is a derivative of Γ,e by t s, we also have that:

e ′ `Γ′ 〈〉 v1

e ′ `Γ′ 〈〉 v2

Which contradicts the assumption that this particular derivative is unambiguous for the empty

sequence of tokens. Therefore, the original expression Γ,e is bound to be unambiguous.

Thanks to this insight, the context-free expression unambiguity problem can be reframed as a

problem on expressions and a derivation function. Given a derivation function, an expression

is unambiguous if and only if it is unambiguous for the empty sequence of tokens, and remains

so after an arbitrary number of applications of the derivation function.

The derivation function that I will use in this explanatory argument is the one from Section 3.9.

In the actual formal development that follows this introduction, I will substitute it for an-

79



Chapter 4. LL(1) Context-Free Expressions

other derivation function that is tailored to the class of expressions that I will be building.

Introducing that specialised derivation function at this point would be inappropriate and

rather abrupt, as it makes assumptions about the inhabitants of the class that I am trying to

progressively ease into! In order to save ourselves from circular arguments, the derivation

function from Section 3.9 adapted from Might et al. (2011) is used.

As previously mentioned, context-free unambiguity is unfortunately undecidable. The class

that I will be describing therefore has to be an approximation of this class of unambiguous

context-free expressions. Since we wish for all elements of our class to be unambiguous, the

class should be a subclass of unambiguous expressions. In order to be decidable, the class

must be a strict subclass. In other words, approximations must be made in order for the class

to potentially be decidable. The criteria to be rejected from the class are therefore expected to

be somewhat imprecise.

4.2.1 First Criterion

The first criterion to be rejected from the class is the presence of a disjunction subexpression

where both sides are nullable. When an expression contain such a subexpression, I will say

that it exhibits a Nullable/Nullable conflict. All expressions that assign different values to the

empty sequence of tokens exhibit such a conflict, and are therefore trivially ruled out by this

criterion. Additionally, the criterion rightfully rejects some expressions which, although they

themselves are not nullable, would exhibit multiple nullable derivations under some number

of applications of the derivation function. For instance consider the following expression e

and the derivative e ′ resulting from the application of the derivation function with the token t

of kind k as argument.

e = elemk · (ε0 ∨ε1)

e ′ = εt · (ε0 ∨ε1)

Although e itself is not nullable, it contains a subexpression which accepts multiple derivations

of nullability, namely ε0 ∨ε1. Under application of the derivation function, this subexpression

ends up in a place where it contributes to the nullability of the expression e ′, thereby making

e ′ ambiguous for the empty sequence of tokens. In turn, this shows that e is ambiguous.

Note that this first criterion is already somewhat imprecise. It can rules out unambiguous

expressions where both sides produce the same value, or where the disjunction appears in an

unproductive context, such as in the following examples:

ε0 ∨ε0 or (ε0 ∨ε1) ·⊥

However, rejecting such expressions is not impactful as they can be trivially transformed into

equivalent expressions that are part of the class.

80



4.2. Towards Unambiguity via Derivation

Unfortunately, this first criterion alone is not sufficient to rule out all ambiguous expressions.

There exist ambiguous expressions that satisfy this criterion, such as:

(elemk ·ε0)∨ (elemk ·ε1)

The expression contains only a single disjunction subexpression, of which neither side is

nullable. Therefore, the expression would not be rejected by the first criterion. It is how-

ever ambiguous, since the expression assigns both the value (t ,0) and the value (t ,1) to the

sequence of tokens 〈t〉, and so for any token t of kind k.

Therefore, we should not only rule out expressions that contain disjunction subexpressions

where both sides are nullable, but also all expressions which, under an arbitrary number of

applications of the derivation function, contain such a disjunction subexpression.

Observe that the disjunction subexpressions that appear in the result of the derivation func-

tion from Section 3.9 are either present in the original expression, or are introduced by the

derivation function. The derivation function introduces disjunctions in the following cases:

1. When deriving a disjunction, a disjunction of the derivatives is introduced in case both

sides admit the derived token in their first sets.

2. When deriving a sequence when the left expression is nullable, a disjunction is also

introduced when both sides admit the derived token in their first sets.

3. Additionally, some disjunctions may be introduced when encountering a sequence

subexpression e1 · e2 as part of the potential call to νΓ(e1). Such disjunctions do not

introduce Nullable/Nullable conflicts by themselves, as disjunctions are introduced

there only when both sides are already nullable. When the expression satisfies this first

criterion, calls to ν(·) on subexpressions are bound not to introduce disjunctions.

One irrefutable way to ensure that the disjunctions introduced by the derivation function are

not problematic is to make sure that the derivation function never introduces disjunctions in

the first place! In conjunction with the first criterion, the next two criteria impose restrictions

on the expressions of the class to ensure that this holds.

4.2.2 Second Criterion

The second criterion imposed on all expressions of the class is the absence of disjunctions

where both sides share a common kind in their first sets. When an expression does contain

such a subexpression, I will say that the expression exhibits a First/First conflict. Given a

disjunction e1∨e2, this criterion ensures that, for any token t of kind k, either k 6∈ FIRSTΓ(e1) or

k 6∈ FIRSTΓ(e2), which ensures that the derivation function can not ever introduce a disjunction

when encountering a disjunction.

81



Chapter 4. LL(1) Context-Free Expressions

Interestingly, this criterion is preserved by derivation. Indeed, by design the derivation func-

tion never introduces disjunctions for elements of the class. Therefore, conflicting disjunctions

may not be created by derivation.

Note that this criterion rules out some unambiguous expressions such that:

(elemk ·εt )∨ (elemk ·elemk )

In some cases however it is possible to obtain an equivalent expression that is part of the class,

and so through a process called left-factoring. In this particular instance, the above expression

is equivalent to the following expression which does not exhibit such a conflict:

elemk · (εt ∨elemk )

4.2.3 Third Criterion

The third and final criterion aims to ensure that disjunctions are never introduced when

encountering a sequence expression during derivation. The derivation function will introduce

such a disjunction when encountering a sequence e1 ·e2 where e1 is nullable and the first sets

of e1 and e2 are not disjoint.

Therefore, one criterion that seems rather natural is to exclude from the class those expressions

which contain sequence subexpressions where the left is nullable and both sides share a

common kind in their first sets. When directly applied on an expression that is not excluded

by this criterion, the derivation function will indeed not introduce a disjunction.

Unfortunately, this property is not preserved by derivation, as witnessed by the following

example.

e = (elemk · (εt ∨elemk )) ·elemk

e ′ = (εt · (εt ∨elemk )) ·elemk

In this example, the expression e ′ is the result of the derivation of e by a token t of kind k.

Observe that the expression e did not violate the suggested property. Although derivation did

not introduce any disjunction, it did introduce a fresh sequence where the left is nullable and

both sides share a common element in their first sets.

To circumvent this issue, the approach that I propose in this thesis is to introduce a property

of expressions called the should-not-follow set. Intuitively, the should-not-follow set of an

expression is the set of kinds that are prohibited to appear as part of the first set of any directly

subsequent expression. I will shortly introduce this property formally.

With this property in place, the third and final criterion will be that, for all sequence subex-

pressions e1 ·e2 appearing in the expression, the should-not-follow set of e1 should be disjoint

82



4.3. The LL(1) Class

from the first set of e2. As I will later formally prove, this criterion ensures, for any sequence

subexpression e1 ·e2, that when e1 is nullable then the first set of e1 is disjoint from the first

set of e2. Additionally, and importantly, this criterion is preserved by derivation. When an

expression violates this criterion, I will say that it exhibits a First/Follow conflict.

4.3 The LL(1) Class

So far in this chapter, I have introduced three decidable criterions which characterise a

subclass of unambiguous context-free expressions. Violations of those criterions are called

conflicts, and can be of the following form:

Nullable/Nullable conflict: In which a context-free expression contains a disjunction where

both sides are nullable. The absence of this conflict ensures that the expression can not

be ambiguous for the empty sequence of tokens.

First/First conflict: In which the expression contains a disjunction where both sides have

non-disjoint first sets. The presence of this conflict means the derivation function

may introduce further disjunctions, which may exhibit conflicts. The absence of such

conflicts rules out the introduction by the derivation function of any Nullable/Nullable

or First/First conflicts.

First/Follow conflict: In which the expression contains a sequence e1 ·e2 where the should-

not-follow set of the left side intersects with the first set of the right side. The presence of

this conflict makes it so that repeated application of the derivation function is no longer

guaranteed not to introduce disjunctions when encountering sequences. Absence of

such conflicts rules out the possibility a sequence where the left side is nullable and

both sides have non-disjoint first set ever being introduced. Such a sequence, when

subsequently derived, would introduce a disjunction, which could then potentially

exhibit Nullable/Nullable or First/First conflicts.

As further made evident by the name of the various conflicts, the class of expressions that

I have described ends up corresponding to the class of LL(1) context-free grammars. LL(1)

grammars are context-free grammars that are exempt from conflicts similar to those that have

been introduced here. In this grammar setting, the absence of such conflicts makes it possible

to always decide which grammar rule is to be applied looking at the next token of input alone.

In turn, this allows for a conversion of the grammar to an efficient deterministic stack-based

automaton, in which transitions are taken only looking at the immediately next token of input.

Interestingly, in the realm of context-free expressions, the absence of conflicts as defined

in this thesis make it possible to immediately resolve all alternatives encountered by the

derivation function during parsing, and so only looking at the next input token, that is the

token argument to the derivation function.

83



Chapter 4. LL(1) Context-Free Expressions

In the next sections, I will formally introduce the notion of should-not-follow sets and of LL(1)

conflicts through inductive predicates. Next, I will introduce a derivation function specialised

to LL(1) expressions and show an adaptation of the parsing with derivatives algorithm based

on that derivation function. In the subsequent chapter, I will present a technique based on

Huet’s zipper to turn this parsing with derivatives algorithm into an efficient algorithm that will

bear striking similarities with the deterministic stack-based automaton employed to execute

LL(1) grammars.

4.3.1 Should-Not-Follow Set

The should-not-follow set of an expression is the set of kinds that could introduce an ambi-

guity if an expression directly following in sequence was to contain that kind in its first set.

Membership in the should-not-follow set is inductively defined in Figure 4.1.

This definition differs from the similar concept of FLast set used by Krishnaswami and Yallop

(2019) and introduced in earlier works (Johnstone and Scott, 1998; Brüggemann-Klein and

Wood, 1992). Instead of introducing elements to the set in the case of disjunctions, the

previous works do so in the case of sequences. Although the two concepts share the same goal

of detecting conflicts in sequences, their definition of FLast imposes additional restrictions

on expressions: nullable expressions are disallowed on left part of sequences. This restriction

is not needed in this approach, nor in conventional LL(1) definition for context-free grammars

(Aho and Ullman, 1972, Theorem 5.3, page 343).

The concept of should-not-follow set is used as an alternative to the concept of FOLLOW set

generally used in the context of traditional LL(1) parsing. Whereas the FOLLOW set is a global

property of a grammar, the should-not-follow set of an expression enjoys a more local nature.

The should-not-follow set of an expression is a property of the expression alone; it does not

matter where the expression appears, only the expression itself induces the set.

Kinds k are added to the should-not-follow set in the case of disjunctions when one side

starts with the given kind k and the other side is nullable (rules SDISFN and SDISNF). For all

constructs, the should-not-follow sets are additionally inherited from children expressions.

In case of sequences, the elements are only inherited from a side when the other side is

productive, respectively nullable (rules SSEQL and SSEQR).

As expressed by the following theorem, membership of a kind k in the should-not-follow set

of an expression e indicates that there exists a token t and two sequences of tokens t s1 and

t s2 such that both t s1 and the sequence t s1 ++ t :: t s2 are part of the language of e. If the

expression e was to be followed by an expression starting with a token of kind k, a parser could

not directly decide if it should stay in e or leave e and move its attention to the subsequent

expression.

84



4.3. The LL(1) Class

SDISFN
k ∈ FIRSTΓ(e1) NULLABLEΓ(e2)

k ∈ SN-FOLLOWΓ(e1 ∨e2)
SDISNF

NULLABLEΓ(e1) k ∈ FIRSTΓ(e2)

k ∈ SN-FOLLOWΓ(e1 ∨e2)

SDISL
k ∈ SN-FOLLOWΓ(e1)

k ∈ SN-FOLLOWΓ(e1 ∨e2)
SDISR

k ∈ SN-FOLLOWΓ(e2)

k ∈ SN-FOLLOWΓ(e1 ∨e2)

SSEQL
k ∈ SN-FOLLOWΓ(e1) NULLABLEΓ(e2)

k ∈ SN-FOLLOWΓ(e1 ·e2)

SSEQR
PRODUCTIVEΓ(e1) k ∈ SN-FOLLOWΓ(e2)

k ∈ SN-FOLLOWΓ(e1 ·e2)

SMAP
k ∈ SN-FOLLOWΓ(e)

k ∈ SN-FOLLOWΓ( f }e)
SVAR

e = Γ(x) k ∈ SN-FOLLOWΓ(e)

k ∈ SN-FOLLOWΓ(varx )

Figure 4.1 – Rules for inclusion in the should-not-follow set.

Theorem 4.1 (Soundness). For any environment Γ, expression e, and kind k, if k is part of the

should-not-follow set of e, then there exist a token t of kind k and (possibly empty) sequences of

token t s1 and t s2 such that:

e `Γ t s1 v1 ∧ e `Γ t s1 ++ (t :: t s2) v2

Proof. Follows by induction on the derivation of k ∈ SN-FOLLOWΓ(e).

The should-not-follow set is however not complete in the general case: It is possible to devise

an environment Γ and an expression e, such that there exist a token t of kind k that is not part

of the should-not-follow set of e, and two sequences t s1 and t s2 such that t s1 and t s1 ++ t :: t s2

are in the language of e.

For example, let Γ be an arbitrary environment and let t be an arbitrary token of kind k.

Consider the expression e = (elemk ·εt )∨ (elemk ·elemk ). Clearly, both the sequences 〈t〉 and

〈t , t〉 are part of the language of e. It is however not the case that k ∈ SN-FOLLOWΓ(e). Indeed,

in this example, the should-not-follow set of e is empty.

The should-not-follow set will however be complete enough for our purposes. The following

theorem shows that, when an expression e is nullable, its should-not-follow set is a superset

of its first set. This ensures that, for a sequence e1 · e2, if the should-not-follow set of e1 is

disjoint from the first set of e2, it is impossible for e1 both to be nullable and to have a first set

that intersects with the first set of e2. Furthermore, I will later on show that the set is indeed

complete in the case of LL(1) expressions.

85



Chapter 4. LL(1) Context-Free Expressions

Theorem 4.2 (Nullable/First Completeness). For any expression e, environment Γ and kind k,

if k is part of the first set of e and e is nullable, then k is part of the should-not-follow set of e.

Proof. By induction on the derivation of k ∈ FIRSTΓ(e), I show that if e is nullable then it must

be the case that k ∈ SN-FOLLOWΓ(e). The only interesting case is when e is a disjunction

between an expression e1 such that k ∈ FIRSTΓ(e1) where e1 is not nullable, as all other cases

follow directly by induction hypothesis.

In that case, assuming e is nullable forces the other branch of the disjunction, e2, to be nullable.

Since e is a disjunction between an expression e1 where k ∈ FIRSTΓ(e1) and an expression e2

where NULLABLEΓ(e2), it follows that k ∈ SN-FOLLOWΓ(e) by the rule SDISL or SDISR.

4.3.2 LL(1) Conflicts

Finally, I formally introduce the notion of LL(1) conflicts. The presence of LL(1) conflicts is

defined inductively in Figure 4.2.

CDISNN
NULLABLEΓ(e1) NULLABLEΓ(e2)

HAS-CONFLICTΓ(e1 ∨e2)
CDISFF

k ∈ FIRSTΓ(e1) k ∈ FIRSTΓ(e2)

HAS-CONFLICTΓ(e1 ∨e2)

CSEQSF
k ∈ SN-FOLLOWΓ(e1) k ∈ FIRSTΓ(e2)

HAS-CONFLICTΓ(e1 ·e2)

CDISL
HAS-CONFLICTΓ(e1)

HAS-CONFLICTΓ(e1 ∨e2)
CDISR

HAS-CONFLICTΓ(e2)

HAS-CONFLICTΓ(e1 ∨e2)

CSEQL
HAS-CONFLICTΓ(e1)

HAS-CONFLICTΓ(e1 ·e2)
CSEQR

HAS-CONFLICTΓ(e2)

HAS-CONFLICTΓ(e1 ·e2)

CMAP
HAS-CONFLICTΓ(e)

HAS-CONFLICTΓ( f }e)
CVAR

e = Γ(x) HAS-CONFLICTΓ(e)

HAS-CONFLICTΓ(varx )

Figure 4.2 – Rules for existence of LL(1) conflicts.

The rules express that an expression exhibits LL(1) conflicts if it contains a disjunction where

both sides are nullable (CDISNN) or start with the name token kind (CDISFF), or when it

contains a sequence where the should-not-follow set of the left side intersects with the first set

of the right side (CSEQSF). Conflicts rooted at CDISNN are called Nullable/Nullable conflicts,

those rooted at CDISFF are called First/First conflicts and finally those rooted at CSEQSF are

called First/Follow conflicts.

86



4.3. The LL(1) Class

4.3.3 The LL(1) Property

Given an environment Γ, an expression e is LL(1) if and only if it has no LL(1) conflicts.

LL1Γ(e) ⇐⇒ ¬HAS-CONFLICTΓ(e)

Observe that the LL(1) property applies throughout the expression: When an expression is

LL(1), then so are all its subexpressions.

4.3.4 Properties of LL(1) Expressions

LL(1) context-free expressions enjoy several interesting properties. The first of those properties

is unambiguity. The following theorem states that there exists at most one value associated

with each token sequence.

Theorem 4.3 (Unambiguity of LL(1) Expressions). For all LL(1) expressions e and environment

Γ, token sequences t s and values v1 and v2:

e `Γ t s v1 ∧ e `Γ t s v2 =⇒ v1 = v2

Proof. By induction on the derivation of e `Γ t s  v1. In every case, the LL(1) property

enforces that the rule that was applied for e `Γ t s v1 be applied for e `Γ t s v2, hence

showing the equality between v1 and v2.

In the same vein, as expressed by the following theorems, LL(1) expressions also have the

property that all derivations of nullability are of the same size. The same holds for derivations

of membership of a kind in the first set of an expression. Thanks to this property, derivations

appearing inside other such derivations can be therefore seen as smaller. This will prove

important as recursive procedures on LL(1) expressions following the exact same structure as

either a NULLABLEΓ(·) or k ∈ FIRSTΓ(·) derivation will be bound to terminate. Termination of

recursive functions operating on context-free expressions is non-obvious in the general case,

as the recursive argument expression may grow structurally larger in the case of variables if the

associated expressions in the environment are simply unfolded. In the case of LL(1), thanks to

the following theorems, termination will be guaranteed even when variables are unfolded.

Theorem 4.4 (Unicity of Derivations of Nullability). For environments Γ and all LL(1) expres-

sions e such that NULLABLEΓ(e), there exists a unique derivation of NULLABLEΓ(e).

Proof. LetΓ be an environment and e be an LL(1) expression. Let D1 and D2 be two derivations

of the fact that NULLABLEΓ(e). The proof proceeds by induction on D1. In each case, the LL(1)

property ensures that rule on top of D1 also appears on top of D2, thereby showing that D1 is

equal to D2.

87



Chapter 4. LL(1) Context-Free Expressions

Theorem 4.5 (Unicity of Derivations of First Set Membership). For environments Γ, all LL(1)

expressions e and kinds k such that k ∈ FIRSTΓ(e), all derivations of k ∈ FIRSTΓ(e) are equal

modulo derivations of productivity.

Proof. Let Γ be an environment, e be an LL(1) expression, and k be a kind. Let D1 and D2 be

two derivations of the fact that k ∈ FIRSTΓ(e). I will show that D1 is equivalent to D2 modulo

derivations of productivity. The proof proceeds by induction on D1. In each case, the LL(1)

property ensures that rule on top of D1 also appears on top of D2. In the case when nullability

is needed as a premise (rule FSEQR), Theorem 4.4 applies.

Left-Recursivity

According to the definitions of left-recursivity and the LL(1) property given in Section 3.7.4,

it is technically possible for entries in the environment to be left-recursive and LL(1). As an

example, consider the singleton environment ΓR where ΓR (x) = varx for some identifier x. In

this environment, the expression Γ(x) does not exhibit any conflicts, and is therefore LL(1). It

is also the case that x is left-recursive.

As shown by the following theorem, the precise restriction that the LL(1) property imposes is

that LL(1) expressions may not contain, directly or indirectly, subexpressions of the form varx

such that both Γ(x) is productive and x is left-recursive.

In practice, the presence of unproductive entries in the environment may strongly suggest

a design or coding error. Their presence could be reported as an actual error or as a simple

warning. This would be especially important when the expression associated with the unpro-

ductive entry is recursive, since the recursive structure of the expression may be the cause of

the issue.

Theorem 4.6. For any environment Γ and identifier x, if Γ(x) is such that:

PRODUCTIVEΓ(Γ(x)) ∧ x ∈ VISITABLEΓ(Γ(x))

Then Γ(x) is not LL(1). Furthermore, any expression e which would directly or indirectly contain

varx as a subexpression would then also not be LL(1).

Proof. Let Γ be an environment, and x an identifier such that x is visitable in Γ(x) and Γ(x) is

productive.

Since the expression Γ(x) is productive, it must be the case that it is nullable or its first set is

non-empty.

Consider that Γ(x) is nullable. Let D1 be a derivation of NULLABLEΓ(Γ(x)). Additionally, let D2

be a derivation of NULLABLEΓ(Γ(x)) that contains D1 as a subtree. Since x ∈ VISITABLEΓ(Γ(x)),

D2 is bound to exist. By Theorem 4.4, the expression Γ(x) can not be LL(1).

88



4.4. LL(1) Parsing with Derivatives

Now consider that there exists a kind k such that k ∈ FIRSTΓ(Γ(x)). Let D1 be a derivation of

k ∈ FIRSTΓ(Γ(x)) and let D2 be a different derivation of k ∈ FIRSTΓ(Γ(x)) that contains D1 as a

subtree. Since x ∈ VISITABLEΓ(Γ(x)), D2 is bound to exist. By Theorem 4.4, the expression Γ(x)

can not be LL(1), which concludes the proof.

4.4 LL(1) Parsing with Derivatives

In the earlier parts of this chapter, I have characterised the class of LL(1) context-free expres-

sions and discussed some of its properties. In this section, I will proceed to describe a parsing

algorithm for this class of expressions based on Brzozowski’s derivatives. Through an example,

the algorithm presented in this section will be shown to be quite inefficient. However, as I will

show in the next chapter, through a simple change of data structure, the algorithm presented

in this section can be turned into an efficient linear time parsing algorithm.

4.4.1 Values from Nullable LL(1) Expressions

Before I can proceed any further, I need to introduce the function nullΓ(e), which, given an

environment Γ and a nullable LL(1) expression e, computes the (unique) value associated

with the empty sequence of tokens by the expression e. The function is defined recursively as

follows:

nullΓ(εv ) := v

nullΓ(e1 ∨e2) :=
nullΓ(e1) if NULLABLEΓ(e1)

nullΓ(e2) otherwise

nullΓ(e1 ·e2) := (nullΓ(e1),nullΓ(e2))

nullΓ( f }e) := f (nullΓ(e))

nullΓ(varx ) := nullΓ(Γ(e))

The function nullΓ(·) is only defined for nullable LL(1) expressions. Although simple, it is

worth checking the validity of this definition. The upcoming theorems ensure that nullΓ(·) is

well-defined.

Theorem 4.7 (Match-completeness). The definition of nullΓ(·) handles all constructs that can

appear at the top of nullable expressions e.

Proof. The only two constructs which are not handled are elemk and ⊥, both of which are not

nullable.

89



Chapter 4. LL(1) Context-Free Expressions

Theorem 4.8 (Preconditions). All arguments e ′ of recursive calls made in the body of nullΓ(e)

satisfy LL1Γ(e ′) and NULLABLEΓ(e ′) given that LL1Γ(e) and NULLABLEΓ(e).

Proof. By simple case analysis.

Theorem 4.9 (Well-foundedness). The computation of nullΓ(e) terminates for any nullable

LL(1) expression e.

Proof. I show the well-foundedness of the nullΓ(·) recursive function by demonstrating that

the size of the derivation of NULLABLEΓ(·) is strictly decreasing for all recursive arguments.

Let Γ be an environment and e be a nullable LL(1) context-free expression. By Theorem 4.4,

the derivation of NULLABLEΓ(e) is unique. Then, consider a call to nullΓ(e). Observe that

NULLABLEΓ(e) can be derived from the premises NULLABLEΓ(e ′) where the various e ′ are argu-

ments of recursive calls. Therefore, by uniqueness of derivations of NULLABLEΓ(·) for nullable

LL(1) expressions, it must be the case that derivations of NULLABLEΓ(e ′) are all smaller than

the derivation of NULLABLEΓ(e), as they are strictly contained within the (finite) derivation

of NULLABLEΓ(e). As the size of the derivation strictly decreases in each recursive call, the

function is bound to terminate.

Theorem 4.10 (Correctness). For all environments Γ, context-free expression e, if e is nullable

and e is LL(1), then:

nullΓ(e) = v ⇐⇒ e `Γ 〈〉 v

Proof. By induction on the derivation of NULLABLEΓ(e).

4.4.2 An Induction Principle for LL(1) Expressions

Most proofs on LL(1) expressions rely on induction. Unfortunately, structural induction on

expressions, although simple, will generally prove useless. The culprit is the varx case, in

which no induction hypothesis is available, making it impossible to further make progress.

The solution is generally to apply induction on the derivations of some inductive properties

such as NULLABLEΓ(e) or k ∈ FIRSTΓ(e) given as assumption.

In order to simplify proofs on LL(1) expressions with a given k in their first set, I introduce

an induction principle called the LL(1) induction principle. The following theorem states the

induction principle.

90



4.4. LL(1) Parsing with Derivatives

Lemma 4.1 (The LL(1) Induction Principle). For a given environment Γ and kind k, to show

that a property P [e] holds for all LL(1) context-free expression e with k ∈ FIRSTΓ(e), it suffices to

show all of the following:

1. P [elemk ].

2. P [e1 ∨e2] assuming k ∈ FIRSTΓ(e1), k 6∈ FIRSTΓ(e2), LL1Γ(e1 ∨e2) and P [e1].

3. P [e1 ∨e2] assuming k 6∈ FIRSTΓ(e1), k ∈ FIRSTΓ(e2), LL1Γ(e1 ∨e2) and P [e2].

4. P [e1 ·e2] assuming k ∈ FIRSTΓ(e1), NULLABLEΓ(e1) =⇒ k 6∈ FIRSTΓ(e2),

PRODUCTIVEΓ(e2), LL1Γ(e1 ·e2) and P [e1].

5. P [e1 ·e2] assuming NULLABLEΓ(e1), k 6∈ FIRSTΓ(e1), k ∈ FIRSTΓ(e2),

LL1Γ(e1 ·e2) and P [e2].

6. P [ f }e] assuming k ∈ FIRSTΓ(e), LL1Γ(e) and P [e].

7. P [varx ] assuming k ∈ FIRSTΓ(Γ(x)), LL1Γ(Γ(x)) and P [Γ(x)].

Proof. Let Γ be an environment and let k be a kind. Let e be a context-free expression such

that k ∈ FIRSTΓ(e). Let P1 to P7 be proofs of P [e] depending on assumptions as specified in the

7 different cases above in the theorem statement. The proof of LL1Γ(e) =⇒ P [e] follows by

induction on the derivation of k ∈ FIRSTΓ(e):

1. Consider the case FElem. In that case, one must show P [elemk ], which is directly given

by P1.

2. Consider the case FDisL. In that case, one must show P [e1 ∨e2] assuming k ∈ FIRST(e1),

LL1Γ(e1 ∨e2) and LL1Γ(e1) =⇒ P [e1] (IH). From LL1Γ(e1 ∨e2), one gets LL1Γ(e1) and

therefore P [e1]. From LL1Γ(e1 ∨e2) and k ∈ FIRST(e1), one gets k 6∈ FIRST(e2). Finally, as

all its assumptions as satisfied, P2 proves P [e1 ∨e2].

3. Consider the case FDisR. In that case, one must show P [e1 ∨e2] assuming k ∈ FIRST(e2),

LL1Γ(e1 ∨e2) and LL1Γ(e2) =⇒ P [e2] (IH). From LL1Γ(e1 ∨e2), one gets LL1Γ(e2) and

therefore P [e2]. From LL1Γ(e1 ∨e2) and k ∈ FIRST(e2), one gets k 6∈ FIRST(e1). Finally, as

all its assumptions as satisfied, P3 proves P [e1 ∨e2].

4. Consider the case FSeqL. In that case, one must show P [e1 ·e2] assuming k ∈ FIRST(e1),

PRODUCTIVEΓ(e2), LL1Γ(e1 · e2) and LL1Γ(e1) =⇒ P [e1] (IH). From LL1Γ(e1 · e2), one

gets LL1Γ(e1) and therefore P [e1]. From LL1Γ(e1 · e2), k ∈ FIRST(e1) and Theorem 4.2,

one gets NULLABLEΓ(e1) =⇒ k 6∈ FIRSTΓ(e2). Finally, as all its assumptions as satisfied,

P4 proves P [e1 ·e2].

91



Chapter 4. LL(1) Context-Free Expressions

5. Consider the case FSeqR. In that case, one must show P [e1 ·e2] assuming NULLABLEΓ(e1),

k ∈ FIRST(e2), LL1Γ(e1 · e2) and LL1Γ(e2) =⇒ P [e2] (IH). From LL1Γ(e1 · e2), one gets

LL1Γ(e2) and therefore P [e2]. From LL1Γ(e1 ·e2), NULLABLEΓ(e1) and Theorem 4.2, one

gets k 6∈ FIRSTΓ(e1). Finally, as all its assumptions as satisfied, P5 proves P [e1 ·e2].

6. Consider the case FMap. In that case, one must show P [ f } e] assuming k ∈ FIRSTΓ(e),

LL1Γ( f }e) and LL1Γ(e) =⇒ P [e] (IH). From LL1Γ( f }e), one gets LL1Γ(e) and there-

fore P [e]. Finally, as all its assumptions as satisfied, P6 proves P [ f }e].

7. Consider the case FVap. In that case, one must show P [varx ] assuming k ∈ FIRSTΓ(Γ(x)),

LL1Γ(varx ) and LL1Γ(Γ(x)) =⇒ P [Γ(x)] (IH). From LL1Γ(varx ), one gets LL1Γ(Γ(x))

and therefore P [Γ(x)]. Finally, as all its assumptions as satisfied, P7 proves P [varx ].

4.4.3 Derivatives of LL(1) Expressions

Computing a derivative of an LL(1) expression by a token t is an almost risibly simple task, as

expressed by the following definition of the LL(1) derivation function. Given a token t of kind

k and an LL(1) expression e where k ∈ FIRSTΓ(e), the following function computes a derivative

of e by the token t .

δt
Γ(elemk ) := εt

δt
Γ(e1 ∨e2) :=

δt
Γ(e1) if kind(t ) ∈ FIRSTΓ(e1)

δt
Γ(e2) otherwise

δt
Γ(e1 ·e2) :=

δt
Γ(e1) ·e2 if kind(t ) ∈ FIRST(e1)

εnullΓ(e1) ·δt
Γ(e2) otherwise

δt
Γ( f }e) := f }δt

Γ(e)

δt
Γ(varx ) := δt

Γ(Γ(x))

Theorem 4.11 (Match-completeness). The definition of δt
Γ(·) handles all constructs that can

appear at the top of expressions e such that kind(t ) ∈ FIRSTΓ(e).

Proof. The only two constructs which are not handled are εv and ⊥, both of which have empty

first sets.

Theorem 4.12 (Preconditions). All arguments e ′ of recursive calls made in δt
Γ(e) satisfy LL1Γ(e ′)

and kind(t ) ∈ FIRSTΓ(e ′) given that LL1Γ(e) and kind(t ) ∈ FIRSTΓ(e). The arguments of calls to

nullΓ(·) also satisfy the preconditions of nullΓ(·), that is that the argument expression is LL(1)

and nullable.

92



4.4. LL(1) Parsing with Derivatives

Proof. By simple case analysis.

Theorem 4.13 (Well-foundedness). The computation of δt
Γ(e) terminates for any LL(1) context-

free expression e and environment Γwhere kind(t ) ∈ FIRSTΓ(e).

Proof. Follows directly by the LL(1) induction principle introduced in Lemma 4.1.

Compared to the derivative computation seen in Chapter 3, the definition specialised to LL(1)

expressions is simpler in several ways:

• The definition is singly recursive. For binary constructs, the side which undergoes

derivation is decided by nullability and first sets.

• Disjunctions are eliminated along the way, and are never introduced. By construction,

the two sides of an LL(1) disjunction always have disjoint first sets. A similar property

holds for sequences, for which a disjunction needed to be introduced in the general

case. In the LL(1) case, no disjunction need to be introduced.

• The environment remains unchanged. In the general case, an entry in the environment

needed to be added. This addition was crucial to handle left-recursive entries. This

addition was also necessary to be able to explicitly share the representation of derived

variables, were they to be encountered multiple times during a single derivation oper-

ation. In the case of LL(1), the situation is simpler. Indeed, left-recursive entries are

never encountered. Furthermore, as derivation follows a single thread, it is impossible

to encounter the same variable multiple times during a single derivation operation. For

those reasons, the definition associated with the variable can be simply unfolded.

4.4.4 On the Correctness of LL(1) Derivation

In the previous two subsections, I have shown an induction principle for LL(1) expressions

and have introduced a function to, supposedly, compute a derivative of LL(1) expressions. I

will now proceed to show that LL(1) derivation function is indeed correct with respect to the

semantics of context-free expressions. In addition, I will also show that the LL(1) property is

preserved by LL(1) derivation.

Theorem 4.14 (Correctness). For any LL(1) expression e and environment Γ, token t of kind

k ∈ FIRSTΓ(s), token sequence t s and value v, e associates the token sequence t :: t s with the

value v iff δt
Γ(e) associates the token sequence t s with the same value v, that is:

e À〈t〉
Γ δt

Γ(e)

Proof. By LL(1) induction (Lemma 4.1) on e.

93



Chapter 4. LL(1) Context-Free Expressions

Lemma 4.2 (Should-not-follow monotonicity). For any environment Γ, LL(1) expression e,

and token t of kind k ∈ FIRST(e), the following holds:

SN-FOLLOWΓ(δt
Γ(e)) ⊆ SN-FOLLOWΓ(e)

Proof. By LL(1) induction (Lemma 4.1) on e.

Theorem 4.15 (Preservation). For any environment Γ, LL(1) expression e, and token t of kind

k ∈ FIRST(e), the expression δt
Γ(e) is LL(1).

Proof. By LL(1) induction (Lemma 4.1) on e. Only the fourth case of the induction is non-

trivial.

In that case, one must show that LL1Γ(δt
Γ(e1 · e2)) given kind(t) ∈ FIRSTΓ(e1),

NULLABLEΓ(e1) =⇒ kind(t) 6∈ FIRSTΓ(e2), PRODUCTIVEΓ(e2), LL1Γ(e1 · e2) and LL1Γ(δt
Γ(e1)).

By those hypotheses, δt
Γ(e1 ·e2) reduces to the sequence δt

Γ(e1) ·e2, which exhibits LL(1) con-

flicts in only three cases:

1. When the left expression δt
Γ(e1) exhibits a conflict, which is prohibited by the induction

hypothesis LL1Γ(δt
Γ(e1)).

2. When the right expression e2 exhibits a conflict, which is prohibited by LL1Γ(e1 ·e2).

3. When the should-not-follow set of δt
Γ(e1) intersects the first set of e2. By Lemma 4.2, the

following holds:

SN-FOLLOWΓ(δt
Γ(e1)) ⊆ SN-FOLLOWΓ(e1)

In addition, by LL1Γ(e1 · e2), the set SN-FOLLOWΓ(e1) is disjoint from FIRSTΓ(e2), and

therefore it must be the case that SN-FOLLOWΓ(δt
Γ(e1)) is also disjoint from FIRSTΓ(e2).

Therefore, the expression δt
Γ(e1 ·e2) is also LL(1).

4.4.5 Should-Not-Follow Completeness

Previously in this chapter, the notion of should-not-follow set was shown to be incomplete in

the general case. For LL(1) expressions however, the should-not-follow set exactly corresponds

to set of kinds k that appear to continue valid sequences, that is:

SN-FOLLOWΓ(e) = { k | ∃t , t s1, t s2, v1, v2. kind(t ) = k ∧
e `Γ t s1 v1 ∧
e `Γ t s1 ++ (t :: t s2) v2 }

94



4.4. LL(1) Parsing with Derivatives

Theorem 4.16. Given an environment Γ, the should-not-follow set of an LL(1) expression e

equals the set

{ k | ∃t , t s1, t s2, v1, v2. kind(t ) = k ∧
e `Γ t s1 v1 ∧
e `Γ t s1 ++ (t :: t s2) v2 }

Proof. By Theorem 4.1, the only missing direction is completeness.

Let Γ be an environment. Let t be a token of kind k and let t s1, t s2 be sequences of tokens.

The proof proceeds by structural induction on the sequence of tokens t s1.

In both cases, let e be an LL(1) expression and assume that there exist two values v1 and v2

such that:

e `Γ t s1 v1 ∧ e `Γ t s1 ++ (t :: t s2) v2

1. Consider the case when t s1 is 〈〉. By assumption, it is the case that e is nullable. Addi-

tionally, also by assumption, it is the case that k ∈ FIRSTΓ(e). Therefore, by Theorem 4.2,

it must be that k ∈ SN-FOLLOWΓ(e).

2. Consider the case when t s1 = t ′ :: t s′1 for some token t ′ and token sequence t s′1. Consider

the expression δt ′
Γ (e). By Theorem 4.14, one derives that:

e `Γ t s′1 v1 ∧ e `Γ t s′1 ++ (t :: t s2) v2

Thus, by induction hypothesis, one gets that k ∈ SN-FOLLOWΓ(δt ′
Γ (e)). Finally,

by Lemma 4.2, it must be the case that SN-FOLLOWΓ(δt ′
Γ (e)) ⊆ SN-FOLLOWΓ(e), and there-

fore that k ∈ SN-FOLLOWΓ(e).

4.4.6 Parsing Algorithm

The derivation function δt
Γ(·) immediately yields a parsing algorithm for LL(1) context-free

expressions that I call simple LL(1) parsing with derivatives.

simple-ll1-parseΓ(e,〈〉) :=
some(nullΓ(e)) if NULLABLEΓ(e)

none otherwise

simple-ll1-parseΓ(e, t :: t s) :=
simple-ll1-parseΓ(δt

Γ(e), t s) if kind(t ) ∈ FIRSTΓ(e)

none otherwise

When the sequence of tokens to be parsed is empty, the algorithm simply checks if the expres-

sion is nullable, and in that case invokes the nullΓ(·) function to return the parsed value. In

95



Chapter 4. LL(1) Context-Free Expressions

case the sequence of tokens is non-empty, the algorithm checks if the current expression ad-

mits the kind of the next token in its first set. If it is the case, then a derivative of the expression

by that token is computed, and the algorithm is recursively applied. Otherwise, a parse error

is returned.

Theorem 4.17 (Correctness of Simple LL(1) Parsing with Derivatives). For all LL(1) context-free

expressions e and environments Γ, for all sequences of tokens t s and for all values v:

simple-ll1-parseΓ(e, t s) = some(v)

⇐⇒
e `Γ t s v

Proof. By induction on the input token sequence. The proof follows immediately from the

correctness of LL(1) derivation (Theorem 4.14), from preservation of the LL(1) property by LL(1)

derivation (Theorem 4.15) and from the correctness of the nullΓ(·) function (Theorem 4.10).

4.4.7 Example Execution

As an example execution of the algorithm, let us get back to the example context-free expres-

sion presented in Section 3.5. For this example, consider two tokens a and b of respective

kinds A and B . Consider also the singleton environment Γwhich maps the identifier x to the

expression:

( f } ((elemA ·varx ) ·elemB ))∨ε0

Where the function f takes as input values of the form ((t1,n), t2) and returns the value n. In

this given environment, the expression varx describes sequences of n a’s followed by n b’s, and

so for any natural number n. The value associated with the sequence is the corresponding n.

Figure 4.3 presents the various phases the parsing algorithm goes through, and shows the

state of the parsing algorithm before and after each token is processed.

δa
Γ

(·) δa
Γ

(·) δb
Γ

(·) δb
Γ

(·) nullΓ(·)

varx f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
ε(a,0) εb

f}

·
ε(a,1) εb

some(2)

Figure 4.3 – Example execution of the simple LL(1) parsing with derivatives algorithm.

96



4.4. LL(1) Parsing with Derivatives

At the start, the state of the parser is represented by the initial expression varx . The algorithm

then starts processing the first a token. Since the kind of that token is part of the first set of the

current expression, a derivative of that expression by a is computed, which results in a new

parser state. The following tokens a, b, and b, are all processed in a similar fashion. Once the

entire sequence has been processed, the nullability of the state is queried. In this case, the

expression is indeed nullable, and therefore the algorithm simply returns the unique value

returned by nullΓ(e) as its result.

4.4.8 Complexity Analysis

In this last section of the chapter, I will use build on the example I have just shown to demon-

strate that the simple LL(1) parsing with derivatives algorithm presented in this chapter is

not worst-case linear-time. This complexity class would be expected of LL(1) parsing algo-

rithms, as the traditional LL(1) parsing algorithm has worst-case linear time complexity (Aho

et al., 2006). The argument that I will make can be transposed to the original parsing with

derivatives algorithm (Might et al., 2011; Adams et al., 2016), from which one can conclude

that the original parsing with derivatives algorithm is also not worst-case linear-time on LL(1)

expressions.

Consider the environment Γ of the previous example, which maps the identifier x to the

expression ( f } ((elemA ·varx ) ·elemB ))∨ε0. Consider the following sequence of expressions:

e0 := varx ei+1 := δa
Γ(ei )

The expression ei represents the state of the parsing algorithm after processing i a tokens.

In order to compute ei+1, the LL(1) derivation function δa
Γ(·) must traverse all nodes until

the leaf elemA node is found. During this traversal, the function will unfold the definition of

x, making the resulting expression slightly larger and deeper than ei . Figure 4.4 shows the

successive parser states for the first few a tokens.

One can easily observe that the number of nodes that must be traversed until an elemA node

can be found increases for each successive ei . Since the derivation function always starts from

the root of the expression, the time it takes to reach that elemA node and compute a derivative

also increases with each successive parser state ei .

Processing a sequence of n a tokens followed by n b tokens therefore takes at least time

quadratic in n, even assuming all operations occurring after the last a token are free.

The subpar runtime complexity comes from the fact that derivation always starts at the root of

the expression. With time, layers upon layers accumulate on top of the immediately interesting

part of the expression. In the next chapter, I will present a simple solution to this issue: Instead

of always starting from the root of the expression, the parsing algorithm should start the next

derivation where the last ended. To do so, I will introduce a zipper-based (Huet, 1997) data

97



Chapter 4. LL(1) Context-Free Expressions

δa
Γ

(·) δa
Γ

(·) δa
Γ

(·) δa
Γ

(·) δa
Γ

(·)

varx f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

Figure 4.4 – Successive states of the parser after processing tokens of kind A.

structure to represent expressions. With this simple change of representation in place, I will

show that the algorithm becomes worst-case linear time. I will also draw interesting parallels

with the traditional LL(1) parsing algorithm.

98



5 Zippy LL(1) Parsing with Derivatives

In this chapter, I will build on the parsing algorithm described in the previous chapter and

describe how a simple change to the data structure representing derived expressions yields an

efficient linear-time parsing algorithm for LL(1) context-free expressions. So far, expressions

have been represented in a rather direct way, with references from parent nodes to child nodes.

In this setting, all references flowed from the root of the expression down to the leaves. This

representation meant that, as derived expressions became increasingly deeper, derivation

could become more and more expensive, as I showed with an example in Section 4.4.8.

The key insight to avoid this issue is to introduce a single focus in context-free expressions

from which references flow, in the spirit of Huet’s zipper data-structure (Huet, 1997). Nodes on

the path from the root to the focal point will need to be given a representation that differs from

the standard nodes. Indeed, such nodes will no longer have a reference to one of their children;

instead it is the child node that will point to it. To represent such nodes, I will introduce the

notion of layers. The path from the root of the expression to the focal point will be represented

as a stack of such layers that I will call a context.

The derivation of a focused LL(1) expression, by a token t of kind k in its first set, will consist

of a series of steps that progressively moves the focus towards the unique elemk leaf node

that causes k to be a member of the first set of the expression. Such a node is guaranteed

to be unique by the LL(1) property. The process of moving the focus down to this node will

trim away unchosen branches along the way, such that not all expression nodes will need to

be representable by layers. Once focused on this elemk node, derivation will be trivial, as it

suffices to replace the node with an εt node. As all references at this point flow from the single

node in focus, the rest of the structure can remain untouched.

While the LL(1) derivation function δt
Γ(·) was defined in a purely downward (i.e. top-down)

manner, the derivation function that I will present in this section will have both an upward

and a downward phase. The downward phase of the algorithm will consist of a single recursive

function called pierce. As I will show, that function will follow the exact same recursive

structure as the δt
Γ(·) function. Instead of directly building up a top-down expression to

99



Chapter 5. Zippy LL(1) Parsing with Derivatives

represent the result of derivation, that pierce function will build its result by adding layers

to the context, and leave the focus at a leaf of the expression. The goal of the upward phase

will be to traverse that stack of layers to locate a suitable continuation point for the downward

phase.

The technique is reminiscent of the zipper-based technique I presented in Chapter 2. In

that chapter, the zipper-based representation ensured that derivatives could only range over

a finite set of predetermined values. In this chapter, due to the presence of variables, no

such property can be obtained. As I shall demonstrate, the zipper-based representation of

expression will play a different role: Employing a zipper will avoid the repeated traversals at

the root of the quadratic behavior exhibited by the parsing algorithm presented in Chapter 4.

5.1 Zipper-based Representation of LL(1) Expressions

5.1.1 Layers

As explained in the introduction of this chapter, the key insight towards an efficient algorithm is

to introduce a focus, a direct access, to a node in the expression. All references are to flow away

from that focused node, such that this node becomes the new entry point to the data structure

in place of the root of the expression. This change will require certain nodes, precisely those

on the path from the root of the expression to the focused node, to be represented differently,

as such nodes will have one less descendant. I introduce the layers to represent such altered

nodes.

f ∈ T1 → T2

apply( f ) ∈L
T1
T2

v : T1

prepend(v) ∈L
T2
(T1,T2)

e ∈ CFET2

follow-by(e) ∈L
T1
(T1,T2)

Figure 5.1 – Definition of layers.

Layers are parameterised by two types: an exterior type and an interior type. For a layer

l ∈L
Ti n
Text

, the superscript Ti n is the interior type, while the subscript Text is the exterior type.

The interior type is the type ascribed to the subexpression below that node in the original

expression, while the exterior type is the type ascribed to the subexpression rooted precisely

at that node in the original expression.

The parents references are not explicitly present in the various layers, but will instead be given

by the order in which they appear in the context stack. The layers are stored in the context

from closest to the focal point to closest to the root of the expression, such that the parent of a

layer node is always the next layer in the sequence.

100



5.1. Zipper-based Representation of LL(1) Expressions

Each layer corresponds to an expression with a hole denoted by�:

• The apply( f ) layer corresponds to the expression f }�.

• The prepend(v) layer corresponds to the expression εv ·�.

• The follow-by(e) layer corresponds to the expression� ·e.

Note that not all expressions constructs have corresponding layers. In particular, there are no

layers for disjunctions, nor for variables. There are also no layers for sequences with a hole on

the right and arbitrary expressions on the left.

In fact, one can observe that all expressions with holes that are given a corresponding layer

appear in the definition of LL(1) derivation function δt
Γ(·), with a recursive call to derivation

function instead of the hole�. This is not a coincidence. The derivation function that I will

introduce in this section will, in its downward phase, follow the same recursive structure as

δt
Γ(·), but will materialise layers instead of building up a new expression.

5.1.2 Context

Layers are intended to be stacked, with the exterior type of a layer matching the interior type

of the layer next in sequence. I will call such stacks of layers contexts. Contexts are formally

defined in Figure 5.2.

〈〉 ∈C T
T

l ∈L
T1
T2

c ∈C
T2
T3

l :: c ∈C
T1
T3

Figure 5.2 – Definition of contexts.

Contexts c ∈C
Ti n
Text

, similarly to layers, are also parameterised by an interior type Ti n and an

exterior type Tout . Contexts a type-aligned stack of layers: the exterior-type of a layer always

matches the interior-type of its successor in the stack, if any. In addition, for any non-empty

context, the interior type of the context matches the interior type of its first element, while the

exterior type of the context matches with the exterior type of its last element.

5.1.3 Weight of Layers and Contexts

Let each sort of layer be assigned a weight. Layers apply(·) and prepend(·) are assigned the

weight 1, while follow-by(·) layers are assigned weight 2. The weight of a context is defined

as the sum of the weights of its layers.

101



Chapter 5. Zippy LL(1) Parsing with Derivatives

5.1.4 Focused Expressions

For any expression e ∈ CFETi n and context c ∈C
Ti n
Text

of matching interior type Ti n , I will call

the pair (e,c) a focused expression. I will call the expression e the focus, or focal point, while c

will simply be called the context.

Focusing

One can obtain a focused expression simply by associating an expression e ∈ CFET with the

empty context 〈〉 ∈C T
T . I shall denote by focus(e) such focused expression.

focus(e) := (e,〈〉)

Note that the root of the expression is the only node that can be directly focused. In order to

have a focus on a different part of the expression, the focus will need to be progressively moved

there. The main goal of several of the operations that I will introduce later in this section will

be to move the focus around.

Unfocusing

Focused expressions can be converted back to plain expressions using the unfocus function:

unfocus((e,〈〉)) := e

unfocus((e,apply( f ) :: c ′)) := unfocus(( f }e,c ′))

unfocus((e,prepend(v) :: c ′)) := unfocus((εv ·e,c ′))

unfocus((e,follow-by(e ′) :: c ′)) := unfocus((e ·e ′,c ′))

The unfocus function simply applies each layer of the stack recursively on top of the focal

point. When the context is empty, the process is done. At that point, the focal point is at the

root of the expression and the empty context can be discarded.

Note that this function will not be used by the parsing algorithm that I will develop it this

section. It will however play an important role in arguments about the correctness of the

algorithm.

5.1.5 LL(1) Property of Focused Expressions

Using unfocus, properties of (unfocused) expressions can be transposed to focused expres-

sions. Among those is the LL(1) property:

LL1Γ((e,c)) ⇐⇒ LL1Γ(unfocus((e,c))

102



5.1. Zipper-based Representation of LL(1) Expressions

Theorem 5.1 (LL(1) Preservation of focus(·)). For any environment Γ and expression e, if e is

LL(1), then so is the focused expression focus(e).

Proof. Trivial by the observation that unfocus(focus(e)) = e.

Theorem 5.2 (LL(1) Focal Point). For any environment Γ and focused expression (e,c), if (e,c)

is LL(1), then the focal point e is also LL(1).

Proof. By structural induction on the context c.

5.1.6 The Essence of LL(1) Derivation

The zippy LL(1) derivation algorithm that I will introduce in this chapter relies on one crucial

observation: If by any chance the focal point of a focused expression ends up being an elemk

expression, then it suffices to swap that elemk with an εt expression for some token t of kind k

to get a derivative of the original expression by the token t . This idea is formally stated in the

following lemma.

Lemma 5.1 (Essential Derivation). For any environment Γ, token t of kind k and context c:

(elemk ,c) À〈t〉
Γ (εt ,c)

Proof. Straightforward by structural induction on the context c.

From this observation, the goal of the game for the derivation function will now be to actually

get the focal point to be an elemk node, and so while preserving the meaning of the expression.

Towards this goal, I will now introduce operations that move or otherwise transform the

focal point, while preserving semantics and the LL(1) property. I will first introduce simple

movement and replacement operations, from which I will then be able to build more advanced

operations such as pierce, plug and locate.

103



Chapter 5. Zippy LL(1) Parsing with Derivatives

5.2 Zipper Operations

5.2.1 Focus Movement Operations

One of the essential aspects of focused expressions is that the focus can be moved around.

Without this ability, the focus would always be on the same node, greatly limiting the usefulness

of the technique. Fortunately, there are three basic operations that move the focus around.

Those operations are bidirectional.

1. When the focus is on a f }e expression, the focus can be moved towards e by putting

apply( f ) on the context stack. Similarly, when the context starts with an apply( f ) layer,

the focus can be moved towards f }e by removing that layer from the stack.

2. When the focus is on εv ·e, the focus can be moved towards e by putting a prepend(v)

layer on top of the context stack. Likewise, when the context starts with a prepend(v)

layer, the focus can be moved to εv ·e simply by removing that layer from the stack.

3. Finally, when the focus is on e ·e ′, the focus can be moved to e by putting follow-by(e ′)
on top of the stack. Reversely, when the context starts with a follow-by(e ′) layer, the

focus can be moved to e ·e ′ by removing that layer from the context.

One important property of those movement operations is that they preserve both the seman-

tics of the expression as well as its LL(1) property. Indeed, both sides always are equal when

viewed under unfocus(·), as schematised by Figure 5.3.

Figure 5.3 shows that, for all three focus movement operations, both sides are equal when

viewed under unfocus(·). The bidirectional bold arrow represent the movement operations,

while the solid arrows labeled by unfocus(·) represent the application of unfocus(·). The

dashed bidirectional arrows represent the fact that the two unfocused expressions are related

by a given relation, in this case =.

u0 u1 u0 u1 u0 u1

( f }e,c) (e,apply( f ) :: c) (εv ·e,c) (e,prepend(v) :: c) (e ·e′,c) (e,follow-by(e′) :: c)

= = =

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

Figure 5.3 – Available focus movement operations.

This chapter will showcase more similar looking schemas. In each case, the focused expres-

sions will appear on the bottom row, while their unfocused counterparts will appear on the top

104



5.2. Zipper Operations

row. The operations between focused expressions, as well as the relations between unfocused

expressions, will differ.

Lemma 5.2 (Move Operations). For any expressions e, e ′, context c, function f and value v:

unfocus(( f }e,c)) = unfocus((e,apply( f ) :: c))

unfocus((εv ·e,c)) = unfocus((e,prepend(v) :: c))

unfocus((e ·e ′,c)) = unfocus((e,follow-by(e ′) :: c))

Proof. Straightforward by definition of unfocus(·).

5.2.2 Focus Replacement Operations

In addition to movement operations, focused expressions also support replacement opera-

tions. Given a focused expression (e1,c), it is trivial to replace the focal point with a different

expression e2 of the appropriate type. To do so, one just has to pair the expression e2 with the

context c. The resulting focused expression is simply (e2,c). This replacement operation is a

crucial operation performed by the parsing algorithm presented in this section.

Obviously, not all replacements preserve the semantics and LL(1) property of the original

expression. Leaving aside the semantics problem for a moment, consider the issue of preserv-

ing the LL(1) property. The following theorem identifies a condition under which the LL(1)

property is preserved by focus replacement. The theorem states that the resulting expression

will preserve the LL(1) property as long as the replacement expression is LL(1) in isolation,

and that its should-not-follow set is a subset of the should-not-follow set of the expression it

replaces.

Theorem 5.3 (LL(1) Preservation of Focus Replacement). For any environment Γ and LL(1)

focused expression (e1,c), and for any LL(1) expression e2, if the should-not-follow set of e2 is a

subset of the should-not-follow set of e1, then the focused expression (e2,c) is also LL(1).

Proof. Let Γ be an environment and c a context. The proof proceeds by structural induction

on the context c . In both cases, let e1 be a expression such that (e1,c) is LL(1), and let e2 be an

LL(1) expression such that:

SN-FOLLOWΓ(e2) ⊆ SN-FOLLOWΓ(e1)

1. Consider the case when the context c is empty. Since unfocus((e2,c)) = e2, which is

LL(1) by assumption, the case is done.

2. Consider the case of a non-empty context c. In that case, c = l :: c ′ for some layer l . The

proof proceeds by case analysis on l .

105



Chapter 5. Zippy LL(1) Parsing with Derivatives

(a) Consider the case where l = apply( f ) for some function f . In that case:

unfocus((e1,c)) = unfocus(( f }e1,c ′))

unfocus((e2,c)) = unfocus(( f }e2,c ′))

As unfocus((e1,c)) is LL(1) by assumption, then so is unfocus(( f }e1,c ′)). Simi-

larly, since e2 is LL(1) by assumption, so is f }e2.

In addition, observe that the should-not-follow set of f }e2 is equal to the should-

not-follow set of e2, and therefore is also a subset of the should-not-follow set of e1

and of f }e1.

Therefore the induction hypothesis, instantiated with ( f }e1,c ′) and f }e2, yields

that:

LL1Γ(unfocus(( f }e2,c ′)))

And thus one can conclude that:

LL1Γ(unfocus((e2,c)))

(b) The case where l = prepend(v) for some value v proceeds identically to the previ-

ous case.

(c) Consider the case where l = follow-by(e ′) for some expression e ′. In that case:

unfocus((e1,c)) = unfocus((e1 ·e ′,c ′))

unfocus((e2,c)) = unfocus((e2 ·e ′,c ′))

As unfocus((e1,c)) is LL(1) by assumption, then so is unfocus((e1 ·e ′,c ′)).

It also must be the case that e2 ·e ′ is LL(1). The only possible conflicts are if:

• e2 is not LL(1), which is prohibited by assumption.

• e ′ is not LL(1), which is also impossible as (e1 · e ′,c ′) is LL(1), and therefore

e1 ·e ′ as well as e ′ are also LL(1).

• The should-not-follow set of e2 intersects with the first set of e ′. This is also

impossible. Indeed, by assumption the should-not-follow set of e2 is a subset

of the should-not-follow set of e1, which is disjoint from the first set of e ′ by

the fact that e1 ·e ′ is LL(1).

In addition, observe that the should-not-follow set of e2 · e ′ is a subset of the

should-not-follow set of e1 ·e ′.
Therefore the induction hypothesis, instantiated with (e1 ·e ′,c ′) and e2 ·e ′, yields

that:

LL1Γ(unfocus((e2 ·e ′,c ′)))

And thus one can conclude that:

LL1Γ(unfocus((e2,c)))

106



5.2. Zipper Operations

Replacement Lemmas

Now that I have identified a condition under which the LL(1) property is preserved by replace-

ment, let us focus back on the issue of preserving the semantics of the focused expression. The

next lemma states that the focal point can be replaced by any equivalent expression without

altering the semantics of the entire expression.

Lemma 5.3 (Equivalent Replacement). For any environment Γ, any context c and expressions

e1, e2, when e1 ≡〈〉
Γ e2, then:

unfocus((e1,c)) ≡〈〉
Γ unfocus((e2,c))

Proof. By structural induction on the context.

The lemma that I have just shown has a very stringent condition: the new focal point must

have the exact same meaning as the old focal point. In the case of variables and expressions in

the environments, such a relation holds. The previous lemma implies that when focused on a

varx expression, it is possible to unfold that variable and replace it with the expression Γ(x).

The other direction also holds.

u0 u1

(varx ,c) (Γ(x),c)

≡〈〉
Γ

un
fo

cu
s(
·)

un
fo

cu
s(
·)

Figure 5.4 – Replacement by unfolding.

Lemma 5.4 (Variable Elimination). For any environment Γ, any context c and identifier x in

the domain of Γ:

unfocus((varx ,c)) ≡〈〉
Γ unfocus((Γ(x),c))

Proof. Immediate by Lemma 5.3.

Unfortunately, most other replacements performed by the derivation function that I will

present in this chapter do not satisfy the property that the replacement expression behaves

exactly as the original focal point. Luckily, the result equivalence ≡〈〉
Γ of Lemma 5.3 is also often

too strong for the purposes of the derivation function and parsing algorithm, and might be

relaxed. A crucial observation is that, at the point when the next token t is known and fixed,

107



Chapter 5. Zippy LL(1) Parsing with Derivatives

the only interesting sequences in the semantics of an expression are those that start with the

token t . All other sequences are irrelevant. Therefore, a weaker equivalence relation, such

as ≡〈t〉
Γ , is sufficient for the purposes of the derivation function. The following lemma offers

more relaxed conditions in case of LL(1) expressions, with the caveat that the original and new

expressions are only shown to be equivalent on token sequences starting with a given token t .

Given a token t , the following lemma states that one can replace the focal point of an LL(1)

focused expression (e1,c) by an other LL(1) expression e2 that is equivalent for all token

sequences starting with the token t and get a focused expression (e2,c) that is also equivalent

for all token sequences starting with t , provided that e2 does not introduce new elements to

the should-not-follow set, and that one of the following two conditions hold:

1. The kind k of the token t is part of the first set of e1. Note that, since e1 and e2 behave

equivalently on sequences starting by the token t , the kind k is also bound to be part of

the first set of e2.

2. The two expressions e1 and e2 behave the same on the empty sequence of values.

Lemma 5.5 (LL(1) Equivalent Replacement). For any environment Γ, any token t of kind

k, any LL(1) focused expression (e1,c), and any LL(1) expression e2 where e1 ≡〈t〉
Γ e2 and

SN-FOLLOWΓ(e2) ⊆ SN-FOLLOWΓ(e1), if either

k ∈ FIRSTΓ(e1) or ∀v, e1 `Γ 〈〉 v ⇐⇒ e2 `Γ 〈〉 v

Then:

unfocus((e1,c)) ≡〈t〉
Γ unfocus((e2,c))

Proof. Let Γ be an environment and t a token of kind k. Let c be a context. The proof proceeds

by structural induction on the context c . In both cases, let (e1,c) be an LL(1) focused expression

and e2 be an LL(1) expression such that e1 ≡〈t〉
Γ e2, SN-FOLLOWΓ(e2) ⊆ SN-FOLLOWΓ(e1), and

k ∈ FIRSTΓ(e1)∨∀v,e1 `Γ 〈〉 v ⇐⇒ e2 `Γ 〈〉 v . Observe that, by Theorem 5.3, it is always

the case that (e2,c) is LL(1).

1. The case when c is empty trivially holds.

2. Consider the case when c is non-empty. In that case, c = l :: c ′ for some layer l and

context c ′. The proof continues by case analysis on the layer l .

(a) Consider the case when l = apply( f ) for some function f . First, by definition of

unfocus(·):

unfocus((e1,apply( f ) :: c ′)) ≡〈t〉
Γ unfocus(( f }e1,c ′))

By induction hypothesis, given that the conditions are trivially satisfied:

unfocus(( f }e1,c ′)) ≡〈t〉
Γ unfocus(( f }e2,c ′))

108



5.2. Zipper Operations

Finally, by definition of unfocus(·):

unfocus(( f }e2,c ′)) ≡〈t〉
Γ unfocus((e2,apply( f ) :: c ′))

Transitivity of ≡〈t〉
Γ concludes this case.

(b) Consider the case when l = prepend(v) for some value v . First, by definition of

unfocus(·):

unfocus((e1,prepend(v) :: c ′)) ≡〈t〉
Γ unfocus((εv ·e1,c ′))

By induction hypothesis, given that the conditions are trivially satisfied:

unfocus((εv ·e1,c ′)) ≡〈t〉
Γ unfocus((εv ·e2,c ′))

Finally, by definition of unfocus(·):

unfocus((εv ·e2,c ′)) ≡〈t〉
Γ unfocus((e2,prepend(v) :: c ′))

Transitivity of ≡〈t〉
Γ concludes this case.

(c) Consider the case when l = follow-by(e ′) for some expression e ′. First, by defini-

tion of unfocus(·):

unfocus((e1,follow-by(e ′) :: c ′)) ≡〈t〉
Γ unfocus((e1 ·e ′,c ′))

In order to apply the induction hypothesis, I assert that e1 ·e ′ ≡〈t〉
Γ e2 ·e ′.

• For the first direction of the equivalence, assume there are a token sequence

t s and a pair of values (v1, v2) such that e1 ·e ′ `Γ t :: t s (v1, v2). Therefore,

there must exist two token sequences t s1 and t s2 such that:

e1 `Γ t s1 v1 ∧
e ′ `Γ t s2 v2

When t s1 is non-empty, it must start with token t , and therefore, by the as-

sumption that e1 ≡〈t〉
Γ e2:

e2 `Γ t s1 v1

Therefore one gets that:

e2 ·e ′ `Γ t :: t s (v1, v2)

Which concludes this direction, assuming t s1 is non-empty.

On the other hand when t s1 is empty, we get, by the LL(1) property, that

k 6∈ FIRSTΓ(e1). Therefore, by hypothesis it is the case that:

∀v,e1 `Γ 〈〉 v ⇐⇒ e2 `Γ 〈〉 v

109



Chapter 5. Zippy LL(1) Parsing with Derivatives

And therefore that:

e2 ·e ′ `Γ t :: t s (v1, v2)

Which concludes this direction.

• For the second direction, assume there are a token sequence t s and a pair of

values (v1, v2) such that e2 ·e ′ `Γ t :: t s (v1, v2). Therefore, there must exist

two token sequences t s1 and t s2 such that:

e2 `Γ t s1 v1 ∧
e ′ `Γ t s2 v2

When t s1 is non-empty, it must start with token t , and therefore, by the hy-

pothesis that e1 ≡〈t〉
Γ e2:

e1 `Γ t s1 v1

Thus, one gets that:

e1 ·e ′ `Γ t :: t s (v1, v2)

Which concludes this direction, assuming t s1 is non-empty.

On the other hand when t s1 is empty, we get, by the LL(1) property, that

k 6∈ FIRSTΓ(e2). Since e1 ≡〈t〉
Γ e2, it must also be the case that k 6∈ FIRSTΓ(e1).

Therefore, it is the case that:

∀v,e1 `Γ 〈〉 v ⇐⇒ e2 `Γ 〈〉 v

And therefore that:

e2 ·e ′ `Γ t :: t s (v1, v2)

Which concludes this direction.

Having proven the non-trivial conditions, the proof then proceeds by invoking the

induction hypothesis:

unfocus((e1 ·e ′,c ′)) ≡〈t〉
Γ unfocus((e2 ·e ′,c ′))

Finally, by definition of unfocus(·):

unfocus((e2 ·e ′,c ′)) ≡〈t〉
Γ unfocus((e2,follow-by(e ′) :: c ′))

Transitivity of ≡〈t〉
Γ concludes this case.

110



5.2. Zipper Operations

Elimination Lemmas

Although the previous lemma is very general, it is also arguably a bit abstract and convoluted.

In this part, I introduce several useful and more concrete transformations whose correct-

ness is a direct corollary of the previous lemma. An overview of the operations is presented

in Figure 5.5, while the actual lemmas follow.

u0 u1 u0 u1

u0 u1 u0 u1

NULLABLEΓ(e) and k 6∈ FIRSTΓ(e) NULLABLEΓ(e1) and k 6∈ FIRSTΓ(e1)

k ∈ FIRSTΓ(e1) k ∈ FIRSTΓ(e2)

(e,c) (εnullΓ(e),c) (e1 ·e2,c) (εnullΓ(e1) ·e2,c)

(e1 ∨e2,c) (e1,c) (e1 ∨e2,c) (e2,c)

≡〈t〉
Γ ≡〈t〉

Γ

≡〈t〉
Γ ≡〈t〉

Γ

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

Figure 5.5 – Elimination operations. In the figure, k represents the kind of the token t . All
operations are subject to some preconditions, which have been highlighted. Additionally,
those operations require that all involved expressions are LL(1).

Lemma 5.6 (Nullable Elimination). For any environment Γ, LL(1) focused expression (e,c), and

token t of kind k, when k 6∈ FIRSTΓ(e) and NULLABLEΓ(e), then:

unfocus((e,c)) ≡〈t〉
Γ unfocus((εnullΓ(e),c))

Proof. Immediate by Lemma 5.5.

Lemma 5.7 (Left Disjunction Elimination). For any environment Γ, LL(1) focused expression

(e1 ∨e2,c), and token t of kind k, when k ∈ FIRSTΓ(e1), then:

unfocus((e1 ∨e2,c)) ≡〈t〉
Γ unfocus((e1,c))

Proof. Immediate by Lemma 5.5.

111



Chapter 5. Zippy LL(1) Parsing with Derivatives

Lemma 5.8 (Right Disjunction Elimination). For any environment Γ, LL(1) focused expression

(e1 ∨e2,c), and token t of kind k, when k ∈ FIRSTΓ(e2), then:

unfocus((e1 ∨e2,c)) ≡〈t〉
Γ unfocus((e2,c))

Proof. Immediate by Lemma 5.5.

Lemma 5.9 (Prefix Elimination). For any environment Γ, LL(1) focused expression (e1 ·e2,c),

and token t of kind k, when k 6∈ FIRSTΓ(e1) and NULLABLEΓ(e1), then:

unfocus((e1 ·e2,c)) ≡〈t〉
Γ unfocus((εnullΓ(e1) ·e2,c))

Proof. Let Γ be an environment, t a token of kind k, and (e1 · e2,c) be an LL(1) focused

expression. Assume k 6∈ FIRSTΓ(e1) and NULLABLEΓ(e1).

By Lemma 5.2, the following holds:

unfocus((e1 ·e2,c)) ≡〈t〉
Γ unfocus((e1,follow-by(e2) :: c))

Next, by Lemma 5.6, the following equivalence also holds:

unfocus((e1,follow-by(e2) :: c)) ≡〈t〉
Γ unfocus((εnullΓ(e1),follow-by(e2) :: c))

Finally, by Lemma 5.2 again:

unfocus((εnullΓ(e1),follow-by(e2) :: c)) ≡〈t〉
Γ unfocus((εnullΓ(e1) ·e2,c))

The proof concludes by transitivity of ≡〈t〉
Γ .

112



5.3. Zippy LL(1) Parsing with Derivatives

5.3 Zippy LL(1) Parsing with Derivatives

So far in this chapter, I have introduced the notion of LL(1) focused expressions, which are

simply LL(1) expression with a focal point. I have also introduced several operations that

move or replace the focal point while preserving the LL(1) property and the semantics (to

some degree) of the original focused expression. Equipped with those operations, I will

now be able to describe the LL(1) parsing with derivatives and zippers algorithm. I will start

by presenting several higher-level operations that will play a crucial role in the zippy LL(1)

derivation function ζk
Γ(·) that is at the heart of the parsing algorithm.

5.3.1 Moving the Focus Downwards with pierce

The first high-level operation that I present is piercek
Γ(·, ·). The goal of the function is to

move the focus all the way down the current focal point towards an elemk expression. Given

a kind k and an LL(1) focused expression (e,c) where k ∈ FIRSTΓ(e), the function moves the

focus towards the unique elemk node within e that caused k to be part of FIRSTΓ(e), unfolding

variables, and eliminating prefixes and disjunctions along the way. Since the node in focus will

always be an elemk node, the pierce function simply returns the context part of the resulting

focused expression. The function is defined as follows:

piercek
Γ(elemk ,c) := c

piercek
Γ(e1 ∨e2,c) :=

piercek
Γ(e1,c) if k ∈ FIRSTΓ(e1)

piercek
Γ(e2,c) otherwise

piercek
Γ(e1 ·e2,c) :=

piercek
Γ(e1,follow-by(e2) :: c) if k ∈ FIRSTΓ(e1)

piercek
Γ(e2,prepend(nullΓ(e1)) :: c) otherwise

piercek
Γ( f }e,c) := piercek

Γ(e,apply( f ) :: c)

piercek
Γ(varx ,c) := piercek

Γ(Γ(x),c)

Note that the definition assumes that the input focused expression (e,c) is LL(1) and that

k ∈ FIRSTΓ(e). Since the definition is non-trivial, I will shortly prove that the function is well-

defined, that is that:

1. the definition handles all constructs satisfying the preconditions,

2. that the preconditions of all functions invoked within the body of the definition are

respected, and

3. that the computation terminates.

The three properties are proven in the following theorems.

113



Chapter 5. Zippy LL(1) Parsing with Derivatives

Theorem 5.4 (Match-completeness). The definition of piercek
Γ(·, ·) handles all constructs that

can appear at the top of expressions e such that k ∈ FIRSTΓ(e).

Proof. The only two constructs which are not handled are εv and ⊥, both of which have empty

first sets.

Theorem 5.5 (Preconditions). All arguments e ′, c ′ of recursive calls made in piercek
Γ(e,c)

satisfy LL1Γ((e ′,c ′)) and k ∈ FIRSTΓ(e ′) given that LL1Γ((e,c)) and k ∈ FIRSTΓ(e). Additionally,

the preconditions of the calls to nullΓ(·), that is that the argument expression is LL(1) and

nullable, are also satisfied.

Proof. By simple case analysis.

Theorem 5.6 (Well-foundedness). The computation of piercek
Γ(e,c) terminates for any envi-

ronment Γ, LL(1) focused expression (e,c) and kind k where k ∈ FIRSTΓ(e).

Proof. Follows directly by LL(1) induction (Lemma 4.1).

The function can be seen as simply performing a series of focus movements and replacements,

as defined in the previous section.

• When the focal point is already an elemk expression, piercek
Γ(·, ·) simply returns the

current context untouched.

• In case of a disjunction, piercek
Γ(·, ·) simply eliminates the disjunction and only keeps

the side which starts with k. The function proceeds recursively on that new focused

expression.

• For sequences, either piercek
Γ(·, ·) performs a prefix elimination followed by a move

to focus e2, or simply moves to focus e1, depending on the side which contributed

to k ∈ FIRSTΓ(e1 · e2). The function then proceeds recursively on that new focused

expression.

• In case of f } e ′, the focus is simply moved towards e ′, at which point the function

proceeds recursively.

• Finally, in case of a variable varx , the variable is unfolded and the function proceeds

recursively on Γ(x).

Since all those movements and replacements preserve the LL(1) property, the entire

piercek
Γ(·, ·) function also preserves the LL(1) property. Additionally, since all steps pre-

serve ≡〈t〉
Γ -equivalence for any token t of kind k, the focused expression (elemk ,piercek

Γ(e,c))

will be equivalent to (e,c) for all tokens sequences starting with the token t . Those insights are

formalised in the following two theorems.

114



5.3. Zippy LL(1) Parsing with Derivatives

Theorem 5.7 (LL(1) Preservation). For any environment Γ, kind k, LL(1) focused expression

(e,c) with k ∈ FIRSTΓ(e), the following holds:

LL1Γ((elemk ,piercek
Γ(e,c)))

Proof. Let Γ be an environment and k a kind. The proof proceeds by Lemma 4.1. In each

case, the original focused expression can be transformed into a focused expression where an

induction hypothesis holds on the focal point, through a series of focus movements and focus

replacement. Lemma 5.2 ensures that the LL(1) property is preserved by focus movements.

For focus replacements, since the new focal point never introduces new elements to the

should-not-follow set, Theorem 5.3 ensures that the LL(1) property is also preserved.

Theorem 5.8 (Correctness). For any environment Γ, LL(1) focused expression (e,c), token t of

kind k ∈ FIRSTΓ(e):

unfocus((e,c)) ≡〈t〉
Γ unfocus((elemk ,piercek

Γ(e,c)))

Proof. Let Γ be an environment and t be a token of kind k. The proof proceeds by the LL(1)

induction principle (Lemma 4.1) on LL(1) expressions e such that k ∈ FIRSTΓ(e). In each case,

let c be a context such that (e,c) is LL(1). Since piercek
Γ(·, ·) only applies move operations

(which preserve ≡〈t〉
Γ -equivalence by Lemma 5.2) and various replacement operations (which

preserve ≡〈t〉
Γ -equivalence by Lemma 5.4, Lemma 5.7, Lemma 5.8, and Lemma 5.9), the ex-

pression (e,c) is always ≡〈t〉
Γ -equivalent to the focused expression passed as argument to the

recursive call to piercek
Γ(·, ·), and on which an induction hypothesis is available.

Similarities with Simple (Non-Zippy) LL(1) Derivation

Notice that the definition of pierce is almost identical to the definition of (non-zippy) LL(1)

derivation δt
Γ(·). The recursive structure of the two definitions are identical. There are however

a few key differences in the definitions:

• Instead of directly building the resulting expression as is the case for δt
Γ(·), pierce

accumulate layers on top of an existing context passed as argument. Contrary to δt
Γ(·),

the function pierce is tail recursive, meaning that recursive calls are always the last

action performed within the body of the function. Such tail recursive functions can be

implemented more efficiently depending on the implementation language.

• Although δt
Γ(·) had to directly replace the leaf elemk node directly with an εt node

in order to return from the last recursive call, the function pierce does not need to

perform that replacement. The function pierce simply returns the context around that

115



Chapter 5. Zippy LL(1) Parsing with Derivatives

elemk node. With the focus on that node, it is trivial to replace it by an εt node, but it is

also possible to easily refer to the expression with the original elemk node still in place.

For this reason, pierce also does not need the actual token t as an argument, only its

kind k. This fact will prove useful when I investigate caching opportunities later on.

5.3.2 Moving the Focus Upwards

In the previous few paragraphs, I have presented the piercek
Γ(·, ·) function, which, when

applied on an LL(1) focused expression (e,c), where k ∈ FIRSTΓ(e), moves the focus down the

expression towards the unique elemk node that caused k ∈ FIRSTΓ(e).

As discussed, piercek
Γ(·, ·) requires k to be in the first set of the focal point e. Unfortunately, it

is not always the case that k is in the first set of the focal point when k is part of the first set of

the expression.

k ∈ FIRSTΓ(unfocus((e,c))) 6=⇒ k ∈ FIRSTΓ(e)

Indeed, when e is nullable, the context c may also contribute to the first set of unfocus((e,c)),

and therefore the elemk to be focused might not be found within e, but within an expression

somewhere in the context c . To resolve this issue, I will now introduce the function locatek
Γ(·),

as well as the helper function plug(·, ·).

The goal of locatek
Γ(·) is to move the focus up the context towards an expression which starts

with the desired kind k. As such an expression may not always exist, the function may return

none. To perform this task, the locatek
Γ(·) function makes use of the helper function plug(·, ·),

which I shall introduce first.

5.3.3 The plug function

The function plug(·, ·) is parameterised by a value v and a context c. The goal of the function

is to move the focus towards the next expression in the context c when the current focal point

reduces down to the value v . The function is defined as follows:

plug(v,〈〉) := (εv ,〈〉)
plug(v,apply( f ) :: c ′) := plug( f (v),c ′)

plug(v,prepend(v ′) :: c ′) := plug((v ′, v),c ′)

plug(v,follow-by(e) :: c ′) := (e,prepend(v) :: c ′)

When the context c is empty, plug(v,c) simply returns the focused expression (εv ,〈〉). In the

case of an apply( f ) or a prepend(v ′) layer at the top of the context, plug(v,c) respectively

applies f to v or pairs v ′ with v before proceeding recursively on the rest of the context. Finally,

in case of a follow-by(e) layer at the top of the context, plug(v,c) stops and returns a focused

116



5.3. Zippy LL(1) Parsing with Derivatives

expression where e is the focal point. In that case, the top follow-by(e) layer is replaced by a

prepend(v) layer. That prepend(v) layer keeps track of the value that was plugged.

Theorem 5.9 (LL(1) Preservation). When (εv ,c) is LL(1), the focused expression returned by

plug(v,c) is also LL(1).

Proof. By structural induction on the context c.

Theorem 5.10 (Correctness). The focused expression returned by plug(v,c) is equivalent to

(εv ,c).

∀Γ,c, v. unfocus(plug(v,c)) ≡Γ unfocus((εv ,c))

Proof. By structural induction on the context c.

Theorem 5.11 (Progress). When c is non-empty, the context of the focused expression returned

by plug(v,c) has a strictly smaller weight than c.

Proof. By structural induction on the context c.

5.3.4 The locate function

The next function I introduce is locatek
Γ(·). The goal of locatek

Γ(·) is to move the focus up

the context until the focal point starts with the desired kind k. To move the focus upwards, the

function makes use of the plug(·, ·) that was just discussed. The function is defined as follows:

locatek
Γ((e,c)) :=


some((e,c)) if k ∈ FIRSTΓ(e)

none if ¬NULLABLEΓ(e) or c = 〈〉
locatek

Γ(plug(nullΓ(e),c)) otherwise

In case the focal point already contains k in the first set, locatek
Γ((e,c)) returns the focused

expression (e,c) untouched. Otherwise, when the focal point e is not nullable, or when the

context c is empty, locatek
Γ((e,c)) returns none. In that case, the expression unfocus((e,c)) is

guaranteed not to have k in its first set. In the opposite case, when both e is nullable and the

context is not empty, the unique value associated with the empty sequence of tokens by e is

retrieved, and plug is used to move the focus to the next expression in the context.

Theorem 5.12 (Well-foundedness). The computation of locatek
Γ((e,c)) terminates for all

environments Γ, kind k and LL(1) focused expression (e,c).

Proof. For all recursive calls, the weight of the context of the focused expression argument is

always strictly decreasing. Indeed, by Theorem 5.11, the weight of the context of plug(v,c) is

strictly smaller than the weight of c, and so for any v and c.

117



Chapter 5. Zippy LL(1) Parsing with Derivatives

Theorem 5.13 (First Location). When locatek
Γ((e,c)) = some((e ′,c ′)), the focal point e ′ con-

tains the kind k in its first set.

Proof. By strong induction on the weight of the context c. The recursive case makes use

of Theorem 5.11 to argue that the recursive context argument is smaller.

Theorem 5.14 (LL(1) Preservation). When (e,c) is LL(1) and locatek
Γ((e,c)) = some((e ′,c ′)),

then (e ′,c ′) is also LL(1).

Proof. Let Γ be an environment and k a kind. The proof proceeds by strong induction on the

weight of the context c. In both cases, let (e,c) be an LL(1) focused expression and assume

locatek
Γ((e,c)) = some((e ′,c ′)).

1. Consider the case when the weight of the context c is zero. In that case, the context

c is bound to be empty. Thus, for locatek
Γ((e,c)) to not be none, it must be the case

that k ∈ FIRSTΓ(e) and thus that locatek
Γ((e,c)) = some((e,c)). Therefore in this case

(e ′,c ′) = (e,c). Since by assumption (e,c) is LL(1), then so is (e ′,c ′).

2. Consider the case when the weight is non-zero. Since the weight is non-zero, the context

c is non-empty. The only interesting case is when k is not part of the first set of e and e

is nullable.

In that case, the call to locatek
Γ((e,c)) reduces to locatek

Γ(plug(nullΓ(e),c)). By The-

orem 5.3, the focused expression (εnullΓ(e),c) is LL(1). Additionally, by Theorem 5.9,

the focused expression plug(nullΓ(e),c) is also LL(1). Finally, by Theorem 5.11, the

context of the focused expression plug(nullΓ(e),c) has a strictly smaller weight than c.

Therefore the induction hypothesis applies and the proof concludes.

Theorem 5.15 (Soundness). For any environment Γ, LL(1) focused expression (e,c) and token

t of kind k, when locatek
Γ((e,c)) = some((e ′,c ′)), then:

unfocus((e,c)) ≡〈t〉
Γ unfocus((e ′,c ′))

Proof. Let Γ be an environment, t a token of kind k and c a context. The proof proceeds by

strong induction on the weight of the context c. In each case, let e by an expression such that

(e,c) is LL(1) and locatek
Γ((e,c)) = some((e ′,c ′)) for some (e ′,c ′).

1. The case when the weight of c is zero is trivial.

2. Consider the case when the weight of c is non-zero, that is when the context c is non-

empty. The only interesting case is when k is not part of the first set of e and e is

nullable.

118



5.3. Zippy LL(1) Parsing with Derivatives

In that case, the call to locatek
Γ((e,c)) reduces to locatek

Γ(plug(nullΓ(e),c)).

Notice that, by Lemma 5.6, the following equivalence holds:

unfocus((e,c)) ≡〈t〉
Γ unfocus((εnullΓ(e),c))

Additionally, by Theorem 5.10:

unfocus((εnullΓ(e),c)) ≡〈t〉
Γ unfocus(plug(nullΓ(e),c))

Finally, by induction hypothesis, since the weight is decreasing by Theorem 5.11:

unfocus(plug(nullΓ(e),c)) ≡〈t〉
Γ unfocus((e ′,c ′))

Therefore, by transitivity:

unfocus((e,c)) ≡〈t〉
Γ unfocus((e ′,c ′))

Lemma 5.10 (Core Failure). For any environment Γ, any token t of kind k, and any focused

expression (e,c), when k 6∈ FIRSTΓ(e) and ¬NULLABLEΓ(e), then:

k 6∈ FIRSTΓ(unfocus((e,c)))

Proof. By structural induction on the context.

Theorem 5.16 (Completeness). For any environment Γ, LL(1) focused expression (e,c) and

token t of kind k, when locatek
Γ((e,c)) = none, then k 6∈ FIRSTΓ(unfocus((e,c))).

Proof. Let Γ be an environment, t a token of kind k, and c a context. The proof proceeds by

strong induction on the weight of the context c. In each case, let e by an expression such that

(e,c) is LL(1) and locatek
Γ((e,c)) = none.

1. The case when the weight of c is zero, that is when the context is empty, is trivial.

2. Consider the case when the context c is non-empty. As k ∈ FIRSTΓ(e) leads to a con-

tradiction, it must be the case that k 6∈ FIRSTΓ(e). Additionally, when e is not nul-

lable, Lemma 5.10 applies and immediately concludes the case.

The only remaining case is when k is not part of the first set of e and when e is nullable.

In that case, the call to locatek
Γ((e,c)) reduces to locatek

Γ(plug(nullΓ(e),c)), which is

therefore also bound to be none.

By induction hypothesis, since the weight is decreasing by Theorem 5.11:

k 6∈ FIRSTΓ(unfocus(plug(nullΓ(e),c)))

119



Chapter 5. Zippy LL(1) Parsing with Derivatives

Next, by Theorem 5.10, it must be the case that:

k 6∈ FIRSTΓ(unfocus((εnullΓ(e),c)))

Finally, by Lemma 5.6:

k 6∈ FIRSTΓ(unfocus((e,c)))

5.3.5 Zippy LL(1) Derivation

Now that I have defined the locatek
Γ(·) and piercek

Γ(·, ·) helper functions, I can finally define

the zippy LL(1) derivation function ζt
Γ(·). The function assumes that the argument focused

expression (e,c) is LL(1). It is defined as follows:

ζt
Γ((e,c)) :=

some((εt ,piercek
Γ(e ′,c ′)) if locatek

Γ((e,c)) = some((e ′,c ′)),k = kind(t )

none otherwise

Theorem 5.17 (Preconditions). All preconditions of the call to piercek
Γ(e ′,c ′) are satisfied.

Proof. The preconditions are that (e ′,c ′) is LL(1) and k ∈ FIRSTΓ(e ′). The first precondition is

ensured by Theorem 5.14, the second by Theorem 5.13.

The zippy LL(1) function makes use of the two helper functions locatek
Γ(·) and piercek

Γ(·, ·).

Figure 5.6 presents a visualisation of the algorithm, and showcases how the various intermedi-

ate expressions are related.

u0 u1 u2 u3

(e,c) (e ′,c ′) (elemk ,cp ) (εt ,cp )

cp = piercek
Γ(e1,c1)none

locatek
Γ(·) piercek

Γ(·, ·) replacement

≡〈t〉
Γ ≡〈t〉

Γ À〈t〉
Γ

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

À〈t〉
Γ

Figure 5.6 – Visualisation of the zippy LL(1) derivation function ζt
Γ(·).

120



5.3. Zippy LL(1) Parsing with Derivatives

It is worth thinking of the zippy LL(1) derivation function as working in three distinct phases,

represented by bold arrows in Figure 5.6:

1. In the first phase, locatek
Γ((e,c)) is used to move the focus up towards a point (e ′,c ′)

such that k ∈ FIRSTΓ(e ′). Note that such a focal point may not always exist, and for this

reason locatek
Γ((e,c)) may also return none. If it is the case, then the zippy LL(1) deriva-

tion function also returns none. When it actually leads to a new focused expression, the

phase is guaranteed to preserve the LL(1) property and ≡〈t〉
Γ -equivalence.

2. In the second phase, the focus is moved down towards the unique elemk node that

caused k ∈ FIRSTΓ(e ′). The context around that elemk is returned by piercek
Γ(e ′,c ′).

Again, the phase preserves the LL(1) property and ≡〈t〉
Γ -equivalence.

3. In the last phase, the focal point elemk is replaced by an εt expression. That phase

actually results in a focused expression that is derivative of the initial focused expression

by the token t . The LL(1) property is still maintained.

Note that although logically distinct, the last two phases are merged in the actual definition.

Indeed, with the present definition of ζt
Γ(·), the (elemk ,piercek

Γ(e ′,c ′)) focused expression is

not materialised. However, keeping the two phases logically distinct simplifies reasoning.

The following theorems state the LL(1) preservation property of zippy LL(1) derivation, as well

as its correctness with respect to the semantic relation À〈t〉
Γ .

Theorem 5.18 (LL(1) Preservation). For any environment Γ, token t and LL(1) focused expres-

sion (e,c), if it is the case that ζt
Γ((e,c)) = some((e ′,c ′)), then (e ′,c ′) is also LL(1).

Proof. Straightforward by Theorem 5.7 and Theorem 5.3.

Theorem 5.19 (Soundness). For any environment Γ, token t and LL(1) focused expression (e,c),

if it is the case that ζt
Γ((e,c)) = some((e ′,c ′)), then:

unfocus((e,c)) À〈t〉
Γ unfocus((e ′,c ′))

Proof. Immediate by Theorem 5.15, Theorem 5.8, Lemma 5.1, as well as Theorem 3.8.

Theorem 5.20 (Completeness). For any environment Γ, token t and LL(1) focused expression

(e,c), if it is the case that ζt
Γ((e,c)) = none, then:

k 6∈ FIRSTΓ((e,c))

Proof. Immediate by Theorem 5.16.

121



Chapter 5. Zippy LL(1) Parsing with Derivatives

5.3.6 The result function

The last function that I need to introduce before the zippy LL(1) parsing algorithm is the

resultΓ(·) function. Given an LL(1) focused expression (e,c), the goal of this function is to

return the unique value associated with the empty string by the expression (e,c), if any.

resultΓ((e,c)) :=


none if ¬NULLABLEΓ(e)

some(nullΓ(e)) if c = 〈〉
resultΓ(plug(nullΓ(e),c)) otherwise

Theorem 5.21 (Well-foundedness). The computation of resultΓ((e,c)) terminates for all

environments Γ and LL(1) focused expression (e,c).

Proof. By Theorem 5.11, the weight of the context of plug(nullΓ(e),c) is strictly smaller than

the weight of c, thereby showing termination.

Theorem 5.22 (Soundness). For any environment Γ, and LL(1) focused expression (e,c), if

resultΓ((e,c)) = some(v), then:

unfocus((e,c)) `Γ 〈〉 v

Proof. By induction on the context c.

Theorem 5.23 (Completeness). For any environment Γ, and LL(1) focused expression (e,c), if

resultΓ((e,c)) = none, then:

¬NULLABLEΓ(unfocus((e,c)))

Proof. By induction on the context c.

5.3.7 Zippy LL(1) Parsing with Derivatives Algorithm

Now is finally the time to introduce the zippy LL(1) parsing with derivatives algorithm. Given

an LL(1) focused expression and a sequence of tokens as inputs, the algorithm returns the

unique value associated with the sequence by the expression, if any.

zippy-ll1-parseΓ((e,c),〈〉) := resultΓ((e,c))

zippy-ll1-parseΓ((e,c), t :: t s) :=
zippy-ll1-parseΓ((e ′,c ′), t s) if ζt

Γ((e,c)) = some((e ′,c ′))

none otherwise

122



5.3. Zippy LL(1) Parsing with Derivatives

The algorithm repeatedly applies zippy LL(1) derivation ζt
Γ(·) for each input token t , and

computes the final result using the resultΓ(·) function. If at any point derivation fails and

returns none, the entire algorithm stops and returns none.

Theorem 5.24 (Preconditions). All preconditions to the recursive call to

zippy-ll1-parseΓ((e ′,c ′), t s) are satisfied.

Proof. The only precondition is that (e ′,c ′) is LL(1). The precondition is verified by Theo-

rem 5.18.

5.3.8 On the Correctness of Zippy LL(1) Parsing with Derivatives

In this section, I will investigate the correctness of the zippy LL(1) parsing with derivatives

algorithm. The correctness statement of the algorithm is expressed in terms of the semantic

relation e `Γ t s v :

∀Γ,e. LL1Γ(e) =⇒ ∀t s, v. zippy-ll1-parseΓ(focus(e), t s) = some(v) ⇐⇒ e `Γ t s v

For it to be correct, given an environment Γ, an LL(1) expression e and a sequence of tokens

t s, the zippy LL(1) parsing with derivatives algorithm must successfully return a value v if

and only if the expression associates the token sequence t s with the value v according to the

semantics relation.

The proof of correctness of the zippy LL(1) parsing with derivatives algorithm is composed

of several parts, each of which reasoning about a specific part of the algorithm. In order to

facilitate the understanding of the argument and its various parts, Figure 5.7 presents an

overview of the correctness argument and how the various theorems presented in this section

are used. An explanation of the figure follows.

u0 u1 u2 un−1 un

(e0,c0) (e1,c1) (e2,c2) (en−1,cn−1) (en ,cn)

v

none none none none

ζ
t1
Γ (·) ζ

t2
Γ (·) ζ

tn
Γ (·) resultΓ(·)fo

cu
s(
·)

un
fo

cu
s(
·)

À〈t1〉
Γ À〈t2〉

Γ À〈tn〉
Γ

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·)

un
fo

cu
s(
·) Γ̀ 〈〉 

Àt s
Γ

Figure 5.7 – Visualisation of the zippy LL(1) parsing with derivatives algorithm.

The bolder arrows show the path taken by the algorithm: First, the starting LL(1) expression u0

is turned into a focused expression (e0,c0) using focus(·). Then, zippy LL(1) derivation ζt
Γ(·)

123



Chapter 5. Zippy LL(1) Parsing with Derivatives

is repeatedly applied, once for each input token. Finally, the resultΓ(·) function is used to

return the value associated with the empty string. At every derivation step, as well as in the

resultΓ(·) step, the process can stop and return none.

The solid arrows (labeled by unfocus(·)) link each focused expression (ei ,ci ) to its unfocused

counterpart ui . The unfocused counterparts are not actually computed by the algorithm, but

are useful to reason about the meaning of focused expressions.

Dashed arrows express relations. The dashed arrow between an unfocused expression ui and

its successor ui+1 states that ui À〈t〉
Γ ui+1, that is that ui+1 is a derivative of ui by the token

ti+1. The arrow that relates u0 to un states that u0 Àt s
Γ un , that is that un is a derivative of u0

by the sequence of tokens t s. This relation follows directly by transitivity of À·
Γ.Finally, the

dashed arrow between un and v indicates that un `Γ 〈〉 v . Together, those relations state

the soundness of the algorithm.

In order to argue the completeness of the algorithm, I will show that whenever none is returned

by derivation of ui by ti+1, then there are no productive expressions ui+1 such that ui À〈t〉
Γ ui+1.

I will also need to show that whenever resultΓ((en ,cn)) return none, then ¬NULLABLEΓ(un).

Theorem 5.25 (Soundness). For any environment Γ, LL(1) focused expression (e,c) and token

sequence t s, whenever:

zippy-ll1-parseΓ((e,c), t s) = some(v)

Then:

unfocus((e,c)) `Γ t s v

Proof. Let Γ be an environment, (e,c) be an LL(1) focused expression, t s a sequence of tokens.

The proof proceeds by structural induction on the list of tokens.

1. In the case the list of tokens is empty, zippy-ll1-parseΓ((e,c),〈〉) reduces to

resultΓ((e,c)). By assumption, resultΓ((e,c)) = some(v). Finally, Theorem 5.22 en-

sures that unfocus((e,c) `Γ 〈〉 v , which concludes the case.

2. Consider the case when the list of tokens is non-empty. Let t denote the first token of

the list and t s′ the rest.

In this case, zippy-ll1-parseΓ((e,c), t :: t s′), by assumption, reduces to

zippy-ll1-parseΓ((e ′,c ′), t s) from some focused expression (e ′,c ′) where ζt
Γ((e,c)) =

some((e ′,c ′)).

Again by assumption, it is the case that:

zippy-ll1-parseΓ((e ′,c ′), t s) = some(v)

124



5.3. Zippy LL(1) Parsing with Derivatives

Therefore, by applying the induction hypothesis, one gets that:

unfocus((e ′,c ′) `Γ t s′ v

Additionally, from Theorem 5.19:

(e,c) À〈t〉
Γ (e ′,c ′)

Therefore, by composition:

unfocus((e,c) `Γ t :: t s′ v

Which concludes the proof.

Theorem 5.26 (Completeness). For any environment Γ, LL(1) focused expression (e,c) and

token sequence t s, whenever:

zippy-ll1-parseΓ((e,c), t s) = none

Then there does not exist any value v such that:

unfocus((e,c)) `Γ t s v

Proof. Let Γ be an environment, (e,c) be an LL(1) focused expression, t s a sequence of tokens.

The proof proceeds by structural induction on the list of tokens.

1. In the case the list of tokens is empty, zippy-ll1-parseΓ((e,c),〈〉) reduces to

resultΓ((e,c)). By assumption, resultΓ((e,c)) = none.

Therefore, by Theorem 5.23, we get that ¬NULLABLEΓ(unfocus((e,c))), ensures that

there does not exist any value v such that unfocus((e,c) `Γ 〈〉 v .

2. Consider the case when the list of tokens is non-empty. Let t denote the first token of

the list and t s′ the rest. Let k be the kind of t .

In this case, zippy-ll1-parseΓ((e,c), t :: t s′) = none may be a result of ζt
Γ((e,c)) = none

or may come from the recursive call.

(a) Consider the case when ζt
Γ((e,c)) = none. In this case, by Theorem 5.20, one gets

that:

k 6∈ FIRSTΓ(unfocus((e,c)))

And therefore:

¬∃v, unfocus((e,c) `Γ t :: t s′ v

125



Chapter 5. Zippy LL(1) Parsing with Derivatives

(b) Consider the case when ζt
Γ((e,c)) = some((e ′,c ′)) for some (e ′,c ′).

By assumption, one gets that zippy-ll1-parseΓ((e ′,c ′), t s′) = none.

Therefore, by induction hypothesis:

¬∃v, unfocus((e ′,c ′)) `Γ t s′ v

Additionally, by Theorem 5.19 one has that:

unfocus((e,c)) À〈t〉
Γ unfocus((e ′,c ′))

Therefore, one can conclude that:

¬∃v, unfocus((e,c)) `Γ t :: t s′ v

Which concludes the proof.

Theorem 5.27 (Correctness). For any environment Γ, LL(1) expression e, token sequence t s

and value v:

zippy-ll1-parseΓ(focus(e), t s) = some(v)

⇐⇒
e `Γ t s v

Proof. Immediate by definition of focus(·), Theorem 5.25, and Theorem 5.26.

126



5.4. Example Execution

5.4 Example Execution

As an example of the execution of the algorithm, let us go back to our running example. Recall

that, in that example, the environment Γ assigns the identifier x to the expression:

( f } ((elemA ·varx ) ·elemB ))∨ε0

Where the function f accepts as input nested pairs of the form ((t1,n), t2) and returns the

value n.

Figure 5.8 presents an overview of the execution of the algorithm on the focused expression

focus(varx ) = (varx ,〈〉) and the input token sequence 〈a,a,b,b〉. At a high level, the execution

consists of four calls to ζ·Γ(·), one for each input token, followed by a call to the resultΓ(·)
function.

After each derivation step, the resulting data structure is shown. Notice that some arrows are

reversed compared to the canonical tree representation of the expression. Those arrows are

represented in bolder font in the diagram. At the end of those arrows are not typical expression

nodes, but layers. Those reversed arrows always form a path from an expression to the root of

the canonical expression tree. The expression e at the start of this path is the focal point and

the stack of layers on this path is the context c. Together they form a focused expression (e,c).

ζa
Γ

(·) ζa
Γ

(·) ζb
Γ

(·) ζb
Γ

(·) resultΓ(·)

varx f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
ε(a,0) εb

f}

·
ε(a,1) εb

some(2)

Figure 5.8 – Example execution of the zippy LL(1) parsing with derivatives algorithm. The
execution consists of four derivation calls and a final call to resultΓ(·).

Each derivation call can be further decomposed into three phases:

1. An upwards locate phase, in which the focus is moved towards the next sequent

expression in the context that starts with the kind k of the derived token t , if any.

2. A downwards pierce phase, in which the focus is moved towards the unique leaf elemk

node in the tree, eliminating disjunctions, nullifying prefixes and unrolling definitions

along the way as needed.

3. A replacement phase, in which the focal elemk node is replaced by an εt node.

127



Chapter 5. Zippy LL(1) Parsing with Derivatives

Figure 5.9 presents, for each derivation call in the current example, an overview of those three

phases. Before and after each phase is a representation of the focused expression.

locateA
Γ

(·) pierceA
Γ

(·, ·) replacement

ζa
Γ

(·)

varx varx f}

·
· elemB

elemA varx

f}

·
· elemB

εa varx

(a) First zippy derivation by token a.

locateA
Γ

(·) pierceA
Γ

(·, ·) replacement

ζa
Γ

(·)

f}

·
· elemB

εa varx

f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

elemA varx

f}

·
· elemB

εa f}

·
· elemB

εa varx

(b) Second zippy derivation by token a.

locateB
Γ

(·) pierceB
Γ

(·, ·) replacement

ζb
Γ

(·)

f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
ε(a,0) elemB

f}

·
· elemB

εa f}

·
ε(a,0) elemB

f}

·
· elemB

εa f}

·
ε(a,0) εb

(c) First zippy derivation by token b.

locateB
Γ

(·) pierceB
Γ

(·, ·) replacement

ζb
Γ

(·)

f}

·
· elemB

εa f}

·
ε(a,0) εb

f}

·
ε(a,1) elemB

f}

·
ε(a,1) elemB

f}

·
ε(a,1) εb

(d) Second zippy derivation by token b.

Figure 5.9 – Example zippy derivations. Each derivation consists of three distinct phases: An
upwards locate phase, a downwards pierce phase and a replacement phase. After each
phase the resulting focused expression is displayed.

128



5.4. Example Execution

To illustrate the effect of the zipper data structure on the runtime complexity of the algorithm,

let us examine successive derivatives by tokens of kind A of the example context-free expres-

sion varx . In Section 4.4.8, this specific situation exposed a problematic quadratic behaviour of

the non-zippy LL(1) parsing with derivatives algorithm. In that earlier section, I demonstrated

that the quadratic behaviour arose from the repeated traversals of the increasingly larger

derivative expressions. In the present section, I will show that using a zipper data structure

avoids this inefficient behaviour. In the next section, I will present a formal argument that the

runtime complexity is indeed worst-case linear in the number of input tokens.

ζa
Γ

(·) ζa
Γ

(·) ζa
Γ

(·) ζa
Γ

(·) ζa
Γ

(·)

varx f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

Figure 5.10 – Successive states of the parser after processing tokens of kind A.

Figure 5.10 shows the resulting data structure before and after each successive derivation

by tokens of kind A. At a first glance, the situation does not seem particularly better than

the one in Section 4.4.8. Indeed, the size of the data structures are similar. In this specific

example, the data structures representing the derivative expressions grow with each successive

derivation. There is however one significant change compared to the non-zippy version seen

earlier in this thesis: Instead of pointers flowing from the expression root, pointers always

flow from the point where the last derivation ended. In the case where the pointers flowed

from the root, derivation needed to start back at the root and had to traverse and rebuild the

accumulated layers in order to compute the next derivative. In the present case, thanks to the

zipper structure, derivation can start at the point where the previous derivation ended. All

nodes above a certain horizon point are not visited by derivation, and, thanks to immutability,

can be directly referenced without requiring any extra work. Figure 5.11 illustrates this notion

of horizon for one of the showcased derivations.

129



Chapter 5. Zippy LL(1) Parsing with Derivatives

ζa
Γ

(·)

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa f}

·
· elemB

εa varx

Horizon

Figure 5.11 – Visited nodes in a derivation by a. The dashed line denotes a horizon, above
which nodes are not visited during the derivation. Thanks to immutability, layer nodes above
the horizon can be referenced directly in the derivative expressions.

5.5 Complexity Analysis

Now that we have an intuitive understanding of how the zipper structure can help with the

runtime complexity, I present a formal argument about the worst-case time complexity of

the algorithm. In order to simplify the argument, I will assume that user-defined functions

that appear in map nodes have constant time complexity with respect to the number of

input tokens consumed at the point they are applied. Since such functions generally apply

constant time data constructors, such an assumption is not unreasonable. It is however

theoretically possible to arbitrarily worsen the complexity result presented in this section by

crafting malicious user-defined functions.

To begin the complexity analysis of the parsing algorithm, a first crucial observation is to be

made: throughout its entire execution, the algorithm never instantiates new expressions, apart

from trivial εv expressions. Instead of instantiating new expressions nodes, the algorithm

instantiate layer nodes. This has several important consequences:

1. Calls to pierce·
Γ(·, ·), as they act on normal expressions, can only be made on a fixed

number of preexisting expressions. Those expressions are all subexpressions of the

original expression and expressions in the environment, and as such have a size bounded

by the initial number of nodes. Therefore, calls to pierce·
Γ(·, ·) are bound to run in time

constant with respect to the number of input tokens.

2. For the same reason, the number of layers added to the context by pierce·
Γ(·, ·) is

constant with respect to the number of tokens processed. The number of layers added

is bounded by the number of nodes in the original expression and in the environment,

130



5.5. Complexity Analysis

and is therefore also constant with respect to the number of input tokens.

3. Furthermore, since there is only a finite collection of expressions, as the input sequence

of tokens grows larger, property checks performed by the parsing algorithm are bound

to be repeatedly called on the same collection of expressions. It therefore makes sense

to precompute properties such as first sets, nullability, as well as the value returned

by nullΓ(·), for all subexpressions in the initial expression and environment. This can

be performed efficiently with the help of propagation networks, as discussed earlier

in Section 3.8.1. The cost of this computation, as it happens entirely before processing

any token, is constant with respect to the number of tokens processed. I discuss this in

more details in Section 5.6.

With this observation and its consequences in mind, let us examine the worst-case runtime

complexity of the zippy LL(1) parsing with derivatives algorithm. Given an input of n tokens,

the execution of the parsing algorithm can be decomposed into:

• At most n derivations, once per input token. Each derivation can be further decomposed

into:

– A single call to locate·
Γ(·),

– At most a single call to pierce·
Γ(·, ·), which takes constant time with respect to the

number of input tokens n, as argued earlier,

– At most one constant time replacement operation.

• At most a single call to the resultΓ(·) method.

Together, the n calls to pierce·
Γ(·, ·) and the n replacement operations amount to work that

is linear in the number of input tokens n. The only operations unaccounted for are the

locate·
Γ(·) calls and the single resultΓ(·) call. I argue that those calls also amount to linear

work.

Calls to locate·
Γ(·) and resultΓ(·) share almost the same recursive structure. Such methods

repeatedly call plug(·, ·) to move up the layers of context until some stop condition is satisfied.

In between each layer, only a constant amount of work is performed. I therefore argue that the

cumulative running time of those two operations is linear in the number of layers traversed by

plug(·, ·).

Then, a second crucial operation comes into play: Each layer is only visited at most once

by plug(·, ·). Indeed, after a layer is visited by plug(·, ·), it is immediately discarded and will

not appear in any subsequent derivative. The total number of layers visited by plug(·, ·) is

therefore bounded by the total number of layer nodes created during the execution of the

algorithm.

131



Chapter 5. Zippy LL(1) Parsing with Derivatives

Layer nodes are only created in two places:

• By calls to pierce·
Γ(·, ·). As argued before, each call to pierce·

Γ(·, ·) may only create a

constant number of layers. Since there are at most n such calls, the total number of

layers created this way is linear in n.

• By calls to plug(·, ·). In this case, only prepend(·) layers are ever created, and only

in the case a follow-by(·) layer had just been visited and discarded. Therefore, the

total number of layers created by calls to plug(·, ·) is bounded by the total number of

follow-by(·) layers ever created. As such layers can only ever be created by calls to

pierce·
Γ(·, ·), the total number of such layers is also bounded by n.

Since only a number of layers linear in n can ever be created by the parsing algorithm, and

such layers are only visited at most once, the number of layers visited is also linear in n. This

concludes the proof that the zippy LL(1) parsing with derivatives algorithm has a worst-case

time complexity that is linear the number of input tokens.

5.6 Memoisation

As explained in the previous section, a quick inspection of the zippy LL(1) parsing with

derivatives algorithm shows that the algorithm never instantiates any new expression nodes,

apart from trivial εv nodes. The algorithm only ever instantiates layers. Since no non-trivial

expression nodes are ever created during the runtime of the algorithm, and given the finiteness

of the original expression data structure, methods operating on expression nodes will thus

be applied only on a finite number of them, and so repeatedly. This offers an opportunity to

efficiently precompute or memoise those methods. Among those methods are all property

checks that are used by the algorithm, such as nullability and first sets. Additionally, as I will

explain, the results of the piercek
Γ(·, ·) method can also be memoised.

5.6.1 Properties

The parsing algorithm is guided by two key properties of expressions: nullability and first

sets. Those properties are queried during during derivation, specifically during the upwards

locatek
Γ(·) phase as well as within the downwards piercek

Γ(·, ·) phase. They are also used

by the resultΓ(·) function called at the end of the execution of the parsing algorithm. As

discussed in Section 3.8.1, such properties can be efficiently computed using propagation

networks and then cached. Checking the LL(1) property before running the parsing algorithm

would also require such properties to be computed. Precomputing such properties allows for

the LL(1) checking procedure to be run almost for free before parsing.

132



5.7. Comparison with Traditional LL(1) Parsing

5.6.2 Calls to piercek
Γ(·, ·)

Interestingly, calls to piercek
Γ(·, ·) can also be memoised. Given a kind k, an expression e, and a

context c , calls to piercek
Γ(e,c) append a sequence of layers on top of the stack c . Importantly,

the sequence of layers added to the context c is independent of the parameter context c, it

only depends on k and e. Since both e and k range over finite domains, it is interesting to

memoise calls to piercek
Γ(e,c) by caching the sequence of stacks to be added to the context

for every pair of expression e and kind k.

Since the sequence of layers is to be appended on top of the current context c , I suggest storing

this sequence of layers in reverse order, so that it is possible to add all layers on top of the stack

in an efficient tail-recursive fashion.

5.7 Comparison with Traditional LL(1) Parsing

In this chapter, I have presented a parsing algorithm for LL(1) expressions that I derived rather

naturally by combining Brzozowski’s derivatives (Brzozowski, 1964; Might et al., 2011) with

Huet’s zippers (Huet, 1997). Interestingly, this algorithm, as I will shortly explain, has striking

similarities with the traditional LL(1) parsing algorithm (Stearns and Lewis, 1969; Aho et al.,

2006).

5.7.1 Presentation of Traditional LL(1) Parsing

The traditional LL(1) parsing algorithm operates on two data structures: a stack and a table.

The stack is a sequence of terminal and non-terminal symbols, which is initially set to only

contain the start symbol of the LL(1) grammar. At each iteration, the top symbol of the stack is

removed and replaced by zero or more symbols as follows:

• In case the symbol removed from the stack is a terminal symbol, it is matched against

the next token of input. If the two agree, the token is consumed and no extra symbols

are added on top of the stack. If the two disagree, a parsing error is reported.

• In case of a non-terminal symbol, the combination of the non-terminal and the kind

of the next token, if any, is looked up in the parsing table. In case all input tokens

have already been processed, a distinct placeholder kind EOF is used instead of the

non-existent token kind. For each such pair of non-terminal and kind, the parsing table

indicates which grammar rule is to be applied, if any. The top of the stack is replaced

with the right-end side of the rule, with the first symbol of the production ending up on

top of the stack. If the entry in the table is empty, the algorithm reports a parsing error.

The execution ends successfully when all input tokens have been processed and the stack is

empty. Handling the elaboration of the resulting parse tree requires extra bookkeeping: The

133



Chapter 5. Zippy LL(1) Parsing with Derivatives

algorithm must keep track of what rules were applied in order to progressively build the parse

tree. This aspect of the algorithm is often brushed over in explanations of LL(1) parsing.

As just explained, the traditional LL(1) parsing algorithm relies heavily on the parsing table.

This parsing table is initialised before processing input tokens according to the two following

rules:

• For each grammar rule r of the form L 7→ 〈R1, . . . ,Rn〉, the rule r is added to the table at

the index (L,k) for every k in the FIRST set of 〈R1, . . . ,Rn〉. The FIRST set of a (sequence

of) symbols is the sets of kinds that may start described sequences. It corresponds

exactly to the notion of FIRSTΓ(·) sets presented in this thesis.

• For each nullable non-terminal L, the rule L 7→ 〈〉 is added to the table at the index

(L,k) for every k in the FOLLOW set of L. The FOLLOW set of a non-terminal contains all

kinds that may directly follow in sequence after the non-terminal. The FOLLOW set of a

non-terminal is set to contain the artificial kind EOF in case the non-terminal appears in

trailing position in the grammar.

Thanks to the LL(1) property, at most a single entry is associated with each pair of non-terminal

and token kind.

5.7.2 Similarities and Differences between the two Approaches

The LL(1) parsing with derivatives and zippers algorithm presented in this thesis is in essence

very similar to the traditional LL(1) parsing algorithm. The two algorithms operate on func-

tionally equivalent stacks. In the case of the zippy LL(1) parsing with derivatives algorithm,

this stack arose naturally from the use of a zipper. In addition, it not only contains subsequent

symbols (stored in follow-by(·) nodes) but also partial values (stored in prepend(·) layers)

and references to user-defined functions to be applied (stored in apply(·) layers). The parsing

table of the traditional algorithm can also be found in the zippy LL(1) parsing with derivatives

algorithm in the form of the (memoised) pierce·
Γ(·, ·) method.

The main functional difference between the two algorithms is in the handling of nullable

symbols. In the case of the traditional LL(1) algorithm, a rule of the form L 7→ 〈〉 is to be applied

only in case the non-terminal L is nullable and the kind of the next token is part of the FOLLOW
set of L. This rule, as any other rule, is found in the parsing table. In the case of the zippy

LL(1) parsing with derivatives algorithm, there is no notion of FOLLOW sets. The dual notion of

should-not-follow sets is only used for LL(1) checking, not at parse time. Nullifying the focal

point is the operation that corresponds to applying a rule of the form L 7→ 〈〉. This operation is

applied by two methods: locate·
Γ(·) and resultΓ(·). The locate·

Γ(·) and resultΓ(·) methods

will nullify the expression in focus in case it is nullable and, in case of locate·
Γ(·), when it

does not contain the desired kind in its first set. This condition is slightly weaker than the

traditional condition expressed using FOLLOW sets, meaning that the traditional LL(1) parsing

134



5.7. Comparison with Traditional LL(1) Parsing

algorithm could potentially stop and report an error slightly earlier.

Note that the FOLLOW set is not precise enough to entirely avoid the application of nullifying

rules, as showed by the following example. Consider an LL(1) grammar with non-terminals

S, A,B ,E and terminals a,b,c, with starting symbol S. The grammar admits the following

rules:

S 7→ 〈A〉
S 7→ 〈B〉
A 7→ 〈a,E , a〉
B 7→ 〈b,E ,b〉
E 7→ 〈〉
E 7→ 〈c〉

Consider the input sequence 〈a,b〉, which is not accepted by the grammar. Given this input,

and starting with an initial stack containing only S, the traditional LL(1) parsing algorithm

executes the following operations:

1. Apply the rule S 7→ 〈A〉 on the first element of the stack, resulting in the stack 〈A〉.

2. Apply the rule A 7→ 〈a,E , a〉 on the first element of the stack, resulting in 〈a,E , a〉.

3. Remove the non-terminal a on top of the stack. Since it matches the next token of input,

that token is consumed. At this point, the stack is reduced to 〈E , a〉 and the remaining

input is reduced to 〈b〉.

4. Apply the rule E 7→ 〈〉, resulting in the stack 〈a〉. This rule is applicable as E is nullable

and as the next token, b, is part of the FOLLOW set of E .

5. Remove the non-terminal a on top of the stack. Since it does not match with the next

token of input b, an error is reported.

In the fourth step, the non-terminal E was nullified even though the next token b could not

be accepted at this point. The error is detected only after E is nullified. At the point of error,

the stack will already have been altered so that it would not be possible to directly resume

execution at that point with different remaining tokens.

The FOLLOW set thus is not sufficiently precise to avoid this type of applications. At this point,

one wonders why bother with FOLLOW sets at all? Indeed, a modified version of the parsing

table where the entry L 7→ 〈〉 is added for all pairs of nullable non-terminals L and kinds k that

are not part of the first set of L would also be entirely valid. Remains the question of LL(1)

checking. As showcased in this thesis, the notion of should-not-follow sets, which is more

compositional, is sufficient for LL(1) checking.

135



Chapter 5. Zippy LL(1) Parsing with Derivatives

5.7.3 Advantages over the Traditional LL(1) Parsing Approach

Even though the two algorithms are in the end very similar, I argue that the zippy LL(1) parsing

with derivatives approach has several advantages over the traditional approach:

• The zippy LL(1) parsing with derivatives algorithm deeply incorporates value elabora-

tion. It supports the application of user-defined functions to build the resulting parse

value. In the traditional LL(1) parsing approach, parse tree generation is often an af-

terthought. Furthermore, such approaches generally offer no support for the application

of user-defined functions.

• The state of the zippy LL(1) parsing with derivative algorithm is represented as an expres-

sion with clearly defined semantics. As I demonstrate in this chapter, this representation

makes it easy to reason about states and operations on states. This is further demon-

strated by a Coq formalisation of the approach by Jad Hamza and myself (Hamza and

Edelmann, 2019; Edelmann et al., 2020).

• The zippy LL(1) parsing with derivatives operates on immutable, persistent data struc-

tures. This makes it trivial to revert back to previous states and to share structures

amongst many such states.

• Finally, the algorithm arises very naturally from the combination of Brzozowski’s deriva-

tives and Huet’s zipper. This contrasts with the seemingly more ad hoc nature of the

traditional LL(1) parsing algorithm. I argue that this has potential to makes the algorithm

more teachable.

Additionally, as I will show shortly in Chapter 6, the approach naturally supports of parser

combinator interface. This makes the approach easy to embed in functional programming

languages.

136



6 SCALL1ON: A Scala Parser Combina-
tor Library for LL(1) Languages

In this chapter, I present SCALL1ON, or simply scallion, a Scala parsing combinators library for

LL(1) languages. The library features an applicative combinators-based interface that should

be familiar to programmers experienced with parser combinators libraries. A collection of

high-level combinators are available out of the box. The library is freely available online at

https://github.com/epfl-lara/scallion.

Contrary to most parsing combinator libraries, SCALL1ON does not employ a shallow embed-

ding of combinators. In traditional parsing combinators libraries, parsers and combinators

are usually directly represented as host-language functions. Instead, SCALL1ON features a

deep embedding of context-free expressions in Scala, in which expressions are represented

as a reified datatype. This deep embedding enables many interesting features that are not

traditionally found in parser combinators libraries, such as analysis of parsers, precise error

description, parser resumption, enumeration, and pretty printing.

The theoretical foundations of the library are those presented in earlier chapters of this

thesis. Context-free expressions implemented by the library correspond to those presented

in Chapter 3. Properties of expressions, such as nullability and first set, follow the definitions

of that chapter. The library implements the LL(1) checking procedure described in Chapter 4,

and the zippy LL(1) parsing with derivatives algorithm presented in Chapter 5.

6.1 Overview

SCALL1ON is a parser combinators library for Scala. To illustrate how programmers may use

the library, Figure 6.1 presents a JSON parser written using SCALL1ON. The code presents

a parser operating on JSON tokens, and therefore relies on the existence of a JSON lexer to

produce such tokens. The straightforward definition of JSON tokens, kinds, and values have

been omitted in the interest of space. Such definitions can be found in Appendix C.

137

https://github.com/epfl-lara/scallion


Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

1 import scallion._
2 import JSON._
3

4 object JSONParser extends Parsers {
5 override type Token = JSON.Token
6 override type Kind = JSON.Kind
7 override def getKind(token: Token): Kind = Kind.of(token)
8 import Implicits._
9

10 val booleanSyntax: Syntax[Value] = accept(BooleanKind) {
11 case BooleanToken(value) => BooleanValue(value)
12 }
13

14 val numberSyntax: Syntax[Value] = accept(NumberKind) {
15 case NumberToken(value) => NumberValue(value)
16 }
17

18 val stringSyntax: Syntax[StringValue] = accept(StringKind) {
19 case StringToken(value) => StringValue(value)
20 }
21

22 val nullSyntax: Syntax[Value] = accept(NullKind) {
23 case NullToken() => NullValue()
24 }
25

26 implicit def separatorSyntax(char: Char): Syntax[Token] = elem(SeparatorKind(char))
27

28 lazy val arraySyntax: Syntax[Value] =
29 ('[' ~ repsep(jsonSyntax, ',') ~ ']').map {
30 case _ ~ vs ~ _ => ArrayValue(vs)
31 }
32

33 lazy val bindingSyntax: Syntax[(StringValue, Value)] =
34 (stringSyntax ~ ':' ~ jsonSyntax).map {
35 case key ~ _ ~ value => (key, value)
36 }
37

38 lazy val objectSyntax: Syntax[Value] =
39 ('{' ~ repsep(bindingSyntax, ',') ~ '}').map {
40 case _ ~ bs ~ _ => ObjectValue(bs)
41 }
42

43 lazy val jsonSyntax: Syntax[Value] = recursive {
44 arraySyntax | objectSyntax | booleanSyntax |
45 numberSyntax | stringSyntax.up[Value] | nullSyntax
46 }
47

48 val jsonParser: Parser[Value] = Parser(jsonSyntax)
49

50 def apply(it: Iterator[Token]): ParseResult[Value] = jsonParser(it)
51 }

Figure 6.1 – JSON parser in SCALL1ON.

138



6.1. Overview

On line 4, a JSONParser object is defined. The object extends Parsers, a trait provided by

the library. Extending the Parsers trait enriches the scope of the object body with parser

combinators and related types, classes and functions. The trait requires of the object to

implement the Token and Kind types, as well as the getKind method. In the present example,

this is done on lines 5, 6 and 7. On line 8, implicit values are added to the scope. Such implicit

values are required by a few of the combinators, such as repsep, for reasons linked to pretty

printing that I will explain in Section 6.2.3.

On lines 10 - 24, four different Syntaxes are defined. Such syntaxes respectively correspond

to the syntactic constructs for JSON booleans, numbers, strings and null values. In each

case, the accept function is used to define the behaviour of the syntax. The function takes as

parameter a Kind and a function from a single Token of that kind to some value of a chosen

type. For each of the four present syntaxes, the parameter function of accept is used to

map tokens of the accepted kind into actual JSON values of type Value, or the more specific

StringValue in case of stringSyntax.

On line 26, a function is defined to convert single characters, such as '[' or ',', into a syntax

for the separator represented by that character. The function offer an implicit conversion from

such characters to Syntax objects, meaning that literal characters can be used as Syntax
objects in the body of JSONParser.

On lines 28 - 31, syntax for JSON arrays is defined. The syntax of arrays consists of a sequence

of three syntaxes:

1. A syntax for a single '[' separator to mark the start of the array,

2. A syntax for JSON values separated by ',' separators as the body of the array,

3. A syntax for a single ']' separator to mark the end of the array.

The sequence of the three syntaxes is built using the ~ operator of Syntax. Repetition with

separation is implemented by the library combinator repsep. Finally, a call to the map com-

binator is used to specify how to merge the values from the three underlying syntax in the

sequence into a single JSON Value representing the array.

Note that the syntax defined on lines 28 - 31 refers to the global syntax for JSON values

(jsonSyntax), whose definition has not yet appeared. The lazy modifier is added to the

definition so that the JSONParser object correctly initialises.

On lines 33 - 36, the syntax for key-value bindings is defined. Right after, on lines 38 - 41, the

syntax for JSON objects is defined. The syntax definition is similar to that of arrays. However,

the start and end marks differ. Furthermore, in the case of objects, the syntax bindingSyntax
is repeated, while jsonSyntax is repeated in the case of arrays. Finally, a different constructor

(ObjectValue) is applied to represent the resulting JSON Value.

139



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

On lines 43 - 46, the global syntax for JSON values is defined. It consists of the disjunction

of all other JSON value syntaxes that were previously defined. Disjunctions are built using

the | method of Syntax. The combinator recursive (line 43) is used to introduce further

laziness and defer the computation of its parameter syntax. At a high level, this combinator

makes it possible to define recursive Syntax objects such as jsonSyntax: jsonSyntax ap-

pears in arraySyntax and in objectSyntax via bindingSyntax, both of which appear in

jsonSyntax.

Note that, on line 45, the method up is used to upcast a Syntax[StringValue] into a

Syntax[Value]. This method invocation is necessary as, in SCALL1ON, the type Syntax is

invariant in its type parameter: Syntax[StringValue] is not a subtype of Syntax[Value],

even though StringValue is a subtype of Value. This invariance stems from the ambivalent

nature of SCALL1ON’s syntaxes: Syntaxes aim to describe both parsers and pretty-printers,

each of which constrain variance in opposite ways, as I will later explain.

Next, on line 48, the syntax is converted into an actual Parser object. At this point, properties

of the syntax, such as its first set and its nullability, are computed. The LL(1) property of the

syntax is also checked. In case of LL(1) conflicts, an exception is thrown at this point. Later,

in Section 6.2.6, I will explain in details how SCALL1ON can help programmers debug such

conflicts.

Finally, on line 50, the apply method of JSONParser is defined. Given an input iterator

of tokens, the method simply calls the Parser[Value] object created on line 48 with the

parameter tokens, which results in a ParseResult value. The ParseResult value either

indicates a successful parse, in which case a parsed value is also returned, or indicates a parse

error.

The code presented so far, apart from the LL(1) aspect and a few other idiosyncrasies, is very

similar to code that one would write in other parsing combinator libraries. SCALL1ON’s LL(1)

checking phase, which takes place parser creation time, eliminates design errors that could

potentially go unnoticed in some other approaches. Thanks to the zippy LL(1) parsing with

derivatives algorithm, the runtime complexity of parsing is worst-case linear in the number

of input tokens. Additionally, as I will shortly demonstrate, SCALL1ON provides features that

go above and beyond what is generally possible in other parsing combinator libraries. I will

demonstrate some of those features in a series of Scala console interactions with the example

parser.

Property checking As a first series of interactions with the Scala console, I show that properties

of the various syntaxes can be checked by simple method calls.

// Import members of the JSONParser object.
scala> import JSONParser._
import JSONParser._

140



6.1. Overview

// Check the LL(1) property of the top-level JSON syntax.
scala> jsonSyntax.isLL1
res1: Boolean = true

// Check if the syntax for arrays is productive.
scala> arraySyntax.isProductive
res2: Boolean = true

// Return the first set of the arrays syntax.
scala> arraySyntax.first
res3: Set[Kind] = Set(SeparatorKind('['))

The possibility to explicitly compute properties of syntaxes is a feature that distinguishes

SCALL1ON from usual parser combinators libraries.

Enumeration Furthermore, SCALL1ON also implements enumeration of recognised se-

quences. In the code snippet below, an iterator over all sequences of token kinds describing

JSON arrays is created. The iterator produces sequences ordered by increasing length. After-

wards, the first three such sequences are displayed.

// Create of the iterator.
scala> val it = Enumerator(arrayValue)
it: Iterator[Iterator[Kind]] = <iterator>

// Access the first element.
scala> it.next().toList
res4: List[Kind] = List(SeparatorKind('['), SeparatorKind(']'))

// Access the second element.
scala> it.next().toList
res5: List[Kind] = List(SeparatorKind('['), BooleanKind, SeparatorKind(']'))

// Access the third element.
scala> it.next().toList
res6: List[Kind] = List(SeparatorKind('['), NumberKind, SeparatorKind(']'))

Parsing Expectedly, once converted to Parser objects, syntaxes can be used for parsing. In

the code snippet below, the parser is queried with the token sequences corresponding to the

strings "[1]" and "[1}". The parsed value is then tentatively extracted from the parse result.

141



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

In the first case, a JSON ArrayValue object is returned. Conversely, no parse value is available

in the second case, indicating a parse error.

// Run the parser on "[1]".
scala> parser(JSONLexer("[1]")).getValue
res7: Option[Value] = Some(ArrayValue(Vector(NumberValue(1.0))))

// Run the parser on "[1}".
scala> parser(JSONLexer("[1}")).getValue
res8: Option[Value] = None

Parse errors The ParseResult object returned by the parser carries around more information

than simply an Option[Value]. In case of errors, the ParseResult object indicates the type

of error. There are two different types of errors:

1. An UnexpectedToken error, which indicates that an unexpected token was encountered.

The actual token that caused the error is provided. The parameter token iterator is not

consumed further than that token.

2. An UnexpectedEnd error, which indicates that the end of the input was reached, but no

value is available yet. This error indicates an incomplete input.

In the code snippet below, the first invocation of the parser results in an UnexpectedToken
error, while the second results in an UnexpectedEnd error.

// Run the parser on "[1}".
scala> parser(JSONLexer("[1}"))
res9: ParseResult = UnexpectedToken(SeparatorToken('}'), Focused(...))

// Run the parser on "[1".
scala> parser(JSONLexer("[1"))
res10: ParseResult = UnexpectedEnd(Focused(...))

Residual parsers All ParseResult objects also contain a residual parser. In the above code

snippet, the Focused(...) fragments in the string representation of the results hinted at

the presence of such residual parsers arguments. Thanks to the derivatives-based parsing

algorithm, this residual parser is available for free, as it is built and maintained by the algorithm.

This residual parser can be accessed through the rest field of any ParseResult object.

Interestingly, this residual parser is just like any regular parser users would write, and can be

queried as such. In the code snippet below, the residual parser obtained after processing "[1"

142



6.1. Overview

is stored under the name residual. Afterwards, the first set of the residual parser is queried,

and then the residual parser is used to process the tokens corresponding to ", 2]", resulting

in a parse value representing the entire JSON array [1, 2].

scala> val residual = parser(JSONLexer("[1")).rest
residual: Parser[Value] = Focused(...)

scala> residual.first
res11: Set[Kind] = Set(SeparatorKind(']'), SeparatorKind(','))

scala> residual(JSONLexer(", 2]")).getValue
res12: Option[Value] = Some(ArrayValue(

Vector(NumberValue(1.0), NumberValue(2.0))))

Having access to reified residual parsers is tremendously helpful to implement features such

as informative error messages, error recovering, and even code completion, and so with little

effort.

Pretty printing Finally, SCALL1ON syntaxes can also be converted to pretty printers in addition

to parsers. This however requires slight modification to the code: Programmers must supply

inverses of map argument functions. The code with local inverses is provided in Appendix D.

With this change in place, creating a pretty printer and querying it is straightforward. In the

code fragment below, a pretty printer is created for the global JSON syntax. Next, the sequence

of tokens corresponding to the JSON value for the array [null, 3.0] is computed.

scala> val printer = PrettyPrinter(jsonSyntax)
printer: PrettyPrinter[Value] = PrettyPrinter(...)

scala> printer(ArrayValue(Seq(NullValue, NumberValue(3.0)))).get.toList
res13: List[Token] = List(SeparatorToken('['), NullToken(),

SeparatorToken(','), NumberToken(3.0), SeparatorToken(']'))

Given correct inverses for user-defined functions, the pretty printer is guaranteed to return a

sequence of tokens that can be parsed back to the same value. Additionally, under the same

assumption, SCALL1ON will always return a sequence of tokens of minimal length. In this

particular exemple, there is exactly one sequence of tokens corresponding to each JSON value.

143



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

6.2 Programming Interface

6.2.1 The Parsers trait

In order to support arbitrary tokens and kinds, SCALL1ON provides all its functionalities as

part of a trait which leaves the type of tokens Token and the type of token kinds Kind abstract.

The trait is called Parsers, and users of the library are expected to extend it. In addition to

specifying the type of tokens and kinds, users are also required to implement the getKind
function, which given a Token, returns its unique Kind.

Instead of extending the trait Parsers in the appropriate object, as done in the example JSON

parser presented in overview, users may also create a parser object and import definitions

from it in the appropriate scope.

val parsers = new Parsers {
type Token = ...
type Kind = ...
def getKind(token: Token): Kind = ...

}
import parsers._

6.2.2 The Syntax Datatype

The base type provided by SCALL1ON is Syntax[A]. Syntax[A] objects are deeply embedded

context-free expressions. A simplified view of the algebraic datatype is presented below.

Most constructors correspond straightforwardly to that of context-free expressions as defined

in Chapter 3. The few differences are highlighted afterwards.

sealed trait Syntax[A]
case class Success[A](value: A) extends Syntax[A]
case class Failure[A]() extends Syntax[A]
case class Elem(kind: Kind) extends Syntax[Token]
case class Transform[A, B](

function: A => B,
inverse: B => Seq[A],
inner: Syntax[A]) extends Syntax[B]

case class Marked[A](mark: Mark, inner: Syntax[A]) extends Syntax[A]
case class Disjunction[A](left: Syntax[A], right: Syntax[A]) extends Syntax[A]
case class Sequence[A, B](left: Syntax[A], right: Syntax[B]) extends Syntax[A ~ B]
sealed abstract class Recursive[A] extends Syntax[A] {

def inner: Syntax[A]
}

144



6.2. Programming Interface

object Recursive {
def apply[A](syntax: => Syntax[A]): Syntax[A] =

new Recursive[A] {
override lazy val inner: Syntax[A] = syntax

}
}

The first change compared to the formalism of Chapter 3 is that the Transform construc-

tor accepts an additional parameter for an inverse of the parameter function. Next is the

presence of the Marked constructor, which has no influence on parsing but may play a role

for enumeration purposes. Finally, the Recursive constructor encodes both variables and

the environment of the formalism under the same construct: Recursive instances act as

variables, and the associated expression in the environment is stored in the inner field of the

variable. Thanks to the use of laziness, the Recursive construct allows for mutually recursive

syntaxes.

Note that Syntax is invariant in its type parameter A. The reason is that syntaxes in SCALL1ON

represent both parsers, in which A appears in covariant position, and pretty printers, in which

A appears in contravariant position. The method up is however provided to upcast syntaxes.

6.2.3 Combinators

Although the Syntax case class constructors are available to users of the library, the preferred

way to build syntaxes is through a collection of smart constructors and combinator functions.

Note that, while some such functions directly correspond to constructors of the Syntax class,

some of them encode higher-level patterns.

Such combinators are typical of parser combinator libraries (Leijen and Meijer, 2001; LAMP

EPFL and Lightbend, Inc, 2019). The presence of certain methods obeying a set of associated

laws makes SCALL1ON’s Syntax a de facto instance of many well-known type classes (Wadler

and Blott, 1989; Yorgey, 2009) such as the Functor, Applicative (McBride and Paterson,

2008), and Alternative type classes. Membership in such type classes, while not explicitly

reflected in the implementation, grants programmers familiar with such concepts insights on

how Syntax objects behave and can be composed.

Tables 6.1 and 6.2 list a selection of the smart constructors and basic combinators available in

SCALL1ON. Table 6.3 presents various combinators that are implemented as methods of the

Syntax trait. Finally, Table 6.4 presents a collection of combinators for defining operators of

programming languages, notably infix binary combinators with various priority levels and

directions of associativity.

145



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

Smart constructors

def epsilon[A](value: A): Syntax[A]

Smart constructor for Success.

def failure[A]: Syntax[A]

Smart constructor for Failure.

def elem(kind: Kind): Syntax[Token]

Smart constructor for Elem.

def accept[A](kind: Kind)(
function: PartialFunction[Token, A],
inverse: (A) => Seq[Token] =

(x: A) => Seq()): Syntax[A]

Smart constructor for Elem, with a function directly applied on the matched Token.

An optional inverse can be provided for pretty printing purposes.

def recursive[A](inner: => Syntax[A]): Syntax[A]

Smart constructor for Recursive.

Note that the inner arguments are passed by name, which makes it possible to build mutually

recursive definitions.

Table 6.1 – Syntax smart constructors.

146



6.2. Programming Interface

Combinators

def many[A](inner: Syntax[A]): Syntax[Seq[A]]

Zero or more repetitions.

def many1[A](inner: Syntax[A]): Syntax[Seq[A]]

One or more repetitions.

def opt[A](inner: Syntax[A]): Syntax[Option[A]]

Zero or one repetition.

def repsep[A, B: Uninteresting](rep: Syntax[A], sep: Syntax[B]): Syntax[Seq[A]]

Zero or more repetitions, separated by a separator syntax.

The Uninteresting constraint ensures that values of type B hold not interesting values and

can safely be discarded. When pretty printing, such values of type B need be synthesised even

though they do not contribute to the value of type Seq[A] to be pretty printed. I will discuss

this in more depth in Section 6.2.3.

def rep1sep[A, B: Uninteresting](rep: Syntax[A], sep: Syntax[B]): Syntax[Seq[A]]

One or more repetitions, separated by a separator syntax.

Table 6.2 – Basic combinators for describing syntaxes.

147



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

Combinator methods of Syntax[A]

def ~[B](that: Syntax[B]): Syntax[A ~ B]

Sequencing of this and that syntaxes. The result is wrapped in a pair of type A ~ B for easier

pattern matching.

def ~<~[B](that: Syntax[B])(implicit ev: Uninteresting[B]): Syntax[A]

Sequencing of this and that syntaxes, with the right value discarded.

def ~>~[B](that: Syntax[B])(implicit ev: Uninteresting[A]): Syntax[B]

Sequencing of this and that syntaxes, with the left value discarded.

def |(that: Syntax[A]): Syntax[A]

Disjunction of this and that syntaxes.

def ||[B](that: Syntax[B]): Syntax[Either[A, B]]

Tagged disjunction of this and that syntaxes.

def map[B](function: A => B,
inverse: (B) => Seq[A] = (b: B) => Seq()): Syntax[B]

Application of a function onto the parsed values. An optional inverse argument can be

provided for pretty printing purposes.

148



6.2. Programming Interface

def up[B >: A](implicit ev: Manifest[A]): Syntax[B]

Upcasting of this syntax. The implicit Manifest argument ensures that values can be

checked to be of type A when pretty printing. Pretty printed values (of type B) that are not of

the more specific type A can be discarded while pretty printing.

Table 6.3 – Methods of Syntax[A].

Operators-related combinators

def infixLeft[Op, A](elem: Syntax[A], op: Syntax[Op])(
function: (A, Op, A) => A,
inverse: PartialFunction[A, (A, Op, A)] = PartialFunction.empty): Syntax[A]

Repetition of elem syntaxes separated by op syntaxes. Parsed values are the result of applying

the provided function onto the various underlying values in a left-associated manner. The

optional inverse function provides a way to support pretty printing.

def infixRight[Op, A](elem: Syntax[A], op: Syntax[Op])(
function: (A, Op, A) => A,
inverse: PartialFunction[A, (A, Op, A)] = PartialFunction.empty): Syntax[A]

Repetition of elem syntaxes separated by op syntaxes. Parsed values are the result of applying

the provided function onto the various underlying values in a right-associated manner. The

optional inverse function provides a way to support pretty printing.

def prefixes[Op, A](op: Syntax[Op], elem: Syntax[A])(
function: (Op, A) => A,
inverse: PartialFunction[A, (Op, A)] = PartialFunction.empty): Syntax[A]

Repetition of op syntaxes followed by a single instance of the elem syntax. Parsed values

are the result of applying the provided function onto the various underlying values in a

right-associated manner. The optional inverse function provides a way to support pretty

printing.

149



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

def postfixes[Op, A](elem: Syntax[A], op: Syntax[Op])(
function: (A, Op) => A,
inverse: PartialFunction[A, (A, Op)] = PartialFunction.empty): Syntax[A]

Single instance of elem syntax followed by a repetition of op syntaxes. Parsed values are

the result of applying the provided function onto the various underlying values in a left-

associated manner. The optional inverse function provides a way to support pretty printing.

Table 6.4 – Combinators for describing postfix, prefix and infix operators.

As seen in Tables 6.1 to 6.4, SCALL1ON provides a sizeable collection of combinators, most

of which encode patterns that are typically encountered in the syntax of formal languages,

notably various forms of repetitions. While users are certainly free to encode such patterns

themselves through mutually recursive syntax definitions, using such predefined combinators

can save time and effort. The argument is the same as for using folds instead of recursive

functions in the more general setting of functional programming languages (Gibbons, 2003).

In addition, the combinators of SCALL1ON encode recursive patterns that are compatible with

LL(1) constraints. In particular, no combinator makes use of left-recursion.

Skipping Values

Often, when building a parser, some syntaxes will not produce any semantically interesting

values. Delimiters and separators often do not contribute directly to the produced value, but

also serve as syntactic markers. When such syntaxes appear in sequences of syntaxes, the

uninteresting value produced by such syntaxes however appear in the result. Such values

can end up cluttering the parsed value. For instance, consider the syntax for JSON array

of Listing 22. Because the values produced by the syntaxes '[' and ']' appear as part of the

parse value of the sequence, such values must be handled by the call to the map combinator.

lazy val arraySyntax: Syntax[Value] = ('[' ~ repsep(jsonSyntax, ',') ~ ']').map {
case _ ~ elems ~ _ => ArrayValue(elems)

}

Listing 22 – JSON array syntax. Features delimiter syntaxes with uninteresting values.

To offer a clutter-free way of handling such syntaxes, SCALL1ON offers a skip combinator

which can be used within sequences. The JSON array syntax previously shown can make use of

such a combinator to indicate that the delimiter syntaxes '[' and ']' produce uninteresting

values that should be skipped when building up the resulting value (see Listing 23).

150



6.2. Programming Interface

lazy val arraySyntax: Syntax[Value] = ('['.skip ~ repsep(jsonSyntax, ',') ~ ']'.skip).map(
elems => ArrayValue(elems))

Listing 23 – JSON array syntax. The combinator skip is called on syntaxes with uninteresting
values.

The skip method of Syntax[A] has the following signature:

def skip(implicit ev: Uninteresting[A]): Skip

The returned Skip class provides overloaded definitions of the sequencing combinator ~. In

addition, Syntax also provide an overloaded definition of ~ which accepts values of type Skip
as argument. Those overloaded definitions ensure that skip can be called anywhere in a

sequence of syntaxes written using ~.

Uninteresting Values

As just discussed, some of the combinators in SCALL1ON accept argument syntaxes that do

not contribute to the resulting value. As an example, consider the separator parameter of

repsep and the skip’d separator syntaxes of Listing 23. The values produced by such syntaxes

are uninteresting: they do not contribute to the parse values produced by larger syntaxes.

When pretty printing, it is therefore impossible to decide what value to pass down to such

syntaxes based on the value to be pretty printed.

The constraint Uninteresting ensures that the type of values produced by a syntax can be

safely discarded at parse time, and potentially synthesised at pretty printing time. Users of

SCALL1ON can choose between two modes depending on what instances of Uninteresting
they provide:

• By using the instance from SafeImplicits, only Unit is considered uninteresting. In

this case, it is possible to synthesis () as the value given to the uninteresting syntaxes

during pretty printing, ensuring that pretty printing works correctly.

• In contrast, when users are not interested in the pretty printing capabilities offered by

SCALL1ON, they can instead use instances provided by Implicits. In this case, all

types are considered Uninteresting, and any uninteresting syntax will not be queried

during pretty printing, which often makes the pretty printer incomplete.

This Uninteresting mechanism allows users to be warned when using constructs that would

otherwise discard values and break pretty printing, while still allowing such constructs.

151



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

6.2.4 Parser Construction

In SCALL1ON, Syntax objects are mere description of syntaxes. In order to obtain an actual

parser out of them, users must convert them into a proper Parser instance beforehand. At

the user level, doing so only takes a single call to the Parser factory object. Objects that

implement the Parser trait offer methods to parse sequences of tokens, return properties of

the Parser, or even convert the Parser back to a Syntax object.

sealed trait Parser[A] {
def apply(tokens: Iterator[Token]): ParseResult[A]

def nullable: Option[A]
def isNullable: Boolean = nullable.nonEmpty
def isProductive: Boolean = isNullable || first.nonEmpty
def first: Set[Kind]

def syntax: Syntax[A]
}

object Parser {
def apply[A](syntax: Syntax[A], enforceLL1: Boolean = true): Parser[A] = // Omitted.

}

During this conversion process into a Parser object, properties of the Syntax expression

and of all its subexpressions are computed, and the LL(1) property of the Syntax is checked.

In case the syntax is not LL(1), by default an exception is thrown. By setting enforceLL1 to

false, the factory object will not throw any exception, but the resulting Parser will behave

as an under-approximation of the argument Syntax.

6.2.5 Properties

Properties of a Syntax, such as nullability and first set, are computed during the Parser
creation process using propagation networks and are stored as part a distinct datatype which

mirrors the given Syntax datatype. This mirrored datatype is not directly visible to users of

the library, but is used extensively by the parsing algorithm.

For convenience, the properties associated with a Syntax are also made available to users of

the library through a Properties object.

case class Properties[A](
nullable: Option[A],
first: Set[Kind],
shouldNotFollow: Set[Kind],
conflicts: Set[Conflict]) {

def isNullable: Boolean = nullable.nonEmpty

152



6.2. Programming Interface

def isProductive: Boolean = isNullable || first.nonEmpty
def isLL1: Boolean = conflicts.isEmpty

}

Thanks to an implicit conversion from Syntax[A] to Properties[A], users of the library can

call methods of the Properties class directly on Syntax objects.

implicit def syntaxToLL1Properties[A](syntax: Syntax[A]): Properties[A] = {
if (!syntaxToPropertiesCache.containsKey(syntax)) {

Parser(syntax, enforceLL1=false) // Triggers the computation of properties.
}
syntaxToPropertiesCache.get(syntax).asInstanceOf[Properties[A]]

}

For efficiency, the properties associated with a syntax are stored in a reference-associated

cache.

6.2.6 LL(1) Conflicts

As stated earlier, SCALL1ON performs LL(1) checks during the Parser creation phase, right

after the computation of properties. In case of LL(1) conflicts, a ConflictException is

thrown.

case class ConflictException(conflicts: Set[Conflict])
extends Exception("Syntax is not LL(1).")

The exception contains a set of Conflict objects, each of which can take one of three forms:

NullableConflict, FirstConflict, and FollowConflict.

case class NullableConflict(
source: Disjunction[_]) extends Conflict

case class FirstConflict(
source: Disjunction[_],
ambiguities: Set[Kind]) extends Conflict

case class FollowConflict(
source: Disjunction[_],
root: Sequence[_, _],
ambiguities: Set[Kind]) extends Conflict

Each Conflict object contains information about the cause of the conflict.

NullableConflict contains a reference to a Disjunction with two nullable branches

153



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

within the Syntax. FirstConflict contains reference to a Disjunction within the Syntax
and a non-empty set of Kinds. The non-empty set of kinds is a subset of the first set of both

branches of the provided disjunction. In the case of a FollowConflict, references to both

a Disjunction and a Sequence subexpressions are given, as well as a non-empty set of

Kinds. The non-empty set of kinds is a subset of both the should-not-follow set of the left

side of the Sequence as well as of the first set of right side of the Sequence. In that case, the

Disjunction given is a subexpression of the left branch of the Sequence that caused the

provided set of Kinds to be part of the should-not-follow-set of the left-side of the Sequence;

one of the branch of the Disjunction is nullable, while the other has a first set which is a

superset of the provided set of ambiguous Kinds.

SCALL1ON provides utilities to help users understand and debug LL(1) conflicts. While

Conflict objects are in theory sufficient to locate the root causes of conflicts, they are unfor-

tunately not user-friendly. The reason is that Conflict objects contains information about

low-level details of the graph structure of Syntaxes, while users of the library operate at a

higher abstraction level: that of combinators. Forcing users to reason about graphs of Syntax-

constructor nodes in order to debug conflicts would go against the mental model of users, and

would break the abstraction provided by combinators. Therefore, some efforts are made to

communicate conflicts in terms that users can easily relate to.

By calling the debug function, users of the library are provided with a LL(1) Conflicts Report

about their Syntax. In Listing 24, I present a conflict report obtained on an example JSON

parser, which contains an error on line 205.

204 val arrayValue: Syntax[Value] =
205 ('[' ~ repsep(value, ',') ~ '[').map {
206 case _ ~ vs ~ _ => ArrayValue(vs)
207 }

In this example, the token indicating the end of the array has been erroneously replaced by an

array opening token, leading to a LL(1) conflict. The report of Listing 24 correctly identifies

this and presents to the user a stack trace which pinpoints the cause of the conflict.

In addition to the stack trace, a small number of sequences of tokens kinds are also shown

as part of the report. Such sequences of kinds show ways to arrive at the conflict. In this

particular instance, the conflict can be exhibited after a single [ token. Indeed, at that point,

an extra [ token could either indicate a new array opening, or (erroneously) close the current

array.

The two additional ways of presenting conflicts are more in line with the mental model of

users. Stack traces refer to explicit locations in the parser’s code, while enumerated sequences

of kinds indicate where the conflict occurs semantically.

154



6.2. Programming Interface

=== LL(1) Conflicts Report ===

The syntax is not LL(1).

A single conflict has been found:

--- Conflict 1/1 ---

First/Follow conflict.

The left branch of a sequence can stop or
continue on the same token than the right side can start with.

The ambiguous token kind is [.

The source of the conflict can be traced to:

scallion.Syntaxes$Syntax.$init$(Syntaxes.scala:116)
scallion.Syntaxes$Syntax$Sequence.<init>(Syntaxes.scala:432)
scallion.Syntaxes$Syntax.$tilde(Syntaxes.scala:249)
scallion.Syntaxes$Syntax.$tilde$(Syntaxes.scala:245)
scallion.Syntaxes$Syntax$Sequence.$tilde(Syntaxes.scala:431)
example.json.JSONParser$.<init>(JSON.scala:205)
example.json.JSONParser$.<clinit>(JSON.scala)
$line11.$read$$iw$$iw$$iw$$iw$$iw$$iw$.<init>(<console>:18)
$line11.$read$$iw$$iw$$iw$$iw$$iw$$iw$.<clinit>(<console>)
$line11.$eval$.$print$lzycompute(<console>:7)
$line11.$eval$.$print(<console>:6)
$line11.$eval.$print(<console>)

The following sequences lead to an ambiguity when followed by a token of kind [:

(1) [
(2) { <string> : [
(3) { <string> : { <string> : [
(4) { <string> : <boolean> , <string> : [
(5) { <string> : <number> , <string> : [

Listing 24 – Example LL(1) Conflict Report

155



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

6.2.7 Parsing

Once a Syntax[A] has been checked to be LL(1) and has been converted into a proper

Parser[A] object, that object can be used for actual parsing. Objects of type Parser[A] offer

an apply method to process an iterator of tokens into a value of type ParseResult[A]. Parse

results can take on of three forms:

case class Parsed[A](
value: A,
rest: Parser[A]) extends ParseResult[A]

case class UnexpectedToken[A](
token: Token,
rest: Parser[A]) extends ParseResult[A]

case class UnexpectedEnd[A](
rest: Parser[A]) extends ParseResult[A]

A result of type Parsed indicates a successful parse. In that case, the produced parse value is

returned. The two other constructors indicate parse errors. UnexpectedToken, as the name

suggests, indicates that an unexpected token has been encountered during parsing. The

incriminated token is returned. In that case, the input iterator of tokens is not consumed

any further than that token. Finally, a result of type UnexpectedEnd indicates that the input

ended at a point when the parser could not, or no longer, accept.

All three constructors contain a reference to a residual parser in their rest field. This residual

parser encodes the state of the original parser after the successful parse, respectively at the

point of error. This parser can be extremely useful to provide users of the parser with ways

to understand and fix their input text. For instance, the first set of the residual parser can

be queried to indicate valid ways to continue the program. Coupled with the enumeration

capabilities of SCALL1ON, residual parsers can also be used to provide features such as code

completion or error recovery. Residual parsers can also be used to process input tokens in

a non-blocking fashion: Parsers can be stored and invoked at later points to process newly

available tokens.

6.3 Enumeration

The deep embedding of context-free expressions used by SCALL1ON enables features that

require inspection of expressions and that are thus typically not found in parsing combinators

library that employ shallow embeddings. The availability of methods to compute properties of

expressions, such as productivity, nullability, first sets, and LL(1), is one example. Enumeration

is an other example.

In SCALL1ON, the sequences of tokens kinds that a Syntax describes can be iterated over. In

156



6.3. Enumeration

its simplest from, the enumerate function accepts a single argument Syntax and returns a

lazy iterator over sequences of kinds described by the syntax. The returned iterator produces

sequences of kinds in increasing order. The signature of the enumerate function is shown

in Listing 25. An example invocation of the function on the JSON syntax is given in Listing 26.

def enumerate(syntax: Syntax[_]): Iterator[Iterator[Kind]]

Listing 25 – Simple enumeration function from SCALL1ON.

scala> enumerate(jsonSyntax).take(20).foreach(it => println(it.mkString))
<boolean>
<number>
<string>
<null>
[]
{}
[<boolean>]
[<number>]
[<string>]
[<null>]
[[]]
[{}]
[[<boolean>]]
[[<number>]]
[[<string>]]
[[<null>]]
[<boolean>,<boolean>]
[<number>,<boolean>]
[<string>,<boolean>]
[<null>,<boolean>]

Listing 26 – Example execution of the enumerate function on the JSON syntax.

157



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

6.3.1 Markings

A second version of the function offers the possibility to specify a function kindFunction to

apply on kinds, and a function to optionally apply on Marked nodes instead of visiting them.

The signature of the function is shown in Listing 27.

def enumerate[A](
syntax: Syntax[_],
kindFunction: Kind => A)
(markFunction: PartialFunction[Mark, A]): Iterator[Iterator[A]]

Listing 27 – Richer interface to the enumeration function.

This enumeration function is useful in practice to abstract over sequences of tokens. Instead

of unconditionally visiting the inner syntax of Marked nodes, the markFunction is called on

the associated Mark. In case the function is defined on the Mark, the returned value is emitted.

Otherwise, the inner syntax is visited.

6.3.2 Implementation

In SCALL1ON, enumeration is implemented in a style that is reminiscent of the propagation

networks used for computing properties. Using propagation networks unchanged would

unfortunately potentially lead to non-termination, as the information propagation phase

could run forever. Indeed, potentially infinitely many sequences of kinds or values can be

enumerated. To handle this, the propagation phase is broken up and lazily executed. Only

sequences up until a fixed size are enumerated. The size limit is local to each sub-syntax.

When all sequences up until a certain size have been enumerated, a downwards phase updates

the size limits in the sub-syntaxes, leading to the resumption of the propagation phase. In

addition, a mechanism is put in place to detect when all sequences have been enumerated.

The size limit is not global as smaller limits can be used for sides of sequences.

158



6.4. Pretty Printing

6.4 Pretty Printing

SCALL1ON, in addition to parsing, also support pretty printing. While parsing converts a

sequence of tokens into a value, pretty printing is the inverse: Given a value, the goal of a

pretty printer is to return a sequence of tokens that describes the value.

To support pretty printing, SCALL1ON’s Transform Syntax constructor accepts a (partial)

inverse of the function applied during parsing. In practice, users of the library that wish to ob-

tain a pretty printer along with their parser must add an extra argument in some combinators

of SCALL1ON, notably map. Most derived combinators, such as many, work out of the box with

pretty printing.

Given appropriate partial inverses, pretty printing is guaranteed to return a sequence of tokens

that can be parsed back to the same value. Under a set of reasonable assumptions, the pretty

printing procedure is guaranteed to run in time linear in the number of output tokens.

The first assumption is that the syntax does not contain a Recursive node that contains a

reference to itself without additional context. Without such nodes, between each visit of a

Recursive node within a call to the pretty printer a strictly positive number of tokens is bound

to be produced. Non-left-recursive syntaxes do not contain such problematic Recursive
nodes. As LL(1) syntaxes can not be left-recursive, the LL(1) syntaxes of SCALL1ON are

guaranteed not to contain any such nodes.

The second assumption is that Disjunction and Transform nodes do not create competing

alternatives. Alternatives should either fail fast, or end up producing the resulting tokens. This

ensures a single logical thread of execution within the pretty printing procedure. I will discuss

some ways one can ensure this holds by construction.

6.4.1 Basic Algorithm

Listing 28 presents a simplified implementation of the pretty printing procedure found in

SCALL1ON. The simple implementation presented here can be subject to stack overflows and

is rather inefficient for reasons I will discuss. The complete optimised implementation found

in the library will be discussed afterwards. In the interest of the presentation, I discuss the

simplified version first.

The pretty printing function, pretty, is given three arguments: a syntax description, a value

to be pretty printed, and an entered set, whose purpose is to avoid certain types of infinite

loops. The function returns an optional Tree of tokens. A return value of None indicates that

the value can not be produced by the given syntax. In the other case, the tokens returned

are guaranteed to be of minimal length and to yield the pretty printed value when parsed. I

discuss termination of the pretty printing function later in this section.

Note that those properties rely on the correctness of the local inverses. When the local inverses

159



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

are incomplete, the minimality and completeness of the pretty printer are not guaranteed.

Additionally, when the local inverses are unsound, the property that the returned sequence

parses back to the original value is no longer guaranteed. By default, SCALL1ON provides

an empty inverse function as the default argument of all operators that accept an optional

inverse. This default is sound but potentially incomplete.

The Tree datatype returned by pretty represents a sequence of values implemented as

an immutable binary tree. This representation allows for constant time concatenation. In

addition, a field containing the size of the tree is maintained. This Tree datatype is internal

to SCALL1ON and not visible to users of the library. In the actual library, the pretty printing

function returns an iterator over the tokens of the tree instead of the actual Tree.

def pretty[A](
syntax: Syntax[A],
value: A,
entered: Set[(RecId, Any)] = Set()): Option[Tree[Token]] =

syntax match {
case Success(other) => if (value == other) Some(Empty) else None
case Failure() => None
case Elem(kind) => if (getKind(value) == kind) Some(Node(value)) else None
case Disjunction(left, right) =>

(pretty(left, value, entered), pretty(right, value, entered)) match {
case (leftRes, None) => leftRes
case (None, rightRes) => rightRes
case (Some(leftTree), Some(rightTree)) =>

if (leftTree.size <= rightTree.size) Some(leftTree) else Some(rightTree)
}

case Sequence(left, right) =>
val leftValue ~ rightValue = value
pretty(left, leftValue, entered).flatMap { leftTree =>

pretty(right, rightValue, entered).map { rightTree =>
leftTree ++ rightTree

}
}

case Transform(_, inverse, inner) =>
inverse(value).flatMap(pretty(syntax, _, entered)).minByOption(_.size)

case Marked(_, inner) => pretty(inner, value, entered)
case Recursive(_, inner) =>

if (entered.contains((id, value))) {
None

} else {
pretty(inner, value, entered + ((id, value)))

}
}

Listing 28 – Simplified implementation of the pretty-printing algorithm.

160



6.4. Pretty Printing

The pretty function matches the argument syntax against the argument value:

• In case the syntax is Success(other), the value is checked against other value found

in the Success constructor. In case the two values are equal, the empty sequence of

tokens is returned. In case they do not match, no sequence is returned.

• In case of Failure(), no possible representation of the value following the syntax
exist, and so no sequence is returned.

• In case of Elem(kind), the value to be pretty printed is guaranteed to be a Token by the

type system. If that token is of the appropriate kind, the singleton sequence consisting

of that token is returned. In case the token is not of the expected kind, no sequence is

returned.

• In case of Disjunction(left, right), both sides are queried and the sequence of

minimal length, if any, is returned.

• In case of Sequence(left, right), the value is bound to be a pair of two values,

leftValue and rightValue. Each side is queried with their respective value and the

two resulting sequences, if any, are concatenated. As an optimisation, the right side is

only queried when the left call is successful.

• In case of a Marked syntax, the call is simply forwarded to the inner syntax.

• Last is the Recursive syntax case. The entered argument finally plays a role here. In

case the combination of the recursive syntax’s identifier and argument value has not

been encountered in the call stack yet, the call is forwarded to the inner syntax and the

combination is recorded. Otherwise, the call stops and no sequence is returned.

The check performed in this case prevents a certain type of infinite loops that would

otherwise frequently happen in practice. For instance, consider a syntax for expressions

with support for parentheses. Such parenthesis are generally only materialised in the

syntax, but are typically not reflected in the abstract syntax tree. In this syntax, when an

expression is pretty printed, the disjunct that encodes the parenthesised syntax will be

queried, which in turn will invoke the recursive expression syntax on the same exact

value. Without this check, the recursion is bound to loop.

Note that this check does not impact the completeness of the pretty printer. Indeed,

if a syntax associates a certain sequence of tokens with a given value, it is guaranteed

that there exists a smallest derivation of that fact. As it is smallest, that derivation may

not contain a derivation with the given fact as a subtree. A similar argument is made to

show that the check does not impact the minimality of the returned sequence.

6.4.2 Termination

Note that, even with the previously mentioned mitigation strategy put in place, the pretty

printing function is not guaranteed to terminate, even in case of sound and complete inverses.

161



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

The check performed in the Recursive case is unfortunately not sufficient to prevent all

infinite loops. Indeed, the check only prevents a Recursive syntax to be repeatedly queried

with the same value.

Consider the example of a misbehaved syntax of Listing 29. When called on the misbehaved
syntax and any BigInt n, the pretty printing function will end up in a non-terminating loop.

Indeed, the misbehaved recursive syntax is first queried on n, which leads to a query on base
and n, and to a recursive query on misbehaved and n +1. This recursive query leads to a

query on base and n +1, and misbehaved and n +2, and so on. The looping behaviour is

however logically justified in light of the minimality constraint. It is a priori impossible to

know for which n the base syntax will return the smallest sequence of tokens.

val base: Syntax[BigInt] = ??? // Any Syntax

val misbehaved: Syntax[BigInt] = recursive {
base | misbehaved.map({

case n => n - 1
}, {

case n => Seq(n + 1)
})

}

Listing 29 – Example Syntax on which pretty-printing does not terminate.

Note that the misbehaved syntax of Listing 29 exhibits left-recursion, and as such is not LL(1).

As shown in Listing 30, the syntax can nevertheless be adapted to be LL(1) and still remain

problematic for the pretty printer. Assuming the base syntax is LL(1) and does not contain

SeparatorKind("-") in its first set, the syntax misbehaved is LL(1).

val base: Syntax[BigInt] = ??? // Any LL(1) Syntax

val misbehaved: Syntax[BigInt] = recursive {
base | (elem(SeparatorKind("-")) ~ misbehaved).map({

case _ ~ n => n - 1
}, {

case n => Seq(SeparatorToken("-") ~ n + 1)
})

}

Listing 30 – Example LL(1) Syntax on which pretty-printing does not terminate.

Even when the syntax is LL(1), one does not a priori know for which index n the sequence will

be of minimal length. In theory, the LL(1) constraint at least ensures that each iteration of the

recursive loop adds a non-zero number of prefix tokens to the resulting sequence, assuming

sound inverses. This fact could in theory be exploited to stop the loop when the number

of prefix tokens exceeds the number of tokens of an already found valid sequence. This is

162



6.4. Pretty Printing

currently not implemented in SCALL1ON, as other ways of circumventing the problem exist,

but could be envisioned as future work.

In practice, this non-terminating behaviour is however rarely encountered. Users of SCALL1ON

can prevent this problematic behaviour by slightly modifying their syntaxes, and so in a way

that does not interfere with the parsing behaviour. I will discuss some patterns to do so in the

later sections.

6.4.3 Linear-Time Pretty Printing

As shown in the previous few paragraphs, the pretty printing function is not always guaranteed

to terminate. Using similar techniques, one could devise syntaxes and values on which the

pretty printer performs an arbitrary number of execution steps and results in an arbitrarily

small number of tokens. It is therefore pointless to discuss the worst-case complexity of the

pretty printing function in the general case.

In practice however, the pretty printer often behaves linearly in the number of returned tokens,

especially in case of LL(1) syntaxes. In this section, I examine conditions which guarantee

linearity of the pretty printer. In the interest of simplicity, I will assume that applying user-

defined inverses takes constant time. In this simple presentation, I will also ignore the cost of

set operations on the entered set. Finally, I will make the simplifying assumption that the

initial input Syntax to the pretty printer contains only a single Recursive expression. The

argument can be adapted to multiple such nodes, but becomes more intricate.

A first observation to be made is that, in any invocation of the pretty printer in which no

Recursive syntax is recursively reentered (regardless of the pretty printed value) each node

is guaranteed is be visited only finitely many times. Furthermore, assuming that Transform
inverses returns a bounded number of pre-images regardless of the input, the number of paths

to each node in the Syntax is also bounded, and so regardless of the value to be pretty printed.

In this case, one can thus bound the runtime of the pretty printing function by a number K

that only depends on the argument Syntax. For our purposes, I will assume a fixed initial

Syntax, and thus will consider this number K to be constant.

In practice, requiring Recursive syntaxes not to be reentered is too strong of a requirement.

This stringent requirement can be relaxed thanks to a second observation: if a Recursive
syntax is visited multiple times, and between each re-visit a non-zero number of tokens of

the resulting pretty printed sequence can be credited to this path, then the running time of

the pretty printer is guaranteed to be linear. Indeed, the work done in between two visits of

a Recursive syntax is at most a constant K (from first observation). If the exact non-zero

tokens produced in between two visits of the Recursive syntax end up in the resulting pretty

printed sequence, then the time K taken in between the two visits can be credited for the

output of at least one token. Since the time taken before the first and after the last visit of the

Recursive syntax is constant, then the total running time of the pretty printing function is

163



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

linear in the number of outputted tokens.

Interestingly, in the case of LL(1) syntaxes, at least one token is to be produced in between

two visits. Indeed, the syntax would otherwise be left-recursive and exhibit a conflict. This

partially fulfils the condition outlined by the second observation.

Crucially, the second observation requires that the tokens produced in between two visits of a

Recursive syntax are included as part of the resulting pretty printed sequence. If, for some

reason, the tokens produced were to be discarded, then the linearity argument would not hold.

It is therefore essential that paths that end up visiting arbitrarily many times a Recursive
syntax are not competing against other valid alternatives. In practice, this property seems to

be often respected. For instance, Listing 31 shows a syntax describing sequences of numbers.

Note that the numbers syntax could be written using the many combinator from Table 6.3. I

argue that any list of Int can be pretty printed in time linear in the number of output tokens.

val number: Syntax[Int] = accept(NumberKind)({
case NumberToken(n) => n

}, {
case n => Seq(NumberToken(n))

})

// Equivalent to "val numbers = many(number)"
lazy val numbers: Syntax[List[Int]] = recursive {

epsilon(Nil) |
(number ~ numbers).map({

case n ~ ns => n :: ns
}, {

case n :: ns => Seq(n ~ ns)
case _ => Seq()

})
}

Listing 31 – Example well-behaved LL(1) syntax for pretty printing.

While queried many times (once per element of the input list, and once for the empty list)

the recursive numbers is not in competition with any other alternative: Looking at a list of

numbers, it is immediately clear which of the two alternatives presented by numbers is to be

taken. If the list is Nil, only the left alternative succeeds. If the list is a Cons, only the right

alternative may succeed. In this case, the pretty printing function takes time linear in the

number of output tokens.

In contrast, consider the ill-behaved example of Listing 32. Looking at a non-empty list of

numbers, it is impossible to decide which of the last two alternatives produced the sequence.

Both alternatives therefore have to be tried, leading to an exponential blow-up. Notice that, in

this case, the exponential blow-up can be avoided by some sort of left-factoring: writing the

numbersOfBits syntax as many(number | bits) completely avoids this issue.

164



6.4. Pretty Printing

val number: Syntax[Int] = accept(NumberKind)({
case NumberToken(n) => n

}, {
case n => Seq(NumberToken(n))

})

val bits: Syntax[Int] = accept(BitsKind)({
case BitsToken(n) => n

}, {
case n => Seq(BitsToken(n))

})

lazy val numbersOrBits: Syntax[List[Int]] = recursive {
epsilon(Nil) |
(number ~ numbersOrBits).map({

case n ~ ns => n :: ns
}, {

case n :: ns => Seq(n ~ ns)
case _ => Seq()

}) |
(bits ~ numbersOrBits).map({

case b ~ ns => b :: ns
}, {

case b :: ns => Seq(b ~ ns)
case _ => Seq()

})
}

Listing 32 – Example ill-behaved LL(1) syntax for pretty printing.

6.4.4 Syntax Disambiguation

In the last few paragraphs, I examined a set of conditions under which pretty printing is

guaranteed to run in time linear in the number of produced tokens. One condition has to

do with pretty-printing ambiguities: In case of disjunctions, both branches are queried but

only a single contributes to the pretty printed output. This behaviour can be problematic for

linearity. The same problematic behaviour can arise with Transform nodes, when the inverse

function returns more than one result. When all but at most one alternatives fail in constant

time, the syntax does not display ambiguities. In this case, logically only at most one single

branch is further explored by the pretty-printing procedure, paving the way for linear-time

pretty printing.

Users of SCALL1ON have tools at their disposition to disambiguate syntaxes for pretty printing

purposes. SCALL1ON users can use parsing-neutral combinators to influence the behaviour

of the pretty printer without altering its parsing behaviour. Notably, users can use tagged

disjunctions, noted s1 || s2 (see Table 6.3), to reduce non-determinism in the pretty printer.

165



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

When both s1 and s2 are of type Syntax[A], values of the tagged union s1 || s2 are of type

Either[A, A], which indicates which side of the disjunction the values come from. One can

recover a unique value of type A using the map combinator:

val example: Syntax[Int] = (number || bit).map({
case Left(n) => n
case Right(b) => b

}, {
case n => Seq(Left(n)) // Left-biased.

})

Listing 33 – Disambiguation using tagged unions.

By only using the tagged disjunction e1 || e2 instead of normal disjunctions, one ensures

that Disjunction nodes do not create multiple competing alternatives. Furthermore, by

only allowing inverse functions of Transform nodes to return at most one pre-image for each

input, one ensures that Transform nodes do not introduce multiple competing alternatives.

Interestingly, those restrictions do not influence parsing at all. Any Syntax can be rewritten to

eliminate untagged disjunctions, using the pattern shown in Listing 34. The transformation

does not introduce LL(1) conflicts.

def or[A](left: Syntax[A], right: Syntax[A])
(direction: PartialFunction[A, Boolean]): Syntax[A] =

(left || right).map({
case Left(x) => x
case Right(x) => x

}, {
case y => direction.lift(y) match {

case None => Seq()
case Some(true) => Seq(Left(y))
case Some(false) => Seq(Right(y))

}
})

Listing 34 – Pretty-printing friendly disjunction function. The parsing behaviour of or(e1,
e2) is the same as e1 | e2. For pretty printing, the direction function argument indicates
which side of the disjunction is responsible for pretty printing the given value.

The use of the or function from Listing 34 asks of users to provide a direction function for

each disjunction, which may be somewhat unpractical.

Using the up method of Table 6.3 in conjunction with untagged disjunctions can also provide

a way to ensure that disjunctions do not introduce competing pretty printing alternatives.

Thanks to reflection capabilities of Scala, up discards values during pretty printing that do

not correspond to the particular original subtype. Disjunctions of up’d syntaxes with disjoint

166



6.4. Pretty Printing

base types is guaranteed not to introduce competing alternatives during pretty printing. An

example of the pattern is given in Listing 35.

val boolSyntax: Syntax[BoolValue] = ...
val numberSyntax: Syntax[NumberValue] = ...
val stringSyntax: Syntax[StringValue] = ...
val nullSyntax: Syntax[NullValue]
val arraySyntax: Syntax[ArrayValue] = ...
val objectSyntax: Syntax[ObjectValue] = ...
val jsonSyntax: Syntax[Value] =

boolSyntax.up[Value] |
numberSyntax.up[Value] |
stringSyntax.up[Value] |
nullSyntax.up[Value] |
arraySyntax.up[Value] |
objectSyntax.up[Value]

Listing 35 – Example showing the pattern of combining up and untagged disjunctions to
guarantee non-competing alternatives during pretty printing.

While theoretically one could statically check those conditions in order to show a pretty printer

linear, in the present implementation in SCALL1ON, it is unfortunately impossible to automat-

ically and statically detect possible pretty printing ambiguities. In contrast, SCALL1ON’s LL(1)

checks ensure that parsing is well-behaved. Providing the same kind of guarantees for pretty

printing is interesting future work, with many interesting practical challenges. The techniques

mentioned in this section provide research direction worth exploring.

6.4.5 Optimised Implementation

The pretty printer implementation discussed so far in this section is unfortunately not practical.

Due to the use of non-tail-recursive functions, the pretty printer can, and does, exhibit stack

overflows on relatively large inputs. Furthermore, the use of a Scala HashSet to record already

visited pairs of Recursive syntax and value is problematic, as it means that potentially large

values end up being checked for equality. As a result of this, the pretty printer becomes sluggish

in practice.

The implementation presented in Listing 36 addresses those issues. The code is refactored in a

callback-driven style to avoid having unbounded use of the call stack. A stack data structure

maintains a list of explorations of syntax and value pairs to perform, while a priority queue
records productions of trees of tokens to execute, ordered by increasing size of token sequences.

The priority policy of the queue ensures that parallel queries, for instanced triggered upon

visit of a Disjunction node, are resolved in order of resulting sequence size. This in turn

ensures that the only the smallest sequence is further propagated.

The local entered sets of the unoptimised implementation are replaced by a global recs

167



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

map. The mutable recs map is indexed by Recursive identifiers. To each such identifier

is assigned a unique mutable IdentityHashMap, indexed by values. IdentityHashMap is a

reference-indexed hash map, which avoids the costly comparison on values encountered in

the unoptimised version. While reference equality is often stricter than user-provided equality

on values, such an equality is sufficient to handle the types of recursive loops that arise in

practice. The IdentityHashMap associates to each encountered value a way to be notified of

produced token sequences. Upon the first visit of a value in a Recursive object, an entry is

added to the associated IdentityHashMap and the inner syntax is queried. Upon revisit, a

callback is registered to be called if and when a sequence is produced.

Having a global map instead of the local recs is also useful to avoid re-traversing the same

syntax with the same argument in alternatives, as would for instance occur in the ill-behaved

example of Listing 32.

def pretty[A](syntax: Syntax[A], value: A): Option[Iterator[Token]] = {
var stack: List[() => Unit] = Nil
val queue: PriorityQueue[(Int, () => Unit)] =

PriorityQueue.empty(Ordering.by(-_._1))
val recs: LongMap[IdentityHashMap[Any, ((Tree[Token]) => Unit) => Unit]] =

new LongMap()

def thenGo[B](
syntax: Syntax[B],
value: B,
subscriber: Tree[Token] => Unit): Unit = {

stack +:= (() => go(syntax, value, subscriber))
}

def go[B](
syntax: Syntax[B],
value: B,
subscriber: Tree[Token] => Unit): Unit = {

def record(tree: Tree[Token]): Unit = {
queue += ((tree.size, () => subscriber(tree)))

}

syntax match {
case Success(other) => if (value == other) record(Empty)
case Failure() => ()
case Elem(kind) => if (getKind(value) == kind) record(Node(value))
case Disjunction(left, right) => {

var sent = false
val update: Tree[Token] => Unit = (tree: Tree[Token]) => {

if (!sent) {
sent = true
record(tree)

}
}

168



6.4. Pretty Printing

thenGo(left, value, update)
thenGo(right, value, update)

}
case Sequence(left, right) => {

val leftValue ~ rightValue = value
val leftUpdate: Tree[Token] => Unit = (leftTree: Tree[Token]) => {

val rightUpdate: Tree[Token] => Unit = (rightTree: Tree[Token]) => {
record(leftTree ++ rightTree)

}
thenGo(right, rightValue, rightUpdate)

}
thenGo(left, leftValue, leftUpdate)

}
case Transform(_, inv, inner) => {

var sent = false
val update: Tree[Token] => Unit = (tree: Tree[Token]) => {

if (!sent) {
sent = true
record(tree)

}
}
for (invValue <- inv(value)) {

thenGo(inner, invValue, update)
}

}
case Marked(_, inner) => {

thenGo(inner, value, subscriber)
}
case Recursive(id, inner) => {

val idMap = recs.getOrElseUpdate(id, new IdentityHashMap())
if (!idMap.containsKey(value)) {

val subscribers = new Queue[Tree[Token] => Unit]()
subscribers += subscriber
var cache: Option[Tree[Token]] = None
def addSub(subscriber: Tree[Token] => Unit): Unit =

cache match {
case None => subscribers += subscriber
case Some(tree) => queue += ((tree.size, () => subscriber(tree)))

}
def update(tree: Tree[Token]): Unit = {

cache = Some(tree)
subscribers.foreach { subscriber =>

queue += ((tree.size, () => subscriber(tree)))
}

}
idMap.put(value, addSub)
thenGo(inner, value, update)

}
else {

val addSub = idMap.get(value)
addSub(subscriber)

}

169



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

}
}

}

var res: Option[Tree[Token]] = None

def updateRes(tree: Tree[Token]): Unit = {
res = Some(tree)

}

go(syntax, value, updateRes)

while (res.isEmpty && (queue.nonEmpty || stack.nonEmpty)) {
while (stack.nonEmpty) {

val next = stack.head
stack = stack.tail
next()

}

if (queue.nonEmpty) {
val (_, next) = queue.dequeue()
next()

}
}

res.map(_.values)
}

Listing 36 – Optimised pretty printing procedure.

170



6.5. Performance Evaluation

6.5 Performance Evaluation

In this section, I evaluate the performance of the SCALL1ON library against several competing

approaches. The first two benchmarks measure the performance of various approaches on

parsing JSON files. JSON is a relatively simple and widely adopted format.

Interestingly, the JSON language is context-free and non-regular, making it too complex to

handle by simpler techniques such as deterministic finite-state automaton. Additionally, the

JSON language is also LL(1). While simple, JSON is not trivial to parse, as shown by a recently

discovered performance bug (t0st, 2021).

Measurements appearing in this section were done on a 2018 MacBook Pro with a 2.2 GHz

Intel Core i7 processor. I used Java 1.8 and Scala 2.12.13 running on top of the Java HotSpot™

virtual machine. Each entry corresponds to the mean of 36 runs on a hot virtual machine.

Measurements were done using ScalaMeter (Prokopec, 2019).

6.5.1 Parsing JSON

In a first set of benchmarks, I measured the performance of three different approaches on

JSON Parsing on files ranging from 100KB to 10MB. Table 6.5 shows the results. The first

approach, labeled Simple, implements the LL(1) parsing with derivatives approach without

the zipper-based representation of expressions presented in Chapter 4. The second approach,

labeled Zipper, is a SCALL1ON JSON parser. SCALL1ON uses the parsing with derivatives and

zippers algorithm presented in Chapter 5. The last approach, labeled SPC, is a JSON parser

implemented using the Scala Parser Combinators library (LAMP EPFL and Lightbend, Inc,

2019). In all cases, parsers are directly given tokens produced by the same lexer. Lexing time is

not reported.

File size (KB) Tokens
Parse time (ms) Speed (token/ms)

Simple Zipper SPC Simple Zipper SPC

100 9649 99.9 2.8 2.3 96.6 3446.0 4195.2

1000 97821 7069.2 14.3 19.0 13.8 6840.6 5159.3

10000 971501 † 150.2 166.0 † 6468.0 5852.4

Table 6.5 – Performance comparison between simple LL(1) parsing with derivatives (Simple),
LL(1) parsing with derivatives and zippers as implemented in SCALL1ON (Zipper), and Scala
Parser Combinators (SPC) for parsing JSON. Entries marked with † encountered a stack
overflow. Entries correspond to the mean of 36 measurements on a hot JVM.

The performance of the LL(1) parsing with derivatives and zippers implemented by SCALL1ON

is comparable to the performance of the recursive descent algorithm implemented by the Scala

Parser Combinators library. Worth noting, SCALL1ON does not suffer from stack overflows,

which can occur with recursive descent when parsing deeply nested structures. Since parsers

are often exposed to user inputs, an attacker could exploit this vulnerability in approaches

based on recursive descent to cause crashes, and so with a relatively small input JSON file (as

171



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

small as 2616 bytes in my tests). SCALL1ON also offers more comprehensive error reporting

and recovery, in part thanks to encoding of parser states as explicit analysable expressions.

I also benchmarked the performance of Parseback (Spiewak, 2018), a recent Scala implementa-

tion of the parsing with derivatives algorithm (Might et al., 2011) by one of the original authors,

with performance optimisations from later works (Adams et al., 2016). The results are not

reported in Table 6.5 as the parser encounters a stack overflow in each of the benchmarks. The

largest file I managed to parse with using Parseback was 1387 bytes long, and it took 1388ms.

6.5.2 Lexing and Parsing JSON

In the second set of benchmarks, I measured the performance of lexer and parser pair imple-

mented using SILEX and SCALL1ON against an ANTLR-generated JSON lexer and parser (Parr,

2013; Parr and Fisher, 2011; Parr, 2019), and two lexerless JSON parsers respectively imple-

mented using FastParse2 (Haoyi, 2021) and the Scala Parser Combinators library (LAMP EPFL

and Lightbend, Inc, 2019). All implementations were run on the same JSON input files as the

previous benchmarks.

Comparison Against ANTLR

In this subsection, I report the performance of the SILEX and SCALL1ON solution against

that of ANTLR using both its code-generator mode and its interpreter mode. The results are

reported in Table 6.6.

File size (KB) Tokens
Lex & parse time (ms)

SILEX + SCALL1ON ANTLR (Int.) ANTLR (Gen.)

100 9649 7.3 9.6 1.9

1000 97821 33.4 33.1 15.8

10000 971501 344.7 239.9 145.9

Table 6.6 – Performance of a JSON lexer and parser implemented using the SILEX and
SCALL1ON libraries (SILEX + SCALL1ON) compared to an ANTLR-generated lexer and parser
(ANTLR (Int.)) and an interpreted ANTLR lexer and parser (ANTLR (Gen.)).

The implementation using SILEX and SCALL1ON, which does not use code generation, is only

a small constant factor (~3) slower than the ANTLR-generated implementation and displays

performance similar to that of ANTLR in interpreter mode.

Compared to ANTLR, both SILEX and SCALL1ON offer a highly flexible and extensible interface

embedded in a rich programming language, while ANTLR grammars are described in a domain-

specific language of limited expressivity. In addition, while SCALL1ON directly builds values of

the appropriate type, extra work must be done to convert parse trees produced by the ANTLR

parsers into proper user-defined JSON values. This extra work is not reported in the results.

172



6.5. Performance Evaluation

Comparison Against Lexerless Parser-Combinators

In this subsection, I report the performance of the SILEX and SCALL1ON solution against

that of two lexerless parsers implemented using FastParse2 and the Scala Parser Combinators

(SPC) library. Being lexerless, the two implementations directly integrate lexical aspects

in the definition of the parser, while the SILEX and SCALL1ON solution features a separate

lexer. Note that the SPC-based implementation differs from that of the earlier benchmarks

since it operates on character tokens instead of higher level tokens. The results are reported

in Table 6.7.

File size (KB) Tokens
Lex & parse time (ms)

SILEX + SCALL1ON FastParse2 SPC (lexerless)

100 9649 7.3 2.6 21.0

1000 97821 33.4 21.6 189.9

10000 971501 344.7 196.5 1959.5

Table 6.7 – Performance of a JSON lexer and parser implemented using the SILEX and
SCALL1ON libraries (SILEX + SCALL1ON) compared to a lexerless FastParse2 parser (Fast-
Parse2) and a lexerless Scala Parser Combinators parser (SPC (lexerless)).

The implementation using SILEX and SCALL1ON, which does not use code generation, is only

a small constant factor (~3) slower than the FastParse2 parser but is about 3-to-5 times faster

than the SPC parser. Note that the fastest implementation does, as was the case in the previous

benchmark, make use of code generation: Indeed, FastParse2 relies on macros to generate a

recursive-descent parser at compile-time.

Both the FastParse2 and the SPC parsers are susceptible to stack overflows, while the SILEX

and SCALL1ON is not. In addition, FastParse2 and SPC do not guarantee linear-time parsing

and do not provide residual parsers for resumption and inspection.

6.5.3 Pretty Printing JSON

As discussed earlier in the chapter, SCALL1ON also provides pretty printing capabilities. Using

the slightly modified JSON parser shown in Appendix D, one can obtain a correct pretty printer

almost for free from the description of the syntax. Table 6.8 shows the time taken by the

SCALL1ON pretty printer to output the tokens corresponding to JSON values of various sizes.

173



Chapter 6. SCALL1ON: A Scala Parser Combinator Library for LL(1) Languages

File size (KB) Tokens Pretty printing time (ms)

100 9649 16.3

200 19297 29.9

300 28945 44.6

400 38593 56.0

500 48241 69.6

600 57889 82.5

700 67537 96.3

800 77185 110.1

900 86833 119.3

1000 97821 132.8

10000 971501 1561.6

Table 6.8 – Performance of the JSON pretty printer implemented using SCALL1ON.

6.5.4 Lexing and Parsing Python

As part of a Bachelor semester project under my supervision, Maillard (2020) built a complete

lexer and parser for Python using SCALL1ON for the parser, and relying on his own library

for the lexer. The student was able to build a fully functional Python parser, demonstrating

the applicability of SCALL1ON to build large real-word parsers. The student checked that

output produced by his parser indeed corresponds to that of the built-in CPython parser on

a variety of large real-world projects, notably Django (Django Software Foundation, 2021),

Zulip (Kandra Labs, Inc, 2021) and Flask (Ronacher, 2021). The performance of the lexer

and parser, as benchmarked on those projects, is about a factor 15-to-20 behind that of the

built-in CPython implementation, the SCALL1ON parser accounting for about a third of the

running time, while two thirds of the time are spent in the custom lexer. Table 6.9 shows the

performance of the student’s lexer and parser for a selection of files of various sizes from the

Django codebase. The performance is good enough for many practical uses.

File Size

(KB)

Tokens Lex time

(ms)

Parse time

(ms)

CPython

(ms)

django/middleware/clickjacking.py 2 125 3.0 9.4 0.2

django/dispatch/dispatcher.py 11 1122 17.0 22.2 1.4

django/http/multipartparser.py 26 3320 47.7 28.9 4.1

django/forms/models.py 58 8313 120.1 49.6 11.2

django/test/testcases.py 66 8911 129.4 77.8 9.2

Table 6.9 – Performance of the Python lexer and parser from Maillard (2020) compared to
the builtin CPython parser on various Python source files from the Django codebase (Django
Software Foundation, 2021). Note that the lexer used is based on a custom Scala library
implemented by the student, not SILEX, which was not available at the time. The parser is
based on SCALL1ON.

174



6.6. Applicability

6.6 Applicability

SCALL1ON, as well as SILEX, have been used in practice in a variety of projects. Notably,

SCALL1ON and SILEX are used as part of the Compiler Construction course offered to third

year computer science bachelor students. As part of a semester long project, students build

a compiler for a subset of Scala. Students user SILEX and SCALL1ON to build their lexer,

respectively parser. Reception from students seems generally favourable.

SILEX and SCALL1ON have also been used as part of other EPFL courses. For instance, the

two have been used to build a first-order-logic formula quasiquoter within Scala as part of the

infrastructure for a project in the Formal Verification course.

A collection of examples built using SILEX and SCALL1ON are also provided in the code

repository of SCALL1ON1. These examples include a JSON lexer and parser, a lambda calculus

lexer, parser, and pretty printer, a lexer and parser for a small arithmetic operation language,

and a parser for roman numerals.

1https://github.com/epfl-lara/scallion

175

https://github.com/epfl-lara/scallion




7 Generalising Zippy Parsing with
Derivatives
In Chapter 5, I have shown how using a zipper to represent LL(1) expression derivatives greatly

speeds up the computation of successive derivations, leading to an efficient LL(1) parsing

algorithm. The algorithm on which the zipper was applied was a variant of the parsing with

derivatives algorithm specialised to LL(1) expressions. This begs the question if the zipper

optimisation technique can be ported to the setting of the original parsing with derivatives

algorithm and general value-aware context-free expressions. In this chapter, I present a

generalisation of the LL(1) parsing with derivatives and zippers algorithm to arbitrary context-

free expressions. A prototype implementation is available at https://github.com/redelmann/

eclair.

7.1 Overview of Modifications

The algorithm presented in this chapter can be seen as a modified version of the parsing

algorithm presented in Chapter 5 and implemented as part of SCALL1ON (see Chapter 6). The

zipper datatype used in Chapter 5 for LL(1) expressions was relatively simple thanks to the

LL(1) restriction. Without this restriction, the zipper data type used by the algorithm has to

handle:

1. Ambiguous Values. In the general case, context-free expressions may associate an arbi-

trary, even infinite, number of values with any sequence of tokens. The representation

of parse values used by the zipper must therefore accommodate this. In the LL(1) case,

the syntax was bound to be unambiguous, and therefore the zipper could represent

parse results as naked values. In the version of the zipper used in this chapter, collection

of parse values are represented using a class called Result. Objects of type Result rep-

resent graphs of such parse values. Internal nodes of the graph may indicate cartesian

products, unions, or function applications. Additionally, the graph may contain cycles

and thus describe infinite collections of values.

2. Concurrent Partial Interpretations. In the case of LL(1) expressions, the derivation

function followed a single logical thread of execution. In case of disjunction, the disjoint

first sets of the two sides ensured that at most one side could be visited during derivation.

The same applied for sequences, where the LL(1) property ensured that at most one of

177

https://github.com/redelmann/eclair
https://github.com/redelmann/eclair


Chapter 7. Generalising Zippy Parsing with Derivatives

the sides would be visited. This property transposed to the Contexts of the zipper: The

upwards phase ended as soon as a subsequent syntax starting with the appropriate kind

was found. In the general case, the upwards phase must continue exploring contexts as

long as subsequent syntaxes are nullable.

In the general case, it is impossible to disambiguate looking only at the currently derived

token. The zipper must be able to support multiple concurrent interpretations of the

input. To do so, the Context data structure used by the generalised algorithm is no

longer a simple stack but a graph. Each context node may have multiple parents, and

cycles may be formed.

7.2 Data Structure Definition

As in Chapters 2 and 5, the data structure the parsing algorithm operates on is a zipper.

The zipper combines aspects of both regular and LL(1) zippers. The zipper presented in

this chapter is a collection of values in contexts. The zipper operates on an embedding of

context-free expressions as Syntaxes.

7.2.1 Syntaxes

The definition of the Syntax data type is unsurprising and resembles that used by

SCALL1ON (see Chapter 6). One notable difference with the definition shown in Chapter 6 is

that, in the interest of simplicity, the properties, such as nullability and first sets, are directly

encoded as fields of the data type. Their computation however is still backed by a propagation

network. The various case classes, as well as the interface of the Syntax trait, are presented

in Listing 37. In the interest of simplicity, the body of the various case classes has been omitted.

Such bodies mostly consist of the construction of the propagation networks used to compute

properties.

7.2.2 Contexts

The definition of the Context class is given in Listing 38. The Context type is parameterised

by two types, A and Z. The type parameter A represents the type of the hole, or inner type, while

Z is the outer type. The various case classes of Context are as follows:

• The case class Empty represents an empty context. In this case, the type parameters A
and Z of Context coincide.

• The case class FollowBy represents being in the left of a sequence. The right field

contains a reference to the right Syntax.

• The case class PrependBy represents being in the right of a sequence. The left field

contains a reference to a Result data type that represents a collection of parse values

for the left syntax. Indeed, to visit the right of a syntax, the left must have already been

processed down to a Result. I will discuss the Result type later in this chapter.

178



7.2. Data Structure Definition

sealed trait Syntax[+A] {
def isProductive: Boolean
def isNullable: Boolean
def hasFirst(kind: Kind): Boolean

}

case class Success[+A](value: A) extends Syntax[A]
case object Failure extends Syntax[Nothing]
case class Elem(kind: Kind) extends Syntax[Token]
case class Disjunction[+A](left: Syntax[A], right: Syntax[A]) extends Syntax[A]
case class Sequence[+A, +B](left: Syntax[A], right: Syntax[B]) extends Syntax[(A, B)]
case class Transform[A, +B](inner: Syntax[A], function: A => B) extends Syntax[B]

sealed abstract class Recursive[+A] extends Syntax[A] {
def inner: Syntax[A]

}
object Recursive {

def apply[A](deferred: => Syntax[A]): Recursive[A] =
new Recursive[A] {

override lazy val inner: Syntax[A] = deferred
}

def unapply[A](syntax: Syntax[A]): Option[Syntax[A]] = {
if (syntax.isInstanceOf[Recursive[_]])

Some(syntax.asInstanceOf[Recursive[A]].inner)
else

None
}

}

Listing 37 – Definition of the generalised Syntax trait and associated case classes.

sealed trait Context[-A, +Z]
case class Empty[A]() extends Context[A, A]
case class FollowBy[A, B, Z](

right: Syntax[B],
parent: Context[(A, B), Z]) extends Context[A, Z]

case class PrependBy[A, B, Z](
left: Result[A],
parent: Context[(A, B), Z]) extends Context[B, Z]

case class Apply[A, B, Z](
function: A => B,
parent: Context[B, Z]) extends Context[A, Z]

case class Shared[A, Z](
parents: Iterable[Context[A, Z]]) extends Context[A, Z]

Listing 38 – Definition of the generalised Context trait and associated case classes.

179



Chapter 7. Generalising Zippy Parsing with Derivatives

• The case class Apply represents being under the application of a host-language function.

The field function contains a reference to the function to be applied on parse values.

• Finally, the Shared case class offers the possibility of multiple parent contexts. Shared
nodes also allow cycles to be formed in the contexts.

Note that the definition of contexts is similar to that of LL(1) expressions seen in Chapter 5,

with two notable differences:

1. The left field of PrependBy represents a collection of values instead of a single value,

2. The introduction of the Shared case class with the possibility of multiple parents. In-

deed, the same syntax may be found in multiple contexts, either because the syntax

appears initially multiple times as part of the top-level syntax, or because of duplication

caused by derivations.

The possibility of having multiple parents is essential to enable strategies that avoid

duplication of work: During each derivation, each visited syntax node will be associated

with a Shared context node. Upon revisit of the same syntax node during the same

derivation call, the context can be added to the list of parents instead of revisiting the

syntax.

7.2.3 Results

General context-free expressions can be ambiguous. The same expression can assign multiple

values to the same sequence of tokens, potentially infinitely many. To represent collections

of such values, I use a data type similar to Syntax. The class Result (shown in Listing 45),

represent graphs of values. Cycles may be introduced, through mutation of the collection of

values stored in the results field of Disjunctions.

sealed trait Result[+A]

object Result {
case class Value[A](

value: A) extends Result[A]
case class Closed[A](

syntax: Syntax[A]) extends Result[A]
case class Sequence[A, B](

left: Result[A],
right: Result[B]) extends Result[(A, B)]

case class Disjunction[A](
results: Iterable[Result[A]]) extends Result[A]

case class Transform[A, B](
inner: Result[A],
function: A => B) extends Result[B]

}

Listing 39 – Definition of the generalised Result trait and associated case classes.

180



7.2. Data Structure Definition

The meaning of the various constructs of the Result class is as follows:

• The case class Value represents a single value.

• The case class Closed contains an unmodified nullable Syntax. The syntax is closed:

Only the values it associates with the empty sequence of tokens are of interest.

• The case class Sequence represents cartesian production of results.

• The case class Disjunction represents union of results.

• Finally, the case class Transform represents the application of a function on top on the

underlying results.

To avoid confusion with Syntax constructors, the various Result case classes are located

within the Result companion object. I will refer to these constructors using their qualified

names in the listings to follow.

7.2.4 The Zipper

The parsing algorithm showed in the next section makes use of the Syntax, Context and

Result types I have just defined. In addition, the algorithm sometimes materialises values

of some type paired with a matching context. To do so, the Focused trait is introduced.

The parameter type constructor F is instantiated as either Syntax or Result, depending on

whether a syntax or a result is to be paired with the context. Note that the type parameter of

Syntax or Result must correspond to the inner type of the Context.

sealed trait Focused[F[_],+Z]
object Focused {

case class Pair[F[_], A, Z](
value: F[A],
context: Context[A, Z]) extends Focused[F, Z]

}

Listing 40 – Definition of the Focused trait.

181



Chapter 7. Generalising Zippy Parsing with Derivatives

7.3 Derivation Algorithm

Now that I have introduced the various data structures used by the parsing algorithm, I can

finally present the implementation of the derivation function. As was the case for the LL(1)

parsing with derivatives and zippers algorithm, the derivation algorithm makes use of three

main helper functions: plug, locate, and pierce.

7.3.1 Plug

The first helper function of interest is plug. The goal of plug is to propagate a result up a

context. The definition of the function is more complicated as one could initially envision due

to several factors:

1. Since contexts can end up being very large, the function can not be implemented

recursively, as it would otherwise subject the derivation algorithm to stack overflows.

2. Additionally, Shared contexts may be visited multiple times during a single derivation.

All invocations of plug done as part of a single derivation should avoid revisiting the

same contexts multiple times.

To account for those constraints, the plug function is implemented via a helper Plug class

(see Listing 41). In order to avoid using recursion, the function only peels off a single

layer out of the argument context. The parameter functions recordNext, recordStop, and

recordResult are called by the resulting plug function as a way of providing results to the

caller. The function recordNext is called when more layers of the context must be peeled

off before the next subsequent syntax, if any. The function recordStop is called when a

subsequent syntax has been found. Finally, the function recordResult is called when the

context is empty and the argument Result value is complete.

Each instance of the Plug class maintains internal state to avoid revisiting multiple times the

same Shared contexts. In the case of Shared nodes, the helper function updateOrDo is used

to query and update the cache. In case of a cache hit, instead of propagating the value up the

context, the value is simply added to the mutable sequence associated with the node, thereby

updating the associated Disjunction result. This crucially ensures that Shared contexts are

only visited once, and that cycles in the context structures are gracefully handled.

7.3.2 Locate

The locate function (shown in Listing 42) is building on the plug function. The goal of

locate is to return all subsequent syntaxes that start with a given kind and that are reachable

within the context. Each such syntax is to be paired with the appropriate corresponding

Context.

The locate function creates a new instance of the plug function, which it uses to unfold the

context. Each time a subsequent syntax is found in the context, it is recorded, along with its

context, in the result points, provided that it starts with the given kind. Additionally, if the

syntax is nullable, the corresponding context is also further explored.

182



7.3. Derivation Algorithm

class Plug[Z](
recordNext: Focused[Result, Z] => Unit,
recordStop: Focused[Syntax, Z] => Unit,
recordResult: Result[Z] => Unit) {

private val entries: IdentityHashMap[Context[Nothing, Any],
Result[Nothing] => Unit] =

new IdentityHashMap()

private def updateOrDo[A](result: Result[A], context: Context[A, Z])
(action: Result[A] => Unit): Unit = {

if (entries.containsKey(context)) {
entries.get(context).asInstanceOf[Result[A] => Unit].apply(result)

}
else {

val buffer = new ArrayBuffer[Result[A]]
buffer += result
entries.put(context, (extra: Result[A]) => buffer += extra)
action(Result.Disjunction(buffer))

}
}

def apply[A](result: Result[A], context: Context[A, Z]): Unit = {
context match {

case Empty() =>
recordResult(result.asInstanceOf[Result[Z]])

case Shared(parents) =>
updateOrDo(result, context) { sharedResult =>

for (parent <- parents) {
recordNext(Focused.Pair(sharedResult, parent))

}
}

case FollowBy(right, parent) =>
recordStop(Focused.Pair(right, PrependBy(result, parent)))

case PrependBy(left, parent) =>
recordNext(Focused.Pair(Result.Sequence(left, result), parent))

case Apply(function, parent) =>
recordNext(Focused.Pair(Result.Transform(result, function), parent))

}
}

}

Listing 41 – Implementation of the Plug function factory.

183



Chapter 7. Generalising Zippy Parsing with Derivatives

def locate[A](
focused: Focused[Result, A],
kind: Kind): Iterable[Focused[Syntax, A]] = {

val nextQueue: Queue[Focused[Result, A]] = new Queue
val stopQueue: Queue[Focused[Syntax, A]] = new Queue

val plug: Plug[A] = new Plug(nextQueue += _, stopQueue += _, _ => ())

val points: ArrayBuffer[Focused[Syntax, A]] =
new ArrayBuffer()

nextQueue += focused

while (nextQueue.nonEmpty || stopQueue.nonEmpty) {

while (nextQueue.nonEmpty) {
val Focused.Pair(result, context): Focused.Pair[Result, _, A] =

nextQueue.dequeue()
plug(result, context)

}

while (stopQueue.nonEmpty) {
val Focused.Pair(syntax, context): Focused.Pair[Syntax, _, A] =

stopQueue.dequeue()
if (syntax.hasFirst(kind)) {

points += Focused.Pair(syntax, context)
}
if (syntax.isNullable) {

plug(Result.Closed(syntax), context)
}

}
}

points
}

Listing 42 – Implementation of the locate function.

184



7.3. Derivation Algorithm

Note that, contrarily to the LL(1) version of the function, the locate function may return

multiple points.

7.3.3 Pierce

The final helper function used by derivation is pierce (see Figure 7.1). Like plug, pierce
must maintain state across all calls performed as part of a single derivation. For this reason,

the function is to be instantiated from the Pierce class.

The pierce function is called recursively over syntaxes and instantiates layers of context. A

cache is maintained to avoid visiting the same syntax nodes multiple times. Upon revisit of

a syntax, an extra parent context is added as a to the corresponding Shared context node

instead of revisiting the syntax. When the revisit occurs as part of the visit to the syntax itself, a

cycle in the resulting context is created. By construction, those cycles contain a Shared node,

which ensures they are correctly handled by plug and other upwards functions.

7.3.4 Derive

The derive function is straightforward to implement given the locate and pierce helper

functions I have previously shown. As an upwards phase, locate is called to gather all points

which must be visited by pierce during the downwards phase. Intuitively, locate moves the

focal points up the contexts during this upwards phase. During the downwards phase, pierce
collects the contexts around matching Elem nodes found in left-most positions within the

points found by locate.

def derive[A](focused: Focused[Result, A], token: Token): Focused[Result, A] = {
val kind = getKind(token)
val points = locate(focused, kind)
val contexts = new ArrayBuffer[Context[Token, A]]()
val pierce = new Pierce[A](contexts += _)
for (point <- points) {

val Focused.Pair(syntax, context): Focused.Pair[Syntax, _, A] = point
pierce(syntax, kind, context)

}
Focused.Pair(Result.Value(token), Shared(contexts))

}

Listing 43 – Implementation of the derive function.

As a result of the derivation function, the derived token is put in the contexts that have been

gathered by pierce.

185



Chapter 7. Generalising Zippy Parsing with Derivatives

class Pierce[Z](recordContext: Context[Token, Z] => Unit) {
private val entries: IdentityHashMap[Syntax[Any], Context[Any, Z] => Unit] =

new IdentityHashMap

private def updateOrDo[A](expr: Syntax[A], context: Context[A, Z])
(action: Context[A, Z] => Unit): Unit = {

if (entries.containsKey(expr)) {
entries.get(expr).asInstanceOf[Context[A, Z] => Unit].apply(context)

}
else {

val buffer = new ArrayBuffer[Context[A, Z]]
buffer += context
entries.put(expr, (extra: Context[A, Z]) => buffer += extra)
action(Shared(buffer))

}
}

def apply[A](expr: Syntax[A], kind: Kind, context: Context[A, Z]): Unit = {
updateOrDo(expr, context) { (sharedContext: Context[A, Z]) =>

expr match {
case Elem(_) => recordContext(sharedContext)
case Disjunction(left, right) => {

if (left.hasFirst(kind))
apply(left, kind, sharedContext)

if (right.hasFirst(kind))
apply(right, kind, sharedContext)

}
case Sequence(left, right) => {

if (left.hasFirst(kind))
apply(left, kind, FollowBy(right, sharedContext))

if (left.isNullable && right.hasFirst(kind))
apply(right, kind, PrependBy(Result.Closed(left), sharedContext))

}
case Transform(inner, function) =>

apply(inner, kind, Apply(function, sharedContext))
case Recursive(inner) => {

apply(inner, kind, sharedContext)
}
case _ => ()

}
}

}
}

Figure 7.1 – Implementation of the Pierce function factory.

186



7.4. Parsing Algorithm

7.4 Parsing Algorithm

In this section, I present the generalised parsing with derivatives and zippers algorithm. The

derive function I have just shown is the main component of the parsing algorithm. However,

such a derivation function alone is not sufficient. The derivation function is used to evolve a

zipper-based represent of a syntax as tokens of input are consumed. Before derivation can be

first applied, the syntax must be converted into a zipper-based representation, which is done

using the focus function. After all derivations are applied, the zipper-based syntax must be

converted to a Result, using the result function.

7.4.1 Focus

The focus function is used to produce a Focused[Result, A] from an initial Syntax[A].

Since the zipper requires an explicit focal point, an artificial Result(Epsilon(())) is created

and used as the focal point. The context consists of two layers:

1. The syntax itself, as part of a FollowBy.

2. A final Apply layer, whose goal is to discard the artificial value introduced by the initial

focal point.

The function is only called once per invocation of the parsing algorithm, at the start.

def focus[A](syntax: Syntax[A]): Focused[Result, A] =
Focused.Pair(

Result(Epsilon(())),
FollowBy(syntax, List(Apply(_._2, List(Empty())))))

Listing 44 – Implementation of the focus function.

7.4.2 Result

Once all tokens have been derived, a final upwards phase must take place before a Result can

be obtained. The result function propagates upwards the context the collection of values in

focus in the argument Focused[Result, A].

The structure of the function is reminiscent of the locate I have previously shown. Instead of

recording syntaxes that start with a given kind on the way, the result function simply tries to

reach the top of the context, skipping nullable subsequent syntaxes.

7.4.3 Parse

Given the presented helper functions, the definition of the parsing algorithm is extremely

simple: The argument syntax is converted into a zipper-based representation using focus.

Then, derivation is iteratively applied onto that zipper for each input token. Finally, result is

called on the resulting zipper to compute the final collection of values.

187



Chapter 7. Generalising Zippy Parsing with Derivatives

def result[A](focused: Focused[Result, A]): Option[Result[A]] = {
val nextQueue: Queue[Focused[Result, A]] = new Queue
val stopQueue: Queue[Focused[Syntax, A]] = new Queue
var result: Option[Result[A]] = None

val plug: Plug[A] = new Plug(nextQueue += _, stopQueue += _, r => result = Some(r))

nextQueue += focused

while (nextQueue.nonEmpty || stopQueue.nonEmpty) {

while (nextQueue.nonEmpty) {
val Focused.Pair(result, context): Focused.Pair[Result, _, A] =

nextQueue.dequeue()
plug(result, context)

}

while (stopQueue.nonEmpty) {
val Focused.Pair(syntax, context): Focused.Pair[Syntax, _, A] =

stopQueue.dequeue()
if (syntax.isNullable) {

plug(Result(syntax), context)
}

}
}

result
}

Listing 45 – Implementation of the result function.

def parse[A](syntax: Syntax[A], tokens: Iterable[Token]): Option[Result[A]] = {
var current = focus(syntax)
for (token <- tokens) {

current = derive(current, token)
}
result(current)

}

Listing 46 – Implementation of the parse function.

188



7.5. Producing Values

7.5 Producing Values

The Result[A] datatype represents collections of values of type A. The data structure under-

lying Result forms a graph which may contain cycles, making value enumeration non-trivial.

As usual, a bottom-up algorithm may be used to lazily iterate over values. In case a single

value is of interest to the user, a simpler method may be invoked on Result. As I will discuss

later in this chapter, the Result datatype could also be substituted with naked values in this

case to save space.

7.6 On Immutability

The parsing algorithm presented in this chapter makes heavy use of mutation. Yet, I argue

that the algorithm is still functional. As I will show, the zipper data structure used to represent

derivatives is still immutable and fully persistent. The reason is that mutations performed

during derivations only occur on newly created structures, never on already existing ones.

The generalised algorithm makes use of mutation in several places. Notably, both plug and

pierce maintain mutable state for memoisation purposes. This state is invisible to users; it is

entirely discarded after each derivation.

Next, the contents of the results fields of Disjunction nodes of Results can be mutated

by the derivation procedure. These mutations are also invisible to the user, as only fresh

Disjunction nodes may have their results field altered.

Finally, the parents fields of contexts can be mutated during derivation. Yet, as was the case

for Disjunction nodes of Results, only freshly created contexts may have their parents
field altered.

In the shown implementation, this is further guaranteed by a typing discipline: Mutable

collections are typed with the rather general and immutable interface Iterable within nodes.

The derivation procedure, on the other hand, maintains collections it creates under more

concrete types that offer a mutable interface, such as ArrayBuffer.

Thus, the derivation procedure does not mutate anything it receives as argument, making the

zipper data structure immutable and persistent for all intent and purposes.

7.7 Correspondence with Other Parsing Techniques

The parsing algorithm presented in this section corresponds in many interesting aspects with

other parsing algorithms. A discussion of the most notable links are discussed in this section.

7.7.1 Earley Parsing

Interestingly, the parsing algorithm shown in the chapter is reminiscent of Earley’s parser (Ear-

ley, 1970). In this section, I give a brief overview of the Earley’s recognition algorithm for

context-free grammars. The main objects used by Earley’s algorithm are Earley’s items. Each

item is of the form (X →α•β, i ), where X is a non-terminal symbol of the grammar, α and

β are sequences of symbols such that X → αβ is a rule of the grammar, and i is an integer

189



Chapter 7. Generalising Zippy Parsing with Derivatives

position. The symbol • indicates a point within rules, some sort of focus: To the left of the •
are symbols that have already been recognised, while to the right are symbols that remain to

be matched. The position i denotes the index in the input at which the item starts. Given n

tokens of inputs, Earley’s algorithm iteratively builds a collection of n +1 item sets denoted

S(0) to S(n).

The algorithm maintains the invariant that a set S(k) contains the item (X → α •β, i ) only

if α matches against the tokens ti+1 . . . tk and either their exists an item (X ′ →α′ •Xβ′, i ′) in

S(i ) or k = 0 and X is the initial symbol of the grammar. Intuitively, the presence of an item

(X →α•β, i ) in a set S(k) indicates a partial match of the symbol X starting at position i and

currently positioned at k. α represents the already recognised symbols and β the remaining

symbols to process.

Earley’s algorithm proceeds position by position, saturating the sets S(·) iteratively as tokens

of input are processed. In the end, the algorithm reports a successful parse if and only if an

item (S →α•,0), where S is the start symbol, exists in the set S(n).

For each k = 0. . .n, an iterative phase saturates the set S(k). During this saturation phase,

three types of operations are performed:

1. Completions. Items of the form (X → γ•, i ) in S(k) can be completed. For each corre-

sponding item (Y →α•Xβ, j ) in S(i ), the item (Y →αX •β, j ) is added to S(k).

2. Predictions. For each item (Y →α•Xβ, i ) in S(k), items (X →•γ,k) are added in S(k)

for every production rule X → γ of the grammar.

3. Scannings. For each item (X →α• tk+1β, i ), the item (X →αtk+1 •β, i ) is added to the

set S(k +1).

Note that several actions may be performed on the same item: An item may offer both

completion and prediction opportunities. Due to nullable symbols, completions opportunities

can be discovered after predictions within a single saturation phase. Finally, remark that

scanning, as it adds elements to the subsequent set S(k +1), can not uncover more action

opportunities in the saturation phase for S(k).

Correspondence with Zipper-Based Algorithm

Each operation performed by the zipper-based algorithm shown in this chapter corresponds

to one (or several) operations performed by Earley’s algorithm:

1. The locate upwards phase corresponds to completions. Instead of looking up corre-

sponding items in a different set, as is the case in Earley’s algorithm, contexts contains a

direct reference to all corresponding contexts: its parents.

As a simple optimisation, the zipper-based algorithm of this chapter uses first sets of

syntaxes to provide a lookahead of a single token. The way nullable expressions are

handled is also slightly different: Whereas Earley’s require a series of predictions and

completions to move past nullable symbols, the zipper-based algorithm uses the nullable

property of syntaxes to directly skip over them during the upwards phase.

190



7.7. Correspondence with Other Parsing Techniques

2. Calls to pierce of the downwards phase correspond to predictions. As was the case

for the upwards phase, first sets are used to provide lookahead. Nullable symbols are

also handled slightly differently: Whereas Earley requires a series of predictions and

completions to move past nullable symbols on the left and explore reachable symbols in

the right of sequences, the zipper-based algorithm directly explores the right expression

of a sequence if the left expression is nullable (and the right expressions starts with the

appropriate kind).

3. Finally, the replacement of the focused Elem(kind) nodes by a Result.Value(token)
node correspond to scanning.

One obvious difference between Earley’s algorithm, as presented in this section, and the

zipper-based parsing algorithm of this chapter is that value-elaboration aspect. As presented

here, Earley’s algorithm is a mere recogniser: To the left of • are symbols of the grammar,

whereas in the case of the zipper-based algorithms, collections of values represented using

the Result datatype are present in contexts.

The close correspondence of the zipper-based operations with Earley’s operations strongly

signals that the two algorithms share the same worst-case complexity. Each action performed

by the zipper-based algorithm can be decomposed into a series of constant-time steps that

correspond to actions performed by Earley’s algorithm. This offers a simple argument that gen-

eralised parsing with derivatives and zippers is worst-case cubic in the general case, worst-case

quadratic for unambiguous grammars, and worst-case linear for deterministic grammars Ear-

ley (1970).

A similar observation was made by Henriksen et al. (2019). These authors remark that their

parsing algorithm based derivative grammars, a transposition of Brzozowski’s derivatives to

context-free grammars, also closely corresponds to Earley’s algorithm.

7.7.2 GLR Parsing

The zipper-based algorithm presented in this chapter is also reminiscent of the Generalised LR

parsing algorithm, also known as GLR or Tomita’s algorithm (Tomita, 1987, 2012). The main

difference being that GLR precomputes an LR parsing table to guide the algorithm, while the

zipper-based algorithm presented in this chapter does not. Memoising calls to pierce, as

done in the context of the LL(1) parsing algorithm presented in Chapter 5, could offer a way to

lazily build a distributed version of the parse table. This is not done in the current version of

the algorithm due to the global nature of contexts: contexts created by pierce may depend

on contexts created by other calls to pierce performed in the same derivation invocation.

The Graph-Structured Stack (GSS) used by the GLR algorithm corresponds to the contexts of

the zipper-based algorithm. As originally described, GSS are acyclic graphs, which prohibits

certain types of recursion in grammars. The zipper-based algorithm of this chapter presents

no such restrictions, and explicitly incorporate semantic actions.

191



Chapter 7. Generalising Zippy Parsing with Derivatives

7.7.3 GLL Parsing

Another parsing algorithm that uses graph structured stacks is the Generalised LL (GLL) parsing

algorithm of Scott and Johnstone (2010). GLL is a parser generation algorithm, which generates

parsers that operate on a modified GSS to support cycles. The GSS used by GLL parsers closely

correspond to the contexts of the zipper-based algorithm of this chapter, which also support

cycles. Being a parser generation technique, GLL is somewhat dissimilar to the dynamic

parsing algorithms presented in this thesis.

7.8 Performance

In this section, I examine the performance of the parsing algorithm shown in this chapter in

various settings.

7.8.1 On JSON Parsing

The performance of the algorithm in practice is, as expected, slower than that of the LL(1)

version of the algorithm. On the JSON syntax benchmark, an implementation of the gener-

alised algorithm processes tokens at a speed of around 325,000 tokens per second, which is

about 20 times slower than the LL(1) parsing algorithm used by SCALL1ON. Interestingly, on

an implementation of the JSON syntax written using left recursion, the performance of the

algorithm slightly improves, reaching a speed of approximately 450,000 tokens per second.

Figure 7.2 shows the time taken by the generalised version of the algorithm to parse JSON files

of sizes ranging from 100KB to 1MB using either a right-recursive syntax or a left-recursive

syntax. The performance of SCALL1ON is also reported for comparison.

200 400 600 800 1,000
0

100

200

300

400

File size (KB)

T
im

e
(m

s)

Right-recursive
Left-recursive

SCALL1ON

Figure 7.2 – Time taken to parse JSON files of various sizes.

This gap in performance compared to the LL(1) version is explained by the costly infrastruc-

ture in place to handle ambiguities. In the case of SCALL1ON, the LL(1) property allows for

sweeping simplifications: The costly bookkeeping done by the plug and pierce functions of

this chapter, which are necessary to avoid duplicating work, are entirely avoided in the LL(1)

case. Furthermore, due to the simpler structure of contexts in the LL(1) case, the additional

layers of context added by pierce can be memoised across derivations, which is not possible

in the generalised case due to the non-local nature of the context graph.

192



7.9. Variants

7.8.2 On Highly Ambiguous Grammars

Contrarily to the LL(1) version of the algorithm, the generalised algorithm can be applied to any

context-free expression, even ambiguous ones. This benchmark measures the performance

of the algorithm on a simple but highly ambiguous example. The language of the example

atrees syntax of Listing 47 ranges over all repetitions of the letter a. The values assigned to

each sequence of as are all binary trees that cover the sequence of letters. Scala’s tuples are

used for branch nodes, while the 'a' characters themselves form leaves.

lazy val atrees: Syntax[Any] = Recursive {
Disjunction(Elem('a'), Sequence(atrees, atrees))

}

Listing 47 – Definition of the atrees syntax.

The number of such binary trees follows the sequence of Catalan numbers, which is asymp-

totically exponential. Yet, as demonstrated in Figure 7.3, the performance of the generalised

parsing algorithm on increasingly longer sequences of as follows a cubic progression, not

exponential. In the figure, the black squares indicate measurements. The blue line shows a

fitted cubic curve (y = 0.00004393835x3), and the red line shows a fitted exponential curve

(y = 1.020755x ).

0 50 100 150 200 250 300 350 400

0

1,000

2,000

3,000

4,000

Number of a letters

T
im

e
(m

s)

Measures

y = 0.00004393835x3

y = 1.020755x

Figure 7.3 – Time required to parse sequences of a’s of various sizes.

7.9 Variants

The parsing algorithm presented in this section can easily be adapted to be best suited for

specific use cases. I present an overview of some of the major possible changes.

7.9.1 Results

For non-ambiguous expressions, or when only a single resulting value is needed, it makes

sense to replace the Result[A] type by naked values of type A. Using naked values has the

potential to save memory and may result in faster value computation. Upon revisit of a context

193



Chapter 7. Generalising Zippy Parsing with Derivatives

layer during the upwards phase, the additional values can simply be discarded instead of being

recorded in as part of a Disjunction.

Similarly, the parsing algorithm can be turned into a recogniser by switching Result[A] with

Unit. In this case, the value propagated during upwards phases is simply ().

7.9.2 Context Lookahead Caching

Since the same contexts can be visited by locate during multiple derivations, it may be worth-

while to record the kinds for which the visit led to successful location of subsequent syntaxes

starting with the given kind, and for which kinds it did not. Upon visit of a context layer by

locate, if the kind is known not to follow, then the visit of the context can be immediately

halted.

Recording those kinds in contexts comes at a cost: During locate, those sets of kinds must

be updated for layers traversed. This operation may still be worthwhile on certain classes of

expressions.

7.9.3 Memoisation Policies

As presented in this chapter, the derivation algorithm makes heavy use of memoisation: At the

level of contexts and at the level of syntaxes. In the LL(1) algorithm presented in Chapter 5,

such memoisation efforts are wasted, as both contexts and syntaxes are bound not to be visited

multiple times during derivation. The algorithm presented in the present chapter can be easily

adapted to different memoisation strategies best suited for certain classes of expressions.

7.10 Discussion

The parsing algorithm presented in this chapter is an adaption of the LL(1) parsing with

derivatives and zippers algorithm presented in Chapter 5. The algorithm is able to handle

arbitrary context-free expressions, even those that feature left-recursion. This flexibility

however comes at a cost in performance and predictability: The algorithm is several times

slower than the LL(1) version and its worst-case complexity is cubic for the general class of

context-free expressions.

I would argue against the use of general context-free parsing algorithms in settings such as

programming languages, where files can grow relatively large and the expectation is worst-case

linear complexity. Without help, designing a syntax that is worst-case linear is error prone.

Instead, I would argue for solutions like SCALL1ON in which the syntax can be checked ahead

of parsing to ensure linear-time behaviour. The algorithm presented in this section provides a

solid foundation for designing linear-time parsing algorithms restricted to certain classes of

expressions. The LL(1) parsing algorithm presented in Chapter 5 is one such example. One

could envision using the generalised algorithm as the basis of an (LA)LR(1) parsing algorithm,

for instance. A parser combinators interface, such as the one of SCALL1ON, substantially

improves the expressiveness of parsing techniques in practice; parsing with derivatives and

zippers algorithms very naturally support such interfaces.

194



8 Related Work

In this chapter, I give references to related works, broadly classified by topic. Even though

some works span multiple categories, they are only discussed in the context of the category I

consider the most relevant to them.

8.1 Parser Combinators

The parsing techniques presented in this thesis support a high-level parser combinators

interface. The idea of using mutually recursive functions to describe parsers, which gave rise to

parser combinators, dates back at least to Burge (1975). Parser combinators have then become

the subject of many interesting works, notably (Hutton, 1992; Fokker, 1995; Hutton and Meijer,

1996). These authors present techniques for building recursive-descent parsers based on a

collection of combinators, which generally includes a monadic bind operator. Parsing libraries

based on this approach have been implemented in many functional programming languages,

notably Haskell (Leijen and Meijer, 2001) and Scala (Moors et al., 2008).

The combinators of SCALL1ON, the parsing library presented in this thesis, offer a more

restrictive interface based on applicative functors (McBride and Paterson, 2008) instead of

monads (Wadler, 1995). Additionally, whereas typical parser combinator libraries use a shallow

embedding of combinators as host-language functions, SCALL1ON makes use of a deep

embedding of combinators. This deep embedding enables the parsing algorithm of SCALL1ON,

as well as many of its additional features.

8.2 Parsing Algorithms and Techniques

Parsing algorithms and techniques are many and varied. In this section, I present several

related works on parsing, roughly grouped together based on the classes of languages they

handle.

8.2.1 Packrat Parsing

Ford (2002) presents packrat parsing, a parsing technique for parsing expression grammars

(PEGs). Packrat parsers are non-ambiguous and guaranteed to run in linear time through

heavy use of memoisation. Such parsers however tend to be slower than many other linear-

195



Chapter 8. Related Work

time parsing techniques (Becket and Somogyi, 2008; Grimm, 2004).

Whereas PEGs disallow ambiguities through biased choices, LL(1) approaches such as the

one presented in Chapters 4 to 6 support detecting ambiguities before parsing starts. The

combinators used in this thesis also enjoy more natural algebraic properties than those of

PEGs: Disjunctions I used are commutative and associative, which is not the case in PEGs,

making the composition of PEGs trickier.

8.2.2 LL(1) Parsing

The parsing technique shown in Chapters 4 and 5 and part of the implementation of Chapter 6

is part of the family of LL(1) parsers. The traditional automaton-based LL(1) parsing algorithms

dates back at least to (Lewis and Stearns, 1968).

Swierstra and Duponcheel (1996) propose parser combinators for LL(1) languages. Due to

their approach based on a shallow embedding of combinators, they are unable to check for

LL(1) conflicts a priori. The parsing procedure they use is based on lookup tables, as opposed

to derivatives.

Krishnaswami and Yallop (2019) propose a type-system for LL(1) context-free expressions.

They use the usual conversion to push-down automata for parsing, and rely on code-

generation for good performance. In their approach, the various properties of context-free

expressions (nullability, first sets, etc.) are obtained via fix-point computations, as opposed to

propagation networks. They use a weaker definition of should-not-follow set (which they call

follow-last set, abbreviated as FLAST). As a result, their type system is more restrictive than

the one presented in this thesis: it does not allow nullable expressions to appear on the left of

sequences.

8.2.3 LL(*) Parsing

Parr and Fisher (2011) presents a parsing algorithm called LL(*), which operates in top-down

fashion and uses a mechanism based on regular expressions to perform arbitrary lookahead in

certain cases, falling back to backtracking when impossible. The approach is backed by a static

analysis technique that tentatively builds deterministic finite-state automata to disambiguate

rules of non-terminals. The LL(*) algorithm is used by the ANTLR parser generator Parr (2013).

As future work, techniques employed by the LL(*) algorithm could be adapted to the context

of the generalised parsing with derivatives and zippers presented in Chapter 7. The automata

building technique shown in Chapter 2 could be used in this context.

8.2.4 LR Parsing

Knuth (1965) presents a parsing algorithm for processing certain classes of context-free gram-

mars, called LR(k) grammars, in linear-time. Many variants of the algorithm have been

proposed since, notably (DeRemer, 1969, 1971; Čulik II and Cohen, 1973; Pager, 1977).

LR parsing algorithms are used in the context of the parsers generators Yacc (Johnson et al.,

1975) and Bison (Donnely and Stallman, 2015).

196



8.2. Parsing Algorithms and Techniques

8.2.5 Generalised Parsing Algorithms

The parsing algorithm presented in Chapter 7 is an instance of a generalised context-free pars-

ing algorithm. Such algorithms can recognise arbitrary context-free languages, and generally

run in worst-case cubic time in the number of input tokens. I discuss several connections

between such algorithms and the zipper-based technique of this thesis in Section 7.7.

The Cocke–Younger–Kasami algorithm (CYK) (Cocke, 1969; Younger, 1967; Kasami, 1966; Sakai,

1962) is a chart-based, bottom-up parsing algorithm operating on context-free grammars in

Chomsky normal form (Chomsky, 1959). Contrarily to many generalised parsing algorithms,

CYK is purely bottom-up, which leads to more tentative interpretations of segments of the

input compared to approaches that incorporate top-down aspects.

Earley (1970) proposes a generalised parsing algorithm based on the concept of items. The

algorithm incorporates both top-down and bottom-up rules. As discussed in Chapter 7,

Earley’s item are similar to the context layers of the generalised zipper-based parsing algorithm

presented in this thesis.

Tomita (1987, 2012) present a Generalised LR parsing algorithm (GLR). The GLR algorithm

operates on an LR parsing table and explicitly represents concurrent tentative interpretations

of the input. GLR uses a Graph-Structured Stack (GSS) (Tomita, 1988) to represent its stack,

which is reminiscent of the contexts used by the algorithm shown in Chapter 7. However, as

originally described, GSS are acyclic, which prohibits certain types of recursion in grammars.

GLR has been implemented as part of Elkhound (McPeak and Necula, 2004). Bison (Donnely

and Stallman, 2015) also supports GLR as an alternative parsing algorithm.

Scott and Johnstone (2010) present a parsing technique called Generalised LL parsing (GLL).

GLL is framed as a parser-generation technique: The technique emits code to produce gen-

eralised parsers from a grammar description of the language. GLL parsers make use of a

modified version of GSS that allows cycles to represent their stacks.

In a different vein, Herman (2020) presents a general parsing algorithm which simulates runs

of non-deterministic pushdown automata using operations of regular languages, notably

Brzozowski’s derivation. Thanks to the immutable nature of the data-structures used by

the algorithm, the technique can employ a memoisation technique that the author calls

context-free memoisation.

8.2.6 Parsing with Derivatives

Might et al. (2011) present a parsing algorithm for general context-free expressions based on

Brzozowski’s derivatives. The algorithm is purely top-down. The worst-case complexity of

their approach is cubic in general (Adams et al., 2016), and, as shown in Chapter 4, is quadratic

for LL(1) expressions.

Brachthäuser et al. (2016) showcase how derivatives can be used to augment the language of

parser combinators and gain fine-grained control over the input stream. The feed and done
combinators they introduce can be straightforwardly implemented as derived combinators

in the setting of SCALL1ON. However, most of the examples and patterns demonstrating the

power of their approach require a monadic flatMap combinator, which is tricky to implement

197



Chapter 8. Related Work

within the setting of SCALL1ON without compromising LL(1) checks.

Henriksen et al. (2019) show a parsing technique based on derivatives for context-free gram-

mars. They show that their approach is equivalent to Earley’s algorithm (Earley, 1970) and

argue that parsing with derivatives has deep connections with traditional parsing techniques.

In a work concurrent with the developments shown in this thesis, Darragh and Adams (2020)

present a general parsing algorithm for context-free expressions using derivatives and zippers.

Their approach is most similar to the one presented in Chapter 7. The algorithm presented in

Chapter 7 of this thesis however differs in several significant aspects:

1. The technique presented by Darragh and Adams (2020) does not incorporate combina-

tors for manipulating parse values. As such, their algorithm returns a graph representa-

tion of the parsed input, whereas the technique shown in this thesis returns a graph that

explicitly contains function-application nodes, enabling the elaboration of user-defined

values.

2. The algorithm presented in this thesis makes use of first set and nullability checks to

guide derivation during downwards phase; the algorithm from Darragh and Adams

(2020) does not.

3. The datatypes used by Darragh and Adams (2020) are mutated by the derivation func-

tion in a way that is visible to users of the algorithm, thereby breaking immutability

and opportunities for persistence. In contrast, the work presented in this thesis uses

mutation more cautiously, in a manner that preserves the immutable interface.

8.2.7 Memoisation-based Parsing Techniques

Norvig (1991) presents a technique for general context-free parsing based on a combination

of top-down parsing, backtracking, and memoisation. The author shows that technique

behaves similarly to Earley’s parsing algorithm. However, the technique does not support

left-recursion.

Johnson (1995) shows how to adapt the technique presented by Norvig (1991) to support

left-recursion, and so by adopting a continuation-passing style representation.

In the same line of work, Izmaylova et al. (2016) present a parser combinators interface for

memoised continuation-passing-style parsing. The implementation guarantees worst-case

cubic time complexity and employs a packed representation to represent collections of parse

values. The algorithm presented in Chapter 7 presents the same features but employs a deeper

embedding of parsers and continuations (contexts).

8.2.8 Support for Conjunction and Negation

Some works have looked a supporting conjunction and negation as additional combinators.

In the context-free setting, Okhotin (2001, 2013) presents adapted parsing techniques that

support such combinators.

In the regular setting, Brzozowski’s derivation Brzozowski (1964) is also defined on such

extended expressions. Interestingly, Antimirov’s technique (Antimirov, 1996), which is rem-

198



8.3. Enumeration

iniscent of the zipper-based technique of Chapter 2, can also be easily adapted to support

extended expressions, as shown by Caron et al. (2011). This strongly signals that the zipper-

based techniques presented in this thesis can also be adapted to support extended expressions.

This is left as future work.

8.3 Enumeration

Koukoutos (2019) presents an enumeration algorithm over programs described by context-

free grammars. This algorithm is reminiscent of the enumeration algorithm used as part of

SCALL1ON and briefly discussed in Chapter 6.

Kuraj et al. (2015) present a combinator-based framework for enumeration of structures. The

combinators used in this work differ however significantly from those used in this thesis. The

work by Kuraj et al. (2015) could provide insights on implementing additional combinators for

the purpose of enumeration in the context of SCALL1ON (see Chapter 6).

Madhavan et al. (2015) use enumeration as a way to find sequences that are accepted by one

context-free language but rejected by another, thus providing a semi-procedure to check for

context-free language non-equivalence.

Godefroid et al. (2008) present a whitebox fuzzing technique based on generating input from

a grammar description. As future work, such a technique could be adapted to the setting of

this thesis and provide a way of testing parsers, as well as potentially later phases, of formal

language tools.

8.4 Correct-by-Construction Pretty Printing

Boulton (1996) presents a technique for building a lexer, parser, pretty printer, as well as

abstract syntax trees, from a single language description based on EBNF notation Backus et al.

(1960). Later, Ranta (2004, 2011) present Grammatical Framework, a domain-specific language

for defining languages. Abstract syntax trees, parsers and pretty printers are obtained from

the same language description. In contrast, the interface of the parsing and pretty-printing

approach presented in this thesis is based on (embedded) combinators, and is not concerned

with lexical aspects nor definition of abstract syntax trees.

Rendel and Ostermann (2010) present a technique for mutually inverse parsing and pretty

printing based on syntactic descriptions and isomorphisms. Their combinator-based interface

is similar to that of this thesis.

Matsuda and Wang (2013) present a technique for building parsers from pretty printer de-

scriptions. Whereas the technique presented in this paper is biased towards the description

of parsers, the technique they present is biased towards description of pretty printers. The

pretty printers described by Matsuda and Wang (2013) are concerned with layouts and other

lexical aspects, whereas the technique presented in this thesis operates strictly at the syntactic

level; the technique produces sequences of tokens that requires further processing to turn into

actual text. Combinators and techniques from Matsuda and Wang (2013) could be investigated

to provide more control over lexical aspects.

199



Chapter 8. Related Work

Delaware et al. (2019) show a context-sensitive combinator library for building parsers and

corresponding pretty printers for binary formats. The approach is implemented and verified

in Coq. In contrast, the work of this thesis focuses on context-free text-based formats. The

approach by Delaware et al. (2019) might provide insights on how to verify the correctness of

the pretty-printing procedure were such efforts to be undertaken in the future.

8.5 Formally Verified Parsing

Recently, verification of parsers has been the subject of many interesting works. Formally

verified parsers are of special interest to verified compilers such as CompCert (Leroy, 2009)

and CakeML (Kumar et al., 2014).

Ramananandro et al. (2019) demonstrate the importance of parsers in security and present

combinators for building verified high-performance parser for lower-level encodings of data

formats. Koprowski and Binsztok (2010) present a formally verified Coq parser interpreter

for Parsing Expression Grammars (PEGs). In a recent work, Lasser et al. (2019) present a

Coq-verified LL(1) parser generator. The generated parser uses the traditional table-based

LL(1) algorithm, and relies on fix-point computations for properties such as nullability, first

sets and others.

As an alternative approach, Jourdan et al. (2012) developed a validator (implemented and

verified in Coq) for LR(1) parsers. Their approach works by verifying a posteriori that an

automaton-based parser faithfully implements a context-free grammar.

8.6 Derivatives and Formal Reasoning

Brzozowski’s derivatives (Brzozowski, 1964) have been used with great success in formal proofs

about regular languages and some of their extensions. Pierce et al. (2018) propose proving

the correctness of a regular expression matching procedure using Brzozowski’s derivatives

in a series of exercises in the context of a tutorial on Coq. Also, Ausaf et al. (2016) present

a correctness proof of a POSIX regular expression matching algorithm in Isabelle based on

derivatives. Finally, Traytel and Nipkow (2013) present a verified decision procedure for

monadic second-order logic of finite words (MSO) based on an adaptation of Brzozowski’s

derivation operation to MSO formulas.

Antimirov (1996) introduces the concept of partial derivatives, which are sets of expressions

that represent Brzozowski’s derivatives. Several interesting properties of partial derivatives

are shown, including a finiteness property. The zipper-based representation of derivatives I

employ in Chapter 2 is reminiscent of such a concept. Antimirov’s partial derivatives have

also been successfully used in verification efforts. Notably, Moreira et al. (2012) use partial

derivatives as part of a verified decision procedure for regular language equivalence.

The proof of finiteness of zipper-based derivatives shown in Chapter 2 could be built upon to

provide an elegant and concise proof of the Myhill-Nerode theorem (Hopcroft et al., 2001b).

An existing formal proof of the theorem in Isabelle/HOL by Wu et al. (2011) operates at the

level of regular expressions but explicitly doesn’t make use of derivatives. These authors

200



8.7. Fix-Point Computations

mention not using derivatives due to the difficulty in practice of deciding their equivalence.

The zipper-based technique shown in Chapter 2 of this thesis alleviates this issue.

8.7 Fix-Point Computations

In this thesis, I suggest using propagation networks (Radul, 2009) to compute properties

of context-free expressions. Interesting alternatives exist: notably, Pottier (2009) present

a technique for computing least fix-points based on information dependency graphs, and

propose an implementation as a library in OCaml called fix (Pottier, 2013). The dependency

graph of (Pottier, 2009) is similar to the network of cells of (Radul, 2009), but offers an elegant

high-level programming interface. Interestingly, (Pottier, 2009) showcases how to compute

nullability of grammar symbols as an example application of the technique. Unfortunately, I

am unaware of any implementation of the technique in Scala, and so had to resort to an ad

hoc implementation of propagation networks in the various projects discussed in this thesis.

Porting the fix library to Scala would be interesting and useful future work.

8.8 Datatype Derivatives

Brzozowski (1964) shows a technique for building deterministic finite-state automata based

on regular expression derivatives. The derivation operation proposed by Brzozowski has a

structure reminiscent of that of the derivation operation of calculus.

McBride (2001) highlights a correspondence between Huet’s zipper (Huet, 1997) and deriva-

tives of regular datatypes. McBride (2001) shows how to compute one-hole contexts of a

datatype using an operation called derivation. Like Brzozowski’s derivation, the operation has

a structure reminiscent of derivation as in the context of calculus, hence its name. In a later

work, McBride (2008) adapted the technique to support different types on the left and right

sides of contexts. The zipper-based parsing techniques of this thesis also use different types

on the left and right of focal points.

In this thesis, I demonstrate that marrying Brzozowski’s derivatives and McBride’s derivatives

leads to efficient lexing and parsing techniques. In the light of their similar nature, their

fruitful union is in retrospect unsurprising. Investigating this link in a deeper manner may be

interesting future work.

201





9 Conclusion

In this thesis, I demonstrate that parsing with derivatives and zippers is a technique of choice

for building fast and flexible lexical and syntactic analysis tools that can be trusted. Derivative-

based approaches promise to combine the declarative interface found in parser generators

with the lightweight, flexible, and value-aware nature of dynamic parsers. Unfortunately,

the performance of derivative-based parsing approaches was, until this work, not practical.

Through the use of zipper-inspired data structures, I showed how one can optimise derivative-

based algorithms to the point of competitiveness with state-of-the-art techniques in terms

of performance. This thesis touched upon many aspects of parsing, solving some of the

challenges and identifying new ones.

Amenability to Formal Reasoning

This thesis demonstrates that context-free expressions are a valid alternative to context-free

grammars. Context-free expressions are value-aware, easy to embed in functional program-

ming languages and proof assistants alike, and are very natural to transition into from regular

expressions. In Chapter 3, I have shown how to effectively define and compute properties

of such expressions. In Chapter 4, I also offered a characterisation of the LL(1) class of ex-

pressions using the concept of should-not-follow sets, an alternative to the FOLLOW sets of

traditional grammars.

This thesis demonstrates that derivatives and zippers-based approaches are amenable to

formal reasoning. The derivatives and zippers-based technique showed in Chapter 2 for lazily

building deterministic finite-state automata, as well as the LL(1) parsing with derivatives and

zippers from Chapter 5, have both been successfully formalised in Coq.

Ease of Integration

This thesis demonstrates that derivatives and zippers-based lexical and syntactic analysis

techniques are easy to integrate into software projects. In Chapter 2, I have shown how to

implement an efficient lexical analysis library in a very elegant and concise way, and have

demonstrated the applicability of the technique by providing both a Scala and a minimal

Haskell implementation. In Chapter 6, I have shown an implementation of the LL(1) parsing

with derivatives and zippers algorithm as part of the SCALL1ON library. I have shown that

203



Chapter 9. Conclusion

context-free expressions are natural to embed in functional programming environments.

Thanks to the value-awareness of context-free expressions, value elaboration does not require

a separate and burdensome conversion phase.

Support for Expressive Interfaces

In this thesis, I have shown that derivatives and zippers-based approaches can offer an ex-

pressive interface. In Chapter 2, I showed how to build an expressive rule-based interface for

defining lexers. In Chapter 6, I have presented SCALL1ON, a parsing combinator library for

LL(1) languages. SCALL1ON offers a collection of expressive combinators, and has features

that are usually not available in traditional parsing combinators library, like property checks,

enumeration, and pretty printing. I have demonstrated that derivative-based algorithms

also support features that are harder to implement otherwise, such as precise error reporting

and code completion. The addition of richer combinators, such as, for instance, negation,

conjunction or the monadic bind operator, could be investigated in future work. Also, much

work is yet to be done also in the area of correct-by-construction pretty printing.

Performance

In this thesis, I demonstrate that parsing with derivatives and zippers can be performant.

In Chapter 2, I have shown that the performance of SILEX, a simple lexical analysis library

built based on the approach, is no more than three times slower than state-of-the-art lexer

generators, while being much more flexible and easier to integrate. In Chapter 6, I have

shown that the SCALL1ON displays similar performance to that of the standard Scala parsing

combinators library, while guaranteeing linear-time parsing, avoiding stack overflows, and

providing extra features. The combination of SILEX and SCALL1ON displays performance no

more than three times slower than that of ANTLR, an industrial-strength parser generator.

The use of meta-programming techniques could be investigated to generate code and clear

the performance gap of the discussed techniques with traditional parser generators, while

hopefully not sacrificing too much on the flexibility and ease of integration aspects.

Unified Presentation of Lexical and Syntactic Analysis

This thesis shows that the same derivatives and zippers technique can be used on regular,

LL(1) and general context-free expressions, paving the way towards a unified presentation

of lexical and syntactic analysis. In Chapters 2, 5 and 7, have shown how the zipper-based

approaches relate to well-established algorithms. In the case of regular expressions, I have

shown that the zipper-based technique is reminiscent of Antimirov’s partial derivatives and,

thanks to memoisation, provides a lazy way to construct deterministic finite-state machines

of near minimal sizes in practice. For LL(1) expressions, I have shown a correspondence with

the traditional stack-and-table LL(1) parsing algorithm. Finally, I have shown how the zipper-

based algorithm on general context-free expressions resembles more traditional algorithms

such as Earley’s or GLR. This thesis suggests that derivatives and zippers can be used exclusively

204



to present both lexing and parsing in the context of, for instance, a compiler construction class.

On the more theoretical side, the correspondence between datatype derivatives (zippers) and

expression derivatives could be explored as future work.

Closing Message

Combining derivatives and zippers leads to lexical and syntactic analysis algorithms that are

amenable to formal reasoning, are easy to integrate, support expressive interfaces, and are

performant in practice.

205





A Regular Expression Derivation with
Compaction
The code below shows how one could implement derivation with a compaction optimisation.

The code is shown strictly for illustration.

1 sealed trait RegExpr {
2 val isNullable: Boolean = this match {
3 case Epsilon => true
4 case Failure => false
5 case Character(_) => false
6 case Disjunction(left, right) =>
7 left.isNullable || right.isNullable
8 case Sequence(left, right) =>
9 left.isNullable && right.isNullable

10 case Repetition(_) => true
11 }
12

13 def deriveCompact(char: Char): RegExpr = this match {
14 case Character(pred) if pred(char) =>
15 Epsilon
16 case Disjunction(left, right) =>
17 left.deriveCompact(char) | right.deriveCompact(char)
18 case Sequence(left, right) if left.isNullable =>
19 (left.deriveCompact(char) ~ right) | right.deriveCompact(char)
20 case Sequence(left, right) =>
21 left.deriveCompact(char) ~ right
22 case Repetition(inner) =>
23 inner.deriveCompact(char) ~ this
24 case _ => Failure
25 }
26

27 def ~(that: RegExpr): RegExpr = (this, that) match {
28 case (Failure, _) => Failure
29 case (_, Failure) => Failure

207



Appendix A. Regular Expression Derivation with Compaction

30 case (Epsilon, _) => that
31 case (_, Epsilon) => this
32 case _ => Sequence(this, that)
33 }
34

35 def |(that: RegExpr): RegExpr = (this, that) match {
36 case (Failure, _) => that
37 case (_, Failure) => this
38 case _ => Disjunction(this, that)
39 }
40 }
41 case object Epsilon extends RegExpr
42 case object Failure extends RegExpr
43 case class Character(pred: Char => Boolean) extends RegExpr
44 case class Disjunction(left: RegExpr, right: RegExpr) extends RegExpr
45 case class Sequence(left: RegExpr, right: RegExpr) extends RegExpr
46 case class Repetition(inner: RegExpr) extends RegExpr

208



B Haskell Implementation of a Mem-
bership Checking Procedure using
Derivatives and Zippers
The code below shows how one could can implement the technique regular language mem-

bership technique presented in Chapter 2. The code here to illustrate the applicability and

conciseness of the approach.

1 import Data.Function.Memoize
2 import Data.List (foldl')
3 import qualified Data.Set as Set
4

5 data RegExpr =
6 Epsilon
7 | Failure
8 | Character Char
9 | Disjunction RegExpr RegExpr

10 | Sequence RegExpr RegExpr
11 | Repetition RegExpr
12 deriving (Eq, Ord, Show)
13 deriveMemoizable ''RegExpr
14

15 isNullable :: RegExpr -> Bool
16 isNullable Epsilon = True
17 isNullable (Disjunction l r) = isNullable l || isNullable r
18 isNullable (Sequence l r) = isNullable l && isNullable r
19 isNullable (Repetition _) = True
20 isNullable _ = False
21

22 type Context = [RegExpr]
23 type Zipper = [Context]
24

25 deriveZ :: Zipper -> Char -> Zipper
26 deriveZ z c = Set.elems $ Set.unions $ map up z

209



Appendix B. Haskell Implementation of a Membership Checking Procedure using
Derivatives and Zippers

27 where
28 up [] = Set.empty
29 up (e : ctx)
30 | isNullable e = Set.union (down e ctx) (up ctx)
31 | otherwise = down e ctx
32

33 down (Character c') ctx
34 | c == c' = Set.singleton ctx
35 | otherwise = Set.empty
36 down (Disjunction l r) ctx = Set.union (down l ctx) (down r ctx)
37 down (Sequence l r) ctx
38 | isNullable l = Set.union (down l (r : ctx)) (down r ctx)
39 | otherwise = down l (r : ctx)
40 down r@(Repetition i) ctx = down i (r : ctx)
41 down _ _ = Set.empty
42

43 isNullableZ :: Zipper -> Bool
44 isNullableZ z = any (all isNullable) z
45

46 data State = State { transitions :: Char -> State, isAccepting :: Bool }
47

48 build :: RegExpr -> State
49 build e = getState [[e]]
50 where
51 getState = memoize $ \ z ->
52 let getNext = memoize (\ c -> getState (deriveZ z c))
53 in State getNext (isNullableZ z)
54

55 run :: State -> [Char] -> Bool
56 run s cs = isAccepting (foldl' transitions s cs)

210



C JSON Values, Tokens and Kinds

The code below shows the definition of JSON tokens, kinds and values used in examples

of Chapter 6.

1 object JSON {
2 sealed trait Value
3 case class BooleanValue(value: Boolean) extends Value
4 case class NumberValue(value: Double) extends Value
5 case class StringValue(value: String) extends Value
6 case class NullValue() extends Value
7 case class ArrayValue(values: Seq[Value]) extends Value
8 case class ObjectValue(bindings: Seq[(StringValue, Value)]) extends Value
9

10 sealed trait Token
11 case class BooleanToken(value: Boolean) extends Token
12 case class NumberToken(value: Double) extends Token
13 case class StringToken(value: String) extends Token
14 case class NullToken() extends Token
15 case class SeparatorToken(sep: Char) extends Token
16 case class SpaceToken() extends Token
17

18 sealed trait Kind
19 case object BooleanKind extends Kind
20 case object NumberKind extends Kind
21 case object StringKind extends Kind
22 case object NullKind extends Kind
23 case class SeparatorKind(char: Char) extends Kind
24 case object IgnoreKind extends Kind
25

26 object Kind {
27 def of(token: Token): Kind = token match {
28 case BooleanToken(_) => BooleanKind
29 case NumberToken(_) => NumberKind

211



Appendix C. JSON Values, Tokens and Kinds

30 case StringToken(_) => StringKind
31 case NullToken() => NullKind
32 case SeparatorToken(sep) => SeparatorKind(sep)
33 case _ => IgnoreKind
34 }
35 }
36 }

212



D JSON Parser and Pretty Printer in
SCALL1ON

The code below shows the definition of a JSON parser and pretty printer, as discussed in Chap-

ter 6.

1 import scallion._
2 import JSON._
3

4 object JSONParser extends Parsers {
5 override type Token = JSON.Token
6 override type Kind = JSON.Kind
7 override def getKind(token: Token): Kind = Kind.of(token)
8 import SafeImplicits._
9

10 val booleanSyntax: Syntax[Value] =
11 accept(BooleanKind)({
12 case BooleanToken(value) => BooleanValue(value)
13 }, {
14 case BooleanValue(value) => Seq(BooleanToken(value))
15 case _ => Seq()
16 })
17

18 val numberSyntax: Syntax[Value] =
19 accept(NumberKind)({
20 case NumberToken(value) => NumberValue(value)
21 }, {
22 case NumberValue(value) => Seq(NumberToken(value))
23 case _ => Seq()
24 })
25

26 val stringSyntax: Syntax[StringValue] =
27 accept(StringKind)({
28 case StringToken(value) => StringValue(value)
29 }, {

213



Appendix D. JSON Parser and Pretty Printer in SCALL1ON

30 case StringValue(value) => Seq(StringToken(value))
31 case _ => Seq()
32 })
33

34 val nullSyntax: Syntax[Value] =
35 accept(NullKind)({
36 case NullToken() => NullValue()
37 }, {
38 case NullValue() => Seq(NullToken())
39 case _ => Seq()
40 })
41

42 implicit def separatorSyntax(char: Char): Syntax[Unit] =
43 accept(SeparatorKind(char))({
44 case SeparatorToken(_) => ()
45 }, {
46 case () => Seq(SeparatorToken(char))
47 })
48

49 lazy val arraySyntax: Syntax[Value] =
50 ('['.skip ~ repsep(jsonSyntax, ',') ~ ']'.skip).map({
51 case vs => ArrayValue(vs)
52 }, {
53 case ArrayValue(vs) => Seq(vs)
54 case _ => Seq()
55 })
56

57 lazy val bindingSyntax: Syntax[(StringValue, Value)] =
58 (stringSyntax ~ ':'.skip ~ jsonSyntax).map({
59 case key ~ value => (key, value)
60 }, {
61 case (key, value) => key ~ value
62 })
63

64 lazy val objectSyntax: Syntax[Value] =
65 ('{'.skip ~ repsep(bindingSyntax, ',') ~ '}'.skip).map({
66 case bs => ObjectValue(bs)
67 }, {
68 case ObjectValue(bs) => Seq(bs)
69 case _ => Seq()
70 }
71

214



72 lazy val jsonSyntax: Syntax[Value] = recursive {
73 arraySyntax | objectSyntax | booleanSyntax |
74 numberSyntax | stringSyntax.up[Value] | nullSyntax
75 }
76

77 val jsonParser: Parser[Value] = Parser(jsonSyntax)
78

79 def apply(it: Iterator[Token]): ParseResult[Value] = jsonParser(it)
80 }

215





Bibliography
Adams, M. D., Hollenbeck, C., and Might, M. (2016). On the complexity and performance of

parsing with derivatives. In Proceedings of the 37th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’16, pages 224–236, New York, NY, USA.

ACM.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Aho, A. V. and Ullman, J. D. (1972). The theory of parsing, translation, and compiling. 1: Parsing.

Prentice-Hall.

Ammann, S. S. (2021). Formal proofs about formal languages. https://github.com/soph2018/

toc_on_coq.

Antimirov, V. (1996). Partial derivatives of regular expressions and finite automaton construc-

tions. Theoretical Computer Science, 155(2):291–319.

Ausaf, F., Dyckhoff, R., and Urban, C. (2016). Posix lexing with derivatives of regular expres-

sions. Archive of Formal Proofs. http://isa-afp.org/entries/Posix-Lexing.html, Formal proof

development.

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A. J., Rutishauser,

H., Samelson, K., Vauquois, B., et al. (1960). Report on the algorithmic language algol 60.

Numerische Mathematik, 2(1):106–136.

Barenghi, A., Mainardi, N., and Pelosi, G. (2018). Systematic parsing of x. 509: eradicating

security issues with a parse tree. Journal of Computer Security, 26(6):817–849.

Baudelaire, C. (1855). Les Fleurs du mal. Revue des Deux Mondes (1829-1971), 10(5):1079–1093.

Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., and Strollo, O. (2012). When

does a refactoring induce bugs? an empirical study. In 2012 IEEE 12th International Working

Conference on Source Code Analysis and Manipulation, pages 104–113.

Becket, R. and Somogyi, Z. (2008). Dcgs+ memoing= packrat parsing but is it worth it? In

International Symposium on Practical Aspects of Declarative Languages, pages 182–196.

Springer.

217

https://github.com/soph2018/toc_on_coq
https://github.com/soph2018/toc_on_coq
http://isa-afp.org/entries/Posix-Lexing.html


Bibliography

Bekić, H. (1984). Definable operations in general algebras, and the theory of automata and

flowcharts. In Programming Languages and Their Definition, pages 30–55. Springer.

Boulton, R. J. (1996). Syn: a single language for specifiying abstract syntax tress, lexical

analysis, parsing and pretty-printing. Technical report, University of Cambridge, Computer

Laboratory.

Brachthäuser, J. I., Rendel, T., and Ostermann, K. (2016). Parsing with first-class derivatives.

In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 588–606, New

York, NY, USA. ACM.

Brüggemann-Klein, A. (1993). Regular expressions into finite automata. Theoretical Computer

Science, 120(2):197–213.

Brüggemann-Klein, A. and Wood, D. (1992). Deterministic regular languages. In Annual

Symposium on Theoretical Aspects of Computer Science, pages 173–184. Springer.

Brzozowski, J. A. (1964). Derivatives of regular expressions. In Journal of the ACM. Citeseer.

Burge, W. H. (1975). Recursive programming techniques.

Caron, P., Champarnaud, J.-M., and Mignot, L. (2011). Partial derivatives of an extended

regular expression. In International Conference on Language and Automata Theory and

Applications, pages 179–191. Springer.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on

information theory, 2(3):113–124.

Chomsky, N. (1959). On certain formal properties of grammars. Information and control,

2(2):137–167.

Cocke, J. (1969). Programming languages and their compilers: Preliminary notes.

Čulik II, K. and Cohen, R. (1973). Lr-regular grammars—an extension of lr (k) grammars.

Journal of Computer and System Sciences, 7(1):66–96.

Danielsson, N. A. (2010). Total parser combinators. In Proceedings of the 15th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’10, pages 285–296, New York,

NY, USA. ACM.

Darragh, P. and Adams, M. D. (2020). Parsing with zippers (functional pearl). Proceedings of

the ACM on Programming Languages, 4(ICFP):1–28.

Degener, J. (1995). Ansi c grammar, lex specification. https://www.lysator.liu.se/c/

ANSI-C-grammar-l.html.

218

https://www.lysator.liu.se/c/ANSI-C-grammar-l.html
https://www.lysator.liu.se/c/ANSI-C-grammar-l.html


Bibliography

Delaware, B., Suriyakarn, S., Pit-Claudel, C., Ye, Q., and Chlipala, A. (2019). Narcissus: Correct-

by-construction derivation of decoders and encoders from binary formats. Proceedings of

the ACM on Programming Languages, 3(ICFP):1–29.

Deransart, P., Jourdan, M., and Lorho, B. (1988). Attribute grammars: definitions, systems and

bibliography, volume 323. Springer Science & Business Media.

DeRemer, F. L. (1969). Practical translators for LR (k) languages. PhD thesis, Massachusetts

Institute of Technology.

DeRemer, F. L. (1971). Simple lr (k) grammars. Communications of the ACM, 14(7):453–460.

Django Software Foundation (2021). Django: The web framework for perfectionists with

deadlines. https://github.com/django/django.

Donnely, C. and Stallman, R. (2015). Gnu bison–the yacc-compatible parser generator. Free

Software Foundation, Cambridge.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM,

13(2):94–102.

Edelmann, R. (2019). Scallion. https://github.com/epfl-lara/scallion.

Edelmann, R., Hamza, J., and Kunčak, V. (2020). Zippy LL(1) parsing with derivatives. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 1036–1051.

Fokker, J. (1995). Functional parsers. In International School on Advanced Functional Pro-

gramming, pages 1–23. Springer.

Ford, B. (2002). Packrat parsing:: Simple, powerful, lazy, linear time, functional pearl. In Pro-

ceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming,

ICFP ’02, pages 36–47, New York, NY, USA. ACM.

Ford, B. (2004). Parsing expression grammars: A recognition-based syntactic foundation. In

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’04, pages 111–122, New York, NY, USA. ACM.

Frost, R. and Launchbury, J. (1989). Constructing natural language interpreters in a lazy

functional language. The Computer Journal, 32(2):108–121.

Gibbons, J. (2003). Origami Programming.

Gibbons, J. and Wu, N. (2014). Folding domain-specific languages: deep and shallow embed-

dings (functional pearl). In Proceedings of the 19th ACM SIGPLAN international conference

on Functional programming, pages 339–347.

219

https://github.com/django/django
https://github.com/epfl-lara/scallion


Bibliography

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008). Grammar-based whitebox fuzzing. In Gupta,

R. and Amarasinghe, S. P., editors, Proceedings of the ACM SIGPLAN 2008 Conference on

Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,

pages 206–215. ACM.

Graham-Cumming, J. (2017). Incident report on memory leak

caused by Cloudflare parser bug. https://blog.cloudflare.com/

incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/.

Grimm, R. (2004). Practical packrat parsing. Technical report, New York University.

Hamza, J. and Edelmann, R. (2019). Scallion proofs. https://github.com/epfl-lara/

scallion-proofs.

Haoyi, L. (2021). Fastparse 2.2.2. http://www.lihaoyi.com/fastparse/.

Henriksen, I., Bilardi, G., and Pingali, K. (2019). Derivative grammars: A symbolic approach to

parsing with derivatives. Proc. ACM Program. Lang., 3(OOPSLA):127:1–127:28.

Herman, G. (2020). Faster general parsing through context-free memoization. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 1022–1035.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001a). Introduction to automata theory,

languages, and computation. Acm Sigact News, 32(1):60–65.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001b). Introduction to automata theory,

languages, and computation, 2nd edition. SIGACT News, 32(1):60–65.

Huet, G. (1997). The zipper. Journal of functional programming, 7(5):549–554.

Hutton, G. (1992). Higher-order functions for parsing. Journal of functional programming,

2(3):323–343.

Hutton, G. and Meijer, E. (1996). Monadic parser combinators.

Izmaylova, A., Afroozeh, A., and Storm, T. v. d. (2016). Practical, general parser combinators.

In Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program

manipulation, pages 1–12.

Jin, W., Sun, Y., Wang, N., and Zhang, X. (2017). Why users purchase virtual products in

mmorpg? an integrative perspective of social presence and user engagement. Internet

Research.

Johnson, M. (1995). Memoization of top down parsing. arXiv preprint cmp-lg/9504016.

Johnson, S. C. et al. (1975). Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories

Murray Hill, NJ.

220

https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://github.com/epfl-lara/scallion-proofs
https://github.com/epfl-lara/scallion-proofs
http://www.lihaoyi.com/fastparse/


Bibliography

Johnstone, A. and Scott, E. (1998). Generalised recursive descent parsing and follow-

determinism. In International Conference on Compiler Construction, pages 16–30. Springer.

Jourdan, J.-H., Pottier, F., and Leroy, X. (2012). Validating lr (1) parsers. In European Symposium

on Programming, pages 397–416. Springer.

Kandra Labs, Inc (2021). Zulip server and webapp - powerful open source team chat. https:

//github.com/zulip/zulip.

Kasami, T. (1966). An efficient recognition and syntax-analysis algorithm for context-free

languages. Coordinated Science Laboratory Report no. R-257.

Klein, G. (2010). Jflex user’s manual. http://www.jflex.de.

Knuth, D. E. (1965). On the translation of languages from left to right. Information and control,

8(6):607–639.

Koprowski, A. and Binsztok, H. (2010). Trx: A formally verified parser interpreter. In European

Symposium on Programming, pages 345–365. Springer.

Koukoutos, E. (2019). Scaling Functional Synthesis and Repair. PhD thesis, EPFL.

Krishnaswami, N. R. and Yallop, J. (2019). A typed, algebraic approach to parsing. In Pro-

ceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, pages 379–393, New York, NY, USA. ACM.

Kumar, R., Myreen, M. O., Norrish, M., and Owens, S. (2014). Cakeml: A verified implementa-

tion of ml. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’14, pages 179–191, New York, NY, USA. ACM.

Kuraj, I., Kuncak, V., and Jackson, D. (2015). Programming with enumerable sets of structures.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 37–56, New York,

NY, USA. Association for Computing Machinery.

LAMP EPFL and Lightbend, Inc (2019). Scala parser combinators. https://github.com/scala/

scala-parser-combinators.

Lasser, S., Casinghino, C., Fisher, K., and Roux, C. (2019). A verified ll (1) parser generator. In

10th International Conference on Interactive Theorem Proving (ITP 2019). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik.

Leijen, D. and Meijer, E. (2001). Parsec: Direct style monadic parser combinators for the real

world.

Leiß, H. (1991). Towards kleene algebra with recursion. In International Workshop on Computer

Science Logic, pages 242–256. Springer.

221

https://github.com/zulip/zulip
https://github.com/zulip/zulip
http://www.jflex.de
https://github.com/scala/scala-parser-combinators
https://github.com/scala/scala-parser-combinators


Bibliography

Leroy, X. (2009). Formal verification of a realistic compiler. Communications of the ACM,

52(7):107–115.

Lesk, M. E. and Schmidt, E. (1975). Lex: A lexical analyzer generator.

Levine, J. (2009). Flex & Bison: Text Processing Tools. O’Reilly Media, Inc.

Lewis, II, P. M. and Stearns, R. E. (1968). Syntax-directed transduction. J. ACM, 15(3):465–488.

Madhavan, R., Mayer, M., Gulwani, S., and Kuncak, V. (2015). Automating grammar compari-

son. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 183–200, New

York, NY, USA. Association for Computing Machinery.

Maillard, B. L. (2020). Scallion python parser. https://github.com/benoitmaillard/

scallion-python-parser.

Marlow, S. (2010). Haskell 2010 language report.

Matsuda, K. and Wang, M. (2013). Flippr: A prettier invertible printing system. In European

Symposium on Programming, pages 101–120. Springer.

McBride, C. (2001). The derivative of a regular type is its type of one-hole contexts (extended

abstract).

McBride, C. (2008). Clowns to the left of me, jokers to the right (pearl) dissecting data struc-

tures. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 287–295.

McBride, C. and Paterson, R. (2008). Applicative programming with effects. Journal of func-

tional programming, 18(1):1–13.

McPeak, S. and Necula, G. C. (2004). Elkhound: A fast, practical glr parser generator. In

International Conference on Compiler Construction, pages 73–88. Springer.

Might, M. (2010). A non-blocking lexing toolkit for Scala in less than

800 lines of code, from regex derivatives. http://matt.might.net/articles/

nonblocking-lexing-toolkit-based-on-regex-derivatives/.

Might, M., Darais, D., and Spiewak, D. (2011). Parsing with derivatives: A functional pearl. In

Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’11, pages 189–195, New York, NY, USA. ACM.

Moors, A., Piessens, F., and Odersky, M. (2008). Parser combinators in scala. CW Reports, 54.

Moreira, N., Pereira, D., and de Sousa, S. M. (2012). Deciding regular expressions (in-) equiva-

lence in coq. In International Conference on Relational and Algebraic Methods in Computer

Science, pages 98–113. Springer.

222

https://github.com/benoitmaillard/scallion-python-parser
https://github.com/benoitmaillard/scallion-python-parser
http://matt.might.net/articles/nonblocking-lexing-toolkit-based-on-regex-derivatives/
http://matt.might.net/articles/nonblocking-lexing-toolkit-based-on-regex-derivatives/


Bibliography

Norvig, P. (1991). Techniques for automatic memoization with applications to context-free

parsing. Computational Linguistics, 17(1):91–98.

Odersky, M., Blanvillain, O., Liu, F., Biboudis, A., Miller, H., and Stucki, S. (2017). Simplic-

itly: Foundations and applications of implicit function types. Proceedings of the ACM on

Programming Languages, 2(POPL):1–29.

Okhotin, A. (2001). Conjunctive grammars. Journal of Automata, Languages and Combina-

torics, 6(4):519–535.

Okhotin, A. (2013). Conjunctive and boolean grammars: the true general case of the context-

free grammars. Computer Science Review, 9:27–59.

Omanashvili, V. (2019). Json generator. https://www.json-generator.com. Accessed 2019-11-

20.

Owens, S., Reppy, J., and Turon, A. (2009). Regular-expression derivatives re-examined. Journal

of Functional Programming, 19(2):173–190.

Pager, D. (1977). A practical general method for constructing lr (k) parsers. Acta Informatica,

7(3):249–268.

Parr, T. (2013). The definitive ANTLR 4 reference. Pragmatic Bookshelf.

Parr, T. (2019). Grammars written for antlr v4; expectation that the grammars are free of

actions. https://github.com/antlr/grammars-v4/tree/master/json. Accessed 2019-11-22.

Parr, T. and Fisher, K. (2011). Ll(*): the foundation of the ANTLR parser generator. In Pro-

ceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 425–436.

Pierce, B. C., de Amorim, A. A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C.,

Sjöberg, V., and Yorgey, B. (2018). Logical Foundations. Software Foundations series, volume

1. Electronic textbook. Version 5.5. http://www.cis.upenn.edu/~bcpierce/sf.

Pottier, F. (2009). Lazy least fixed points in ml.

Pottier, F. (2013). fix: An ocaml library that provides facilities for memoization and fixed points.

https://gitlab.inria.fr/fpottier/fix.

Pratt, V. R. (1973). Top down operator precedence. In Proceedings of the 1st annual ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, pages 41–51.

Prokopec, A. (2019). Scalameter: Automate your performance testing today. https://scalameter.

github.io/. Accessed 2019-11-20.

Radul, A. (2009). Propagation networks: A flexible and expressive substrate for computation.

PhD thesis, Massachusetts Institute of Technology.

223

https://www.json-generator.com
https://github.com/antlr/grammars-v4/tree/master/json
http://www.cis.upenn.edu/~bcpierce/sf
https://gitlab.inria.fr/fpottier/fix
https://scalameter.github.io
https://scalameter.github.io


Bibliography

Ramananandro, T., Delignat-Lavaud, A., Fournet, C., Swamy, N., Chajed, T., Kobeissi, N., and

Protzenko, J. (2019). Everparse: Verified secure zero-copy parsers for authenticated message

formats. In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,

August 14-16, 2019, pages 1465–1482.

Ranta, A. (2004). Grammatical framework. Journal of Functional Programming, 14(2):145.

Ranta, A. (2011). Grammatical framework: Programming with multilingual grammars, volume

173. CSLI Publications, Center for the Study of Language and Information Stanford.

Rendel, T. and Ostermann, K. (2010). Invertible syntax descriptions: Unifying parsing and

pretty printing. In Proceedings of the Third ACM Haskell Symposium on Haskell, Haskell ’10,

pages 1–12, New York, NY, USA. ACM.

Reps, T. (1998). “maximal-munch” tokenization in linear time. ACM Trans. Program. Lang.

Syst., 20(2):259–273.

Ronacher, A. (2021). Flask: Web development, one drop at a time. https://flask.palletsprojects.

com/en/2.0.x/.

Sakai, I. (1962). Syntax in universal translation. Her Magesty’s Stationary Office.

Scalaz (2020). Scalaz: a scala library for functional programming. https://scalaz.github.io/.

Scott, E. and Johnstone, A. (2010). Gll parsing. Electronic Notes in Theoretical Computer

Science, 253(7):177–189.

Sipser, M. (2012). Introduction to the Theory of Computation. Cengage learning.

Spiewak, D. (2018). Parseback. https://github.com/djspiewak/parseback.

Stearns, R. E. and Lewis, P. (1969). Property grammars and table machines. Information and

Control, 14(6):524–549.

Strickland, D. (2020). Gta 5 had record microtransaction earnings in april 2020. https://www.

tweaktown.com/news/72714/gta-had-record-microtransaction-earnings-in-april-2020/

index.html.

Swierstra, S. D. and Duponcheel, L. (1996). Deterministic, error-correcting combinator parsers.

In International School on Advanced Functional Programming, pages 184–207. Springer.

t0st (2021). How I cut GTA Online loading times by 70%. https://nee.lv/2021/02/28/

How-I-cut-GTA-Online-loading-times-by-70/.

Tomita, M. (1987). An efficient augmented-context-free parsing algorithm. Computational

linguistics, 13:31–46.

Tomita, M. (1988). Graph-structured stack and natural language parsing. In 26th Annual

Meeting of the Association for Computational Linguistics, pages 249–257.

224

https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://scalaz.github.io/
https://github.com/djspiewak/parseback
https://www.tweaktown.com/news/72714/gta-had-record-microtransaction-earnings-in-april-2020/index.html
https://www.tweaktown.com/news/72714/gta-had-record-microtransaction-earnings-in-april-2020/index.html
https://www.tweaktown.com/news/72714/gta-had-record-microtransaction-earnings-in-april-2020/index.html
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/
https://nee.lv/2021/02/28/How-I-cut-GTA-Online-loading-times-by-70/


Bibliography

Tomita, M. (2012). Generalized LR parsing. Springer Science & Business Media.

Traytel, D. and Nipkow, T. (2013). Verified decision procedures for mso on words based on

derivatives of regular expressions. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’13, pages 3–12, New York, NY, USA. Associa-

tion for Computing Machinery.

Typelevel (2020). Cats: Lightweight, modular, and extensible library for functional program-

ming. https://typelevel.org/cats/.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley,

CA.

Wadler, P. (1995). Monads for functional programming. In International School on Advanced

Functional Programming, pages 24–52. Springer.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism less ad hoc. In Proceedings

of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 60–76.

Wiebe, E. N., Lamb, A., Hardy, M., and Sharek, D. (2014). Measuring engagement in video

game-based environments: Investigation of the user engagement scale. Computers in

Human Behavior, 32:123–132.

Wiedijk, F. (2012). Pollack-inconsistency. Electronic Notes in Theoretical Computer Science,

285:85 – 100. Proceedings of the 9th International Workshop On User Interfaces for Theorem

Provers (UITP10).

Wu, C., Zhang, X., and Urban, C. (2011). A formalisation of the myhill-nerode theorem based

on regular expressions (proof pearl). In International Conference on Interactive Theorem

Proving, pages 341–356. Springer.

Yorgey, B. (2009). The typeclassopedia. The Monad. Reader Issue 13, page 17.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3. Informa-

tion and control, 10(2):189–208.

225

https://typelevel.org/cats/




Romain Edelmann 
Software Engineer 
(ing. info. dipl. EPF) 

Nationality:   Swiss 
Birthdate:    November 12, 1988 
Phone:     +41 79 699 29 65 
Email:     romain.edelmann@gmail.com 
Adress: 
    Romain Edelmann 
    Route de Cheseaux 5 
    1054 Morrens, VD 
    Switzerland 

LinkedIn:    https://www.linkedin.com/in/romain-edelmann/ 
GitHub:   https://github.com/redelmann/ 

Education 

École Polytechnique Fédérale de Lausanne 
Computer Science PhD 
Thesis: Efficient Parsing with Derivatives and Zippers 
Teaching: Introduction to Programming, Parallel and Concurrent 
Programming, Functional Programming, Formal Verification.  
Awards: Award for Teaching Excellence (2019)

09.2015 
- 

05.2021

École Polytechnique Fédérale de Lausanne 
Computer Science Master 
Specialisation: Foundation of Software 
Thesis: BIP in Functional Programming Languages 
GPA: 5.68 / 6

09.2012 
- 

 02.2015

National University of Singapore 
Computer Science Bachelor 
Year abroad as part of an exchange program.

08.2011 
- 

06.2012

École Polytechnique Fédérale de Lausanne 
Computer Science Bachelor 
GPA: 5.38 / 6

09.2009 
- 

06.2012

Gymnase de Burier 
Maturité Gymnasiale 
Thesis: Game Theory and Artificial Intelligence 
Options: Physics and Maths, Advanced Maths, Chemistry  
(complementary)

09.2004 
- 

06.2008

�

�

�

�

�

227



Professional Experience 

Languages 

French:  Mother tongue 
English:  C2 

Publications 

Romain Edelmann, Jad Hamza, and Viktor Kunčak. “Zippy LL (1) Parsing with Derivatives.” 
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and 
Implementation (2020). 

Romain Edelmann, and Viktor Kunčak. “Neural-Network Guided Expression Transformation.” 
arXiv preprint arXiv:1902.02194 (2019). 

Romain Edelmann, Simon Bliudze, and Joseph Sifakis. “Functional BIP: Embedding Connectors in 
Functional Programming Languages.” Journal of Logical and Algebraic Methods in 
Programming 92 (2017): 19-44. 

Romain Edelmann. “Behaviour-Interaction-Priority in Functional Programming Languages: 
Formalisation and Implementation of Concurrency Frameworks in Haskell and Scala.” 
Master Thesis (2015).

École Polytechnique Fédérale de Lausanne 
Scientific Collaborator 
Elaboration of technical solutions and drafting of teaching aids 
within the EduNum project for the teaching of computer science as a 
compulsory subject in high schools.

Since 
02.2021

Fondation Suisse pour les Téléthèses, Neuchâtel 
Software Engineer 
Development of IT solutions for people with disabilities in the 
context of civil service.

02.2015 
- 

08.2015

Google, Zürich 
Software Engineer Intern 
Development of monitoring solutions for the data processing 
systems of the YouTube platform.

08.2013 
- 

 02.2014

École Polytechnique Fédérale de Lausanne 
Student Assistant 
Assisted students during practice sessions, graded exams and 
projects, and proctored exams for several introductory programming 
courses as well as for an information science course.

09.2010 
- 

02.2015

EDSI-Tech, Lausanne 
Associate, Developer 
Development of websites and iOS and Android applications.

09.2009 
- 

08.2012

�

�

�

�

�

228


	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Writing Parsers
	Writing Pretty Printers
	Teaching about Parsing
	Formally Reasoning about Parsing
	Thesis
	Contributions
	Overview

	Regular Expressions
	Definition
	Tree Representation
	Conversion to Automata
	Brzozowski's Derivatives
	Interpreter-style Membership Checking

	Huet's Zipper
	Revisiting Brzozowski's Derivatives using Huet's Zipper
	A Zipper for Regular Expressions Derivatives
	Zipper-based operations
	Finiteness of Explorable Zippers
	Going Beyond Membership Checking
	To Automata via Memoization
	Evaluation
	Building a Domain-Specific Interface
	Flexibility
	Applicability

	Pumping Lemma on Regular Expressions
	Conclusion

	Value-Aware Context-Free Expressions
	Preliminaries
	Values and Types
	Tokens and Token Kinds

	Context-Free Expressions
	Expressions
	Environments
	Semantics
	Language of a Context-free Expression

	Correspondence with Context-free Grammars
	From Grammars to Expressions
	From Expressions to Grammars

	Canonical Representation of Expressions
	Example
	Comparing Expressions
	Equivalence
	Equivalence-Preserving Transformations
	Prefix-Equivalence
	Derivatives

	Properties of Context-Free Expressions
	Productivity
	Nullability
	First Set
	Left-Recursivity

	Computing Properties
	Computing Properties with Propagation Networks

	Parsing with Derivatives
	Nullifying Expressions
	Derivation


	LL(1) Context-Free Expressions
	Unambiguous Context-Free Expressions
	Towards Unambiguity via Derivation
	First Criterion
	Second Criterion
	Third Criterion

	The LL(1) Class
	Should-Not-Follow Set
	LL(1) Conflicts
	The LL(1) Property
	Properties of LL(1) Expressions

	LL(1) Parsing with Derivatives
	Values from Nullable LL(1) Expressions
	An Induction Principle for LL(1) Expressions
	Derivatives of LL(1) Expressions
	On the Correctness of LL(1) Derivation
	Should-Not-Follow Completeness
	Parsing Algorithm
	Example Execution
	Complexity Analysis


	Zippy LL(1) Parsing with Derivatives
	Zipper-based Representation of LL(1) Expressions
	Layers
	Context
	Weight of Layers and Contexts
	Focused Expressions
	LL(1) Property of Focused Expressions
	The Essence of LL(1) Derivation

	Zipper Operations
	Focus Movement Operations
	Focus Replacement Operations

	Zippy LL(1) Parsing with Derivatives
	Moving the Focus Downwards with pierce
	Moving the Focus Upwards
	The plug function
	The locate function
	Zippy LL(1) Derivation
	The result function
	Zippy LL(1) Parsing with Derivatives Algorithm
	On the Correctness of Zippy LL(1) Parsing with Derivatives

	Example Execution
	Complexity Analysis
	Memoisation
	Properties
	Calls to []k

	Comparison with Traditional LL(1) Parsing
	Presentation of Traditional LL(1) Parsing
	Similarities and Differences between the two Approaches
	Advantages over the Traditional LL(1) Parsing Approach


	ScaLL1on: A Scala Parser Combinator Library for LL(1) Languages
	Overview
	Programming Interface
	The Parsers trait
	The Syntax Datatype
	Combinators
	Parser Construction
	Properties
	LL(1) Conflicts
	Parsing

	Enumeration
	Markings
	Implementation

	Pretty Printing
	Basic Algorithm
	Termination
	Linear-Time Pretty Printing
	Syntax Disambiguation
	Optimised Implementation

	Performance Evaluation
	Parsing JSON
	Lexing and Parsing JSON
	Pretty Printing JSON
	Lexing and Parsing Python

	Applicability

	Generalising Zippy Parsing with Derivatives
	Overview of Modifications
	Data Structure Definition
	Syntaxes
	Contexts
	Results
	The Zipper

	Derivation Algorithm
	Plug
	Locate
	Pierce
	Derive

	Parsing Algorithm
	Focus
	Result
	Parse

	Producing Values
	On Immutability
	Correspondence with Other Parsing Techniques
	Earley Parsing
	GLR Parsing
	GLL Parsing

	Performance
	On JSON Parsing
	On Highly Ambiguous Grammars

	Variants
	Results
	Context Lookahead Caching
	Memoisation Policies

	Discussion

	Related Work
	Parser Combinators
	Parsing Algorithms and Techniques
	Packrat Parsing
	LL(1) Parsing
	LL(*) Parsing
	LR Parsing
	Generalised Parsing Algorithms
	Parsing with Derivatives
	Memoisation-based Parsing Techniques
	Support for Conjunction and Negation

	Enumeration
	Correct-by-Construction Pretty Printing
	Formally Verified Parsing
	Derivatives and Formal Reasoning
	Fix-Point Computations
	Datatype Derivatives

	Conclusion
	Regular Expression Derivation with Compaction
	Haskell Implementation of a Membership Checking Procedure using Derivatives and Zippers
	JSON Values, Tokens and Kinds
	JSON Parser and Pretty Printer in ScaLL1on
	Bibliography
	Curriculum Vitae



