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Abstract. We formulate a conjecture characterizing smooth projective varieties in positive charac-
teristic whose Frobenius morphism can be lifted modulo p2—we expect that such varieties, after a
finite étale cover, admit a toric fibration over an ordinary abelian variety. We prove that this assertion
implies a conjecture of Occhetta and Wiśniewski, which states that in characteristic zero a smooth
image of a projective toric variety is a toric variety. To this end we analyse the behaviour of toric
varieties in families showing some generalization and specialization results. Furthermore, we prove
a positive characteristic analogue of Winkelmann’s theorem on varieties with trivial logarithmic
tangent bundle (generalizing a result of Mehta–Srinivas), and thus obtaining an important special
case of our conjecture. Finally, using deformations of rational curves we verify our conjecture for
homogeneous spaces, solving a problem posed by Buch–Thomsen–Lauritzen–Mehta.
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1. Introduction

1.1. Liftings of Frobenius

One of the salient features of algebraic geometry in positive characteristic is the existence
of the Frobenius morphism FX : X → X for every Fp-scheme X, defined as the p-
th power map f 7→ f p on OX. At a philosophical level, this paper together with its
sequel [AWZ21] argues that this type of structure becomes extremely rare as we move
towards characteristic zero. This idea is not new: for example, in Borger’s point of view
on F1-geometry [Bor09], liftings of Frobenius (compatible for all p) are seen as ‘descent
data to F1.’ In more classical algebraic geometry, it is expected [Ame97, Fak03] that
projective varieties in characteristic zero admitting a polarized endomorphism are very
scarce.
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More precisely, we will be mostly concerned with the following question:

Which smooth projective varieties in characteristic p lift modulo p2 together with
Frobenius?

For brevity, we will call such varieties F -liftable. This question also has a long his-
tory: in their very influential paper [DI87], Deligne and Illusie gave an algebraic proof
of Kodaira–Akizuki–Nakano vanishing

H j (X,�iX ⊗ L) = 0 (L ample, i + j > dimX)

for smooth complex varieties by reducing the setting to characteristic p > 0. The key
ingredient was the analysis of local liftings of Frobenius modulo p2 and their relation to
the de Rham complex, namely that such a lifting

∼

F induces an injective homomorphism

ξ =
d
∼

F

p
: F ∗X�

1
X → �1

X (1.1.1)

whose adjoint �1
X → FX∗�

1
X induces the inverse of the Cartier operator. In [BTLM97],

the authors study smooth projective varieties in characteristic p > 0 admitting a global
lifting modulo p2 together with Frobenius, and show in particular that such varieties sat-
isfy a much stronger form of Kodaira–Akizuki–Nakano vanishing called Bott vanishing

H j (X,�iX ⊗ L) = 0 (L ample, j > 0). (1.1.2)

This type of vanishing is extremely restrictive, and hence so is F -liftability. In fact, all
known examples of F -liftable varieties are in some sense built from toric varieties (where
the lifting of Frobenius extends the multiplication by p map on the torus) and ordinary
abelian varieties (by Serre–Tate theory). Note that the existence of an injective map ξ
as above implies that (1− p)KX is effective, so in particular X has non-positive Kodaira
dimension; in fact, the section det(ξ) ∈ H 0(X, ω

1−p
X ) corresponds to a Frobenius splitting

of X.
The main goal of this paper is to provide evidence for the following conjectural answer

to the above question, and to relate it to some open problems in characteristic zero.

Conjecture 1. Let X be a smooth projective variety over an algebraically closed field k
of characteristic p > 0. If X is F -liftable, then there exists a finite étale Galois cover
f : Y → X such that the Albanese morphism of Y

aY : Y → Alb(Y )

is a toric fibration. In particular, if X is simply connected ( for example, if X is separably
rationally connected), then X is a toric variety.

See §2.1 for the definition of a toric fibration. Conjecture 1 almost characterizes F -liftable
smooth projective varieties: see Remark 3.1.7 for a discussion of the converse.
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1.2. Special cases of Conjecture 1

A few important special cases were already known for some time. In the paper [MS87], to
which our work owes a great deal, Mehta and Srinivas prove (among other things) that if
X is F -liftable and the canonical bundle ωX is numerically trivial, then X admits a finite
étale Galois cover by an ordinary abelian variety. In a different direction, the case of ho-
mogeneous spaces was considered in the aforementioned paper [BTLM97], where it was
shown that many rational homogeneous spaces are not F -liftable, and conjectured that
the only F -liftable ones are products of projective spaces. Recently, the case of minimal
surfaces was considered in [Xin16].

Our first contribution confirms the aforementioned expectation of [BTLM97].

Theorem 1 (see Theorem 6.4.5). Conjecture 1 is true if X is a homogeneous space.
More precisely, if X is a smooth projective F -liftable variety whose automorphism group
acts transitively, then X is isomorphic to a product of projective spaces and an ordinary
abelian variety.

Our method of proof is based on the study of rational curves on X. In the crucial spe-
cial case of rational homogeneous spaces of Picard rank one, we analyze the geometry of
an étale covering of X induced by the map (1.1.1), and its restrictions to rational curves
belonging to a carefully chosen covering family. In the final step, we apply Mori’s char-
acterization of the projective space. In fact, this method shows that Conjecture 1 holds if
TX is nef and X is a Fano variety of Picard rank one (see Proposition 6.3.2).

In the sequel [AWZ21], we also verify Conjecture 1 in low dimensions.

Theorem 2. Conjecture 1 is true in the following cases:

(a) if dimX ≤ 2 [AWZ21, Section 3],
(b) if X is a Fano threefold from the Mori–Mukai classification [AWZ21, Section 4].

1.3. Relation to other problems

Let us mention three problems (in arbitrary characteristic) to which Conjecture 1 is re-
lated.

Images of toric varieties. Consider a problem of the following type: given a projective
variety Z, determine all smooth projective varieties X for which there exists a surjective
morphism

ϕ : Z→ X.

One of the first applications of Mori theory was Lazarsfeld’s solution [Laz84] to a prob-
lem of Remmert and van de Ven [RvdV61]: if Z ' Pn, then X ' Pn (or X is a point).
Subsequently, more general problems of this kind were considered: for example, if Z is
an abelian variety, thenX admits a finite étale cover by a product of an abelian variety and
projective spaces [Deb89, HM01, DHP08]. In [OW02], Occhetta and Wiśniewski proved
that if Z is a toric variety and X has Picard rank one, then X ' Pn, and were led to pose
the following conjecture:
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Conjecture 2. A smooth complex projective variety X admitting a surjective map
ϕ : Z→ X from a complete toric variety Z is a toric variety.

This project gained momentum upon our discovery of a link between Conjecture 1 and
Conjecture 2.

Theorem 3 (see Theorem 4.4.1). Conjecture 1 for simply connected varieties implies
Conjecture 2 in characteristic zero.

The key step in the proof uses the functoriality of obstruction classes to lifting Frobenius,
an idea due to the third author [Zda18]: after reducing a given surjective map ϕ : Z→ X

modulo p2, one can relate the obstruction classes to lifting Frobenius on X and Z. Since
Z is a toric variety, its reduction modulo p is F -liftable, and so is the reduction of X. By
the assumed case of Conjecture 1, the reduction of X is a toric variety. Finally, one uses
a strengthening of Jaczewski’s characterization of toric varieties [Jac94] from [KW15] to
conclude that X must be a toric variety. We obtain the following result as a by-product.

Theorem 4. Let ϕ : Z → X be a surjective morphism from a complete toric variety Z
to a smooth projective variety X defined over a field k of characteristic zero. Then X
satisfies Bott vanishing (1.1.2).

Given the theorem it is natural to ask whether all smooth rationally connected varieties
satisfying Bott vanishing are in fact toric. After this article was made available as a
preprint, Burt Totaro answered this question negatively [Tot20] in a beautiful manner,
by proving that the non-toric surface obtained by blowing up P2 in four points in general
position satisfies Bott vanishing.

Varieties with trivial log tangent bundle. Let X be a smooth projective variety over an
algebraically closed field k, and let D ⊆ X be a divisor with normal crossings. Suppose
that the sheaf�1

X(logD) of differentials with log poles alongD is free. If k has character-
istic zero, then by a result of Winkelmann [Win04], X admits an action of a semi-abelian
variety (an extension of an abelian variety by a torus) which is transitive on X \ D; in
particular, if D = 0, then X is an abelian variety. However, in positive characteristic X
might not be an abelian variety itself when D = 0, but then the main result of [MS87]
states that if X is ordinary, then it admits an abelian variety as a finite étale Galois cover.
It is not known if the ordinarity assumption is necessary.

The link with Frobenius liftability was first observed in [MS87] in relation to the
above result: if X has a trivial tangent bundle and is ordinary, then it is F -liftable. Con-
versely, if ωX is numerically trivial andX is F -liftable, then the map (1.1.1) is an isomor-
phism, and it follows that �1

X becomes trivial on a finite étale cover of X.
We shall say that the pair (X,D) is F -liftable if there exists a lifting (

∼

X,
∼

D) of (X,D)
modulo p2 such that

∼

D has relative normal crossings, and a lifting
∼

F of Frobenius to
∼

X

which is compatible with
∼

D in the sense that

∼

F ∗
∼

D = p
∼

D.
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Theorem 5 (see Theorem 5.1.1). Let (X,D) be a projective nc pair over an alge-
braically closed field k of positive characteristic. The following conditions are equiva-
lent:

(i) (X,D) is F -liftable and ωX(D) is numerically trivial,
(ii) X is F -split and �1

X(logD) becomes trivial on a finite étale cover of X,
(iii) X admits a finite étale cover f : Y → X whose Albanese map a : Y → Alb(Y ) is

a toric fibration over an ordinary abelian variety with toric boundary f−1(D).

This characterization of varieties with trivial logarithmic tangent bundle is a positive char-
acteristic analogue of Winkelmann’s theorem [Win04] and a generalization of the result
of Mehta–Srinivas [MS87]. Moreover, Theorem 5 shows that Conjecture 1 is true when
one can find a Frobenius compatible nc divisor D such that ωX(D) is numerically trivial.

The proof is not less complicated than the one in [MS87]. We closely follow their
strategy with a few differences. The case H 1(X,OX) = 0 is handled by lifting to charac-
teristic zero, applying the aforementioned theorem of Winkelmann [Win04], and reducing
the setting back to positive characteristic. Interestingly, our results show that a direct gen-
eralization of Winkelmann’s theorem to characteristic p is false, while Winkelmann’s
theorem indicates that a natural analogue of Theorem 5(iii)⇒(ii) is false in characteris-
tic zero (see Remark 5.1.4). But the most important difference comes from the fact that
[MS87] used Yau’s work on the Calabi conjecture for a lifting of X to characteristic
zero in one of the key steps. In the log setting, such results are unfortunately unavail-
able, and instead we reduce to the case of a finite ground field, then lift to characteristic
zero together with Frobenius, and use results of [NZ10] and [GKP16] on varieties with a
polarized endomorphism. This brings us to the next array of open problems.

Polarized endomorphisms. A polarized endomorphism of a projective variety X is by
definition one which extends to an endomorphism of an ambient projective space. It seems
that there are many similarities between Frobenius liftings and polarized endomorphisms.
Over a finite field, a power of the Frobenius morphism is a polarized endomorphism.
In characteristic zero, the toric Frobenius is an example of such, as is the Serre–Tate
canonical lifting of Frobenius on an ordinary abelian variety. As in the case of Frobenius
liftability, varieties admitting a polarized endomorphism satisfy κ(X) ≤ 0 (see [NZ10]).

If ρ(X) = 1, then every endomorphism is polarized. In this case, a conjecture by
Amerik [Ame97] states that if a smooth rationally connected X with ρ(X) = 1 admits
a polarized endomorphism, then X ' Pn. This has been proved in certain cases, for
example, when dimX ≤ 3 [ARVdV99], X is a hypersurface [Bea01], or X is a rational
homogeneous space [PS89]. Moreover, Zhang showed that a smooth Fano threefold with a
polarized endomorphism is rational [Zha10]. In general, it has been asked if every smooth
rationally connected variety with a polarized endomorphism is toric (see, for instance,
[Fak03]).

1.4. Methods and further results

The proofs of the results mentioned above rely on a variety of tools: deformation theory,
toric fibrations and the study of Frobenius liftings and their consequences. Let us mention
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here some of our observations which might be of independent interest. Some of these
results are valid for arbitrary (not necessarily smooth) k-schemes.

Two of the most important tools related to Frobenius liftability are the technique of
descent (see Theorem 3.3.6) and the sheaf of invariants differentials (see §3.3). The de-
scent result states roughly that if Y is F -liftable and π : Y → X is a morphism, then
under certain assumptions on π , one can deduce the F -liftability of X. We provide a
more comprehensive treatment of the subject in [AWZ21].

We also provide a few results on toric varieties in families. First, if a general fiber of
a smooth projective family is toric, then the generic fiber must be toric as well (Corol-
lary 4.1.5). To this end, we need an auxiliary result (Proposition 4.1.2) on the con-
structibility of the locus where a given vector bundle splits. Second, given a smooth pro-
jective family together with a relative normal crossings divisor over a connected base, if
a single geometric fiber is a toric pair, then the entire family has to be a toric fibration
(Proposition 4.3.1). In other words, using the terminology of Hwang and Mok, toric pairs
are globally rigid.

1.5. Outline of the paper

In Section 2, we gather some preliminary results and notions: toric varieties over an ar-
bitrary base (i.e., toric fibrations) in §2.1, deformation theory including the crucial tech-
nique of descending deformations in §2.2, some basic facts about normal crossing pairs in
§2.3, a review of the Cartier operator in §2.4, and Frobenius splittings in §2.5. Section 3
deals with Frobenius liftability, mainly of smooth schemes and from the point of view of
deformation theory (see [AWZ21, §2] for more general results on Frobenius liftability).
In Section 4, we deal with the abstract problem of showing that the generic fiber of a
family is toric if a general one is (§4.1) and with the opposite problem of proving that if
the generic fiber of a degeneration is a toric pair, then so is the special one (§4.2). These
results are then applied to show a general ‘global rigidity’ result for toric pairs (§4.3) and
Theorem 3 (§4.4). Sections 5 and 6 deal with Theorems 5 and 1, respectively.

1.6. Notation and conventions

Let p be a prime number. If X is an Fp-scheme, we denote by FX : X → X its absolute
Frobenius morphism (i.e., the identity on the underlying topological space and the p-th
power map on the structure sheaf). If f : X → S is a morphism of Fp-schemes, the
relative Frobenius FX/S : X→ X′ is the unique morphism making the following diagram
commute:

X FX

��

f

!!

FX/S
  

X′

��

WX/S
//

�

X

f

��

S
FS

// S

(1.6.1)
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The S-scheme X′ is called the Frobenius twist of X relative to S. Note that if S = Spec k
for a perfect field k, then WX/S is an isomorphism of schemes.

Most of the time we shall be working with a fixed perfect field k of characteristic
p > 0. We denote by Wn(k) its ring of Witt vectors of length n, that is, the unique (up
to a unique isomorphism) flat Z/pnZ-algebra with an isomorphism Wn(k)/pWn(k) ' k,
and by W(k) = lim

←−n
Wn(k) the full ring of Witt vectors. The unique endomorphism

restricting to the Frobenius Fk modulo p is denoted by σ : Wn(k) → Wn(k) or
σ : W(k)→ W(k).

We often set S = Spec k and
∼

S = SpecW2(k). If X is an S-scheme, a lifting of
X (modulo p2) is a flat

∼

S-scheme
∼

X with an isomorphism
∼

X ×∼
S
S ' X. A lifting of

Frobenius on X to
∼

X is a morphism
∼

FX :
∼

X →
∼

X restricting to FX modulo p. We shall
give a thorough discussion of these in §3.

2. Preliminaries

2.1. Toric varieties and toric fibrations

A toric variety (see e.g. [Ful93]) is by definition a normal algebraic variety X over an
algebraically closed field k together with an effective action of a torus T ' Gn

m with
a dense orbit. Such varieties admit a completely combinatorial description in terms of
rational polyhedral fans 6 in NR = Hom(Gm, T )⊗Z R. This description is independent
of the field k, and in particular every toric variety has a natural model X(6) over Z. We
denote by D(6) ⊆ X(6) the toric boundary of X(6), that is, the complement of the
open orbit. Sometimes we shall abuse the terminology and say that a variety X is a toric
variety meaning that it admits the structure of a toric variety.

In what follows, we will have to deal with families of toric varieties over more general
bases (such as the rings W2(k) and W(k) or the Albanese variety in the statement of
Conjecture 1). There is more than one sensible definition of a ‘toric variety over a base
scheme S,’ and we decided to settle on the following.

Definition 2.1.1. Let S be a scheme.

(a) A torus over S is an S-group scheme T which is étale-locally isomorphic to Gn
m,S for

some n ≥ 0.
(b) A toric fibration over S is a flat S-schemeX together with an action of a torus T over

S such that étale-locally on S there exist isomorphisms T ' Gn
m,S and X ' X(6)S

for some rational polyhedral fan 6 ⊆ Rn.

In particular, we do not require the torus T to be split, i.e. that T ' Gn
m,S . In general,

AutS(Gn
m,S) ' GL(n,Z)S , and hence tori of dimension n over S are parametrized by

the étale non-abelian cohomology H 1(S,GL(n,Z)); if S is connected and normal, this
is Hom(π1(S, s̄),GL(n,Z)). Since π1(S, s̄) is pro-finite and GL(n,Z) is discrete, every
such homomorphism has finite image, and we see that every torus over a normal S be-
comes split on a finite étale cover of S. If T is split, then we will say that X is a split toric
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fibration. IfX→ S is a toric fibration for a torus T , the (relative) dense open orbitU ⊆ X,
i.e. the biggest open on which T acts freely, is a T -torsor over S. Étale-locally on S, we
have T ' Gn

m,S and X ' X(6)S as in (b) above, and then U ' (X(6) \D(6))S . If this
torsor is trivial (i.e., U → S admits a section), we shall say that X is a trivial toric fibra-
tion. The usual description of toric varieties over algebraically closed fields generalizes
as follows:

Lemma 2.1.2. Suppose that S is connected and letX→ S be a split toric fibration under
a torus T . There exists a fan 6 in NR and a T -torsor U → S such that

X ' U ×T X(6)S

as S-schemes with a T -action. In particular, if X is moreover trivial, then X ' X(6)S .

Proof. Suppose first that X is trivial. In this case, for a fixed fan 6, the T -equivariant
isomorphisms X ' X(6)S form a T -torsor over S which is easily seen to be trivial.
A section of this torsor gives the required isomorphism.

The general case can be reduced to the trivial case by pulling back X → S along
U → S: we obtain an isomorphism XU ' X(6)U and take quotients by T on both sides
to obtain X = XU/T ' X(6)U/T = U ×T X(6)S . ut

For a general toric fibration X → S, we can apply the above lemma étale-locally on S.
The toric boundaries D(6)S glue together to give a global toric boundary D, which is a
closed subscheme supported on X \ U .

If X is smooth over S, then D has normal crossings relative to S, and �1
X/S(logD)

is trivial if moreover T is split. (Indeed, a local section v ∈ Lie(T ) = e∗TT/S of the
Lie algebra defines an S-map v : S[ε] = Spec OS[ε]/(ε2) → T , and the composition
of v × id : S[ε] ×S X → T ×S X with the T -action gives a section of the trivial thick-
ening X → X[ε] = S[ε] ×S X over S, i.e. a section of TX/S . This lies in the dual of
�1
X/S(logD), and we obtain an isomorphism π∗Lie(T )∨ ∼−→ �1

X/S(logD).) We call a
pair (X,D) of a smooth S-scheme X and a divisor with relative normal crossingsD ⊆ X
a toric pair if it arises via the above construction. In §4.3, we will show that the torus T
and its action on X are (essentially) uniquely defined by the pair (X,D), at least if X is
projective over S.

Example 2.1.3. (1) The projectivization PS(E)→ S of a vector bundleE on S has toric
fibers, but it admits the structure of a split toric fibration only when E is a direct sum
of line bundles.

(2) Let S = A1
k and X = A2

k \ {(0, 0)}, treated as an S-scheme via the first projection.
Then X→ S has a natural action of Gm,S , its fibers are toric varieties, but it is not a
toric fibration.

(3) Let S = Spec Q and let T = {x2
+ y2

= 1} ⊆ A2
Q be the circle group. Let X =

{x2
+y2
= z2
} ⊆ P2

Q be the projective closure of T . The action of T on itself extends
to X, and D = X \ T is a point of degree two. The map X → S is a toric fibration
under T which becomes split and trivial after base change to Q(

√
−1).
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2.2. Deformation theory

We use freely the standard results of deformation theory, for which we refer to [Har10,
Ill71]. If k is a perfect field of characteristic p > 0, we denote by ArtW(k)(k) the category
of Artinian local W(k)-algebras with residue field k. If X is a k-scheme, we denote by

DefX : ArtW(k)(k)→ Set, A 7→

{
isom. classes of flat

∼

X/SpecA
with an identification

∼

X ⊗A k ' X

}
,

its deformation functor. Similarly, if Z ⊆ X is a closed subscheme, we denote by DefX,Z
the functor of deformations

∼

X of X together with an embedded deformation
∼

Z ⊆
∼

X of Z.
The following lemma provides a basic tool for descending liftings along fibrations.

Lemma 2.2.1 ([LS14, Proposition 2.1]). Let π : Y → X be a morphism of k-schemes
such that OX ∼−→ π∗OY and R1π∗OY = 0. Then there exists a natural transformation of
deformation functors

π∗ : DefY → DefX,

associating to every lifting
∼

Y ∈ DefY (A) a lifting
∼

X = π∗(
∼

Y ) ∈ DefX(A) together with
an A-morphism ∼π :

∼

Y →
∼

X lifting π . More precisely, the structure sheaf of
∼

X is defined
by the formula O ∼

X
= π∗O ∼

Y
, and consequently the pair (

∼

X, ∼π) is unique up to a unique
isomorphism inducing the identity on X and

∼

Y .

2.3. Normal crossing pairs

We recall some basics on normal crossings (nc) pairs over general base schemes.

Definition 2.3.1. Let S be a scheme. An nc pair over S is a pair (X,D) of a smooth
scheme X over S and a divisor D ⊆ X with normal crossings relative to S (see [SGA 1,
Exp. XIII §2.1], [Kat70, §4]), that is, such that étale-locally on X there exists an étale
map h : X→ AnS with D = h∗({x1 · . . . · xn = 0}).

Remark 2.3.2. It is often more natural and convenient to work in the framework of log
geometry than with nc pairs. We decided not to do so, as we will need only a small subset
of the theory which is easily handled by the classical results on nc pairs. A reader familiar
with the language of log geometry will notice that everything we do with nc pairs can
easily be phrased using log schemes instead, and that many of our results have natural
logarithmic analogues. More precisely, the dictionary is as follows.

An nc log scheme over a scheme S is an fs log scheme (X,MX) over (S,O∗S )which is
log smooth and such that the underlying map of schemesX→ S is smooth. Equivalently,
an fs log scheme (X,MX) over (S,O∗S ) is nc if and only if étale-locally onX, there exists
a strict h : (X,MX) → AnS = Spec(Nn → OS[x1, . . . , xn]). Thus, there is a natural
equivalence of groupoids, compatible with base change,

(nc log schemes/(S,O∗S ))
∼−→ (nc pairs/S).
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Given an nc pair (X,D) over S, one defines the module of differentials �1
X/S(logD)

(see [Kat70, §4]; equivalently, this is the dual of the submodule of TX/S consisting of the
derivations preserving the ideal of D). It is locally free and its determinant is isomorphic
to ωX/S(D). Classical deformation theory for smooth schemes has a natural analogue
for nc pairs, and in particular is controlled by the groups Exti(�1

X/S(logD),OX) for
i = 0, 1, 2 (see [Kat96]). Moreover, if D is the union of smooth divisors D1, . . . , Dr ,
there is a short exact sequence

0→ �1
X/S → �1

X/S(logD)→
r⊕
i=1

ODi → 0.

Lemma 2.3.3. Let (X,D) be an nc pair over a scheme S, let Y be a smooth scheme over
S, and let f : X → Y be a morphism over S. Then (X,D) is an nc pair over Y if and
only if the morphism

f ∗�1
Y/S → �1

X/S → �1
X/S(logD)

is injective and its cokernel is locally free. Further, in this case this cokernel equals
�1
X/Y (logD).

Proof. If (X,D) is an nc pair over Y , then the assertions are clearly satisfied. For the
proof in the other direction, we use the language of log geometry. Accordingly, we treat
(X,D)→ Y as a morphism of log schemes. The sheaf�1

X/Y (logD) is isomorphic to the
sheaf of relative log differentials of (X,D)→ Y and therefore, since it is locally free, we
may apply [Kat89, Proposition 3.12] to see that the morphism (X,D)→ Y is log smooth.
The scheme X is smooth over Y and hence (X,D)→ Y is an nc log scheme over Y . We
conclude using the equivalence between nc log schemes and nc pairs (Remark 2.3.2). ut

2.4. The Cartier isomorphism

Here, we present basic properties of the Cartier isomorphism and its logarithmic variant.
Let X → S be a smooth morphism of schemes over k, and let �•X/S be its de Rham
complex. Moreover, let BiX/S (resp. ZiX/S) be the i-th coboundaries (resp. cocycles) in the
OX′ -linear complex FX/S∗�•X/S , where X′ is the Frobenius twist of X relative to S.

More generally, if (X,D) in an nc pair over S, then we denote by BiX/S(logD) (resp.
ZiX/S(logD)) the i-th coboundaries (resp. cocycles) in the O

X
′ -linear log de Rham com-

plex FX/S∗�•X/S(logD). In analogy with the holomorphic Poincaré lemma, the following
result describes the cohomology of the de Rham complex in characteristic p.

Theorem 2.4.1 ([Kat70, Theorem 7.2]). Let X→ S be a smooth morphism of schemes
over k. Then there exists a unique system of isomorphisms of OX′ -modules

C−1
X/S : �

j

X′/S
∼−→H j (FX/S∗�

•

X/S)

satisfying the conditions

(i) C−1
X/S(1) = 1,

(ii) C−1
X/S(ω) ∧ C

−1
X/S(η) = C

−1
X/S(ω ∧ η) for local sections ω ∈ �i

X′/S
and η ∈ �j

X′/S
,

(iii) C−1
X/S : �

1
X′/S
→H 1(FX/S∗�

•

X/S) is defined by d(g ⊗ 1) 7→ [gp−1dg].
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The inverse isomorphisms give rise to short exact sequences

0→ B
j
X/S → Z

j
X/S → �

j

X′/S
→ 0,

inducing Cartier morphisms CX/S : Z
j
X/S → �

j

X′/S
.

Variant 2.4.2. In the logarithmic setting, there exists a system of isomorphisms

�
j

X′/S
(logD′) ∼−→H j (FX/S∗�

•

X/S(logD)),

where D′ is the preimage of D in X′. Moreover, we have short exact sequences

0→ B
j
X/S(logD)→ Z

j
X/S(logD)→ �

j

X′/S
(logD′)→ 0,

inducing logarithmic Cartier morphisms CX/S : Z
j
X/S(logD)→ �

j

X′/S
(logD′).

2.5. Frobenius splittings

The standard reference for general facts about Frobenius splittings is [BK05, Chapter I].
Let k be a perfect field of characteristic p > 0.

Definition 2.5.1. Let X be a k-scheme. A Frobenius splitting on X is an OX-linear split-
ting σ : FX∗OX → OX of the map F ∗X : OX → FX∗OX. We say that a scheme is F -split
if it admits a Frobenius splitting.

We shall need the following lemma describing basic properties of F -split schemes.

Lemma 2.5.2. Let X be a proper F -split scheme over an algebraically closed field k.
Then the following hold:

(a) The map F ∗X : H
i(X,OX)→ H i(X,OX) is bijective for all i ≥ 0.

(b) The cohomology groups H i(X,B1
X) vanish for all i ≥ 0, where B1

X = FX∗OX/OX.
(c) If X is smooth, then the Albanese variety AlbX is ordinary.
(d) Every étale scheme Y over X is F -split.

Proof. For (a) and (b), we use the long exact sequence of cohomology associated with

0→ OX → FX∗OX → B1
X → 0,

and the fact that an injective p−1-linear endomorphism of a finite-dimensional vector
space over a perfect field is bijective.

To prove (c), we reason as follows. By [MS87, Lemma 1.3], H 1(AlbX,OAlbX) in-
jects into H 1(X,OX). By (a) the Frobenius action on the latter group is bijective, and
hence it is also bijective on the former. This implies that AlbX is ordinary.



2612 Piotr Achinger et al.

For (d), let f : Y → X be an étale morphism. Then the square

Y
FY //

f

��

Y

f

��

X
FX // X

is cartesian by [SGA 5, XIV=XV §1 n◦2, Pr. 2(c)], and hence f ∗FX∗OX ' FY∗OY by
flat base change. Thus given a splitting σ : FX∗OX → OX, applying f ∗ we obtain a
morphism

f ∗(σ ) : FY∗OY ' f
∗FX∗OX → OY

which is a Frobenius splitting on Y . ut

3. Frobenius liftability

Throughout this section we fix a perfect field k of characteristic p > 0 (sometimes
assumed to be algebraically closed). First, set S = Spec k and

∼

S = SpecW2(k) (see
§1.6). If X is a scheme over S and

∼

X is a lifting of X to
∼

S, a lifting of Frobenius on
X to

∼

X is a morphism
∼

FX :
∼

X→
∼

X restricting to FX on X. It automatically commutes
with the map σ :

∼

S →
∼

S induced by the Witt vector Frobenius on W2(k) (see [GR03,
Lemma 6.5.13 i)]), and hence it fits into the commutative diagram

X //

��

∼

X

��

X

FX
@@

//

��

∼

X

��

∼
FX
@@

S //
∼

S

S

FS
@@

//
∼

S

σ

@@

We call a pair (
∼

X,
∼

FX), where
∼

X and
∼

FX are as above, a Frobenius lifting of X. If such
a pair exists, we say that X is F -liftable. In this situation, we can form a diagram lifting
the relative Frobenius diagram (1.6.1):

∼

X ∼
FX

��

  

∼
FX/S
��
∼

X′ //

��
�

∼

X

��
∼

S
∼
FS=σ

//
∼

S

(3.0.1)
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Given a lifting
∼

X, the existence of
∼

FX is thus equivalent to the existence of a lifting
∼

FX/S :
∼

X→
∼

X′ of the relative Frobenius FX/S : X→ X′.
More generally, the above definitions work in the relative setting, that is, when S is an

arbitrary k-scheme endowed with a Frobenius lifting (
∼

S,
∼

FS). If π : X → S is a scheme
over S and if ∼π :

∼

X →
∼

S is a lifting of π , then providing a lifting
∼

FX of FX to
∼

X such
that

∼

FS ◦
∼π = ∼π ◦

∼

FX is equivalent to providing a morphism
∼

FX/S :
∼

X →
∼

X′ lifting the
relative Frobenius FX/S , where

∼

X′ is the base change of
∼

X along
∼

FS .
If (X,D) is an nc pair over S, a Frobenius lifting of (X,D) is a triple (

∼

X,
∼

D,
∼

FX)

where (
∼

X,
∼

D) is an nc pair lifting (X,D) and
∼

FX is a lifting of FX to X satisfying
∼

F ∗X (
∼

D) = p
∼

D. We shall study this notion in more detail in [AWZ21, Section 2.4]. In
view of Remark 2.3.2, Frobenius liftings of (X,D) correspond to liftings of the associ-
ated log scheme (X,MX).

3.1. Examples of F -liftable schemes

We shall be mostly concerned with smooth schemes in this paper. Examples of F -liftable
singularities were studied in [Zda18].

Example 3.1.1 (Smooth affines). Every smooth affine k-scheme is F -liftable. In-
deed, the obstruction class to lifting X together with FX lies in Ext1(�1

X, B
1
X) =

H 1(X, TX ⊗ B
1
X) (see [MS87, Appendix], cf. Proposition 3.3.1(b)), which is zero.

Example 3.1.2 (Toric varieties). Every toric variety X = X(6)k over k is F -liftable
[BTLM97]. More precisely, let 6 be a fan in NR for a lattice N and let X(6) be the
associated toric variety over Spec Z. The multiplication by p map N → N preserves 6
and hence it induces a morphism

∼

F : X(6) → X(6). Its restriction to X(6)Fp is the
absolute Frobenius.

Of course not every Frobenius lifting on a toric variety has to be of this type, e.g. any
collection of homogeneous polynomials f0, . . . , fn ∈ k[x0, . . . , xn] of degree p defines
a lifting of Frobenius on PnW2(k)

by

∼

F(x0 : . . . : xn) = (x
p

0 + pf0(x0, . . . , xn) : . . . : x
p
n + pfn(x0, . . . , xn)).

The existence of such non-standard liftings is one of the main difficulties in Conjecture 1,
and provides a contrast between its two extreme (toric and abelian) cases.

Example 3.1.3 (Ordinary abelian varieties). An abelian variety A over k is F -liftable if
and only if it is ordinary, in which case there exists a unique Frobenius lifting (

∼

A,
∼

FA),
called the Serre–Tate canonical lifting ofA (see [MS87, Appendix]). It has the remarkable
property that for every line bundle L on A, there exists a unique up to isomorphism line
bundle

∼

L on
∼

A such that
∼

F
∗

A

∼

L '
∼

L
⊗p

.

Example 3.1.4 (Étale quotients of ordinary abelian varieties). Let A be an ordinary
abelian variety and let f : A → Y be a finite étale surjective morphism. Replacing f
by its Galois closure, we can assume that it is Galois. Then Y is F -liftable by [MS87,
Theorem 2], but it need not be an abelian variety.
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Example 3.1.5 (Toric fibrations over ordinary abelian varieties). In order to combine
Examples 3.1.2 and 3.1.3, let A be an abelian variety, and let f : X → A be a toric
fibration under a torus T (see §2.1). Then X is F -liftable if and only if A is ordinary (see
Theorem 5.1.1).

Remark 3.1.6. In fact, in each of the above examples, the Frobenius liftings exist over
W(k) and not just overW2(k). We do not know an example of a smooth k-scheme admit-
ting a Frobenius lifting only over W2(k). However, it is important to work over W2(k) as
this allows for descending Frobenius liftability under appropriate finite morphisms (see
Theorem 3.3.6).

Remark 3.1.7 (Partial converse to Conjecture 1). Consider the situation of the assertion
of Conjecture 1: let A be an ordinary abelian variety, let Y → A be a smooth toric
fibration with toric boundaryD ⊆ Y , and let Y → X be a finite étale map. Then (Y,D) is
F -liftable by Example 3.1.5, and X is F -liftable if one of the following conditions holds:

(1) If X = Y/G where G is of order prime to p (see Remark 3.3.7). Note that since
π1(Y )

∼−→ π1(A), passing to the Galois closure we can always assume thatX = Y/G
for a free action of a finite group G on Y .

(2) If the toric boundary D ⊆ Y is a pull-back from X (Theorem 5.1.1(iii)⇒(i)), for
example if Y = A (Example 3.1.4).

However, X is not F -liftable in general: if Y = P1
× C where C is an ordinary elliptic

curve, and G = Z/pZ acts on P1 by (x : y) 7→ (x + ay : y) and on C by translation,
then the diagonal action of G on Y is free, and X = Y/G is not F -liftable (see [AWZ21,
Proposition 3.6] and [AWZ21, Lemma 3.7]). It would be interesting to find an ‘if and
only if’ criterion for the F -liftability of quotients X = Y/G as above withG an arbitrary
finite group, or even an abelian p-group.

3.2. Consequences of F -liftability

As mentioned in the introduction, the existence of a Frobenius lifting has strong conse-
quences for smooth schemes. First, let us recall the construction of the map ξ (see (1.1.1),
cf. [DI87, Proof of Théorème 2.1(b)]).

Construction of the map ξ . Let (
∼

S,
∼

FS) be a Frobenius lifting of a k-scheme S, let
(
∼

X,
∼

FX) be a Frobenius lifting of a k-scheme X, and let ∼π :
∼

X →
∼

S be a smooth mor-
phism ofW2(k)-schemes such that

∼

FS ◦
∼π = ∼π ◦

∼

FX. Let
∼

FX/S be the induced lifting of the
relative Frobenius. By flatness of

∼

X →
∼

S, the differential d
∼

FX/S fits into the following
diagram with exact rows:

0 // F ∗X/S�
1
X′/S

//

dFX/S=0

��

∼

F ∗X/S�
1
∼
X′/

∼
S

//

d
∼
FX/S

��

F ∗X/S�
1
X′/S

//

dFX/S=0

��

0

0 // �1
X/S

// �1
∼
X/
∼
S

// �1
X/S

// 0
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Using the snake lemma, we obtain a mapping

ξ =
d
∼

FX/S

p
: F ∗X/S�

1
X′/S → �1

X/S .

In simple terms, ξ(ω) = 1
p
d
∼

FX(
∼ω), where ∼ω is any lifting of a local form ω ∈ F ∗X/S�

1
X′/S

.
In particular, if S = Spec k, then ξ(df ) = f p−1df + dg where

∼

F ∗X(
∼

f ) =
∼

f p + pg.
Since F ∗X/S�

1
X′/S
' F ∗X�

1
X/S , we may interpret ξ as an OX-linear morphism F ∗X�

1
X/S

→ �1
X/S .

Proposition 3.2.1 ([DI87, Proof of Théorème 2.1 and §4.1], [BTLM97, Theorem 2]).
The mapping ξ : F ∗X/S�

1
X
′
/S
→ �1

X/S satisfies the following properties:

(a) The adjoint morphism ξ ad
: �1

X′/S
→ FX/S∗�

1
X/S has image in the subsheaf Z1

X/S of
closed forms and provides a splitting of the short exact sequence

0→ B1
X/S → Z1

X/S

CX/S
−−−→ �1

X′/S → 0.

(b) By taking exterior powers, the morphism ξ ad induces splittings of the short exact
sequences

0→ BiX/S → ZiX/S
CX/S
−−−→ �iX′/S → 0,

as well as a quasi-isomorphism of differential graded algebras

∧• ξ ad
:

⊕
i≥0

�iX′/S[−i]
∼−→ (FX/S)∗�

•

X/S

where the maps ∧i ξ ad
: �i

X′/S
→ (FX/S)∗�

i
X/S are split injections. At the level of

cohomology, this map induces the Cartier isomorphism.
(c) The determinant

det(ξ) : F ∗X/Sω
1
X′/S → ω1

X/S

corresponds to a Frobenius splitting σ of X relative to S (see §2.5). In particular, the
homomorphism ξ is injective.

Variant 3.2.2 (Logarithmic variant of Proposition 3.2.1). If (X,D) is an nc pair over S,
and if (

∼

X,
∼

D,
∼

FX) is a Frobenius lifting of (X,D), we get a morphism

ξ : F ∗X�
1
X/S(logD)→ �1

X/S(logD)

and the assertions of Proposition 3.2.1 hold in this case (cf. [DI87, §4.2]).

Corollary 3.2.3. Let X be an F -liftable smooth and proper scheme over k. Then X is
ordinary in the sense of Bloch and Kato, i.e., H j (X,BiX) = 0 for all i, j ≥ 0.

Proof. This follows from the proof of [MS87, Lemma 1.1]. ut
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Bott vanishing. By Proposition 3.2.1(b), we haveH j (X,�iX⊗L ) ⊆ H j (X,�iX⊗L p)

for every line bundle L . This explains the following result.

Theorem 3.2.4 (Bott vanishing, [BTLM97, Theorem 3]). Let X be a smooth projective
F -liftable scheme over k, and let L be an ample line bundle on X. Then

H j (X,�iX ⊗L ) = 0 for j > 0, i ≥ 0.

Moreover, if (X,D) is an F -liftable nc pair, then

H j (X,�iX(logD)⊗L ) = 0 for j > 0, i ≥ 0.

Corollary 3.2.5. Let X be a smooth projective F -liftable scheme over k. Suppose that X
is Fano (i.e., ω−1

X is ample). Then H i(X, TX) = 0 for i > 0. In particular, X is rigid and
has unobstructed deformations.

Proof. Since TX ' �n−1
X ⊗ ω∨X, Bott vanishing implies that

H i(X, TX) = H
i(X,�n−1

X ⊗ ω∨X) = 0. ut

The above results suggest that F -liftability is a rare property. For instance, we obtain the
following examples of non-liftable varieties.

Example 3.2.6. A smooth hypersurface X ⊆ Pn of degree d > 1, where n > 1, is not
F -liftable as long as n + d > 5. Indeed, assuming X is F -liftable we may reason as
follows.

(1) If d > n + 1, then X has positive Kodaira dimension, which contradicts Proposi-
tion 3.2.1(c).

(2) If d = n + 1, then ωX is trivial and X is simply connected, contradicting [MS87,
Theorem 2].

(3) If 2<d <n+ 1, then X is Fano but not rigid, contradicting Corollary 3.2.5.
(4) If d = 2 and n > 3, then X is not F -liftable because H 1(X,�n−2

X (n − 3)) 6= 0,
contradicting Bott vanishing (see [BTLM97, §4.1]). See also [Zda18, Theorem 4.15].

The sheaf of ξ -invariant forms. Let (
∼

X,
∼

FX) be a Frobenius lifting of a smooth
k-scheme X. We can regard the induced map

ξ =
1
p
d
∼

FX : F
∗

X�
1
X → �1

X

as a Frobenius-linear endomorphism of �1
X, that is,

ξ(f · ω) = f p · ξ(ω) for f ∈ OX, ω ∈ �
1
X.

As observed in [MS87], if ωX is numerically trivial, then ξ is an isomorphism, and there-
fore �1

X becomes trivial on a finite étale cover Y of X (see [LS77, Satz 1.4]).
A related geometric idea, which we put to good use in §6, is to look at the (étale)

subsheaf (�1
X)
ξ of ξ -invariant forms in �1

X. By the very definition, (�1
X)
ξ is the étale

sheaf of sections of the fixed point locus (T ∗X)ξ inside the cotangent bundle.
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Lemma 3.2.7. The subscheme (T ∗X)ξ ⊆ T ∗X is étale overX and the étale sheaf (�1
X)
ξ

is a constructible sheaf of Fp-vector spaces on X. Over the dense open U ⊆ X where ξ
is an isomorphism, (T ∗X)ξ is finite over X of degree pdimX and (�1

X)
ξ is an Fp-locally

constant sheaf of rank pdimX.

Proof. The assertions are local onX, so we may assume that there exists an isomorphism
OdimX
X ' �1

X. Since ξ as an endomorphism of �1
X is Frobenius-linear, its fixed point

locus is described by the following system of equations in variables f1, . . . , fn:

[f1, . . . , fn] − [f
p

1 , . . . , f
p
n ] · A = 0

for some A ∈ Mn×n(0(X,OX)). We immediately see that the Jacobian of the above
system of equations is the identity matrix, and thus (T ∗X)ξ is étale over X. The other
assertions are clear in view of the fact that for a vector space V of dimension r endowed
with a Frobenius-linear isomorphism ξ : F ∗V → V , the locus of fixed points V ξ is
isomorphic to Frp. ut

3.3. Deformation theory of the Frobenius morphism

In this subsection, we first discuss obstruction classes to lifting Frobenius, as originally
defined by Nori and Srinivas. Then we apply them, together with other tools, to show in
Theorem 3.3.6 that under certain conditions on a morphism π : Y → X, if Y is F -liftable,
then so isX. We also discuss F -liftability of products, toric fibrations, and divisorial rings.

Obstruction classes and their functoriality. Since we are dealing with deformations of
schemes and their Frobenii along the first order thickening S ↪→

∼

S, it is natural to seek
an obstruction theory for lifting the Frobenius. For smooth schemes over a perfect field k,
such a theory was developed by Nori and Srinivas in the appendix to [MS87]. The usual
deformation theory of morphisms already tells us that

• given a morphism f : X → Y and a lifting
∼

Y , the obstruction to the existence of
f̃ :

∼

X→
∼

Y is a class in Ext2(LX/Y ,OX) (' H 2(X, TX/Y ) if f is smooth),
• if we also fix

∼

X a priori, then we have an obstruction lying in Ext1(Lf ∗LY ,OX) ('
H 1(X, f ∗TY ) if Y is smooth) to lifting f .

The first obstruction theory does not apply in our context of lifting f = FX/k : X→ X′ as
the two liftings

∼

X and
∼

X′ of the source and the target are not independent, they are related
by the pullback square in (3.0.1). The second one does, and produces an obstruction to
lifting the Frobenius to a given lifting

∼

X.
If we do not fix

∼

X a priori, then the classical theory is of no use, and in fact we cannot
even write a suitable functor of Artin rings (one needs a lifting of Frobenius on the base).
Nori and Srinivas bypass the difficulty by considering the problem of lifting (X, FX)
only to Wn(k), in which case the lifting σ of Frobenius on Wn(k) is unique. As in their
situation, in §5 we shall actually need to lift not only to W2(k) but all the way to W(k) to
apply characteristic zero methods.

Their results are as follows.
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Proposition 3.3.1 ([MS87, Appendix]). Let X be a smooth scheme over k, and let
(Xn, FXn) be a Frobenius lifting of X over Wn(k). Then the following hold:

(a) For every lifting Xn+1 of Xn over Wn+1(k) there exists an obstruction class

oFXn+1
∈ Ext1(�1

X, FX∗OX)

whose vanishing is sufficient and necessary for the existence of a lifting FXn+1 of FXn
to Xn+1. If the obstruction vanishes, then the space of such liftings is a torsor under
Hom(�1

X, FX∗OX).
(b) There exists an obstruction class

oXn ∈ Ext1(�1
X, B

1
X)

whose vanishing is sufficient and necessary for the existence of a lifting
(Xn+1, FXn+1) of (Xn, FXn) overWn+1(k). If the obstruction vanishes, then the space
of such liftings is a torsor under Hom(�1

X, B
1
X).

(c) The obstruction class oX ∈ Ext1(�1
X, B

1
X) to lifting X over W2(k) compatibly with

the Frobenius morphism equals the class of the extension

0→ B1
X → Z1

X

CX
−→ �1

X → 0.

(d) Let (Xn+1, FXn+1) be a lifting of (Xn, FXn) over Wn+1(k) and suppose that the
Frobenius action onH i(X,OX) is bijective for i = 1, 2. Then for every Ln ∈ PicXn
such that F ∗XnLn = L

⊗p
n , there exists a unique Ln+1 ∈ PicXn+1 such that

Ln+1|Xn ' Ln and F ∗Xn+1
Ln+1 = L

⊗p

n+1.

Variant 3.3.2 (Logarithmic variant of Proposition 3.3.1). The above proposition can be
repeated word for word for nc pairs (X,D). In this case, the sheaves of Kähler differen-
tials are replaced by logarithmic differentials �1

X(logD). The sheaf B1
X is left without

change, since the 1-boundaries B1
X(logD) of the logarithmic de Rham complex coincide

with the 1-boundariesB1
X of the standard de Rham complex. We do not give the full proof,

but comment on the main ingredients of the logarithmic version of (b) and (c).

(1) As in standard deformation theory, for an nc pair (Xn,Dn) overWn(k) we notice that
any two liftings over Wn+1(k) (as nc pairs) are Zariski-locally isomorphic and the
infinitesimal automorphisms are parametrized by sections of Hom(�1

X(logD),OX)
(see [EV92, Proposition 8.22]).

(2) The logarithmic analogue of Proposition 3.3.1(a) holds, and in particular for
every Frobenius lifting FXn : (Xn,Dn) → (Xn,Dn) local liftings of the
Frobenius morphism over Wn+1(k) exist and are torsors under sections of
Hom(�1

X(logD), FX∗OX) (see [EV92, Proposition 9.3]).

Now, to construct the obstruction class for lifting (Xn,Dn, FXn) over Wn+1(k) we rea-
son as follows. We take an open affine covering {(U in,D

i
n)} of (Xn,Dn), and then lift

(U in,D
i
n) to some nc pairs (U in+1,D

i
n+1) overWn+1(k). By (2) the nc pairs (U in+1,D

i
n+1)
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admit Frobenius liftings FU i
n+1
: (U in+1,D

i
n+1)→ (U in+1,D

i
n+1) extending FXn |U in . We

set U ijn+1 = U
i
n+1 ∩ U

j

n+1. By (1) we may fix isomorphisms

ϕij : (U
j

n+1,D
j

n+1)|U ij
∼−→ (U in+1,D

i
n+1)|U ij satisfying ϕji = ϕ

−1
ij .

The morphisms FU i
n+1

and ϕij ◦FU j
n+1
◦ϕji are two liftings of FXn |U ijn and hence they

give rise to a local section τij of the sheaf Hom(�1
X(logD), FX∗OX). The images of τij

under the homomorphism Hom(�1
X(logD), FX∗OX) → Hom(�1

X(logD),B1
X) does

not depend on the choices made, and give a cocycle whose cohomology class we claim is
the required obstruction. For the rest of the proof, we may repeat the reasoning of [MS87,
Appendix, Proposition 1(vii)] word for word. For the proof of (c), we observe that the
difference of the morphisms ξ induced by the liftings F ∼

U i
and ϕij ◦ F ∼U j ◦ ϕji divided

by p is a map hij : �1
U ij
(logD)→ B1

U ij
, and that {hij } is a cocycle representing the log

Cartier sequence.

The obstruction classes satisfy the following functoriality properties.

Lemma 3.3.3. Let π : Y → X be a morphism of smooth schemes over k.

(a) Let ∼π :
∼

Y →
∼

X be a lifting of π over W2(k). Then the obstruction classes oF∼
X

and

oF∼
Y

, treated as morphisms in the appropriate derived categories, fit into the following
commutative diagrams:

π∗F ∗X�
1
X

π∗oF∼
X //

F ∗Y dπ

��

π∗OX[1]

and

F ∗X�
1
X

oF∼
X //

F ∗Y dπ

��

OX[1]

π∗[1]
��

F ∗Y�
1
Y

oF∼
Y // OY [1] Rπ∗F

∗

Y�
1
Y

Rπ∗o
F
∼
Y // Rπ∗OY [1]

(3.3.1)

(b) Suppose that π is smooth. Then the obstruction classes oX and oY fit into the com-
mutative diagram

π∗�1
X

π∗oX //

dπ

��

π∗B1
X[1]

dπ

��

�1
Y

oY // B1
Y [1]

Proof. For part (a), see [Zda18, Lemma 4.1]. For part (b), use Proposition 3.3.1(c) and
the commutativity of the diagram

0 // π∗B1
X

//

dπ

��

π∗Z1
X

//

dπ

��

π∗�1
X

//

dπ

��

0

0 // B1
Y

// Z1
Y

// �1
Y

// 0 ut
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Remark 3.3.4. In the case of singular schemes, the cotangent bundle �1
X can be re-

placed with its derived variant LX/k ∈ D−Coh(OX) (see [Ill71]). The assertions of Proposi-
tion 3.3.1(a) and Lemma 3.3.3(a) remain valid with the standard differential replaced by
the derived one.

Descending and lifting Frobenius liftings. With the abstract deformation theory at
hand, we can now easily relate F -liftability of two schemes X and Y in the presence
of a suitable morphism π : Y → X. In the subsequent sections, we shall frequently use
the following results.

Lemma 3.3.5. Let π : Y → X be an étale morphism of k-schemes. For every Frobenius
lifting (

∼

X,
∼

FX) of X, there exists a unique Frobenius lifting (
∼

Y ,
∼

FY ) of Y and a lifting
∼π :
∼

Y →
∼

X of π such that
∼

FX ◦
∼π = ∼π ◦

∼

FY .

Proof. This follows from the equivalence of categories between étale schemes over X
and over

∼

X. ut

Theorem 3.3.6 (Descending Frobenius liftability). Let π : Y → X be a morphism of
schemes (essentially) of finite type over k and let (

∼

Y ,
∼

F Y ) be a Frobenius lifting of Y .

(a) Suppose that π admits a lifting ∼π :
∼

Y →
∼

X, and that one of the following conditions
is satisfied:

(i) π∗ : OX → Rπ∗OY is a split monomorphism in the derived category,
(ii) π is finite flat of degree prime to p,

(iii) Y satisfies condition S2 and π is an open immersion such that X \ Y has codi-
mension > 1 in X.

Then FX lifts to
∼

X.
(b) Suppose that one of the following conditions is satisfied:

(i) OX ∼−→ π∗OY and R1π∗OY = 0,
(ii) X and Y are smooth and π is proper and birational,

(iii) Y satisfies condition S3 and π is an open immersion such that X \ Y has codi-
mension > 2 in X.

Then there exists a unique pair of a Frobenius lifting (
∼

X,
∼

FX) of X and a lifting
∼π :
∼

Y →
∼

X of π such that
∼

FX ◦
∼π = ∼π ◦

∼

FY .

In fact, conditions (a.ii) and (b.ii) imply (a.i) and (b.i), respectively. We do not expect
∼

FX ◦
∼π = ∼π ◦

∼

FY to hold in general in situation (a).

Remark 3.3.7. In [AWZ21, Section 2.2] we also prove the following result:

(c) Suppose that Y is normal and that π : Y → X = Y/G is a good quotient by an
action of a linearly reductive group G on Y . Then there exists a lifting ∼π :

∼

Y →
∼

X of
π and a lifting

∼

FX of FX to
∼

X.

The approach is to use (a) for a map ∼π obtained using averaging technique for Frobenius
splittings.
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Proof of Theorem 3.3.6. (a) Under condition (i), the right arrow of the right diagram
(3.3.1) is a split injection by assumption. Thus oF∼

X
= 0 if oF∼

Y
= 0. Condition (ii) im-

plies (i), as Rπ∗OY = π∗OY and 1/deg(π) times the trace map yields a splitting. For (iii),
we argue as in [Zda18, Corollary 4.3]. Let K be the fiber of the right arrow in the right
diagram (3.3.1), fitting into an exact triangle

K → OX[1] → Rπ∗OY [1] → K[1]. (3.3.2)

Since the bottom map in the right diagram (3.3.1) is zero by assumption, the top map has
to factor through K . It is therefore enough to show that Hom(F ∗X�

1
X,K) = 0. Note that

K = R0Z(OX)[1] is the shift by one of the local cohomology complex with supports on
Z = X \ Y (see [Har67] or [Sta14, Tag 0A39]). Considering the spectral sequence

E
p,q

2 = Hom(F ∗X�
1
X,H

q(R0Z(OX))[p]) =⇒ Hom(F ∗X�
1
X, R0Z(OX)[p + q])

for p + q = 1, we see that it suffices to show that the local cohomology vanishes up
to degree one, which is implied by Serre’s condition S2 and [HK04, Proposition 3.3].
An analogous reasoning works if X and Y are not smooth. In this case, as mentioned in
Remark 3.3.4, we replace the sheaf of Kähler differentials by the cotangent complex.

(b) Under condition (i), Lemma 2.2.1 provides a lifting ∼π :
∼

Y →
∼

X defined by the
assignment O ∼

X
= π∗O ∼

Y
. To obtain a Frobenius lifting on

∼

X we just take F ∼
X
= π∗F ∼Y .

For (ii), we observe that since X and Y are smooth, [CR15, Theorem 1.1] implies that
Riπ∗OY = 0 for i > 0, and hence we may use (i) to conclude. For (iii), we reason as in
(a.iii). More precisely, we consider the long exact sequence of cohomology for (3.3.2) to
see that R1π∗OY is isomorphic to the second local cohomology supported in Z = X \U ,
which vanishes by condition S3 and [HK04, Proposition 3.3]. ut

Corollary 3.3.8. Let X and Y be smooth and proper schemes over k. Then X × Y is
F -liftable if and only if X and Y are.

Proof. If (
∼

X,
∼

FX) and (
∼

Y ,
∼

F Y ) are Frobenius liftings of X and Y , respectively, then
(
∼

X ×
∼

Y ,
∼

FX ×
∼

FY ) is a Frobenius lifting of X × Y . For the converse, we first use the ar-
guments of [BTLM97, Lemma 1]. The sheaf�1

X×Y decomposes as a direct sum π∗X�
1
X⊕

π∗Y�
1
Y and therefore the morphism of de Rham complexes �•X → πX∗�

•

X×Y induced by
the differential dπX : �1

X → �1
X×Y has a natural splitting. This leads to a splitting s of

the morphism of short exact sequences

0 // B1
X

//

dπX

��

Z1
X

//

dπX

��

�1
X

//

dπX

��

0

0 // πX∗B
1
X×Y

//

s

TT

πX∗Z
1
X×Y

//

s

TT

πX∗�
1
X×Y

//

s

TT

0

Consequently, we see that the upper row is split if the lower row is. This completes the
proof. ut

http://stacks.math.columbia.edu/tag/0A39
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Toric fibrations. The goal of this part of the section is to show that split toric fibrations
over an F -liftable base are F -liftable (see Example 3.1.5). We remove the assumption
that the fibration is split in Theorem 5.1.1.

Let X be a normal k-scheme, and let L1, . . . , Ln be line bundles on X. Consider the
graded OX-algebra

R =
⊕
λ∈Zn

Rλ, Rλ = L
λ1
1 ⊗ · · · ⊗ L

λn
n , (3.3.3)

with multiplication given by the tensor product, and set U = SpecX R. The natural map
U → X is a torsor under the split torus T = Gn

m. Let Z = X(6)k be a toric variety under
the torus T and let Y = U ×T Z. The projection π : Y → X is a split toric fibration with
fiber Z, and conversely every split toric fibration over X arises via this construction.

Lemma 3.3.9. In the above situation, let (
∼

X,
∼

FX) be a Frobenius lifting of X. Then there
exists a Frobenius lifting (

∼

Y ,
∼

FY ) and a lifting ∼π :
∼

Y →
∼

X of π such that
∼

FX ◦
∼π = ∼π ◦

∼

FY .

Proof. Let
∼

Li be the unique liftings of Li to
∼

X satisfying
∼

F ∗X
∼

Li '
∼

L
p

i , which exists by
Proposition 3.3.1(d) and Lemma 2.5.2(a). We start with the case Z = Gn

m, so Y = U .
Consider the graded O ∼

X
-algebra

∼

R =
⊕
λ∈Zn

∼

Rλ,
∼

Rλ =
∼

L
λ1
1 ⊗ · · · ⊗

∼

L
λn

n ,

and set
∼

U = SpecX
∼

R. The natural map ∼π :
∼

U →
∼

X is a Gn
m-torsor lifting π : U → X.

Moreover, the map

∼

F ∗X
∼

R =
⊕
λ∈Zn

∼

F ∗X
∼

Rλ '

⊕
λ∈Zn

(
∼

Rλ)
⊗p
=

⊕
λ∈pZn

∼

Rλ ↪→
⊕
λ∈Zn

∼

Rλ =
∼

R

induces a map
∼

FU/X :
∼

U →
∼

U ′, which lifts the relative Frobenius FU/X : U → U ′, where
∼

U ′ is the base change of
∼

U along
∼

FX and U ′ is its reduction modulo p.
For the general case, we set

∼

Y =
∼

U ×
∼
T X(6)W2(k)

∼π
→
∼

X, where
∼

T = Gn
m,W2(k)

,

the toric fibration with fiber X(6) associated to
∼

U . This is a lifting of Y , and the lifting
of Frobenius on

∼

U extends to
∼

Y . ut

4. Toric varieties in families

In this section, we address the following three questions:

• Generalization: Given a family f : X→ S such that Xs is a toric variety for a dense
set of s ∈ S, can we deduce that the generic fiber is a toric variety? (§4.1)
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• Specialization: Given a family f : X → S whose generic fiber is a toric variety and
S = SpecR for a discrete valuation ring R, when can we deduce that the special fiber
is a toric variety as well? (§4.2)
• Global rigidity: Given a proper nc pair (X,D) over a connected scheme S, if one ge-

ometric fiber (X,D)s̄ is a toric pair, must (X,D) globally come from a toric fibration?
(§4.3)

The result of §4.1 will be used in §4.4 to show that Conjecture 2 follows from (a special
case of) Conjecture 1. The results of §4.2–§4.3 will be needed in Section 5.

4.1. Generalization

We start with a somewhat lengthy proof of the following fact which should be well-known
but for which we have been unable to find a reference.

Lemma 4.1.1. Let S be a geometrically unibranch [EGA IVII, 6.15.1] noetherian
scheme, and let π : X → S be a smooth proper morphism whose geometric fibers are
connected and satisfy

H 1(Xs̄,OXs̄ ) = H
2(Xs̄,OXs̄ ) = 0. (4.1.1)

Then there exists a finite étale surjective morphism S′ → S such that PicX′/S′ is the
constant sheaf associated to a finitely generated group on the big étale site of S′, where
X′ is the base change of X to S′.

Proof. By [Kle05, Theorem 9.4.8], PicX/S is representable by the disjoint union of quasi-
projective schemes over S. By the deformation theory of line bundles,H 2(Xs̄,OXs̄ ) is the
obstruction space and H 1(Xs̄,OXs̄ ) is the tangent space of the deformation functor of a
line bundle on Xs̄ , and hence (4.1.1) shows that line bundles deform uniquely over thick-
enings of Xs̄ . Consequently, PicX/S is formally étale, and hence étale, over S. Moreover,
PicX/S → S satisfies the valuative criterion of properness. Thus if P is a connected
component of PicX/S , then P → S is a connected étale covering of S, and since S is
geometrically unibranch, P is finite over S. We conclude that PicX/S is the disjoint union
of connected finite étale coverings of S.

We assume without loss of generality that S is connected, and pick a geometric point s̄
of S. Let M = PicX/S(s̄) = Pic(Xs̄), which is a finitely generated abelian group. Pick
a finite set of generators p1, . . . , pk ∈ M , and for each i = 1, . . . , k, let Pi be the con-
nected component of PicX/S containing the corresponding geometric point p̄i → PicX/S .
Let S′→ S be a finite étale cover after pullback to which each Pi → S becomes constant.
Replacing S by S′, we can assume that each Pi maps isomorphically onto S, that is, each
pi ∈ PicX/S(s̄) is the restriction of a (unique) global section qi ∈ PicX/S(S). We claim
that in this case PicX/S is actually constant. Let P = M×S be the constant group scheme
over S associated toM; we will construct an isomorphism PicX/S ∼−→ P . The sections pi
and qi define surjective morphisms of group schemes over S:

α : Zk × S → PicX/S and β : Zk × S → P.



2624 Piotr Achinger et al.

Moreover if the pi satisfy a relation
∑
aipi = 0, then so do the sections qi , and hence

there is a surjective morphism γ : PicX/S → P . Its kernel K is a closed subscheme of
PicX/S which is flat, and hence étale, over S. Moreover, Ks̄ = {1} by construction, and
hence K ∼−→ S. Thus γ is an isomorphism. ut

The above assertion need not be true when H 2(Xs̄,OXs̄ ) 6= 0, for example for non-
isotrivial families of K3 surfaces over complete complex curves [BKPSB98].

Proposition 4.1.2. Let S be a noetherian excellent scheme and let π : X → S be a
smooth projective morphism whose geometric fibers are connected and satisfy (4.1.1).
Let E be a locally free sheaf of rank r on X. Then the set

{s ∈ S | Es̄ is a direct sum of line bundles on Xs̄ for every geom. pt. s̄ over s} ⊆ S

is a constructible subset of S.
Proof. Stratifying S, we may assume that S is connected and regular. By Lemma 4.1.1,
after replacing S with some finite étale cover S′ → S, we have PicX/S ' M × S for a
finitely generated group M , and hence Pic(Xs) = Pic(Xs̄) = M for all s ∈ S. Given
H,D ∈ M , there is a well-defined intersection number H d−1

· D ∈ Z, the same for all
fibers, where d is the relative dimension of f .

We can assume that there exist H1, . . . , Hs ∈ M which give ample line bundles on
every fiber and which span M ⊗ Q. If H is one of these, then by Noetherian induction
there is a natural number nH such that E (nHH) is globally generated on all fibers. If
L ∈ M is a direct summand of Es , it follows that L + nHH is a direct summand of
a globally generated sheaf, and hence is effective on Xs , so (L + nHH) · H d−1

≥ 0
(independent of s). Thus L · H d−1

≥ −nHH
d . Applying the same argument to E ∨, we

get a natural number mH such that −L ·H d−1
≥ −mHH

d , i.e. L ·H d−1
≤ mHH

d . We
conclude that there exists a natural number B such that

|L ·H d−1
i | < B for i = 1, . . . , s (4.1.2)

whenever L is a direct summand of some Es .
Because theHi spanM⊗Q, the setK of all L ∈ M satisfying the inequalities (4.1.2)

is finite. For v = (L1, . . . , Lr) ∈ K
r , consider the functor

Fv : (Schemes/S)→ Sets, T 7→ IsomX×ST

(( r⊕
i=1

Li

)
T
,ET

)
.

Stratifying S further, we may assume that π∗Hom((
⊕r

i=1 Li),E ) is locally free and its
formation commutes with base change. This implies that Fv is representable by an open
subscheme of the total space of the vector bundle π∗Hom((

⊕r
i=1 Li),E ), and hence is a

scheme of finite type over S. Let W be the disjoint union of these schemes, which is still
of finite type as Kr is a finite set. The locus where E splits is the set-theoretic image of
W → S, which is constructible by Chevalley’s theorem. ut

We shall now apply this to the study of toric varieties in families. As observed by
Jaczewski and developed further by Kędzierski and Wiśniewski, smooth toric varieties ad-
mit a generalization of the Euler sequence, and this property in fact characterizes smooth
projective toric varieties, at least in characteristic zero.
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Definition 4.1.3 (cf. [Jac94, Definition 2.1] and [KW15, §1.1]). Let π : X → S be a
smooth projective morphism of schemes. Suppose that S is affine, and that the coherent
sheaf H = R1π∗�

1
X/S is locally free. Then the image of idH under the natural identifi-

cation

HomS(H ,H ) ' H 0(S, R1π∗(π
∗H ∨

⊗�1
X/S))

' H 0(S,Ext1X/S(π
∗H , �1

X/S)) ' Ext1(π∗H , �1
X/S)

gives rise to an extension

0→ �1
X/S → RX/S → π∗H → 0. (4.1.3)

The locally free sheaf RX/S is called the potential sheaf of X over S.

Theorem 4.1.4 ([KW15, Theorem 1.1 and Corollary 2.9]). Let K be an algebraically
closed field, and let X be a smooth projective integral scheme over K . If X is a toric
variety, then the sheaf RX/K splits into the direct sum of line bundles. Conversely, if K
has characteristic zero and the potential sheaf RX/K splits into the direct sum of line
bundles, and if we have the vanishing

H 1(X,OX) = H
2(X,OX) = 0,

then X is a toric variety.

Corollary 4.1.5. Let S be an integral noetherian scheme with generic point η of char-
acteristic zero, and let π : X → S be a smooth and projective morphism. Suppose that
the geometric fiber Xs̄ is a toric variety for a dense set of closed points s ∈ S. Then the
geometric generic fiber Xη̄ is a toric variety.
Proof. Shrinking S, we may assume that S is affine and that R1π∗�

1
X/S is locally free,

in which case the potential sheaf RX/S is defined. Moreover, since H 0(Y,OY ) = k and
H i(Y,OY ) = 0 for any i > 0 and a toric variety Y over a field k, we see that the assump-
tion on H i(Xs̄,OXs̄ ) in Proposition 4.1.2 is satisfied. We apply this result to the potential
sheaf RX/S . Since RY/k splits for a toric variety Y by the first part of Theorem 4.1.4,
we deduce that RXη̄/η̄ = (RX/S)η̄ must be split as well. By the other direction of Theo-
rem 4.1.4, this implies that Xη̄ is a toric variety. ut

4.2. Specialization

Let R be a discrete valuation ring with residue field k and fraction field K . We set

S = SpecR, s = Spec k, s̄ = Spec k̄, η = SpecK, η̄ = SpecK.

Suppose that X is a smooth projective scheme over S whose general fiber Xη is a toric
variety. It is not true in general that the geometric special fiber Xs̄ is a toric variety, as the
following basic example shows.

Example 4.2.1. Let s0, s1, s2 ∈ P2(R) be three sections over S which give a triple of
distinct collinear points in the special fiber P2(k), but which are not collinear in P2(K).
Let X be the blow-up of P2

S along the union of these three sections. Then X is a smooth
projective surface over S, and Xη is a toric variety but Xs̄ is not.
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The above phenomenon cannot happen if we consider deformations of toric varieties
together with their toric boundaries. The goal of this subsection is to show that toric pairs
can only degenerate to toric pairs.

Proposition 4.2.2. Let X be a smooth proper scheme over S, and letD ⊆ X be a divisor
with normal crossings relative to S. If (Xη,Dη) (resp. (Xη̄,Dη̄)) is a toric pair (see §2.1),
then so is (Xs,Ds) (resp. (Xs̄,Ds̄)).

Proof. This proof is inspired by [AMRT10, Theorem I 2.1]. Suppose that we have an
isomorphism g : (X,D)η

∼−→ (X(6),D(6))η for some fan6. We will show the stronger
claim that (X,D) ' (X(6),D(6))S . Every m ∈ M (the monomial lattice of 6) defines
a rational function g∗(m) on X defined and invertible outside ofD∪Xs . Their valuations
νs(g

∗(m)) ∈ Z along the prime divisor Xs ⊆ X define a homomorphism M → Z, i.e. an
element γ of the dual lattice N . If π ∈ R is a uniformizer, i.e. νs(π) = 1, we define an
element τ of the torus T (K) = Hom(M,K×) bym 7→ π−γ (m). If we now replace g with
the composition h = τ ◦g : (X,D)η → (X(6),D(6))η, we obtain another isomorphism
as before but now with γ = 0; in other words, the rational functions h∗(m) (m ∈ M) on
X are defined and invertible at the generic point of the special fiber Xs .

We now check that the above condition implies that h extends to a map (X,D) →
(X(6),D(6))S . For a ray ρ ∈ 6(1), let D(ρ) ⊆ X(6) be the corresponding compo-
nent of D(6), and let Dρ ⊆ X be the component of D containing h−1(D(ρ)η). For
a cone σ ∈ 6, let U(σ) = X(6) \

⋃
ρ 6⊆σ D(ρ) be the corresponding affine toric va-

riety; similarly, we define Uσ = X \
⋃
ρ 6⊆σ Dρ , so that (Uσ )η = h−1(U(σ)η). Note

that the Uσ cover X, as all intersections of components of D are flat over S and the
(Uσ )η cover Xη. Further, the condition γ = 0 implies that each h|Uσ : (Uσ )η → U(σ)

extends to Uσ . Indeed, the affine toric variety U(σ) represents the functor T 7→
Hommonoids(σ

∨
∩ M,0(T ,OT )), and the map we want to extend is induced by h∗

on M , so all we want is to extend the functions h∗(m) on (Uσ )η (m ∈ σ∨ ∩ M)
across the divisor Xs ∩ Uσ and this is ensured by γ = 0. Therefore h extends to a map
X =

⋃
Uσ →

⋃
U(σ)S = X(6)S mapping D into D(6)S since this holds on Xη.

Finally, we check that the map X → X(6) is an isomorphism. In fact, every map
f : X → Y with X and Y smooth and proper over S with connected fibers such that
fη is an isomorphism has to be an isomorphism. Indeed, by van der Waerden’s purity
theorem, the exceptional locus of f is a divisor in X contained in Xs , so if non-empty,
it equals Xs . But in that case, dim im(f ) < dimXs , contradicting the semicontinuity of
fiber dimension applied to the proper map im(f )→ S.

To deduce the claim about geometric fibers, note that if (Xη̄,Dη̄) is a toric pair, then
there exists a finite extension η′/η such that (Xη′ ,Dη′) is toric. Let S′ → S be the nor-
malization of S in η′, and let s′ be the closed point of S′. Applying the above to the base
change X′→ S′, we deduce that (Xs′ ,Ds′) is toric, and hence so is (Xs̄,Ds̄). ut

4.3. Global rigidity of toric pairs

The following result shows that there are no interesting families of toric pairs.
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Proposition 4.3.1. Let f : X→ S be a smooth and projective morphism to a non-empty
noetherian connected scheme S and letD ⊆ X be a divisor with normal crossings relative
to S. The following conditions are equivalent:

(i) The morphism f admits a structure of a toric fibration with toric boundary D.
(ii) Étale-locally on S, there exists a smooth fan 6 and an S-isomorphism

(X,D) ' (X(6),D(6))S .

(iii) For a single geometric point s̄ of S, there exists a smooth fan 6 and an isomorphism

(X,D)s̄ ' (X(6),D(6))s̄ .

Proof. The implications (i)⇒(ii)⇒(iii) are obvious. For (iii)⇒(ii), it is enough to con-
sider S irreducible. Consider the scheme

I = IsomS((X,D), (X(6),D(6))S),

which is locally of finite type over S. If ī is a geometric point of I and s̄ is its im-
age in S, then �1

Xs̄/s̄
(logD) ' �1

X(6)s̄
(logD(6)s̄) is trivial and H i(Xs̄,OXs̄ ) '

H i(X(6)s̄,OX(6)s̄ ) = 0 for i > 0. Deformation theory shows that I → S is formally
smooth at ī. We conclude that I → S is smooth, and in particular its image is an open
subset of S.

We shall now prove that the assertion of (iii) holds for every geometric point of S, or in
other words, that I → S is surjective. By assumption, I is non-empty, and hence the im-
age of I → S is a non-empty open subset of S. It is also dense in S (as S is irreducible),
so it only remains to show that it is closed under specialization. By Lemma 4.3.4, it is
enough to consider S = SpecV for a discrete valuation ring V . In this case, Proposi-
tion 4.2.2 implies the required assertion. Now since I → S is smooth and surjective, it
admits sections étale-locally on S, which shows (ii).

Finally, assume (ii), and let T = Aut0S(X,D) be the connected component of
AutS(X,D). Then by Lemma 4.3.2, étale-locally on S there exists an isomorphism
T ' Gn

m and an equivariant isomorphism (X,D) ' (X(6),D(6)). Thus (X,D) is a
toric fibration over S. ut

Lemma 4.3.2. Let 6 ⊆ Rn be a smooth complete fan, and let S be a scheme. Then the
group scheme A = AutS((X(6),D(6))S) is an extension

1→ Gn
m,S → A→ Aut(6)S → 1

where Aut(6) is the (finite) group of automorphisms of the fan 6.
Proof. Let 6(1) denote the set of rays (one-dimensional cones) of 6. Let D(6) =⋃
ρ∈6(1)Dρ be a decomposition of D(6) into irreducible components. Then every au-

tomorphism of the pair (X(6),D(6)) over S has to permute the divisors Dρ , which
yields a homomorphism A→ Aut(6(1)). Let A0 denote its kernel and let σ ∈ 6 be a
top-dimensional cone, corresponding to an open immersion

(AnS, {xi = 0}i=1,...,n) ↪→ (X(6),D(6))S

with image preserved by A0. A direct calculation shows that AutS(AnS, {xi = 0}i=1,...,n)

can be naturally identified with Gn
m,S . ut
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Remark 4.3.3. In the proof of Lemma 4.3.2, the completeness assumption was only used
to find a top-dimensional cone in 6. On the other hand, AutS(Gm,S) (where Gm,S is
treated as an S-scheme) might be bigger than the semidirect product of Gm,S and Z× 2Z
(and non-representable) if S is non-reduced. Smoothness is probably not necessary.

Lemma 4.3.4. Let S be a connected noetherian scheme and letU ⊆ S be an open subset.
Suppose that for every discrete valuation ring V , and for every morphism h : SpecV→S

mapping the generic point into U , we have h(SpecV ) ⊆ U . Then U = S.

Proof. The valuative criterion of properness shows that U → S is proper, and hence U
is also closed. ut

Remark 4.3.5. Smoothness is probably not necessary for Proposition 4.3.1. Properness
seems essential: for example, the pair (A2

\{(0, 0)},Gm×{0}+{0}×Gm) has non-trivial
first-order deformations. Projectivity seems to be only an artifact of the proof.

4.4. Images of toric varieties

We shall now combine the technique of descending F -liftability (Theorem 3.3.6) with the
main result of §4.1 to show the following.

Theorem 4.4.1. Suppose that Conjecture 1 is true for simply connected (e.g. separa-
bly rationally connected) varieties, that is, every smooth projective simply connected F -
liftable variety over an algebraically closed field of characteristic p > 0 is a toric variety.
Then Conjecture 2 is true, that is, a smooth projective image of a complete toric variety
in characteristic zero is a toric variety.

Proof. Let ϕK : ZK → XK be a surjective morphism from a complete toric variety ZK
to a smooth projective variety XK defined over an algebraically closed field K of charac-
teristic zero. Reasoning as in [OW02], we can assume that ϕK is finite, in which case it
is also flat by “Miracle Flatness” [EGA IVIII, 15.4.2], because XK is smooth and ZK is
Cohen–Macaulay. There exists a finitely generated subring R ⊆ K and a finite flat sur-
jective map ϕ : Z→ X of schemes over S = SpecR, satisfying the following properties:

(1) ϕK is the base change of ϕ to K ,
(2) S is smooth over Spec Z,
(3) Z is a proper constant toric fibration over S (see §2.1),
(4) X is smooth and projective over S,
(5) d = deg(ϕK) is invertible on S.

If s̄ : Spec k → S is a geometric point of S, then ϕs̄ : Zs̄ → Xs̄ is a finite surjective
map from a toric variety Zs̄ to a smooth projective variety Xs̄ over s̄, of degree invertible
in k. Let ∼s : SpecW2(k) → S be a lifting of s̄ mod p2 (such a lifting exists thanks to
condition (2)). Then Z∼s is a constant toric fibration over ∼s, and hence FZs̄ lifts to Z∼s .
By Theorem 3.3.6(a) applied to ϕ∼s : Z∼s → X∼s , we find that FXs̄ lifts to X∼s . Moreover,
since XK is simply connected, so is Xs̄ , as the specialization map π1(XK) → π1(Xs̄)

is surjective [SGA 1, Exp. X, Corollaire 2.3]. The assumed case of Conjecture 1 implies
that Xs̄ is a toric variety. Thus XK is toric, by Corollary 4.1.5. ut
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Remark 4.4.2. If we believe in Conjecture 1 in its full strength, then the connection
between Conjecture 2 and a special case of Conjecture 1 suggests that in characteristic
zero, images of toric fibrations over abelian varieties should be also of this type, up to a
finite étale cover. This would be a common generalization of Conjecture 2 and the results
of [Deb89, HM01, DHP08] on the images of abelian varieties.

The first obvious obstacle in deducing such a statement from Conjecture 1 is the or-
dinary reduction conjecture for abelian varieties. But even assuming that, the method
of proof of Theorem 4.4.1 does not apply in this case, as the assumptions of Theo-
rem 3.3.6(a) may no longer be satisfied. More precisely, if A → S is an abelian scheme
over a base S which is of finite type over Z, if s̄ = Spec k → S is a closed geometric
point, and ∼s = SpecW2(k) → S is a lifting of s̄, then to apply the argument from the
proof of Theorem 4.4.1 we need not only As̄ to be ordinary, but also A∼s to be its Serre–
Tate canonical lifting. We do not know whether one should expect such ∼s to exist, even if
A is an elliptic curve over S.

Using Remark 3.3.7 we can show the following.

LetK be an algebraically closed field of characteristic zero and let Z be a smooth
projective variety over K whose Albanese morphism Z → A is a toric fibration.
Let G be a finite group acting of Z. Suppose that X = Z/G is smooth, and that
the abelian varietyA satisfies the ordinary reduction conjecture. Assume that Con-
jecture 1 is valid. Then X admits a finite étale cover by a variety whose Albanese
morphism is a Zariski-locally trivial fibration with toric fibers.

Since the proof is long and technical, we refrained from including it in this article.
Using Galois closures and Albanese mappings it is not difficult to show that if

f : A→ X is a finite morphism from an abelian variety A to a smooth variety X defined
over an algebraically closed field k of characteristic zero, then X is a quotient of some
(possibly different) abelian variety by a finite group. Therefore, the above result partially
recovers the classification of smooth images of abelian varieties under finite morphisms
mentioned above contingent upon the validity of Conjecture 1.

5. Structure of F -liftable nc pairs with trivial canonical bundle

5.1. Statement of the main result and some preliminaries

In this section, we provide a logarithmic generalization of [MS87, Theorem 2], settling
a special case of Conjecture 1. More precisely, we prove the following theorem which
characterizes projective F -liftable nc pairs (X,D) with ωX(D) numerically trivial.

Theorem 5.1.1. Let (X,D) be a projective nc pair over an algebraically closed field k
of positive characteristic. The following conditions are equivalent:

(i) (X,D) is F -liftable and ωX(D) is numerically trivial.
(ii) X is F -split and �1

X(logD) becomes trivial on a finite étale cover of X.
(iii) X admits a finite étale cover f : Y → X whose Albanese map a : Y → A is a toric

fibration over an ordinary abelian variety with toric boundary f−1(D).
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Proof. We start by showing (i)⇒(ii). If X is F -liftable, it is F -split, by Proposi-
tion 3.2.1(c). Using Variant 3.2.2, we observe that there exists an injective morphism

ξ : F ∗�1
X(logD)→ �1

X(logD).

The determinant of ξ gives rise to a non-zero section of the (p − 1)-st power of the
numerically trivial bundle ωX(D), and hence is an isomorphism. Therefore, we see that
F ∗�1

X(logD) ' �1
X(logD) and thus by [LS77, Satz 1.4] the bundle�1

X(logD) becomes
trivial on a finite étale cover π : Y → X.

Now we show (iii)⇒(i). Replacing A with a finite étale cover and Y with its base
change, we may assume that Y → A is a split toric fibration. By Lemma 3.3.9, there exists
a natural Frobenius lifting of a : Y → A over the Serre–Tate canonical lifting (

∼

A,
∼

FA)

ofA, and consequently Y is F -liftable. Moreover, this Frobenius lifting is compatible with
the toric boundary f−1D of Y → A. Further, since Y → A is a split toric fibration with
toric boundary f−1(D), the bundle �1

Y/A(log f−1D) is trivial, and hence ωY (f−1(D))

is trivial as well. Thus (Y, f−1D) satisfies (i), and hence by what we already proved it
also satisfies (ii). Replacing Y by a further finite étale cover, we can thus assume that
�1
Y (log f−1D) is trivial and that Y → X is Galois under a finite group G.

To finish the argument, we argue as in [MS87, Proof of Theorem 2(i)⇒(ii)]. By Vari-
ant 3.3.2, Frobenius liftings of (Y, f−1D) correspond to splittings of the short exact se-
quence

0→ B1
Y → Z1

Y (log f−1D)→ �1
Y ′(log f−1D′)→ 0,

where Y ′ is the Frobenius twist of Y . Since �1
Y (log f−1D) is trivial and H 0(Y, B1

Y ) = 0
(as Y is F -split), the above extension admits a unique splitting. In particular, this splitting
is G-invariant, and hence descends to a splitting of the corresponding sequence on X.
Thus (X,D) is Frobenius liftable. Since f ∗ωX(D) = ωY (f

−1D) ' OY , we see that
ωX(D) is numerically trivial.

Finally, (ii)⇒(iii) follows from Theorem 5.2.1, whose proof occupies the subsequent
subsection. ut

The proof of the implication (ii)⇒(iii) in the case D = 0 in [MS87] relied on lifting to
characteristic zero and using Yau’s work on the Calabi conjecture. Instead, we use the
following two characteristic zero results.

Theorem 5.1.2 ([Win04, Corollary 1]). Let (X,D) be a projective nc pair defined
over C. Then the following conditions are equivalent:

(i) The log cotangent bundle �1
X(logD) is trivial.

(ii) There exists a semi-abelian group variety T (an extension of an abelian variety by
a torus) acting on X with an open dense orbit X \D.

If dim AlbX = 0, then (X,D) is a toric pair.

We say that a group G is virtually abelian if it contains a finitely generated abelian sub-
group of finite index.
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Theorem 5.1.3 ([GKP16, Theorem 10.1], cf. [NZ10]). LetX be a normal projective va-
riety over C which admits a polarized endomorphism of degree greater than one. Then the
topological fundamental group π1(X(C)) is virtually abelin. The same holds for πét

1 (X)

since it is the profinite completion of π1(X(C)).

Remark 5.1.4. Since [MS87] was motivated by the corresponding result in characteristic
zero, we must warn the reader that the following statements are false.

“Theorem” A (characteristic zero analogue of Theorem 5.1.1). Let (X,D) be
a projective nc pair over an algebraically closed field k of characteristic zero.
The following conditions are equivalent:

(i) �1
X(logD) becomes trivial on a finite étale cover of X.

(ii) X admits a finite étale cover f : Y → X whose Albanese map a : Y → A

is a toric fibration over an ordinary abelian variety with toric boundary
f−1(D).

“Theorem” B. The assertion of Winkelmann’s theorem (Theorem 5.1.2) holds
over algebraically closed fields of positive characteristic.

“Theorem” C. Let X be a smooth projective scheme over an open subset S ⊆
Spec OK where OK is the ring of integers in a number field K . Suppose that for
infinitely many closed points s ∈ S, the reductionXs̄ has a finite étale cover whose
Albanese map is a toric fibration. Then the same holds for XK .

In “Theorem” A, we have (i)⇒(ii) by Theorem 5.1.2, but (ii) does not imply (i).
A basic counterexample is as follows. Let C be an elliptic curve, let L be a line bundle
of non-zero degree on C, and let E = OC ⊕ L. Let X = PC(E) and let D be the sum of
the two sections C → X corresponding to the projections E → OC and E → L. Then
condition (ii) is satisfied with Y = X. Moreover, every finite étale cover of X is of the
same type, so if (ii)⇒(i) were to hold, we could find such anX with�1

X(logD) trivial. So
suppose that �1

X(logD) is trivial. Again by Theorem 5.1.2, the open subset U = X \D
(which is the Gm-torsor corresponding to L) admits a group structure making U → C

a group homomorphism. But this is only possible if degL = 0 by the “Barsotti–Weil
formula”

Pic0(C) ' Ext1(C,Gm) (see [Ser59, VII.16, Théorème 6]).

Note that in the two extreme cases A = Y and A = 0, the implication (ii)⇒(i) does
indeed hold. This construction also provides a counterexample to “Theorem” B(i)⇒(ii).

For a counterexample to “Theorem” C, we take an elliptic curve C over Z[1/N ] for
some N , and the non-split extension

0→ OC → E→ OC → 0.

We again set X = PC(E). If p is a prime of ordinary reduction of E and k = Fp, then
Xk satisfies the required property by Remark 3.1.7 and [AWZ21, Section 3]. On the other
hand, the above extension does not become split over any finite étale cover of CQ, and
consequently no finite étale cover of XQ is a toric fibration over an abelian variety.
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5.2. F -split nc pairs with trivial cotangent bundle

In this section, we prove the following result generalizing [MS87, Theorem 1] and yield-
ing the implication (ii)⇒(iii) needed above.

Theorem 5.2.1 (Log version of [MS87, Theorem 1]). Let (X,D) be a projective nc pair
over an algebraically closed field k such that �1

X(logD) is trivial and X is F -split. Then
after an étale covering X admits a structure of a toric fibration over an ordinary abelian
variety.

Even though the proof closely follows the ideas of Mehta and Srinivas, there are many
important details that need to be figured out in the logarithmic setting. For this reason, we
precede the proof with a sequence of lemmas generalizing their results.

Lemma 5.2.2 (Log version of [MS87, Lemma 1.2]). Let (X,D) be an nc pair satisfying
the hypotheses of Theorem 5.2.1, and let π : Y → X be a finite étale covering. Then
(Y, π−1D) also satisfies the hypotheses of Theorem 5.2.1.

Proof. Since π is étale, we see that �1
Y (logπ−1D) is isomorphic to π∗�1

X(logD) and is
therefore trivial. To prove that Y is F -split, we use Lemma 2.5.2(d). ut

Lemma 5.2.3 (Log version of [MS87, Lemma 1.4]). Let (X,D) be an nc pair satisfying
the hypotheses of Theorem 5.2.1. Then the Albanese map f : X → AlbX is smooth,
surjective, and has connected fibers. Moreover, (X,D) is an nc pair over AlbX and
�1
X/AlbX(logD) is trivial.

Proof. First, we observe that the logarithmic differential f ∗�1
AlbX → �1

X(logD) de-
composes as

f ∗�1
AlbX

df
−→ �1

X ↪→ �1
X(logD).

Since H 0(AlbX,�1
AlbX) = H 0(X, f ∗�1

AlbX), by [MS87, Lemma 1.3] we see that the
induced morphism H 0(X, f ∗�1

AlbX)→ H 0(X,�1
X) is injective and hence

H 0(X, f ∗�1
AlbX)→ H 0(X,�1

X(logD)) (5.2.1)

is injective as well. As f ∗�1
AlbX and �1

X(logD) are trivial, the map f ∗�1
AlbX →

�1
X(logD) is uniquely determined by (5.2.1) and is therefore injective. We conclude that

f is separable and dominant and that there exists a short exact sequence of trivial bundles

0→ f ∗�1
AlbX → �1

X(logD)→ �1
X/AlbX(logD)→ 0.

Consequently, the sheaf of relative log differentials �1
X/AlbX(logD) is locally free and

therefore f : (X,D)→ AlbX is an nc pair over AlbX by Lemma 2.3.3.
To see that the fibers of f are connected, that is, we have f∗OX = OAlbX, we con-

sider the Stein factorization X → Z → AlbX. Since X → AlbX is smooth, the mor-
phism Z→ AlbX is étale (by [SGA 1, Exp. X, Prop. 1.2] or [EGA IIIII, 7.8.10(i)]) and
therefore Z is an abelian variety. By the universal property of the Albanese morphism,
Z→ AlbX is an isomorphism, which finishes the proof. ut
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Lemma 5.2.4. Let (X,D) be an nc pair satisfying the hypothesis of Theorem 5.2.1. Then
there exists a projective lifting (X ,D) of (X,D) overW(k) together with a lifting of the
Frobenius morphism FX : (X ,D)→ (X ,D). Moreover, for every line bundle L on X
there exists a line bundle L on X such that L ' L|X and F ∗X L ' L ⊗p.

Proof. We apply Variant 3.3.2 to see that the obstruction classes to lifting the nc pair
(X,D) together with the Frobenius morphism over consecutive Witt rings Wn(k) lie in

Ext1(�1
X(logD),B1

X).

Since �1
X(logD) is trivial and X is F -split, we see by Lemma 2.5.2 that the latter group

satisfies

Ext1(�1
X(logD),B1

X) = Ext1(O⊕nX , B1
X) = H

1(X,B1
X)
⊕n
= 0

and therefore (X,D) deforms to a formal nc pair {(Xn,Dn)}n≥1 over the formal spectrum
of W(k) together with a compatible lifting of the Frobenius morphism

{FXn : (Xn,Dn)→ (Xn,Dn)}n≥1.

Since X is F -split, by Lemma 2.5.2 we see that the Frobenius action on H i(X,OX) is
bijective and hence by Proposition 3.3.1(d) every line bundle L on X admits a formal
lifting {Ln ∈ Pic(Xn)}n≥1 such that F ∗XnLn ' L

⊗p
n .

To finish the proof we need to show that the given inductive systems are algebraiz-
able. For this purpose, since every ample line bundle deforms to the formal nc pair
{(Xn,Dn)}n≥1, we may just apply Grothendieck’s algebraization theorem (see [EGA IIII,
Section 3.4] or [Sta14, Tag 089A]). ut

Remark 5.2.5. The lifting of the Frobenius morphism we exhibit above is not a W(k)-
linear endomorphism, it is only Frobenius-linear. However, if X is defined over a finite
field k = Fpe , then the e-th iterate of FX is in fact a polarized W(k)-endomorphism
of X .

The following lemma is the essential part of our argument. It differs substantially from its
counterpart in [MS87], and is based on the two theorems stated in §5.1.

Lemma 5.2.6. Let (X,D) be an nc pair satisfying the hypotheses of Theorem 5.2.1. Then
either (X,D) is a toric pair (see §2.1) or there exists a finite étale covering Y → X such
that AlbY 6= 0.

Proof. First, we assume that there exists an étale covering Y → X such that H 1(Y,OY )
= 0. In this case, we claim that (X,D) is in fact a toric pair. In order to see this, we use
Lemma 5.2.4 to obtain a W(k)-lifting (Y ,E ) of (Y,E), where E is the preimage of D.
The induced deformation of the log cotangent bundle �1

Y (logE) is trivial because the
tangent space of its deformation functor is isomorphic to

H 1(Y,E nd(�1
Y (logE))) = H 1(Y,OY )

⊕n2
= 0.

This implies that the log cotangent bundle of the generic fiber Yη is trivial. By semiconti-
nuity of cohomology we also see that H 1(Yη̄,OYη̄ ) = 0 and therefore (Yη̄,Eη̄) is a toric

http://stacks.math.columbia.edu/tag/089A
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pair by Theorem 5.1.2. By Proposition 4.2.2 this means that the special fiber (Y,E) is a
toric pair as well. To finish the proof of the claim, we show that Y → X is an isomor-
phism. For this purpose, we observe using the Hirzebruch–Riemann–Roch theorem (see
[Ful98, Corollary 15.2.1]) that

1 = χ(Y,OY ) = d · χ(X,OX),

where d is the degree of the finite map Y → X. This clearly implies that d = 1 and hence
Y → X is an isomorphism.

Now we proceed to the second case, where H 1(Y,OY ) 6= 0 for every étale covering
Y → X. We follow the strategy of [MS87, Lemma 1.6] substituting the application of
the Calabi conjecture with Theorem 5.1.3 describing the algebraic fundamental groups of
varieties admitting a polarized endomorphism. We claim that there exists an étale covering
Y → X such that AlbY 6= 0.

For the proof, we first use the spreading out technique to reduce to the case of nc pairs
defined over finite fields. Let (X ,D) be an nc pair over a spectrum of a finitely generated
local Fp-algebra R such that the geometric generic fiber is isomorphic to (X,D) and the
residue field is finite with q = pe elements. Spreading out the trivialization of the log
cotangent bundle and the Frobenius splitting (which can be interpreted as a morphism of
vector bundles on the Frobenius twist of X), we may assume that (X ,D)Fq satisfies the
assumptions of Theorem 5.2.1. Assume now that there exists a finite étale covering

πFq : YFq →XFq

of the geometric special fiber such that Alb YFq 6= 0. By [SGA 4 1
2 , Arcata, IV, Propo-

sition 2.2] (or [Sta14, Tag 0BQC]) we see that such a covering extends to a covering
of X ×SpecR SpecRsh, where Rsh is the strict henselization of R. Since Rsh is the
colimit of étale extensions of R we observe that, possibly after taking an étale cover-
ing of SpecR, the morphism πFq arises as a special fiber of a covering π : Y → X .
The geometric generic fiber of π yields an étale covering of Y → X which satisfies
dim AlbY = H 1

ét(Y,Ql) 6= 0 by smooth base change for étale cohomology (we take
` 6= p). This finishes the reduction step.

For (X,D) defined over a finite field k = Fq , we reason in two steps which we
describe briefly. First, we lift the pair (X,D) to characteristic zero and apply Theo-
rem 5.1.3 to prove that πét

1 (X) is virtually abelian. Consequently, using the approach
described in [MS87, Lemma 1.6], we prove that for an étale cover Y → X the crystalline
cohomology group H 1

crys(Y/K) over the field K = FracW(k) is non-zero, and hence
dim AlbY = dimK H

1
crys(Y/K) is non-zero as well.

Now, we present the details of the first step. Using Lemma 5.2.4 we construct aW(k)-
lifting ((X ,D), FX ) of ((X,D), FX). We set η to be the generic point of W(k). Then,
applying Remark 5.2.5, we observe that F eX : X → X is in fact a k-linear endomor-
phism for some e > 0, and therefore the geometric generic fiber F eXη̄

of the lifting of
F eX is a polarized endomorphism of Xη̄. By Theorem 5.1.3 the geometric fundamental
group πét

1 (Xη̄) is virtually abelian. Using the surjectivity of the specialization morphism

http://stacks.math.columbia.edu/tag/0BQC
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πét
1 (Xη̄) → πét

1 (X) we see that the same holds for πét
1 (X) and therefore after taking an

étale covering of X we may assume πét
1 (X) is abelian.

We proceed to the second step. We assume that πét
1 (X) is abelian and follow [MS87,

Lemma 1.6] closely. First, by [Ill79, Chapitre II, Théorème 5.2], to prove that dim Alb(X)
= dimK H

1
crys(X/K) is non-zero it suffices to show that H 1

ét(X,Zp) is non-torsion. We
have

H 1
ét(X,Zp) ' HomZ(π

ét
1 (X)

∧p,Zp),

where πét
1 (X)

∧p
= lim
←−n

πét
1 (X)⊗Z Z/pn. The Zp-module πét

1 (X)
∧p is finitely generated

and therefore it is torsion if and only if it is finite. If πét
1 (X)

∧p was finite, then there would
exist an étale covering X′ → X such that H 1

ét(X
′,Fp) = 0. This gives a contradiction

with H 1(X′,OX′) 6= 0. Indeed, using the Artin–Schreier sequence of étale sheaves

0→ Fp → OX
1−F
→ OX → 0

we see that H 1(X′,Fp) is the Fp-vector space of elements in H 1(X′,OX′) fixed by the
Frobenius morphism. This is non-zero because Frobenius is bijective on H 1(X′,OX′) for
an F -split scheme by Lemma 2.5.2(a). ut

Lemma 5.2.7 (Log version of [MS87, Lemma 1.7]). Let (X,D) be an nc pair satis-
fying the hypothesis of Theorem 5.2.1, and let Y → X be a Galois étale cover with
AlbY 6= 0. Then there exists an intermediate Galois étale cover Z → X of degree pm,
for somem ≥ 0, such that Y → Z induces an isogeny on Albanese varieties, in particular
AlbZ 6= 0.

Proof. We apply the argument given in the proof of [MS87, Lemma 1.7] to the logarith-
mic cotangent bundle instead of cotangent bundle. ut

Lemma 5.2.8 (Log version of [MS87, Lemma 1.8]). Let (X,D) be an nc pair satisfying
the hypothesis of Theorem 5.2.1, and let π : X→ AlbX be the Albanese mapping. Then

(a) all geometric fibers of π are F -split,
(b) for each i ≥ 0, Riπ∗OX is a locally free OAlbX-module which becomes free on a

finite étale cover of AlbX,
(c) AlbX is an F -split abelian variety.

Proof. This follows by the same proof with the caveat that the Cartier isomorphism and
Grothendieck duality need to be replaced with their logarithmic versions. For the conve-
nience of the reader, we present a slightly simplified argument below.

For the proof of (a) it is sufficient to show that π is relatively F -split, which fol-
lows from [Eji19, Theorem 1.2]. To get (b), we reason as in [MS87, Lemma 1.8]. More
precisely, let A = AlbX, let X′ be the base change of X along FA, and let π ′ : X′ → A

denote the induced projection. By flat base change we obtain an isomorphism F ∗AR
iπ∗OX

∼−→ Riπ ′∗OX′ . Since the fibers of π ′ are F -split we observe that the natural homomor-
phisms Riπ ′∗OX′ → Riπ ′∗FX/A∗OX induced from the long exact sequence of Riπ ′∗ for

0→ OX′ → FX/A∗OX → B1
X/A→ 0
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are isomorphisms and therefore F ∗AR
iπ∗OX ' Riπ∗OX. By [MN84, Lemma 1.4] we

see that Riπ∗OX is locally free, and [LS77, Satz 1.4] implies that it is étale trivializable.
Part (c) follows from Lemma 2.5.2(c). ut

Lemma 5.2.9 (Log version of [MS87, Lemma 1.9]). Let (X,D) be an nc pair satisfying
the hypothesis of Theorem 5.2.1, and let π : X → AlbX be the Albanese mapping. Let
s ∈ AlbX be a closed point. Then every finite étale covering of Xs of degree pm, for any
m ≥ 0, is induced by a covering of X.

Proof. Given Lemma 5.2.8(b) the proof of [MS87, Lemma 1.9] applies without change.
ut

Lemma 5.2.10 (Generalization of [MS87, Remark below Lemma 1.10]). Let Y be a
smooth projective variety and let π : X → Y be a proper smooth morphism whose geo-
metric fibers are F -split. Then R1π∗Q` becomes trivial on a finite étale cover of Y .

Remark about the proof. Once we know that the Albanese varieties of smooth projective
F -split varieties are ordinary (see Lemma 2.5.2), the proof given in [MS87, Remark below
Lemma 1.10] can be repeated word for word. ut

Equipped with the above we proceed to:

Proof of Theorem 5.2.1. Let (X,D) be an nc pair satisfying the hypotheses of The-
orem 5.2.1. We want to prove that there exists an étale covering admitting the struc-
ture of a toric fibration over an ordinary abelian variety with a toric divisor given by
the preimage of D. First, following [DHP08, Proof of Theorem 1.1] we consider an
étale covering Y → X such that dim AlbY is maximal (by Lemma 5.2.3 we know that
dim AlbY ≤ dimY = dimX). Using Lemma 5.2.2 we see that for E defined as the
preimage of D the nc pair (Y,E) also satisfies the hypotheses of Theorem 5.2.1.

We claim that the Albanese morphism of Y is a toric fibration with toric bound-
ary E. Indeed, using Lemmas 5.2.3 and 5.2.8 we see that the fibers of Y → AlbY
satisfy the assumptions of Lemma 5.2.6 and therefore they are either toric, and hence
the proof is finished by Proposition 4.3.1, or for some fiber Ys there exists an étale cov-
ering gs : Ȳs → Ys such that Alb Ȳs 6= 0. In the latter case, using Lemma 5.2.7, we may
assume that deg gs = pm for some m ≥ 0, and therefore by Lemma 5.2.9 the morphism
gs is induced by a covering Ȳ → Y . We consider the composition π : Ȳ → AlbY of the
covering and the Albanese morphism of Y . By Lemma 5.2.2 the fibers of π are F -split
and hence we may apply Lemma 5.2.10 to see that R1π∗Q` is non-zero and étale trivial-
izable. This means that after an étale covering η : A→ AlbY we have an isomorphism

η∗R1π∗Q` ' Q2d
`

for some d > 0. Let Ŷ = Ȳ×AlbYA be the covering of Ȳ induced by η, and let π̂ : Ŷ → A

be the projection in the cartesian diagram

Ŷ

π̂

��

// Ȳ

π

��

A
η

// AlbY
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We claim that dim Alb Ŷ > dim AlbY . Indeed, as in [MS87, Proof of Theorem 1] we
consider the Leray spectral sequence H i

ét(A,R
j π̂∗Q`) =⇒ H

i+j

ét (Ŷ ,Q`) to obtain the
exact sequence

0→ H 1
ét(A,Q`)→ H 1

ét(Ŷ ,Q`)→ H 0(A,R1π̂∗Q`)→ H 2
ét(A,Q`)→ H 2

ét(Ŷ ,Q`).

Since π̂ : Ŷ → A admits a multi-section, the morphism H 2
ét(A,Q`) → H 2

ét(Ŷ ,Q`) is
injective, and therefore we have

dim Alb Ŷ = 1
2 dimQ`

H 1(Ŷ ,Q`) =
1
2 (dimQ`

H 1(A,Q`)+ dimQ`
H 0(A,R1π̂∗Q`))

= dimA+ 1
2 dimQ`

H 0(A, η∗R1π∗Q`)

= dimA+ 1
2 dimQ`

H 0(A,Q2d
` )

= dim AlbY + d > dim AlbY.

This contradicts the choice of Y and hence finishes the proof. ut

6. Homogeneous spaces

In [BTLM97, §4], the authors study Frobenius liftability of rational homogeneous spaces.
In many cases, they are able to show that such a variety X is not F -liftable because Bott
vanishing

H j (X,�iX ⊗ L) = 0 (j > 0, L ample)
does not hold. As in this paper (although using a different argument), they reduce the
question to the case of Picard number one. But even under this assumption, finding i, j ,
and L as above for which H i(X,�

j
X ⊗ L) 6= 0 is a difficult task. To this end, the au-

thors use the involved results of D. Snow [Sno88, Sno86] on the cohomology of flag
varieties of Hermitian symmetric type in characteristic zero. They ask (see [BTLM97,
Remark 2]) whether the only F -liftable rational homogeneous spaces are products of
projective spaces. As these are precisely the toric ones, this is a special case of our Con-
jecture 1, one which we are actually able to settle.

Our proof in the Picard number one case does not rely on the classification of homo-
geneous spaces or Bott vanishing. In fact, we only need to assume that X is Fano and
that the tangent bundle TX is nef (note that the Campana–Peternell conjecture ([CP91],
[Kol96, V, Conjecture 3.10]) predicts that these two conditions should in fact imply that
X is a rational homogeneous space). The main ingredients of our proof are Mori’s charac-
terization of the projective space in terms of rational curves (Theorem 6.1.4) and a careful
analysis of the restrictions of the sheaf of ξ -invariant forms (§6.2) to some special fam-
ilies of rational curves (Proposition 6.3.2). For the general case, we unfortunately have
to look at the classification of homogeneous spaces, but only to check for which vertices
of which Dynkin diagrams the corresponding homogeneous space of Picard rank one is
a projective space (Lemma 6.4.1). A result of Lauritzen and Mehta [LM97] allows us
to exclude the possibility of non-reduced stabilizers. We believe that our ideas could be
useful in tackling the Picard rank one case of Conjecture 1 with the assumption that TX
is nef dropped.

In this section we work over an algebraically closed field k of positive characteristic.



2638 Piotr Achinger et al.

6.1. Families of rational curves

We start by recalling basic definitions pertaining to rational curves. The main reference
for this subsection is [Kol96, II §2–3]. In what follows we assume that X is a smooth
projective k-scheme.

Definition 6.1.1. Let ϕ : P1
→ X be a non-constant morphism. We say that ϕ is free if

ϕ∗TX is nef, and very free if ϕ∗TX is ample.

Given a rational curve C ⊆ X we shall say that it is free (resp. very free) if the normal-
ization ϕ : P1

→ C → X is free (resp. very free). Further, for a free ϕ : P1
→ X we can

write

ϕ∗TX ' O⊕rP1 ⊕

n−r⊕
i=1

OP1(ai), ai > 0.

Hence, ϕ is very free if and only if r = 0.
Fix an ample divisor H on X. If X is Fano, we always take H = −KX. For an inte-

ger d , we denote by Homd(P1, X) ⊆ Hilb(P1
×X) the scheme parametrizing morphisms

ϕ : P1
→ X such that degϕ∗H = d . We denote by Homfree

d (P1, X) ⊆ Homd(P1, X)

the subscheme parametrizing free ϕ : P1
→ X which are generically injective. We drop

the subscript d whenever we do not wish to specify the degree, so Hom(P1, X) =⊔
d Homd(P1, X). By [Kol96, II, Corollary 3.5.4], the natural morphism

P1
× Homfree

d (P1, X)→ X

is smooth, and so Homfree
d (P1, X) is smooth as well.

Let RatCurvesfree
d (X) be the quotient Homfree

d (P1, X)/Aut(P1), which exists by
[Kol96, II, Comment 2.7] as Homfree

d (P1, X) is a smooth open subscheme of
Homd(P1, X), invariant under the Aut(P1)-action (see [Kol96, II, Corollary 3.5.4]). We
denote by Univd(X) the universal P1-bundle over RatCurvesfree

d (X) so that we have a
diagram

Univd(X)
ϕ

//

π

��

X

RatCurvesfree
d (X)

It is constructed as a quotient of P1
×Homfree

d (P1, X) by Aut(P1). We have a factorization

P1
× Homfree

d (P1, X)→ Univd(X)
ϕ
→ X

where the left arrow is smooth and surjective (cf. [Kol96, II, Theorem 2.15]), and so
ϕ is smooth. In particular, both Univd(X) and RatCurvesfree

d (X) are smooth [Sta14,
Tag 02K5].

Definition 6.1.2. Let ϕ : P1
→ X be a generically injective morphism which is free and

such that d = degϕ∗H is minimal among all ϕ′ ∈ Homfree(P1, X). We call such a ϕ
a minimal free rational curve.

http://stacks.math.columbia.edu/tag/02K5
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The study of deformations of rational curves of minimal degree plays a vital role in the
theory of rationally connected varieties by means of Mori theory (and varieties of minimal
rational tangents, see e.g. [Keb02, HM04]). The picture becomes slightly simpler if we
assume that TX is nef. As we have already noted, conjecturally this condition should be
equivalent toX being a homogeneous space. When TX is nef, we denote RatCurvesfree

d (X)

by RatCurvesd(X), as all rational curves are free.

Lemma 6.1.3 ([Kol96, II, Proposition 2.14.1]). With notation as above, suppose that
TX is nef and that minimal free rational curves are of degree d. Then RatCurvesd(X) is
proper.

Proof. By [Kol96, II, Theorem 2.15], the above definition of RatCurvesd(X) coincides
with [Kol96, II, Definition-Proposition 2.11] under the assumption that TX is nef, and
hence RatCurvesd(X) is proper by [Kol96, II, Proposition 2.14.1]. ut

Finally, let us recall the celebrated result of Mori, which we present here in a slightly
different form than that of [Kol96, V, Theorem 3.2]—for the proof of Proposition 6.3.2 we
need a variant for minimal free rational curves (cf. [OW02, Families of curves, Theorem]).

Theorem 6.1.4. Let X be a smooth projective Fano variety of dimension n defined over
an algebraically closed field k and let x ∈ X be a general point. Suppose that every
rational curve through x is free, and that every minimal free rational curve through x is
very free. Then X ' Pn.

Every rational curve through x is free provided that k is of characteristic zero and x
is very general [Kol96, II, Theorem 3.11], or X is F -liftable and x ∈ X is general
(Lemma 6.2.1(a)). Note that there exists a minimal free rational curve through a general
point x by [Kol96, II, Corollary 3.5.4.2].

Proof of Theorem 6.1.4. A very free rational curve must be of degree at least n + 1
(see [Kol96, V, Lemma 3.7.2]). Moreover, there exists a rational curve of degree at most
n+ 1 through x by bend-and-break (see [Kol96, V, Theorem 1.6.1]), hence minimal free
rational curves are of degree n+ 1. Since they are very free by assumption, the rest of the
proof follows [Kol96, V, Theorem 3.2] word for word. ut

6.2. The sheaf of ξ -invariant forms and rational curves

In this subsection we study positivity conditions imposed on the tangent bundle by the
existence of a Frobenius lifting. This is the main component of the proof of Theorem 1 in
the Picard rank one case.

Let us fix a Frobenius lifting (
∼

X,
∼

FX) of a smooth k-scheme X and consider the in-
duced morphism ξ : F ∗�1

X → �1
X. Recall that it is injective, and hence generically an

isomorphism, by Proposition 3.2.1. Let U ⊆ X be the maximal open subset where ξ is
an isomorphism.

The following simple lemma allows for the study of families of rational curves by
using the sheaf of ξ -invariant forms denoted by (�1

X)
ξ .
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Lemma 6.2.1. Let ϕ : P1
→ X be a non-constant morphism such that ϕ(P1) ∩ U 6= ∅.

Then

(a) ϕ is free (cf. [Xin16, Proposition 5]),
(b) ϕ∗(�1

X)
ξ contains a locally constant Fp-subsheaf of rank r = h0(P1, ϕ∗�1

X).

Proof. Since ϕ∗�1
X is locally free and ϕ∗(ξ) : F ∗ϕ∗�1

X → ϕ∗�1
X is generically an iso-

morphism, ϕ∗(ξ) must be an injection.
Write ϕ∗�1

X =
⊕n

i=1 OP1(ai), where a1 ≥ · · · ≥ an. Since ϕ∗(ξ) is an injection, it
induces a non-zero morphism OP1(pa1) → OP1(aj ) for some 1 ≤ j ≤ n. This is only
possible if a1 ≤ 0, and so ϕ∗TX is nef, implying (a).

The morphism ϕ∗(ξ) induces a Frobenius-linear automorphism of the space of global
sections H 0(P1, ϕ∗�1

X), and so by taking ϕ∗(ξ)-fixed points

Gϕ = H
0(P1, ϕ∗�1

X)
ϕ∗(ξ)
⊗Fp (Fp)P1

we get a constant Fp-subsheaf of ϕ∗(�1
X)
ξ of rank r , where (Fp)P1 is the constant sheaf

with value Fp on P1. ut

As mentioned before, for any free rational curve ϕ : P1
→ X we can write ϕ∗�1

X =⊕n−r
i=1 OP1(ai)⊕ O⊕rP1 , where ai < 0. In general, the value of r is upper semicontinuous

under deformations of ϕ. Here, we show that r is invariant under deformations provided
that X is F -liftable and ϕ(P1) intersects U .

Proposition 6.2.2. With notation as above, let ϕi : P1
→ X for i ∈ {1, 2} be two ra-

tional curves intersecting U ⊆ X and lying in the same irreducible component M ⊆

Hom(P1, X). Then h0(P1, ϕ∗1�
1
X) = h

0(P1, ϕ∗2�
1
X).

Proof. We have the following diagram:

M × P1 ϕ
//

π

��

X

M

Replacing M by an open subset, we can assume that ϕ({m} × P1) intersects U for every
closed point m ∈M . Pick any closed point m ∈M . Then as in Lemma 6.2.1 we have

h0(P1, ϕ∗�1
X|π−1(m)) = dimFp H

0(P1, ϕ∗�1
X|π−1(m))

ξ
= dimFp (π∗ϕ

∗(�1
X)
ξ )m,

which is lower semicontinuous with respect tom by Lemma 6.2.3. The last equality holds
by the proper base change theorem. On the other hand, h0(P1, ϕ∗�1

X|π−1(m)) is upper
semicontinuous with respect to m by the semicontinuity theorem [Har77, III, Theorem
12.8]. Hence, it is constant over M . ut

In the above proof we needed the following corollary of the proper base change theorem.
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Lemma 6.2.3. Let f : X → S be a proper morphism of schemes, let g : U → X be a
separated étale morphism of finite type, and let F be the étale sheaf of sections of g. Then
the function ϕ : S → Z defined as

ϕ(s) = |(f∗F )s̄ |

for any geometric point s̄ over s is lower semicontinuous.

Proof. By [SGA 4III, Exposé IX, Corollaire 2.7.1] or [Sta14, Tag 03S8], F is con-
structible, and hence f∗F is constructible as well [SGA 4III, Exposé XIV]. Therefore
ϕ is a constructible function on S, and hence to prove the assertion it is enough to show
that if s, µ ∈ S are such that s lies in the closure of µ, then ϕ(s) ≤ ϕ(µ).

Let s̄ be a geometric point lying over s and let µ be a geometric point of the localiza-
tion S(s̄) lying over µ. Passing to stalks, we obtain the cospecialization map

cµ s̄ : (f∗F )s̄ → (f∗F )µ.

It remains to show that cµ s̄ is injective. The proper base change theorem implies that
(f∗F )s̄ is the set of sections of U → X over X ×S S(s̄). Take any two such sections
u1, u2 : X ×S S(s̄)→ U , and suppose they are equal after restricting to X ×S S(µ)→ U .
Then u1 = u2, as U → X is separated and S(µ)→ S(s̄) has dense image. ut

6.3. The Picard rank one case

In this subsection we prove Theorem 1 in the Picard rank one case (Proposition 6.3.2).
Before proceeding with the proof we need the following result.

Lemma 6.3.1. Let X be a smooth projective F -liftable Fano variety over k. Then X is
simply connected and H 0(X,�1

X) = 0.

Proof. In order to prove that X is simply connected, let us consider an étale cover
f : Y → X of degree d. By the Hirzebruch–Riemann–Roch theorem (see [Ful98,
Corollary 15.2.1]), we have χ(Y,OY ) = d · χ(X,OX). Since X is F -liftable, so is Y
(Lemma 3.3.5), and hence Kodaira–Akizuki–Nakano vanishing holds on both X and Y
(see Theorem 3.2.4). Thus χ(Y,OY ) = χ(X,OX) = 1, which shows that d = 1 and X is
simply connected.

Now, we show that H 0(X,�1
X) = 0. Since X is F -liftable, all of its global one-forms

are closed by Proposition 3.2.1, and

Z1
X ' B

1
X ⊕�

1
X,

where Z1
X = ker(d : F∗�1

X → F∗�
2
X) and B1

X = F∗OX/OX. In particular, the Cartier
operator induces an isomorphismH 0(X,Z1

X) ' H
0(X,�1

X). Therefore, the assumptions
of [vdGK03, Proposition 4.3] are satisfied and we obtain

H 0(X,�1
X) ' Pic(X)[p] ⊗Z k.

http://stacks.math.columbia.edu/tag/03S8
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We claim that Pic(X) is torsion free. Indeed, if L is a numerically trivial line bundle onX,
then by Kodaira vanishing we have

H i(X,L) = H i(X, ωX ⊗ ω
−1
X ⊗ L) = 0 for i > 0,

and therefore h0(X,L) = χ(X,L) = χ(X,OX) = h0(X,OX) = 1. ut

Proposition 6.3.2. Let X be a smooth projective Fano variety of dimension n defined
over an algebraically closed field of positive characteristic. Suppose that TX is nef, ρ(X)
= 1, and X is F -liftable. Then X ' Pn.

The idea of the proof is the following. If X 6' Pn, then by Mori theory there is a rational
curve C ⊆ X such that TX|C is not very ample. In particular, h0(C,�1

X|C) > 0. Using the
global lifting of Frobenius we show that the sections of�1

X|Ct , where Ct are deformations
of C, glue to global sections of �1

X. This contradicts X being Fano (see Lemma 6.3.1).

Proof of Proposition 6.3.2. Choose a general point x ∈ X. If every minimal free rational
curve ρ : P1

→ X passing through x is very free, then X ' Pn by Theorem 6.1.4.
Suppose for contradiction that there exists such a non-very-free minimal ρ of degree d.
Then h0(P1, ρ∗�1

X) = r ≥ 1.
Let M be the irreducible component of RatCurvesd(X) containing ρ (see §6.1 for the

notation). By Lemma 6.1.3, we know that M is proper and there exist morphisms

Univ

π

��

ϕ
// X

M

with π : Univ → M being a P1-fibration, and ϕ being smooth. Since X is simply con-
nected (see Lemma 6.3.1), ϕ has connected fibers. Indeed, let Univ → Y → X be the
Stein factorization of ϕ. Since ϕ is smooth and proper, the morphism Y → X is finite
étale (see [SGA 1, Exp. X, Prop. 1.2] or [EGA IIIII, 7.8.10(i)]). and so it must be an
isomorphism.

We fix a Frobenius lifting (
∼

X,
∼

FX) of X and consider the induced morphism
ξ : F ∗�1

X → �1
X. Let (�1

X)
ξ be the sheaf of ξ -invariant forms and let U ⊆ X be the

maximal open subset for which ξ |U : F ∗�1
U → �1

U is an isomorphism.
Set M ◦

= π(ϕ−1(U)) to be the locus of all m : P1
→ X in M whose image inter-

sects U . It is open as π is smooth. Take Univ◦ = π−1(M ◦) and let j : Univ◦ → Univ
denote the inclusion. We define the following subsheaf of ϕ∗(�1

X)
ξ
|Univ◦ :

G = j∗π∗π∗ϕ
∗(�1

X)
ξ
|Univ◦ .

Given m : P1
→ X in M ◦, the proper base change theorem implies that G |π−1(m)

is isomorphic to the constant Fp-sheaf with value H 0(P1, m∗(�1
X)
ξ ). Lemma 6.2.1(b)

and Proposition 6.2.2 show that G is a locally constant Fp-sheaf of rank r . Indeed,
(π∗ϕ

∗�1
X)|M ◦ is a locally free sheaf of rank r by [Har77, III, Corollary 12.9] and

G = π∗(π∗ϕ
∗�1

X|M ◦)π∗ϕ
∗ξ .
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We claim that codim Univ \Univ◦ ≥ 2. In order to prove this it is enough to show
that for an irreducible divisorD ⊆ X\U , the codimension of ϕ−1(D)\Univ◦ in Univ is at
least two. Since ϕ is smooth and has connected fibers, ϕ−1(D) is irreducible, and hence
it is enough to show that ϕ−1(D)∩Univ◦ 6= ∅. This follows from the fact that ρ(X) = 1.
Indeed, for a general closed point m ∈ M , the curve ϕ(π−1(m)) intersects D, and so
π−1(m) ⊆ Univ◦ intersects ϕ−1(D).

By Zariski–Nagata purity, the sheaf j∗G is a locally constant Fp-sheaf of rank r .
Since Univ is normal and the complement of Univ◦ is of codimension at least two, we
have j∗j∗ϕ∗�1

X ' ϕ
∗�1

X. In particular,

j∗G ⊆ j∗j
∗ϕ∗(�1

X)
ξ
= (j∗j

∗ϕ∗�1
X)
ϕ∗ξ
' ϕ∗(�1

X)
ξ .

Let T be a fiber of ϕ : Univ → X. Since j∗G |T is a locally constant subsheaf of the
constant sheaf ϕ∗(�1

X)
ξ
|T , we see that j∗G |T is constant. In particular, the proper base

change theorem implies that ϕ∗j∗G is a nonzero locally constant subsheaf of (�1
X)
ξ . As

X is simply connected, ϕ∗j∗G is constant, and hence H 0(X, (�1
X)
ξ ) 6= 0, contradicting

Lemma 6.3.1. ut

6.4. The general case

We recall some facts about homogeneous spaces over an algebraically closed field k. A
projective varietyX over k is called homogeneous if its automorphism group Aut(X) acts
transitively on X. Note that since X is projective, Aut(X) is actually (the set of k-points
of) a group scheme locally of finite type over k, and in particular its connected component
Aut0(X) is a group scheme of finite type acting transitively on X.

The decomposition theorem of Borel and Remmert [BR62] (see [SdS03, §5–6] for its
extension to positive characteristic) states that X decomposes into a product

X ' A×G1/P1 × · · · ×Gr/Pr , (6.4.1)

where A is an abelian variety, the Gi are simple linear algebraic groups of adjoint type,
and the Pi ⊆ Gi are parabolic subgroup schemes (i.e., each Pi contains a Borel subgroup
of Gi).

LetG be a simple linear algebraic group over k. A choice of a Borel subgroup B ⊆ G
and a maximal torus T ⊆ B gives a setD of simple roots ofG, which is the set of nodes of
the Dynkin diagram ofG. Following the conventions of [Hum78, p. 58], we number them
1, . . . , n where n is the rank of G. Reduced parabolic subgroups of G containing B are
in an inclusion-preserving bijection with subsets of D. We can thus represent (possibly
ambiguously) rational homogeneous spaces with reduced stabilizers by marked Dynkin
diagrams, i.e. Dynkin diagrams with a chosen set of nodes. If α ∈ D is a simple root, we
denote by P(α) the maximal parabolic subgroup corresponding to D \ {α}.

Lemma 6.4.1. LetG be as above, and let α ∈ D = {1, . . . , n} be a simple root. Suppose
that G/P(α) ' Prk for some r > 0. Then one of the following holds:

(i) r = n, the group G is of type An, and α = 1 or n,
(ii) r = 2n− 1 ≥ 3, the group G is of type Cn, and α = 1.
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In other words, the Dynkin diagram and the node α are as shown below.

An
1 2 n − 2 n − 1 n
∗ ∗ Cn

1 2 n − 2 n − 1 n
∗

Proof. Demazure [Dem77] showed that for most pairs (G, P ) of a simple group G of
adjoint type and a reduced parabolic subgroup P , the natural morphism

G→ Aut0(G/P )

is an isomorphism, and classified the exceptions. The only exception with Aut0(G/P ) '
PGLr+1(k) is (see op.cit., case (a) on p. 181) G = PSpr(k) and P the stabilizer of a
line, in which case G/P ' Prk (r has to be odd in this case). This is our case (ii). If (ii)
does not hold, then r = n and G ' PGLn+1(k), and hence G/P(α) ' Gr(α, n + 1). So
dimG/P(α) = α(n+ 1− α) = n, and hence α = 1 or α = n. ut

Below, we denote by F1,n the incidence variety parametrizing partial flags W1 ⊆ Wn ⊆

kn+1 where dimW1 = 1 and dimWn = n. It is a hypersurface of degree (1, 1) in Pnk×Pnk ,
and as a homogeneous space it corresponds to the Dynkin diagram of type An with all
nodes except for the two endpoints 1, n marked.

Lemma 6.4.2. Let G be a simple algebraic group over k and let P ⊆ G be a reduced
parabolic subgroup. Suppose that for every maximal reduced parabolic Q ⊆ G contain-
ing P , the homogeneous variety G/Q is isomorphic to Prk for some r . Then one of the
following conditions holds:

(i) G/P ' Pnk for some n,
(ii) G/P ' F1,n for some n.

Proof. This follows from Lemma 6.4.1 and the classification of rational homogeneous
spaces with reduced stabilizers. ut

Lemma 6.4.3. The incidence variety F1,n is not F -liftable for n > 1.

Proof. This is shown in [BTLM97, §4.2] by using Bott vanishing. We give an alternative,
more geometric proof in [AWZ21, Section 2]. ut

Theorem 6.4.4 ([LM97]). Let G be a simple algebraic group over k, let P ⊆ G be a
parabolic subgroup scheme, let X = G/P , and let Y = G/Pred. If X is Frobenius split,
then X ' Y as varieties.

We are ready to show the main theorem of this section.

Theorem 6.4.5. Let X be a projective variety over k whose automorphism group acts
transitively on X(k). Then the following are equivalent:

(i) X is F -liftable.
(ii) X ' A × Pn1

k × · · · × Pnrk for some n1, . . . , nr , where A is an ordinary abelian
variety.

(iii) The Albanese variety A = Alb(X) is ordinary and the fibers of the Albanese map
aX : X→ A are toric varieties.

Proof. Consider the decomposition (6.4.1). By Corollary 3.3.8,X is F -liftable if and only
if A and G1/P1, . . . ,Gr/Pr are. Moreover, A is F -liftable if and only if it is ordinary,
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by Example 3.1.3. The Albanese map of X is simply the projection to the first factor of
the decomposition. Since the only homogeneous toric varieties are products of projective
spaces, we see that (ii) and (iii) are equivalent and imply (i).

It remains to prove that (i) implies (ii). For this, we can assume that X = G/P where
G is a simple linear algebraic group of adjoint type and P ⊆ G is a parabolic subgroup
scheme. Since X is Frobenius split (Proposition 3.2.1(c)), Theorem 6.4.4 implies that
X ' G/Pred, so we can assume that P is reduced.

If Q ⊆ G is a reduced maximal parabolic subgroup containing P , then Z = G/Q

inherits a Frobenius lifting from X via the map X = G/P → G/Q = Z by Theo-
rem 3.3.6(b), as the fibers are isomorphic to the rational homogeneous space Q/P and
H i(Q/P,OQ/P ) = 0 for i > 0. Now Z is Fano, PicZ ' Z, and TZ is nef. By Propo-
sition 6.3.2, Z ' Pnk for some n. By Lemma 6.4.2, this implies that X ' Pnk or X is
isomorphic to the incidence variety F1,n. But F1,n is not F -liftable (Lemma 6.4.3), so
X ' Pnk . ut

Remark 6.4.6. By Theorem 6.4.5 and the proof of Theorem 4.4.1, we find that Conjec-
ture 2 holds if the target variety is a homogeneous space. This observation is not very
interesting because this fact almost follows from [OW02]. What is missing is a direct
proof that the incidence variety F1,n is not an image of a toric variety.
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