
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.xxxx.DOI

Shrinking FPGA Static Power
via Machine Learning-Based Power
Gating and Enhanced Routing
Zeinab Seifoori1, Hossein Asadi1(Senior Member, IEEE) and Mirjana Stojilović2(Senior
Member, IEEE)
1Sharif University of Technology, Tehran, Iran (e-mail: seifoori@ce.sharif.edu, asadi@sharif.edu)
2School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland (e-mail: mirjana.stojilovic@epfl.ch)

Corresponding author: Hossein Asadi (e-mail: asadi@sharif.edu).

ABSTRACT Despite FPGAs rapidly evolving to support the requirements of the most demanding emerging
applications, their high static power consumption, concentrated within the routing resources, still presents a
major hurdle for low-power applications. Augmenting the FPGAs with power-gating ability is a promising
way to effectively address the power-consumption obstacle. However, the main challenge when implementing
power gating is in choosing the clusters of resources in a way that would allow the most power-saving
opportunities. In this paper, we take advantage of machine learning approaches, such as K-means clustering,
to propose efficient algorithms for creating power-gating clusters of FPGA routing resources. In the first
group of proposed algorithms, we employ K-means clustering and exploit the utilization pattern of routing
resources. In the second group of algorithms, we enhance the power-gating efficiency by minimizing the
power overhead introduced by power-gating logic and by taking into account the size of routing multiplexers,
which influences the power-gating efficiency. Finally, we enhance and further develop the baseline FPGA
routing algorithm to be aware and take advantage of power gating opportunities. The experimental results on
Titan benchmark suite and the latest Intel Stratix-IV FPGA architecture in VTR 8.0 show that our approaches
achieve an improvement of about 70%, on average, in reducing the FPGA static power consumption over the
best power-gating approaches proposed in the previous studies.

INDEX TERMS Field-programmable gate arrays, static power consumption, power gating, routing
algorithm, machine learning

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have become
an ubiquitous alternative to Application-Specific Integrated
Circuits (ASICs), thanks to their compelling advantages such
as reduced nonrecurring engineering costs, almost unlimited
design flexibility, fast time-to-market, and inexpensive design
updates. However, the penetration of FPGAs in the power-
limited applications and devices (i.e., mobile phones) is
lagging due to their relatively high static power consumption
in comparison with ASICs [1]. Therefore, it is crucial to timely
develop new techniques that could help shrink the FPGA static
power consumption and enable them to compete with ASICs.

Previous research has shown that power gating can lead
to significant power saving in the FPGA routing and logic
resources [2]–[7]. These so-called power-gating regions can

be controlled statically (using the FPGA configuration bits at
configuration time) or dynamically (using an on-chip special-
ized circuitry at run-time). Given that the most significant part
of the FPGA static power is consumed by nothing else but
FPGA routing resources (70% up to 90% of the total static
power consumption [8], [9]), it is the most advantageous to
apply power-gating techniques to the FPGA routing resources.

Although power gating may seem to be a straightforward
approach, the benefits of using it come with inevitable area and
power overheads [10], [11]. Previous studies proposing fine-
grained [3], [7], [12]–[16] or coarse-grained [6], [17] power-
gating architectures, have mainly focused on granularity—
determined by the number of resources in a power gating
region—and employed relatively simple heuristics to find
power-gating solutions [3]–[7], [16], [17]. These studies show

VOLUME NN, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

that the probability of providing an optimal clustering through
heuristic approaches is relatively low.

An entirely different approach to designing the power-
gating regions is employing Machine Learning (ML) to
enhance FPGA design automation. Several pioneering work
attempted to enhance FPGA design-automation algorithms
through optimizing their parameters with the help of ML
approaches [18]–[22]. Furthermore, several studies employ
ML techniques to improve the quality of congestion estimation
in the placement and routing steps of the design automation
process [23]–[26]. To the best of our knowledge, none of
the previous studies have attempted to apply an ML-inspired
approach to design power gating regions for the FPGA
routing network in order to reduce the FPGA static power
consumption.

In this paper, we introduce several new notions: similarity
metric, cluster pattern, and power gating efficiency, with the
goal of proposing a set of novel power-gating algorithms.
These algorithms are all based on K-means clustering, a well-
known ML approach that aims at grouping objects based on
their similarity and can be adapted to the clustering problem
at hand.

To validate the effectiveness of our proposed clustering
algorithms, we implement them in Verilog-to-Routing (VTR)
open-source toolset [27] and compare them with the previous
work [5]–[7]. We carry out an extensive set of experiments
using the industrial-scale Titan benchmarks [28], as well as the
Intel Stratix-IV FPGA architecture model, the most advanced
FPGA architecture with integrated support in the VTR 8.0
suite [27]. We exploit the latest version of Circuit Optimization
For FPGA Exploration (COFFE) [29] supplied with 22nm
technology model to extract the transistor sizing of the target
FPGAs, and HSPICE circuit-level simulations for estimating
the area and delay of the FPGA resources.

In this paper, we extend our previous work [30] with the
following novel contributions:

• We propose a new clustering algorithm, which, for the
first time, takes into account the size of the routing mul-
tiplexer as well as the overhead, in terms of area and the
power-consumption, of the power-gating circuitry. The
proposed algorithm aims to minimize the overall static
power consumption of the FPGA routing network. We
demonstrate that the proposed algorithm is significantly
more advantageous than previous approaches, which
are solely focused on maximizing the number of the
candidate multiplexers that can be powered off.

• We design and implement a power-gating aware FPGA
router to improve the utilization of the existing power-
gating regions and further reduce the FPGA static-power
consumption.

We show that employing our most-optimized routing algo-
rithm, called, SiM-IPR-MP, with 32 clusters per switch matrix
and the power-gating aware router can shrink the FPGA
static power consumption by 53%, on average, whereas the
best power-gating approach presented by Seifoori et al. [7]

achieves 31% power reduction, on average; this presents an
improvement of about 70% over the state of the art.

The remainder of the paper is structured as follows. First,
we present the related work (Section II). Then, in Section III,
we provide necessary background in FPGA routing architec-
ture and K-means clustering, together with an example that
motivates this work. In Section IV, we present an algorithm
based on standard K-means clustering and our four proposed
algorithms, namely, SiM, SiM-PR, SiM-IPR, and SiM-IPR-
MP. In the same Section, we present the modified FPGA
routing algorithm. In Section V, we focus on the experimental
methodology and the results. Section VI concludes the paper.

II. RELATED WORK
In this section, we survey the related work from two perspec-
tives: First, we review of the research studies on reducing
the static power. Second, we review the research on applying
machine learning approaches for increasing the efficiency of
FPGA designs, for example by optimizing the area, timing,
and power metric of FPGA designs through FPGA parameter
tuning [18]–[22] or by ptimizing the routing and placement
quality of FPGA designs [23]–[26].

A. POWER GATING APPROACHES
To reduce the FPGA power consumption, prior studies suggest
applying the power gating techniques in either the FPGA logic
or the routing resources. Here, we will focus on those studies
which implement power gating in the routing resources, as
they are the most related to our proposed approaches in this
paper.

Two distinct power-gating techniques exist: static power
gating (applied during the configuration time to power off the
resources which will not be used) and dynamic power gating
(applied during the runtime, to power off the FPGA modules
during their idle periods of work). Our approaches, discussed
later, fall into the former category.

In one of the first works, Bsoul et al. augment each routing
Switch Matrix (SM) to operate in either the state of always-
ON, always-OFF, or the state, which controlled dynamically
by an on-chip controller module. This approach increases the
routing cost of using resources outside the constrained area
of the functional module to reduce the number of the always-
ON SMs. The efficiency of this approach primarily depends
on the number of entirely unused SMs, as the partially used
SMs cannot be always powered off. The proposed approach
decreases the power consumption by 70% to 84%. Even
though the reported power saving is considerable, since the
results are obtained based on the best number of always-ON
SMs and also the experimental benchmarks are selected from
MCNC benchmarks [31], the results cannot be generalized to
commercial-like and more realistic benchmarks. In addition,
implementing dynamic power gating is faced with great
challenges such as a) controlling inrush current1, and b) estab-
lishing a reasonable trade-off between the power overhead of

1The transient large current, which is flowed from power lines during the
power state switching.

2 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

controller circuit and controlling signals and achieved power
saving. Furthermore, extracting the resource idleness periods
which should be long enough to justify resource overhead of
power gating is challenging, especially in input-dependent and
interactive applications. Finally, employing dynamic power
gating is orthogonal to static power gating and our focus in
this paper is enhancing the static power gating.

Li et al. proposed using a Power-Control Hard Macro
(PCHM) to implement a coarse-grained power gating of
the FPGA logic blocks and their associated connection
blocks [17]. In addition, they manage to decrease the power
consumption of the clock network, by embedding the clock
gating logic into PCHM. Finally, they modify the cost function
in the FPGA placement algorithm with the aim of minimizing
the number of used power gating regions and hence increasing
the power gating opportunities in each design. The proposed
enhanced placement algorithm is orthogonal to our proposed
enhanced routing algorithm.

Hoo et al. employed a static coarse-grained power gating
approach [6]. In each SM, they created four power gating
regions, composed of the unidirectional SM buffers of wires
going in the same direction. In addition, they adapted the
cost function in the FPGA routing algorithm to minimize
the number of inactive power gating regions. In the proposed
routing algorithm, the cost of employing each routing resource
is scaled down exponentially with the number of nets through
the power gating cluster associated with the routing resource.
Hoo et al. also dynamically turn off the FPGA modules during
their idle periods, to increase the power savings. They reported
that approximately 40% power gating regions could be turned
off in their experiments.

Gayasen et al. proposed a static power-gating scheme with
various granularities composing of a rectangular array of
Configurable Logic Blocks (CLBs). In addition, they propose
the Region Constraint Placement (RCP) algorithm, whose aim
is placing the FPGA clusters with high logic correlation near
to one another [4]. The proposed placement algorithm places
the design into the restricted contiguous regions. The results
show that RCP can reduce the static power consumption by
19%.

Yazdanshenas et al. employed a static fine-grained power
gating scheme in logic and routing resources to power off the
unused SRAM cells [16]. They dedicate a configuration cell to
control the power consumption of each switch box. In addition,
they investigate the effect of dividing the SRAM cells of LUTs
in power gating regions with various sizes on power saving.
They achieve up to 75% reduction in the power consumption
of logic blocks, however, they could only achieve less than
4% reduction in power consumption of switch boxes.

The SM multiplexers and their associated buffers and
SRAM cells are equipped with power gating circuit in
architecture proposed by Seifoori et al. [7]. Here, the authors
extract the utilization pattern of routing resources in various
routing architectures and investigate the effect of different
power gating granularities. Based on their observations, they
try to determine the most appropriate power gating granularity

for each power gating architecture. Their experiments show
that, by employing proper granularity, the routing power con-
sumption can be decreased by 57%. However, the underlying
routing architecture in their work is based on uniform wire
lengths and simple switch patterns, which is not representative
of modern FPGA routing architectures.

The composition of power gating region and their utilization
pattern considerably affect the obtained power saving. Utiliz-
ing a heuristic approach to compose power gating region may
result in a too few power gating opportunities and significant
power overhead, and hence adverse the expected result. To
alleviate the power overhead and increase the effectiveness
of power gating approach in taking advantages of unused
resources opportunities, we analyze the resource utilization
patterns and then employ the data driven approaches to decide
the optimum power gating region composition.

B. UTILIZING ML APPROACHES TO INCREASE THE
EFFICIENCY OF FPGA DESIGNS
Previous research for optimizing the FPGA design by leverag-
ing the ML approaches can be classified into two categories:
(1) auto-tuning the FPGA design tool parameters and (2)
increasing the quality of congestion estimation and routability
prediction in FPGAs.

Optimizing and tuning the parameters of synthesis, map,
and place-and-route design tools can significantly affect the
target design in term of area, timing, and power metrics. How-
ever, due to enormous search space and long time needed to
rebuild the design for different configurations, manual search
for optimal parameters is impractical. Accordingly, the related
works in the first category aim to optimize the configuration
parameters using ML approaches. Mametjanov et al. leverage
the linear regression and random forest to optimize the
configuration parameters to tune the power consumption and
performance of design [18]. Using Beysian classifier, Kapre et
al. automate optimizing parameter selection through learning
from a series of preliminary runs [19]. They reduce the FPGA
timing closure by 70%. Xu et al. apply the multi-armed bandit
technique to explore the large design space to autotune the
tool-specific parameters, which control the complete FPGA
design [20]. In addition, a parallelization scheme is used to
parallelize exploring the complex design space. Yanghua et al.
utilize the ML approach to predict the timing closure in FPGA
design with focus on increasing the classification accuracy
and decreasing the implementation iterations necessary in
parameter selection [21]. Ustun et al. also autotune the
design tools parameters utilizing the ML approaches [22].
In their proposed approach, instead of utilizing the extracted
feature from the place-and-route iterations, the feature vector
from the primitive steps of FPGA design flow is applied
for learning in autotuning process, hence, the FPGA design
closure is accelerated. Since power prediction is a challenging
concern in hardware design, Lin et al. propose a learning-
based power model to estimate the power consumption of
FPGA applications [32]. To this end, a set of representative
applications is used to construct training data in feature

VOLUME NN, 20xx 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

construction and their corresponding power collection, which
is used to create a learning model to map the features to power
estimation. The resource usage and timing reports estimated
by high-level synthesis tools deviate significantly from the
real results of the corresponding implementation on target
FPGA. Due to the considerable importance of the resource
usage and timing estimation in evaluating hardware design,
Makrani et al. use machine learning approaches to achieve
the throughput or throughput-to-area estimation of designs
on target FPGA with high accuracy [33]. They first employ
an automated hardware optimization tool to achieve the
optimized metrics of the register-transfer level code, which is
generated by a high-level synthesis tool, and then compose the
training data set to employ in learning model to estimate the
accurate design metrics. To increase the mapping efficiency of
arithmetic operations on hardened blocks of FPGAs, Usten et
al. propose to use graph neural network to automatically learn
and extract the clustering pattern and operation mapping [34].
The training data is collected using the results of technology
mapping of a set of microbenchmarks composed of arithmetic
operations.

Congestion estimation and routability prediction in the
placement stage can greatly improve the efficiency of place-
ment and routing of the implemented design. By leveraging
the simple regression technique, Qi et al. construct a conges-
tion model for guiding the global router [23]. Applying the
proposed model decreases the violation within design rule
and routing runtime. Grewal et al. apply various clustering
and regressoin techniques to model the relationship between
different stages of FPGA design flow and the underlying
behavior of the circuit to optimize the FPGA design [24].
The required training data is extracted from a broad range
of 372 different benchmarks running on FPGAs with seven
different academic configurations. To estimate the congestion,
Pui et al. apply a linear regression model along with features
based on wire length per area, pin count, and a feature related
to the surrounding cells [25]. The results demonstrate that
the accuracy of this model in predicting congestion is less
than actual by 70%. The approach presented by Maarouf et
al. increases the estimation accuracy through utilizing three
new congestion related features with shorter runtime [35]. To
estimate the routing congestion in high level synthesis, Zhao
et al. propose a ML model to resolve congestion in source
code through utilizing informative physical features [26].

III. BACKGROUND AND MOTIVATION
In this section, we give the basics of the FPGA architecture
and K-means clustering and motivate our work.

A. FPGA ARCHITECTURE

Modern FPGAs consist of columns of configurable logic
blocks and heterogeneous hardened units such as Digital Sig-
nal Processing (DSPs), external memory interfaces, processor
cores, and transceivers [36], [37]. Fig. 1 illustrates one such
heterogeneous FPGA architecture.

IOB (Input/
Output Block)

CLB (Configurable
Logic Block)

Embedded
Memory

DSP
Block

FIGURE 1. Common FPGA architecture. Besides logic blocks (in blue),
FPGAs contain hard IP blocks (for example, DSPs), embedded memory
blocks, external memory interfaces, transceivers, phased-locked loops, etc.
Connectivity between all these elements is established using a configurable
routing network, composed of horizontal and vertical interconnects and
configurable switches.

The basic units of FPGAs are called Configurable Logic
Blocks (CLBs), in Xilinx terminology, or Logic Array Blocks
(LABs), in Intel terminology. LABs contain:
• Logic Elements (LEs), consisting of programmable Look-

Up Tables (LUTs), flip-flops, and multiplexers providing
additional connectivity.

• Intra-LAB connections between LE inputs, on one side,
and the local feedback LE outputs and inter-LAB wires,
on the other side.

The connections between FPGA building blocks are pro-
vided by the surrounding programmable routing fabric, com-
posed of horizontal and vertical routing wires and switch
matrices. Modern FPGA routing architectures use a mix of
routing wires of various lengths, to balance the trade-off
between area, delay, and flexibility of the routing network. For
instance, the Intel Stratix-IV FPGA routing architecture has
vertical wires spanning four and 12 rows of the FPGA array
(V4 and V12, respectively), and horizontal wires spanning
four and 20 columns (H4 and H20, respectively). The short
wires are directly accessible by LAB inputs and outputs, while
the long wires are accessible through both short and long
wires, thanks to SM multiplexers.

The routing fabric of the Intel Stratix IV FPGA is illustrated
in Fig. 2. As depicted in this figure, SMs have heterogeneous
routing multiplexers: large (40:1) and small (12:1); these
multiplexers drive the long and short wires, respectively (as
illustrated in Fig. 3). Four different types of switch matrices
can be identified in the architectural description of the Intel
Stratix IV FPGA architecture, available as part of the VTR
8.0 suite [27]. They are listed in Table 1 and shown spatially
distributed in Fig. 4.

B. MOTIVATION
Static power dissipation in FPGA routing network can be re-
duced using power gating, by clustering the routing resources
into groups which, if unused, can be disconnected from
the power supply. Clustering can be fine grained or coarse

4 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

R
ow

	In
te
rc
on
n
ec
ts

Column	Interconnects

V
4

H4

H20

LABLAB

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

V
12

V
4

LE

LE

LE

LE

LE

LE

LE

LE

LE

LE

V
12

V
12

FIGURE 2. Connectivity between FPGA elements is achieved using FPGA
routing resources: wires organized in horizontal and vertical routing channels
and routing switch matrices, which enable wires to connect to each other. This
figure illustrates a modern FPGA routing network based on the Intel Stratix IV
FPGA architecture description available in VTR tool [27].

LA
B

LA
B

H
20

H
4

V4 V12

12-1

40-1

FIGURE 3. An illustration of a part of a switch matrix inside Stratix IV FPGA. It
shows two multiplexer types (12:1 and 40:1) as well as two types of
connections: (1) between column wires (V4, V12) and LAB inputs and (2)
among LAB outputs, column interconnects, and row interconnects.

SM1 SM2 SM3 SM4

FIGURE 4. Spatial distribution of switch matrices in Stratix IV, shown on a
small part of the FPGA. Horizontal and vertical lines represent routing
channels, which are composed of unidirectional wires of nonuniform lengths
(Fig. 2). Four different types of switch matrices can be identified (SM1, SM2,
SM3, and SM4, listed in Table 1). They differ in the number of 12:1 and 40:1
multiplexers. A periodic pattern in switch matrix distribution can be observed,
which is expected given that the wire lengths are all a multiple of four.

TABLE 1. Four routing switch matrix types extracted from the Stratix IV FPGA
architecture description provided in VTR [38]. They are composed of 12:1 and
40:1 multiplexers, but the number of multiplexers per SM type differs, as the
SM topologies are adapted for connecting the wire segments of nonuniform
lengths.

Multiplexer SM1 SM2 SM3 SM4
12:1 128 128 132 132
40:1 4 8 4 8

G1

G1

G1

G2

G2

G2

G3

G3

G3

G4

G4

G4

G5

G5

G5

G7

G7

G7

G8

G8

G8

G9

G9

G9

G10

G10

G10

G6

G6

G6

G11

G11

G11

G12

G12

G13

G13

G12

G14

G14

G13

G15

G15

G14

G15
G16

G16

G16

Unused	MUX

Used	MUX

Gn

M1 M16

M1 M16

M1

M16

M1

M16

Top:	0000010000000000

R
ig
ht
:	1
10
00
10
01
10
11
00
0

Le
ft
:	1
01
00
01
10
00
10
10
0

Bottom:	0011010010011000

Power	gating	group	n

LAB LAB

LABLAB

G1 G2 G4 G5 G8 G9 G12 G13G14G3 G6 G7 G10G11 G15G16

FIGURE 5. Distribution of used SM multiplexers and power gating groups
(sample SM No. 1 in usb-phy circuit).

grained [2]–[7], [16], [17]; both approaches provide benefits
at certain costs: fine granularity brings higher power gating
opportunities at the cost of increased area and power overhead,
while coarse granularity suffers from lower power gating
opportunities, albeit at reduced area and power overhead.
Additionally, for any granularity, clustering can be done in
many different ways, which are not all equally effective.

Let us illustrate the challenge of clustering routing re-
sources on an example of a simple FPGA routing architecture
composed of wires of length one, arranged in 32-bit wide
routing channels and connected to each other through switch
matrices that contain a uniform number and type of multi-
plexers. Let us further consider usb-phy circuit, a sample
benchmark from IWLS’05 benchmark suite [39] and use VTR
suite to place and route this circuit. Fig. 5 shows one randomly
chosen switch matrix (SM1), with routing multiplexers equally
distributed on all fours sides and the multiplexers that are
occupied by the benchmark circuit shaded in gray. Table 2
compares the utilization of routing multiplexers of SM1
and another randomly chosen switch matrix (SM2); in this
table, zero stands for unused and one for in use. Clearly, the
utilization of multiplexers varies among the switch matrices.

One clustering approach is to group the multiplexers
driving the tracks with the same number (id in the channel)
in all four sides of the switch matrix into a single power
gating region; this strategy has previously been evaluated by
Seifoori et al. [7]. The result is 16 clusters in Table 2: M1
corresponds to the multiplexers in the first cluster, which drive
the wire segments of track number one in all four routing
channels. Similarly, M2 is another cluster, which drives the
wire segments of track number two and etc. This clustering
approach can successfully turn off 25% of all clusters of SM1
(M5, M11, M15, and M16, in red); however, it can turn off
only one power gating region in SM2 (M14, in red). This
is equivalent to 36% and 11% of all unused multiplexers
in SM1 and SM2, respectively. Table 3 presents another
possible clustering scheme, in which we name each of the
16 power gating regions as Gi, 1 ≤ i ≤ 16, and assign

VOLUME NN, 20xx 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

TABLE 2. The utilization pattern of multiplexers in two randomly chosen switch matrices inside the FPGA region occupied by usb-phy benchmark. To place and
route the benchmark, VTR [38] and a simplified FPGA architecture illustrated in Fig. 5 are used. In red, we highlight all power-gating clusters that can be powered
off because they are fully unused.

SM SIDE M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16
SM1-TOP 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
SM1-RIGHT 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0
SM1-BOTTOM 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0
SM1-LEFT 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0
SM2-TOP 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1
SM2-RIGHT 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1
SM2-BOTTOM 0 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1
SM2-LEFT 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

TABLE 3. Clustering labeled Gi in Fig. 5 is superior to clustering in Table 2, as more unused multiplexers are grouped in the same power gating regions. In red, we
highlight all the clusters that can be powered off because they are fully unused.

SM SIDE G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16
SM1-TOP 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
SM1-RIGHT 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1
SM1-BOTTOM 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0
SM1-LEFT 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0
SM2-TOP 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1
SM2-RIGHT 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1
SM2-BOTTOM 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1
SM2-LEFT 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

to them the routing muxes as shown in Fig. 5. This new
clustering can successfully switch off about 80% and 36%
of all unused multiplexers in SM1 and SM2, respectively.
Although the modified clustering provides considerable and
acceptable results on this example, we have no guarantee that
such equally acceptable results would be obtained if applied
to all the remaining switch matrices. Therefore, to find a
clustering approach that works well in general, it is crucial
to examine a large set of applications. Given that finding an
optimal clustering scheme is an NP-complete problem, we
employ ML to find a near-optimal solution.

C. K-MEANS CLUSTERING
The growing need of knowledge discovery in the ever-
increasing amount of data has lead to the advent of clustering
algorithms; they play an important role in a wide variety of
areas ranging from pattern classification [40] to knowledge
discovery and data mining [41]. K-means algorithm is a widely
acceptable unsupervised clustering algorithm, which has been
extensively studied [42], [43].

K-means clustering partitions the data into a predetermined
number of clusters so that a similarity metric (e.g., Euclidean
distance) within clusters and between clusters is minimized
and maximized, respectively [44], [45]. Generally, the simi-
larity metric and the clustering objective function is chosen
based on the application [46].

Let V = {v1, v2, ..., vN} be a collection of N data objects
and each vi vector denoting the feature vector of ith object.
The purpose of K-means algorithm is clustering these data
objects into K clusters C = {C1, C2, ..., CK}, where Cj
corresponds to the jth cluster centers. Initially, the cluster
centers are selected arbitrarily. Then, the clustering algorithm
proceeds in an iterative way, where each iteration is composed
of the following steps:

1) Assign each data point xi, 1 ≤ i ≤ N , to the cluster

Cj , 1 ≤ j ≤ K, whose center has the least squared
Euclidean distance to xi [47]–[49].

2) Compute the cluster center as means of all the members.
The iterations continue until the convergence is reached (i.e.,
the cluster centers do not change in consecutive algorithm
iterations).

K-means clustering quality strongly depends on three user-
specified parameters: a) the total number of clusters (i.e.,
k), b) the homogeneity metric, and c) the cluster centers
initialization. Decision making on the number of clusters
is often carried out in an ad hoc manner, depending on
the problem definition, prior knowledge, and experiments.
Alternatively, one can run K-means with variable number of
clusters and then select the number of clusters with the most
promising results. The most dominant homogeneity metric
in various versions of K-means clustering algorithm is the
distance measure; however, other homogeneity metrics, in
particular if based on the target application, can replace the
distance metric.

Since the K-means algorithm converges to the local minima,
different initial configurations can result in unequally effective
clustering. A large number of techniques have been proposed
to enhance the robustness of K-means clustering algorithm
against the sensitivity toward the initialization. To overcome
the local minima problem, one can run K-means for various
cluster initialization and select the one with the least squared
error. Employing this approach when dealing with large data
sets incurs a high computation cost. Other approach is, for
instance, global K-means clustering: in each iteration, deter-
ministically find the optimal candidate for each cluster center
among the data objects through comparing the clustering
results of various K-means runs versus assigning each data
object as the center of the desired cluster [50]. This algorithm
is computationally demanding as well, because it runs the K-
means clustering several times for finding each cluster center.

6 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

Yet another approach is to select the center of the first cluster
randomly and the centers of other clusters based on their
distance to the previously selected centers; this approach is
called k-means++ [51]. The time complexity of this algorithm
is acceptable, in comparison with other variations. Moreover,
Arthure et al. [51] guarantee the existence of an approximation
of optimum (i.e., logk) for k-means++. More precisely, let us
consider the potential function for an arbitrary clustering C,
defined as the total squared distance between each data point
and its closest center, as follows:

φ =
∑
xεX

mincεC ‖x− c‖2 (1)

and let COPT denote the optimal clustering for a set of
data points. Accordingly, If k-means++ constructs the cluster
C, one can prove that the corresponding potential function
satisfies the following:

E[φ] = 8(ln k + 2)φOPT (2)

Hence, in this work, we employ k-means++ approach to
initialize the cluster centers.

IV. OUR CLUSTERING ALGORITHMS
As discussed in Section III-B, obtaining an optimal or near-
optimal multiplexer clustering in one switch matrix does not
guarantee equally acceptable results in other switch matrices.
In addition, looking for the optimal multiplexer clustering
through implementing all possible clustering solutions and
their comparison is impractical, due to the prohibitively
large solution space. The above issues are common in data-
analysis problems, frequently solved using machine learning
techniques [52]–[56]. Hence, instead of employing empirical
approaches to cluster the switch matrice multiplexers (as done
previously), we opt for using an ML approach (e.g., K-means).
Additionally, we derive here a new ML-based algorithm for
efficiently addressing the power-gating challenge.

The first step of our clustering approach is extracting the
training data from the input set of L learning benchmarks, i.e.,
building a set of feature vectors as follows:

1) Place and route L learning benchmarks on the target
FPGA architecture.

2) Find all the used switch matrices2 inside the FPGA
region occupied by the learning benchmark. If the
FPGA routing resources employ more than one type
of switch matrices, e.g., some SMs differ in the number
or size of multiplexers as is the case in Intel Stratix-
IV architecture, then all the unique SM types need
to be identified and treated as independent clustering
problems.

3) Build feature vectors vi for each multiplexer Mi of a
switch matrix as the following row vectors:

vi =
[
vi1 vi2 ... viL

]
. (3)

Here, vin is a row vector that corresponds to the
utilization of multiplexer Mi (1 if in use, 0 otherwise)

2The switch matrices with at least one used multiplexer.

in all switch matrices of nth benchmark. The element
in the jth column of vector vin therefore corresponds to
the utilization of the multiplexer Mi in the jth instance
of the switch matrix in benchmark Bn: 1 if Mi is in
use by the benchmark Bn, 0 otherwise. Given that the
number of used switch matrices in learning benchmarks
is not the same across all benchmarks, the length of
vectors vin is not constant either.

4) Add vectors vi to the training data set V .
In the remainder of this section, we first present a clustering

algorithm that uses K-means algorithm to build power-gating
clusters (Section IV-A). Then, we introduce a novel metric
called utilization similarity and derive new clustering algo-
rithms (Section IV-B). Finally, we modify the FPGA routing
algorithm [57] to account for the presence of power-gating
clusters and use them efficiently (Section IV-C).

A. CLUSTERING USING K-MEANS ALGORITHM (KM)
Our first power-gating approach is a straightforward im-
plementation of K-means clustering, following the steps of
Algorithm 1. Given the training data set V and the desired
number of power-gating regions K, the algorithm starts
by initializing cluster centers. Then, it empties all clusters,
assigns the multiplexers to the closest clusters (smallest
Euclidean distance to the cluster center), and recomputes
the cluster centers. These steps are repeated until there are
no changes in the cluster composition (i.e., the multiplexers
assigned to the clusters do not change from one iteration to
another) or until the maximum number of iterations is reached.

To initialize the centers of the cluster, we employ k-
means++, one of the most commonly used initialization
approaches [58] (Section III-C). InitCenters function,
shown in Algorithm 2, starts by initializing the center of the
first cluster µ1 with a randomly chosen element from the set
V . Then, for every vi in V , it calls ComputeDistance to
find the Euclidean distance di,j between vi and an already
initialized cluster center µj :

di,j = ||vi − µj ||2 (4)

Finally, it computes the probability that vi may become the
new cluster center as

d2i,j∑
i=1..N d2i,j

, where N is the cardinality
of set V . Vector vi that maximizes this probability is then
chosen as the initial center of the next cluster.

At the end of each iteration of the K-means clustering
algorithm, we call UpdateCenter function to find the
mean of all cluster members and update the cluster center
accordingly.

B. CLUSTERING USING UTILIZATION SIMILARITY
METRIC (SIM)
A power gating region is a collection of switch matrix
multiplexers controlled by a common power-gating circuit.
As shown earlier, multiplexers can be described using a
feature vector in Eq. (3), where each dimension reflects
the utilization of the corresponding multiplexer in one of

VOLUME NN, 20xx 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

Algorithm 1: Power gating using K-means clustering.
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1, C2, ..., CK}
Variables: Cluster centers: µ1, µ2, ..., µK
InitCenters(V , K)
while Cluster elements change do

foreach Ci ∈ C do
Ci ← ∅

foreach vi ∈ V do
k ← TheClosestCluster(vi, C)
Ck ← Ck ∪ vi
µk ← UpdateCenter(µk, vi)

Algorithm 2: Function InitCenters for computing
initial cluster centers.
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Cluster centers: µ1, µ2, ..., µK
Variables: Distance between vi and µj : di,j ; sum of

distances squared: dssq; next cluster ID: k;
probabilistic distance metric: p

µ1← randomly chosen from V
k ← 2
while k < N do

dssq ← 0
foreach vi ∈ V do

foreach µj , 1 ≤ j < k do
di,j ← ComputeDistance(vi, µj)
dssq ← dssq + d2i,j

p← 0
foreach vi ∈ V do

pi,j ←
d2i,j
dssq

if pi,j > p then
p← pi,j
µk ← vi

k ← k + 1

the switch matrices (1, if used; 0, otherwise). Consequently,
two feature vectors vi and vj are identical only if their two
corresponding switch matrix multiplexers have exactly the
same utilization pattern across all learning benchmarks; there
is no doubt that these vectors should be assigned to the
same power gating region. However, in most practical cases,
the feature vectors differ significantly. To address this, we
introduce utilisation similarity metric as follows:

si,j =
∑

m=1..|vi|

{
1, if vi[m] = vj [m]

0, otherwise.
(5)

This metric, computed on a pair of feature vectors vi and vj ,
is equal to the number of dimensions m in which these two
vectors are the same: the higher it is, the more beneficial it is

to keep the two corresponding multiplexers inside the same
cluster.

The notion of the cluster center, presented in Section IV-A,
does not fit well the utilisation similarity metric in (5).
An alternative could be to use a cluster mode, common
in categorical data clustering. A cluster mode is a vector
whose elements correspond to the most frequent value of that
dimension across all feature vectors of the cluster members.
However, this is not suitable either, because the majority of
the elements of the feature vectors in (3) are zeros, due to
the large number of unused multiplexers in the FPGA switch
matrices; consequently, the resulting cluster modes would lean
towards zero. Let us introduce the notion of a cluster pattern
ρ, as a measure of similarity between all cluster members.
Naturally, the cluster pattern of a single-member cluster is
equal to that member. Then, when assigning each new member
to the cluster, the cluster pattern ρ is updated based on the
feature vector v of the newly added element as follows:

ρ[m] =


1, if ρ[m] = v[m] and v[m] = 1

0, if ρ[m] = v[m] and v[m] = 0

X, if ρ[m] 6= v[m],

(6)

such that 1 ≤ m ≤ |v|. Here, X indicates a value other than
zero and one3. Therefore, we can express the power gating
efficiency ε of cluster Ci as the product of the cluster size and
the number of pattern elements different from X.

ε(Ci) = |Ci| ·
(
|ρi| − CountX(ρi)

)
. (7)

The higher the value of ε(Ci), the higher the similarity
between the cluster elements. The power gating efficiency
of all K clusters then becomes:

ε(C) =
∑
i=1..K

|Ci| ·
(
|ρi| − CountX(ρi)

)
. (8)

Since the expression in (7) is nonnegative, the higher the value
of ε(C), the better the clustering.

In the following subsections, we present four novel ap-
proaches towards efficient clustering and power gating of the
FPGA routing multiplexers.

1) SiM clustering
Our first clustering algorithm, which we name SiM (i.e., simi-
larity clustering), is summarized in Algorithm 3. This cluster-
ing aims to maximize the power gating efficiency by using the
cluster patterns instead of the cluster centers and the similarity
metric instead of the Euclidian distance. The algorithm starts
by calling the function InitPatterns to initialize the
cluster patterns. This function is similar to InitCenters;
however, it replaces the call to ComputeDistance with
the computation of the similarity metric in Eq. (5).

Then, for every vi in V , we search for the cluster yielding
the highest similarity metric between vi and the cluster
pattern, to insert vi in it. Finally, we update the cluster pattern
following Eq. (6).

3In our implementation, without loss of generality, X is set to −1.

8 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

Algorithm 3: Our proposed SiM clustering, which uses
similarity metric defined in Eq. (5) and the concept of
cluster pattern from Eq. (6).
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1, C2, ..., CK}
Variables: Cluster patterns: ρ1, ρ2, ..., ρK
InitPatterns(V , K)
foreach vi ∈ V do

k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk, vi)

Algorithm 4: Our proposed SiM-PR clustering. Unlike
SiM, this algorithm runs multiple iterations, at the end
of every iteration, replaces the cluster pattern with a
randomly chosen cluster member. As a consequence, at the
end of every iteration, the patterns elements are reduced
back to two values only: 0 and 1.
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1, C2, ..., CK}
Variables: Cluster patterns: ρ1, ρ2, ..., ρK
InitPatterns(V , K)
while Cluster elements change do

foreach vi ∈ V do
k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk, vi)

foreach Ci ∈ C do
ρi = RandomElementFromCluster(Ci)

It should be noted that starting new clustering iteration
with existing cluster pattern is rather unlikely to result in
an efficient clustering solution, because CountX(ρi) would
either remain the same or increase as iteration advance. To
iteratively repeat Algorithm 3, similar to K-means clustering,
we need a strategy for updating the cluster patters between
subsequent iterations. This is addressed in our next clustering
approach.

2) SiM-PR clustering
To render the SiM algorithm iterative, we choose to replace the
cluster pattern with a randomly selected member of the cluster,
at the end of each iteration of the algorithm. We call this new
algorithm SiM with pattern reduction (SiM-PR), because the
cluster pattern is reduced to another cluster member. The
SiM-PR approach is detailed in Algorithm 4.

3) SiM-IPR clustering
SiM and SiM-PR result in two extreme solutions. The former
completes only one iteration, while the latter allows for more
iterations but, at the end of every iteration, it reduces cluster

Algorithm 5: Our proposed SiM-IPR clustering. Unlike
SiM-PR, this algorithm applies pattern reduction only onR
clusters that are the most inefficient, according to Eq. (7).
The parameter R stands for rate. Its initial value is K/2.
In every subsequent iteration, it is reduced by half.
Input: Data set: V = {vi} , i = 1..N
Input: Total number of clusters: K
Output: Clusters C = {C1, C2, ..., CK}
Variables: Cluster efficiencies: E = {E1, E2, ..., EK};

set of clusters whose patterns are to be
reduced: CR; cluster reduction rate: R; cluster
patterns: ρ1, ρ2, ..., ρK .

InitPatterns(V , K)
R← K/2
while Cluster elements change do

foreach vi ∈ V do
k ← TheMostSimilarCluster(vi, C)
Ck ← Ck ∪ vi
ρk ← UpdateClusterPattern(ρk, vi)

foreach Ci ∈ C do
Ei ← Efficiency(Ci)

CR = ∅
for 1 ≤ r ≤ R do

k = LeastEfficientIndex(E)
E ← E \ Ek
CR = CR ∪ Ck

foreach Ci ∈ CR do
ρi = RandomElementFromCluster(Ci)

R← R/2

patterns to randomly chosen elements from the corresponding
clusters. The randomness in SiM-PR can help finding a
more efficient clustering solution compared to SiM, but it
can also cause the algorithm to remain in a locally-optimal
solution. Therefore, we propose an alternative in which the
cluster patterns are reduced incrementally, depending on the
efficiency metric defined in Eq. (7). We name this algorithm
SiM with Incremental Pattern Reduction (SiM-IPR) and show
its implementation in Algorithm 5. Unlike SiM-PR, this
algorithm applies pattern reduction only on R (R < K)
clusters that have the lowest power gating efficiency metric,
which we compute using Eq. (7). The parameter K stands
for the total number of clusters, while the parameter R (rate)
is a variable, equal to the number of clusters whose patterns
are to be reduced in the current clustering iterations. In our
implementation, we choose to set the initial value ofR toK/2
and, in every subsequent iteration, to reduce R by half.

4) SiM-IPR-MP clustering
The clustering algorithms proposed in Sections IV-B1, IV-B2,
and IV-B3 focus on grouping multiplexers with the highest
utilization similarity, without taking into account the effects
such a decision can have on the actual power consumption of
the entire switch matrix. The consequences we refer to here

VOLUME NN, 20xx 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

are two-fold: first, adding a mux to a cluster can affect the
cluster pattern and, therefore, its power-saving opportunities.
Second, adding a mux to a cluster increases the cluster size
and the overall power consumption of the cluster; the latter
corresponds to the sum of the power consumption of the
cluster members and the power consumption of the power-
gating circuit itself.

Before proceeding, let us recall the meaning of dimensions
equal to zero in the cluster patterns (Eq. (6)): they correspond
to the muxes that are unused by all the cluster elements and,
consequently, can be powered off. For a cluster pattern of
lengthN and havingN0 dimensions equal to zero, we can thus
say that the probability of this particular cluster to be powered
off equals the probability that the circuit to be programmed
onto the FPGA uses one of the muxes corresponding to those
N0 dimensions:

POFF(Ci) =
N0

N
. (9)

The probability of a cluster being powered on is equal to:

PON(Ci) = 1− POFF(Ci) =
N −N0

N
. (10)

The static power consumption of a power-gating cluster Ci
can be approximated as the weighted sum:

W (Ci) = POFF(Ci) ·WOFF(Ci) + PON(Ci) ·WON(Ci)
(11)

where WOFF(Ci) and WON(Ci) represent the static power
consumption of the power-gating cluster when it is powered
on and powered off, respectively.WON(Ci) corresponds to the
sum of the power consumption of the power-gating circuitry,
WPGON

, and the power consumption of the multiplexers
in the cluster, when the cluster is powered on. Similarly,
WOFF(Ci) is equal to the power consumption of the power-
gating circuit alone, WPGOFF

, when the cluster is powered
off, which brings us to the next expression:

W (Ci) = POFF(Ci) ·WPGOFF
(Ci)+

+
(

1− POFF(Ci)
)(
|Ci| ·WMUX +WPGON

(Ci)
)
. (12)

Here, WMUX is the power consumption of each multiplexer in
cluster Ci. Consequently, the power consumption of the entire
routing switch matrix with K power gating clusters can be
approximated as:

W (SM) =
K∑
i=1

W (Ci) (13)

Let us now turn to the example shown in in Fig. 6, where we
need to decide whether to assign multiplexer M1 (highlighted
in red) to cluster G of size three or to cluster F of size
seven. Supposing that the utilization similarity between M1
and cluster G is higher than between M1 and cluster F , our
previously proposed clustering algorithms would naturally
assign M1 to cluster G. However, let us further assume that
PON of cluster G and of cluster F , after assigning M1 to
them, are 20% and 50%, respectively. If we run a HSPICE
simulation to estimate WPGON

, WPGOFF
, and WMUX, to

G

Power	gating	groups

M1

Top

Le
ft

Bottom

LAB LAB

LABLAB

R
ig
ht

G

G
F

F

F

F

F

F F

FIGURE 6. An illustration of an FPGA routing switch matrix, with G and F as
example power-gating clusters. M1, highlighted in red, is a multiplexer that
needs to be assigned to one of them.

compute the value of expression in Eq. (12) for clusters G and
F , we find that a better decision would be to assign M1 to
F , because it would result in higher power saving (1.75 nW
power saved for M1 in F versus 1.39 nW power saved for M1
in G). Therefore, we find that relying on utilization similarity
only is not the optimal criteria: we need to take into account
the impact that the clustering decision has on the overall power
consumption—something that we ignored in the previously
proposed clustering algorithms.

In this section, we propose a clustering algorithm named
SiM with Incremental Pattern Reduction to Minimize Power
consumption (SiM-IPR-MP), in which we assign multiplexers
to clusters with the most utilization similarity as well as the
least power consumption increase, i.e., the least difference
in the static power consumption after and before assigning
the multiplexer to a cluster. To get there, we will first discuss
how we estimate the power consumption of the power-gating
circuitry, and then present the derivation of the new clustering
metric.

(a) Power consumption of power-gating circuitry: For the
purpose of estimating the static power consumption of the
power-gating circuit, we use HSPICE and run a set of circuit-
level simulations, employing Predictive Technology Model
(PTM) [59] and the exact FPGA transistor sizing extracted
through COFFE [29]. Fig. 7 shows our proposed power gating
circuit-design approach. As can be seen, the sleep transistors
are inserted between the main power supply and the virtual
power supply. The size of sleep transistors depends on the
number of multiplexers in each cluster, and is chosen so that it
does not affect their delay. We vary the number of multiplexers
in the cluster |Ci| and record the power consumption of the
entire cluster, including the power-gating circuit, when it is
powered on or powered off. The obtained results for the cluster
in powered-on state are plotted in Fig. 8, in blue. Given the
strong linear dependency between the power consumption and

10 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

S S

M
U
X

S S

M
U
X

S S

M
U
X

S S

M
U
X

S

VDDGND

GND

FIGURE 7. The structure of the proposed power gating scheme. The dashed
line depicts one power gating region. The number of multiplexers inside the
power gating regions can vary based on the clustering algorithm. The power
state of each power gating region is controlled by a SRAM cell, which can turn
on the PMOS or NMOS sleep transistor.

0

1000

2000

3000

4000

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
he
	p
ow
er
	c
on
su
m
pt
io
n	
of
	

po
w
er
-g
at
in
g	
ci
rc
ui
t	(
nW

)

Cluster	size

The measured power

The	best-fit	function

FIGURE 8. In blue, the power consumption of the power-gating circuit when
the cluster is powered off, in the function of cluster size. We can notice that
increasing the cluster size results in higher power consumption of the
power-gating circuit. In yellow, the best-fit linear approximation.

the cluster size, we use a data analysis software4 to find a
best-fit linear function (shown in yellow in the same figure),
which we will later use to derive the clustering metric.

The following best-fit linear approximation function is
obtained:

F (|Ci|) = a · |Ci|+ b, (14)

where a is 79.3 nW and b is -33.4 nW and the approximation
error is below 1.14%. We then repeat the simulation in
HSPICE, this time with the cluster powered off, and find
that the power consumption of the power-gating circuit is
approximately doubled. Therefore, for simplicity, instead of
computing the power consumption of the power-gating circuit
when the cluster is powered off, we use the same linear best-fit
function as in Eq. (14) with the coefficients multiplied by a
factor of two.

Following the expressions (13) and (14), we can write:

W (SM) =
K∑
i=1

(
POFF(Ci) · (2a · |Ci|+ 2b)+

+(1− POFF(Ci))(WMUX · |Ci|+ a · |Ci|+ b)
)

(15)

(b) Derivation of new clustering metric: Adding a multiplexer
to a cluster affects the overall power consumption. This

4CurveExpert Professional

change in power consumption can be found by computing
the following expression:

∆W (Ci) = WIN(Ci)−WOUT(Ci). (16)

Here, WIN(Ci) is the power consumption of the cluster
Ci after the multiplexer is added to the cluster. Similarly,
WOUT(Ci) is the power consumption of the cluster before
the multiplexer is added. These two values are related to the
number of dimensions equal to zero in the cluster pattern (N0),
the pattern length N , and the impact of adding the multiplexer
to the cluster on the number of dimensions equal to zero
(∆N0):

POFF,IN =
N0

N
,

POFF,OUT =
N0 −∆N0

N
. (17)

Following the expressions (14) and (12), equation (16)
becomes:

∆W (Ci) = POFF,IN[2a(|Ci|+ 1) + 2b]+

+(1− POFF,IN)[WMUX(|Ci|+ 1) + a(|Ci|+ 1) + b]−
−POFF,OUT(2a |Ci|+ 2b)−

−(1− POFF,OUT)[WMUX |Ci|+ a |Ci|+ b].
(18)

After applying the expression in (17) to the previous
equation, we obtain:

∆W (Ci) =
1

N

{
∆N0[(WMUX − a)(|Ci|+ 1)− b]−

−N0(a−WMUX)
}

+WMUX + a. (19)

Finally, knowing that WMUX, a, and N are constant, mini-
mizing ∆W becomes equivalent to minimizing the following
simplified objective function:

W = ∆N0[(WMUX − a)(|Ci|+ 1)− b]−
−N0(a−WMUX) (20)

(c) Distinguishing between small and big multiplexers: In all
previously derived expressions, we use a single variable to
denote power consumption of a routing multiplexer, WMUX.
However, not all multiplexers in routing switch matrices are
necessarily of the same size. As discussed in Section III-A, in
the architectural model of Stratix-IV FPGA, we uncover that
the switch matrices are composed of two types of multiplexers,
different in size.

Therefore, their power consumption differs: it is higher
for the large multiplexers. Hence, particularly high priority
should be given to efficiently clustering the large multiplexers.
In adding a new multiplexer to a cluster, two scenarios should
thus be distinguished:
1) The new multiplexer is small, in which case the power
consumption increase caused by assigning the multiplexer to
the cluster can be computed from (18).
2) The new multiplexer is large, capable of providing M-
times more power saving if clustered well, i.e., if it can be
powered off. Here,M is the ratio of the power consumption

VOLUME NN, 20xx 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

of a large multiplexer over the power consumption of a small
one, which we compute in HSPICE simulation. Hence, adding
a large multiplexer becomes equivalent to addingM small
multiplexers to the cluster. Accordingly, the equation (18)
becomes:

∆W =
1

N

{
∆N0[(WMUX − a)(|Ci|+M)− b]+

+M ·N0(a−WMUX)
}

+M ·WMUX +M · a (21)

Once again, given that WMUX, N , a, and b are constants,
minimizing the power consumption increase due to the
inclusion of a large multiplexer in the cluster corresponds
to minimizing the following metric:

WLARGE = ∆N0[(WMUX − a)(|Ci|+M)− b]−
−M ·N0(a−WMUX) (22)

The algorithm implementing the described clustering is, in
its essence, very similar to Algorithm 5. The main difference
is in the computation of the similarity metric and in the fact
that the metric differs in the function of the multiplexer size.

C. POWER-GATING AWARE ROUTING
Once the power-gating regions are implemented in the FPGA
fabric, it seems natural to try to make the best use of them;
that is precisely our next step.

Let us take all the benchmarks in Table 4—we will explain
them in more detail in the upcoming section—and apply SiM-
IPR-MP clustering to find the power-gating regions. Then, let
us take the resulting FPGA switch-matrix architecture, and
use it to place and route the benchmarks. After counting the
used (occupied) versus unused routing multiplexers, we arrive
to the plot shown in Fig. 9. Interestingly, the vast majority
of power-gating regions (79.3%) has low utilisation rate: less
than 25% of their muxes are used. Additionally, we find that
there are only around 5% of all the power-gating regions
where at least half of the multiplexers are used.

If there would be a possibility to guide the FPGA router
away from the fully unused power-gating regions and towards
those that are already in use (i.e., cannot be powered off),
higher power saving could be achieved. This idea is illustrated
in the example in Fig. 10, showing two power-gating regions.
The first region is composed of five multiplexers shaded in
dark grey; 80% of them are already occupied (dashed red lines
correspond to the already routed connections). The second
region is composed of six multiplexers shaded in light grey. If
the FPGA router could avoid the second region by replacing
the tentative connection marked as (1) with the connection
marked as (2), then the second power-gating group would
remain fully unused and, consequently, it could be powered
off. To make the best use of the available power-gating regions,
we need to enhance the FPGA routing algorithm: make it
aware of the existence of the power-gating regions and have it
use them efficiently.
(a) FPGA routing problem and algorithm: The primary data
structure representing FPGA routing resources is the directed

79.3%

15.21% 4.9%

0.59%

0%-25%

25%-50%

50%-75%

75%-100%

FIGURE 9. The rate of resource utilization in power-gating regions: In the vast
majority of power gating groups (in blue) less than a quarter of the resources
is used. In addition, the rate of highly-used power gating groups is lower than
1% (in yellow).

(1)

First	power	gating	group

Top

Le
ft

Bottom

LAB LAB

LABLAB

R
ig
ht

Second	power	gating	group
(2)	

FIGURE 10. The role of routing modification in increasing the power gating
opportunities. Here, by modifying the routing of nets (replacing the connection
(1) with the connection (2)), we can extract some unused groups to act as
power gating opportunities (the first power gating group).

Routing Resource Graph (RRG) G = (V,E), where V is the
set of vertices and E is the set of edges. Each vertex v ∈ V
represents wires and pins that are internal to FPGA. Each edge
eij ∈ E represents a programmable connection point between
a pin and a wire segment, or a programmable routing switch
between two wire segments. Each signal i to route through
G forms a net Ni = (si, {ti,1, ti,2, ..., ti,m}), where si is the
net source vertex and {ti,1, ti,2, ..., ti,m} are the sinks. The
solution to the routing problem of the net Ni is a set of paths
from the source si to all the net sinks; these paths form a
directed routing tree RT (Ni) ⊂ G. Routing is successful if
the routing trees of different nets are disjoint in G.

In 1995, Mc Murchie and Ebeling presented PathFinder, an
iterative algorithm that achieves a good compromise between
two conflicting goals: eliminating congestion and minimizing
critical path delay [57]. Its distinctive feature is the existence
of a cost of using a given vertex v in a route. This cost depends
on the delay of the vertex and its congestion history. While
signals compete for vertex v, they negotiate and the cost
evolves as the algorithm runs. This algorithm, also called
negotiation-based router, is used in the modern commercial

12 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

and research FPGA design tools, VTR included. PathFinder
implementation is a triple-nested loop:
• The outer loop (all-net router), invokes the middle loop

(signal router), for all signals i to be routed. If there is no
congestion, i.e., no routing trees share routing resources,
PathFinder terminates. Additionally, if a user-defined
number of iterations is exceeded, PathFinder terminates.
Otherwise, before proceeding to the next iteration, all-net
router updates the second-order (also called historical
or accumulated congestion) costs h(v) of all congested
nodes.

• Each signal router iteration starts by riping up the exist-
ing routing tree RT (Ni) of a net Ni. As a consequence,
the occupancy of nodes in RT (Ni) is decreased and
their first-order (also called present congestion) costs
p(v) are updated accordingly. Then, it invokes the inner
loop (maze expansion) to re-route the net Ni. Once new
routing tree is created, the present congestion costs of all
congested nodes in RT (Ni) are updated.

• Maze expansion traverses the RRG, starting from the
source node of a net. It initializes the routing treeRT (Ni)
with the source node. Then, it expands the source node,
i.e., uncovers all its neighbors and stores them in a
Priority Queue (PQ) sorted by their costs. These costs
are a function of a) the node base cost b(v) (equal to the
delay of the node, delay(v)), b) its present cost p(v), c)
its accumulated cost h(v), and d) the net criticality:

Cost(v) = Crit(i, j) · delay(v)+

+
(

1− Crit(i, j)
)
b(v)h(v)p(v).

(23)

The first term in (23) is a delay-sensitive term, while the
second is congestion-based. The criticality of a net is
equal to:

Crit(i, j) = 1− slack(i, j)

Dmax
, (24)

where Dmax denotes the delay of the critical path of the
circuit and slack(i, j) is the slack of source and sink j
connection of net i. In each subsequent maze expansion
iteration, the lowest-cost vertex vmin is extracted from
PQ. If vmin is a sink of the net Ni, a path is constructed
by invoking a backtrace procedure and added toRT (Ni).
Otherwise, vmin is expanded and all its neighboring
nodes which have not been previously visited are inserted
in the PQ. Maze expansion continues until paths to all
sinks are found and the routing tree is complete.

(b) Power-gating-aware FPGA routing: To make the routing
algorithm aware of the existence of power-gating clusters, we
introduce two enhancements. The first modification concerns
the routing resource graph: for every vertex v that corresponds
to a switch-matrix routing multiplexer, we introduce an
additional cost named power-gating cost, or PG(v).

If the power-gating cluster to which the multiplexer v
belongs is already in use (i.e., at least one of its members
is occupied), then the cost PG(v) is cleared, to prevent it from

having an impact on the FPGA routing algorithm. If, however,
the power-gating cluster is not used (i.e., entirely unoccupied),
then we choose to scale the cost with the cluster size and the
routing iteration i as follows:

PG(v) =

{
0, if cluster is in use,
b(v) · |C(v)| · i , otherwise.

(25)

By scaling the cost with the cluster size and the iteration count,
we strongly encourage the router to avoid routing through the
unused power-gating regions. Scaling with the iteration count
is common; it is applied by PathFinder when updating the
first-order p(v) and the second-order h(v) costs.

The second enhancement we introduce concerns the compu-
tation of the total cost of a routing multiplexer, shown in (23).
To avoid the new cost function directly affecting the circuit
critical path delay, we choose to augment the congestion-based
part of the cost, by including PG(v):

Cost(v) = Crit(i, j) · delay(v)+

+
(

1− Crit(i, j)
)(
b(v)h(v)p(v) + PG(v)

)
.

(26)

Finally, to account for the presence of large and small
multiplexers in FPGA switch matrices, we further improve
the computation of PG(v):

PG(v) =

{
0, if cluster is in use,
b(v) · (NL · M+NS) · i , otherwise.

(27)
Here, M is the ratio of the power consumption of a large
multiplexer over the power consumption of a small one, which
we compute in HSPICE simulation. NL and NS are the
number of large and small multiplexers in the power-gating
cluster of the multiplexer v, respectively. Our proposed routing
algorithm is different from the previous studies [5], [6] as we
precisely consider the architecture of modern FPGAs with
various sizes of routing multiplexers. In addition, in contrast
to [6], we do not scale down the routing cost with the number
of used resources in a power gating region. This is due to
the fact that utilizing only one multiplexer in a power gating
region forces it to be powered ON and the number of the
used multiplexer in a power gating region does not affect its
efficiency for power gating. Our scaling of the routing cost
with the routing iteration count forces the routing algorithm
to avoid multiplexers in unused power gating regions as long
as that is possible.

We implement the described enhancement directly in VTR
8.0 and discuss the experimental results in the next section.

V. EXPERIMENTAL SETUP AND RESULTS
In this section, we first detail the implementation and evalua-
tion flow including the associated toolsets, the architectural
parameters, and the used benchmark suites. Afterwards, we
present the evaluation of the effectiveness of our proposed
power gating architectures and the enhanced routing algorithm.
Lastly, we provide a comprehensive comparison of our
proposed approaches and the closely related research work [5]–
[7].

VOLUME NN, 20xx 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

TABLE 4. Benchmarks: The total number of reconfigurable blocks and DSPs is as reported in the work by Murray et al. [28]. The FPGA size is obtained by running
the placement and routing of the benchmarks in VTR 8.0, using the Stratix-IV FPGA architectural model.

No. Name # Blocks DSPs FPGA Size EXP1 EXP2 EXP3 Application
B1 sparcT1_chip2 814,799 24 279 × 207 L L L Multi-coreµP
B2 LU_Network 630,212 896 221 × 164 L L L Matrix Decomposition
B3 mes_noc 548,047 0 192 × 142 L L L On-chip Network
B4 gsm_switch 487,454 0 255 × 189 L L L Communication Switch
B5 denoise 343,263 192 150 × 111 L T L Image Processing
B6 sparcT2_core 287,839 0 152 × 113 L T L µP Core
B7 cholesky_bdti 257,750 1,027 169 × 125 L T T Matrix Decomposition
B8 minres 252,600 614 224 × 166 L T L Control Systems
B9 stap_qrd 237,193 579 158 × 117 L L L Radar Processing
B10 openCV 212,616 740 232 × 172 L T L Computer Vision
B11 dart 202,414 0 138 × 102 L L T Network Simulator
B12 bitonic_mesh 192,648 676 242 × 179 L L T Sorting
B13 des90 109,962 352 171 × 127 L L T MultiµP system
B14 neuron 90,779 565 129 × 96 L L T Neural Network
B15 segmentation 174,072 104 136 × 101 T L T Computer Vision
B16 SLAM_spheric 124,648 296 124 × 92 T L T Control Systems
B17 cholesky_mc 108,239 452 125 × 93 T L T Matrix Decomposition
B18 stereo_vision 92,662 152 129 × 96 T L T Image Processing
B19 sparcT1_core 91,235 8 82 × 61 T L T µP Core

A. EXPERIMENTAL SETUP
To evaluate the power-gating approaches, we select the Titan
benchmarks [28]. These benchmark circuits cover a wide
range of application domains. They represent very large
industrial-scale designs, many of which contain heterogeneous
blocks common in modern FPGAs. In Table 4, we list the
benchmark names, the number of reconfigurable blocks they
occupy, the number of DSP blocks in use, and the minimal
FPGA size needed to place and route them successfully.
Additionally, Table 4 shows how we partition the benchmarks
into learning (L) and testing (T) sets in three experiments
(EXP1, EXP2, and EXP3). In each experiment, the learning
benchmarks are used to determine the power-gating clusters,
whereas the test benchmarks are used to evaluate their
efficiency.

To evaluate the efficiency of our power-gating approaches,
we use the Stratix-IV FPGA architecture model—the most
advanced FPGA architecture model provided as part of the
latest Verilog-to-Routing tool (VTR 8.0) [27], [37]. This
FPGA model contains heterogeneous routing and logic re-
sources, similar to that of commercial FPGA devices. The
details of the Stratix-IV FPGA architecture model were
presented in Section III. In VTR, we set the channel width
to W = 300, to provide enough routing resources for the
largest of the benchmarks. We use COFFE [29] fed with
the 22 nm Predictive Technology Model (PTM) [59] to
automatically generate the transistor sizing, which we then
import to HSPICE to estimate the area, delay, and power
consumption of the various FPGA resources.

B. EXPERIMENTAL RESULTS
In the following subsections, we present a number of exper-
iments in which we assess the performance of our power-
gating methods, by comparing them among themselves and
against the approaches proposed by other researchers. Our
first comparison metric is the number of routing multiplexers
that can be switched off (Section V-B1). Then, we exam-
ine the effectiveness of our enhanced router in increasing

this particular metric (Section V-B2). Next, we compute
the second comparison metric: the area overhead of the
power-gating logic (Section V-B3). Afterwards, we focus and
elaborate on analyzing the area overhead versus the static
power consumption of the FPGA routing resources. Finally,
we provide a detailed comparison of our two best-performing
methods: SiM-IPR and SiM-IPR-MP (Section V-B4).

1) How many routing muxes can be switched off?
The most straightforward way to compare our clustering algo-
rithms is to count the number of routing multiplexers that can
be switched off (powered off). Table 5 lists the obtained results,
for every test benchmark in the three experiments EXP1,
EXP2, and EXP3. To facilitate the comparison, the results
are normalized with respect to the number of multiplexers
that can be switched off when K-means clustering is used
instead. In all experiments, we vary the number of clusters K,
by setting it to 4, 8, 16, 24, or 32.

The results in Table 5 show that every subsequent proposed
strategy resulted in increased (and thus improved) number of
multiplexers that can be switched off. Next, for low number
of clusters (4, 8, 16), we see that K-means algorithm is,
on average, superior than SiM, SiM-PR, and SiM-IPR. For
higher number of clusters, however, SiM-IPR and SiM-IPR-
MP take over. Finally, SiM-IPR-MP clustering algorithm is the
most efficient: For all values of K, SiM-IPR-MP outperforms
all of the SiM, SiMPR, SiM-IPR approaches, on average.
Furthermore, for 32 clusters per switch matrix, SiM-IPR-MP
algorithm allows for 28% more, on average, multiplexers
that can be switched off, compared to the baseline K-means
clustering.

Let us now compare SiM-IPR-MP approach to the heuristics
presented in previous studies, in particular those of Bsoul
et al. [5] (K = 1), Hoo et al. [6] (two versions: K = 4
and K = 85), and Seifoori et al. [7] (K = 32, clusters the

5All multiplexers in each side are clustered in one power gating group for
K = 4, while small multiplexers 12:1 and big multiplexers 40:1 in each side
of switch matrices are clustered in different power gating groups in K = 8.

14 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

TABLE 5. Number of muxes that can be switched off for 4, 8, 16, 24, and 32 clusters per switch matrix, normalized to those of K-means algorithm. It can be noticed
that for low number of clusters (4,8,16), K-means is superior, whereas for higher number of clusters (24, 32) SiM-IPR-MP takes over, often outperforming K-means
by 10–20%.

Experiment- SiM SiM-PR SiM-IPR SiM-IPR-MP
Benchmark K = 32 K = 24 K = 16 K = 8 K = 4 K = 32 K = 24 K = 16 K = 8 K = 4 K = 32 K = 24 K = 16 K = 8 K = 4 K = 32 K = 24 K = 16 K = 8 K = 4

EXP1-B15 1.15 1.09 0.96 0.87 0.82 1.18 1.10 0.97 0.86 0.82 1.18 1.11 0.98 0.87 0.82 1.32 1.26 1.14 1.07 1.04
EXP1-B16 1.07 1.04 0.97 0.9 0.86 1.09 1.04 0.97 0.88 0.86 1.09 1.05 0.98 0.9 0.86 1.22 1.19 1.13 1.09 1.07
EXP1-B17 1.20 1.15 0.03 0.92 0.85 1.21 1.16 1.03 0.89 0.84 1.22 1.16 1.03 0.87 1.07 1.36 1.32 1.2 1.11 1.06
EXP1-B18 1.12 1.1 1.02 0.90 0.83 1.12 1.09 1.02 0.86 0.82 1.13 0.99 1.02 0.88 0.8 1.27 1.25 1.18 1.12 1.07
EXP1-B19 1.09 1.02 0.88 0.76 0.62 1.13 1.02 0.89 0.77 0.60 1.14 1.04 0.92 0.84 0.64 1.25 1.17 1.09 0.97 0.9
EXP2-B5 1.10 0.91 0.69 0.68 0.47 1.12 0.95 0.72 0.75 0.55 1.18 1.00 0.82 0.90 0.50 1.36 1.11 0.92 0.74 0.85
EXP2-B6 1.01 0.90 0.78 0.82 0.62 1.06 0.95 0.88 0.96 0.65 1.03 0.92 0.80 0.86 0.67 1.2 1.03 0.96 0.90 0.85
EXP2-B7 1.2 1.11 1.00 0.92 0.85 1.19 1.12 1.00 0.94 0.86 1.21 1.12 1.00 0.92 0.87 1.39 1.28 1.18 1.09 1.07
EXP2-B8 1.23 1.17 1.05 0.88 0.72 1.23 1.17 1.05 0.89 0.73 1.23 1.17 1.03 0.87 0.75 1.41 1.34 1.26 1.14 1.07
EXP2-B10 1.12 1.07 0.99 0.88 0.80 1.12 1.07 0.99 0.89 0.81 1.13 1.08 0.99 0.89 0.83 1.29 1.23 1.17 1.09 1.07
EXP3-B7 1.06 0.81 0.91 0.79 0.75 1.07 1.02 0.91 0.84 0.79 1.16 1.06 0.96 0.92 0.85 1.28 1.23 1.12 1.06 1.02
EXP3-B11 1.02 0.97 0.91 0.74 0.68 1.03 0.99 0.89 0.81 0.73 1.09 1.02 0.95 0.90 0.81 1.18 1.14 1.08 1.05 1.03
EXP3-B12 1.01 0.94 0.83 0.59 0.49 1.04 0.97 0.82 0.66 0.57 1.14 1.03 0.91 0.85 0.68 1.31 1.28 1.19 1.11 1.00
EXP3-B13 1.00 0.93 1.26 0.54 0.40 1.03 0.96 0.79 0.62 0.49 1.14 1.02 0.90 0.82 0.62 1.32 1.28 1.18 1.10 0.98
EXP3-B14 0.98 0.92 0.83 0.57 0.49 1.01 0.95 0.82 0.68 0.57 1.10 1.00 0.90 0.84 0.7 1.25 1.22 1.15 1.08 1.02
EXP3-B15 1.05 0.98 0.87 0.73 0.69 1.07 1.01 0.88 0.79 0.73 1.16 1.05 0.94 0.88 0.77 1.28 1.21 1.10 1.05 0.99
EXP3-B16 1.00 0.95 0.90 0.74 0.69 1.02 0.98 0.89 0.82 0.75 1.08 1.01 0.94 0.90 0.83 1.18 1.14 1.09 1.06 1.02
EXP3-B17 1.05 1.00 0.90 0.73 0.67 1.07 1.02 0.90 0.79 0.73 1.17 1.06 0.97 0.90 0.82 1.31 1.26 1.16 1.08 1.02
EXP3-B18 0.98 0.93 0.87 0.67 0.62 1.01 0.97 0.86 0.76 0.68 1.09 1.01 0.93 0.87 0.79 1.22 1.19 1.13 1.09 1.02
EXP3-B19 1.06 0.99 0.86 0.71 0.57 1.07 1.02 0.88 0.76 0.64 1.15 1.03 0.92 0.80 0.68 1.22 1.13 1.03 0.96 0.9
Geomean 1.07 0.99 0.92 0.76 0.66 1.09 1.03 0.90 0.81 0.7 1.14 1.04 0.94 0.87 0.76 1.28 1.21 1.12 1.04 1.00

TABLE 6. The percentage of all multiplexers that can be switched off using the power-gating schemes proposed in related research works [5]–[7] versus our best
performing clustering algorithm SiM-IPR-MP.

Experiment- Bsoul et al. [5] Hoo et al. [6] SiM-IPR-MP Hoo et al. [6] SiM-IPR-MP Seifoori et al. [7] SiM-IPR-MP Enhanced routing
Benchmark K = 1(%) K = 4(%) K = 4(%) K = 8(%) K = 8(%) K = 32(%) K = 32(%) K = 32(%)

(average of 10 runs) (average of 10 runs) (average of 10 runs) (average of 10 runs)
EXP1-B15 8.70 14.40 18.48 16.76 24.62 31.09 48.31 55.78
EXP1-B16 15.28 22.66 30.10 24.66 35.69 35.62 53.04 57.50
EXP1-B17 10.24 17.31 22.85 19.50 30.28 36.41 57.01 62.27
EXP1-B18 19.17 33.97 45.32 37.11 56.48 51.48 82.06 85.97
EXP1-B19 0.35 2.42 2.71 4.03 5.31 12.61 19.31 24.30
EXP2-B5 0.19 1.97 1.73 4.34 3.64 14.86 21.74 32.45
EXP2-B6 0.13 1.35 1.29 2.74 2.64 9.23 13.81 18.17
EXP2-B7 11.46 15.99 21.02 18.14 26.89 33.39 52.01 57.04
EXP2-B8 6.54 21.22 27.12 24.32 39.53 44.10 69.90 73.93
EXP2-B10 17.58 28.55 36.65 31.37 45.79 43.44 69.51 71.62
EXP3-B7 11.46 15.99 19.96 18.14 25.84 33.39 49.82 54.56
EXP3-B11 12.27 17.97 22.22 19.86 26.88 28.12 42.38 46.85
EXP3-B12 6.17 18.48 22.04 21.69 33.46 40.44 61.43 64.19
EXP3-B13 2.97 15.86 18.30 19.03 29.38 37.73 57.34 60.44
EXP3-B14 10.36 28.17 34.24 31.38 45.98 47.59 72.41 76.71
EXP3-B15 8.70 14.41 17.26 16.76 23.55 31.09 46.32 53.89
EXP3-B16 15.28 22.66 28.13 24.66 34.44 35.62 50.76 54.84
EXP3-B17 10.24 17.31 21.28 19.50 29.04 36.41 54.59 59.76
EXP3-B18 19.17 33.97 42.47 37.11 54.13 51.48 77.34 81.40
EXP3-B19 0.35 2.42 2.47 4.03 5.01 12.61 18.49 23.23
Geomean 4.93 12.76 15.28 15.94 22.07 30.24 45.92 51.74

multiplexers driving the same track in the same power gating
groups). Table 6 reports how many (in %) of all routing
multiplexers can be turned off, for all the test benchmarks and
in all three experiments. Since the pattern of some clusters in
each clustering iteration of SiM-IPR-MP algorithm is replaced
with a randomly selected member of the cluster, the achieved
clustering varies randomly from run to run. To investigate how
this randomness would affect the number of multiplexers that
can be powered off, we repeat the SiM-IPR-MP clustering
algorithm for each benchmark 10 times. In the last column
of Table 6, we add the values obtained when our enhanced
router is used after the clustering with SiM-IPR-MP, which
also has been repeated 10 times. The average of the standard
deviation across 10 runs over all benchmarks in SiM-IPR-MP
clustering algorithm for four, eight, and 32 clusters per switch
matrix is 0.36%, 0.25%, and 0.2%, respectively. Furthermore,

the maximum standard deviation is 1.25%, 0.81%, and 2.38%,
respectively. The average of the standard deviation across
10 runs over all benchmarks for enhanced router is 0.61%,
while the maximum is 1.18%. This indicates that there is good
agreement over the repeated simulation runs and suggests
that running simulation for only one time can effectively
verify the proposed algorithms. Looking at the average results,
we see the following: For four clusters, SiM-IPR-MP can
power off additional 20% of the routing muxes (15.28% vs.
12.76%). For eight clusters, it can power off additional 38%
multiplexers (22.07% vs. 15.94%) and, for 32 clusters, this
number increases to 52% multiplexers (45.92% vs. 30.24%).
Finally, the enhanced routing helps power off additional
19.3% of all the routing multiplexers, amounting to ≈71%
improvement (51.74% vs. 30.24%) compared to the best static
power-gating approach reported so far.

VOLUME NN, 20xx 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

TABLE 7. Number of muxes that can be switched off when the enhanced
routing algorithm and SiM-IPR-MP clustering are used, for 16, 24, and 32
clusters per switch matrix, normalized to the corresponding number of muxes
in the absence of the enhanced routing algorithm. The results show that the
enhanced routing algorithm helps increasing the power gating opportunities by
10–18%, on average.

Experiment- Power-Gating-Aware Routing
Benchmark K = 32 K = 24 K = 16

EXP1-B15 1.16 1.26 1.24
EXP1-B16 1.09 1.14 1.10
EXP1-B17 1.10 1.17 1.15
EXP1-B18 1.05 1.09 1.10
EXP1-B19 1.25 1.44 -
EXP2-B5 1.45 1.76 2.02
EXP2-B6 1.30 1.42 -
EXP2-B7 1.08 1.14 1.16
EXP2-B8 1.05 1.08 1.12
EXP2-B10 1.02 1.04 1.07
EXP3-B7 1.04 1.02 1.11
EXP3-B11 1.26 1.01 -
EXP3-B12 1.09 1.03 1.11
EXP3-B13 1.16 1.03 1.25
EXP3-B14 1.05 1.01 1.14
EXP3-B15 1.04 1.08 1.14
EXP3-B16 1.11 1.12 1.15
EXP3-B17 1.09 1.13 1.17
EXP3-B18 1.09 0.83 1.19
EXP3-B19 1.04 0.98 1.13
Geomean 1.12 1.12 1.18

TABLE 8. Critical path delay when the enhanced routing algorithm is used, for
16, 24, and 32 clusters, normalized with the critical path delay obtained using
the unmodified VTR router.

Experiment- Power-Gating-Aware Routing
Benchmark K = 32 K = 24 K = 16

EXP1-B15 0.99 1.00 0.99
EXP1-B16 0.99 1.00 1.00
EXP1-B17 1.13 1.00 1.50
EXP1-B18 0.99 0.92 0.98
EXP1-B19 1.13 0.85 -
EXP2-B5 0.99 0.99 0.99
EXP2-B6 1.08 1.12 -
EXP2-B7 1.08 1.17 1.09
EXP2-B8 1.19 1.52 1.40
EXP2-B10 1.18 1.23 1.29
EXP3-B7 0.99 1.00 1.11
EXP3-B11 1.18 1.04 -
EXP3-B12 0.99 1.01 1.00
EXP3-B13 0.99 1.01 1.00
EXP3-B14 0.99 1.00 1.06
EXP3-B15 1.26 1.14 1.24
EXP3-B16 1.09 1.14 1.19
EXP3-B17 1.10 1.47 1.29
EXP3-B18 1.23 1.25 1.36
EXP3-B19 1.26 1.21 1.18
Geomean 1.09 1.09 1.15

2) Effectiveness of the power-gating-aware router
Table 7 shows the effectiveness of power-gating-aware routing
algorithm in increasing the power gating opportunities. We
test this routing algorithm for SiM-IPR-MP clustering and the
number of clusters set to 16, 24, and 32. Reducing the number
of clusters below 16 results in higher number of multiplexers
in each power gating cluster. As Eq. (27) suggests, with the
increase of the number of multiplexers per cluster, the routing
resource cost CostPG increases as well. When this cost is
too high, the routing fails, which is why the enhanced routing

TABLE 9. The area overhead in the FPGA routing switch matrices after
adding the power-gating logic, for SiM-IPR clustering algorithm.

SiM-IPR SiM-IPR SiM-IPR SiM-IPR SiM-IPR
K = 32 K = 24 K = 16 K = 8 K = 4

5.48% 4.12% 2.69% 1.18% 0.58%

TABLE 10. The area overhead in the FPGA routing switch matrices after
adding the power-gating logic, for SIM-IPR-MP clustering algorithm.

SiM-IPR-MP SiM-IPR-MP SiM-IPR-MP SiM-IPR-MP SiM-IPR-MP
K = 32 K = 24 K = 16 K = 8 K = 4

5.61% 4.21% 2.95% 1.23% 0.64%

TABLE 11. The area overhead in the routing switch matrices after adding the
power-gating logic, computed using the clustering approaches proposed by
other researchers.

Bsoul et al. [5] Hoo et al. [6] Hoo et al. [6] Seifoori et al. [7]
K = 1 K = 4 K = 8 K = 32

0.136% 0.55% 0.88% 6.16%

algorithm fails to successfully route the test benchmarks for
four and eight clusters per switch matrix, as well as the three
benchmarks indicated with a dash in Table 7. In almost all
the remaining experiments, we found that the enhanced router
helps to use better the power-gating regions: on average, the
number of additional muxes that could be switched off reaches
12% (forK = 32), 12% (forK = 24), and 18% (forK = 16);
this increase is comparable to the improvement brought by
SiM-IPR-MP over SiM-IPR.

When evaluating an FPGA router, it is common to report
its impact on the circuit critical path delay. We show this
data in Table 8; on average, the critical path delay increases
by 9% (K = 32 and K = 24) or 15% (K = 16). This
increase is due to the router putting more effort in saving
power than in finding the most efficient routes. When the
power consumption is the main design concern, this increase
can probably be tolerated.

3) Area overhead of the power-gating logic
Let us now compare the area overhead of our power-gating
architectures, which we define as the difference between the
area required for the routing switch matrix with and without
the power-gating circuitry. For this purpose, we perform
HSPICE circuit-level simulations, using the accurate netlists
of the FPGA power-gating regions generated by COFFE, and
22 nm predictive technology model [59].

Table 9 and Table 10 show the overhead obtained for SiM-
IPR and SiM-IPR-MP clustering approaches, averaged across
all benchmarks and all three experiments. Table 11 shows
the area overhead obtained for the power-gating approaches
proposed by other researchers. It is not surprising that the
power overhead grows with the increase in the number of
clusters per switch matrix K, because the number of power-
gating (sleep) transistors is proportional to the number of
clusters per switch matrix. For all values of K, we measure
similar area overhead compared to the respective related work.

16 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

The slight differences are due to the fact that the area overhead
depends on the cluster size and its composition: our clustering,
unlike the approaches proposed by other researchers, results in
nonuniform cluster sizes, which is favorable when the number
of clusters is high (K = 32).

Fig. 11 shows the power-gating area overhead (y-axis)
versus the achieved normalized static power consumption
(x-axis), for all test benchmarks and all three experiments,
selecting the following power-gating approaches: Bsoul et
al. [5] (K = 1), Hoo et al. [6] (two versions: K = 4 and
K = 8), Seifoori et al. [7] (K = 32), KM, SiM, and SiM-
IPR. The values on x-axis are normalized to the static power
consumption estimated for an FPGA architecture without any
of the power-gating mechanisms in place. This figure is in
line with data presented in Table 9, Table 10, and Table 11:
our approaches result in area overhead higher than that of
Bsoul et al. [5] (K = 1) and Hoo et al. [6] (K = 4 and
K = 8), but lower than that of Seifoori et al. [7]. Additionally,
our approaches result in all data points being shifted towards
lower normalized static power consumption (lower values on
x-axis), which is, again, in line with our design goals. Dashed
line emphasizes the best results achieved by our algorithms,
which outperform all the other power-gating strategies.

Fig. 12 compares SiM-IPR-MP, with and without the
enhanced routing, against the SiM-IPR approach. Each color in
the plot corresponds to a specific cluster sizeK. We notice that
as K grows, the area overhead grows as well; the reason for
this is the increased number of power-gating logic that needs
to be put in place. However, higher K has important benefits:
it helps reducing the normalized static power consumption (the
data points move to the left on x-axis). The square symbols
correspond to the enhanced router results—as expected, they
form the Pareto front. The normalized power consumption
of data points in Fig. 11 and Fig.12 is reported in Table 12.
Similar to Table 6, the normalized power consumption of data
points reported in Table 12 using SiM-IPR-MP algorithm
and enhanced router algorithm is the average across 10
runs over all benchmarks. We see that employing SiM-IPR-
MP algorithm with 32 clusters per switch matrix and the
power-gating aware router can shrink the FPGA static power
consumption by 53%, on average, whereas the best power-
gating approach presented by Seifoori et al. [7] achieves 31%
power reduction, on average; this presents an improvement of
about 70% over the state of the art.

4) How well SiM-IPR-MP groups the big muxes?

As discussed in Section IV-B4, one of the goals of SiM-IPR-
MP clustering algorithm is to improve the clustering of big
multiplexers, so that a higher number of them can be powered
off. To estimate how well SiM-IPR-MP performs this task, we
first count the number of big multiplexers that can be powered
off and compare it to SiM-IPR. Then, we introduce a metric
called power-reduction rate (PR), defined as

PR =
PIPR − PMP

PIPR
. (28)

Here, PIPR and PMP are the estimated power consumption
when SiM-IPR and SiM-IPR-MP clustering approaches are
used, respectively.

In Fig. 13, for all the test benchmarks and all three
experiments, we plot on y-axis the relative change in the
number of powered-off big multiplexers (the higher, the
better) and on x-axis the power reduction rate (in %). These
results demonstrate that SiM-IPR-MP clustering algorithm
does manage to improve the clustering of big multiplexers by
outperforming SiM-IPR approach in almost all test cases. In
the couple of encircled outlier cases, even though the number
of powered-off multiplexers worsens, the actual power saving
is improved, thanks to the comparatively higher number of
powered-off small multiplexers.

Fig. 14 provides another comparison of SiM-IPR-MP
and SiM-IPR algorithms. Each marker corresponds to one
experiment-benchmark pair. On x-axis, we show the power-
reduction rate, corresponding to Eq. (28). On y-axis, we
choose to show another metric: Power-Overhead-reduction
Rate (POR). It is computed as follows:

POR =
POIPR − POMP

POIPR
. (29)

Here, the power overhead PO is the difference between, on
the one hand, the sum of the power consumption of all the
powered-off regions and all the powered-on regions and, on
the other hand, the sum of the power consumption of all the
routing multiplexers when no power gating is put in place.
Therefore, the higher the value on y-axis, the higher the
power-overhead reduction, i.e., the lower the power overhead.
Analyzing the results in Fig. 14, we see that for almost all test
cases, SiM-IPR-MP is superior to SiM-IPR: the majority of the
data points are situated in the first quadrant. The highest power-
overhead reduction and the highest decrease in the overall
power consumption are both≈ 25%. There are, however, a few
encircled outliers, for which either the power overhead or the
overall power consumption is slightly increased compared to
SiM-IPR, due to the final cluster composition and the number
of small and big multiplexers in each cluster.

Fig. 15 shows the average of the power reduction rate of
data points in Fig. 14 versus the average of their normalized
power overhead. The y-axis on the left corresponds to the
average power-reduction rate and the y-axis on the right
corresponds the average of power overhead, which are nor-
malized to the routing power consumption of each benchmark
implemented in an architecture that does not support power
gating, for the sake of fair comparison. We can observe that
SiM-IPR-MP is superior in both the power-reduction rate
and the power-overhead. Additionally, 32 clusters per switch
matrix is once again the optimum configuration, with both
metrics reaching their high values.

VI. CONCLUSION
This paper discussed the effectiveness of leveraging machine-
learning approaches and power-gating aware routing in reduc-
ing the static power consumption of FPGA routing resources.

VOLUME NN, 20xx 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

0

1

2

3

4

5

6

7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
re

a
o

ve
rh

ea
d

 (
%

)

Normalized static power consumption in FPGA routing switch matrices

SiM-IPR-32 SiM-PR-32 SiM-32 KM-32 SiM-IPR-24 SiM-PR-24 SiM-24 KM-24 SiM-IPR-16 SiM-PR-16 SiM-16 KM-16

SiM-IPR-8 SiM-PR-8 SiM-8 KM-8 SiM-IPR-4 SiM-PR-4 SiM-4 KM-4 Bsoul-1 Hoo-4 Hoo-8 Seifoori-32

FIGURE 11. The power-gating area overhead versus the static power consumption of the FPGA routing network. The latter is normalized to the static power
consumption estimated for an FPGA architecture without any of the power-gating mechanisms in place. Each marker corresponds to one experiment-benchmark
pair.

0

1

2

3

4

5

6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

A
re

a
o

ve
rh

ea
d

 (
%

)

Normalized static power consumption in FPGA routing switch matrices

SiM-IPR (K=32) SiM-IPR-MP (K=32) Enhanced route (K=32) SiM-IPR (K=24) SiM-IPR-MP (K=24)

Enhanced router (K=24) SiM-IPR (K=16) SiM-IPR-MP (K=16) Enhanced router (K=16) SiM-IPR (K=8)

SiM-IPR-MP (K=8) SiM-IPR (K=4) SiM-IPR-MP (K=4)

FIGURE 12. The power-gating area overhead versus the static power consumption for SiM-IPR-MP and SiM-IPR clustering. The latter is normalized to the static
power consumption for an FPGA architecture without any of the power-gating mechanisms in place. Each marker corresponds to one experiment-benchmark pair.

TABLE 12. The static power consumption of the FPGA routing network in FPAG architectures that use the power gating schemes proposed in previous
studies [5]–[7] or our best performing clustering algorithm SiM-IPR-MP. The power consumption is normalized to the static power consumption of an FPGA
architecture which does not employ any power gating scheme.

Experiment- Bsoul et al. [5] Hoo et al. [6] SiM-IPR-MP Hoo et al. [6] SiM-IPR-MP Seifoori et al. [7] SiM-IPR-MP Enhanced routing
Benchmark K = 1 K = 4 K = 4 K = 8 K = 8 K = 32 K = 32 K = 32

(average of 10 runs) (average of 10 runs) (average of 10 runs) (average of 10 runs)
EXP1-B15 0.92 0.87 0.83 0.84 0.78 0.72 0.56 0.50
EXP1-B16 0.86 0.79 0.73 0.77 0.68 0.69 0.52 0.48
EXP1-B17 0.91 0.84 0.79 0.82 0.73 0.67 0.49 0.44
EXP1-B18 0.83 0.77 0.59 0.66 0.49 0.54 0.26 0.23
EXP1-B19 0.99 0.98 0.98 0.96 0.95 0.88 0.82 0.78
EXP2-B5 0.99 0.98 0.98 0.95 0.97 0.86 0.80 0.71
EXP2-B6 0.99 0.98 0.99 0.97 0.98 0.92 0.87 0.84
EXP2-B7 0.89 0.85 0.81 0.83 0.76 0.69 0.53 0.49
EXP2-B8 0.94 0.81 0.76 0.77 0.64 0.60 0.37 0.33
EXP2-B10 0.84 0.74 0.67 0.71 0.59 0.61 0.37 0.35
EXP3-B7 0.89 0.85 0.82 0.83 0.77 0.69 0.55 0.51
EXP3-B11 0.88 0.84 0.80 0.81 0.76 0.74 0.62 0.58
EXP3-B12 0.61 0.83 0.80 0.79 0.70 0.64 0.45 0.42
EXP3-B13 0.97 0.86 0.83 0.82 0.74 0.66 0.48 0.46
EXP3-B14 0.91 0.75 0.69 0.71 0.59 0.57 0.35 0.31
EXP3-B15 0.92 0.87 0.84 0.84 0.79 0.71 0.58 0.51
EXP3-B16 0.86 0.79 0.75 0.77 0.69 0.69 0.54 0.51
EXP3-B17 0.91 0.84 0.81 0.82 0.74 0.67 0.51 0.46
EXP3-B18 0.83 0.77 0.62 0.66 0.51 0.54 0.30 0.27
EXP3-B19 0.99 0.98 0.98 0.96 0.95 0.88 0.83 0.79
Geomean 0.89 0.85 0.80 0.81 0.73 0.69 0.51 0.47

18 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

-50

-30

-10

10

30

50

70

90

-2.5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Th
e

ch
an

ge
 r

at
e

o
f

th
e

n
u

m
b

er
 o

f
O

FF
 b

ig
 m

u
lt

ip
le

xe
rs

 (
%

)

Power reduction rate (%)

K=32 K=24 K=16 K=8 K=4

FIGURE 13. The power reduction rate in Eq. (28) versus the change rate of the number of switched OFF big multiplexers for SiM-IPR-MP clustering algorithm
versus with SiM-IPR, in three experiments of EXP1, EXP2, EXP3 and for various number of clusters. Each marker correspond to a specific number of clusters.

-10

-5

0

5

10

15

20

25

30

-2.5 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

P
o

w
er

 o
ve

rh
ea

d
 r

ed
u

ct
io

n
 r

at
e

(%
)

Power reduction rate (%)

K=32 K=24 K=16 K=8 K=4

FIGURE 14. The power reduction rate in Eq. (28) versus the power consumption overhead reduction rate in Eq. (29), for all three experiments EXP1, EXP2, and
EXP3. This figure illustrates the improvement brought by SiM-IPR-MP clustering algorithm over SiM-IPR.

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0

2

4

6

8

10

12

K=32 K=24 K=16 K=8 K=4

P
o

w
er

 o
ve

rh
ea

d
 (N

o
rm

al
iz

ed
)

P
o

w
e

r
re

d
u

ct
io

n
 r

at
e

(%
)

power saving
SiM-IPR-MP (power overhead)
SiM-IPR (power overhead)

FIGURE 15. The average of power-reduction rate and normalized
power-overhead, in the function of cluster size, for SiM-IPR-MP and SiM-IPR
clustering.

To improve the efficiency of previously proposed power-
gating techniques, which all relied on heuristic approaches,
we proposed a number of machine-learning inspired clustering
algorithms, each more efficient than previous: SiM, SiM-

PR, SiM-IPR, and SiM-IPR-MP. Additionally, we design
an improved FPGA router, which takes into account the
availability of power-gating regions and further helps their
efficient use. The experimental results are very promising:
in a setting with 32 clusters per switch matrix, our most
efficient clustering algorithm SiM-IPR-MP—which takes into
account the power overhead of the power-gating circuitry
and the routing multiplexer size—helps reducing the static
power consumption by additional ≈26% (0.51 vs. 0.69), on
average, with respect to the most efficient similar solution
proposed so far [7]. When power-gating aware routing is
applied together with SiM-IPR-MP clustering, we observe
additional ≈4% reduction in static power consumption, on
average. This work is, therefore, an important step towards
enabling wider presence of FPGAs in low-power applications.

REFERENCES
[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 203–215, Jan. 2007.

[2] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-grained

VOLUME NN, 20xx 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

power-gating for FPGA interconnect power reduction,” in Proceedings of
the Asia and South Pacific design automation conference, Shanghai China,
Jul. 2005, pp. 645–650.

[3] A. A. Bsoul and S. J. Wilton, “An FPGA architecture supporting dynami-
cally controlled power gating,” in Proceeding of International Conference
on Field-Programmable Technology (FPT), Beijing, China, Jan. 2010, pp.
1–8.

[4] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “Reducing leakage energy in FPGAs using region-constrained
placement,” in Proceedings of the 12th international symposium on field
programmable gate arrays, Monterey California USA, Feb. 2004, pp. 51–
58.

[5] A. A. Bsoul and S. J. Wilton, “An FPGA with power-gated switch blocks,”
in Proceedings of International Conference on Field-Programmable Tech-
nology (FPT), Seoul, South Korea, Jan. 2012, pp. 87–94.

[6] C. H. Hoo, Y. Ha, and A. Kumar, “A directional coarse-grained power
gated FPGA switch box and power gating aware routing algorithm,” in
Proceedings of 23rd International Conference on Field Programmable
Logic and Applications (FPL). Porto, Portugal: IEEE, Oct. 2013, pp.
1–4.

[7] Z. Seifoori, B. Khaleghi, and H. Asadi, “A power gating switch box
architecture in routing network of SRAM-based FPGAs in dark silicon
era,” in Proceeding of Design, Automation & Test in Europe Conference
& Exhibition (DATE), Lausanne, Switzerland, May 2017, pp. 1342–1347.

[8] T. Tuan and B. Lai, “Leakage power analysis of a 90nm FPGA,” in
Proceedings of the Custom Integrated Circuits Conference, San Jose, CA,
USA, USA, Dec. 2003, pp. 57–60.

[9] V. Degalahal and T. Tuan, “Methodology for high level estimation of
FPGA power consumption,” in Proceedings of the Asia and South Pacific
Design Automation Conference, Shanghai China, Jul. 2005, pp. 657–660.

[10] P. Huang, Z. Xing, T. Wang, Q. Wei, H. Wang, and G. Fu, “A brief survey
on power gating design,” in Proceeding of 10th International Conference
on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai,
China, Dec. 2010, pp. 788–790.

[11] H. Jiang, M. Marek-Sadowska, and S. R. Nassif, “Benefits and costs
of power-gating technique,” in International Conference on Computer
Design, San Jose, CA, USA, USA, Oct. 2005, pp. 559–566.

[12] A. A. Bsoul, S. J. Wilton, K. H. Tsoi, and W. Luk, “An FPGA architecture
and CAD flow supporting dynamically controlled power gating,” IEEE
Transactions on Very Large Scale Integration VLSI Systems, vol. 24, no. 1,
pp. 178–191, Feb. 2016.

[13] A. Ahari, B. Khaleghi, Z. Ebrahimi, H. Asadi, and M. B. Tahoori, “To-
wards dark silicon era in FPGAs using complementary hard logic design,”
in Proceeding of 24th International Conference on Field Programmable
Logic and Applications (FPL), Munich, Germany, Oct. 2014, pp. 1–6.

[14] S. Ishihara, M. Hariyama, and M. Kameyama, “A low-power FPGA based
on autonomous fine-grain power gating,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 19, no. 8, pp. 1394–1406, Jun.
2011.

[15] Z. Ebrahimi, B. Khaleghi, and H. Asadi, “PEAF: A power-efficient archi-
tecture for SRAM-based FPGAs using reconfigurable hard logic design
in dark silicon era,” IEEE Transactions on Computers, vol. 66, no. 6, pp.
982–995, Dec. 2017.

[16] S. Yazdanshenas and H. Asadi, “Fine-grained architecture in dark silicon
era for SRAM-based reconfigurable devices,” IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, vol. 61, no. 10, pp. 798–802, Aug.
2014.

[17] C. Li, Y. Dong, and T. Watanabe, “New power-aware placement for
region-based FPGA architecture combined with dynamic power gating by
PCHM,” in IEEE/ACM International Symposium on Low Power Electron-
ics and Design, Fukuoka, Japan, Aug. 2011, pp. 223–228.

[18] A. Mametjanov, P. Balaprakash, C. Choudary, P. D. Hovland, S. M. Wild,
and G. Sabin, “Autotuning FPGA design parameters for performance and
power,” in 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, Vancouver, BC, Canada, Jul. 2015, pp. 84–
91.

[19] N. Kapre, H. Ng, K. Teo, and J. Naude, “Intime: A machine learn-
ing approach for efficient selection of FPGA CAD tool parameters,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey California USA, Feb. 2015, pp. 23–
26.

[20] C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, “A parallel bandit-
based approach for autotuning FPGA compilation,” in Proceedings of

the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey California USA, Feb. 2017, pp. 157–166.

[21] Q. Yanghua, C. Adaikkala Raj, H. Ng, K. Teo, and N. Kapre, “Case
for design-specific machine learning in timing closure of FPGA designs,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey California USA, Feb. 2016, pp.
169–172.

[22] E. Ustun, S. Xiang, J. Gui, C. Yu, and Z. Zhang, “Lamda: Learning-
assisted multi-stage autotuning for FPGA design closure,” in 27th Annual
International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), San Diego, CA, USA, USA, Jun. 2019, pp. 74–77.

[23] Z. Qi, Y. Cai, and Q. Zhou, “Accurate prediction of detailed routing con-
gestion using supervised data learning,” in 32nd International Conference
on Computer Design (ICCD), Seoul, South Korea, Dec. 2014, pp. 97–103.

[24] G. Gréwal, S. Areibi, M. Westrik, Z. Abuowaimer, and B. Zhao, “Au-
tomatic flow selection and quality-of-result estimation for FPGA place-
ment,” in International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, USA, Jul. 2017, pp. 115–
123.

[25] C.-W. Pui, G. Chen, Y. Ma, E. F. Young, and B. Yu, “Clock-aware
ultrascale FPGA placement with machine learning routability prediction,”
in International Conference on Computer-Aided Design (ICCAD), Irvine,
CA, USA, Dec. 2017, pp. 929–936.

[26] J. Zhao, T. Liang, S. Sinha, and W. Zhang, “Machine learning based
routing congestion prediction in FPGA high-level synthesis,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), Florence,
Italy, Italy, May 2019, pp. 1130–1135.

[27] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-P.
Legault, E. Sha, A. G. Graham, J. Wu, M. J. Walker et al., “VTR 8:
High-performance cad and customizable FPGA architecture modelling,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 13, no. 2, pp. 1–55, May 2020.

[28] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Titan: Enabling large
and complex benchmarks in academic CAD,” in 23rd International Confer-
ence on Field programmable Logic and Applications, Porto, Portugal, Oct.
2013, pp. 1–8.

[29] C. Chiasson and V. Betz, “COFFE: Fully-automated transistor siz-
ing for FPGAs,” in Proceeding of International Conference on Field-
Programmable Technology (FPT), Kyoto, Japan, Jan. 2013, pp. 34–41.

[30] Z. Seifoori, H. Asadi, and M. Stojilović, “A machine learning approach
for power gating the FPGA routing network,” in International Conference
on Field-Programmable Technology (ICFPT), Tianjin, China, China, Feb.
2019, pp. 10–18.

[31] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[32] Z. Lin, J. Zhao, S. Sinha, and W. Zhang, “Hl-pow: A learning-based power
modeling framework for high-level synthesis,” in 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), Beijing, China, Jan.
2020, pp. 574–580.

[33] H. M. Makrani, F. Farahmand, H. Sayadi, S. Bondi, S. M. P. Dinakarrao,
H. Homayoun, and S. Rafatirad, “Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level synthesis
design,” in 29th International Conference on Field Programmable Logic
and Applications (FPL). Barcelona, Spain: IEEE, Sep. 2019, pp. 397–
403.

[34] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation delay
prediction for FPGA HLS using graph neural networks,” in Proceedings
of the 39th International Conference on Computer-Aided Design, Virtual
event USA, Nov. 2020, pp. 1–9.

[35] D. Maarouf, A. Alhyari, Z. Abuowaimer, T. Martin, A. Gunter, G. Gre-
wal, S. Areibi, and A. Vannelli, “Machine-learning based congestion
estimation for modern fpgas,” in 28th International Conference on Field
Programmable Logic and Applications (FPL). Dublin, Ireland: IEEE,
Aug. 2018, pp. 427–4277.

[36] “Virtex-6 FPGA configurable logic block.” User Guide, Xilinx, February,
2012.

[37] “StratixIV device handbook.” Handbook, Altera, January, 2016.
[38] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” IEEE Transactions on Recon-
figurable Technology and Systems TRETS, vol. 7, no. 2, pp. 1–30, Jul.
2014.

[39] (2005 (accessed December 30, 2018)) IWLS 2005 benchmarks. [Online].
Available: http://iwls.org/iwls2005/benchmarks.html

20 VOLUME NN, 20xx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3085005, IEEE Access

Seifoori et al.: Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Power-Aware Routing

[40] R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis.
Wiley New York, 1973, vol. 3.

[41] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Ad-
vances in knowledge discovery and data mining. The MIT Press, 1996.

[42] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

[43] A. Gersho and R. M. Gray, Vector quantization and signal compression.
Springer Science & Business Media, 2012, vol. 159.

[44] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transac-
tions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[45] S. Sharma and S. Rai, “Genetic k-means algorithm implementation and
analysis,” International Journal of Recent Technology and Engineering,
vol. 1, no. 2, pp. 117–120, Jun. 2012.

[46] Y.-C. Chiou and L. W. Lan, “Genetic clustering algorithms,” European
Journal of Operational Research, vol. 135, no. 2, pp. 413–427, Dec. 2001.

[47] P. K. Agarwal and C. M. Procopiuc, “Exact and approximation algorithms
for clustering,” Algorithmica, vol. 33, no. 2, pp. 201–226, Jan. 2002.

[48] S. Arora, P. Raghavan, and S. Rao, “Approximation schemes for Euclidean
k-medians and related problems,” in The 30th Annual ACM Symposium
on Theory of Computing. Dallas Texas USA: ACM, May 1998, pp. 106–
113.

[49] S. G. Kolliopoulos and S. Rao, “A nearly linear-time approximation
scheme for the Euclidean k-median problem,” (SIAM) Journal on Com-
puting, vol. 37, no. 3, pp. 757–782, Jun. 2007.

[50] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451–461, Feb. 2003.

[51] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., Jan. 2006.

[52] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recogni-
tion letters, vol. 31, no. 8, pp. 651–666, Jun. 2010.

[53] Z. Cai, M. Heydari, and G. Lin, “Clustering binary oligonucleotide finger-
print vectors for DNA clone classification analysis,” Journal of Combina-
torial Optimization, vol. 9, no. 2, pp. 199–211, Mar. 2005.

[54] Z. Cai, R. Goebel, M. R. Salavatipour, Y. Shi, L. Xu, and G. Lin, “Selecting
genes with dissimilar discrimination strength for sample class prediction,”
in Proceedings of the 5th Asia-Pacific Bioinformatics Conference. Hong
Kong, China: World Scientific, Jan. 2007, pp. 81–90.

[55] Z. Cai, L. Xu, Y. Shi, M. R. Salavatipour, R. Goebel, and G. Lin, “Using
gene clustering to identify discriminatory genes with higher classification
accuracy,” in Proceedings of Sixth Symposium on BioInformatics and
BioEngineering, Arlington, VA, USA, Dec. 2006, pp. 235–242.

[56] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[57] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Reconfigurable Computing.
Elsevier, May 2008, pp. 365–381.

[58] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study
of efficient initialization methods for the K-means clustering algorithm,”
Expert Systems with Applications, vol. 40, no. 1, pp. 200–210, Jan. 2013.

[59] (2013 (accessed November 1, 2020)) Predictive technology model (PTM).
[Online]. Available: http://ptm.asu.edu/

ZEINAB SEIFOORI received the B.Sc. and M.Sc.
degrees in computer engineering from Shahed
University and Sharif University of Technology
(SUT), Tehran, Iran, in 2006 and 2010, respec-
tively. From 2015, she has been working toward
the Ph.D. degree in computer engineering in Data
Storage, Networks, and Processing (DSN) Labo-
ratory at SUT under supervision of Dr. Hossein
Asadi. She spent nine months as a research assis-
tant at EPFL School of Computer and Communi-

cation Sciences. Her research interests include reconfigurable computing
and reliability of computer systems. She was nominated for the Best paper
award at 2019 International Conference on Field-Programmable Technology
(ICFPT).

HOSSEIN ASADI (M’08, SM’14) received the
BSc and MSc degrees in computer engineering
from the Sharif University of Technology (SUT),
Tehran, Iran, in 2000 and 2002, respectively, and
the PhD degree in computer engineering from
Northeastern University, Boston, MA, USA, in
2007. He was with EMC Corporation, Hopkinton,
MA, as a research scientist and senior hardware
engineer from 2006 to 2009. He is currently a
full professor in the Department of Computer

Engineering, SUT. He is the founder and director of the Data Storage,
Networks, and Processing (DSN) Laboratory and the director of Sharif High-
Performance Computing (HPC) Center. He is also the co-founder of HPDS
corp., designing and fabricating midrange and high-end data storage systems.
His current research interests include data storage systems and networks,
solid-state drives, operating systems, and high-performance, reconfigurable,
and dependable computing.

Dr. Asadi was a recipient of the Technical Award for the Best Robot
Design from the International RoboCup Rescue Competition, organized
by AAAI and RoboCup in 2001, a recipient of Best Paper Award at the
15th CSI International Symposium on Computer Architecture & Digital
Systems (CADS) in 2010, the Distinguished Lecturer Award from SUT in
2010, the Distinguished Researcher Award and the Distinguished Research
Institute Award from SUT in 2016, the Distinguished Technology Award
from SUT in 2017, and the Distinguished Research Lab Award from SUT
in 2019. He has been ranked among "Top-10" among 500+ faculties by
Research and Technology Deputy, SUT for five consecutive years from 2016
to 2020. More recently, he received the Best Paper Award at IEEE/ACM
Design, Automation, and Test in Europe (DATE) in 2019. He has served
as a guest editor of IEEE Transactions on Computers, an Associate Editor
of Microelectronics Reliability, a Program Co-Chair of CADS2015, and the
Program Chair of CSI National Computer Conference (CSICC2017). He is
a senior member of the IEEE.

MIRJANA STOJILOVIĆ (M’09–SM’19) re-
ceived the Dipl. Ing. and Ph.D. degrees from the
School of Electrical Engineering, University of
Belgrade, Serbia, in 2006 and 2013, respectively.
In 2016, she joined the School of Computer and
Communication Sciences, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne, Switzer-
land. Her current research interests include elec-
tronic design automation, reconfigurable comput-
ing, and hardware security.

In 2019, Dr. Stojilović was nominated for the Best Paper Award (BPA)
at the International Conference on Field-Programmable Technology (FPT).
She was a recipient of the BPA at EMC Europe 2016, the Young Scientist
Award at ICLP 2016, and the Young Author BPA at TELFOR 2012. In 2015,
the EPFL School of Computer and Communication Sciences presented her
with the Teaching Award.

Dr. Stojilović serves on the program committees of FPGA, FPL, and
FCCM conference. In 2021, she was on the BPA committee of the FPGA
conference. Since 2019, she has been leading the project “Secure FPGAs in
the Cloud,” funded by the Swiss National Science Foundation.

VOLUME NN, 20xx 21

