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A B S T R A C T   

Objective: Markup of generalized interictal epileptiform discharges (IEDs) on EEG is an important step in the 
diagnosis and characterization of epilepsy. However, manual EEG markup is a time-consuming, subjective, and 
the specialized task where the human reviewer needs to visually inspect a large amount of data to facilitate 
accurate clinical decisions. In this study, we aimed to develop a framework for automated detection of gener
alized paroxysmal fast activity (GPFA), a generalized IED seen in scalp EEG recordings of patients with the severe 
epilepsy of Lennox-Gastaut syndrome (LGS). 
Methods: We studied 13 children with LGS who had GPFA events in their interictal EEG recordings. Time- 
frequency information derived from manually marked IEDs across multiple EEG channels was used to auto
matically detect similar events in each patient’s interictal EEG. We validated true positives and false positives of 
the proposed spike detection approach using both standalone scalp EEG and simultaneous EEG-functional MRI 
(EEG-fMRI) recordings. 
Results: GPFA events displayed a consistent low-high frequency arrangement in the time-frequency domain. This 
‘bimodal’ spectral feature was most prominent over frontal EEG channels. Our automatic detection approach 
using this feature identified EEG events with similar time-frequency properties to the manually marked GPFAs. 
Brain maps of EEG-fMRI signal change during these automatically detected IEDs were comparable to the EEG- 
fMRI brain maps derived from manual IED markup. 
Conclusion: GPFA events have a characteristic bimodal time-frequency feature that can be automatically 
detected from scalp EEG recordings in patients with LGS. The validity of this time-frequency feature is 
demonstrated by EEG-fMRI analysis of automatically detected events, which recapitulates the brain maps we 
have previously shown to underlie generalized IEDs in LGS. 
Significance: This study provides a novel methodology that enables a fast, automated, and objective inspection of 
generalized IEDs in LGS. The proposed framework may be extendable to a wider range of epilepsy syndromes in 
which monitoring the burden of epileptic activity can aid clinical decision-making and faster assessment of 
treatment response and estimation of future seizure risk.   

1. Introduction 

Generalized interictal epileptiform discharges (IEDs) are a charac
teristic feature of the interictal (i.e., ‘between seizures’) scalp 

electroencephalogram (EEG) in multiple forms of epilepsy. Generalized 
IEDs are typically seen across bilaterally distributed scalp electrodes and 
show a time-varying morphology. The precise temporo-spatial appear
ance of these IEDs depends on the extent and location of the underlying 
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epileptic brain network. These complex brain dynamics make general
ized IEDs challenging to differentiate from ‘normal’ background activ
ity, even for experienced human reviewers. Characterization of 
generalized IEDs in the time-frequency domain is a potential method to 
aid manual markup, and may assist with the development of automatic 
IED detection approaches. 

Lennox-Gastaut syndrome (LGS) is a type of epilepsy where gener
alized IEDs are frequent. LGS is a severe, childhood-onset epilepsy 
associated with drug-resistant seizures, characteristic scalp EEG pat
terns, and disabling cognitive and behavioural impairments that worsen 
over time [1,2]. The onset of LGS is typically heralded by a plateauing of 
cognitive development or loss of previously acquired cognitive skills, in 
part due to the impact of frequent epileptic activity on the developing 
brain [3,4]. 

An important characteristic of the interictal EEG in LGS is the exis
tence of generalized paroxysmal fast activity (GPFA) events with a 
spectral content of ~8–20 Hz. Clinical assessment of these events is 
usually performed manually by human experts who are required to 
carefully review each page of EEG over a recording that may last 24 h or 
more. Although clinically informative, this process is subjective, time- 
consuming, and often impractical. Due to time constraints, careful 
manual review of the entire recording is rarely performed, with human 
reviewers estimating the IED burden from a sub-sample of the entire 
EEG recording. 

There are several automatic IED detection methods in the literature 
which can be categorized into three groups: time-domain methods, 
frequency-domain methods and wavelet-domain methods. Short-time 
Fourier transform, wavelet transforms, empirical mode decomposition, 
and Fourier decomposition method can be adapted to interrogate 
epileptiform discharges from different perspectives (see Ref. [5] for a 
comprehensive review). Machine learning approaches [6,7], phase 
synchrony analysis [8], time-frequency analysis [9], correlation analysis 
[10,11], spike morphology-based analysis [12], EEG feature extraction 
[13–15], sub-band decomposition [16], and independent components 
analysis [17] have been used for the implementation of the IED detec
tion methods. 

Despite a large number of existing automated spike detection tech
niques, only a small number of commercial software programs are 

available for real-world applications in epilepsy monitoring units 
(see,1,2,3). However, these programs were developed specifically for the 
detection of monomorphic focal IEDs as opposed to bursts of generalized 
discharges, which are typically more challenging for automatic detec
tion algorithms due to their highly variable duration and morphology. 
Hence, these programs are not currently suitable for detection of GPFA 
in patients with LGS, in whom automated detection is likely to have 
important clinical benefits. For example, automatic quantification of 
GPFA burden may provide an objective and complementary measure of 
treatment response in patients undergoing therapeutic clinical trials 
[18]. 

In this study, we investigated EEG signal dynamics of GPFA in the 
time-frequency domain in a cohort of children with LGS. We showed 
that GPFA displays a consistent spectral power ‘bimodality’. To evaluate 
the utility of this feature, we searched for segments of patients’ EEG 
recordings with similar time-frequency properties. This was achieved by 
developing a practical automatic IED detection method based on band- 
pass filtering of scalp EEG electrodes within two frequency intervals of 
interest, followed by integration of their instantaneous power envelopes 
across all scalp electrodes. Reliability of the automatically detected 
events was evaluated in two ways: (i) we assessed true positives by 
comparing automatically detected GPFA events to the events detected 
by manual human markup; and (ii) we assessed biological plausibility of 
false positive events (i.e., automatically detected events that were not 
identified in the manual human markup) by investigating simultaneous 
EEG-fMRI brain maps derived from manually marked and automatically 
detected events separately: the key hypothesis here was that if the 
automatically detected GPFA-like events are biologically meaningful, 
they should yield EEG-fMRI maps that resemble ones derived from 
manual human markup of IEDs. 

2. Materials and methods 

2.1. Patients and simultaneous EEG-fMRI acquisition 

Thirteen children with LGS underwent EEG-fMRI at the Royal Chil
dren’s Hospital in Melbourne, Australia. In all cases, diagnosis of LGS 
was defined by (i) multiple seizure types, including tonic seizures; (ii) 

Table 1 
Demographic and electroclinical information of the children with LGS. For each patient, the total number and cumulative duration (in seconds) is provided for their 
manually marked GPFA events that were captured during EEG-fMRI scanning.  

ID Age at 
scan (yr) 

Age of 
seizure onset 
(yr) 

Gender Etiological type 
presumed to underlie 
epilepsy 

Anatomical MRI findings EEG-fMRI 
study length 
(min) 

No. of manually marked GPFA 
events (cumulative duration in 
sec) 

S1 10 0.8 F Structural/genetic Right medial temporal lobe DNET 30 18 (16.2) 
S2 2 1 M Structural Left temporal lobe dysplasia 30 106 (92.5) 
S3 13 12 F Unknown Unremarkable 30 20 (15.5) 
S4 13 0.4 F Unknown Cerebellar atrophy (incidental) 16 74 (52.3) 
S5 5 0 M Structural/metabolic Bilateral occipital ulegyria 30 114 (106.8) 
S6 11 0.8 F Infectious/structural Bilateral encephalomalacia and gliosis involving 

insula, perisylvian, and prerolandic regions 
22 87 (50.2) 

S7 12 0.25 F Genetic/structural Tuberous sclerosis with multiple cortical tubers 30 60 (64.6) 
S8 7 2.5 F Infectious/structural Bilateral encephalomalacia involving frontal, 

temporal, parietal, ad insular cortex, basal ganglia, 
hippocampus 

30 137 (135.3) 

S9 15 0.3 M Unknown Unremarkable 30 34 (72.8) 
S10 6 3 M Infectious/structural Bilateral hippocampal sclerosis 30 124 (112.6) 
S11 10 2 F Infectious/structural Bilateral hippocampal sclerosis 30 45 (73.2) 
S12 16 2.7 F Unknown Unremarkable with previous left temporal lobe 

corticectomy 
30 43 (29) 

S13 4 0.2 F Genetic Unremarkable 30 97 (53.9) 
Mean ± std 69 ± 43 (62 ± 40)  

1 http://compumedicsneuroscan.com/curry-epilepsy-evaluation/.  
2 https://www.cadwell.com.  
3 http://www.natus.com. 
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routine interictal EEG showing GPFA and bursts of <3 Hz slow spike- 
and-wave (SSW); and (iii) cognitive and/or behavioural impairment 
[19,20]. The study was approved by the Royal Children’s Hospital 
Human Research Ethics Committee and all parents/legal guardians gave 
written consent prior to participation. Patients’ EEG-fMRI results 
derived from manual EEG markup are reported in Ref. [20]. Their 
electroclinical details are summarized in Table 1. 

Due to intellectual disability, 12 of the 13 patients were scanned 
under general anaesthesia (inhalational isoflurane ≤0.8% end-tidal 
concentration combined with IV remifentanil ≤0.1 μg/kg/min); the 
remaining patient (S12 in Table 1) tolerated scanning without any 
anaesthetic agents. FMRI data were acquired in a 3 T S Trio system 
(Munich, Germany) using an echo-planar imaging sequence with 44 
interleaved slices [no gap], repetition time = 3.2 s, echo time = 40 msec 
and voxel size = 3.4 × 3.4 × 3.4 mm. For each patient, up to 30 min of 
fMRI was acquired (mean = 28 min). A high-resolution (0.9 mm3) 
T1-weighted magnetisation-prepared-rapid-gradient-echo (MPRAGE) 
anatomical brain image was also acquired during each session. Con
current EEG data were acquired using a commercial 64-channel MR- 
compatible EEG system (Compumedics Neuroscan, Victoria, Australia) 
according to the 10–20 standard system. Data were recorded based on 
the referential montage at the sampling rate of 5000 Hz. 

2.1.1. Manual markup of generalized IEDs 
Each patient’s in-scanner EEG was marked by an epileptologist for 

multiple IED types including GPFA. Table 1 summarizes the total 
number and cumulative duration of the GPFA event type for patients. An 
in-scanner example of GPFA is shown in Fig. 1. 

2.2. EEG-fMRI preprocessing 

FMRI data pre-processing followed our prior work [20]. Briefly, each 
patient’s data was corrected for slice-timing and head motion and then 
spatially smoothed using a Gaussian filter with full-width at half 
maximum of 6 mm. 

EEG recordings were pre-processed using Compumedics Profusion 
software4 version 4.0 and the EEGLAB toolbox5 [21]. 
Gradient-switching and cardioballistic artefacts were corrected using 
average artefact template subtraction methods. To avoid computational 
limitations, the pre-processed EEG recordings were down-sampled to 
100 Hz for further analysis. 

2.3. Time-frequency characterization of GPFA 

To quantify the time-varying properties of the manually marked 
GPFA events, we transferred them to the time-frequency domain to 
reveal their joint temporal and spectral characteristics: this step was 
performed because the morphology of a GPFA event evolves over both 
time and space (i.e., scalp EEG electrodes). Additionally, its oscillations 
may slow down or become faster over the course of an individual 
discharge. Therefore, an appropriate quantitative detection feature for 
GPFA must take three factors into account: (i) variable morphology, (ii) 
time-varying spectral content before and after the event onset, and (iii) 

Fig. 1. Example of a multichannel generalized 
paroxysmal fast activity (GPFA) event captured on 
the double banana montage during simultaneous 
EEG-fMRI in a patient with LGS. The Event has been 
highlighted by a transparent red box. As the high
lighted segment illustrates, the morphology, dura
tion and spectral content of the GPFA events at each 
EEG channel may be different. Also, the events have 
channel-specific onset times. In other words, GPFA 
events represent a non-uniform morphology along 
the time-axis and across EEG channels (i.e., in all 
temporal, spectral and spatial domains).   

4 https://www.compumedics.com.au/products/profusion-eeg.  
5 https://sccn.ucsd.edu/eeglab/index.php. 
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Fig. 2. Group average time-frequency representations of GPFA events calculated in the period from 3 s before to 3 s after the onset of manually marked events over 
(A) all events and all LGS patients (N = 13), (B) the same events and patients as (A), but here demeaned along each frequency row (i.e., demeaning was performed 
along the time axis). A burst of post-onset low to high frequency activity is observed in the time-frequency maps spanning a frequency range of ~0.3–20. This 
increased spectral power shows a ‘bimodal’ pattern consisting of a low-frequency patch over ~0.3–3 Hz and a high-frequency patch over ~8–20 Hz. In both panels, a 
negative value on the time-axis means a time point prior to the onset time of the GPFA event. 

Fig. 3. (A) Schematic of the proposed GPFA detection method at the single electrode channel level. (B) Schematic of the approach at the multi-channel level. (C) 
Example of a typical band amplitude fluctuation (BAF) envelope for a single EEG channel (C4) within an exemplary frequency band of 3–8 Hz. (D) BAF envelope of 
the same signal extracted within a higher frequency band of 15–30 Hz. (E) Example of a true positive (TP) and a false positive (FP) event for the adjacency interval 
ΔDetect of − 0.5 to 1 s peri-onset (shaded yellow rectangle). The top line illustrates a true positive event (red arrow) with respect to ΔDetect (black arrow). The bottom 
line shows a false positive event (red arrow) which is outside of ΔDetect (black arrow). 
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multi-electrode nature. Fig. 2-A and Fig. 2-B display the average spec
trograms of all manually marked GPFAs in a subset of scalp EEG elec
trodes selected from all LGS patients, calculated over a 6 s time window 
(− 3 to 3 s peri-onset). Spectrograms were defined as the short-time 
Fourier transform of input signals [22]. The selected EEG electrode in 
each dataset was chosen as the electrode with maximum spectral power 
across the frequency range of 8–20 Hz post-event onset. The relevance of 
this frequency band for GPFA is discussed in section 3.1. In 10 out of 13 
datasets, the selected electrode was located in the frontal scalp region. 
Visual inspection of these time-frequency representations suggested a 
characteristic pattern of time-frequency changes between the pre- and 
post-onset intervals in GPFA events. As shown in Fig. 2-A and B, these 
pre-post onset changes became more apparent after demeaning the 
time-frequency maps along the time axis (i.e., each frequency row in the 
maps was converted to have a mean value of zero). We observed a 
‘bimodal’ burst of increased spectral power immediately following 
GPFA onsets that was most apparent in frontal electrodes and was seen 
as a simultaneous increase of spectral power in a low frequency range of 
approximately 0.3–3 Hz and a high frequency range of approximately 
8–20 Hz. Based on these observations, we hypothesized a general outline 
for characterization of GPFA in LGS as follows: 

GPFA is an interictal EEG event associated with a burst of post-onset low 
to high frequency activity spanning a frequency range of ~0.3-20 Hz across 
multiple, particularly frontal, scalp EEG electrodes. This increased spectral 
power shows a bimodal pattern consisting of a low frequency patch over 
~0.3-3 Hz and a higher frequency patch over ~8–20 Hz s. 

To test this hypothesis, we considered three subject-specific param
eters for each GPFA event in the time-frequency domain: (i) a post-onset 
low-frequency band (ΔLF in Hz), (ii) a post-onset high-frequency band 
(ΔHF in Hz), and (iii) a subset of EEG electrodes with maximal high- 
frequency information over ΔHF. The peri-onset interval was defined 
as 1 s before to 2 s after each manually marked IED onset time. To es
timate the upper limit of ΔLF in each patient, we divided the mean 
spectrogram of each GPFA event into pre- and post-onset regions. We 
then projected the spectrograms along the frequency axis and extracted 
the upper cut-off frequency of ΔLF where the derivative of spectral dif
ference transited from negative to positive values. To estimate the mid- 
frequency of ΔHF, we detected the peak of the consistent spectral bumps 
ranging above ΔLF before and after the EEG onset. We defined the extent 
of ΔHF as the full width at half maximum of the detected peak. This 
analysis was performed for each patient separately. 

2.4. Validation of the time-frequency feature via automatic IED detection 

To validate the utility of the identified time-frequency feature in 
automatically detected GPFA events, we searched for EEG segments 
with similar bimodal spectral properties throughout the whole of each 
patients’ in-scanner EEG recording. The rationale here was that if the 
time-frequency arrangement of GPFA is a reliable and general feature 
across patients, it should occur during both manually marked GPFA 
segments as well as GPFA-like segments that were not identified in the 
original manual markup. Hence our automatic detection procedure is 
likely to yield both true positives (TPs, events which coincide with the 
manually marked GPFA segments) as well as false positives (FPs, events 
which do not coincide with the manually marked GPFA segments but 
which share similar bimodal spectral behavior). In the following sec
tions, we describe the proposed automatic detection procedure and 
explain how its true/false positives were quantified. 

2.4.1. Automatic detection procedure 
Fig. 3-A and Fig. 3-B show block diagrams of the proposed automated 

event detection strategy at the single-channel and multi-channel levels 
for a typical EEG dataset. The strategy comprises two main steps: (i) 
analysis of each EEG channel separately (Fig. 3-A), and (ii) integration of 
the channel-wise analyses (Fig. 3-B). At the single-channel level, band- 
amplitude fluctuations (BAFs) of each channel are extracted using the 

Hilbert transform. The BAF envelope of a signal X(t) is defined as the 
absolute value of the analytic associate of its filtered version within a 
certain frequency band Δf , i.e., X(t,Δf) [Omidvarnia et al., 2014]. 
Mathematically, it is written as: 

BAFX(t,Δf )=
⃒
⃒
⃒X(t,Δf )+ iX̂(t,Δf )

⃒
⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

X2(t,Δf ) + X̂
2
(t,Δf )

√

(1)  

where X̂(t,Δf) is the Hilbert transform of X(t,Δf) and i =
̅̅̅̅̅̅̅
− 1

√
. Zero- 

phase band-pass filtering is first performed using a Butterworth filter 
of order 4 in both forward and backward direction [23]. The BAF of a 
signal represents its time-varying spectral power within the selected 
frequency band Δf only. In other words, BAF extraction preserves the 
spectral content of a GPFA event over time within a selected frequency 
range while excluding other frequency components that are not of 
interest. 

Fig. 3-C and Fig. 3-D show, for one example dataset, the BAF enve
lopes for an interictal EEG segment in a typical EEG electrode (here, C4) 
within a low frequency band of Δf = 3–8 Hz and a high frequency band 
of Δf = 15–30 Hz. The first step in the proposed GPFA detection 
approach is to extract two BAF envelopes for each EEG electrode within 
the pre-defined frequency bands ΔLF and ΔHF. Fig. 3-A illustrates the 
schematic of this process at C4. For a multi-channel EEG dataset with 
Nchan number of electrodes, the per-channel BAF extraction procedure 
leads to 2Nchan BAF envelopes. The per-channel BAF signals are then 
integrated via multiplication over all channels at each time point (i.e., 
Hadamard product of the two BAF signals). This step yields what we 
define here as a scoring signal with a duration equal to that of the entire 
EEG recording (red arrow in Fig. 3-B). For each time-point, the scoring 
signal indicates the degree to which there is simultaneous high power 
within both ΔLF and ΔHF frequency bands across the intersection of all 
EEG channels. An increase in the scoring signal is therefore associated 
with the potential occurrence of a GPFA-like event with maximal spec
tral power within these bands. The desired events are detected by 
selecting supra-threshold time points of the scoring signal after merging 
adjacent events that are closer than a pre-defined time length, which we 
refer to as a merging window (here, 0.5 s). We used this merging step to 
avoid detecting multiple events that are too close because such events 
are more likely to represent a single GPFA burst. Section 2.4.2 explains 
the choice of our scoring signal threshold. 

Given that obtaining ΔLF and ΔHF relies on an initial manual EEG 
markup, we first estimated these frequency bands using the manually 
marked datasets of our LGS cohort and then used this estimation as a 
priori knowledge for our automatic IED detection procedure. In line with 
the results of the group average time-frequency maps of Fig. 2, we fixed 
ΔLF to 0.3–3 Hz and ΔHF of 8–20 Hz. 

2.4.2. True and false positive rates with reference to manual EEG markup 
A key issue regarding the validity of the automatically detected GPFA 

events is the choice of an appropriate threshold to apply to the scoring 
signal, above which a potential GPFA-like event is flagged in our auto
matic detection procedure (Fig. 3-B). To address this, we repeated the 
detection method for each individual dataset at multiple thresholds from 
5% to 95% of the scoring signal amplitude in 5% increments (i.e., 19 
thresholds in total per dataset) and counted the number of TPs and FPs at 
each threshold. 

The TP and FP events were defined as follows: we considered each 
event (either automatically detected event or manually marked GFPA) 
as a Dirac delta function with zero duration and treated the set of events 
as a binary pulse train. We deemed an automatically detected event and 
a manually marked event as similar if their corresponding delta func
tions were within an adjacency interval ΔDetect around the onset time of 
each manually marked GPFA event. Automatically detected events 
outside all adjacency intervals were considered to be FP events. Fig. 3-E 
illustrates examples of TP and FP events with respect to a ΔDetect of − 0.5 
to 1 s peri-onset interval. This comparison yielded a patient-specific 

A. Omidvarnia et al.                                                                                                                                                                                                                           
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spike detection profile for each EEG dataset where the true positive rate 
(TPR) can be plotted across multiple scoring signal thresholding levels, 
as illustrated in Fig. 4. The most optimum threshold applied to each 
scoring signal was obtained as the peak of their spike detection profile, 
reflecting the threshold at which the TPR was maximal. For each patient, 
the TPR was defined as: 

TPR(ΔDetect)=
NTP(ΔDetect)

NManual
(2)  

where NTP(ΔDetect) is the number of manually marked GPFA events 
which had at least one corresponding automatically detected event in 
the proximity of their adjacency interval and NManual is the total number 
of manually marked GPFA events (Table 1). The missing rate (MR) was 
defined as: 

MR(ΔDetect)=
NMissing(ΔDetect)

NManual
(3)  

where NMissing(ΔDetect) is the number of manually marked events which 
were missed by the detection algorithm (i.e., NMissing(ΔDetect) = NManual −

NTP(ΔDetect)). In this study, we used two different values for ΔDetect, i.e., 
− 0.5 to 0.5 s (strict comparison) and − 0.5 to 1 s (less strict comparison) 
peri-onset intervals. 

2.4.3. Testing the biological plausibility of ‘false positives’ via EEG-fMRI 
analysis 

Validation of FPs in the proposed automatic GPFA detection pro
cedure is a non-trivial challenge. Although the FP events do not 
temporally coincide with the manually marked GPFA events as the gold 
standard, it is possible that FPs represent genuinely epileptic events that 
were missed by the human expert due to, for example, markup fatigue 
(as is likely to occur when manually marking up lengthy EEG re
cordings) and/or subjective decision-making concerning the threshold 
at which the manually identified event is deemed to be GPFA or not. 
Alternatively, some proportion, or even all automatically detected 
events could be erroneous. In this study, we chose to assess the biolog
ical plausibility of FPs by analysing their associated brain hemodynamic 
response maps using simultaneous fMRI recordings. Our rationale for 
this analysis was that if FPs are indeed biologically meaningful epileptic 
events, their brain hemodynamic response maps should resemble the 
maps derived from manually marked IEDs. A standard event-related 
general linear modelling (GLM) analysis of concurrent EEG-fMRI was 
used [24]. We treated the EEG events as a binary sequence of Dirac delta 
functions and convolved it with a canonical hemodynamic response 
function, as well as its first-order derivatives with respect to time and 
space (i.e., a total of three event-related regressors of interest were 
included per GLM). As nuisance regressors, we included 6 head motion 
parameters in the GLM, derived from the rigid volume realignment step 
performed during fMRI pre-processing. For each patient, we performed 
simultaneous EEG-fMRI analysis using the timing information derived 

Fig. 4. (A) and (C) Color maps of TPRs using the strict (ΔDetect = − 0.5 to 0.5 s) and less strict (ΔDetect = − 0.5 to 1 s) comparison procedures with multiple thresholds 
from 5% to 95% of the scoring signal amplitude in 5% increments. Each row in the maps represents a detection profile for a single patient. (B) and (D): Subject- 
specific TPRs at the peak of the detection profiles, corresponding to the panels (A) and (C), respectively. Subject IDs (S1, S2, and so on) correspond to Table 1. 
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from the automatically detected TP and FP events (each of these ana
lyses were performed twice, once for each of the two ΔDetect intervals). In 
addition, we repeated the analyses using the manually markup GPFA 
events. This led to 78 separate EEG-fMRI analyses (13 patients × 3 event 
types [TP, FP, and manually marked] × 2 adjacency intervals). For each 
analysis, a statistical parametric map of hemodynamic signal change 
was obtained by an F-test across the three event regressors of interest. 

We hypothesized that if the detected FP events are non-biological, 
they should lead to spurious statistical parametric maps with low simi
larity to the maps derived from manual markup. We tested this hy
pothesis by calculating the pairwise spatial cross-correlation between 
the F-maps associated with the FPs and the F-maps associated with 
manual markup,6 where a high correlation value indicates that the two 
maps under consideration are spatially similar. F-maps were compared 
under two circumstances: (i) without statistical thresholding and (ii) 
after statistical correction using an uncorrected voxel-wise p-value of 
0.001 followed by a corrected cluster-wise p-value of 0.05 using 
Gaussian Random Field Theory [25]. All GLM analyses were performed 
using SPM12 running in MATLAB version R2016a [26]. 

3. Results 

3.1. Estimated frequency intervals 

The group-average time-frequency maps of GPFA events in Fig. 2 
were observed at the individual level. In other words, a bimodal spectral 
arrangement was presented in each patient’s interictal EEG dataset. The 
mean low frequency band ΔLF was ~0.3–2.7 Hz and the mean high 
frequency band was ΔHF = ~8.8–12.6 Hz. The high frequency band ΔHF 
extended as low as 3.3–5.7 Hz in subject S1 to 15.9–17.6 Hz in subject 
S5. Across the group, most scalp EEG channels showing the greatest high 
frequency power over ΔHF were located across frontal and pre-frontal 
areas (10 of 13 patients). Table 2 summarizes the estimated frequency 
intervals (i.e., ΔLF and ΔHF) of GPFA events for all patients. Although 
these frequency intervals are shown in Table 2 for each patient, similar 
frequency intervals were used for all patients during the automatic 
detection procedure based on the ensemble means. 

3.2. Assessing true positives via comparison with manual markup 

Using the mean high/low frequency bands estimated across all pa
tients (see section 3.1), we performed the proposed automatic GPFA 
detection procedure (Fig. 3) using the fixed frequency bands of 
ΔLF = 0.3–3 Hz and ΔHF = 8–20 Hz. For each detection, we defined TP 

and FP events under two scenarios: strict comparison with НDetect = − 0.5 
to 0.5 s peri-onset and less strict comparison with ΔDetect = − 0.5 to 1 s 
peri-onset. 

In general, the number of automatically detected events was 
considerably higher than the number of manually marked GPFA events. 
This was reflected in the number of FPs (NFP) compared to the number of 
TPs (NTP). NFP varied from 367 ± 179 FP detected events for the strict 
comparison scenario (i.e., ΔDetect = − 0.5 to 0.5 s peri-onset) to 412 ± 221 
detected events for the less strict comparison scenario (i.e., 
ΔDetect = − 0.5 to 1 s peri-onset), while the range of NTP was 39 ± 21 and 
46 ± 26 detected events, respectively. 

The detection results are summarized in Table 3. As expected, TPRs 
associated with the less strict comparison scenario were always higher 
than the strict comparison scenario (61.3 ± 9.8% versus 53.7 ± 13.6%). 

Fig. 4 demonstrates the individual analysis results under the strict 
and less strict comparison scenarios separately. In the figure, the left 
column is associated with color-coded spike detection profiles extracted 
from the LGS datasets. Maximum TPR values associated with the peaks 
of the spike detection profiles are also plotted as bar plots on the right 
side. 

3.3. Assessing false positives: EEG-fMRI analysis 

For each patient, we investigated the spatial correlation between the 
manual markup F-map and its corresponding F-map generated from (i) 
all automatically detected events (i.e., the combination of TPs and FPs), 
and (ii) FPs only. 

Given that the definition of FP and TP events depends on the adja
cency interval ΔDetect, we performed the correlation analysis for both 
ΔDetect = − 0.5 to 0.5 s peri-onset and ΔDetect = − 0.5 to 1 s peri-onset. For 
ΔDetect = − 0.5 to 0.5 s peri-onset, the average correlation between the 
manual markup maps and the maps of all detected events was 
r = 0.71 ± 0.13. This correlation was reduced for the F-maps of the FP 
events to 0.63 ± 0.09 (see Table 4). 

We repeated the abovementioned spatial correlation analysis for the 
statistically corrected F-maps at the voxel-wise p < 0.001 followed by a 
cluster-wise p < 0.05 correction for multiple comparisons. As Table 4 
shows, statistical thresholding to the F-maps led of a reduction in the 
spatial correlation values, presumably due to fewer brain voxels that 
were present in the F-maps after the statistical correction was applied (i. 
e., r = 0.37 ± 0.33 for the maps of all detected events; and 
r = 0.16 ± 0.19 for the maps associated with the FP events only, all 

Table 2 
Summary of the estimated low- and high-frequency bands of GPFA for each 
patient.  

ID ΔLF  ΔHF  EEG channel with maximum ΔHF power  

S1 0.3–1.4 Hz 3.3–5.7 Hz F1 
S2 0.3–2.7 Hz 7.6–12.3 Hz FC5 
S3 0.3–1.7 Hz 10.8–12.6 Hz P5 
S4 0.3–3.3 Hz 7.9–12.2 Hz F3 
S5 0.3–2.8 Hz 15.9–17.6 Hz F5 
S6 0.3–3.6 Hz 8.4–13.6 Hz FP1 
S7 0.3–2.6 Hz 6.5–12.8 Hz FP1 
S8 0.3–2.9 Hz 9.8–13 Hz FC1 
S9 0.3–2.7 Hz 7.7–12.3 Hz FP2 
S10 0.3–2.3 Hz 8.7–12.8 Hz PO6 
S11 0.3–2.2 Hz 8.2–13.7 Hz PO8 
S12 0.3–3.3 Hz 10.2–12.8 Hz F2 
S13 0.3–3.3 Hz 9.4–12.4 Hz FPZ 
Mean 0.3–2.7 Hz 8.8–12.6 Hz Frontal electrodes: 10/13  

Table 3 
Summary of the automatic event detection results for ΔLF = 0.3–3 Hz and 
ΔHF = 8–20 Hz.  

ΔDetect = − 0.5 to 0.5 sec  ΔDetect = − 0.5 to 1 sec  

NFP  NTP  TPR%  NFP  NTP  TPR%  

367 ± 179 39 ± 21 53.7 ± 13.6% 412 ± 221 46 ± 26 61.3 ± 9.8%  

Table 4 
Average spatial correlation between the EEG-fMRI F-maps obtained from 
manual markup of GPFA events versus all automatically detected events 
as well as false positive events only. All values are normalized between 
0 (minimum spatial similarity) and 1 (full spatial overlap).  

ΔDetect = − 0.5 to 0.5 sec  ΔDetect = − 0.5 to 1 sec  

Uncorrected F-maps of TP and FP events 
r = 0.71 ± 0.13 r = 0.71 ± 0.15 
Uncorrected F-maps of FP events only 
r = 0.63 ± 0.09 r = 0.64 ± 0.12 
Corrected F-maps of TP and FP events 
r = 0.37 ± 0.33 r = 0.36 ± 0.37 
Corrected F-maps of FP events only 
r = 0.16 ± 0.19 r = 0.22 ± 0.28  

6 Spatial cross-correlation was calculated using the FSL command fslcc. See 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils for more details. 
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obtained at ΔDetect = − 0.5 to 0.5 s peri-onset). As Table 4 suggests, 
changing ΔDetect to − 0.5 to 1 s peri-onset did not have a strong impact on 
the spatial correlation values, similar to what was observed for the un
corrected F-maps. 

Fig. 5 and Fig. 6 demonstrate the subject-specific spatial correlation 
values as bar plots, before and after statistical correction of the F-maps. 
Examples of the GPFA F-maps with high correlation between automat
ically detected events and manual markup are illustrated in Fig. 7. 

Fig. 5. Spatial correlation between the uncorrected F-maps of manual markup and automatically detected events for the strict comparison scenario or ΔDetect = − 0.5 
to 0.5 s peri-onset (panels A and C on the left) and the less strict comparison scenario or ΔDetect = − 0.5 to 1 s peri-onset (panels B and D on the right). Top row panels 
(A and B) show correlation values with the F-maps of all detected events. Bottom row panels (C and D) show correlation with the F-maps of the false positives only. 
Subject IDs correspond to Table 1. 

Fig. 6. Similar caption as for Fig. 5, but for the corrected F-maps.  

A. Omidvarnia et al.                                                                                                                                                                                                                           



Computers in Biology and Medicine 133 (2021) 104287

9

4. Discussion 

Our study reveals a bimodal time-frequency feature associated with 
GPFA, a generalized IED type characteristic of the interictal EEG in LGS. 
The proposed automatic IED detection approach can highlight interictal 
EEG segments with similar time-frequency information and can thus 
identify EEG events that are likely similar to manually marked GPFA. 
The validity of this approach was examined by spatial correlation 
analysis showing that EEG-fMRI brain maps derived from ‘false posi
tives’ only (i.e., automatically detected EEG events which were not 
originally marked up manually) are comparable to those derived from 
manual IED markup. 

Bimodality in the spectral content of GPFA implies that these IEDs 
carry nested high frequency oscillations that are superimposed upon 
slower fluctuations occurring during peri-onset intervals. This feature 
spans a low-frequency band of ~0.3–3 Hz, and a high-frequency band of 
~8–12 Hz which in some patients may extend up to 20 Hz. Scalp EEG 
electrodes associated with frontal and pre-frontal areas tend to show the 
greatest high frequency power in the GPFA events, consistent with the 
earlier work suggesting a key role of frontal cortex in driving GPFA [20]. 

These results build on our previous study [27] which developed an 
automatic detection method for focal IEDs (i.e., events which are 
concentrated in time and space) in focal epilepsy patients. In contrast to 
this previous study, which focussed on detecting epileptic discharges 
with uniform morphology over time at a single EEG channel, automatic 
detection of GPFA presents additional unique challenges: (i) the precise 
onset time of generalized discharges can be difficult to define with 

respect to the EEG background; (ii) even within a single patient, there is 
often variability in morphology and frequency from one discharge to the 
next, or over the course of a discharge train; and (iii) discharges can be 
spatially variable and show propagation over multiple EEG channels. 
Our current work aimed to address these challenges by inspecting 
generalized IEDs across multiple EEG channels and characterizing their 
joint temporo-spectral properties. 

Time-frequency characterization of manually marked GPFA events 
suggests that their bimodal spectral characteristic is replicable over 
patients. However, the specific frequency bands of interest may vary 
considerably across individuals. We assessed the robustness of this time- 
frequency feature via an automatic search for similar dynamics 
throughout patients’ interictal EEG recordings. We hypothesized that if 
this EEG signal feature is reproducible across patients, it should be able 
to highlight both manually marked GPFA as well as GPFA-like events 
that were missed in the manual markup. Across patients, the agreement 
between manually marked IEDs and automatically detected IEDs varied 
from ~40% to ~80%. Even though the number of false positives was 
generally higher than the number of manually marked IEDs (see the NFP 
columns in Table 3), the associated F-maps generated by EEG-fMRI 
analysis were spatially similar to the corresponding F-maps derived 
from manual markup. This spatial overlap was above r = 0.5 in most 
analyses, when the zero-thresholded F-maps were compared. It was also 
similar for the F-maps extracted from false positives only and the maps 
generated based on the combination of true and false positives. Spatial 
overlap was reduced after statistical correction of the EEG-fMRI F-maps. 
This was also reflected in the group-mean correlation values of GPFA in 

Fig. 7. F-maps of EEG-fMRI analysis based on the timing of GPFA events for subjects S3 and S13 as two exemplary cases with high spatial agreement between 
automatic GPFA detection and manual markup. Acronyms: TP = True Positive, FP = False Positive. 
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Table 4. Less strict comparison of the automatically detected events with 
reference to manual markup (i.e., post-onset interval of 1 s in contrast to 
0.5 s in ΔDetect) had negligible impact on the spatial correlation values of 
the F-maps. This finding suggests that EEG-fMRI analysis of GPFA is 
relatively robust to minor variability in the precise EEG onset of IEDs 
(either manually marked or automatically detected), likely due to the 
comparatively slow event-related hemodynamic response measured by 
fMRI. 

The proposed GPFA detection method in this study relies on an initial 
manual markup of EEG, because the time-frequency characteristics of 
GPFA (i.e., the two frequency bands ΔHF and ΔLF) have to be customized 
and estimated for each subject a priori. The main idea behind the 
practical implementation of the proposed analysis framework is to 
manually mark a few numbers of GPFA events by an EEG expert, 
compute their mean spectrogram, and estimate the associated ΔHF and 
ΔLF. Although this step has to be repeated for each subject, it is 
considerably more convenient than a complete manual markup, in 
particular, for long EEG recordings. This is because manual markup of a 
small number of GPFA events would be far easier, more accurate, and 
much faster than going through the entire (often long-length) EEG re
cordings and trying to spot all GPFA events visually. The promising 
detection results may also facilitate faster simultaneous EEG-fMRI 
analysis in LGS. This is important because it may assist with pre- 
surgical planning of LGS, for example, in guiding optimal thalamic 
stimulation targets in patients undergoing deep brain stimulation [28] 
or identifying potentially resectable epileptogenic cortical lesions. 

5. Conclusion 

GPFA shows a characteristic bimodal time-frequency feature that can 
be automatically detected in patients with LGS. The spectral extent of 
this feature may vary across patients, but it is mainly presented in the 
time-frequency domain as two high power frequency bands of 
~0.3–3 Hz and ~8–13 Hz. The utility of this time-frequency feature is 
demonstrated by EEG-fMRI analysis of automatically detected GPFA 
events, which recapitulates the brain network patterns we have previ
ously shown to underlie manually marked generalized IEDs in LGS. Fast 
and easy implementation of the proposed analysis framework on long- 
length EEG recordings may pave the way for developing objective, ac
curate, efficient and low-cost software packages for automatic GPFA 
detection which can be used in real-life environments, research appli
cations, and clinical settings. 
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