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Abstract

JOREK is a massively parallel fully implicit non-linear extended MHD code for real-
istic tokamak X-point plasmas. It has become a widely used versatile simulation code
for studying large-scale plasma instabilities and their control and is continuously devel-
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oped in an international community with strong involvements in the European fusion
research program and ITER organization. This article gives a comprehensive overview
of the physics models implemented, numerical methods applied for solving the equa-
tions and physics studies performed with the code. A dedicated section highlights some
of the verification work done for the code. A hierarchy of different physics models is
available including a free boundary and resistive wall extension and hybrid kinetic-fluid
models. The code allows for flux-surface aligned iso-parametric finite element grids in
single and double X-point plasmas which can be extended to the true physical walls and
uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and
scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key
results obtained with JOREK regarding plasma edge and SOL, are deep insights into the
dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant
magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM
free regimes, detachment physics, the generation and transport of impurities during an
ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding
disruptions, the focus is on the dynamics of the thermal quench and current quench
triggered by massive gas injection (MGI) and shattered pellet injection (SPI), runaway
electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical
displacement events (VDEs). Also the seeding and suppression of tearing modes (TMs),
the dynamics of naturally occurring thermal quenches triggered by locked modes, and
radiative collapses are being studied.

Keywords: Magneto-hydrodynamics, MHD, extended MHD, reduced MHD, particle in cell, PiC, magnetic
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1. Introduction

The present article provides a comprehensive overview of the non-linear extended MHD
code JOREK, which is among the leading simulation codes worldwide for studying large
scale plasma instabilities and their control in realistic divertor tokamaks. The article
provides a detailed description of the physics models, numerical methods, and physics
applications of the code.

In the existing literature, Refs. [1, 2] already describe some aspects of the numerical
methods and physics models of the JOREK code, which has been extended significantly
since these articles were published. Ref. [3] contains an overview of modelling activities
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worldwide regarding ELMs and ELM control based on many different simulation codes,
and Refs. [4–6] provide a partial overview of JOREK activities regarding plasma edge and
scrape off layer. The present article, in contrast, aims to give a comprehensive description
of the code and its applications, with a particular focus on recent developments.

In the present Section, we describe the motivation for the research activities (Subsec-
tion 1.1) followed by a very brief review of (extended) magnetohydrodynamics (Subsec-
tion 1.2) and some words on the historic development of JOREK (Subsection 1.3).

The rest of the article is organized as follows: Section 2 provides a detailed overview of
the physics models available in JOREK and Section 3 describes the numerical methods
employed for solving the equations. Selected tests performed for code verification are
shown in Section 4. After this “technical” part, a detailed picture is drawn of the physics
studies and validation activities performed in particular in the fields of plasma edge and
scrape off layer physics (Section 5) as well as disruption physics (Section 6). Further code
applications are described in Section 7. Each Section contains a brief outlook towards
further plans and developments. Finally, a concise summary is provided in Section 8.

The support received from many entities and useful discussions with various scientists
are acknowledged in Section 9. Additional details on the coordinate systems, finite
element basis, normalization of quantities, and time stepping scheme are provided in
Appendices A–C.

1.1. Motivation and challenges

Among the obstacles, which need to be overcome on the path towards a magnetic con-
finement fusion power plant, large scale plasma instabilities may well be the most critical
one. A plasma configuration suitable for harvesting energy needs to have good confine-
ment properties, however, a reliable control† of plasma instabilities is equally important.
Robust predictions of the properties of such instabilities and of effective control methods
are urgently needed

1. to provide input to the ITER design, where it can still be influenced (e.g., the
disruption mitigation system),

2. to prepare a robust, efficient, and successful exploitation of ITER across all phases
of the planned operation, and

3. to answer critical questions regarding the design of a successful DEMO reactor.

Revealing the underlying physics processes of plasma instabilities and developing con-
trol mechanisms constitutes a major challenge for experiments, theory, and modelling.
While the suitability of control techniques for present devices may be tested in a straight
forward manner experimentally, their applicability to future machines, with plasma pa-
rameters very different both quantitatively (e.g., Lundquist number) and qualitatively
(e.g., large amount of fusion-born fast particles) from present machines, needs to be
ensured by developing truly predictive capabilities. In such a holistic approach based

†The term “control” is in this article is meant to include both avoidance and control strategies.
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on fundamental plasma theory, experimental studies across devices, and numerical sim-
ulations of the plasma dynamics, the computational models play a key role. Simulation
codes can provide the capability to predict the relevant processes in future devices after
being carefully validated against theory predictions and experiments first. Activities
with the JOREK code ultimately aim at reaching that goal.

Key challenges in this respect are the immense scale separations in both time and
space of the involved processes, the intrinsic highly non-linear multiphysics nature of
the problem, and the complicated magnetic topology of divertor plasmas. Magneto-
hydrodynamic (MHD) models have become a very robust and reliable framework for
describing large-scale plasma instabilities. And via numerous extensions beyond the
classical MHD, more and more effects can be captured accurately in the simulations.
Worldwide, a number of specialized simulation codes for calculating non-linear MHD
dynamics in magnetically confined tokamak and stellarator plasmas have been developed
in the past years and decades including BOUT++ [7], JOREK (this article and Refs. [1,
2, 8]), MEGA [9], M3D [10], M3D-C1 [11–13], NIMROD [14, 15], and XTOR [16, 17]
(listed alphabetically, not a complete list).

Besides the challenges imposed by the multi-scale nature already mentioned, in partic-
ular the large number of different physical effects, which need to be treated consistently
and which are mutually interacting in a highly non-linear way, requires simulation codes
that can capture this rich multi-physics behaviour in a reliable way. In a typical miti-
gated disruption scenario, for instance, the dynamics of magnetic islands, the ablation
of (shattered) pellets, the reconnection of the plasma leading to a stochastic state, the
fast losses of thermal energy along magnetic field lines, the radiative losses by partly
ionized impurities, the generation and transport of runaway electrons (REs), the inter-
action of REs with the MHD modes and the electromagnetic interaction of the plasma
with conducting structures in the device may all play an important role simultaneously.
Developing the capability to describe the non-linear interaction of all these processes is
necessary for unravelling the complete physics picture and becoming truly predictive re-
garding the dynamics in future machines. At the same time, simpler models are needed
to allow faster access to larger parameter studies. JOREK is a advanced simulation
framework for studying large-scale instabilities in magnetized plasmas. It offers such a
hierarchy from simple and fast to very complex and computationally demanding models.

1.2. Extended Magnetohydrodynamics (MHD)

This article does not give a complete overview of magnetohydrodynamics (MHD) and
its computational treatment. We mention only key features in this Section, which are
directly relevant as context for this article. For literature on MHD, in particular the
References [18–24] are recommended.

Magneto-hydrodynamics developed first by H. Alfvén in 1942 [25] describes a magne-
tized plasma as an electrically conducting fluid. In the ideal MHD model, the plasma
is assumed to be perfectly conducting. Ideal MHD can describe certain stability limits
in tokamak plasmas well (e.g., see References [26–29] for type-I ELMs). However, 3D
non-linear simulations need to be based on resistive extended MHD models, which in-
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clude anisotropic heat conduction, plasma resistivity, diamagnetic flows, finite Larmor
radius effects, neoclassical physics, source/sink terms, two-fluid effects, neutrals, impu-
rities, sheath boundary conditions, and many more effects depending on the addressed
problem. A certain class of models includes also electron inertia effects [30].

Tokamak plasmas are typically in approximate force balance ∇p ≈ j × B, where p
denotes (the isotropic component of) the pressure, j the plasma current vector, and B
the magnetic field vector. The stability of this equilibrium state determines whether
the plasma will remain in this equilibrium state or is prone to instabilities. This is
traditionally studied by linearizing the equations and analyzing the eigenvalue spectrum
of the system along with the associated eigenvectors. However, linear growth rates may
be affected dramatically by background flows and non-ideal plasma effects, which are not
always accounted for in linear codes. Also, non-linear dynamics cannot be predicted from
the linear stability analysis in general, and linearly stable eigenmodes might become non-
linearly unstable at sufficiently large “seed perturbation” amplitudes (e.g., neoclassical
tearing modes). As a result, predicting the full consequences of plasma instabilities is
only possible by employing advanced non-linear models. Solving such models in realistic
geometries typically is only possible numerically. MHD involves very different time
scales: The Alfvèn time τA = a

√
µ0mi ni/B is about 0.3µs for ITER like parameters,

where a denotes the minor radius of the plasma, µ0 the vacuum permeability, mi the ion
mass, and ni the ion density. On the other hand, the resistive time scale τR = µ0 a

2/η,
where η denotes the plasma resistivity, is � 1s for ITER like parameters. Plasma
instabilities typically develop on mixed time scales of tens of µs to tens of ms. The
resistive time scale of the ITER vacuum vessel is around τW = 500ms slowing down some
instabilities to that time scale (e.g. axisymmetric resistive wall modes). Consequently,
the relevant time scales for large scale instabilities are two to six orders of magnitude
longer than the Alfvén time. The frequencies of fast magneto-acoustic waves propagating
in the plane orthogonal to the magnetic field are typically even two to three orders of
magnitude larger than the Alfvén frequency, thus constituting the most challenging
time scale in the system. The so-called reduced MHD model, described in Section 2.3.1,
eliminates the fast waves from the model to facilitate its numerical solution.

In spatial dimensions, a similarly challenging splitting of scales can be observed. While
the size of the whole system typically is in the range of several meters (minor radius of
2m in ITER), the resistive skin depth is given by

√
2η/(µ0 ω) at a given frequency ω,

which can easily drop into the mm or even sub-mm range at the low resistivity of large
fusion devices (which decreases strongly with temperature) – a separation by four orders
of magnitude. The strong increase of this scale separation towards larger (and at the
same time hotter) fusion devices is a particular challenge for the modelling.

Anisotropic heat conduction is another particularly challenging physics aspect to be
dealt with in MHD simulations. While the transport coefficients across field lines de-
termined by neoclassical or turbulent processes typically are in the range of 1m2/s, the
heat transport along field lines by electrons can reach values of 1010m2/s in hot plas-
mas [31, 32]. Avoiding overly restrictive time scales, numerical instabilities, or a pollution
of cross-field transport by errors in the parallel transport is a significant challenge for
the numerical treatment.
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Magnetohydrodynamics is strictly valid only when the plasma is sufficiently collisional,
and many important kinetic effects are not reflected by the MHD equations. However,
a large number of corrections (e.g., effective parallel heat diffusion coefficients [32]) and
extra terms (e.g., two-fluid effects, or a consistent evolution of the bootstrap current [33])
allow to apply MHD outside its original boundaries. In many cases, the full MHD
equations can be further simplified to eliminate the fast magneto-sonic waves from the
system, reducing the separation of time scales. A significant number of reduced MHD
models with different levels of approximation exist (e.g., References [34, 35]), which
lower the number of physical variables in the system. JOREK presently has several
different reduced MHD models (the one described in Section 2.3 with and without parallel
velocity; a reduced MHD model suitable for stellarator applications is in development)
and a full MHD model (Section 2.12) implemented for tokamak configurations along
with numerous physics extensions.

1.3. Historic development of the JOREK code

The development of a first version “JOREK 1” was started by G.T.A. Huysmans in 2002
at CEA/IRFM and is described in Ref. [36]. Applications of the JOREK 1 code include
the current hole problem, the stability of external kink modes in X-point plasmas [36],
the first nonlinear ELM simulations [1] and the application of RMP fields [37]. The
JOREK 1 code was based on so-called generalised, h-p refinable, finite elements [38].
However, in practice, the p refinement, i.e., adapating the order of the finite elements
was never used. Therefore it was decided to change the finite elements to cubic Bezier
finite elements, an extension to the iso-parametric bicubic Hermite elements which are
succesfully applied in the HELENA equilibrium code [39]. The code “JOREK 2”,
which has been developed since 2006, is first described in the references [2, 40, 41] and
has successively evolved into the presently existing JOREK code, which is described
in the article at hand. As major changes in version 2, an iterative solver, and a G1

continuous finite element formulation had been implemented. G1 continuity refers to
both values and real-space gradients being continuous throughout the computational
domain but without continuity in the gradients in the local finite element coordinates.
The present JOREK code is being further developed continuously regarding physics
models, numerical methods, and applications as shown in this article. The JOREK
website [42] contains some regularly updated information. The article at hands intends
to give a complete overview of the code including references to all original publications
which go more into detail than possible here.

2. Physics models

This section describes the physics models and corresponding extensions available in
JOREK. Before turning towards these models, the coordinate systems used in JOREK
are introduced briefly.
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Figure 1 – The base cylindrical coordinate system used in JOREK. Refer to Appendix A
for details.

2.1. Coordinate systems

The base cylindrical coordinate system (R,Z, φ) is given by x = R cosφ, y = −R sinφ,
z = Z, where (x, y, z) denotes Cartesian coordinates (Figure 1). Thus, φ is oriented
clockwise if viewed from the top. According to the definitions in Ref. [43], the JOREK
conventions correspond to a COCOS number of 8. To describe the Bezier elements, the
coordinates R and Z are expanded in the same Bezier basis functions, that are also used
for the expansion of the physics variables (“isoparametric”). This introduces a local
(s, t, φ) coordinate system inside each grid element. See Sections 3.1 and Appendix A
for more details on the discretization.

2.2. Grad-Shafranov solver

JOREK has a built-in Grad-Shafranov equilibrium solver which uses the same finite ele-
ment grid and representation of the variables used in the nonlinear time evolution. This
guarantees that the discrete initial state used in MHD equations accurately satisfies the
initial equilibrium force balance, avoiding any initial discontinuous behaviour. JOREK
can solve both fixed boundary equilibria and, through the coupling to the STARWALL
code, free boundary equilibria (see Section 2.9).

The solver requires the profiles of pressure (provided by temperature and density
separately, since they are needed for the initial conditions) and FF ′. These profiles are
provided as functions of the normalized poloidal flux ΨN = (Ψ−Ψaxis)/(Ψbnd −Ψaxis),
either via a simple analytical function, or via a numerical representation. Here Ψaxis and
Ψbnd denote the values of the poloidal magnetic flux at the magnetic axis and on the
boundary of the plasma domain, respectively. In addition, the poloidal flux Ψ on the
boundary of the computational domain needs to be specified by by a numerical list of
(R,Z,Ψ) points (or by coefficients for analytical moments for simpler cases). This input
can be extracted, for instance, from “geqdsk” files or from equilibria created with the
CLISTE code. Starting from an initial guess, the equilibrium is determined iteratively
by Picard or Newton iterations to a specified accuracy. After solving the GS equation on
the initial finite element grid, the solution is typically used to create a new grid aligned
to the equilibrium flux surfaces. The GS equation is solved a second time on this new
grid, providing the accurate initial conditions for the time evolution part.

Page 8



M Hoelzl, GTA Huijsmans, SJP Pamela, M Becoulet, E Nardon, FJ Artola, B Nkonga et al – JOREK non-linear MHD code

After the equilibrium calculation, all physical variables are initialized consistently to
it: the poloidal flux Ψ is directly taken from the equilibrium solution; the toroidal
current density is calculated directly from Ψ via the current definition equation; density
and temperature are initialized according to the specified profiles. All velocity related
quantities (velocity stream function, vorticity, and parallel velocity) are initialized to
be zero unless background rotation profiles are prescribed. In case of sheath boundary
conditions, the parallel velocity is initialized to the ion sound speed at divertor targets‡.

2.3. Base MHD model

The MHD model is formulated as a set of normalized equations for the evolution of
the magnetic potential (A), mean velocity (V), total density (ρ) and total pressure
(p). The equations are normalized with respect to the central mass density ρ0 and the
vacuum permeability µ0 such that µ0 does not appear explicitly. Length scales are not
normalized, while the time is normalized by a factor§ τnorm =

√
µ0 ρ0 which is typically

close to the Alfvén time τA = a
√
µ0 ρ0/B0. The total pressure and mass density are

normalized by µ0 and ρ0 respectively. Details on the normalization of further quantities
are given in Appendix B. The normalized equations are written as

∂A

∂t
= −E−∇Φ, (1)

ρ
∂V

∂t
= −ρV · ∇V −∇p+ J×B +∇ · τττ + SV, (2)

∂ρ

∂t
= −∇ · (ρV) +∇ · (DDD∇ρ) + Sρ, (3)

∂p

∂t
= −V · ∇p− γp∇ ·V +∇ · (κκκ∇T ) + (γ − 1)τττ : ∇V + Sp (4)

The total pressure is defined by the ideal gas law p = pi + pe = ρ T (µ0 disappears
due to normalization). This pressure is the sum of electron (pe) and ion (pi) pressures.
Electron and ion pressures are then assumed in some of the models to be half of the
total pressure, e.g., where the diamagnetic terms are calculated. The model extension
described in Section 2.5 allows to separately evolve variables for the electron and ion
temperatures instead. The magnetic field vector, B, and the current vector, J, are
defined as:

B = F∇φ+∇×A and J = ∇×B, (5)

Here, the toroidal flux function F (ψ) ≡ RBφ is not essential for the model but is added
for numerical reasons. F (ψ) is constant in time and typically taken from the initial

‡Simulations with sheath boundary conditions typically need to be run axi-symmetrically for a short
while, such that the parallel flows in the scrape-off layer (SOL) can establish a steady state. Non-
axisymmetric Fourier modes are added then, once SOL flows have equilibrated.

§In case of ITER with minor radius a ≈ 2 m and magnetic field amplitude on axis B0 ≈ 5 T,
τnorm ≈ 2.5 τA. Note that

√
µ0 ρ0 does not have the dimension of a time and it is therefore more exact

to say that the numerical value of τnorm is
√
µ0 ρ0.
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Grad-Shafranov equilibrium such that the initial vector potential in the poloidal plane
is zero. This does not constrain B in any way since the magnetic vector potential A
takes into account the (arbitrarily large) time evolution and perturbations from the
equilibrium.

Ohm’s law includes resistivity and drift-ordered (diamagnetic) terms [44]:

E = −V ×B + η(J− J?) + F0
δ∗

ρ
(∇⊥pi −∇‖pe) (6)

The resistivity η with Spitzer temperature dependence and the diamagnetic coefficient
δ∗ are given by

η = η0 · (T/T0)−3/2 (7)

δ∗ = mion/(eF0
√
µ0ρ0) (8)

with the constant parameter η0 and initial plasma core temperature (T0). mion is the
ion mass and e the elementary charge. The constant F0 = R0Bφ0 is defined as the major
radius at the geometric centre times the vacuum toroidal field. This constant appears due
to the definition of the δ∗, for consistency with the reduced MHD model described below.
A more accurate modeling of the diamagnetic effect is possible with the two pressures
extension described in Section 2.5. The term J? = jS eφ denotes a toroidal current source
term. It can be used to preserve the original current profile j0 approximately throughout
the simulation, if one chooses jS = j0

¶. The current source term is also used to model
a consistently evolving bootstrap current [45]. In that case, the initial current profile
needs to include the initial bootstrap current correctly and the current source term takes
the form: jS = j0 + jB − jB,0, where jB,0 denotes the initial bootstrap current and jB is
the bootstrap current corresponding to the self-consistent profiles during time evolution.
For the calculation of the bootstrap current, the expressions of Refs. [33, 46] are used.

In the MHD model shown in Equations (1–4), the gauge still needs to be defined. In
the JOREK full MHD model (Section 2.12), the Weyl Gauge, Φ = 0, is used. That
implies that the toroidal component of the magnetic vector potential changes with time
even in steady state.

The tokamak plasma evolves in a low collisionality regime and the associated viscous
stress tensor (τττ) is decomposed into three main parts

τττ ' τττ f + τττneo + τττ gv (9)

These components model the Newtonian-fluid type, neoclassical and gyro-viscous effects
respectively. The separation in the different physical effects contained in the stress tensor
does not imply a possible double counting but rather a representation on different time
scales and directions. Following [47], the parallel viscous stress is included as a Braginskii
viscous stress acting on a fast timescale and a residual neoclassical stress on a slower
collisional time scale. The Newtonian stress tensor (τττ f ) is decomposed into the parallel
and the perpendicular directions to the magnetic field and the associated coefficients of

¶For a more consistent treatment, a loop voltage can also be applied at the computational boundary.
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viscosity are ν‖ and ν⊥. According to the Chew-Goldberger-Low formulation [48], the
parallel stress tensor τττ f‖ for arbitrary collisionality in a magnetized plasma is written
as [20]:

τττ f‖ = 3ν‖

(
b⊗ b− 1

3
III

)
⊗
(

b⊗ b− 1

3
III

)
∇V

The coefficient ν‖ is modelled as a spatial constant but such a dependency can be changed
easily. The explicit formulation of the perpendicular tensor τττ f⊥ can be found in Ref. [20].
The associated coefficient ν⊥ is typically chosen to have the same temperature depen-
dence as η in order to keep the magnetic Prandtl number spatially nearly constant
(except for the weaker density dependency).

ν⊥ = ν⊥0 · (T/T0)−3/2 (10)

where ν⊥0 is a constant parameter and T0 is the initial plasma core temperature. The
neoclassical viscous tensor (τττneo) is determined by a heuristic formulation [49]

∇ · τττneo = ρνneo
‖B‖2

‖Bθ‖2
(bθ ⊗ bθ) (V −Vneo) where bθ =

Bθ

‖Bθ‖
(11)

with Bθ = B−(B·eφ)eφ the poloidal magnetic field. The neoclassical coefficient νneo and
velocity Vneo are given functions of the temperature and the magnetic field (see Refs. [50,
51]). In magnetized plasmas it is usual to assume gyro-viscous cancellation [20, 52]
caused by the finite Larmor-radius effect. Therefore, to enforce gyro-viscous cancellation,
the gyro-viscous stress tensor τττ gv is modeled as

∇ · τττ gv = ρ

(
∂v∗i
∂t

+ V · ∇v∗i + v∗i · ∇v||

)
(12)

where vdia,i is the ion diamagnetic drift velocity defined in equation (26) and v|| the
parallel velocity. The terms involving the ion-diamagnetic heat flux (and the associated
cancellation with the density convection due to the ion diamagnetic drift [53]) have not
been implemented to avoid the possible destabilisation of ITG modes. These terms are
essential to study the interaction of MHD instabilities with underlying ITG turbulence
but this is left for future applications.

The heat diffusion tensor κκκ is decomposed parallel and perpendicular to the magnetic
field

κκκ = κ‖b⊗ b + κ⊥ (III− b⊗ b) (13)

Note that the factor (γ− 1) in the heat diffusion terms is absorbed in the coefficients κ‖
and κ⊥. Here, γ is the ratio of specific heats (usually γ = 5/3). The vector b = B/B
denotes the unit vector in the direction of the magnetic field. Radial profiles of κ⊥ are
usually specified in an ad-hoc manner to mimic the background transport that cannot be
captured with the present model. For instance, low values are set in the pedestal region
to model the transport barrier. The parallel heat diffusion coefficient κ‖ is implemented
with Spitzer-Härm [31] temperature dependency according to

κ‖ = κ||,0 · (T/T0)5/2, (14)
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where the central value κ||,0 is calculated according to the Spitzer-Härm formula. An
optional parameter κ||,max can be specified to account for the heat flux limit [32] in
a simplified way by ensuring that the parallel heat conductivity cannot exceed this
maximum value. Realistic anisotropies even beyond κ||/κ⊥ ≈ 1010 can be handled
without producing large spurious perpendicular transport provided a grid is used that is
aligned to the equilibrium flux surfaces (see Section 4.2). The particle diffusion tensor DDD
has an analogous form to expression (13) although the parallel component (D‖) is usually
not used as the parallel particle transport is dominated by convection. The profile of
D⊥ is also specified by ad-hoc profiles reflecting underlying small-scale turbulence that
is not included in the MHD model.

The source term in the momentum equation contains the contribution of the diffusion
and the source of density, as well as specific source Sm of momentum

SV = Sm − (∇ · (DDD∇ρ) + Sρ) V, (15)

The source terms in the pressure equation contains the Ohmic heating term, thermal
energy source and particles source effects.

Sp = (γ − 1)

(
(E + V ×B) · J + SE −V · Sm +

V ·V
2

(Sρ +∇ · (DDD∇ρ))

)
, (16)

where SE is the thermal energy source and Sρ is the particle source. Sources are typically
specified as radial profiles.
Given equations (1–4), a proper mathematical treatment of this system should specify
the functional spaces where the solutions are sought for. Moreover, since JOREK uses a
finite element method, a weak form of the equation is preferred which implies to define
basis and test functions. In the following, for brevity, the “dV ” in all volume integrals
is omitted. Thus let VA,VV,Vρ, Vp and V∗A,V∗V,V∗ρ , V∗p be the chosen function spaces
for the basis and test functions respectively, a weak form of the MHD problem will be
reformulated as: Find (A,V, ρ, T ) in VA×VV×Vρ×Vp such that, for any test functions
(A?,V?, ρ?, p?) in V∗A × V∗V × V∗ρ × V∗p , we have:∫

∂A

∂t
·A? = −

∫
E ·A?, (17)∫

ρ
∂V

∂t
·V? = −

∫ (
ρV · ∇V +∇p− J×B−∇ · τττ − SV

)
·V?, (18)∫

∂ρ

∂t
ρ? = −

∫ (
∇ · (ρV)−∇ · (DDD∇ρ)− Sρ

)
ρ?, (19)∫

∂p

∂t
p? = −

∫ (
V · ∇p+ γp∇ ·V −∇ · (κκκ∇T )− (γ − 1)τττ : ∇V − Sp

)
p? (20)

where p = T ρ. The identity J×B = −∇
(
B·B

2

)
+∇ · (B⊗B) and integration by parts

is used to avoid computation of second order derivatives. Equations (17) and (18) are
vector equations. For numerical purpose, each of them must be transformed into three
scalar equations by projecting the vectors onto some basis.
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Following the representation of A and V in the basis (eR, eZ, eϕ), and (eR, eZ,B)
respectively, the basis for the vector-test function V? and A? in the weak formulation
(17)-(20) is chosen as:

A = AReR +AZeZ +
1

R
A3eϕ (21)

V = VReR + VZeZ + V‖B (22)

A? = a∗ (eR, eZ, eϕ) (23)

V? = v∗ (eR, eZ,B) (24)

where a∗ and v∗ represent the scalar test functions as defined in Section 3.1.1. This
choice of projection in the parallel direction ensures on the discrete level that the Lorentz
force V∗ · (J×B) is exactly vanishing.

2.3.1. Reduced MHD

In order to reduce computational requirements, one often employs reduced MHD models,
which eliminate fast magnetosonic waves while retaining the relevant physics [12, 34, 35,
54]. The removal of fast magnetosonic waves, the fastest waves in the system, allows one
to use larger time steps due to relaxing the CFL condition. Even when implicit time
integration methods are used, and the CFL condition is no longer a hard limit, using
time steps that are large compared to the shortest time scale can lead to poor accuracy
[12, 55]. In addition, reduced MHD has less unknowns compared to full MHD, which
decreases the computational costs and memory requirements for simulations.

Reduced MHD, as first introduced by Greene and Johnson [56], and later developed by
Kadomtsev, Pogutse and Strauss [57, 58], relied on ordering in a small parameter, often
taken to be the inverse aspect ratio. The ordering itself is a system of several approxi-
mations and assumptions involving the ordering parameter that allows one to determine
the relative order (in terms of the ordering parameter) of any quantity with respect to
any other quantity of the same dimension. In this context, terms corresponding to fast
magnetosonic waves have a higher order than the terms that one wants to keep, allowing
the fast wave terms to be dropped. Naturally, there are many choices one can make in
the ordering assumptions, depending on which physical effects one wants to keep, all of
which result in different reduced equations [35, 55, 58–60]. The ideas of reduced MHD
have also found use in astrophysics, where toroidal geometry cannot be assumed, and
thus the inverse aspect ratio cannot be used as an ordering parameter [61].

Starting in the 1980s, a new ansatz-based approach was introduced by Park et al [62],
where an ansatz form that eliminates fast magnetosonic waves is used for the velocity and
terms of all orders are kept (eliminating partially the fluid compression). Their reduced
model corresponds to ideal MHD in the incompressible limit and was used to resolve
internal kink modes in a cylindrical geometry, something that ordering-based reduced
MHD could not do. Izzo et al used a similar ansatz in their study [63]. Later papers also
adopt an ansatz for the magnetic field that eliminates field compression [64, 65]. The
ansatz approach allows one to make less assumptions and keep more physical effects,
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while generally resulting in more complicated equations than the ordering approach.
Thus, while keeping more physics, the various terms in the equations of ansatz-based
reduced MHD are harder to interpret due to their complexity. In addition, without an
ordering parameter, error estimation becomes much more difficult. The ansatz method
allows to conserve energy exactly on the equation level. Some of the ordering-based
models also conserve energy, however it is then often necessary to keep selected higher
order terms to ensure that. The ansatz method thus is an alternative way of eliminating
fast magnetosonic waves, which makes energy conservation easier. At the same time,
in comparison to models which use ε = a/R for the ordering, the ansatz based reduced
MHD model is still fairly accurate in the spherical tokamak limit as shown in Ref. [66]
by comparison to full MHD.

The reduced MHD model used in JOREK is derived following the ansatz-based ap-
proach. In this approach, instead of the whole functional spaces used in full MHD, the
variables are constrained to lie in a subset of these spaces and the equations are estab-
lished by a Galerkin truncation. Another way to present this procedure is to say that
an ansatz is postulated for some variables. The ansatz considered here assumes that the
time dependent part of the magnetic potential is dominated by the toroidal component.
The ansatz for the magnetic field is deduced by approximating Bφ as the vacuum F0/R
toroidal field.

B =
F0

R
eφ +

1

R
∇ψ × eφ =⇒ A = ψ∇φ (25)

where F0 is constant in space as well as time and eφ is the normalized toroidal basis
vector. In the weak formulation (17), this corresponds to defining VA = {A : ∃ψ ∈
H2s.t. A = ψ∇φ}. The ansatz (25) implies that the velocity cannot be arbitrary.
Indeed, taking the cross product of equation (1) with ∇φ, after substituting equations
(6) and (25) for E and A and neglecting resistivity and the poloidal component of B,
we obtain:

vP = −R∇u× eφ︸ ︷︷ ︸
≡vE

− (δ∗R/ρ)∇pi × eφ︸ ︷︷ ︸
≡vdia,i

. (26)

where u is defined as Φ/F0 and vP = (eφ × v) × eφ denotes the poloidal component
of the velocity. In this expression, E × B effects are captured by the first term, and
the ion diamagnetic drift velocity by the second one. Given this expression, we can
define the approximation space for the vE poloidal component of the velocity variable
as VvE = {v : ∃u ∈ H2s.t. v = −R∇u × eφ} and according to Ritz-Galerkin method,
it is natural to choose the velocity test functions in the poloidal direction in the same
space:

V?
E = −R∇v? × eφ

A first version of the reduced MHD model can be obtained using the definition of these
spaces. However, for many problems, flows are not purely poloidal and one must take
into account flows along the magnetic field lines. Therefore an improved version of the
reduced MHD model used in JOREK defines the velocity approximation space by:

V = vE + vdia,i + v||B︸︷︷︸
≡v||

(27)
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This reduced MHD model is thus characterized by a magnetic potential defined by
a single scalar function (ψ) and a velocity field defined by the two scalars functions (u
and v||). As done for vE, it will be natural to define the parallel test functions using
Ritz-Galerkin recipe as v?B for some scalar v?.

It is important to point out here that, even if a constant F0 is used, instead of the
function F used in the computation of the Grad-Shafranov equilibrium (i.e. assuming
that RBφ = const), the reduced model preserves the equilibrium. Indeed, when focusing
on the momentum equation, we can prove that all the terms associated with the function
F (from the initial Grad-Shafranov equilibrium) are in the kernel of the momentum
projectors: v?B and −R∇v? × eφ. This is a direct consequence of the fact that
R∇v? × eφ = R2∇ × (v?∇φ), B · (J × B) = 0 and ∇ × (∇F 2/2) = 0. Note
that, although the ansatz (25) neglects toroidal field compression by using a constant F0

instead of the flux function F (ψ) for RBφ, the Shafranov shift is retained due to the use
of the solution of the Grad-Shafranov equation with nonzero FF ′ as the initial condition
for ψ.
Summarizing, the reduced MHD is defined by the magnetic and velocity ansatz given
by equations (25–26) respectively. The weak form for the reduced MHD equations after
integration by parts can be directly derived from the general expressions (17–20) taking
into account the present definition of the functional spaces. We detail in the sequel
the expression of the magnetic potential and momentum equations. For the magnetic
potential, it is convenient to use A? B as test function and we obtain∫

∂A

∂t
·B A? = −

∫ (
E− F0∇u

)
·B A?

that gives the problem: Find ψ ∈ H2 such that for any A? ∈ H2 we have:∫
1

R2

∂ψ

∂t
A? = −

∫ (
1

R
[u, ψ] +

η

R2
(j − j?)−

F0

R2

∂u

∂φ
+
δ∗
2ρ
∇p ·B

)
A? (28)

where we have introduced the Poisson bracket [f, g] = ∇f × ∇g · eφ. Note, that the
poloidal current component has been neglected in the resistive term. To establish the
momentum equation, we first use the expression of the velocity (27) together with our
definition of the gyro-viscous tensor (12) to obtain the equation:

ρ
∂v

∂t
= −ρv · ∇v − ρv∗i · ∇vE −∇p+ J×B +∇ · (τττ f + τττneo) + SV, (29)

where v = v|| + vE. Now, using successively v? B and V∗E as test functions allows to
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obtain two scalar equations for the parallel and poloidal components of the velocity:∫
ρ
∂v

∂t
·B v? =

∫ (v · v
2
∇ρ+ ρv ×w −∇p+∇ · (τττ f + τττneo) + SV

)
·Bv?

−
∫
ρ(v∗i · ∇vE) ·Bv? + BTv‖ , (30)∫

ρ
∂v

∂t
·V∗E =

∫ (v · v
2R2
∇(R2ρ) + ρv ×w −∇p+∇ · (τττ f + τττneo) + SV

)
·V∗E

−
∫
ρ(v∗i · ∇vE) ·V∗E +

∫
v∗B · ∇j + BTvE , (31)

where we have used the relation v · ∇v = ∇v·v
2 − v × w introducing the vorticity

w ≡ ∇ × v and j ≡ −RJφ. The equations for density and temperature are similar to
the full MHD context, but with the prescribed velocity and magnetic field expressions∫

∂ρ

∂t
ρ? = −

∫ (
∇ · (ρv) + v∗i · ∇ρ− Sρ

)
ρ? −

∫
DDD∇ρ · ∇ρ? + BTρ, (32)∫

∂p

∂t
p? = −

∫ (
v · ∇p+ γp∇ · v − (γ − 1)(τττ f + τττneo) : ∇v − Sp

)
p?

−
∫
κκκ∇T · ∇p? + BTp (33)

To derive the final formulation of the pressure equation, gyro-viscous cancellation as-
sumptions have been used. The boundary integrals appearing after the integration by
parts are indicated by the symbol BT and defined as

BTv‖ = −
∮
v∗
ρv · v

2
B · dS (34)

BTvE = −
∮
v∗
(
∇
(
R2ρv · v

2

)
− J×B

)
×∇φ · dS (35)

BTρ =

∮
ρ?DDD∇ρ · dS (36)

BTp =

∮
p?κκκ∇T · dS (37)

Note that in this derivation, once the ansatz and projection functions are defined, there
are no approximations on geometry. I.e., the reduced MHD derived here is not an aspect
ratio expansion of the full MHD model.

These equations involve some high order derivatives whose computations can be al-
leviated by the introduction of intermediate variables: the toroidal current density (j)
and toroidal vorticity (ω) satisfying the following partial differential equations

j = ∆∗Ψ ≡ R2∇ ·
(

1

R2
∇polΨ

)
, (38)

ω = ∆polu ≡ ∇ · ∇polu. (39)
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Symbol Description

Ψ Poloidal magnetic flux = R A · eφ with A the vector potential
u Velocity stream function = Φ/F0 with Φ the electric potential
j Toroidal current density = −R j · eφ = ∆∗Ψ
ω Toroidal vorticity = ∆polu
ρ Mass density = nemion for singly charged ions
T Temperature ≡ Te + Ti in the single temperature model
v|| Parallel velocity = v|| ·B/B2

Table 1 – Scalar physics variables of the base reduced MHD model. ω and j are derived
variables, connected to u and Ψ by definition equations.

Here, ∇polu denotes the gradient in the R-Z plane. The reduced MHD base model
consists of seven scalar physical quantities as variables, see Table 1. Five variables are
evolved in time (“five field model”), while ω and j are coupled to u and Ψ by definition
equations‖. The evolution and definition equations are solved simultaneously at every
time step in a fully implicit numerical scheme (see Section 3.2).

2.3.2. Boundary conditions

Boundary conditions can be set in a flexible way. By default, all variables are kept
constant in time on the computational domain boundary, wherever the latter is aligned
to a flux surface (Dirichlet). Where flux surfaces are intersecting the boundary (e.g.,
in the divertor region or for grids extended to the true physical wall) sheath boundary
conditions are applied as commonly done in divertor physics codes [67]. The poloidal flux,
current density, electric potential, and vorticity are kept fixed at the boundary, while the
parallel velocity is forced to be equal to the ion sound speed. For the density no Dirichlet
condition is forced and the boundary term (36) is not included. Not including the latter
boundary term in the finite element method naturally implies that DDD∇ρ · n = 0 and
therefore the perpendicular ion flux to the boundary is purely convective Γ ·n = ρV ·n.
The evolution of the boundary temperatures are constrained by the following B.C.s for
the normal ion and electron heat fluxes to the boundary

qi · n ≡
(
ρ

2
V ·V +

γ

γ − 1
ρ Ti

)
V · n− κκκi

γ − 1
∇Ti · n = γsh,i ρ Ti V · n, (40)

qe · n ≡
γ

γ − 1
ρ Te V · n− κκκe

γ − 1
∇Te · n = γsh,e ρ Te V · n, (41)

where γsh,i ∼ 2-3 and γsh,e ∼ 5-6 are the ion and electron sheath transmission factors
[67]. For the single temperature model (Te = Ti), the two latter expressions can be
added to find the total heat flux equation

q · n ≡
(
ρ

2
V ·V +

γ

γ − 1
ρT

)
V · n− κκκ

γ − 1
∇T · n = γsh ρ Te V · n, (42)

‖Via the definition equations, ω and j are projected to the G1 continuous Bezier basis, while ex-
pressing them directly in terms of u and Ψ would correspond to a discontinuous representation.
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where γsh is the total sheath transmission factor that has typical values of 7-8. The
latter B.C.s are expressed in the form κκκ∇T · n = −(cb − 1) ρ T V · n and replaced in
the boundary term (37) in order to implement them as natural B.C.s. For the electrons
cb,e = (γ − 1)(γsh,e − 1), for the ions cb,i = (γ − 1)(γsh,i − γ − 1) and the total heat flux
cb = (γ − 1)(γsh/2− γ/2− 1). Note that sheath boundary conditions are applied on the
whole boundary of the computational domain if grids extended to the physical first wall
are used (see Section 3.1.2). In case of free boundary simulations, the Dirichlet condition
on the plasma current density and poloidal flux is removed, and a natural boundary
condition is implemented instead, like described in Section 2.9. Further extensions of the
boundary conditions have been developed for particular applications, e.g., a limitation
of the current density to the ion saturation current [68].

2.3.3. Properties of the reduced MHD model

Since a significant number of reduced MHD models with very different properties have
been proposed in literature, some confusion exists regarding their capabilities. We ex-
plain a few key features of our reduced MHD model in the following. A recent discussion
of reduced and full MHD models is also provided by Ref. [69], and Section 2.15 shows
reduced MHD models for stellarator configurations yet to be implemented, including a
detailed discussion of the conservation properties.

In Ref. [65], it is shown that the model implemented in JOREK is energy conserving
as consequence of the full MHD being energy conserving and the ansatz based approach
being used. This is strictly valid only for the single-fluid model, where diamagnetic
drift effects are excluded, since the gyro-viscous cancellation is not exactly energy con-
serving [66, 70]. The non-conservation introduced by gyro-viscous cancellation is of
the order of δ∗pm/(ρ0 vA), where pm and vA denote the magnetic pressure and Alfvén
velocity, respectively. As long as δ∗ is small, the error should be acceptable. The en-
ergy conservation test shown in the right panel of Figure 17 supports a good energy
conservation also when diamagnetic drift effects are included. Note that, even without
diamagnetic drift, energy conservation is only exact in the limit of continuous time, and
introducing a finite time step also introduces a small error in the energy conservation.
Another source of error is the truncation of the toroidal Fourier series (see Section 3.1.3).
More formally, for a simplified version of the reduced MHD model, it has been shown in
Ref. [54] that reduced MHD models are a valid approximation of the full MHD model,
i.e., the solutions of the full MHD system converge to the solutions of an appropriate
reduced model.

Linear momentum is not exactly conserved locally by the reduced MHD models even in
the continuous limit. This becomes obvious when one acknowledges that each of the three
Cartesian components of the momentum equation govern momentum conservation in the
respective Cartesian direction, and all three must be satisfied individually in order for
linear momentum to be conserved. However, there are only two scalar velocity variables,
u and v||, in the reduced MHD model, and only two scalar equations governing these
variables, namely (30) and (31), remain in the reduced model. Thus, it is impossible
to locally conserve all three components of linear momentum in reduced MHD, except
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for some special cases. Globally, the z-component of momentum is always conserved,
as can be seen by letting v? = lnR (which gives V?

E = ∇z) in equation (31). One
can also ensure global conservation of the x and y components of linear momentum by
excluding the n = 1 term from the Fourier series, which forces the x and y components
of the integrated total momentum to zero due to symmetry. This topic is considered
in more detail in Ref. [71]. The full MHD model is conserving momentum exactly on
the equation level, comparisons presented in Section 4 between both models provide
confidence to some degree that the introduced error does not affect linear and non-linear
dynamics significantly.

The presented reduced MHD model satisfies ∇ · J = 0. In fact it can be shown that
equation (31) is identical to the weak form of ∇·J = 0. This is demonstrated by applying
the cross product ×∇φ to equation (29) in order to obtain the poloidal current density

F0Jpol =− jBpol −R2∇p×∇φ

−R2

(
ρ
∂v

∂t
+ ρv · ∇v + ρvdia,i · ∇vE −∇ · (τττ f + τττneo)− SV

)
×∇φ (43)

Then using the latter expression in
∫
v∗∇ · (Jφ + Jpol) = 0 and applying integration

by parts, equation (31) is recovered. As it can be inferred from equation (43), even if
the toroidal field is fixed in time, the poloidal currents exist in this model and evolve
according to the momentum equation and conservation of current. The ansatz (25)
together with the projection operator eφ · ∇× projects out, i.e. removes, the poloidal
currents from the system of equations. This does not imply that the poloidal currents
are neglected in the model, but rather their contribution to the toroidal field is dropped.
The poloidal currents can be calculated, a posteriori, from (43). As mentioned above, the
reduced ideal MHD momentum equation is consistent with the Grad-Shafranov equation,
even in the absence of poloidal currents. The force balance J × B = ∇p appears as
[ψ, j]−

[
R2, p

]
in the momentum equation. Substituting j = FF ′ (ψ) + R2p′ (ψ) shows

that the two terms in the pressure balance cancel. The very successful benchmarks
of VDE simulations between the JOREK reduced MHD model and the M3D-C1 and
NIMROD full MHD models shows the validity of this approach: the agreement regarding
plasma dynamics and halo currents is excellent (see Section 6.3).

As mentioned above, reduced MHD models aim to eliminate fast magnetosonic waves,
the fast propagation of which can impose restrictive CFL limits for explicit methods and
significantly increase the stiffness of the problem for implicit methods. In the JOREK
reduced MHD model presented here, the fast magnetosonic waves are eliminated by the
velocity ansatz (27). In Ref. [72], it is shown that any velocity field can be decomposed
into an E × B term, a field-aligned flow term and a perpendicular fluid compression
term∗∗, which are responsible for Alfvén waves, slow magnetosonic and fast magnetosonic
waves, respectively. The E×B and field-aligned flow terms are the first and third terms,
respectively, in the velocity ansatz (27), whereas the perpendicular fluid compression
term is not present in the ansatz.

∗∗The perpendicular fluid compression term is mostly responsible for plasma compressional motion
orthogonal to the background vacuum field, but some such compression is allowed already by the E×B
term. See Ref. [72] and the references therein for more detailed discussion.
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Finally, it is important to note that the reduced MHD model presented here can-
not correctly reproduce pressure-driven modes under all circumstances. In particular,
the 1/1 internal kink mode at nonzero β is affected. As shown in Ref. [69], the term
associated with fast magnetosonic waves in the energy functional can be written as

1

2

∫
V

∣∣δB‖ + δp/B0

∣∣2 dV,
where B = B0 + δB and p = p0 + δp; the quantities with a ’0’ subscript correspond to
the equilibrium, and quantities with a ’δ’ prefix are perturbations. Since in our reduced
MHD model, we have set eφ·δB = 0, we have δB‖ = B0·δB/B0 ≈ 0, whereas in full MHD
simulations, one often finds that B0 δB‖ ≈ −δp. Thus, in the case of pressure-driven
instabilities, the term above contributes a stabilizing effect due to the δp contribution
not being cancelled by B0 δB‖ [69]. Traditional ballooning modes in the plasma edge
are an exception to this rule. As shown in Ref [69], the Mercier criterion is modified
as 4εα(1 − q2) > s2q2 + α2, where α = −2q2R0p

′/B2
0 is the ballooning parameter and

s = rq′/q is the shear. Since q � 1 and α ∼ 1 in the plasma edge, ballooning modes are
largely unaffected, which can be seen in various benchmarks (Section 4.5). In Figure 19,
the linear growth rates for the internal kink mode are shown. For β near zero, the mode
is mostly current driven, and the stabilizing effect discussed above is negligible. However,
as β increases, the accuracy of reduced MHD quickly deteriorates. Alternate reduced
MHD models, such as that by Kruger et al [55], can better capture most pressure-driven
modes due to the incorporation of the constraint B0δB‖ = −δp into their model.

2.3.4. Related models and extensions

The various extensions available for the reduced MHD model are described in the fol-
lowing, Sections 2.4–2.11. Note, that also a simplified version of the reduced MHD
model is available, where the parallel momentum equation and the variable v|| have
been eliminated, while the rest of the description shown above remains unchanged. This
corresponds to a drop of slow magneto-sonic waves. The full MHD model of JOREK is
described briefly in Section 2.12. Formulations of reduced as well as full MHD appro-
priate for stellarators yet to be implemented are shown in Section 2.15.

2.4. External magnetic perturbations

For simulations of resonant magnetic perturbations (RMPs) used typically for ELM
mitigation or suppression, a 3D poloidal flux perturbation at the boundary of the com-
putational domain can be ramped up during the simulation [51]. The perturbation needs
to be pre-calculated by an external code (vacuum assumption for the boundary condi-
tion). This approach has widely been used for previous studies of RMPs (see Section 5.4)
with the drawback that the magnetic field perturbation at the computational boundary
cannot evolve consistently. Using the free boundary extension (see Section 2.9), RMPs
can alternatively be described fully consistently from 3D coils [73].
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2.5. Separate electron and ion temperatures

An extension for treating electron and ion temperatures separately [74] introduces one
additional variable to evolve the both temperatures independently in time. In particular,
different parallel heat diffusion coefficients can be used for the species, allowing to capture
the temperature evolution across an ELM cycle more accurately. The parallel heat
conductivity does not only influence the non-linear evolution of the plasma considerably,
but also affects linear stability properties (neglected in most stability codes).

2.6. Neutrals

A model extension is available to include a neutral particle fluid in the simulations,
a development originally started in Ref. [75]. The present version was derived and
implemented in Ref. [76]. One additional physics variable was introduced to describe
the distribution of neutrals across the computational domain. In this model, the neutral
transport is purely diffusive. Ionization and recombination terms, as well as radiative
loss terms are implemented. Recycling boundary conditions at the divertor targets
have recently been implemented [77, 78]. The model is used for deuterium massive gas
injection or shattered pellet injection simulations (see Sections 6.2) as well as detachment
studies (see Section 5.6). A kinetic treatment of neutrals is also possible using the
framework described in Section 2.10 with first applications on the way.

2.7. Impurities

For the modelling of impurities, several options exist. As a particularly simple model
to incorporate some impurity effects, a radiative loss term can be switched on in the
reduced MHD model with neutrals (Section 2.6). Losses are then calculated under the
assumption of a spatially and temporally constant background impurity distribution
with a prescribed radiative cooling rate.

For a more realistic description, a model exists where impurities are treated as an
additional fluid species [79–81]. This model is applied to massive gas or shattered pellet
injection simulations (see Section 6.2), but also to radiative collapse simulations (see
Section 6.1.2). One additional variable is introduced to describe the impurity density
distribution. All impurities are assumed to be convected together with the main plasma
independently of the charge state, and the impurities are assumed to be in coronal equi-
librium. The latter assumption may lead, at least in certain cases, to an underestimation
of energy dissipation by impurities. For example, for an axisymmetric benchmark case
on impurity dynamics [82], JOREK (with its coronal equilibrium model) predicts a
roughly two times slower thermal collapse than M3D-C1 and NIMROD which have a
more advanced model tracking the density of each impurity charge state. The coronal
equilibrium assumption also results in an instantaneous change in the ionization state
according to the electron temperature, resulting in difficulties in treating the ioniza-
tion energy and the corresponding recombination radiation which would not be present
in a self-consistently evolving non-equilibrium model. To avoid such artificial recom-
bination radiation, we currently treat the ionization energy as a potential energy. A
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more advanced model, going beyond the coronal equilibrium assumption, is presently in
preparation (see Section 2.15).

Also kinetic particles (Section 2.10) can be used to describe impurities. This has
already been applied to study the transport of tungsten during ELM crashes (see Sec-
tion 5.1) as well as the sputtering and SOL transport of tungsten (see Section 6.1.2).

2.8. Pellets

Several pellet ablation models are available in JOREK both for pellets consisting of the
same material as the main plasma (“Deuterium pellets”) and for pellets consisting of
a different material (“impurity pellets”, e.g., Argon or Neon). These ablation models
are combined with the neutrals model (Section 2.6) or the impurity model (Section 2.7),
respectively.

For the particle source corresponding to pellet ablation, scaling laws from various
Neutral Gas Shielding type of models in a Maxwellian plasma are implemented [83–
86]. The main idea behind these models is that the ablation rate naturally adapts such
that the incoming heat flux from the ambient plasma is almost fully absorbed by the
ablation cloud surrounding the pellet. Literature provides scaling laws for ablation rates
for various pellet materials (including mixtures) which have been obtained by fitting
numerical results of gas dynamics simulations [84–86].

Ablated atoms are deposited via a volumetric source term of the form:

Sn ∝
[
0.5− 0.5 tanh

(
(R−Rp)2 + (Z − Zp)2

δrc

)][
0.5− 0.5 tanh

(
φ− φp
δφc

)]
, (44)

where Rp and Zp are the pellet location and δrc and φc characterize the poloidal and
toroidal extension of the ablation cloud. The parameters δrc and δφc determine the
width of smoothing of the source profile in poloidal and toroidal direction. The pellet is
presently assumed to move along a straight line with constant velocity, and its particle
content (and physical size) is evolved according to the ablation. The toroidal extension
δφc of the ablation cloud in simulations is typically far larger than in reality due to
limited toroidal resolution, but tests shown in Ref. [87] for a Deuterium pellet found
that for a sufficiently small δφc, JOREK results converge, i.e. MHD dynamics becomes
independent of δφc. For impurity pellets, the same may however not be true because
of the radiative loss term, which scales like nimpne, i.e. like n2

imp in regions where the
impurity density nimp is large, such that the total power radiated in the ablation cloud
scales like 1/δφc. For shattered pellet injection simulations [88], the model described
above is applied for each individual shard. Input parameters allow specifying the shard
size distribution, the averaged velocity and velocity spread of the shards.

2.9. Free boundary and resistive walls

Via a coupling [89] to the STARWALL code [90], JOREK is capable of free boundary
simulations. In the Greens functions approach applied here, STARWALL discretizes the
conducting structures by triangles (thin-wall approximation), while the vacuum region
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surrounding the plasma and conducting structures is not discretized. The JOREK-
STARWALL coupling is then performed via a natural boundary condition at the edge of
the JOREK computational domain that replaces the Dirichlet boundary conditions for
the poloidal flux and current density. In a boundary integral, that arises from partial
integration (see Section 3.1.4) of the current definition equation, and that vanishes for
fixed boundary simulations, the tangential magnetic field is expressed in terms of the
poloidal flux values and the currents in the conducting structures as shown in detail in
Ref. [89]. The B.C. is a Neumann type condition for the magnetic vector potential, which
results from the analytical solution of the vacuum field given by the Green’s functions.
In terms of the response matrices, the magnetic field has the form

B× n = Mvac B · n + MII,

where n is the normal vector to the boundary, Mvac is the vacuum response matrix
and MI is a matrix that calculates the contribution of the wall and coil currents (I).
The evolution of the wall currents is calculated with resistor-inductor circuit equations
that arise for each of the discretized wall elements. The “response matrices”, which
allow to calculate the evolution of the wall currents and the tangential magnetic field
at the JOREK boundary, are calculated by STARWALL only once in the beginning of
a simulation. Since they are only dependent on the JOREK grid and wall geometry,
response matrices may even be re-used for further simulations if the geometry remains
the same. The response matrices are written out by STARWALL into a file and read
by JOREK using MPI I/O in both codes. In JOREK, the matrices are used to evolve
wall currents in time and to implement the natural boundary condition. The coupling
between plasma and wall currents is implemented in a fully implicit way that is entirely
consistent with the time evolution of the intrinsic JOREK equations. The dimensionality
of the sparse matrix system is not increased in spite of this fully implicit approach
compared to fixed boundary simulations since the implicit values of the wall currents
are analytically eliminated from the system ††.

JOREK-STARWALL allows to choose a fixed or free boundary mode independently
for each toroidal harmonic. This is sometimes used to keep fixed boundary conditions
for the axisymmetric n = 0 component, while a free boundary treatment is applied to
non-axisymmetric n 6= 0 components. For simulations, where also the n = 0 compo-
nent is treated to be free, the equilibrium solver has been extended to free boundary
cases [89] and has recently been updated for Newton iterations to enhance convergence
(using the methods described in Ref. [91]). Magnetic field coils have been implemented
self-consistently in STARWALL, including time varying coil currents and their inter-
action with conducting structures [92] and recently also arbitrary 3D coils have been
implemented in a self-consistent way. [73] (see also Section 4.8). This allows to include
active coils (poloidal field coils, RMP coils, etc.) and passive coils (Mirnov coils, saddle

††Note, that the natural boundary condition, however, leads to a less sparse matrix structure for
boundary degrees of freedom. Local interactions between neighboring grid nodes are replaced by global
interactions on the boundary. To ensure efficient load balancing also for such simulations, the domain
decomposition is slightly adapted compared to fixed boundary simulations.
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Figure 2 – Bottom view of the thin wall used for the 3D VDE benchmark case published in
Ref. [99] showing the distribution of source/sink (halo) currents (black arrows).
The colors indicate the perpendicular current density into the wall respectively
out of it (in a.u.). The B.C. for the electric potential was Φ = 0 here such that
the wall acts ideally conducting for the halo currents.

coils, etc.) consistently in JOREK-STARWALL simulations. A functionality is available
also, which allows to create a free boundary equilibrium for a given fixed boundary case,
by automatically determining appropriate coil currents [93].

Via the derivation shown in Refs. [94–96], plasma currents flowing directly into con-
ducting structures or out of them (current sharing between plasma and wall), can be
treated consistently with the STARWALL formalism. The respective derivation for
JOREK-STARWALL including the interaction of eddy and halo currents are shown
in Ref. [93]. However, the implicit coupling of wall source/sink (halo currents) with the
plasma electric potential has not been implemented yet. For walls with a low poloidal
path resistance, the usual JOREK B.C. for the electric potential (Φ = 0) gives the
correct distribution of halo currents as demonstrated in [97]. The formalism derived in
[94–96] has been implemented as a post-processing tool to calculate wall forces and to
visualize the source/sink currents (see Figure 2). This tool has been validated as well
for 3D walls with holes. A formalism for treating ferromagnetic components in a thin
wall model is shown in Ref. [98] but integration in JOREK-STARWALL hasn’t been
approached so far.

Some numerical limitations had originally restricted JOREK-STARWALL to moder-
ate toroidal and poloidal resolutions. In particular, STARWALL was originally purely
OpenMP parallelized, the coupling terms inside JOREK were treated OpenMP parallel
only, and the fairly large and sparse “response matrices” were duplicated across all MPI
ranks in JOREK. Within the project described in Ref. [100], an MPI parallelization of
STARWALL, a hybrid MPI+OpenMP parallelization of the coupling terms in JOREK,
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parallel input/output for the response matrices in both codes as well as a distributed
storage of the response matrices across the MPI ranks were implemented including the
distributed matrix-matrix operations. With these developments, high resolution cases
are possible now with an excellent performance. For a verification of free boundary
simulations, see Section 4.8.

2.10. Kinetic particles

For a number of applications, such as the transport and interaction of fast particles,
impurities and neutrals with the MHD fluid, the main fluid model(s) in JOREK have
been extended with a kinetic particle module. Particles are followed in the time depen-
dent 3D magnetic and electric fields given on the cubic finite element grid. For the fast
ions, impurities and neutrals, the well-known Boris scheme is used. The full orbit of the
particles is followed both in real (R,Z, φ) space and in the local coordinates (s, t, φ) of
each element. At every particle step, the Boris scheme is applied in (R,Z, φ) coordinates
including a correction for the toroidal geometry [101]. The updated local element co-
ordinates are found by Newton iterations. Following the particles in real space has the
advantage that the crossing of a finite element boundary does not influence the Boris
scheme. The change of element of a particle position is handled in the update of the
local element coordinates. For the rare case a particle crosses many element boundaries,
an efficient RTree algorithm is used to find the particles element. The Boris scheme
combined with a higher order interpolation of the magnetic and electric fields in time
assures accurate particle trajectories with good energy conservation (see Section 4.9).
Multiple particle species can be traced within one simulation allowing for example simu-
lations combining neutral deuterium, heavy impurities and fast ions. For the simulation
of relativistic runaway electrons, a relativistic particle tracer (both full orbit or guiding
center) was implemented [102, 103] with excellent energy and momentum conservation
properties (see Section 4.9). This model was applied to study various aspects of runaway
electron dynamics with a test particle approach (Section 6.4). In addition to the particle
following, the charge state of the particles and the ionisation, recombination and radia-
tion rated are consistently evolved in time according to the background fluid properties,
using the OPEN-ADAS rate coefficients including all charge states. A model for particle
collisions with the background fluid or with projected moments of the kinetic particles,
following Refs. [104–106] has been implemented and successfully bench-marked with the
cases in Refs. [105, 106]. The collision model includes the thermal force, relevant for
the movement of impurities upwards relative to the temperature gradient in on open
field lines. To model the main source of impurities, the sputtering of divertor/first wall
material by incoming particles and MHD fluid has been implemented using the sputter-
ing yields from Refs. [107–109] and bench-marked with the results from Ref. [110]. The
first application, with test particles, studied the transport of tungsten impurities during
(simulations of) ELM crashes (see Section 5.1), tungsten sputtering during ELMs and
scrape-off layer transport of tungsten (see Section 6.1.2). For the modelling of the inter-
action of the MHD fluid and particles, coupling terms have been implemented. These
terms appear mostly as additional explicit source terms on the right hand side of the fluid
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equations. To describe the excitation of MHD instabilities driven by fast particles, both
the coupling schemes based on the pressure and the current have been implemented. To
include the neutral and impurity physics, density, momentum and energy sources result-
ing from ionisation, recombination and radiation have been added. From the particle
distribution, the source terms are calculated by projecting the moments of the particle
distribution onto the finite element representation. For the mass density source Sρ:

Sρ (x) =

∫
mif (x,v) dv (45)

S̃ρ (x) =
∑
ijk

pρ,ijkHij (s, t)Hφ,k (φ) (46)

Where pρ,ijk are the finite element expansion coefficients to be determined by the projec-
tion. The projection uses the weak form with the same testfunction as the finite element
basis functions v∗ = HijHφ,k:∫

v∗S̃ρ (x) dx =

∫
v∗Sρ (x) dx =

∑
i

v∗ (x)mwiδ (x− xi) (47)

Here, the integral over the particles becomes a sum over all particles weighted by the
finite element basis functions. The system of equations (47) is factorised only once and
solved at particle projection. The projection results can be smoothed by solving instead:∫

v∗
(
1 + α∇4

)
S̃ρ (x) dx =

∫
v∗Sρ (x) dx (48)

Typical values for α are, depending on the application, of the order of 10−10 to 10−12.
The projection is required at every time step of the main fluid part. The number of
particle steps for each fluid step varies from 100-1000 for fast particles to order 1-10
for slow heavy impurities. The sources are either a time integrated source (typically
required for good conservation properties for particle/energy sources), or at one given
time (for fast particle pressures).

2.11. Relativistic electron fluid

A relativistic electron fluid model is available [111], which allows to simulate generation,
transport, and losses of runaway electrons (REs). One additional variable is introduced
to describe the spatial distribution of the RE density. Most of the relevant primary
and secondary generation mechanisms have been implemented, and successfully been
benchmarked against lower-dimensional codes. This fluid approach does not capture
some kinetic aspects (i.e., accurate treatment of the energy spectrum), but allows to
study the mutual non-linear interaction between REs and MHD. In that sense, the
approach is complementary to the RE test particle model described in the previous
Section, which captures kinetic effects but does not account yet for the back-reaction of
the REs to the plasma. The model has so far been applied to the interaction of REs
with internal kinks, vertical displacement events, and tearing modes as well as RE beam
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termination studies (Section 6.4). An extension has very recently been developed, which
takes into account the effect of REs onto the radial force balance of the plasma [112]. The
implementation of the interaction terms with the impurity fluid is under development.

2.12. Full MHD model

A full MHD model suitable for production simulations is available in JOREK [66, 113,
114] and can be used for many applications. The model was, nevertheless, only used
for few physics applications so far, since its final robust implementation has only been
completed recently. Several important extensions available for the reduced MHD model
have now been implemented in the full MHD model already.

As discussed in Section 4, benchmarks of the reduced and full MHD models of JOREK
show that the reduced MHD model is capturing the key physics very well under many
conditions while reducing computational costs. However, it is also shown that for certain
types of instabilities such as the internal kink it is necessary to use the full MHD model
as also has been found in analytical calculations [69]. Furthermore, VDE benchmarks
revealed an overall excellent agreement between the reduced MHD JOREK model and
full MHD codes (Section 4.8). However, the toroidal variation in the plasma current is
not reflected.

The full MHD model has recently been extended for sheath boundary conditions and
numerical stabilization terms were implemented [115]. The full-MHD physics model
implemented in Ref. [66] includes plasma flows like the reduced-MHD model, with dia-
magnetic terms, neoclassical poloidal friction, and toroidal rotation. The bootstrap
current source has also been included. A neutrals fluid model like used for MGI and SPI
disruption simulations, has not been implemented yet and will be addressed in future
studies.

2.13. Electrostatic fluid turbulence model

JOREK code is very flexible for the implementation of many other physical models
not only related to MHD. The realistic geometry, global equilibrium obtained from the
Grad-Shafranov solver, flux-aligned grid, numerical methods, sparse matrix solver are
common for many applications of the JOREK code. An electrostatic turbulence model
has been implemented into JOREK which allows to study ion temperature gradient
(ITG) driven turbulence in realistic tokamak geometry including SOL and X-point. Both
fluid [116–118] and full kinetic orbits approaches are under development. Benchmarks
with standard CYCLONE case [119, 120] for fluid and kinetic approaches have already
confirmed that the implementation is capturing the growth rates of the instabilities in
simplified configurations accurately [117, 118]. The model has recently been extended to
model ITGs in X-point geometry with SOL for realistic JET and COMPASS discharges
(see Section 7.1).
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2.14. Fully kinetic electrostatic model

The particle framework described in Section 2.10 has been used to implement a fully
kinetic (electrostatic) model (i.e., no fluid part) of the plasma with full orbit ions and
adiabatic electrons. In this case, there is only one equation to solve for the electric
potential Φ in terms of ion density ni:

N > 0 : ΦN (x) = ni,N (x) (49)

N = 0 : ∇ ·
(
meTe
e2B2

∇⊥Φ

)
+ (Φ− 〈Φ〉〉 =

ni − ni0
ne0

(50)

where N is the toroidal harmonic, ni0 and ne0 the initial ion and electron density. Due
to the full orbit ions, there is no ion polarisation density in Eq. (50). This equation is
solved as a slightly modified form of the projection operator from Eq. (47). The full orbit,
full-f model has been successfully benchmarked against the linear ITG growth rates and
frequencies from [120] and against the zonal flow frequencies and damping from [121],
see Section 7.1. The model can be used with any of the JOREK finite element grids,
allowing ITG simulations in arbitrary X-point geometry, including the open field line
region (see Section 7.1).

2.15. Outlook

Various extensions to the models are in preparation, and only some of them can be
mentioned here. Present plans involve a more modular structure of the physics models
to simplify combining arbitrary extensions when needed. Sheath boundary conditions
will be further refined, in particular allowing for outflows with Mach numbers larger than
one. A fully consistent neoclassical model for the plasma resistivity is being implemented.

Two types of impurity models going beyond the coronal equilibrium assumption are
under development: a fluid model involving one additional continuity equation per im-
purity charge state (or bundles of charge states), and a model in which impurities are
treated as a set of particles, the charge of each particle being evolved individually.

Regarding the RE fluid model, it is planned to evolve in time an average parallel
momentum of the particles, allowing to capture the effect of the REs onto the radial
force balance, which leads to a major-radial shift between the flux surfaces and the RE
drift-orbit surfaces in the absence of thermal pressure.

An effort is presently taken to implement an energy conserving current-coupling scheme
for the kinetic particles and the MHD fluid allowing to study the energy exchange of
MHD modes with super-sonic particles. Related to that, kinetic MHD or simplified gy-
rokinetic models like described in Refs. [122, 123] are presently evaluated and might be
implemented in JOREK.

In preparation of a 3D extension aiming to simulate stellarator plasmas, a hierarchy of
reduced and full MHD models with good energy and momentum conservation properties
has been derived in a form suitable for stellarators [71, 72]. The reduced model with some
further improvements is presently being implemented into JOREK. Further extensions
of the numerical methods, in particular regarding spatial discretization and solver, are
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Figure 3 – Single 2D Bezier element in R-Z space. The element-local s-t coordinate system
is also shown. The mapping from s-t into the R-Z space is expressed in Bernstein
polynomials. The same basis functions are also used for physical variables like
the temperature (iso-parameteric).

necessary to achieve well resolved stellarator simulations and are evolving in parallel (see
Section 3.8).

3. Numerical methods

The JOREK code is largely written in Fortran with a few core routines in C and C++.
It has only few library dependencies allowing to port the code easily to new machines.
Some aspects of the code development are described in Section 3.7. The numerical
methods used in the code are shown in the following, in particular the spatial and
temporal discretization, numerical stabilization schemes, the construction of the sparse
matrix system, the iterative solver with its preconditioner, and the hybrid parallelization
of the code are described.

3.1. Spatial discretization

JOREK solves the equations of the respective physics models in weak form on a G1

continuous 2D isoparametric Bezier finite element grid combined with a toroidal Fourier
expansion [2, 40]. The Bezier basis and the finite element grids constructed from them
are shown in Subsections 3.1.1 and 3.1.2, respectively. The toroidal Fourier expansion
is described in Subsection 3.1.3.

3.1.1. Bezier basis

Two-dimensional third order Bernstein polynomials are defined by

B3
i,j(s, t) = B3

i (s) B3
j (t) i, j = 0 . . . 3, (51)

with

B3
i (s) =

3!

i!(3− i)!
si(1− s)3−i (52)

and where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1 denote the element-local coordinates, which take
values of 0 respectively 1 at the four element vertices (see Figure 3 and Appendix A).
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Figure 4 – A Bezier element is shown in 3D space. The left plot represent the control points
of the elements (blue). The red points are the grid nodes. The right plot depicts
the resulting surface. The red structure at the bottom of the plots represents the
element in (R,Z) space. Within each element, a local (s,t) coordinate system
is defined (Figure 3). The elevation represents the spatial distribution of a
physical variable, e.g., the temperature.

All physical quantities, and also the R and Z positions of the elements themselves (i.e.,
the mapping from element local to global coordinates) are expressed in this basis:

X(s, t) =
3∑
i=0

3∑
j=0

Pi,j B
3
i,j(s, t) (53)

with X being an N-dimensional vector containing R, Z, and all interpolated variables
of the model (e.g., R, Z, Ψ, T, ρ, etc). Here, Pi,j denotes the Bezier control points in
the N-dimensional space (see Figure 4). For all physical variables, this 2D expression is
multiplied with the toroidal Fourier basis (next Section), while for R and Z, axisymmetry
is assumed. The coordinates s and t are orthogonal to the toroidal coordinate φ‡‡.

Since first order continuity in real space (G1), i.e. continuity of the values and the
gradients, is applied as constraint between neighboring elements, corresponding control
points of adjacent elements need to lie on a common line in the N-dimensional space
through the vertex location, which reduces the number of degrees of freedom (see Fig-
ure 5). Effectively, only four degrees of freedom pk, uk, vk, and wk remain per node k
and for each component of the vector X, which are shared by all elements connected
to the respective node. These degrees of freedom are linked to the value, s-derivative,
t-derivative, and s-t cross-derivative at the location of the grid node. The relation of

‡‡An ongoing 3D extension of the code will generalize the mapping to be non-axisymmetric, i.e., R
and Z will also be expanded in the Fourier basis. In addition, the orthogonality of s and t with respect
to φ will be given up depending on the choice of coordinates. See Sections 2.15 and 3.8.
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Figure 5 – Two neighbouring Bezier elements are shown. The left plots represent the
control points of the elements and the right plots depict the resulting surface.
In the plots at the top, the neighboring Bezier elements share the control
points at the common boundary such that values are continuous across the
boundary between the elements (G0 continuity). However, since the control
points around the boundary are not aligned to each other, i.e., green lines
exhibit bends, derivatives are not continuous across the element boundary. The
plots at the bottom correspond to the discretization used in JOREK, where
both values and derivatives are continuous across the element boundaries (G1).
Here, the control points at the element boundaries are aligned reducing the
degrees of freedom, i.e., the green lines do not exhibit bends.
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the control points with the coefficients pk, uk, vk, and wk is explicitly shown in Ref. [2].
Since metric tensor and Jacobian differ between elements, each element e has specific
scale factors dek,l for each degree of freedom l at each node k to guarantee G1 continuity.
These scale factors are a geometric grid property and therefore time independent and
identical for each physical quantity. For any given quadrangular element e of the mesh,
a physical variable, e.g., temperature T , is expanded in the G1 continuous basis in the
following way (the Fourier expansion in toroidal direction is omitted here for clarity):

T (s, t)

∣∣∣∣
e

=

nvert∑
k=1

ndofs∑
l=1

Tk,lHk,l(s, t) d
e
k,l (54)

where nvert = 4 is the number of vertices per element, ndofs = 4 is the number of degrees
of freedom per vertex. Hk,l are the sixteen basis functions written as a product of 1D
basis functions in s and t: Hk,l(s, t) = Hk(s)Hl(t). The four 1D basis functions Hk(s)
are constructed as linear combinations of Bernstein polynomials to satisfy:

• H1(s = 0) = 1, H ′1(s = 0) = 0, H1(s = 1) = 0, H ′1(s = 1) = 0

• H2(s = 0) = 0, H ′2(s = 0) = 1, H2(s = 1) = 0, H ′2(s = 1) = 0

• H3(s = 0) = 0, H ′3(s = 0) = 0, H3(s = 1) = 1, H ′3(s = 1) = 0

• H4(s = 0) = 0, H ′4(s = 0) = 0, H4(s = 1) = 0, H ′4(s = 1) = 1

i.e., the well-known cubic Hermite finite elements. This way, the coefficients Tk,l become
node properties (nodal formulation) which all elements containing the respective node
are sharing, while the coefficients dek,l corresponding to the same node are different for

each element to guarantee the G1 continuity.
G1 continuity is not strictly enforced at the grid axis and in the direct vicinity of the

X-point(s) in a flux surface aligned grid due to the specific topology at these points (more
than four elements share a common node). Although this is typically not an issue in the
simulations, an implementation of strict G1 continuity also at these special points is on
its way by locally combining basis functions in an appropriate way (see Section 3.8). In
a few cases, the higher order FE formulation can produce “overshoots” leading to zero
or negative values of density and temperature, in particular in the presence of strong
convection. For that reason, numerical stabilization has been implemented as shown in
Section 3.3. The cubic Bezier element formulation is a generalisation of the isoparametric
cubic Hermite elements [39], allowing a local refinement of each element in 2 or 4 sub
elements [2].

3.1.2. Finite element grids

All data structures and routines in JOREK are implemented in a general way suitable
for unstructured grids. Nevertheless, most grids in use are effectively flux surface aligned
grids which are structured within the respective topological domains. Usually, a JOREK
simulation is started by calculating the equilibrium on an initial grid, which is not flux
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Figure 6 – JOREK example grids shown at reduced resolution for clarity. (Left) Flux-
surface aligned grid [124] for a TCV equilibrium with two X-points (the lower
X-point is active). The part in the closed flux region is shown in light blue,
the two separatrices in black, the grid between the separatrices in grey, the
lower private flux region in dark blue, the upper private flux region in red,
the outer open flux region in orange, and the inner open flux region in green.
(Right) Flux surface aligned X-point grid extended to the true first wall (using
the methods described in Ref. [125]) for a MAST Upgrade case with super-X
divertor.
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surface aligned. Based on this equilibrium, a flux surface aligned grid is then constructed.
For numerical accuracy, using such a flux surface aligned grid is in general beneficial (see
Section 4.2), while the code can be used also with non-aligned grids where appropriate.
The grid types available include simple rectangular grids, simple polar grids, polar grids
with a rectangular central region. These grids are mostly used as initial grid and only
occasionally for the time evolution, e.g., in case of VDEs, where the grid would not
remain aligned during the simulation anyways.

Flux surface aligned grid generators are available for plasmas without X-point, with
an upper X-point, a lower X-point, or two X-points. Additionally, an extension of grids
to the true first walls is possible as described in [125]. Grid patches (which are not
flux-surface aligned any more) are added in the far scrape-off layer to cover the space
between a flux-surface aligned X-point grid and plasma facing components. Figure 6
contains two examples for a double X-point grid and a double X-point grid extended to
the true physical wall (both are shown at reduced resolutions for clarity).

3.1.3. Toroidal Fourier series

As mentioned before, the poloidal discretization in Bezier finite elements is combined
with a toroidal Fourier expansion for the physical variables. The toroidal real Fourier
harmonics included in a JOREK simulation are selected by the number of harmonics
ntor, where cosine and sine components are counted separately – since n = 0 does not
have a sine component, ntor must be an uneven number. In addition, the periodicity
nperiod can be specified. The latter parameter allows to enforce periodicity in the torus
after a fraction 1/nperiod of a full toroidal turn. This effectively means, that instead
of n = 0, 1, 2, . . . , the harmonics n = 0, 1 · nperiod, 2 · nperiod, . . . are included in a
simulation. The number of toroidal planes nplane for the integration along φ direction
needs to be chosen large enough to avoid aliasing. Typically, nplane ≥ 2(ntor − 1) is
sufficient, i.e., 4 planes per period. While fast Fourier transforms performed during
the matrix construction using the FFTW library (see Section 3.4) can handle arbitrary
integer numbers, best performance is usually achieved, when nplane is taken to be a power
of two.

3.1.4. Weak form

As a consequence of using the finite element approach, the model equations are solved in
weak form such that each equation is multiplied by a test function from the same space
as the basis functions, and then integrated over the volume V of the computational
domain (Galerkin method). Since the resulting equation needs to be fulfilled for each
test function, many linear relations are obtained, which form the rows of the matrix
system (see Section 3.4 for more details on the matrix construction). In case of operators
involving higher order derivatives, partial integration is performed e.g.,∫

V
dV a∇ · b = −

∫
V
dV ∇a · b−

∮
A
dAab · n (55)
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Here, a and b are arbitrary scalar respectively vector expressions, A denotes the bound-
ary of the computational domain and n the normal vector to that boundary. Depending
on boundary conditions, some of the boundary integrals vanish, otherwise they are im-
plemented. In particular cases, relations known from physical properties of the system
may be plugged into the boundary integrals. In such a case, the boundary integral is ex-
pressed in terms of other variables and natural boundary conditions are obtained§§. Such
a natural boundary condition is used, for instance, for the JOREK-STARWALL coupling
where the STARWALL expression for the magnetic field tangential to the boundary is
plugged into the boundary integral of the current definition equation (see Section 2.9).

3.2. Temporal discretization

The physical equations expressed in the form ∂A(u)/∂t = B(u, t), where u denotes the
vector of physical variables, are discretized in time as[

(1 + ξ)

(
∂A

∂u

)n
−∆tθ

(
∂B

∂u

)n]
δun = ∆tBn + ξ

(
∂A

∂u

)n
δun−1, (56)

where the second order linearised Crank-Nicolson scheme is selected by (θ, ξ) = (1/2, 0)
and the second order BDF2 Gears scheme is selected by (θ, ξ) = (1, 1/2). The first
order implicit Euler method corresponds to (θ, ξ) = (1, 0) but is normally not used in
practice. Here, δun = un+1 − un denotes the change of the variables from time step n
to n+ 1. The definition equations for current and vorticity are directly implemented to
be satisfied at time point n+ 1, the above scheme does not need to be applied.

Details, and the time stepping scheme suitable for a more general form of equations
is shown in Appendix C. The linearization involved in the above time stepping can be
replaced by Newton iterations with a beneficial effect onto non-linear stability in some
cases, as demonstrated in Ref. [65], however this is not implemented in the present code
version as these earlier tests showed that larger time steps are possible, however at an
increased computational cost and memory consumption such that the overall benefits
were limited.

3.3. Numerical stabilization

When the system considered is dominated by convection, the finite element method
may suffer from numerical instabilities as illustrated on the left hand side of Figure
7. The variational multi-scale (VMS) is a general framework to avoid these numerical
artifacts [126, 127]. The main purpose of the VMS is to take into account the effect
of the unresolved scales onto the numerically resolved scales. The consequence is to
complement the physical model by a proper numerical dissipative term that scales with
the mesh size. The SUPG and the Taylor-Galerkin [128] methods are subsets of the VMS.

§§Since natural boundary conditions are not enforced, it needs to be checked whether a simulation
actually fulfills the original relation. If they are not satisfied well enough, smaller time steps are typically
required.
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Let us explain with the mass conservation equation how a simplified VMS contribution
is added to the weak form. Assume the initial equation is

∂ρ

∂t
+ V · ∇ρ = −ρ∇ ·V + Sρ

In order to stabilize the discretization of the convection term V · ∇ρ a dissipation term
is added to the weak form to remove numerical artifacts without altering the physical
dynamics (Figure 7). With this numerical dissipation the equation that is numerically
solved now turns into the following form

∂ρ

∂t
+ V · ∇ρ = −ρ∇ ·V +∇ · (DDDvms∇ρ) + Sρ.

Here, the stabilization tensor DDDvms, in the context of magnetized plasma, is designed
such as to take into account the strong anisotropy of the flow

DDDvms = D‖,vms(b⊗ b) + D⊥,vms (III− b⊗ b)

where
D‖,vms = τ∗‖ (V · b)2 and D⊥,vms = τ∗⊥(V ·V − (V · b)2)

The scaling factors τ∗‖ and τ∗⊥ are positive and of the order of the mesh size. More
precisely, scaling factors correspond to the ratio of the mesh size over the maximum
speed of the acoustic waves and thus have units of time. This scaling ensures that, under
mesh refinement (acoustic speeds do not change as the same physics is considered), the
VMS numerical dissipation asymptotically vanishes. Therefore, the modified equation
numerically solved is consistent with the initial physical model. For the Taylor-Galerkin
approach [128, 129] τ∗‖ = τ∗⊥ = δt/2. Sometimes, we directly fix D‖ and D⊥ to values that
scale with the mesh size and the estimated background turbulence. Similar stabilization
is applied to the other equations. For the full MHD model (Section 2.12), a more
general stabilization has been also developed [130], where the hyperbolic part (acoustic
and material waves) of the system is stabilized globally, to take into account the coupling
between variables. In the context of the reduced MHD without diamagnetic effects, the
velocity profile is defined by two scalar variables: the parallel velocity (v||) and the
velocity stream function (u)

V = −R2∇u×∇φ+ v||B

It is then assumed that the parallel velocity is v||B and the perpendicular velocity is

−R2∇u×∇φ. In this context, we use the approximations D‖,vms(b⊗ b) ' δt
2 v||

2B⊗B

and D⊥,vms (III− b⊗ b) ' δt
2 R

4(∇u×∇φ)⊗(∇u×∇φ). The Taylor-Galerkin stabilisation
associated to the density equation can finally be written as:

∂ρ

∂t
+V ·∇ρ = −ρ∇·V+

δt

2
∇·
(
v||

2BB · ∇ρ
)

+
δt

2
∇·
(
R4∇u×∇φ(∇u×∇φ) · ∇ρ

)
+Sρ.
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Figure 7 – Example of the effect of the Taylor-Galerkin stabilisation (TG2) for a simplified
model for the vorticity evolution (Ref. [131]) in 2D on a grid of 50 by 50 cubic
finite elements.

The associated weak form now becomes:∫
∂ρ

∂t
ρ? = −

∫ (
∇ · (ρV)−∇ · (DDD∇ρ)− Sρ

)
ρ?

−δt
2

∫
v||

2B · ∇ρB · ∇ρ? − δt

2

∫
R4 ((∇u×∇φ) · ∇ρ) ((∇u×∇φ) · ∇ρ?)

Similar stabilization is applied to the other equations of the reduced MHD model. Since
users perform both spatial and temporal convergence tests for production simulations,
and since VMS and TG stabilization both consistently vanish in the limit of high spatial
and temporal resolutions, a significant influence of the stabilization onto physics results is
excluded, in particular energy and momentum conservation is not affected. Furthermore,
the energy conservation diagnostics automatically evaluated during each simulation allow
to check this easily. For instance in a violent massive gas injection (MGI) case, for
which energy conservation is discussed in the verification section briefly, the small non-
conservation observed is not associated to stabilization as separate checks confirmed.
Details about numerical stabilization are omitted when discussing simulations in the
results sections for that reason.

3.4. Matrix construction

The linear system of equations to be solved in each time step is described by a sparse
matrix system. Due to the locality of the Bezier basis functions, usually only one out
of several thousand entries in the matrix is non-zero. The matrix is constructed in a
distributed way by a domain decomposition, where each MPI task is responsible for
creating the matrix entries corresponding that correspond to its respective part of the
finite element grid. Note that the full matrix construction could be avoided by a matrix
free evaluation of matrix vector products, however earlier tests showed a higher com-
putational cost while the memory consumption dominated by the preconditioner isn’t
reduced too much. Each MPI tasks uses OpenMP to parallelize further. The matrix con-
tributions are calculated separately for each grid element (“element matrices”). These
element matrices are calculated by carrying out the integrals in the weak form of the
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equations over the element-local coordinates s and t via Gauss quadrature. The inte-
gration in toroidal direction is either carried out by a direct summation over equidistant
toroidal planes (for very small problems), or by fast Fourier transform (FFT). Vectoriza-
tion and parallel scalability of the matrix construction has recently been improved [132].
Details on the matrix construction and properties are shown in Ref. [133].

3.5. Solver

Several variants are implemented in JOREK for solving the linear sparse matrix system
after it has been assembled like described in the previous Section. In the simplest
approach, which is usually only used for axisymmetric n = 0 simulations, the whole
matrix system is treated by a direct solver. Interfaces to the PaStiX [134], MUMPS [135,
136], and WSMP [137] direct sparse matrix solvers are implemented. PaStiX is mostly
used in practice. PT-Scotch [138] or ParMETIS [139] are used internally by the solvers,
to minimize fill-in during the matrix factorization and to achieve good performance. An
interface to the STRUMPACK library [140] has been added very recently [133]. Several
of the solvers offer the possibility to compress the matrix system via block low rank
(BLR) compression or via hierarchically semiseparable (HSS) matrices, for which only
first tests have been done with JOREK so far [141].

For non-axisymmetric simulations, a restarted GMRES variant [142] is usually ap-
plied [41]. The necessary linear operations on the sparse matrix system are implemented
directly in JOREK on the distributed representation of the system of equations. Since
the system is very stiff, good preconditioning is mandatory. For this purpose, a physics
based approach is used. Since each linear eigenfunction in a tokamak is associated to a
single toroidal mode number, the preconditioner assumes approximate decoupling of the
toroidal harmonics. Consequently, if the matrix is written into blocks corresponding to
the toroidal harmonics, the diagonal blocks describing the interaction of each harmonic
with itself are kept while all off-diagonal blocks are dropped in the preconditioning. This
block-diagonal structure of the preconditioning matrix allows to treat each block inde-
pendently of the others. For that purpose, parts of the global matrix, which has been
assembled in a distributed way by domain decomposition (see Section 3.4) needs to be
re-distributed by an all to all communication. The complete distributed matrix remains
in memory as it is needed for GMRES operations. Since this re-distribution can become
inefficient for large problem sizes, an option for re-calculation of the preconditioning
matrices has recently been implemented using the same routines applied for the global
matrix construction [133].

Each block matrix is solved by one or several MPI tasks on one or several compute
nodes, with the number of cores inside a compute node being exploited via the built-in
thread support of the sparse matrix libraries (pthreads in case of PaStiX). Note that the
analysis step of the solvers is performed only once in the beginning of a simulation (or
upon a restart). The LU factorization of the block matrices is only performed in the first
time step of a simulation, and again, when the GMRES convergence has deteriorated
too much, i.e., the number of GMRES iterations in a time step exceeds a user defined
threshold. Consequently, the factorized preconditioning matrices may be re-used in
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several or even many consecutive time steps before an update is needed.
The solve step, on the other hand has to be carried out in each GMRES iteration of

every time step. In the linear phase of a simulation, the preconditioning matrix is an
extremely good approximation of the complete system such that an update is not needed
often and the factorization has almost no impact onto the overall performance. However,
in a highly non-linear state, the factorization may need to be updated almost every
time step and dominates the overall computational costs of the solver in that case. The
preconditioner in such a highly non-linear state is not approximating the complete system
well any more, since the energy exchange between the toroidal harmonics becomes strong.
For such situations, a recently implemented generalization of the preconditioner [133]
can be of advantage, where each block matrix in the preconditioner can contain several
toroidal harmonics. While this improves the approximation of the complete system
by the preconditioner, it also increases the computational costs for inverting the block
matrices such that the best configuration for the preconditioner is case specific. In
case these “mode groups” are not mutually exclusive, several options exist for obtaining
the combined result vector. Another recently implemented extension [133] allows to
use complex matrix solvers for the preconditioner, reducing memory consumption and
computational costs considerably.

When PaStiX is used, JOREK exploits a specific feature of the solver, where the
connectivity graph is not considered separately for each degree of freedom (dof). Instead,
square blocks of dimension nvar are treated as dense blocks, where the number of variables
typically is around nvar = 8. Exploiting this structure, greatly enhances the performance
of the analysis and factorization steps and can even improve the performance of the solve
step considerably. Since the result vector of the matrix system contains the changes of
all dofs for all physical variables, the actual values of the variables need to be updated
after the solve step. However, also the changes of the variables in the previous time step
need to be stored, since those are required for some of the time stepping schemes (e.g.,
BDF2 Gears, see Section 3.2 for more information on the time stepping).

Main limitations of the solver strategy are the high memory consumption associated
to the factorized preconditioning block matrices (partly mitigated by the recently added
complex matrix treatment in the preconditioner), the limited parallel scalability of the
direct solver used in the preconditioning (addressed by adapting the code for better
optimized or further improved solver libraries), and the deteriorating efficiency of the
preconditioning in case of strong toroidal mode coupling (mitigated by the recently
implemented generalization of the preconditioner to integrate the most important non-
linear interactions in the approximation).

3.6. Parallelization

JOREK uses a hybrid MPI plus OpenMP parallelization. The number of MPI tasks
must be a multiple of number of toroidal harmonics (cosine and sine components are
not counted separately). Typically, a few MPI tasks are started per compute node and
the number of OpenMP threads is adapted such that all CPU cores are exploited. The
number of compute nodes used is primarily determined by the memory consumption
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Figure 8 – Strong scaling of a JOREK particle simulation (with 109 ions) from an entirely
kinetic electro-static ITG turbulence simulation with JOREK on the Marconi-
Fusion supercomputer (see Sections 2.14 and 7.1).

of the simulation. As shown in Ref. [133], already the matrix system itself requires
significant storage and the LU factorization used in the preconditioner (see Section 3.5)
increases this memory consumption further. JOREK is mostly used on conventional
architectures with Intel or AMD CPUs including Intel Xeon Phi. Exploiting GPUs is
considered for the future, in particular for the kinetic particles (see Section 2.10). Base
information about the simulation like the input parameters, but also the plasma state,
i.e., all degrees of freedom of all physical variables on the whole grid, is duplicated across
all MPI tasks. This duplication is affordable in terms of memory consumption, and allows
an efficient load balancing for instance for the kinetic particles. The communication
overhead typically associated with PiC methods using a domain decomposition is avoided
since particles do not need to be transferred from one MPI task to another. An example
for the scaling of the kinetic particle model is shown in Figure 8.

MPI rank 0 is responsible for reading the namelist input file, broadcasting this input
to the other MPI ranks, reading and writing restart files¶¶, printing information to the
log file, etc. The grid construction and equilibrium calculation 2.2 is only carried out
on one MPI rank typically as this is not an expensive part of the simulation. This is
executed in a separate “job” from the time evolution such that no CPUs are idling. For
(large) free boundary equilibrium calculations, several MPI ranks may be necessary due
to memory requirements.

The parallelization of the matrix construction during the time stepping is done by a
domain decomposition such that the system of equations is assembled in a distributed
way (see Section 3.4). For the iterative solver (see Section 3.5), an all to all MPI

¶¶For reading/writing large files in the free boundary extension (Section 2.9) and the kinetic particles
framework (Section 2.10), parallel I/O (MPI I/O and parallel HDF5, respectively) is used to achieve
good performance. In case of the free boundary extension, this concerns reading the vacuum response
matrices [100]. In case of the particles framework, it allows to avoid unnecessary communication when
reading/writing large amounts of particle data.
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Figure 9 – Strong scaling test of the JOREK parallel efficiency for a moderate problem size
on the Marconi-Fusion supercomputer using Intel Skylake CPUs. The setup is a
JT-60SA ELM simulation (Ref. [4]) with a moderate 2D grid resolution of about
5k grid nodes and a relatively high toroidal resolution including n = 1 . . . 15
included. For a fixed problem size, the number of compute nodes is increased
from 16 (576 cores) to 160 (5760 cores). Note, that only 36 out of the 48 cores
per node were used in this test. The relative efficiency is approximately 50%
when comparing the performance between 16 and 160 compute nodes, which
constitutes an excellent value for a fully implicit code. In practice, the problem
size considered here would not be addressed using more than 32 compute nodes,
for which the relative efficiency is around 85%.

communication is carried out to extract the preconditioning matrices from the complete
system (see Section 3.5 for details on the solver and preconditioner). Optionally the
harmonic matrices can be recomputed bringing performance gains in specific limits [133].
Handling the preconditioning matrices may be slightly unbalanced since the n = 0 block
is smaller than the others (see Section 3.4). However, MPI rank 0, which is responsible
for the n = 0 block, either alone or together with a few other MPI tasks, usually anyway
has other responsibilities, which can overlap with the solve on the other MPI ranks, such
that this is not affecting performance in a significant way. The “mode groups” described
in the previous section can lead to a larger imbalance, which can be compensated by
adapting the number of MPI tasks assigned to each preconditioner block matrix, which
is possible in a flexible way [133]. The sparse matrix libraries applied for solving the
preconditioning matrices employ a hybrid parallelization internally as well. In case of
PaStiX, this is done by an MPI plus pthread parallelization, for instance. The linear
operations inside GMRES, e.g., sparse matrix vector products, are well balanced, since
they are based on the evenly distributed global matrix.

An example of the scalability of JOREK is shown in Figure 9 for a moderate problem
size. Further work to improve the performance and parallel scalability of JOREK is
ongoing, as shown in Section 3.8. The scalability of STARWALL is shown in Figure 10,
refer to Ref. [100] for more information about the parallelization of STARWALL and the
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Figure 10 – Strong scaling test of the STARWALL parallel efficiency for a small prob-
lem size on the Marconi-Fusion supercomputer [100] with 35200 wall triangles
equivalent to 17600 degrees of freedom (size chosen to fit into the memory of
a single compute node). The execution time of the whole STARWALL run is
given. When the number of MPI tasks is increased from 1 to 128, a speed-up of
63.3 can be obtained (parallel efficiency of 50%). At 64 MPI tasks which would
be used in practice, the parallel efficiency is around 60%. Larger production
cases scale to a higher number of cores with a better efficiency. Note that
this figure shows the scaling for response matrix calculation in STARWALL,
not for the time stepping of the JOREK simulation. Calculating the STAR-
WALL contribution to the boundary conditions in the JOREK time stepping
is usually not altering the JOREK scaling significantly as this constitutes a
sub-dominant and well parallelized [100] part of the computational costs ex-
cept for exotic setups which combine a low plasma resolution with a very high
wall resolution.
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JOREK-STARWALL coupling terms.

3.7. Code management

JOREK is written in Fortran 90/95 using Fortran 2003 and 2008 extensions in particular
in the kinetic particles part. A few smaller core routines and interfaces are written in C
and C++. JOREK presently consists of more than 250 thousand lines of source code,
to which dozens of developers have contributed over the years. More than 100 pull
requests are merged per year at the moment with a strongly increasing trend. More
than 40 scientists presently use the code world-wide for very different purposes and a
significant fraction of those is actively contributing to the development. Via modern
code development techniques and a common shared code repository, a unique stable
code basis is maintained shared by all users and for all code applications (The code
is hosted on the Atlassian Bitbucket system operated by the ITER Organization). A
dedicated Wiki contains the collaboratively written code documentation.

A particular challenge is posed by the contradictory goals of code stability and agile
development. With the strongly increasing number of users and developers over the
last years, it became critical to ensure that developments for specific purposes cannot
break entirely different code applications. For guaranteeing this, limited manpower was
available such that a high level of efficiency was required. To achieve these goals to the
best possible extent, the modular structure of the code was continuously improved and
the development work flow was switched from Subversion to a Git based repository more
than five years ago. The developments work flow starts by describing issues or planned
new features in the Jira issue tracker, discussing about the planned implementation,
creating a branch for the respective development based on the latest code version from
the main development branch, implementing the changes into that branch, raising a pull
request with several code-reviewers, refining the solution iteratively, and merging the
modifications into the main development branch. To ensure coordination and inform
users and developers, all changes to the code are discussed and communicated in regular
development meetings. At each meeting, a release version of the code is created. Smaller
developments are usually merged quickly, large developments are sometimes carried out
in a branch over months or even years. Measures are taken to reduce the number of
long-lived branches and the remaining ones are actively kept up to date with the main
development branch by regularly merging in all recent changes.

To avoid introducing problems by the numerous smaller and larger developments which
take place in parallel with the large number of different physics models and code appli-
cations, we introduced a framework for carrying out automatic test cases in addition to
the reviewing of pull requests. Our approach to these tests is described in the following
(Ref. [143] explains an older approach, which has been replaced several years ago). About
50 automatic regression tests are in place at present, which are executed automatically
whenever new modifications are pushed to any branch on the central repository. These
test cases can also easily be executed locally by each user. The framework is flexible
enough to allow for different “versions” of the same regression test in different branches,
a feature needed in case a bug is detected and resolved, or a modification is implemented
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Figure 11 – Example of a 3D grid (shown with very low resolution for clarity), imported
from the GVEC code for a 5 field period, elliptical equilibrium, similar to the
W7-A stellarator.

that intentionally changes the code behaviour (e.g., improved grid construction). The
data required for carrying out a regression test and checking the result is stored on a
separate server and the correct version of the test is identified via hash keys. All regres-
sion tests are carried out with a large set of compiler/linker debugging options and some
regression tests are using a second compiler (gFortran instead of Intel Fortran) to catch
as many problems as possible.

The majority of the test cases are based on low-resolution non-linear simulations,
which are restarted from an HDF5 restart file and continued for a single time step only.
The result is then compared to a reference result with a specific absolute tolerance. This
has been tested extensively to capture problems reliably and the execution in the non-
linear phase ensures that all physics terms influence the solution. Among the test cases,
also a few specific ones exist that work differently. The simplest ones only compile the
code and all diagnostic binaries for the various physics models, other tests cover the grid
construction and equilibrium solver. Specifically for the kinetic particles module, also
unit tests are in place.

In spite of the considerable number of test cases, not all applications of the code can
be covered, however new regression tests are continuously added and are introduced for
new code features already before these are merged into the main development branch.
Furthermore, a generalization of the framework is foreseen to simplify testing all combi-
nations of different use cases and model extensions.

3.8. Outlook

This section gives a brief outlook onto developments regarding the numerical methods
of the JOREK code.

For future simulations of non-axisymmetric configurations (stellarators), in addition
to the derivation of a hierarchy of MHD models (Section 2.15), the numerical methods
also need to be adapted. In particular, the following assumptions need to be relaxed:
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• The simulation grid is not axisymmetric any more, i.e. R and Z are expressed in
s and t only, but also expanded in a toroidal Fourier series. An import of such
a 3D configuration from GVEC [144] has already been implemented, as shown in
Figure 11.

• The assumption that s and t are orthogonal to φ will not be fulfilled any more
in general (for instance, in case of PEST coordinates). In addition, a φ = const
surface will in general not be planar any more (for instance, in case of Boozer
coordinates). This is taken into account in the ongoing implementation of the new
stellarator capable models.

• In a stellarator, the linear eigenfunctions of plasma instabilities cover a toroidal
spectrum instead of being restricted to a single toroidal mode number. Conse-
quently, the presently used preconditioner, which relies on the linear decoupling
of toroidal harmonics, cannot be applied any more and solver developments are
important. Work in this direction is moving forward, in particular see the “mode
groups” in the preconditioner described in Section 3.5 which constitutes a first
important step towards efficient stellarator simulations.

Regarding the solver, several developments are on their way building up onto pre-
vious work, this includes for instance an assessment for the use of GPUs, enhanced
preconditioning via an integrated iterative refinement, the use of reduced order for the
preconditioner, etc. These efforts are at early stages and are thus not described here in
detail.

For the anisotropic heat transport (see also Section 4), reduced order basis functions
for selected quantities are being studied to further improve the numerical accuracy in
particular when finite element grids are used that are not aligned to the flux surfaces,
e.g., in case of VDEs.

Aiming at simplified data exchange, integrated modelling, and standardized analysis
tools, the adaptation of JOREK to IMAS is on the way. The ITER Integrated Modelling
& Analysis Suite (IMAS) [145] is a scientific software framework infrastructure that or-
chestrates execution of integrated plasma codes. The Physics Data Model (PDM) is a
basis for coupling the plasma codes and experimental data at different space and time
scales through its 60+ Interface Data Structures (IDS). A widely used IDS substruc-
ture for description of computational domain is the General Grid Description (GGD),
with the purpose to describe any N -dimensional numerical grid geometry and associ-
ated plasma state quantities with time slices sampled during the simulation. Generally,
JOREK couples to the Equilibrium and MHD IDS for input conditions and nonlinear
plasma state output that can be directly compared with other simulators that use the
GGD mapping (see e.g. Ref. [146]). Integration of JOREK in IMAS is currently under-
way, with a few aspects and methods already available to allow incorporation of JOREK
relevant data in the MHD IDS employing the GGD representation [147]. Spatial discreti-
sation under GGD in 3D requires Bézier finite elements for poloidal mesh discretisation
(nodes and corresponding values with derivatives) combined with real Fourier series for
toroidal harmonics. Temporal slices in MHD IDS are saved as flux aligned GGD and
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Figure 12 – Example of the G1 continuous, i.e., continuous values and first derivatives in
real space, profiles in the poloidal plane for (left) a density distribution and
(right) the perpendicular conductive heat flux.

corresponding values on the grid. Time slices for GGD and values on GGD can be dif-
ferent to respect database size growth per simulation. Finally, stored simulation results
enable analysis with unified tools and runs under integrated modelling workflows.

In the present grid structures, G1 continuity is satisfied across the whole domain ex-
cept for the magnetic axis and the direct vicinity of the X-point. The G1 continuity at
these special points will be restored by a special treatment with locally adapted basis
functions. Furthermore, a generalization of the Bezier FE formulation to higher order
basis functions and higher order continuities across element boundaries is ongoing [148].
The implementation of an option for triangular FEs in JOREK is being considered, oper-
ator splitting or relaxation techniques are being discussed, and further refined numerical
stabilization methods such as VMS and higher order Taylor Galerkin methods are being
investigated.

4. Verification

In this Section, selected verification work done for the JOREK code is highlighted. This
includes code-code benchmarks, comparisons to analytical solutions, comparisons be-
tween reduced and full MHD, and an assessment of energy conservation in a violent
non-linear example. The emphasize here is on more recent tests, of which many have
not been shown in publications and conference contributions yet. A lot more verification
work can be found in the literature. E.g., the JOREK pellet model has been success-
fully benchmarked, for a Deuterium pellet, with a dedicated code by B. Pégourié, as
can be seen in Fig. 2 of Ref. [87]. Note that all the validation against experiments is
included along with the physics studies in Sections 5–7. Figure 12 shows an example to
demonstrate that the finite element solutions are G1 continuous and (if resolved well)
smooth.
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Figure 13 – The relative error of the growth rate of a tearing mode is plotted as a function of
the spatial resolution

√
nfluxntht, for the full-MHD model. The error converges

as the 5th power of the spatial resolution, as expected. Re-print from Ref. [66].

4.1. Convergence properties

The convergence of the exponential growth rates with the spatial grid resolution is shown
in the following. Two cases are considered in circular plasmas for simplicity: A tearing
mode test-case using the full-MHD model and a ballooning mode test case with the
reduced-MHD model (the so-called CBM18 equilibrium for mode number n = 20). The
grid resolution is scanned homogeneously in the radial and poloidal directions, from
(nflux, ntht)=(27, 180) to (90, 600), where nflux and ntht are the equidistant number of
radial and poloidal elements. The relative error of the growth rates scales inversely with
the 5th power of the spatial resolution like ∝ (

√
nfluxntht)

−5.
With finite elements, the local error is estimated as E ∝ hp according to Ref. [149],

where h is the element size, and p is the polynomial order of the finite elements. Here,
(
√
nfluxntht)

−1 is used as an approximation of the element size h, and p=4 because the
Bezier elements are bi-cubic. Since the value of interest in these tests are the growth
rates of the toroidal modes, which are obtained by integrating the mode energies over
all the elements of the simulation domain, this adds another factor (

√
nfluxntht)

−1 to the
error estimate. Hence, the error of the growth rates is expected to scale with the 5th
power of the spatial resolution, (

√
nfluxntht)

−5.
Figure 13 and Figure 14 show the convergence of the growth rate error, as a function

of spatial resolution. For the tearing mode, the 5th order scaling is found as expected,
and beyond a high enough resolution, the error diminishes dramatically, suggesting the
growth rate is already fully converged. For this case, since the error diminishes faster
than the expected scaling at high resolution, the intermediate case of

√
nfluxntht = 2×102

is assumed to be the converged growth-rate. For ballooning modes, using the CBM18
case, the growth rate convergence also follows a scaling of the expected 5th order with
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Figure 14 – The relative error of the growth rate of a ballooning mode n=20 is plotted as
a function of the spatial resolution

√
nfluxntht, for reduced MHD. The error

converges as the 5th power of the spatial resolution, as expected.

the reduced-MHD model. For this case, since the error still diminishes at the highest
resolution, the growth-rates are fitted with the expected scaling, such that the converged
growth-rate is obtained by extrapolating to infinite resolution. With the full MHD model,
only 3rd order scaling was found for the ballooning mode test case (see Ref. [150]). The
reason for this different behaviour is still being investigated.

4.2. Anisotropic heat transport

The numerical treatment of anisotropic heat transport in JOREK allows to handle ex-
perimentally relevant parameters, where the diffusion coefficients along magnetic field
lines and perpendicular to them differ typically by a factor 108 to 1010. We show only a
small demonstration of the properties here, based on an example with large aspect ratio
circular configuration where R = 100 and a = 1. This simplified configuration is used
to ease interpretation since it eliminates mode coupling and allows to initialize a sin-
gle magnetic island without secondary islands or stochastization. The anisotropic heat
diffusion equation is solved both using a polar grid (approximately aligned to the flux
surfaces) and a rectangular grid (as example for a grid that is not flux surface aligned at
all). A more detailed analysis is planned for the future in the context of implementing
an advanced scheme following Ref. [151] for particularly demanding cases like hot VDEs
with a grid not aligned at all to the magnetic field and RE fluid simulations where par-
allel diffusion is sometimes used as a computationally less demanding proxy for the fast
parallel advection.

Figure 15 shows the magnetic configuration via a Poincaré plot as well as the tem-
perature distribution obtained at high anisotropy. A pure 1/1 magnetic perturbation is
applied to create a large magnetic island. While keeping the magnetic field fixed in time
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Figure 15 – (left) Poincaré plot of the magnetic field configuration used to demonstrate
anisotropic heat transport in the JOREK reduced MHD model. (right) Tem-
perature distribution in a fully converged simulation with a heat diffusion
anisotropy of 1010. The temperature flattening inside the island is clearly
visible.

and assuming a spatially uniform density, the temperature evolution equation is solved
for single large time step with the implicit Euler method to determine the steady state
temperature distribution. A localized Gaussian heat source is applied in the center of
the plasma (zero inside the island surfaces). Details of the test case are described in
Appendix D.

Figure 16 shows cuts of the temperature distribution across the mid plane at different
anisotropies and different resolutions for the polar grid (left panel). It also contains a
convergence study (right panel) of the central temperature value with the grid resolution
for both, aligned and unaligned grids. Note that the error scales with the number of
grid points to the third power in case of an approximately aligned grid and only with
the second order in case of a non-aligned grid. When tolerating a relative error of 0.3%
in the core temperature, a grid resolution of 200x200 grid points allows to easily resolve
anisotropy values beyond 1010 in the flux surface aligned case. With the unaligned grid,
the limit is around 109 for this resolution and error. The results would naturally change a
bit with different mode numbers. However, the simulation grids tested here do not make
use of any localized refinement, which is routinely applied in production simulations to
concentrate the grid elements in the MHD active regions and resolve them better than
the remainder of the plasma. Note that in case of a hot VDE, which corresponds to
a highly anisotropic case that usually needs to be simulated in an unaligned grid, the
“spurious perpendicular heat transport” becomes negligible as soon as strong 3D MHD
activity is triggered and the physical transport along stochastic field lines dominates
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Figure 16 – (left) Temperature distribution on the midplane for the polar grid aligned
to the unperturbed flux surfaces at different heat diffusion anisotropies and
resolutions. The simulations shown here are done with the toroidal mode
numbers n = 0 . . . 4. (right) Convergence of the relative error in the core
temperature versus the number of grid points per dimension.
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Figure 17 – (Left) 3D Vertical Displacement Event simulated with JOREK. (Top)
Poloidal magnetic energy of the different toroidal harmonics. (Middle) Time
derivative of the total plasma energy (E = Wmag + Wth + Wkin) and sum of
dissipation powers and boundary fluxes (powers representing all energy losses).
(Bottom) Evolution of the edge safety factor (q95) and of βN during the VDE.
The case is explained in detail in [99]. (Right) Time derivative of the total
plasma energy and the sum of non-conservative terms and boundary fluxes for
a 3D RMP simulation in an ITER 15 MA plasma simulated with JOREK.
The simulations includes realistic ExB and diamagnetic flows and undergoes
strong MHD activity between 10 and 35 ms which affects the edge confine-
ment. The case confirms that the error in the energy conservation introduced
by gyro-viscous cancellation is small as expected from analytical estimates.

over numerical errors.

4.3. Energy conservation

The set of equations (1)-(4) can be written in a conservative form and summed up to
find the evolution of the total energy density

∂etot

∂t
+∇ · Γtot = SE (57)

where the total energy density is composed by the kinetic, the thermal and the magnetic
energy densities

etot =
ρ

2
V ·V +

p

γ − 1
+

B ·B
2

(58)

and the total energy flux is

Γtot =

[
ρ

2
V ·V +

p

γ − 1

]
V − κκκ∇T

γ − 1
+ E×B (59)
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Equation (57) can be integrated over the plasma volume to obtain

∂E

∂t
=

∫
SEdV −

∮
Γtot · dS (60)

where E =
∫
etotdV is the total plasma energy,

∫
SEdV is the total injected power into

the plasma and
∮

Γtot · dS represents the total energy flowing through the boundary
(boundary fluxes). An important test for MHD codes is to check that the previous
equation is satisfied also in practice, where small errors from the numerical discretization
of space and time introduce errors. This can be assessed by calculating the LHS and
the RHS independently. Such a test has been done for a variety of different cases. We
present this comparison here for the 3D VDE case that was used for the 3 code benchmark
presented in [99]. Two tests for energy conservation are shown in Figure 17 (powers),
where the time derivative of the total energy is compared to the sum of boundary fluxes
for a 3D VDE simulation and for an RMP simulation. As the viscous and Ohmic
heating terms were switched off for these particular cases, they have been calculated via
postprocessing and included in dE/dt. The results indicate that energy is conserved well
including the RMP case with diamagnetic drift that relies on the model with gyro-viscous
cancellation. Note, that the plasma in the VDE case undergoes a very non-linear phase
with stochastization of the entire domain and that all channels for energy transport
contribute to the losses (anisotropic heat conduction, Poynting flux, convection, etc.).
The small discrepancies at the end of the thermal quench (t ∼ 1.2 ms) originate from
the calculation of the Ohmic heating term and are under investigation. Energy is also
rather well conserved, with about 90% precision, in simulations of disruptions triggered
by massive material injection (described in Section 6.2), which include Taylor-Galerkin
stabilization. The slight imbalance will be investigated. The energy balance diagnostics
has been implemented recently such that the various terms involved in the kinetic,
thermal and magnetic energy balances are calculated automatically for any simulation,
allowing an easy and systematic check of energy conservation properties.

4.4. Core instabilities

This section presents several benchmarks for core instabilities, to compare the full-MHD
model against the reduced-MHD, as well as established linear MHD codes like MISHKA
and CASTOR [152–155]. The first two linear benchmarks are a low-β m=n=1 inter-
nal kink mode, and a low-β m=n=1 tearing-mode. Both cases are run for a scan in
resistivity. The kink mode is run with resistivity alone (without viscosity, and with-
out particle or thermal diffusion), while the tearing mode is run including all diffusive
terms, with viscosity ν0=10−8 kg m−1 s−1, particle diffusion D⊥=0.7 m2 s−1, and heat
conduction κ⊥=1.7×10−8kg m−1 s−1.

Figure 18 shows benchmarks for an internal kink mode and a tearing mode case
respectively. Poloidal cross-sections of n = 1 perturbed quantities are shown for the
toroidal magnetic potential Aφ and the temperature (for the full-MHD model), and
the growth rates of the modes are plotted as a function of resistivity, compared to the
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Figure 18 – 1/1 kink (top) and 2/1 tearing mode (bottom) test cases. Normalized pertur-
bations are shown of the toroidal component of the magnetic vector potential
(left) and the temperature (middle). Linear growth rates from the JOREK
reduced and full MHD models are compared to results from CASTOR3D.
Re-print from Ref. [66].

Figure 19 – Linear growth rates of an internal kink instability in a plasma with circular
cross section as a function of normalized beta, obtained by the reduced- and
full-MHD models of JOREK and the linear full-MHD code CASTOR3D. Re-
print from Ref. [66].
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Figure 20 – Nonlinear verification benchmark between JOREK and the cylindrical full-
MHD code Specyl. A 2/1 tearing mode is considered in a circular tokamak
with large aspect ratio R/a = 10 in the zero-β limit. Black and red curves
are for JOREK and SpeCyl calculations, respectively. Initial equilibrium pro-
files along the horizontal diameter are shown in the first row: (a) magnetic
field and current components in the toroidal direction, (b) magnetic field and
current components in the Z direction, and (c) safety factor. The tearing
mode nonlinear evolution is shown in the second row: (d) temporal evolution
of BR at the q = 2 rational surface, (e) BR profiles along the mid plane at in
the non-linearly saturated state, and (f) Poincaré plot at nonlinear saturation
from JOREK, with the separatrix of the 2/1 saturated island from SpeCyl
overplotted in red.

reduced-MHD model, and to calculations from CASTOR3D, which is also a full-MHD
code [154, 155].

Although the agreement between reduced-MHD and full-MHD is reasonable for both
cases, the reduced-MHD model starts to deviate from the full-MHD solution at low
resistivity for the internal kink mode. This is an example where reduced-MHD becomes
insufficient: internal kink modes at finite-β are not well represented like explained in
Ref. [69]. Although this is a low βN =0.4% case, reduced-MHD already seems to be
affected. At higher-β, the deviation becomes more pronounced as can be seen in the
benchmark between the reduced- and full-MHD model of JOREK and the CASTOR3D
code shown in Figure 19. In this case, the linear growth rate of the internal kink
instability is compared as a function of normalized beta. At finite beta, the reduced-
MHD model clearly fails to reproduce the results of the full-MHD calculations.

The resistive layer width for a tearing mode was simulated with JOREK visco-resistively
in Ref. [156] and compared to analytical scaling laws as well as the Phoenix code show-
ing excellent agreement. Furthermore, a non-linear simple tearing mode benchmark is
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Figure 21 – Linear growth rates for the different toroidal mode numbers are compared
between BOUT++ and JOREK for visco-resistive simulations, and for visco-
resistive simulations including diamagnetic flows.

shown in the following. JOREK is compared here to the cylindrical full-MHD code
SpeCyl [157] in simple geometry. The nonlinear verification benchmark of SpeCyl with
another MHD code, PIXIE3D, is reported in Ref. [158]. Here, we consider the nonlinear
saturation of a m = 2, n = 1 tearing mode in a circular tokamak with large aspect ratio
in the zero-β limit. The simulations are performed at Lundquist number S = 106 in the
limit of negligible viscosity. The results from the two codes are compared in Figure 20.
It is observed that, despite the different geometry (toroidal vs. cylindrical) and models
(reduced vs. full-MHD), the two codes agree very well for this strong guide-field, large
aspect-ratio problem. In particular, both the linear growth and the nonlinear saturation
of the tearing mode resulting from the two codes turn out to be in very good quantita-
tive agreement (the maximum deviation of about 5% can be attributed to the difference
between cylindrical and large-aspect ratio geometries).

4.5. Edge instabilities

Comparisons have been made between JOREK and BOUT++ with the aim to validate
the nonlinear MHD codes. BOUT++ [7] is a framework for plasma fluid simulations, the
model used for the comparison is given in Ref. [159] and for JOREK in Section 2.3. The
comparison was performed with a largely simplified geometry, a circular plasma with an
aspect ratio of 3.3, a q95 = 3.0, a uniform density (1.0 × 1019 m−3), and a hyperbolic
tangent fit is used for the temperature where Te + Ti = 19 keV in the core decreasing to
94 eV at the edge of the plasma. The simulations performed have a resistivity of 6.1×
10−6Ωm and the kinematic viscosity is 117 m2s−1. The differences between the two codes
are detailed in [160] and include some deviations between the actual models (equations),
evolution of equilibrium quantities, numerical methods, grids and boundary conditions.
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Figure 22 – The growth rate of the peeling-ballooning modes as a function of toroidal mode
number n, with and without the diamagnetic effects, for both the reduced- and
full-MHD models. Re-print from Ref. [66].

Despite some differences, the linear benchmark showed agreement within 4% between
BOUT++ and JOREK with and without diamagnetic effects as seen from Figure 21.
Setting up a non-linear comparison based on this case would require further efforts
in resolving some of the differences between the codes, e.g., regarding the boundary
conditions and hasn’t been attempted as of now.

A benchmark of peeling-ballooning modes is done using an X-point JET-like plasma.
Refer to Ref. [66] for details regarding the benchmark configuration. Figure 22 shows
the growth rate with and without diamagnetic effects, as a function of toroidal mode
number, for both reduced- and full-MHD. The agreement between the two models is
reasonable with deviations below 5% (highest deviations for the largest mode numbers
that are most critical in terms of resolution), particularly considering that this includes
E ×B, parallel and diamagnetic flows in the pedestal and SOL.

The ballooning mode rotation obtained in JOREK simulations has been successfully
validated against analytical linear computations in Ref. [161]. In the laboratory frame,
the E×B velocity should be added to the mode velocity when comparing with experi-
mental measurements [162].

4.6. Scrape-off layer (SOL)

The SOL modelling in JOREK at this point is still fairly simplified, while several at-
tempts are presently on their way to improve – via a better representation of low tem-
perature physics in the fluid picture as well as via a kinetic treatment of neutral par-
ticles. In spite of the incomplete picture presently available, comparisons have been
made between JOREK and SOLPS [163] to get a first assessment of the status of the
the JOREK SOL model. The comparison demonstrates the capabilities of the diffusive
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Figure 23 – The target parallel electron density flux and target electron temperature as
a function of upstream density, comparing JOREK with SOLPS results from
[165] for a MAST-U Super-X H-mode case. Re-print from Ref. [164].

neutrals model [164], which was used to perform the simulations. Full details and results
are given in [160].

A double-null H-mode MAST-U Super-X case was used in an attempt to obtain a
detached divertor for ELM burn-through studies. This case had a toroidal field of 0.64 T,
plasma current 1 MA, q95 = 7.9, a central density and temperature (Te + Ti ) of 5.2×1019

m−3 and 1.8 keV respectively. Parameter scans were performed and compared to the
SOLPS results in [165] to test the JOREK diffusive neutrals model. Figure 23 shows the
upstream density scan. Due to the missing physics, in particularly charge exchange, it
was not possible to obtain a roll-over as steep (deeply detached plasma) as the SOLPS
simulations. Nevertheless, a roll-over in the target parallel electron density flux was
obtained as the upstream density increased, the target electron temperature decreased
to a few electron volts and the ionisation front moved from the target - indicating a
detached regime was obtained.

4.7. Runaway electron fluid

Verification of the RE fluid model in JOREK was performed with respect to a) the
conversion of thermal current into a RE beam in a simple axisymmetric plasma via
comparison to a lower dimensional code, and b) regarding the linear growth of resistive
kink modes. Further efforts are on their way.

Benchmarking for the current conversion was done with the one-dimensional runaway
electron code GO [166], by triggering an artificial thermal quench in a large aspect ratio
circular plasma (R = 10m and a = 1m) by imposing a large perpendicular thermal
diffusivity. The parameters at the initial equilibrium state of the plasma were Ip =
0.67 MA, on-axis toroidal magnetic field Bφ,0 = 1 T, central temperature T0 = 1.7 keV,
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Figure 24 – (Left) Time evolution of the total plasma current I and the RE current Ir
during the current quench phase. (Right) Midplane current density profiles
before and after the current quench obtained from JOREK, showing a rela-
tively peaked RE current profile. Re-print from Ref. [111].

central density n0 = 1× 1020 m−3 and central resistivity η0 = 1.1× 10−7 Ω m. The large
perpendicular diffusion leads to a drop in the core temperature of the plasma to about
25 eV in a time of about 60 ms. Thresholds were set to initiate the Drecier generation
when E‖/ED ≥ 0.01 and the avalanching when E‖/Ec ≥ 1.7. The temperature profile
evolution in GO is taken as an input from JOREK. Figure 24 (left panel) shows an
excellent agreement between the result obtained with JOREK and GO for the evolution
of the total and RE currents (deviations around 1%). The simulations also show the
often observed central peaking of RE current profile, as can be seen in the pre-quench
and post-quench current density profiles shown in Figure 24 (right panel). Advanced
source terms that incorporate the influence of partially ionized impurities onto the RE
generation [167] are presently being implemented and validated.

Verification with respect to linear growth of the resistive internal kink mode is done
by considering that a certain fraction of the equilibrium plasma current is assumed to
be carried by REs, wherein the RE current density has qualitatively the same profile as
the total current. Both, thermal and RE background current densities are kept fixed in
time. A large aspect ratio circular plasma (R = 10 m and a = 1 m) in a fixed-boundary
static equilibrium (v = 0) is chosen with parameters Bφ,0 = 1 T, Ip = 0.31 MA and
on-axis temperature T0 = 48 eV. The equilibrium is (m = 1, n = 1) kink unstable with
the q = 1 surface within the plasma. Thermal and mass diffusivities, all the sources
(including RE generation) and RE advection were set to zero, while the resistivity was
assumed to be temperature independent and spatially constant. Figure 25 shows the
linear growth rate of the internal kink mode as a function of normalized resistivity
(inverse Lundquist number S−1) for the various fractions of RE current considered. It
can be observed that an increase in the RE current fraction leads to a gradual recovery
of the low resistivity analytical scaling S−1/3 even at large values of the normalized
resistivities. This is primarily due to the reduced effective resistivity in the presence of
REs. That is, when the RE current fraction is increased, the region outside the resistive
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layer tends towards the ideal MHD limit in which the low-resistivity analytical scaling
is valid. Such a behaviour has also been observed by Matsuyama et al [168] in a similar
(but not identical) case.

4.8. Free boundary simulations

Regarding free boundary simulations, a lot of verification work has been performed. This
includes the benchmarks shown in Ref. [89] for a free boundary equilibrium and the linear
growth rates of tearing modes in the presence of a conducting wall. In Ref. [169], the
growth rate of resistive wall modes was compared to analytical values and a comparison
of VDEs in a simplified ITER-like geometry was compared to the CEDRES++ code
including realistic wall resistances. Basic verification tests (not shown here) have been
performed including convergence checks, the induction of currents by the plasma in a
conducting wall or passive coil, the mutual interaction between conductive structures
and a comparison of an axisymmetric and non-axiymmetric coil field on the JOREK
boundary with Biot-Savart [73, 93, 170]. Further validation work is included in Ref. [93]
and some more recent and more advanced tests are shown in the following.

A non-linear benchmark with the DINA code [93] showed good agreement for the
evolution of the LCFS during an ITER 15 MA axisymmetric VDE as shown in Fig-
ure 26a with differences between the shapes of the last closed flux surfaces of only few
centimeters.

An international benchmark [97, 171] between the JOREK, M3D-C1 and NIMROD
codes for an axisymmetric VDE in an NSTX-like plasma has shown excellent agreement
not only on the growth rate of the instability, the evolution of the radial and vertical
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Figure 26 – Non-linear 2D axisymmetric benchmarks for VDEs. (a) JOREK/DINA
benchmark where the evolution of the LCFS is compared [93]. (b)
JOREK/NIMROD/M3D-C1 benchmark where the normal component of the
current density is compared as a function of the distance along the wall during
the late stage of a VDE [97]. Panel (b) is a re-print from Ref. [97].
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Figure 27 – Non-linear 2D axisymmetric benchmark for a vertical position oscillations of
an ITER 7.5MA/2.65T plasma. (a) Current waveform for the ITER vertical
position control coil VS3. (b) Vertical position of the magnetic axis in DINA
and in JOREK. Panel (b) is a re-print from Ref. [172].

position of the magnetic axis as well as of the toroidal plasma and wall currents, but also
on the spatial structure of the halo currents flowing into the wall (see Figure 26b). The
agreement is remarkable in particular, since the models implemented in the codes differ
significantly (e.g., full MHD versus reduced MHD; Greens functions approach versus a
direct discretization of the vacuum region with conductors in the computational domain).

To test the mutual interaction between plasma, coils, and passive conductors, a bench-
mark was performed with the DINA code. The plasma motion resulting from a pre-
scribed time evolution of currents flowing in coils was simulated to verify that the plasma
dynamics are captured correctly in the presence of time varying coil currents [172]. For
that purpose, an ITER 7.5MA/2.65T case was chosen where the plasma position was
modified in time by the prescribed coil currents for ELM control studies. The oscillation
in the vertical position is produced by applying the current waveform shown in Fig-
ure 27a in the in-vessel vertical stability coils (VS coils). To get good agreement for the
plasma motion (Figure 27b), active and passive conductive structures had to be mod-
elled accurately and the interaction between coils, passive structures and plasma needed
to be captured correctly (see Figure 44 for the setup of the conducting structures) as the
time evolving coil currents induce wall currents which further modify the overall plasma
motion. For this simulation, the ITER vacuum vessel was modelled as two thin stainless
steel toroidal shells with a width of 6 cm each, the conducting OTS (outer triangular
support) and DIR (divertor inboard rail) are also included.

The international 3-code axisymmetric benchmark between the JOREK, M3D-C1 and
NIMROD codes shown above has been recently extended to 3D VDEs [99]. The run was
divided into two phases: an axisymmetric part for the early evolution of the VDE and
a 3D simulation for the MHD active phase. The 3D run was started when the plasma
became limited by the wall instead of the lower X-point. The toroidal harmonics that
have been included in JOREK and NIMROD for the 3D phase are n ∈ [0, 10] and
M3D-C1 discretized the toroidal direction with 16 Hermite cubic elements. The JOREK
simulation was run with the reduced MHD model and the other codes employed full
MHD models. In spite of pronounced differences on models for plasma and wall as well
as numerical methods, the 3-dimensional features are in very good qualitative agreement.
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Figure 28 – 3D Vertical Displacement Event benchmark between JOREK, NIMROD and
M3D-C1. The case and comparison is explained in detail in Ref. [99]. (Top)
Magnetic energies of the dominant modes (n = 1 and n = 2). (Middle)
Thermal energy. (Bottom) Total horizontal wall force in JOREK, NIMROD
and M3D-C1. Re-print from Ref. [99].
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Figure 29 – Evolution of the pressure in the φ = 0 plane over time as computed by JOREK
(top), M3D-C1 (middle) and NIMROD (bottom) in arbitrary units. Re-print
from Ref. [99].
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Figure 30 – The figure on the left shows the conductive structures in ASDEX Upgrade
including the PSL (massive structures above and below the sketched port
marked in dark grey). As the conducting vacuum vessel is located at a large
distance from the plasma, the PSL is needed to reduce the growth rate of the
vertical motion. On the right, the growth rate for different PSL conductivities
is shown. For a low conductivity, the growth rate is limited by the inertia of
the plasma as the coil resistance is too high to allow for significant currents.
For large conductivities, the PSL resistance determines the growth rate.

The three codes show that the plasma is unstable to low-n external kink modes 0.85 -
1.1 ms after the plasma becomes limited by the wall with a dominant n=1 component of
similar amplitude in all codes. This happens when the q = 2 rational surface moves into
the open field-line region (see Figure 17). The development of the kink modes causes a
stochastization of the magnetic field lines triggering a thermal quench with a duration
of 0.14 ms in JOREK, 0.24 ms in M3D-C1 and 0.20 ms in NIMROD. The evolution
of the thermal pressure during the thermal quench is shown in Figure 29, revealing
similar filamentary structures for the three codes. Figure 28 shows the evolution of the
magnetic energy of the n = 1 harmonic and the vertical and horizontal wall forces in
the three codes. The vertical force is in good agreement between the codes throughout
the simulations except for a small shift in time and the more sensitive horizontal force is
in reasonable quantitative agreement with NIMROD showing a factor two smaller force
than the other two codes. In spite of some differences, the benchmark demonstrates
that the very different numerical descriptions of the resistive wall structures used in the
codes lead to comparable results for such a violent 3D VDE case and that the ansatz
based reduced MHD model used here for the JOREK simulation is capturing the 3D
dynamics of the wall currents, even for the large β spherical plasma considered here.
The full MHD models of M3D-C1 and NIMROD found maximum toroidal asymmetries
in the plasma current (Ip) of 1-4%. However such asymmetries were not found in the
JOREK simulations due to the employed B.C. for the electric potential in the reduced
MHD model (Φ = 0) .
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A benchmark with CASTOR3D was carried out to test the effect of passive coils on
the plasma in an ASDEX Upgrade case where the main passive stabilization against
vertical displacement is due to the Passive Stabilisation Loop (PSL). The conductivity
was varied to compare the dependence of the VDE growth rate on this conductivity.
In the setup, no conducting wall was included for simplicity to only assess the coil
effects. A high plasma resistivity in the SOL region was required to get agreement with
CASTOR3D, which treats the SOL as part of the vacuum. The results in Figure 30 show
good agreement in the linear growth rates over many orders of magnitude in the PSL
conductivity with largest deviations around 20% in the limit of high PSL conductivity
where small differences in numerical treatment of the PSL geometry are likely dominating
the errors. This includes the no wall limit, where the growth rate is not depending on
the PSL conductivity any more, but on the plasma inertia.

4.9. Kinetic particles

For non-relativistic particles, solvers are available for both full orbit and guiding respec-
tively gyro centers. The well-known Boris method is used for the full orbit following. The
implementation of the Boris method has been verified in detail in Ref. [173]. For guiding
centers, both the standard Runge-Kutta (RK4) and the variational method by Qin [174]
in the modified form [175] have been implemented and verified. For the gyro-center fol-
lowing, RK4 with an orbit averaged electric field is used. The solvers have been verified
following a banana orbit for 26 periods in a static tokamak equilibrium without electric
field. This standard benchmark case has been described in detail in Refs. [174, 175].
The error is defined as the time averaged difference with the initial values. The scalings
follow the expected order as a function of the time step. The Boris method conserves
energy to a level close to machine precision. The error in the toroidal momentum scales
quadratically with the time step. The RK4 method, being a fourth order method, should
yield an error scaling with the 5th power of the time step, but integrated over a given
time interval the error is expected to scale as the 4th power. Figure 31 shows a scaling
between 4th and 5th order for the error in both the toroidal momentum as well as the
energy. The variational method is expected to conserve the toroidal momentum up to
machine precision. The observed error actually decreases with increasing time step. The
error in the energy scales quadratically up to a time step of 1000 gyro-periods. For larger
time steps the modified Qin method is unstable (in agreement with Ref. [175]). As the
amount of work (i.e. computing time) is about equal for the RK4 and Qin methods, it
appears that RK4 is significantly better for all values of the time step. However the
variational method has the advantage that the error is bound in time, i.e. the error will
not increase when the integration time is increased. This is in contrast with the error in
the RK4 method which tends to increase with time. In this particular case, the error of
the variational integrator becomes smaller than the RK4 error for an integration time
of the order of 0.1 s.

4.10. Relativistic kinetic particles
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Figure 31 – Scaling of the relative error on energy and toroidal momentum for the Boris,
RK4 and Qin solvers for single banana particle orbit (as defined in Refs. [174,
175]. The time step is normalised to the ion cyclotron frequency. The total
integration time is fixed at 106 (0.01s).

The relativistic particle tracing in JOREK has so far mainly been used to study RE
confinement during plasma disruptions (Section 6.4). Similar studies have been done
with an orbit-following code ASCOT5 [176, 177]. In both codes, full gyro-orbits are
solved with the volume-preserving algorithm [178] and the (fixed time-step) guiding
center orbit is solved with RK4. The main difference between ASCOT5 and JOREK-
particles is that ASCOT5 does not use finite elements for the calculation of fields; the
magnetic field is interpolated in a uniform cylindrical grid with cubic splines instead.
Because both codes are being used to study transport of REs in a perturbed magnetic
field, it is reasonable to verify that the codes yield equivalent results.

The thermal quench phase of a JET disruption was chosen as test case, where the
stochastic field line region extended all the way from the edge to the core. Both elec-
tric and magnetic field were included and the fields where set to be stationary in time.
JOREK postprocessing tools were used to evaluate the electromagnetic field on a cylin-
drical grid and the data was exported to ASCOT5. It was verified that the grid was dense
enough as not to affect the benchmark results significantly by repeating the simulations
with different grid resolutions.

For the benchmark, a marker population of 5000 passing 1 MeV electrons was ini-
tialized on the outer mid plane on a fixed radial position. The markers were spread
toroidally by sampling the initial toroidal coordinate from a uniform distribution. The
markers were traced until they exited the plasma, which was defined to occur when a
marker passed a the poloidal flux value corresponding to a flux surface inside the sep-
aratrix. The accumulation of the losses in time was used as measure for transport to
compare the results. For guiding center simulations, ASCOT5 was used to calculate the
guiding center positions from the particle coordinates, and these guiding center posi-
tions were exported to JOREK to ensure that the initial transformation did not bias the
results.

The results of the benchmark are shown in Fig. 32. The stepwise structure seen in
JOREK results is due to (the simple method used here in) JOREK storing the marker
status only at fixed time intervals, whereas ASCOT5 stores the exact loss-time of each
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Figure 32 – (a) The final marker position (blue and red dots) on the edge shown together
with the magnetic field Poincaré plot (small black dots) and the position where
markers where initialized (the black cross). (b) The cumulative losses as a
function of time for each case. GO and GC refer to full gyro-orbit and guiding
center simulation, respectively.

marker at the end of the simulation. In this test case, there is little difference between the
full gyro-orbit and guiding center results in both codes. Between JOREK and ASCOT5
there is a slight deviation, and it is not certain what is the cause. One possibility is the
fact that the poloidal flux in ASCOT5 is an axisymmetric quantity (the 3D components
of the field are evaluated separately), and so the markers are not terminated at the same
(R, z)-coordinates as can be seen in Fig. 32 (b). Nevertheless, the results show good
agreement between the different pushers in both codes.

5. Applications to ELMs and ELM control

Unmitigated type-I edge localized modes (ELMs) [28, 179] cannot be tolerated in ITER
at least in full current operation [180] and even ELM types associated with reduced en-
ergy losses from the plasma and lower transient heat loads to plasma facing components,
are likely not acceptable for DEMO [181]. Consequently, the dynamics of various ELM
types, the access to ELM free regimes, and a robust understanding of ELM control meth-
ods are crucial research topics regarding the successful design and operation of future
fusion devices. In this Section, JOREK simulations regarding the plasma pedestal, edge

Page 67



M Hoelzl, GTA Huijsmans, SJP Pamela, M Becoulet, E Nardon, FJ Artola, B Nkonga et al – JOREK non-linear MHD code

and scrape off layer are summarized focusing on recent results. Section 5.1 presents work
on natural ELM crashes and cycles, Section 5.2 contains results regarding the triggering
of ELMs by pellets, Section 5.3 shows the excitation of an ELM crash by a vertical mag-
netic kick, Section 5.4 addresses the control of ELMs by RMP fields, Section 5.5 presents
work on the simulation of ELM free regimes, and Section 5.6 shows recent results on
an advanced modelling of SOL and divertor region as well as detachment physics. Sec-
tion 5.7 finally, contains a very brief outlook. For investigations of ELMs and ELM
control with other non-linear MHD codes, refer to the review provided in Ref. [3] and
for more recent work to Refs. [182–192] and references therein.

5.1. Natural ELMs

The phenomenology of ELMs has been studied intensively since the discovery of H-
modes in tokamaks [193]. Several experimental observations like magnetic field, density
and temperature perturbations localised on the Low Field Side (LFS) of the tokamak
suggest that MHD instabilities are involved in ELMs phenomenology [28, 179]. In partic-
ular, linear ideal MHD theory and codes indicate that ballooning modes driven by large
edge pressure gradient and kink-peeling modes driven by large edge bootstrap current,
both typical for the pedestal region in H-mode scenarios, are the underlying physical in-
stabilities of ELMs destabilisation [28, 29, 179]. However, only non-linear resistive MHD
codes could explain the full non-linear dynamics of ELMs, reproducing in particular
rotation of the modes, the mechanisms of density and temperature profiles relaxation,
ELM cycling behaviour, heat and particle fluxes structure arriving into divertor and
many other key experimental observations during ELMs.

The first non-linear simulations of ELMs with JOREK were done without two fluid
diamagnetic effects and are described in Refs. [1, 8, 36, 150, 194] for JET-scale plas-
mas. Indeed, it was confirmed that ELM offset is due to the destabilisation of coupled
kink-peeling and medium-n ballooning modes and their linear phase is very close to the
ideal MHD predictions. However, compared to the ideal linear MHD, the presence of
the separatrix and plasma resistivity showed a strong stabilization of the ideal MHD ex-
ternal kink-peeling modes replacing them by the so-called peeling–tearing mode which
is much less sensitive to edge safety factor q value compared to ideal MHD descrip-
tion. The different transport channels for thermal energy and particles during an ELM
crash and resulting heat and particle fluxes in divertor were described in Ref. [1, 8, 194].
The non-linear evolution of a medium-n ballooning mode shows the formation of den-
sity filaments and, due to non-zero resistivity, causes magnetic reconnection leading to
stochastic magnetic fields. Thereafter, the density evolution is mostly determined by
the ExB convection cells (Figure 33, left), while the temperature evolution (Figure 33,
right) is mainly dominated by parallel conduction in the stochastic fields formed during
the ELM crash (Figure 34).

The density filaments are sheared off from the main plasma by a mean n=0 poloidal
flow which is non-linearly induced via Maxwell stress [8] forming “blobs”, expelled from
the main plasma towards the SOL. The amplitude of the ballooning mode is limited by
this mean flow stabilising it and multiple (in time) density filaments can develop to bring
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Figure 33 – Perturbed density and temperature in the poloidal plane at the time of the
maximum of ELM magnetic perturbation for a JET-like 3MA plasma. Re-
print from Ref. [194].

Figure 34 – The homoclinic tangles forming during an ELM crash in JET and the resulting
strike line splitting are shown. Re-print from Ref. [194].
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the plasma below the stability boundary. The importance of poloidal flows onto ELM
crashes on one hand and the generation of poloidal flows during the crash on the other
hand was investigated also in Refs. [74, 150]. It was shown that large ELMs are mostly
conductive-type, meaning relatively large losses in pedestal temperature, because the
associated magnetic perturbations cause ergodisation of the edge and lead to significant
conductive energy losses along perturbed field lines. The interception of the resulting
homoclinic tangles with divertor plates (Figure 34) determine the pattern of the ELM
heat flux in the divertor. Therefore explaining the splitting of the strike lines to the
divertor during an ELM often observed in the experiments [195]. The smaller ELMs
are mostly convective-type with dominant density losses. These ELMs have divertor
footprints determined by the radial distance travelled by plasma filaments expelled by
an ELM and the loss of the plasma energy is determined by the energy stored in the
expelled filaments. The simulated divertor wetted area during the ELM was shown to
grow linearly with the ELM size in agreement with experimental observations. ITER
simulations [194] showed that for ELM losses up to 4 MJ of energy, the broadening of
the wetted area is similar for conductive and convective ELMs, in spite of the different
origin of the widening.

After the first confirmation of the generic features of full non-linear ELM dynamics
using the JOREK code, extensive studies of ELMs physics in existing tokamaks (JET,
ASDEX Upgrade, KSTAR, DIII-D, MAST) were performed with the aim of further
validation and improvement of JOREK physical models for more confident predictive
modelling for next-step machines and in particular ITER. Such extensive studies have
also enabled the JOREK code to contribute to general ELM physics issues like the role
of filamentary structures in ELM and ELM control [196]. In the following, we briefly
describe some examples and main results. First simulations of type-I ELMs in the AS-
DEX Upgrade tokamak [197] were shown in Ref. [198], where a spatial and temporal
sub-structure of the ELM was observed leading to several bursts. This work pointed
out the importance of including multiple toroidal harmonics in non-linear modelling to
obtain a realistic dynamics of ELMs. After the early linear growth phase dominated
by the most unstable medium-n ballooning mode, many other harmonics become desta-
bilized through non-linear coupling while approaching the ELM crash. The non-linear
destabilization of the low-n harmonics explained the poloidally and toroidally localized
structures of the ELM crash [199] observed in experiment [200] as “solitary magnetic
perturbations” (Figure 35). The excitation of low-n harmonics during an ELM crash
by non-linear mode coupling (Figure 36) was studied in Refs. [201, 202]. Note two lim-
itations of this study: ExB and diamagnetic background flows were not included and
the toroidal resolution does not include higher harmonics of the linearly most unstable
mode due to computational limitations. More recent work like [203] has overcome both
limitations. Density filaments and their propagation into the scrape-off layer were com-
pared qualitatively to the experiment in Ref. [204]. More recent simulations for ASDEX
Upgrade were performed at realistic experimental parameters and with plasma back-
ground flows consistently included [5]. Here, ELM losses, magnetic measurements [205],
and measurements for cold-front penetration [206] agree well with experiments. Based
on such simulations, the role of density fluctuations onto ECE-Imaging measurements
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Figure 35 – The poloidally and toroidally localized magnetic flux perturbation in an AS-
DEX Upgrade simulation is shown, which has similarities to so-called soli-
tary magnetic perturbations observed experimentally [200]. Re-print from
Ref. [199].

was studied [207] and the excitation of parametric decay instabilities during electron
cyclotron resonance heating was investigated [208]. Further simulations confirmed the
trend of decreasing dominant toroidal mode numbers with an increasing edge safety
factor like experimentally observed [209].

The two fluid diamagnetic (for electron and ions), neoclassical and toroidal background
plasma flows were implemented and applied to ELM simulations in Ref. [210] entailing
an important improvement of the physical model. A stabilizing effect of poloidal flows
and in particular diamagnetic effects known from the ideal MHD model onto high-n
ballooning modes was confirmed. Moreover, after the first ELM crash, poloidal flows tend
to damp the otherwise continuing ballooning mode turbulence, so the pedestal profiles
can be rebuilt again by heating and particle sources until they again reach the stability
limit producing the following ELM crash. The numerically obtained multi-cycles ELMs
exhibit similarities to high frequency ELMs in experiments (Fig. 37). Moreover, the
diamagnetic drifts were found to yield a near-symmetric ELM power deposition on the
inner and outer divertor target plates, consistent with experimental measurements [211].

The ballooning mode rotation obtained in JOREK simulations has been successfully
validated against analytical linear computations in Ref. [161]. In successive studies the
explanation of the rotating structures in the pedestal region before type-I ELM crashes
and in the inter-ELM periods (ELM precursors) observed in the KSTAR tokamak [212]
was proposed [162, 213]. The two fluid diamagnetic effects and toroidal rotations in-
cluded in the model were found to be the most important factors in explaining the
experimentally observed rotating structures [162].

Simulations aiming to capture ELMs in the JET tokamak [214] as realistically as
possible were shown in Reference [215]. The dynamics of filaments, divertor heat fluxes
and the influence of collisionality onto the ELM size was studied and precursor modes
were shown in ELM simulations. Successively, Ref. [216] addressed simulations for a
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Figure 36 – For various time points during a JOREK simulation (times in JOREK units),
the toroidal mode spectrum is shown. The linearly most unstable mode num-
bers around n = 10 give rise to a broad mode spectrum in the non-linear
phase at the ELM onset driven by non-linear mode coupling. In particular the
linearly stable n = 1 mode is driven to amplitudes comparable to the linearly
dominant n = 10 mode. Re-print from Ref. [201].

Figure 37 – High frequency multi-ELM cycles were obtained with JOREK when back-
ground plasma flows were consistently included. Re-print from Ref. [210].
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Figure 38 – The parallel heat fluence to the divertor targets is plotted versus the value
predicted by the Eich scaling. Good agreement is obtained in general, while the
heat fluence is underestimated in tendency, when plasma background flows are
taken into account (blue triangles). Note a misprint in the original publication,
which was corrected in the Figure shown here: the labels for the black and blue
points had accidentally been swapped both in Figures 4 a and b of Ref. [45].
Re-print with minor adaptations (key) from Ref. [45].

series of JET ITER-like wall (ILW) discharges to perform quantitative comparisons
with the experiments. It was shown that the accuracy of the pre-ELM equilibria used
for the simulations as well as realistic parallel heat conductivity are both critical for
reproducing experimentally observed ELM energy losses. Divertor peak heat fluxes were
still underestimated and the ELM duration overestimated in the simulations. Ref. [45]
took more accurate pre-ELM equilibrium reconstructions as basis for the simulations
and also investigated the impact of E ×B and diamagnetic background flows onto the
ELM dynamics. Very good agreement with the experimental scaling law [195] for the
energy fluence to the divertor targets was obtained in general (Figure 38), although
the values were slightly underestimated when E×B and diamagnetic background flows
were taken into account, in particular for configurations corresponding to small ELM
sizes in the experiment. Agreement regarding ELM energy losses and divertor peak heat
fluxes improved significantly compared to Ref. [216], also here with some deviation when
stabilizing background flows are taken into account. Resolving the remaining deviations
might require simulations of complete ELM cycles. Ref. [45] also demonstrated, that
the threshold for the onset of edge instabilities in non-linear JOREK simulations is in
better agreement with experimental observations than predictions from linear codes,
which typically neglect many non-ideal effects.

Using the JOREK code, realistic simulations of multiple type-I ELM cycles were re-
cently obtained for the first time [203] (Fig. 39). The inclusion of pressure-gradient
driven diamagnetic drifts is imperative to obtain the cyclical dynamics. The simulated
ASDEX Upgrade plasma corresponds to a moderate triangularity and high pedestal den-
sity. Simulations for different plasma parameters are the subject of ongoing efforts. The
simulations find that with increasing heating power, the ELM frequency rises, consistent
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to experimental observations of type-I ELMs [179]. A precursor-like mode activity is
observed before the violent onset of the ELM crash. It was found that the interaction
between this precursor-like mode and the background plasma is responsible for the ex-
plosive ELM onset. The first ELM crash simulated was observed to be different from the
subsequent ELMs because of differences in the non-axisymmetric seed perturbations that
exist before each ELM crash. For the first ELM, these are simply noise-level perturba-
tions, while for the subsequent ELMs the seed perturbations are consistent with the prior
existence of an ELM. This observation stresses the importance of simulating the entire
ELM cycle – particularly for predictive simulations. These simulations were also used
as basis for investigations regarding the scattering of ion cyclotron waves by filaments
and ELMs [217] and for recent studies of pellet ELM triggering (see Section 5.2).

The regime of small ELMs is another topic of current research with the JOREK code.
Experiments with small ELM host a quasi-continuous power exhaust and, with appro-
priate plasma shaping, can avoid type-I ELMs completely [218]. Using the simulation
set-up for the type-I ELM cycles described above, but with a lower heating power, an
operational regime with small ELM-like behaviour has been also obtained [219], albeit
not yet at ITER relevant conditions which remain a topic for future research. These
simulations highlight the importance of the stabilising effects of plasma flow onto small
ELMs [220].

Based on ELM simulations, fast ion losses were studied by particle tracing in the fields
of the JOREK simulations confirming increased losses during the ELM crash [221–223].
Tungsten transport during a large ELM crash in ASDEX Upgrade was investigated
kinetically [224] (Figure 40) revealing that lower-dimensional diffusion-convection models
cannot explain the far reaching interchange driven transport of the impurities and that
high tungsten densities in the ITER scrape-off layer might cause a net inward transport
of tungsten during an ELM crash.

Simulations for double X-point plasmas in the spherical tokamak MAST [225] were
reported in Ref. [226]. In particular, the filament dynamics were compared to experimen-
tal observations revealing good qualitative agreement regarding structure and dynamics
(Figure 41). The general role of filaments in ELM dynamics and ELM energy losses
was also addressed in Ref. [196]. The ELM energy losses, and divertor heat flux profiles
were found to agree reasonably well in spite of using a reduced MHD model in this
low aspect-ratio configuration and neglecting diamagnetic drift effects. For the MAST
Upgrade tokamak, predictive simulations were reported in Refs. [77, 160, 164, 227]. Par-
ticular attention was paid to studying the effect of the Super-X divertor onto detachment
in the inter-ELM phase, and burn-through during the ELM crash and resulting divertor
heat fluxes. More details on this study are given in Section 5.6 along with detachment
and burn-through studies for ITER reported in Ref. [78].

5.2. Pellet ELM pacing

Pellet injection into the pedestal of H-mode plasmas has experimentally shown to be
capable of increasing the ELM frequency significantly above its natural value while
decreasing ELM sizes, which may be beneficial for divertor lifetime and, in particular,
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Figure 39 – Results from a simulation of several type-I ELM cycles in ASDEX Upgrade
adapted from Ref. [203]. (a) shows the evolution of the toroidally averaged
outer midplane pressure gradient versus time and normalized poloidal flux. (b)
contains the evolution of the magnetic energies of the n = 2, 4, ..., 12 toroidal
harmonics included in the simulation. Finally, (c) shows the magnetic ener-
gies of a simulation with 15% less input heating power starting from 25.2 ms.
The ELM repetition frequency is seen to be directly proportional to the input
heating power. The first ELM crash is determined by random seed perturba-
tions and therefore shows different dynamics from the following ones, which
are fully self-consistent. Strong precursor-like modes which already affect the
pedestal gradient are observed prior to the very fast crashes.
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Figure 40 – During an ELM crash in ASDEX Upgrade (see Ref. [5]), the transport of
tungsten is investigated. The top figure shows the evolution of the density
profile during the ELM crash, the figures below show the mixing of tungsten
particles due to the MHD activity. Particles are colored according to their
original location. A strong mixing is observed including a strong interchange
transport across the separatrix. Re-print from Ref. [224].

Figure 41 – The signature of ELM filaments in visible light is shown for ELMs in MAST.
Left: virtual diagnostic data based on a JOREK simulation. Right: visible
light picture in the experiment. Re-print from Ref. [226].
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Figure 42 – The excitation of magnetic perturbations during pellet injection is shown. At
a pellet size between 1.5 mm and 1.8 mm, a bifurcation is observed. For larger
pellet sizes, a strong and sudden excitation of magnetic perturbation energies
to higher amplitudes is observed, which is absent for the smaller pellet sizes.
These strong perturbations are associated to a pellet triggered ELM crash and
induce losses from the plasma. Re-print from Ref. [87].

for the control of impurity concentrations in the plasma. In non-linear simulations, such
ELM triggering has first been demonstrated in Refs. [8, 228]. Detailed comparisons
to experimental observations for pellet triggered ELMs in the DIII-D tokamak were
reported in Ref. [87]. These studies revealed the detailed physical mechanisms for the
destabilization of the ELM by a pellet: Ablation leads to a largely adiabatic increase of
the plasma density and decrease of the plasma temperature in the vicinity of the pellet.
Due to the high mobility of the electrons along field lines, the temperature within a flux
surface is equilibrated again on an extremely fast time scale, while the density transport
takes place on the far slower time scale of the ion sound speed. In combination, this leads
to a helical structure with strongly increased pressure around the pellet location, which
locally exceeds the ballooning threshold. In the further evolution, the initially localized
perturbation spreads poloidally and toroidally such that the actual ELM crash leads to
radial transport across the separatrix in a far less localized manner. A clear threshold
was observed between a perturbation of the plasma and ELM triggering (Figure 42).

Simulations for ELM triggering in the JET tokamak revealed a toroidal asymmetry in
the peak heat flux to the divertor [229, 230], which constitutes a clear difference between
the non-linear behaviour of a natural and pellet triggered ELM. The simulation shows
good quantitative agreement (within 10-20%) against the divertor heat flux obtained
with experimental thermography measurements at the single toroidal location where
measurements are available. However, simulations predict a significantly larger divertor
heat flux at a location which was not covered by measurements in the corresponding
experiments.

Recent simulations for pellet triggered ELMs in ASDEX Upgrade [231] are studying
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Figure 43 – The time evolution of the heat flux onto the outer divertor targets which is
caused by 0.8× 1020D pellet injection with 560 m/s is shown. Three cases are
compared, where the transition from no-ELM response (8 and 10 ms) to ELM
triggering (12 ms) is observed. Re-print from Ref. [231].
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the ELM triggering possibility at different phases of the pedestal build up, which provides
additional insights into the evolution of the pedestal stability in the inter-ELM phase.
These pellet simulations include self-consistent ExB and diamagnetic background plasma
flows, use realistic plasma parameters and are based on the type-I ELM cycle simulations
of Ref. [203]. The injection of pellets during the pedestal build-up is studied varying
injection time, pellet size, and pellet velocity. Fig. 43 shows the divertor heat flux versus
time and the divertor length (at the toroidal position of the pellet injection) for three
cases: Pellets with 0.8 × 1020D atoms are injected into the plasma at 8, 10, and 12 ms
during the pedestal build-up with an injection velocity of 560 m/s, while the natural
ELM crash would occur here at around 16 ms. Note that the number of atoms reaching
the plasma is given here; thus the simulation corresponds to a pellet with approximately
1.5 × 1020 atoms in the experiment assuming 50% losses in the guide tube. A sharp
transition is observed between 10 and 12 ms from no-ELM response to ELM triggering.
Thus, the experimentally observed [232] lag-time has been reproduced qualitatively here,
during which no ELM triggering is possible by means of pellet injection. In case of
ELM triggering, large transient heat fluxes are observed in the range of ∼ 20 MW/m2

for about 0.4 ms. Furthermore, the ELM triggering cases show a far broader mode
spectrum compared to the no-ELM response and the triggered ELMs features a toroidally
asymmetric heat deposition with a strong n=1 component. A detailed comparison of
the non-linear properties of triggered and spontaneous ELMs, e.g., regarding the wetted
area, are shown in Ref. [233].

5.3. ELM control by magnetic kicks

Besides pellet injection discussed in the previous Section, ELM pacing has experimentally
also been demonstrated via so-called “vertical magnetic kicks”, during which the current
in one or several poloidal field coils is evolved in time in such a way, that the plasma
undergoes an excursion above and below the original location.

A benchmark of the plasma excursion caused by a variation of the poloidal field coils
(Figure 27), and fully self-consistent simulations of ELM triggering by vertical magnetic
kicks were shown in Refs. [93, 172, 234] for an ITER 7.5 MA plasma (Figure 44). Con-
sistently with the observations from several fusion experiments, it was demonstrated
that peeling-ballooning modes (PBMs) are triggered during a downward (towards the
X-point) excursion of the plasma leading to an ELM crash in an otherwise stable plasma
configuration, while an upward excursion of the plasma does not give rise to such edge
instabilities. The edge instabilities were shown to always appear at a particular ver-
tical displacement of the plasma independently of the actual time scale of the applied
oscillation, like also seen experimentally. Detailed analysis of the simulations and com-
parisons to analytical considerations allowed to confirm that an increase of the plasma
edge current density during the downward motion of the plasma in the inhomogeneous
magnetic field is responsible for the destabilization of the PBMs. A detailed analytical
picture of the mechanisms of the edge current evolution was obtained consistent with
the simulation results.
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Figure 44 – The perturbed density during an ELM crash induced by a vertical magnetic
kick is shown. All relevant conducting structures were included in the JOREK-
STARWALL simulation. The figure was generated based on the simulation
data published in Ref. [172].

5.4. ELM control by RMPs

Simulations for the penetration of external magnetic perturbations (MPs) into plasmas
of the DIII-D tokamak were shown in Refs. [37, 235] for the first time, demonstrating
that the magnetic topology obtained in simulations with plasma rotation considerably
differs from the so-called “vacuum approximation”, in which the vacuum magnetic field
of the perturbation coils is simply added to the equilibrium magnetic field of the plasma
(Figure 45). A strong suppression of magnetic islands and stochastic field regions by the
plasma was shown in these simulations carried out in the “zero-beta” limit and with a
rigid-body rotation. A radial E×B convective transport was observed in the presence of
the MP fields and an important role of it for the experimentally observed density pump-
out was proposed. However, note that the density pump-out due to this mechanism was
not strong enough compared to the experiment.

With the implementation of neoclassical, diamagnetic and toroidal background plasma
flows and taking into account also the self-consistent evolution of the plasma temper-
ature, Refs. [50, 236, 237] were able to show in detail the dynamics of the penetration
of the resonant magnetic perturbations (RMPs) into the plasma. In particular, the
screening effect by the rotating plasma was studied in detail. Based on such simu-
lations, Ref. [238] investigated the three dimensional lobe-structure of the homoclinic
tangles formed in the presence of the 3D magnetic field perturbations in detail revealing
a strike-line splitting like it is also observed in many experiments [239]. Refs. [236, 237]
also investigated the effect of the RMP fields onto the edge instabilities. In particular,
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Figure 45 – The magnetic topology caused by resonant magnetic perturbations is shown.
In the left figure, representing the “vacuum field” perturbation many island
chains and stochastic regions are visible. In the right figure which includes
the plasma response, most resonant components are shielded by the rotating
plasma, and only a few penetrated island chains are visible. Re-print from
Ref. [37].

Figure 46 – The magnetic perturbation energies of a natural ELM crash (simulated with
a single toroidal mode number n = 6 are compared to a simulation with
applied resonant magnetic perturbations. The n = 6 magnetic perturbation
energies are significantly reduced in the presence of the RMP fields. Instead
of the bursts corresponding to an ELM crash, stationary modes are formed.
Re-print from Ref. [236].
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Figure 47 – Edge temperature perturbations (non-axisymmetric component) for ASDEX
Upgrade simulations of a peeling-ballooning unstable plasma with different
RMP amplitudes. The left panel shows different time points during a simu-
lation with moderate RMP amplitude. Edge instabilities form rotating struc-
tures of reduced amplitudes compared to the natural ELM crash (mitigation
regime). The right panel shows, that a higher RMP amplitude causes a lock-
ing of the instabilities. In this case, losses from the plasma are strongly re-
duced and stationary mode activity is seen (suppression regime). Re-print
from Ref. [240].

it was shown that strong RMP fields can suppress peeling-ballooning instabilities in the
simulations replacing them by saturated modes (Figure 46), and that uneven-n modes
remain strongly sub-dominant in the presence of an n = 2 magnetic perturbation, even
if these are linearly unstable in the absence of the perturbation fields.

Furthermore, simulations for RMP experiments in ASDEX Upgrade showed very good
agreement for the penetration of the external fields into the plasma and the resulting
corrugation of the separatrix for several investigated “coil current phases”, i.e., different
perturbation spectra [241]. The configuration leading to the strongest ELM mitigation
effect in the experiments was identified in the simulation as the one with the largest kink
response of the plasma near the X-point. In further studies shown in Ref. [240, 242], the
interaction of the RMP fields with plasma edge instabilities was investigated in a plasma
configuration leading to an ELM crash in simulations without RMP fields. When increas-
ing the RMP amplitude at given plasma rotation, and also when reducing the plasma
rotation at fixed RMP amplitude, a transition was observed from an unmitigated ELM
regime into a mitigated ELM regime with reduced perturbation amplitudes and losses,
and further into an ELM suppressed state. While the 3D perturbations observed in the
unmitigated and mitigated state show a “bursty” behaviour and rotate in the electron
diamagnetic direction, the suppressed state is characterized by saturated modes, which
are not rotating in the lab frame due to a locking with the external perturbation fields
(Figure 47). Non-linear mode coupling is shown to be crucial for the ELM suppression.

Recent simulations for KSTAR [213, 243] investigate a plasma configuration unstable
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Figure 48 – The edge density perturbation during a QH-mode simulation is shown. The
upper figure contains the time trace of the perturbation in the outer midplane
induced by a stationary and rotating edge mode, the lower figure contains the
spectrum analysis of this signal. The results are in very good agreement to the
experimentally observed edge harmonic oscillations. Re-print from Ref. [244].

with respect to peeling-ballooning modes (PBMs). When n = 2 RMPs are applied,
a formation of islands and a stochastic field layer is observed at the plasma boundary
and a density pump-out is observed, while the effect onto the temperature is weaker.
The article shows, that the PBMs can be mitigated and eventually suppressed by the
application of the RMP fields of sufficient amplitude. Consistently with Ref. [240], a
breaking of the mode rotation is seen in the suppressed state. Non-linear mode coupling
plays an important role in the suppression, since the PBMs would be still unstable in
the degraded plasma pedestal, when the 3D fields are removed from the simulation.

5.5. ELM free regimes

Non-linearly saturated external kink modes in X-point plasma simulations including the
scrape-off layer (SOL) were described for the first time in Ref. [36]. Dedicated simulations
for quiescent H-mode (QH) plasmas from DIII-D were carried out in Ref. [244, 245].
These showed the development of saturated kink-peeling modes (KPM) leading to the
characteristic edge harmonic oscillation (EHO), which is observed experimentally in
the density evolution and is caused by the rotating saturated modes (Figure 48). The
influence of shear flows and resistive wall effects onto the development of the QH-mode
was studied for DIII-D and predictively for ITER. Linear stability studies for the DIII-D
case showed that the case is close to the peeling stability boundary. It was demonstrated
that the saturated KPMs are replaced by an ELM crash, if the edge current density is
decreased and the pedestal pressure increased.

Recently, simulations for experiments in ASDEX Upgrade have also been performed [246].
A QH-mode experiment of the carbon wall ASDEX Upgrade was studied and saturated
low-n kink-peeling modes were found to be non-linearly dominant at the edge of the
plasma forming a helically perturbed structure. This is in spite of an initial small crash
triggered by high-n ballooning modes, confirming that the simulations predict the for-
mation of a QH-mode like state for this plasma configuration. In the same reference, also
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Figure 49 – The simulation of an ELM crash in MAST Upgrade is shown. The simulations
are performed using the neutrals model available in JOREK. The originally
detached state with low target temperatures (left plot) is re-attaching during
the ELM crash in the Super-X divertor (right plots). Re-print from Ref. [77].

simulations for the ITER Q=10 baseline scenario were performed. Although further in-
vestigations may be necessary, these simulations indicate, that the bootstrap current may
be high enough in this scenario to enter a QH-mode regime. The ExB flows are shown to
have a stabilizing influence on high-n modes in the ITER plasma. In the ITER relevant
range of ExB rotation around 20km/s at the pedestal, the simulations show that low-n
modes n=1-3 are destabilized and become dominant in the non-linear saturated state
that establishes, while higher-n modes n=7-10 are significantly suppressed. The satu-
rated low-n modes lead to density oscillations in the pedestal which are typical for EHO
characteristics. Also, simulations with the free boundary extension (Section 2.9) were
shown in order to investigate the effect of the true geometry of the vacuum vessel onto
the instabilities. Related to the effect of resistive walls onto the KPM, simplified resistive
wall mode studies had already been performed and benchmarked in Refs. [169, 247].

5.6. Detachment physics

The simulations presented in Refs. [77, 78] study detachment/burn-through during an
ELM crash in a non-linear MHD simulation. Using the neutrals fluid model (Sec-
tion 2.6), simulations of plasma detachment for the MAST Upgrade tokamak were car-
ried out [77, 164] and reasonable agreement with SOLPS simulations could be shown,
although some discrepancies will require further investigations. In particular, the char-
acteristic “roll-over” could be qualitative reproduced, where the target particle flux first
increases and then decreases for an increasing midplane separatrix density, leading to a
target temperature of only a few electron Volts (eV) in the detached state. Simulations
of large type-I ELM crashes were carried out in such a detached plasma state, showing
the “burn-through” and re-attachment in the Super-X divertor leg. The ELM energy
fluence was found to be significantly lower than that predicted from the empirical scaling
for the detached Super-X divertor [164]. Similar physics was studied for ITER [78]. It
could be shown that small amplitude ELMs are sufficient to re-attach the plasma in
the ITER high recycling divertor transiently, increasing the electron temperature at the
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Figure 50 – Density, temperature and neutral density profiles along the ITER outer diver-
tor. Re-print from Ref. [78].

divertor target from a few eV to several hundred eV within a fraction of a millisecond
(Figure 50). In this Reference, also an outlook to refined modelling of detachment and
burn-through using a kinetic neutrals model (based on the particles framework described
in Section 2.10) is given, which will allow to capture the scrape-off layer dynamics even
more accurately.

5.7. Outlook

Regarding the modelling of edge instabilities, further emphasis will be put onto a more
accurate modelling of the scrape-off layer and divertor physics like shown for instance
in Section 5.6. Simulations of the edge plasmas including such effects, further model en-
hancements, and based on further numerical improvements, aim to extend the modelling
of ELM cycles to fully realistic plasma parameters and describe the physics mechanisms
relevant for the transitions between the regimes of different ELM types and ELM free
regimes.

6. Applications to disruptions and their control

In view of ITER, disruptions are presently the highest priority topic when it comes
to large-scale plasma instabilities. Unmitigated disruptions are considered intolerable
above modest values (by ITER standards) of the plasma current and thermal energy.
The ITER Disruption Mitigation System (DMS), which is planned to rely on Shattered
Pellet Injection (SPI), needs in particular to avoid substantial damage from heat loads,
RE impacts and electromagnetic forces [248]. The current strategy to achieve this con-
sists in: 1) mitigating heat loads by dissipating most of the plasma energy through
uniform radiation, 2) avoiding, if possible, the formation of a RE beam by raising the
electron density, 3) should a RE beam appear anyway, using SPI into the beam in order
to make its impact as benign as possible, and 4) controlling (via the plasma impu-
rity content) the Ip decay rate in order to mitigate electromagnetic loads. Achieving
these goals simultaneously requires a deep understanding of SPI and disruption physics,
and this motivates the many disruption-related investigations with JOREK which are
described in this Section. In particular, 6.1 discusses pre-disruption physics, i.e. the
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Figure 51 – Island width as a function of time for various islands, showing that higher n
islands are driven by mode coupling.

mechanisms leading to disruptions, 6.2 covers the dynamics of disruptions triggered by
Massive Material Injection (MMI), 6.3 deals with Vertical Displacement Events (VDEs)
and halo current dynamics, and finally 6.4 describes RE studies.

6.1. Pre-disruption physics

6.1.1. Tearing mode dynamics and mode locking

Simulations in ASDEX Upgrade-like geometry have been run in which the current profile
was tailored to make a dominantly m/n = 2/1 tearing mode strongly unstable [249].
Due to the inhomogeneous magnetic field as well as geometrical effects, the n = 1 mode
contains sidebands, i.e. components of the type m/1 with m 6= 2. In the linear phase,
Poincaré cross-sections thus show the presence of not only a 2/1 island, but also 3/1, 4/1
and 5/1 islands. In the non-linear phase, n > 1 islands (in particular 3/2 and 5/2) grow
fast. An analysis of the growth rate of the islands width, shown in Figure 51, suggests
that n > 1 islands result from mode coupling. For example, the growth rate of n = 2
islands is twice that of n = 1 islands. Island overlapping leads to a stochastization of the
magnetic field over roughly the outer half of the plasma. Due to the fast parallel heat
transport, the temperature profile flattens across this region, reproducing a key feature
of so-called ‘partial thermal quenches’ in experiments [250].

The amplitude of the magnetic field perturbation at the onset of the partial thermal
quench, as measured by synthetic magnetic sensors localized in the midplane, was com-
pared to the empirical scaling law identified by de Vries et al. [251]. Agreement within
the error bars is found for Low Field Side (LFS) sensors. On the other hand, the High
Field Side (HFS) synthetic sensors measure a magnetic perturbation much weaker than
expected from the de Vries scaling. This LFS-HFS asymmetry, which is clearly visible
in Figure 52, seems related to the fact that the various m/1 components interfere con-
structively on the LFS but destructively on the HFS. A related observation is that the
O-points of the various m/1 islands align on the LFS (a feature also observed experimen-
tally [250]) while on the HFS, the alignment involves either the O-point or the X-point
depending on the parity of m. These observations could help extract improved scaling
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Figure 52 – Perturbed radial magnetic field Br at the midplane as a function of the toroidal
angle φ and major radius R. The q = 2 surface (both on the HFS and LFS) and
the magnetic axis are marked by grey lines. A HFS-LFS asymmetry clearly
appears.

laws in the future.
Furthermore, the locking of a slowly rotating magnetic island to the vacuum vessel of

ASDEX Upgrade was demonstrated [249]. Scanning the vessel conductivity artificially
shows that mode locking is fastest and most complete when τv ' m/ω, where τv is the
vessel resistive time and ω is the mode frequency, as expected from theory [252].

6.1.2. Effect of impurities on island growth and relation to the Greenwald limit

Using the fluid impurity model (Section 2.7), JOREK simulations show a strong growth
of islands when the local radiation exceeds the Ohmic heating [253]. The transition
to strong island growth occurs in a range of densities near the Greenwald limit. For a
single impurity species, the critical density depends on the impurity fraction and the
temperature, in contrast to the scaling of the Greenwald density limit. However, a
mixture of impurity species is found to remove some of these dependencies, consistently
with [254].

6.1.3. Tearing mode seeding via Resonant Magnetic Perturbations (RMPs)

In ASDEX Upgrade, experiments have been conducted using the RMP coils (the same
as those used for ELM mitigation/suppression, see Section 5.4) with a coil configuration
optimized to produce m/n = 2/1 perturbations. Corresponding JOREK simulations
show good qualitative agreement with the experiments and with analytical predictions
regarding mode penetration [255]. In particular, thresholds for the mode penetration
in the RMP amplitude and plasma rotation frequency were observed, as well as a fast
transition between the shielded and penetrated states and a hysteresis of the island size
and plasma rotation between the ramp-up and ramp-down of the RMP. The latter is
illustrated in Figure 53.
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Figure 53 – 2/1 island width versus RMP coils current, showing the hysteresis effect:
mode penetration occurs slightly above 2kA in the RMP ramp-up phase, while
mode expulsion occurs below 1.5kA in the ramp-down phase. Re-print from
Ref. [255].

6.1.4. Tearing mode control with Electron Cyclotron Current Drive (ECCD)

A useful tool to control tearing modes and help avoid disruptions is Electron Cyclotron
Current Drive (ECCD). A fluid closure reproducing the dominant Fisch-Boozer current
generation mechanism in ECCD has been developed and validated against full Fokker-
Planck calculations of ECCD [256]. This closure model is implemented in JOREK
and the stabilizing influence of ECCD onto a tearing mode has been demonstrated in
simplified geometry [156].

6.2. Dynamics of disruptions triggered by Massive Material Injection

This section summarizes work performed with JOREK on the thermal quench triggering
mechanisms (Section 6.2.1), the thermal quench dynamics and plasma current spike
(Section 6.2.2), the assimilation and mixing of injected material (Section 6.2.3) and the
radiation fraction and asymmetry (Section 6.2.4). For work with other codes on these
topics, see Refs. [257–262] and references therein.

6.2.1. Thermal Quench triggering mechanisms

Disruptions triggered by a Massive Gas Injection (MGI) have been studied intensively
with JOREK [75, 76, 79, 263]. An analysis of simulations of Deuterium MGI in JET,
illustrated by Figures 54 and 55, suggests that the Thermal Quench (TQ) is triggered
through a current profile avalanche effect. The avalanche is started by the penetration of
an MGI-driven cold front up to the q = 2 surface, at which point a large m/n = 2/1 tear-
ing mode is destabilized (first row of Figure 54). The 2/1 mode, whose growth is boosted
by an MGI-induced helical cooling effect inside the 2/1 island, flattens the toroidal cur-
rent density (jφ) profile around the q = 2 surface, which results in a steepening of the
jφ gradient more inward, as evident in the blue and red profiles in Figure 55. When the
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Figure 54 – Poloidal cross-sections at the toroidal position of the MGI of (from left to
right) the n = 1, n = 2 and n = 3 cosine component of the poloidal flux ψ at
times (from top to bottom) t=4.1 ms, t=5.1 ms and t=5.7 ms, for the same
simulation of deuterium MGI in JET as in Figure 55. The color scale is the
same for all plots (note the saturation for the n = 1 mode which has a large
amplitude compared to the other modes). Re-print from Ref. [79].
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Figure 55 – Toroidal current density profiles at the midplane (low field side) at different
times for the same simulation of deuterium MGI in JET as in Figure 54.
The red and magenta profiles correspond to the last two rows of Figure 54.
Note that, for clarity, the position of rational surfaces is indicated (by vertical
dashed lines) referring to their location at the beginning of the simulation.
Re-print from Ref. [79].
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steep jφ gradient passes across the q = 3/2 surface, a 3/2 tearing mode is destabilized
(second row of Figure 54). The 3/2 mode in turns flattens jφ locally and propagates the
steep jφ gradient more inward, which destabilizes a 4/3 tearing mode (magenta curve in
Figure 55 and last row of Figure 54). These combined modes generate global magnetic
stochasticity and thereby provoke the TQ. It is interesting to note that, for these MGI
simulations, the n > 1 modes seem to be destabilized via a current profile effect while
in the study presented in Section 6.1.1 they were destabilized by mode beating. The
reason for this difference remains to be clarified.

SPI is also being investigated in detail with JOREK. Simulations of Deuterium SPI
in JET [80, 88] and ASDEX Upgrade [264] have shown that pre-TQ dynamics can vary
drastically depending on parameters. If shards travel across the plasma relatively fast
compared to the current decay time in the SPI-cooled region, then the main MHD desta-
bilization mechanisms are 1) the helical cooling on low order rational q surfaces (whereby
shards may generate magnetic islands as they pass across these surfaces, possibly leading
to a stochastization front progressing with the shards), and 2) for target plasmas with
a central safety factor q0 < 1, the excitation of the 1/1 internal kink mode when shards
reach the q = 1 surface. This behaviour has been observed in JET Deuterium SPI sim-
ulations [80, 88]. In the opposite limit of slow shards with respect to the current decay
time in the SPI-cooled region, the dynamics resemble that described above for MGI: the
current profile contracts due to the SPI-induced cooling of the edge, which destabilizes
tearing modes in cascade from the edge to the core, leading to a stochastization front
progressing faster than the shards. In this regime, the TQ is typically triggered when
shards reach the q = 2 surface, but it can be triggered even before for large and slow
pellets. This behaviour has been observed in ASDEX Upgrade Deuterium SPI simula-
tions [264] and is also typically observed for any tokamak when simulating the injection
of shattered pellets containing impurities [81].

The key role of the ordering between the shards penetration time and the current decay
time in the SPI-cooled region has a number of implications. First, it can be noticed that
the resistive current decay time, ∼ µ0l

2/η, is proportional to the square of the length scale
of interest l. Hence, considering that l is proportional to the machine size, the current
decay time should grow like the machine size squared, while the shards penetration time,
for a given velocity, increases linearly with machine size. This consideration is important
for comparisons or extrapolations between machines of different sizes. It explains partly
the different behaviour found in JET [80, 88] and ASDEX Upgrade [264] Deuterium SPI
simulations. Second, simulations in which the resistivity is artificially increased (which is
often done for numerical reasons) should be considered with caution because the current
decay time will be artificially shortened. To avoid this issue, present JOREK simulations
use a realistic resistivity at low Te with a cut-off above a certain Te threshold. A third
important remark is that the current decay time depends on the characteristics of the
cooling, i.e. on 1) the timescale of the cooling and 2) the post-cooling temperature.

This last observation explains the large differences observed between simulations of
pure Deuterium versus impurity-containing MMI, and suggests that Deuterium SPI may
be used as a means to promptly and strongly dilute ITER plasmas without immediately
triggering a TQ, thanks to a relatively high post-cooling temperature. Such a strat-
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egy may be instrumental in avoiding RE generation, motivating its investigation with
JOREK [265]. It was found that in the absence of pre-existing islands and provided
that the density of background impurities is low enough, the desired effect can indeed be
obtained. Simulations are on their way to assess whether pre-existing magnetic islands
can have a detrimental influence for realizing this strategy (first considering ASDEX
Upgrade plasmas). It is assessed in particular whether the presence of the 2/1 island
makes it harder to get SPI shards across the q = 2 rational surface without triggering a
TQ [266].

6.2.2. Thermal Quench dynamics and plasma current spike

The presence of an Ip spike is a robust experimental observation associated to the TQ,
but a difficult one to reproduce quantitatively with 3D non-linear MHD simulations. Ip
spikes in simulations have been reported in the past [79, 267] but with a significantly
smaller amplitude than experimental spikes. However, in recent JOREK MGI simula-
tions, pushing the parameters towards realistic experimental conditions and studying
Argon MGI in JET, an Ip spike of comparable magnitude to the experimental one has
been obtained, as can be seen in Figure 57. In these simulations, the mechanisms leading
to the TQ are partly the same as described above for Deuterium MGI but modes are
more violently destabilized, leading to stronger stochasticity throughout the plasma (a
series of Poincaré plots, at times indicated by vertical lines in Figure 57, are shown in
Figure 56). The fact that modes are more destabilized is a result of a stronger cooling
with Argon than Deuterium MGI and of the more realistic (i.e. lower) resistivity used in
the simulation, which generates sharper skin currents and thus a more unstable current
profile. Also, a seemingly critical feature associated to a large Ip spike [268] is a radiative
cooling strong enough to persist near the O-point of the 2/1 island, even as the island
gets destroyed by magnetic stochasticity. This promotes a local collapse of the current
density which drives the 2/1 mode to a very large amplitude. According to theory [269],
the Ip spike results from a relaxation of the current density profile at approximately fixed
magnetic helicity. This relaxation is caused by the magnetic field stochastization and
may be modelled, in a mean-field approach, by a hyper-resistivity term in the poloidal
flux evolution equation [269]. Boozer predicts a relation between the mean-field hyper-
resistivity and the field line stochastic diffusivity (Eq. 68 in [269]). JOREK mean-field
simulations, i.e. axisymmetric simulations with an ad hoc hyper-resistivity term of the
order of that predicted by Boozer, indeed match 3D simulations [270]. The Ip spike
magnitude and the modes amplitude (which govern the field line stochastic diffusivity),
thus appear to be strongly connected. In order to progress in the validation of JOREK
simulations, ongoing work aims at comparing both the Ip spike magnitude (and more
generally the time evolution of Ip) and the modes amplitude with experimental data, in
particular by using synthetic saddle coils in JET simulations.

Another important question related to RE generation, is that of the decay of MHD
modes and magnetic stochasticity after the TQ. This point is actually also related to the
Ip spike. Indeed, according to robust theoretical estimates done by Boozer, if the current
profile relaxation during the TQ was complete, and assuming good magnetic helicity
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Figure 56 – Poincaré cross sections at times 1.19ms, 1.91ms, 2.29ms and 2.46ms in a sim-
ulation of massive Argon injection in JET (pulse 85943). The corresponding
times are indicated by vertical lines in Figure 57.

Figure 57 – Simulated and experimental time traces of the plasma current during a massive
Argon injection in JET (pulse 85943). Vertical lines indicate the time of the
Poincaré cross sections shown in Figure 56.
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conservation, the Ip spike would be much larger than experimentally observed [269].
Thus, either helicity dissipation is non negligible, or the relaxation is incomplete. JOREK
simulations seem to point to the latter explanation. Indeed, they usually display good
helicity conservation during the TQ but a clear decay of stochasicity (starting from the
core of the plasma) before the current profile has fully flattened, as visible for example
in Figures 11 and 12 of [264].

6.2.3. Assimilation and mixing of injected material

The question of the assimilation and mixing of the injected material is important, both
for reducing localized heat fluxes and for avoiding REs. Indeed, the present ITER RE
avoidance strategy relies on raising ne by more than one order of magnitude throughout
the plasma [271]. This density rise should be uniform, otherwise REs could be generated
in low density regions.

It is generally observed in JOREK MGI and SPI simulations that the deposited ma-
terial initially expands in the parallel direction at the speed of sound, as also seen in
simulations of pellet ELM pacing (see Section 5.2). After some time, the part of the
cloud expanding in one direction may run into the part expanding in the other direction,
leading to substantial viscous dissipation.

JOREK simulations of Deuterium MGI and SPI in JET [80, 88] show that SPI is
superior regarding material assimilation and mixing, as illustrated in Figure 58, thanks
to the deeper penetration of solid shards compared to gas. The same simulations also
suggest, for target plasmas with q0 substantially below 1 and thus with a large q = 1
radius, a key role of the 1/1 internal kink mode for material mixing into the plasma core
during the TQ. In this respect, the position of the shards at the time of the internal kink
mode crash appears critical: if shards are ‘within reach’ of the mode’s flow structure,
substantial material mixing into the core happens; otherwise, core mixing is poor. These
observations are related to the 1/1 mode structure, which exhibits uniform and strong
displacement within the q = 1 surface, but a weak displacement outside of that surface.
Simulations in which q0 was elevated above 1 so as to remove the internal kink mode,
also show poor core mixing early in the TQ. [272]. Recent impurity SPI simulations of
ITER plasmas show similar results [81].

However, the absence of a 1/1 mode does not necessarily imply bad mixing. Indeed,
simulations of Deuterium SPI in ASDEX Upgrade [264], for which the target plasma has
q0 > 1, found good core mixing even if the TQ happens while shards are still far from
the core (e.g. near the q = 2 surface). More precisely, as shown in Figure 59, the density
profile is usually hollow during and shortly after the TQ, but by the time flux surfaces
reappear, the density profile has typically strongly flattened.

The more pronounced core mixing later into the TQ for the ASDEX Upgrade sim-
ulations is likely related to the much larger mode amplitudes and stronger magnetic
stochasticity (as described in 6.2.1), which lead to both stronger E × B flows and a
larger radial transport by parallel flows. An important observation is that parallel flows
are strongly driven during the TQ due to the heating of the relatively dense and cold
region where the material has been deposited by the heat flux coming from the core
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Figure 58 – Electron density profile just before (red) and just after (blue) the TQ for
simulations of Deuterium SPI (plain) and Deuterium MGI (dashed) in JET.
The black plain and dashed vertical lines indicate the position of the q = 2
and q = 1 surfaces, respectively. Re-print from Ref. [88].

Figure 59 – Colormap of the electron density distribution (black and white) with over-
laid iso-contours of the stream function for the perpendicular plasma velocity
(colours) during a simulation of Deuterium SPI in ASDEX Upgrade. The 3
plots correspond, from left to right, to the pre-TQ, TQ, and early CQ phase.
Re-print from Ref. [264].
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Figure 60 – The relative and absolute radiation power within each poloidal plane for Neon
SPI into a JET L-mode plasma. The TQ occurs at t = 1.98ms. The fragments
are injected at a toroidal angle of 4.51 radian.

.

along stochastic field lines.

6.2.4. Radiated fraction and radiation asymmetry

A uniform deposition onto the plasma facing components of the pre-TQ thermal energy
Wth is critical for efficient thermal load mitigation during ITER disruptions [273]. To
achieve this, both a large radiated thermal energy fraction (≥ 90% for the baseline ITER
scenario with Wth = 350 MJ) and a low radiation asymmetry are required. It is usual
to characterize the radiation asymmetry by a Toroidal Peaking Factor (TPF) and a
Poloidal Peaking Factor (PPF). In this section, we discuss the TPF, which is defined as
the maximal (over the toroidal angle) over mean radiated power per unit radian. The
target for ITER is a TPF lower than 2. The PPF shall be the subject of future studies.

With SPI from a single toroidal location, the TPF may be above the ITER target
during the pre-TQ and early TQ stages. An example of such behaviour is shown in Fig.
60. In this JET simulation, the injected fragments consist of pure Neon and are flying
along the poloidal plane. It is evident that the peak radiation power is located close to
the toroidal location of the fragments, although there is some drift along the course of
the injection. The TPF reaches its peak value, which is larger than 2, at the time of the
TQ onset. It then gradually relaxes over the course of the TQ, until the radiation power
becomes relatively toroidally uniform. The cause of such asymmetry can be traced back
to the unrelaxed impurity density along the field lines, which is related to the finite ion
sound velocity.

JOREK simulations show that multiple injections may significantly mitigate the TPF,
as illustrated in Fig. 61. Here, we are comparing the toroidal radiation distribution of
a single-SPI and a symmetric dual-SPI, both injecting 2.6 × 1022 Neon atoms along
with 2.1 × 1024 Deuterium atoms into an ITER L-mode plasma. For the single-SPI,
the injection is done at 0 radian, while for the dual-SPI injections are done at 0 and
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Figure 61 – Comparison of radiation asymmetries between Neon single-SPI (left) and dual-
SPI (right) into an ITER L-mode plasma. Re-print from Ref. [81].

π radian. A significant TPF is again exhibited in the single-SPI case, even during the
early stage of TQ at t = 4.24 ms. On the other hand, for the dual-SPI case, in spite of
a strong asymmetry in the early pre-TQ stage, the asymmetry is strongly mitigated by
the time of TQ at t = 4.08 ms.

6.3. Vertical Displacement Events and halo current dynamics

In the case where the vertical control of an elongated plasma is lost, the plasma col-
umn undergoes an axisymmetric instability referred to as a Vertical Displacement Event
(VDE). The loss of vertical control can be due to a large MHD perturbation or to a tech-
nical failure of the vertical control system. As the plasma drifts vertically towards the
wall, large heat and electromagnetic loads are deposited into the PFCs and surrounding
structures. The extrapolation of the magnitude and distribution of these loads to larger
machines, in particular the 3D distribution, is still not well established. In this respect
the simulation of these events with 3D MHD codes is crucial. For other non-linear MHD
codes investigating VDEs, refer, e.g., to Refs. [274–277] and references therein.

The simulation of VDEs requires free-boundary conditions for the magnetic field and
a self-consistent evolution of currents in the structures surrounding the plasma. This
is possible (including with 3D conducting structures) with the free-boundary extension
of JOREK (see Section 2.9). Based on this extension, a first benchmark of the growth
rates for axisymmetric VDEs in a simplified ITER-like plasma had been carried out be-
tween JOREK and the CEDRES++ code in [169] revealing good quantitative agreement
(within 10-20%) over a large range of wall resistivities (including fully realistic values).
First demonstrations of 3D VDEs using JOREK were shown in [169, 278].

An important area of research connected to VDEs and disruptions is the halo current,
i.e. the current that flows partly in the plasma SOL, closing its path via conducting
structures in contact with the SOL [280][281][282]. Axisymmetric parametric scans for an
ITER 15 MA upward VDE were performed in [279] by fixing the halo region temperature
and width. Scans in the plasma resistivity showed that when the CQ time is much smaller
than the decay time of the wall currents (τCQ � τw), the vertical position is a monotonic
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Figure 62 – Halo current fraction versus vertical position of the magnetic axis for different
τCQ/τw ratios [279]. The halo current fraction is defined as HF ≡ (1/Ip,0)

∫
|J ·

n|/2dSwall.

function of the plasma current Z(Ip) as predicted by Kiramov’s wire model [283]. In
this limit the shape of the Z(Ip) curve does not depend on specific time scales but only
on the shape of the toroidal current profile. The implication is that ITER plasmas
will transition from an X-point to a limiter configuration at a large total current (∼ 10
MA) regardless of the mitigation scheme used, which could have important consequences
regarding the wall damage caused by a vertically unstable RE beam, if RE mitigation
by SPI does not achieve its goal in ITER.

The latter scans show that the expected Halo current Fraction (HF) depends strongly
on the τCQ/τw as shown in Fig. 62. A minimum HF of ∼ 10% is found at τCQ/τw � 1
and maximum fractions of∼ 50% have been found in the limit τCQ/τw � 1, similar to the
maximum values obtained with the DINA code [273]. In the fast CQ limit the maximum
HF is below 10% regardless of halo width and temperature assumptions. Mitigated
disruptions in ITER will target CQ times in the range of 50 to 150 ms (to be compared
to τw = 0.5 s). The corresponding predicted HF range is 10− 20%. This suggests that
the ITER DMS system could be used to reduce the halo current electromagnetic loads
by more than a factor 2 with respect to their maximum possible value.

3D simulations for an ITER 15 MA plasma were conducted in the fast CQ limit [93].
The Toroidal Peaking Factor (TPF) of the poloidal halo currents is shown in Fig. 63 for
3 different values of the plasma resistivity leading to different CQ times. It can be seen
that the TPF (given by an n = 1 kink mode) is very low in the fast CQ limit (while
in experiments the TPF can reach values of 4). Moreover the maximum TPF does not
seem to depend strongly on the CQ time if τCQ/τw � 1. Note however that CQ times
in these simulations are below 50 ms, which is not allowed in ITER due to eddy current
constraints on the blanket modules [273]. These results are therefore presented only for
their physical interest and future work will be devoted to realistic ITER predictions.
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Figure 63 – Toroidal peaking factor of the halo current as a function of the vertical position
of the magnetic axis for an ITER 15 MA upward VDE [93].

The change of the edge current density and edge safety factor during a VDE when the
plasma moves into the PFCs is discussed in [284]. Analytical theory and JOREK non-
linear simulations show excellent agreement. When currents are lost in the scraped-off
region of the plasma, a significant fraction of these currents is re-induced in the edge
hot core region of the plasma. The same mechanisms also apply in case of a loss of the
plasma edge current due to a cooling of the plasma edge caused by an MMI.

Predictive simulations of VDEs must include several effects that are relevant for the
evolution of the density and of the temperature in the SOL region. The energy balance
given by perpendicular and parallel transport, Ohmic heating, radiation, ionisation and
other effects determines the plasma temperature, which in turn has a large impact on the
current density and the VDE dynamics through the plasma resistivity. In [68], a com-
plete set of sheath boundary conditions was taken into account together with a neutral
fluid model and realistic physical parameters, e.g., Spitzer resistivity and Spitzer-Härm
parallel conduction. It was found that it is particularly important to couple the electrical
current density to the particle density and temperature through a boundary condition
that limits the maximum current density to the ion saturation current. Otherwise large
currents can be induced in regions of very low particle density, leading to non-physical
dynamics. Although the effect of impurity radiation was not included, these simulations
are the first to provide a fully self-consistent evolution of halo currents.

6.4. Runaway electron physics

6.4.1. Test electron dynamics during the thermal quench

RE generation during disruptions is a major concern for ITER [286]. A key question in
this area is that of fast electron losses along stochastic field lines during a disruption.
To study this question, a relativistic test particle tracer (with 2 options: full orbit or
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Figure 64 – Early evolution of the kinetic energy of a set of electrons initialized in the
plasma core with a kinetic energy of 1 keV. Green lines correspond to lost
electrons while red (resp. blue) lines correspond to electrons which remain
confined and have a final energy above (resp. below) 1 MeV. Re-print from
Ref. [285].

guiding center) has been implemented in JOREK (see Section 2.10). It has first been
applied to study electron losses at approximately fixed energy in the electromagnetic
fields of MGI-triggered disruptions (see Section 6.2) [102, 103]. Substantial electron
losses were found during the strongly stochastic TQ phase, which increased with the
electron energy until reaching a saturation as the electron velocity approaches the speed
of light. However, a few tens of % of electrons at typical pre-TQ thermal energies (∼ 1
keV) were found to remain in the plasma by the time flux surfaces start reforming after
the TQ. This is by far enough to give birth to a large RE beam, but this number should be
taken with caution since the magnetic field stochasticity may have been underestimated
in these simulations, as suggested by the under-predicted plasma current spike. In
a second study, the full dynamics of test electrons, including acceleration or braking
by the parallel electric field and by collisions, were investigated in the same JOREK
simulations [103, 285]. This revealed that the very large (∼ 1 kV/m) parallel electric
field fluctuations during the TQ can have a key role in RE generation. These fluctuations
indeed rapidly broaden the electron energy distribution, with a typical energy reaching a
few tens of keV after a few tens of µs, as can be seen in Fig. 64. This makes electrons less
collisional and therefore promotes RE generation. This is a new effect, not captured by
typical lower-dimensional studies where only the axisymmetric component of the electric
field is considered. Finally, the magnetic field from a JOREK disruption simulation has
been used in a recent test electron study with the ASCOT code [176].

6.4.2. Runaway electron fluid model applied to VDEs and RE beam termination

Complementary to the passive test particles approach, a RE fluid model has been im-
plemented, which allows to describe the full non-linear interaction of the REs with the
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Figure 65 – Structure in the perturbed (normalized) electric potential u during the non-
linear phase of the mode growth. (a) Without REs, the n = 2 component
dominates while (b) with REs an n = 1 mode is developing due to the different
q-profile (1/1 internal kink). Re-print from Ref. [111].

MHD activity [111]. While various applications of the model are on their way, some
studies have already been performed. Similar approaches are followed by other codes,
see e.g., Refs. [287–290].

Axisymmetric and non-axisymmetric VDEs have been studied with and without the
presence of REs [291], showing that the vertical motion of the plasma can be slowed down
by the presence of REs if the decay of the plasma current is influencing the dynamics
of the vertical instability significantly. It was also demonstrated that the RE current,
peaking off-axis in this case, may lead to the destabilization of a 1/1 internal kink
instability in a plasma that would otherwise have a dominant 2/1 helical perturbation,
as shown in Fig. 65. Such effects may have important consequences for the termination
of RE beams.

In a recent study, the benign termination of a RE in a JET experiment has been
simulated [292, 293]. Based on experimental data, a plateau-phase RE beam with a
hollow current density profile in a low density background plasma with negligible content
of high-Z impurities is considered. It is found that an n = 1 double tearing mode
associated with the presence of two q = 4 surfaces grow rapidly, with subsequent non-
linear mode interaction causing global magnetic stochastization. This leads to the loss
of REs on a timescale of ≤ 100 µs. Poincaré plots as well as the RE number density
are shown in Figure 66. The observed behaviour is in very good agreement with the
experiment as it shows comparable mode structures and time scales. Simulations also
indicate a significant toroidal variation in the RE flux on the wall dominated by an n = 1
structure and a poloidally broad RE deposition zone, partly explaining why no material
damage is observed experimentally.

6.5. Outlook

Concerning current and future work related to disruptions, like mentioned in Section 2.15,
the development of a more realistic impurity model going beyond the coronal equilibrium
assumption, is ongoing to improve the accuracy of MMI simulations.
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Figure 66 – Poincaré plots along with the RE number density (background color) during
the MHD activity leading to the stochastization of the magnetic field and
subsequent termination of the RE beam. Remaining RE current is also shown
in each panel. Re-print from Ref. [292].

A validation effort on MMI modelling is underway, involving in particular the simula-
tion of MGI and SPI experiments in JET. Synthetic diagnostics such as interferometry,
bolometry and saddle loops have been implemented for this purpose.

As described above, a growing effort is also devoted to testing disruption mitigation
strategies for ITER. In particular, the study on the possibility of promptly diluting
ITER plasmas with pure Deuterium SPI, described in Section 6.2.1, is being refined,
investigating e.g. the effect of pre-existing islands. Also, the work aimed at optimizing
thermal load mitigation by radiation, described in Section 6.2.4, is being pursued,
considering more ITER scenarios and refining the treatment of impurities. The RE fluid
model will be applied to further test RE avoidance or mitigation schemes for ITER.

In the field of VDEs, current and future work involves experimental validation, imple-
mentation of sheath boundary conditions, a free-boundary extension for full MHD and
a coupling with 3D volumetric wall codes.

7. Further applications

7.1. ITGs

As described in Section 2.13, an electrostatic model for ion temperature gradient (ITG)
turbulence has been recently implemented. The fluid model and first benchmark results
were shown in Ref. [117]. The effect of magnetic shear onto the characteristics of global
ITG modes are investigated in Ref. [118] in global simulations in simplified circular
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Figure 67 – (Left) Growth rate of ITG modes as a function of the toroidal mode num-
ber from the JOREK kinetic model compared to the GENE results from the
benchmark [120]. (Middle) The ITG mode structure of the potential for the
n = 24 case. (Right) Example of the mode structure of an n = 20 ITG mode
in COMPASS X-point geometry L-mode plasma.

geometry similar to [119]. Typical up-down asymmetrical eigenmode structure with non
zero ballooning angle is typically observed in the regimes of relatively large magnetic
shear due to the increased coupling between rational surfaces [118]). In the low shear
regime,the unstable eigenmodes become narrowly localized on the corresponding rational
surfaces and exhibit no up-down asymmetry. The structure of the generated mean
poloidal flow via Reynolds stress is investigated in more detail in Ref. [118].

The first benchmark results for linear ITG modes of the full-f electrostatic kinetic
JOREK model with full orbit ions and adiabatic electrons are shown in Fig. 67. For
these cases, the full orbit of 109 ions are traced with a time step of 5·10−9s in a polar flux
surface-aligned finite element grid of 101 radial and 256 poloidal elements. The full orbit
ITG growth rates from JOREK are in good agreement with the gyrokinetic results from
GENE, XGC and ORB5 presented in Ref. [120]. Since the kinetic model uses the same
grids and equilibria as the fluid models in JOREK, the kinetic model can also be applied
in X-point geometry, including open field lines. As an illustration of this, Fig. 67(right)
shows an n = 20 ITG mode in COMPASS X-point geometry, in the non-linear phase.

7.2. Toroidal Alfvén Eigenmodes and fast particles

The excitation of TAE modes with an external antenna was studied in JET X-point
plasmas was studied in Refs. [294, 295] using the freeboundary extension described in
Section 2.9. The paper addresses the question why, in JET experiments, TAE modes
are more difficult to excite in X-point geometry as opposed to limiter geometry. The
JOREK simulations show the same behavior as observed experimentally and point to
the importance of the SOL with open field lines with a wider SOL leading to a less
efficient antenna excitation.

The particles framework (Section 2.10) includes the interaction of fast particles on
the MHD fluid. The fast particle driven TAE instability has benchmarked against the
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Figure 68 – The linear growth rate of the n = 6 TAE mode as a function of the tempera-
ture of the fast particle population, comparing JOREK results to other codes
(including FLR effects). The data is taken from Ref. [296] with the JOREK
results from Ref. [297] added.

well-established ITPA TAE benchmark as described in [296]. In the JOREK simulations
the pressure coupling scheme was used, the number of particles was 108. Figure 68 shows
a good agreement in the comparison of the JOREK results with several other codes on
the n = 6 TAE mode growth rate as a function of the fast particle temperature [297].
Note that JOREK is the only code in this benchmark using full orbit fast ions.

7.3. 3D configurations

3D plasma configurations are becoming an important research area for JOREK, in partic-
ular quasi-axisymmetric (QA) stellarators are of interest. A first approach is to simulate
an axisymmetric configuration with properties as close as possible to the true quasi-
axisymmetric configuration. Linearly, such an approach has been followed in Ref. [298]
and is presently improved by including “virtual coil currents” in the simulations, which
provide an externally driven rotational transform like it is present in the QA-stellarator
also for the axisymmetric simulation [299–301]. This allows to incorporate both the
influence of the external rotational transform onto non-axisymmetric modes and the
stabilizing effect onto vertical displacement events. In parallel to this axisymmetric ap-
proach to the QA stellarator, an extension of JOREK to 3D configurations is presently
ongoing. As a first step, a hierarchy of reduced and full MHD models has been derived
in a form suitable for stellarator devices [71, 72]; implementation is presently on the
way. The extension of the code to 3D grids taking place in parallel is briefly mentioned
Section 2.15 and 3.8. First simulations in simple stellarator geometry are expected to
become possible very soon.
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8. Conclusions and Summary

A comprehensive summary of the JOREK simulation code was given covering the avail-
able physics models, the numerical methods employed and the verification, as well as
the broad range of applications to magnetically confined fusion plasmas. An outlook
was provided in each section onto further developments of the code and onto future
applications.

It was shown that JOREK provides a framework which contains a number of different
physics models ranging from reduced and full MHD models to a fully kinetic treatment
of the plasma (so far electrostatic). Various extensions are available including separate
electron and ion temperatures, diamagnetic drift, neoclassical effects, fluid and kinetic
neutrals, a runaway electron fluid and test particle model, fluid and kinetic impurities,
pellets, free boundary and conducting structures. While the single fluid reduced and full
MHD models are energy conserving on the equation level, errors can arise from gyro-
viscous cancellation, temporal discretization and too low toroidal resolution. Diagnostics
running automatically for each simulation allow to confirm that energy is conserved
reasonably well in practice. Momentum conservation is exact on the equation level for
the full MHD model, but not for the reduced MHD model. The error has a low order as
seen from analysis in Ref. [71] and confirmed by the good linear and non-linear agreement
between reduced and full MHD models shown in direct comparisons.

The spatial discretization is based on a 2D G1 continuous finite element formulation
combined with a toroidal Fourier decomposition allowing to accurately align to flux
surfaces improving numerical accuracy and to extend the computational domain across
the separatrix up to divertor and plasma facing components. An extension of the ax-
isymmetric grid to 3D stellarator configurations is under development. The robust fully
implicit time advance allows to use large time steps where the physics processes allow
for it. An iterative solver with a physics based preconditioner is applied to the large
sparse matrix system, for which various options and library interfaces exist and further
improvements are on their way. The code is very actively developed in an international
community with automatic regression tests and code reviewing.

A large number of verification activities have been carried out over the years, while
only selected ones could be shown in this article. This covers basic convergence prop-
erties of the discretization, tests for highly anisotropic heat transport, a verification of
energy conservation, linear and non-linear benchmarks on core and edge instabilities,
comparisons on the SOL models, benchmarks for the runaway electron fluid model, a
variety of simpler and very advanced benchmarks for the free boundary extension, and
detailed tests of the kinetic particle framework.

Regarding pedestal/edge simulations, a variety of results regarding natural ELMs
was shown demonstrating that the JOREK code is able to reproduce key experimental
observations qualitatively and even quantitatively. This is in particular the case for the
divertor heat fluency scaling that is recovered reasonably well and for the explosive onset
of type-I ELM crashes that has recently been reproduced for the first time in simulations
of full ELM cycles. Regarding the control of ELMs, pellet ELM triggering has been
studied extensively and, for instance, the lag-time experimentally observed in the ELM
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cycle has been reproduced recently in simulations with fully realistic parameters and
flows. ELM triggering via vertical magnetic kicks has been demonstrated as well. The
penetration of error fields into the plasma as well as the mitigation and suppression of
ELMs via RMP fields was investigated in detail including realistic ExB and diamagnetic
flows. ELM free QH-mode regimes were obtained and the EHO was explained by a
saturated kink-peeling mode. Using a neutral fluid model, the ELM burn-through in
detached conditions was demonstrated in non-linear simulations and a more precise
description of the SOL/divertor processes is on the way including a kinetic treatment of
impurities and neutrals.

Regarding disruptions, results were presented on pre-disruption physics, the dynamics
of massive material injection triggered disruptions, vertical displacement events, halo
currents, and runaway electrons. Most prominently, JOREK is able to capture, at least in
a qualitative sense, experimentally observed features of disruptions like the triggering of a
thermal quench via the destabilization of a 2/1 tearing mode and the ensuing non-linear
dynamics, and the Ip spike. It can also describe accurately 3D vertical displacement
events and halo current dynamics in spite of using a reduced MHD model, as benchmarks
with full MHD codes have shown. While work is ongoing towards quantitative validation
of disruption simulations, JOREK is already being used to test and optimize disruption
mitigation strategies for ITER, and these efforts will intensify in the coming years.

Further applications of JOREK include ITG turbulence simulations, the interaction
of TAE modes with fast particles, and the ongoing extension towards stellarators.
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[134] P. Hénon, P. Ramet, and J. Roman. PaStiX: a high-performance parallel direct solver for sparse symmetric
positive definite systems. Parallel Computing, 28(2):301 – 321, 2002. ISSN 0167-8191. doi:10.1016/S0167-
8191(01)00141-7.

[135] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using
distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.
doi:10.1137/S0895479899358194.

[136] Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet. Hybrid
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[166] G. Papp, T. Fülöp, T. Fehér, P. C. de Vries, V. Riccardo, C. Reux, M. Lehnen, V. Kiptily, V.V. Plyusnin,
B. Alper, and JET EFDA contributors. The effect of ITER-like wall on runaway electron generation in
JET. Nuclear Fusion, 53(12):123017, 2013. doi:10.1088/0029-5515/53/12/123017.
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A. Coordinate systems

Cylindrical coordinates As already mentioned in Section 2.2, the basic cylindrical co-
ordinate system (u1, u2, u3) = (R,Z, φ) of JOREK is given by x = R cosφ, y = −R sinφ,
and z = Z, where (x, y, z) denotes Cartesian coordinates (Fig. 1). The tokamak coor-
dinate convention number COCOS [43] used by JOREK is 8. This implies the COCOS
coefficients eBp = 0, σBp = −1, σRφZ = −1, σρθφ = 1. The covariant basis vectors
aα = ∂X/∂uα are given by

a1 =

 cosφ
−sinφ

0

 , a2 =

0
0
1

 , a3 =

−R sinφ
−R cosφ

0

 .

We use both 1, 2, 3 and R,Z, φ synonymously as sub- or superscripts in our notation
to identify the co- and contravariant components such that, e.g., aφ ≡ e3. The cross
products between these basis vectors are a1×a2 = a3/R, a1×a3 = −R a2, a2×a3 = R a1,
and aα × aα = 0 as well as aα × aβ = −aβ × aα. The contravariant basis vectors are

given by a1 = a1, a2 = a2, a3 = a3/R
2. Of course, aα ·aβ = δβα and a1 = ∇R, a2 = ∇Z,

a3 = ∇φ. Furthermore, a1 = J∇Z × ∇φ, a2 = J∇φ × ∇R, a3 = J∇R × ∇Z. And
a1×a2 = Ra3, a1×a3 = −a2/R, a2×a3 = a1/R. Here the Jacobian is J = a1·(a2×a3) =
R. Normalized basis vectors are given by e1 = e1 = a1 = a1, e2 = e2 = a2 = a2,
e3 = e3 = a3/R = R a3. The co- and contravariant metric tensors are given by
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gαβ = aα · aβ = diag(1, 1, R2), gαβ = aα · aβ = diag(1, 1, 1/R2). The determinant of
the covariant metric tensor is g ≡ J2 = det (gαβ) = R2. Differential Operators are given
in the cylindrical coordinates of JOREK by

∇U = ∂1U a1 + ∂2U a2 + ∂3U a3

∇polU = ∂1U a1 + ∂2U a2

∇ ·V =
1

R
∂1(RV 1) + ∂2V

2 + ∂3V
3

∇×V =
1

R
(∂2V3 − ∂3V2) a1 +

1

R
(∂3V1 − ∂1V3) a2 +

1

R
(∂1V2 − ∂2V1) a3

∆U = ∇ · ∇U =
1

R
∂1(R∂1U) + ∂2,2U +

1

R2
∂3,3U

∆polU = ∇ · ∇polU =
1

R
∂1(R∂1U) + ∂2,2U

∆∗U = R2∇ ·
(

1

R2
∇polU

)
= R ∂1

(
1

R
∂1U

)
+ ∂2,2U

[A,B] = e3 · (∇A×∇B) = ∂1A ∂2B − ∂2A ∂1B

The Christoffel symbols defined by

A · ∇B = Ai∂i(B
jaj) = Ai(∂Bj)aj +AiBj(∂iaj) = Ai(∂iB

j + ΓjikB
k)aj

(A · ∇B)j = Ai(∂iB
j + ΓjikB

k)

are given by the following expressions in the JOREK cylindrical coordinate system:

∂3a
1 = R∇φ = Ra3, ∂3a

3 = − 1

R
a1, ∂1a

3 = − 1

R
a3.

Element local coordinates Inside each of the quadrangular finite elements (see Sec-
tion 3.1), a local coordinate system (s,t,φ) is defined with s and t taking values in the
range [0, 1]. Both s and t are orthogonal with respect to φ, but not with respect to
each other. The local coordinates are defined by the cylindrical coordinates R(s, t) and
Z(s, t) being expressed in terms of the local coordinates in the same finite element basis
as the physical variables. When the Poisson bracket [a, b] is expressed in terms of the
element-local coordinates, we get [a, b] = (a,sb,t − a,tb,s)/J2 where J2 = R,sZ,t − R,tZ,s.
Note, that the singularity at the grid center, where J2 = 0 does not break the code, since
the integration is carried out on the Gaussian integration points, where J2 6= 0.

While this mapping does not have a φ dependency at present, an extension of the code
to 3D grids is presently ongoing (see Section 3.8) such that the mapping will become
R(s, t, φ̃) and Z(s, t, φ̃), where φ̃ does not have to be equivalent to φ, but can be a function
of (R,Z, φ) (e.g., in the case of Boozer coordinates). The orthogonality assumption of
φ with respect to s and t might be dropped in the context of this extension.
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B. Normalization

Connection between SI and normalized units Description of the quantity
RSI [m] = R Major radius
ZSI [m] = Z Vertical coordinate
BSI [T ] = B Magnetic field vector
ESI [V m−1] = E/

√
µ0ρ0 Electric field vector

ΨSI [Tm2] = Ψ Poloidal magnetic flux
jφ,SI [Am−2] = −j/(R µ0) Toroidal current density; jφ,SI = jSI · êφ
nSI [m−3] = ρ n0 Particle density
ρSI [kg m−3] = ρ ρ0 Mass density = ion mass × particle density
TSI [K] = T/(kB µ0 n0) Temperature = electron + ion temperature
TeV [eV ] = T/(e µ0 n0) Temperature = electron + ion temperature
FF ′SI [T rad] = FF ′ Poloidal current stream function F = RBφ and ′ = d/dψ
pSI [Nm−2] = ρ T/µ0 Plasma pressure
vSI [ms−1] = v/

√
µ0ρ0 Velocity vector

v||,SI [ms−1] = v|| ·BSI/
√
µ0ρ0 Parallel velocity component, where BSI = |BSI|

uSI [ms−1] = u/
√
µ0ρ0 Ru is the velocity stream function, F0u is the potential

ωφ,SI [m−1s−1] = ω/
√
µ0ρ0 Toroidal vorticity

tSI [s] = t · √µ0ρ0 Time
γSI [s−1] = γ/

√
µ0ρ0 Growth rate of an MHD mode

ηSI [Ωm] = η ·
√
µ0/ρ0 Resistivity

νSI [kg m−1s−1] = ν ·
√
ρ0/µ0 Dynamic viscosity

ν̃SI [m2s−1] = ν̃SI/ρSI Kinematic viscosity (ρSI is the local value)
DSI [m2s−1] = D/

√
µ0ρ0 Particle diffusivity (|| or ⊥); Usually, D|| = 0

KSI [kg m−1s−1] = K ·
√
ρ0/µ0/ (γ − 1) Heat diffusivity (|| or ⊥)

ST,SI [Wm−3] = ST /
√
µ3

0ρ0 Heat source

Sρ,SI [kg s−1m−3] = Sρ ·
√
ρ0/µ0 Particle source

ηwall,thin,SI [Ω] = ηwall,thin ·
√
µ0/ρ0 Resistivity of conducting structures

Rion/rec,SI [m−3s−1] = Rion/rec/(
√
µ0ρ0n0) Ionisation and recombination rate

Eion,SI[J ] = ξion/(
2
3µ0n0) Ionisation energy

Lrad,SI[Wm3] = Lrad/(
2
3

√
ρ0/µ0n

2
0

mi

mimp
) Radiation rate (impurity fluid model)

Prad,SI[Wm−3] = Prad/(
2
3

√
ρ0/µ0) Radiation power density (impurity fluid model)

qSI [As] = q
√
µ0ρ0 Particle charge

µneo,SI [s−1] = µneo/
√
ρ0µ0 Neoclassical friction rate

• The growth rate γn, SI for harmonic n is calculated by ln[En(t2)/En(t1)]/[2(t2−t1)]
with En the mode energy and t2 and t1 the corresponding time points at which
the energies are determined. The factor two appears in the denominator to obtain
growth rates for amplitudes instead of energies and be comparable to linear codes.

• Heat diffusion coefficients in JOREK are defined absorbing the factor γ− 1, which
would normally appear in the energy equation for diffusion terms. This means,
JOREK diffusivities need to be multiplied by a factor 1.5 (at γ = 5/3) when
comparing them to the usual definitions.

• Note that χSI [m2s−1] = KSI/ρSI where κSI [m−1s−1] = nSI χSI
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• Thin wall resistivity: ηwall,thin,SI [Ω] = ηwall,SI [Ω m]/dwall[m] with wall thickness
dwall; E.g. ITER: ηwall,thin,SI = ηwall,SI/dwall = 8 · 10−7Ω m/(6cm) = 1.33 · 10−5Ω

C. Time stepping scheme

The time-integration of a set of equations of the form

∂A(u)

∂t
= B(u, t) (61)

can be discretized by the general form (refer to [302, 303])

(1 + ξ)An+1 − (1 + 2ξ)An + ξAn−1 = ∆t
[
θBn+1 + (1− θ − φ)Bn − φBn−1

]
, (62)

which guarantees second-order accuracy, if φ+θ−ξ = 1/2. Superscripts like Bn indicate
at which timestep the corresponding expression is evaluated. The linearization Hn+1 ≈
Hn + ∂H/∂u|n · δun, with H = A or H = B, which is described in Ref [303], allows to
rewrite Equation (62) in the following way, where φ = 0 has been chosen:

(1 + ξ)

[
An +

(
∂A

∂u

)n
δun

]
− (1 + ξ)An − ξAn + ξAn−1

= ∆t

[
θ

(
Bn +

(
∂B

∂u

)n
δun

)
+ (1− θ)Bn

] (63)

Here, δun ≡ un+1−un. After some simplifications, and using the backward linearization
Hn−1 ≈ Hn − ∂H/∂u|n · δun−1, one obtains[

(1 + ξ)

(
∂A

∂u

)n
−∆tθ

(
∂B

∂u

)n]
δun = ∆tBn + ξ

(
∂A

∂u

)n
δun−1, (64)

which is the time-integration scheme implemented in JOREK. Certain parameter choices
correspond to well-known time integration methods: Crank-Nicolson is selected by θ =
1/2 and ξ = 0, BDF2 (Gears) is selected by θ = 1 and ξ = 1/2, and first order implicit
Euler method (not used in production) corresponds to θ = 1 and ξ = 0. The linearization
shown above can also be replaced by Newton iterations with a beneficial effect onto non-
linear stability in certain situation, as demonstrated in Ref. [65]. However, this is not
implemented in the present code version.

D. Setup for testing anisotropic heat transport

For the tests shown in Section 4.2, the following setup was used. The plasma cross
section is circular with a major radius of Raxis = 100 m and a minor radius of 1 m.
The magnetic configuration is initialized by the poloidal flux distribution Ψ = 1 −
[(R − Raxis)

2 + Z2]2 T/m2 and F0 = 200 Tm. The applied perturbation is given by
Ψ̃ = 0.01 T [Z sin(φ) + (R − Raxis cos(φ)]. The simulation domain is rectangular 2 m
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by 2 m for the non-aligned grid and circular with radius 1 m for the aligned grid. The
temperature at the boundary of the computational domain is fixed at zero via Dirichlet
boundary conditions. For the following, (normalized) pre-factors are omitted since they
do not affect the results due to the self-similarity of the solution and since only relative
errors are discussed. To establish a steady state temperature distribution, a source
ST = {0.5−0.5 tanh[(Ψn−0.1)/0.1]} is applied in the plasma center. The perpendicular
and parallel heat conduction coefficients are spatially constant and their ratio is varied
for the tests. The density distribution is spatially constant. Convergence is tested by
assessing the steady state value of the axis temperature that establishes.
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