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Abstract

Among the medical imaging modalities, ultrasound (US) imaging is one of the safest,
most widespread, and least expensive method used in medical diagnosis. In the past
decades, several technological advances enabled the advent of ultrafast US imaging, an
acquisition technique capable of imaging large tissue zones at very high frame rates of
multiple kilohertz. Achieving such frame rates on large tissue zones enables the analysis of
complex physical phenomena occurring in the human body. For instance, such capability
enables estimating both very fast and very slow flows occurring in the cardiovascular
system, with high sensitivity. High frame rates also enable estimating micrometer tissue
displacements induced by naturally occurring or externally induced shear waves that
propagate through tissue at a few meters per second. Ultrafast US imaging is already at
the origin of several breakthrough imaging modes such as shear-weave elastography and
functional neuroimaging.
One of the main advantages of pulse-echo US imaging is that it is a dynamic imaging

modality. Conventional US images reconstructed using the well-known delay-and-sum
algorithm are characterized by speckle patterns. Despite being an “illusion” of the imag-
ing system, these patterns react coherently to underlying physical phenomena, thus
containing positional information of the tissue being imaged that can be exploited by
displacement estimation techniques. Because ultrafast acquisitions are performed using
unfocused wavefronts, resulting images are of low quality, characterized by broad main
lobes (low resolution) and high diffraction artifacts (low contrast) caused by grating lobes,
side lobes, and edge waves. Such artifacts can be detrimental to both lesion detection and
displacement estimation techniques, the latter being the core objectives of most ultrafast
US imaging modes. A natural way of increasing the image quality of consecutive frames
consists of averaging coherently multiple low-quality images obtained from differently
steered unfocused wavefronts, at the expense of a reduced frame rate and possible motion
artifacts.
This thesis aims at answering the increasing need for US image reconstructionmethods

capable of producing high-quality images from single ultrafast acquisitions, may it be
to improve the accuracy and robustness of ultrafast imaging modes such as shear-wave
elastography, to reduce the cost and complexity of 3-D ultrasound scanners, or to mitigate
the power and data transfer rate requirements of portable systems. This work builds
in the context of inverse problems, with an efficient modeling of the physical measure-
ment process (forward model) involved in ultrasound acquisitions. It leverages recent
deep-learning-based projection methods to overcome a crucial limitation of regularized
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ultrasound imaging: conventional image-processing regularizers are not well suited to
the high dynamic range and statistical properties of radio frequency ultrasound images,
especially in the presence of speckle patterns. Physical modeling is fundamental to this
work. It was crucial to derive a computationally tractable forward model for image recon-
struction, but also to develop a highly efficient, spline-based, spatial impulse response
ultrasound simulator that allowed generating sufficiently large datasets to train convo-
lutional neural networks. Applications were carried out in single-plane-wave imaging,
ultrafast displacement estimation, and sparse-array imaging.

Keywords Biomedical imaging, B-splines, convolutional neural networks, deep learning,
diffraction artifacts, displacement estimation, image reconstruction, inverse problems,
physical modeling, speckle tracking, ultrafast ultrasound imaging.
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Résumé

De toutes lesmodalités d’imageriemédicale, l’échographie est parmi les plus sûres, les plus
répandues et les moins onéreuses utilisées pour le diagnostic médical. Dans les dernières
décennies, plusieurs avancées technologiques ont permis l’avènement de l’échographie ul-
trarapide, une technique d’acquisition permettant d’imager de grandes régions tissulaires
à des cadences d’imagerie de plusieurs kilohertz. En atteignant de telles cadences sur de
larges zones, cela a ouvert la voie à l’analyse de phénomènes physiques complexes dans le
corps humain. Par exemple, cette capacité permet l’estimation de flux très rapides ou très
lents présents dans le système cardiovasculaire, avec une haute sensibilité. Ces cadences
élevées permettent également d’estimer des déplacements tissulaires micrométriques in-
duits par des ondes de cisaillement survenant naturellement ou induites extérieurement,
et se propageant dans les tissus à quelques mètres par seconde. L’échographie ultrarapide
est déjà à l’origine de plusieurs percées en imagerie, telles que l’élastographie par ondes
de cisaillement or la neuroimagerie fonctionnelle.
L’un des principaux avantages de l’échographie est qu’il s’agit d’une modalité d’im-

agerie dynamique, dite « en temps réel ». Les images d’échographie reconstruites par
la technique conventionnelle du « delay-and-sum » se caractérisent par la présence de
« speckle » (motifs tachetés). Bien que ces motifs ne soient qu’apparents, ils réagissent de
façon cohérente aux phénomènes physiques sous-jacents, portant ainsi une information
utile sur la position relative du tissu visualisé, qui peut être exploitée par des techniques
d’estimation de déplacements. Du fait que les acquisitions ultrarapides sont réalisées à
l’aide de fronts d’ondes non-focalisés, elles produisent en général des images de mauvaise
qualité, en raison de lobes principaux larges (faible résolution latérale), et entachées
d’artéfacts de diffraction (faible contraste), causés par des franges d’interférences, les
lobes latéraux et les ondes de bord. Ces artéfacts portent préjudice aussi bien à la détection
de lésions qu’aux techniques de mesure de déplacement, ces dernières étant au cœur des
objectifs de la plupart des méthodes d’échographie ultrarapide. Une approche naturelle
pour améliorer la qualité d’images successives consiste à moyenner de façon cohérente
une multitude d’images de faible qualité, obtenues à partir de fronts d’ondes d’angles
différents, au détriment d’une cadence d’imagerie réduite et de possibles artéfacts de
mouvement.
L’objectif de cette thèse est d’apporter une réponse au besoin grandissant de méthodes

de reconstruction d’images, capable de produire des images de haute qualité à partir
d’acquisitions ultrarapides individuelles, que ce soit pour améliorer la précision et la
robustesse de modes d’imagerie ultrarapide comme l’élastographie, pour réduire le coût
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et la complexité de systèmes 3D, ou pour réduire les exigences en puissance et taux de
transferts de systèmes portables. Ce travail s’est construit dans le contexte des problèmes
inverses, avec une modélisation efficace du processus de mesure physique (modèle « for-
ward ») impliqué dans l’acquisition par ultrasons. Il exploite des méthodes récentes de
projection basées sur l’apprentissage profond afin de surmonter une limitation cruciale
des techniques de régularisation en échographie : les régularisateurs conventionnels de
traitement d’images ne se prêtent pas bien à la très grande dynamique et aux propriétés
statistiques des images échographiques radiofréquences, particulièrement en présence de
« speckle ». La modélisation physique a ainsi été fondamentale dans ce travail. Il a été
crucial afin de dériver un modèle « forward » pour la reconstruction, se prêtant à une
implémentation numérique pour la reconstruction d’images, mais aussi de développer un
simulateur hautement efficace de réponse impulsionnelle spatiale, basé sur des B-splines,
ayant ainsi permis de générer des jeux de données d’apprentissage de très grande ampleur.

Mots clés Imagerie biomédicale, B-splines, réseaux de neurones convolutifs, appren-
tissage profond, artéfacts de diffraction, estimation de déplacements, reconstruction
d’images, problèmes inverses, modélisation physique, traçage de speckle, échographie
ultrarapide.
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1. Introduction

1.1. Context and Motivation

Ultrasound (US) imaging is one of the most widely used medical imaging modalities,
thanks to being non-ionizing and having a greater cost-effectiveness and portability
compared with X-ray computed tomography (CT) or magnetic resonance imaging (MRI).
While US imaging might be limited in its ability to image deep tissue compared with X-ray
CT or MRI, it can produce high-resolution images of soft tissue in real time. Recently,
US imaging has been revolutionized by the development of ultrafast US imaging, an
acquisition technique enabling frame rates of multiple kilohertz, thereby unlocking the
analysis of the most complex physical phenomena occurring in the human body.
Pulse-echo US imaging is typically performed by transmitting short acoustic pulses

through a medium of interest, namely soft biological tissue in the context of medical US
imaging. These short acoustic pulses are generated using an US transducer (also referred
to as an US probe), composed of multiple transducer elements arranged as an array. Such
(bidirectional) transducer elements can convert electric signals into acoustic pressure and
vice versa. While propagating through (inhomogeneous) tissue, acoustic pulses generated
by the US transducer are being scattered in all directions by local variations in acoustic
impedance. Some of these echoes propagate back to the face of the transducer (backscat-
tered echoes) and are sensed (received) by each transducer element as radio frequency
(RF) electric signals. From these signals (measurements), corresponding RF images are
conventionally reconstructed using the well-known delay-and-sum (DAS) algorithm.
Because amplitude backscattering coefficients are sensitive to slight variations in acoustic
impedance, backscattered echoes, and consequently RF images, span a high dynamic
range (HDR) of several decibels that allow distinguishing between different types of tissue.
As both RF and HDR properties of US images complicate their interpretation, gay-scale
B-mode images are usually displayed. These B-mode images are obtained from RF images
by envelope detection and compression. Thanks to an acoustic wave velocity (speed of
sound) of about 1500m/s in soft tissue, as well as high-quality acquisition components
and efficient implementations of DAS algorithms, interpretable B-mode images can be
displayed in real time.
To date, most commercial US scanners rely on an acquisition process called line-by-line

scanning to reconstruct full-view images. This process, as indicated by its name, consists
of performing sequential pulse-echo acquisitions using focused transmit beams, suitably
steered for the different image scan lines. To obtain high-quality images, several tens or
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few hundreds of scan lines are conventionally used in 2-D imaging, enabling frames rate
of about 10Hz to 30Hz that are compatible for real-time visualization. In the last two
decades, ultrafast US imaging has drawn a lot of interest in the research community for
its ability to increase the achievable frame rate by orders of magnitude [1]. Ultrafast US
imaging relies on the insonification of the entire field of view at once by transmitting
an unfocused wavefront, such as a plane wave (PW) or a diverging wave (DW), thus
breaking with the trade-off between field of view and frame rate inherent to conventional
transmit-focused line-by-line scanning. This strategy, introduced in the late 1970s [2]–[4],
enables imaging large tissue regions at very high frame rates of multiple kilohertz [1],
limited only by the round-trip propagation time of single acoustic waves.
Imaging large tissue regions at such high frame rates is necessary for studying the

most rapidly changing physical phenomena in the human body, such as tracking the
propagation of naturally occurring or externally induced shear waves [5]–[9]. In the car-
diovascular system, where a frame rate of several hundred hertz is needed for resolving
tissue motion and flow patterns accurately [10]–[13], ultrafast imaging enables increased
ensemble lengths, improving the robustness and sensitivity of displacement estimates
significantly [13]. Coupled with advances in electronics and software-based DAS beam-
forming, ultrafast US imaging unlocked several breakthrough US imaging modes such
as shear-wave elastography [5], high-frame-rate vector flow imaging [14], ultrasensitive
flow imaging [13], and functional US neuroimaging [15]. All of these imaging modes
rely on motion estimation within a large field of view, performed on frames acquired at
ultrafast rates.
The main disadvantage of ultrafast US imaging compared with conventional line-by-

line scanning is a serious decrease in image quality. Indeed, compared with a focused
transmit beam which concentrates most of its energy in a limited region of interest, the
energy of an unfocused wavefront is spread over the entire field of view, resulting in
backscattered echoes of lower amplitude and measurements with lower signal-to-noise
ratio (SNR). The absence of transmit focusing also results in a broader main lobe of the
point spread function (PSF), consequently degrading the lateral image resolution. Fur-
thermore, diffraction artifacts, such as the ones caused by grating lobes (GLs), side lobes
(SLs), and edge waves (EWs), are more pronounced in ultrafast US imaging, consequently
degrading the image contrast. As a result, images obtained from ultrafast acquisitions
are of low quality, suffering heavily from poor lateral resolution and low contrast [6]–[8],
[11], [16], [17], that can hamper lesion detectability. Naturally, low-quality images also
limit the accuracy of subsequent displacement estimation methods involved in ultrafast
US imaging modes [6], [8], [12].
The state-of-the-art strategy to increase the image quality in ultrafast US imaging con-

sists of coherently compounding low-quality images obtained from multiple, differently
steered, unfocused transmit wavefronts [1], [6], [8], [16], [18]. This method successfully
improves the image quality by increasing the number of steered acquisitions, potentially
even surpassing the quality of conventional focused imaging. In [6], an image quality
surpassing state-of-the-art multi-focus imaging was obtained by compounding 71 PW
acquisitions, while increasing the frame rate by a factor of approximately seven. While in-
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creasing the number of compounded acquisition improves the resulting imaging quality, it
inevitably comes at the cost of lower frame rates, larger data transfers, and increased com-
putational requirements, as multiple transmit-receive events and image reconstruction
processes are required. Synthetic aperture (SA) imaging is another acquisition strategy
based on the coherent compounding of multiple low-quality images. Instead of using the
entire transducer aperture to transmit unfocused wavefronts, each transducer element
is used to transmit a widely diffracting DW sequentially [19]. Thanks to its ability to
focus synthetically both on transmit and on receive in each pixel of the image, SA is
often considered as the gold-standard in US imaging. Yet, due to a lower transmitted
energy than when using the entire aperture, it can suffer from increased SNR issues
and remains difficult to deploy for imaging deep tissue without using multi-element
sub-apertures [19].
However, for analyzing motion at very high frame rates, coherent compounding suffers

from two considerable disadvantages. Firstly, the increase in image quality is directly
linked to the number of compounded acquisitions, which in turn is limited by the mini-
mum frame rate necessary to analyze the underlying physical phenomenon of interest.
Secondly, coherent compounding assumes, similarly to line-by-line scanning, that the
region of interest is stationary for the duration of an acquisition sequence used to recon-
struct a single frame. This assumption does not hold when imaging fast-moving tissue
regions or complex flows, for which coherent compounding suffers from strong motion
artifacts [17], [20].
The first issue is well exemplified in [6], in which Montaldo et al. demonstrated, in

the context of shear-wave elastography, that the quality of estimated elasticity maps is
directly linked to the number of compounded acquisitions, which in turn was limited
to a maximum of twelve acquisitions to ensure a minimum frame rate of 1 kHz. In
particular, displacement estimation in highly heterogeneous tissue regions, where the
aforementioned diffraction artifacts were dominant, was a major obstacle. Issues due
to diffraction artifacts hindering accurate displacement estimates have been reported
for several methods, all of them suffering from the trade-off between image quality (i.e.,
number of compounded acquisitions) and frame rate [6], [8], [21].
The occurrence of severe motion artifacts when compounding multiple acquisitions

of rapidly evolving physical phenomena (inter-frame displacement close to the effective
wavelength) was discussed in [17], [20], [22], and motion compensation techniques were
proposed to tackle this problem. They consist of estimating inter-acquisition displace-
ment, using either conventional Doppler [20], [22] or 1-D correlation methods [17], and
compensate for it before compounding all acquisitions to produce a motion-compensated
high-quality image. However, these motion compensation techniques can also suffer from
strong diffraction artifacts [17], as they are themselves based on displacement estimation
from low-quality images, obtained from unfocused wavefronts. It thus remains unclear if
such methods could help improve motion estimation in regions plagued by such artifacts.
Consequently, there exists a great need for image reconstruction methods capable of

extracting more information from ultrafast acquisitions to provide high-quality images
from a minimum number of transmit-receive acquisitions; a need that gave rise to the
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plane-wave imaging challenge in medical ultrasound (PICMUS) [23]. Promising results
were obtained using regularized inverse problems, where the image reconstruction prob-
lem is expressed bymeans of ameasurementmodel, and solved using regularized iterative
algorithms. Many regularizers were proposed, such as elastic net [24], sparsity in wavelet
bases [25], or a weighted sum of multiple regularization terms [26]. However, as opposed
to other imaging techniques which can rely on robust regularizers (e.g., CT), common
image-processing regularizers are not well suited to the HDR and statistical properties of
RF US images. This imposes an image-dependent fine-tuning of hyperparameters which
does not generalize well, diminishing the appeal of these approaches except in specific
cases. Also, due to the necessity of iterative solvers, real-time deployment is difficult
to achieve. Most importantly, the difficulties encountered by regularization techniques
in US imaging are particularly pronounced in the presence of speckle patterns. Even if
these patterns are an “illusion” (or artifact) resulting from deterministic interferences of
multiple sub-resolved diffusive scatterers, they carry positional information of the under-
lying physical phenomena. In particular, the coherence of their motion through time is
fundamental to ultrafast US imaging modes, and more precisely to the corresponding
motion estimation techniques. As such, these patterns not only need to be preserved on a
(first-order) statistical point of view, but with a high positional accuracy, typically of few
micro meters.
In short, any image reconstruction method intending to improve ultrafast US imaging

modes should not only be capable of producing high-quality images from a minimum
number of acquisitions, but also to preserve the information of underlying physical
phenomena that can be further exploited by suitable motion estimation techniques. One
means to achieve this goal is by being able to remove diffraction artifacts inherent to
ultrafast acquisitions while restoring accurate speckle patterns initially shadowed by such
artifacts. This is the approach proposed in this thesis.

1.2. Contributions and Organization of this Thesis

This thesis aims at answering the increasing need for US image reconstruction methods
capable of producing high-quality images from single ultrafast acquisitions, primarily
to improve the accuracy and robustness of ultrafast imaging modes such as shear-wave
elastography, but also to reduce the cost and complexity of 3-D US scanners, or to mitigate
the power and data transfer rate requirements of portable systems. To achieve this goal,
this work builds in the context of inverse problems. It leverages recent deep-learning-
based projection methods to overcome a crucial limitation of regularized US imaging:
conventional image-processing regularizers are not well suited to the HDR and statistical
properties of RF US images, especially in the presence of speckle patterns. Physical
modeling is fundamental to this work. It was crucial to derive a computationally tractable
forward model for image reconstruction, but also to develop a highly efficient, spline-
based, spatial impulse response (SIR) US simulator that allowed generating sufficiently
large datasets to train convolutional neural networks (CNNs). The different developments
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andworks involved led to several original contributions that are presented in the following
chapters, namely from Chapters 2 to 7. These chapters are arranged in a natural order,
namely, from physical modeling to deep learning. This order does not necessarily reflect
the chronological order in which these contributions were realized.

• Because physical modeling played a central role both for developing suitable image
reconstruction methods and for simulating realistic US signals, we start with a
complete derivation from the scalar wave equation to a linear pulse-echo model for
weak scattering (Chapter 2). The main contribution of this chapter comes from the
fact that derivations were carried out on the velocity potential to obtain a generic
model accounting for both Neumann (i.e., hard) and Dirichlet (i.e., soft) boundary
conditions. Most results presented in this chapter were already known [27] (Neu-
mann case) or proven experimentally to be adequate (Dirichlet case). Note that
these derivations were carried out last, mainly because I have never been able to
find them in the literature.

• Chapter 3 presents our attempt at reconstructing high-quality US images by means
of sparse regularization (SR). In particular, it presents a fully generic derivation
of a computationally tractable forward model developed throughout the years in
our laboratory. Special cases of this model were successfully used to address some
inverse problems in the context of US imaging that led to several publications
such as [25], [28]–[30]. This chapter also highlights a crucial limitation we faced in
regularized US imaging: conventional image-processing regularizers are not well
suited to the HDR and the statistical properties of RF US images containing speckle
patterns.

• Before being able to dive into CNN-based image reconstructionmethods, we needed
a way to generate sufficiently large datasets in a realistic time frame. Because no
other option was available to us, we developed a spline-based SIR US simulator. It
ended being a wonderful adventure into B-spline approximation, both for repre-
senting bandpass field signals efficiently and for parametrizing radiating surfaces
as non-uniform rational B-spline (NURBS). This crucial contribution, which is
currently in preparation for submission, is presented in Chapter 4.

• Chapter 5 presents all methods that enabled us to develop our CNN-based US image
reconstruction methods, heavily inspired by our previous attempts using SR tech-
niques and by [31], [32]. In particular, we introduce a re-weighted backprojection-
based DAS operator to obtain low-quality estimates further processed by a CNN
trained for the purpose of reducing diffraction artifacts and restoring accurate
speckle patterns. Great efforts were invested into the design of simulated-image
datasets composed of low-quality and high-quality image pairs, as well as numerical
test phantoms for evaluation purposes. In vitro and in vivo experiments confirmed
that trainings performed on simulated images translate well to physical conditions.
This chapter is the core image reconstruction method proposed in this thesis and is
also presented in [33], currently under review for potential publication.

• Recall that our goal is to develop an US image reconstruction method that could be
used for improving ultrafast US imaging modes, and that these imaging modes rely
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on accurate displacement estimation at ultrafast rates. In Chapter 6, we present
a displacement estimation method that relies on single ultrafast acquisitions to
reconstruct consecutive frames by means of our CNN-based image reconstruction
method, and on only two consecutive frames to obtain 2-D displacement estimates
using a speckle tracking algorithm. Promising results were obtained on estimating
accurate displacements in zones initially hindered by GL and SL artifacts, in both
numerical and in vivo experiments. The content of this chapter is also presented
in [34], which has recently been accepted for publication in the IEEE Transactions
on Medical Imaging.

• Chapter 7 is a direct application of our CNN-based image reconstruction method to
sparse-array imaging. We investigated the case of uniformly undersampled linear
arrays, which suffer from even more severe diffraction artifacts, and in particular
from GL ones. The content of this chapter is also presented in [35].

As most chapters contain in-depth discussions on the results obtained, the limitations
observed, and the perspectives envisaged, concluding remarks (Chapter 8) are restricted
to prospective notes on some aspects and potential applications related to the different
contributions that are deemed deserving further investigations.
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2. A Linear Pulse-Echo Model for Weak

Scattering

2.1. Introduction

As for most (medical) imaging modalities, US scanners do not acquire images of a tissue
of interest directly, but rather acquire signals on sensors that needs further processing to
produce an image that can be interpreted by its user. Such additional processing is called
an image reconstruction method. This rather general fact implies that, to develop suitable
image reconstruction methods, one should at the very least understand how the signals
received on the sensors composing the acquisition system were acquired. And since all
signals acquired on real sensors are the result of (multiple) physical phenomena, it is
no wonder that a good knowledge of the physical principles involved in the acquisition
process can only help to develop more efficient image reconstruction methods.1 Hence,
the physical modeling of acquisition processes is at the heart of image reconstruction;
may it be for deriving efficient model-based image reconstruction methods, or to develop
filters for the removal (or reduction) of image artifacts. Such artifacts can typically be
related to the acquisition process, but also to approximations made by the subsequent
image reconstruction method. Obviously, being able to model a physical phenomenon
also implies that it can be approximated by means of numerical simulations, for instance
to optimize some components of an acquisition system.
The goal of this chapter is to provide a fairly detailed derivation tomodel the acquisition

of US signals in the context of pulse-echo imaging. As most biological tissues are of
extraordinary complexity, substantial approximations must be made to obtain tractable
models. Throughout the following derivation, assumptions typically made in the context
of pulse-echo imaging should bemade clear. An important one being that linear modeling
will be considered. Most of these derivations are available in the literature (sometimes
quite scattered), and are as such inspired by it. The main source of inspiration of this
chapter is the work of Jensen [27], in which a complete linear pulse-echo model for weak
scattering was derived for transducer elements assumed to be embedded in a rigid baffle
(Neumann boundary condition); a work partially based on the SIR model introduced by
Tupholme [36] and Stepanishen [37]. Another major source of inspiration was found
in the reference books by Morse and Feshbach [38] and by Morse and Ingard [38]. This
chapter not only provides a complete (and augmented) derivation of the linear pulse-

1In the sense that it is most probably never a waste to spend the necessary time on studying the underlying
physics.
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echo model for weak scattering introduced in [27], it also includes all derivations and
specific approximations to derive such scatteringmodel for soft baffles (Dirichlet boundary
condition), which, to the best of my knowledge, has never been reported. In particular,
the derivation is carried out in the time domain using the velocity potential rather than
the pressure. It starts from the linearized scalar wave equation as derived by Chernov [40,
Part II] all the way down to a generic pulse-echo model for the weak scattering under
different boundary conditions. Therefore, it includes a heavy use of Green’s functions
that are suitable for solving the scalar wave equation in specific conditions, leading to
well-known intermediary results such as the Rayleigh-Sommerfeld equations.

2.2. Scalar Wave Equation for Weak Scattering

Let us consider a scattering volume𝑉 embedded in a nondispersive homogeneousmedium
(i.e., dispersive attenuation neglected) with constant mean density 𝜌0 and mean acoustic
wave velocity 𝑐0 (mean sound speed). Assuming that both the density and the acoustic
wave velocity deviate only slightly from their mean values, namely

𝜌(𝒓) = 𝜌0 + Δ𝜌(𝒓), (2.1)
𝑐(𝒓) = 𝑐0 + Δ𝑐(𝒓), (2.2)

where Δ𝜌(𝒓) ≪ 𝜌0 and Δ𝑐(𝒓) ≪ 𝑐0, and restricting to first order terms with respect to Δ𝜌
and Δ𝑐, Chernov [40, Part II] derived a (linearized) scalar wave equation to describe the
propagation of (longitudinal) acoustic waves in a weakly inhomogeneous medium. This
scalar wave equation can be expressed as

∇2
𝒓𝑝(𝒓, 𝑡) −

𝜕2𝑝(𝒓, 𝑡)
𝜕𝑡2 = −2Δ𝑐(𝒓)

𝑐30

𝜕2𝑝(𝒓, 𝑡)
𝜕𝑡2 + 1

𝜌0
∇𝒓[Δ𝜌(𝒓)] ⋅ ∇𝒓𝑝(𝒓, 𝑡), (2.3)

where𝑝(𝒓, 𝑡) is the acoustic pressure at position 𝒓 (field point) and at time 𝑡,𝒂⋅𝒃 represents
the scalar product (or dot product) between the vectors𝒂 and 𝒃,∇𝒓 is the gradient operator
with respect to 𝒓,2 and∇2

𝒓 ≔ ∇𝒓 ⋅ ∇𝒓 is the Laplacian operator with respect to 𝒓. The right-
hand side of (2.3) represents the effect of fluctuations in density and acoustic velocity,
namely, the scattering of acoustic waves.
Equation (2.3) was also derived by Jensen [27] and formed the basis of a linear model

for the propagation and scattering of US in weakly inhomogeneous tissue. It can be noted
that for a homogeneous medium in which Δ𝜌(𝒓) = Δ𝑐(𝒓) = 0, ∀𝒓 ∈ 𝑉, the scattering
term becomes null, resulting in the homogeneous scalar wave equation for the pressure.
An equivalent equation, for which the scattering term was expressed with respect to the
compressibility and density, was derived in [39, Sec. 8.1] and used in [41].
Let us introduce the velocity potential 𝜑, a scalar field from which the particle velocity

2Not to be confused with the directional derivative which is sometimes defined using the same symbols.
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𝒗 derives3 as

𝒗(𝒓, 𝑡) = −∇𝒓𝜑(𝒓, 𝑡). (2.4)

Under the assumption of an inviscid and irrotational flow, the velocity potential can be
related to the pressure as

𝑝(𝒓, 𝑡) = 𝜌0
𝜕𝜑(𝒓, 𝑡)
𝜕𝑡 . (2.5)

It is of particular interest to solve the scalar wave equation for the velocity potential
instead of the pressure or particle velocity separately, as once a solution is found for the
velocity potential, both the particle velocity and the pressure can be found using either
(2.4) or (2.5), respectively. From (2.5), it can be noted that (2.3) is also satisfied by the
velocity potential,4 namely

∇2
𝒓𝜑(𝒓, 𝑡) −

𝜕2𝜑(𝒓, 𝑡)
𝜕𝑡2 = −2Δ𝑐(𝒓)

𝑐30

𝜕2𝜑(𝒓, 𝑡)
𝜕𝑡2 + 1

𝜌0
∇𝒓[Δ𝜌(𝒓)] ⋅ ∇𝒓𝜑(𝒓, 𝑡). (2.6)

Following the notations introduced in [27], which were retained in subsequent reference
works [42], let us define the (linear) scattering operator5 as

𝑓op{𝜑}(𝒓, 𝑡) = [2Δ𝑐(𝒓)
𝑐30

𝜕2

𝜕𝑡2 −
1
𝜌0
∇𝒓[Δ𝜌(𝒓)] ⋅ ∇𝒓] 𝜑(𝒓, 𝑡). (2.7)

Using (2.7) and defining a generic source function 𝑓(𝒓, 𝑡) = 𝑓op{𝜑}(𝒓, 𝑡), we can rewrite
(2.6) in the generic form for the (inhomogeneous) scalar wave equation as [38, Sec. 7.3]

∇2
𝒓𝜑(𝒓, 𝑡) −

𝜕2𝜑(𝒓, 𝑡)
𝜕𝑡2 = −𝑓(𝒓, 𝑡). (2.8)

In the absence of volume sources, namely if 𝑓(𝒓, 𝑡) = 0, ∀𝒓 ∈ 𝑉, ∀𝑡 ≥ 0, (2.8) reduces to
the homogeneous scalar wave equation, expressed as

∇2
𝒓𝜑(𝒓, 𝑡) −

𝜕2𝜑(𝒓, 𝑡)
𝜕𝑡2 = 0. (2.9)

3The negative sign is conventionally used in electrical engineering.
4It can be noted that the scalar wave equation (2.3) is also satisfied by the particle velocity.
5The scattering operator is defined here with an opposite sign with respect to the original work [27] to
better match the generic form of the scalar wave equation defined next in (2.8).
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2.3. Generic Solutions of the Scalar Wave Equation

2.3.1. Green’s Functions for the Scalar Wave Equation

The Green’s function technique is a well-known and convenient approach to solve partial
differential equations, such as the inhomogeneous scalar wave equation (2.8), for a
particular set of boundary conditions, volume source distribution, and initial conditions.
Let us consider that a volume 𝑉 containing a distribution of sources with some initial
conditions is enclosed by a surface 𝑆 onto which boundary conditions are specified
(Figure 2.1). Note that the (unit) normal vector to the surface is defined to point in the
direction outward to the enclosed volume, to obtain the conventional outflow integrals.
Such a Green’s function 𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)must satisfy (2.6) for a single source located at 𝒓 = 𝒓′

with an impulse starting at 𝑡 = 𝑡′, namely

∇2
𝒓𝑔(𝒓, 𝑡; 𝒓′, 𝑡′) −

𝜕2𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝑡2 = −𝛿(𝒓 − 𝒓′)𝛿(𝑡 − 𝑡′), (2.10)

where 𝛿 is the Dirac delta function. In other words, a Green’s function must be a solution
to a problem that is homogeneous everywhere except at 𝒓 = 𝒓′ and 𝑡 = 𝑡′.

Source Distribution

𝑓(𝒓, 𝑡)

Bo
un
da
ry
Su
rfa
ce

𝑆

𝒏
Surface Normal

Origin

𝒓

Observer Point

𝒓′
Source Point

𝒓 −
𝒓′

Figure 2.1. Generic representation of the Green’s function method to determine the velocity potential

at an observer point due to the presence of a source distribution embedded in a homogeneous volume

enclosed by a boundary surface onto which boundary conditions are specified.

With the help of Green’s Theorem and subtle manipulations of (2.6) and (2.10), includ-
ing multiplication and rearrangements, it can be shown [38, Sec. 7.3] that the velocity
potential can be evaluated ∀𝒓 ∈ 𝑆, ∀𝒓 ∈ 𝑉, and ∀𝑡 ≥ 0 as

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′

+∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′

− 1
𝑐20
∫
𝑉

[
𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)

𝜕𝑡′ 𝜑(𝒓′, 𝑡′) − 𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)

𝜕𝑡′ ]
𝑡′=0

d𝑣(𝒓′). (2.11)
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The first term of (2.11) accounts for the boundary conditions imposed over the enclosing
surface 𝑆, the second term accounts for the distribution of sources present in the volume
𝑉 (enclosed by 𝑆), and the last term accounts for the initial conditions of the problem.
Boundary conditions typically enforce values taken by the velocity potential 𝜑 (Dirichlet
boundary conditions), the normal derivative 𝜕𝜑/𝜕𝒏 (Neumann boundary conditions), or
a linear composition of the two (mixed boundary conditions). Provided that there exists a
suitable Green’s function that satisfies the boundary conditions and initial conditions of
the original problem under consideration, the velocity potential can be evaluated at any
point within the volume considered and on the enclosing surface.6

As we will restrict ourselves to problems involving media initially at rest, namely for
which 𝜑(𝒓, 𝑡) = (𝜕/𝜕𝑡)𝜑(𝒓, 𝑡) = 0, ∀𝒓 ∈ 𝑉 at 𝑡 = 0, the last term of (2.11) becomes null
and the solution to the scalar wave equation simplifies to

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′

+∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.12)

2.3.2. Typical Boundary Conditions

Boundary conditions imposed on the enclosing surface 𝑆 are of primary importance in
the search for an appropriate Green’s function, as the latter must satisfy them. The most
common ones are Dirichlet and Neumann boundary conditions, which will result in the
so-called “soft” and “hard” baffle conditions, respectively.
The Dirichlet boundary conditions prescribe the values taken by the velocity potential

on the surface, imposing the corresponding Green’s function to be zero on the surface.
Such boundary conditions can be expressed for both 𝜑𝐷 and 𝑔𝐷, ∀𝑡 ≥ 0, as

⎧

⎨
⎩

𝜑𝐷(𝒓, 𝑡) = 𝑓𝐷(𝒓, 𝑡), ∀𝒓 ∈ 𝑆,
𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′) = 0, ∀𝒓 ∈ 𝑆,
𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′) = 0, ∀𝒓′ ∈ 𝑆,

(2.13)

where 𝑓𝐷 is a scalar function. In cases where 𝑓𝐷 is not zero everywhere, it is often referred
to as inhomogeneous Dirichlet boundary conditions. In cases where 𝑓𝐷 = 0 everywhere, it
is often referred to (by opposition) as homogeneous Dirichlet boundary conditions.
The Neumann boundary conditions prescribe the values taken by the normal derivative

of the velocity potential on the surface, imposing the normal derivative of the correspond-
ing Green’s function to be zero on the surface. Such boundary conditions can be expressed

6The latter being of particular interest in the case of pulse-echo imaging systems such as US transducers.
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for both 𝜑𝑁 and 𝑔𝑁, ∀𝑡 ≥ 0, as

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜕𝜑𝑁(𝒓, 𝑡)
𝜕𝒏 = 𝑓𝑁(𝒓, 𝑡), ∀𝒓 ∈ 𝑆,

𝜕𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 = 0, ∀𝒓 ∈ 𝑆,

𝜕𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ = 0, ∀𝒓′ ∈ 𝑆,

(2.14)

where 𝑓𝑁 is a scalar function. Similarly, the terminology inhomogeneousNeumann bound-
ary conditions is used when 𝑓𝑁 is not everywhere zero, and homogeneous Neumann
boundary conditions when 𝑓𝑁 = 0 everywhere. In the case of inhomogeneous Neumann
boundary conditions (i.e., 𝑓𝑁 not everywhere zero), it is interesting to note that the normal
derivative of 𝜑𝑁 can be expressed as

𝜕𝜑𝑁(𝒓, 𝑡)
𝜕𝒏 = ∇𝒓𝜑𝑁(𝒓, 𝑡) ⋅ 𝒏, (2.15)

which is the directional derivative with respect to 𝒓 taken along 𝒏. Hence, using the
definition of the velocity potential in (2.4), imposing inhomogeneous Neumann boundary
conditions corresponds to prescribing the inward normal component of the particle
velocity on the surface.
Equipped with these definitions for the boundary conditions, two special cases are of

particular interest, namely the homogeneous (scalar) wave equation (2.9) with inhomo-
geneous boundary conditions and the inhomogeneous (scalar) wave equation (2.8) with
homogeneous boundary conditions.

2.3.3. Homogeneous Wave Equation with Inhomogeneous Boundary Conditions

In the absence of volume sources (i.e., 𝑓(𝒓, 𝑡) = 0), the second term of (2.12) becomes
null and the solution for the homogeneous scalar wave equations with inhomogeneous
boundary conditions can be expressed ∀𝒓 ∈ 𝑆, ∀𝒓 ∈ 𝑉, and ∀𝑡 ≥ 0, as

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′. (2.16)

This means that, provided a suitable Green’s function exist, the velocity potential can be
evaluated anywhere within the volume or on the enclosing surface by an integration over
the surface only.
In the case of inhomogeneous Dirichlet boundary conditions defined in (2.13), (2.16)

reduces to

𝜑𝐷(𝒓, 𝑡) = −∫
𝑇

∫
𝑆

𝜑𝐷(𝒓′, 𝑡′)
𝜕𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)

𝜕𝒏′ d𝜎(𝒓′) d𝑡′, (2.17)

which can be interpreted as having a doublet layer (i.e., normal derivative of Green’s
function) to satisfy the boundary conditions. In the case of inhomogeneous Neumann
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boundary conditions defined in (2.14), (2.16) reduces to

𝜑𝑁(𝒓, 𝑡) =∫
𝑇

∫
𝑆

𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑𝑁(𝒓′, 𝑡′)

𝜕𝒏′ d𝜎(𝒓′) d𝑡′, (2.18)

corresponding to having a single (charge) layer to satisfy the boundary conditions.

2.3.4. Inhomogeneous Wave Equation with Homogeneous Boundary Conditions

Imposing homogeneous boundary conditions on the velocity potential implies that the
first term of (2.16) becomes null, thus the solution for the inhomogeneous scalar wave
equations (i.e., 𝑓(𝒓, 𝑡) not everywhere zero in 𝑉) with inhomogeneous boundary condi-
tions can be expressed ∀𝒓 ∈ 𝑆, ∀𝒓 ∈ 𝑉, and ∀𝑡 ≥ 0, as

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.19)

Here again a distinction between inhomogeneous Dirichlet and Neumann boundary
conditions is of interest.
For homogeneous Dirichlet boundary conditions defined in (2.13) with 𝑓𝐷 = 0 every-

where, (2.19) is simply satisfied using (2.13) as

𝜑𝐷(𝒓, 𝑡) =∫
𝑇

∫
𝑉

𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′, (2.20)

where both sides of the equation are zero. Obviously, (2.20) has no practical use except to
confirm that the boundary conditions are satisfied. Yet, by taking the normal derivative
at point 𝒓 ∈ 𝑆 we obtain

𝜕𝜑𝐷(𝒓, 𝑡)
𝜕𝒏 =∫

𝑇

∫
𝑉

𝜕𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′, (2.21)

which, from the definition of the velocity potential given in (2.4), corresponds to the
inward normal component of the particle velocity on the surface.
For homogeneous Neumann boundary conditions defined in (2.14) with 𝑓𝑁 = 0 every-

where, (2.19) is expressed as

𝜑𝑁(𝒓, 𝑡) =∫
𝑇

∫
𝑉

𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.22)

By taking the normal derivative at point 𝒓 ∈ 𝑆, we can confirm that the boundary
conditions are satisfied, namely

𝜕𝜑𝑁(𝒓, 𝑡)
𝜕𝒏 =∫

𝑇

∫
𝑉

𝜕𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 𝑓(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′, (2.23)

is indeed zero on both sides.
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2. A LINEAR PULSE-ECHO MODEL FOR WEAK SCATTERING

2.4. Specifying Green’s Function

In Section 2.3.1, we showed that solutions to the inhomogeneous scalar wave equation
(2.8) can be found using the Green’s function technique. In particular, provided that
there exists a suitable Green’s function satisfying the boundary conditions (may them
be of Neumann or Dirichlet type) and initial conditions of the original problem under
consideration, the velocity potential can be evaluated anywhere within the volume as well
as on the enclosing surface using (2.11), or using (2.12) in the absence of initial conditions
(special case of interest). Therefore, specifying such Green’s functions is crucial to finding
solutions of the wave equation for weak scattering defined in (2.6).

2.4.1. Single Volume Source in an Unbounded Domain

Oneof the simplest inhomogeneous problem to consider consists of a single volume source
embedded in an unbounded (infinite) domain, namely no reflections of the acoustic wave
will occur on the surface boundaries. The Green’s function for this unbounded problem
is well-known and expressed as

𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) =
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

4𝜋‖𝒓 − 𝒓′‖2
, ‖𝒓 − 𝒓′‖2, 𝑡 − 𝑡′ > 0. (2.24)

It represents a point source located at 𝒓′ with an impulse at time 𝑡′ resulting in a spherical
outgoing “wave,”7 which expands in the radial direction with an amplitude decaying
proportionally to 1/‖𝒓−𝒓′‖2. It should be noted that 𝑔𝑈 is singular at the source point (i.e.,
𝒓 = 𝒓′) when the impulse is initiated (i.e., 𝑡 = 𝑡′), hence the condition ‖𝒓− 𝒓′‖2, 𝑡 − 𝑡′ > 0
in (2.24).
As the normal derivative of the Green’s function for the unbounded domain with

respect to both 𝒓 and 𝒓′ will be required for further derivations, they are already provided
hereafter for convenience. Let us first consider the case of a source point 𝒓′ on 𝑆. Recall
that the normal derivative can be expressed as the directional derivative in the direction
of the normal, namely

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ = ∇𝒓′𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) ⋅ 𝒏′ (2.25)

where the gradient of 𝑔𝑈 with respect to 𝒓′

∇𝒓′𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) =
1
4𝜋[

1
‖𝒓 − 𝒓′‖2

∇𝒓′ + ∇𝒓′(
1

‖𝒓 − 𝒓′‖2
)]𝛿(𝑡 − 𝑡′ −

‖𝒓 − 𝒓′‖2
𝑐0

).

(2.26)

7Strictly speaking, it is a spherical shell.
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2.4. SPECIFYING GREEN’S FUNCTION

Using the fact that

∇𝒓′(
1

‖𝒓 − 𝒓′‖2
) = 𝒓 − 𝒓′

‖𝒓 − 𝒓′‖32
, (2.27)

∇𝒓′𝛿(𝑡 − 𝑡′ −
‖𝒓 − 𝒓′‖2

𝑐0
) = 𝒓 − 𝒓′

𝑐0‖𝒓 − 𝒓′‖2
𝛿′(𝑡 − 𝑡′ −

‖𝒓 − 𝒓′‖2
𝑐0

), (2.28)

where 𝛿′ is the derivative of the Dirac delta function,

∇𝒓′𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) =
𝒓 − 𝒓′

4𝜋‖𝒓 − 𝒓′‖2

⎡
⎢
⎢
⎣

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

𝑐0‖𝒓 − 𝒓′‖2
+
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

‖𝒓 − 𝒓′‖22

⎤
⎥
⎥
⎦

.

(2.29)

Since 𝒏′ is a unit vector,

𝒓 − 𝒓′
‖𝒓 − 𝒓′‖2

⋅ 𝒏′ = (𝒓 − 𝒓′) ⋅ 𝒏′
‖𝒓 − 𝒓′‖2‖𝒏′‖2

= cos(𝒏′, 𝒓 − 𝒓′), (2.30)

we can finally express the normal derivative of 𝑔𝑈 with respect to 𝒓′ as

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ =

⎡
⎢
⎢
⎣

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

4𝜋𝑐0‖𝒓 − 𝒓′‖2
+
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

4𝜋‖𝒓 − 𝒓′‖22

⎤
⎥
⎥
⎦

cos(𝒏′, 𝒓 − 𝒓′).

(2.31)

Following the exact same derivation for the normal derivative of 𝑔𝑈 with respect to 𝒓 and
noting that

∇𝒓(
1

‖𝒓 − 𝒓′‖2
) = − 𝒓 − 𝒓′

‖𝒓 − 𝒓′‖32
, (2.32)

∇𝒓𝛿(𝑡 − 𝑡′ −
‖𝒓 − 𝒓′‖2

𝑐0
) = − 𝒓 − 𝒓′

𝑐0‖𝒓 − 𝒓′‖2
𝛿′(𝑡 − 𝑡′ −

‖𝒓 − 𝒓′‖2
𝑐0

), (2.33)

𝒓 − 𝒓′
‖𝒓 − 𝒓′‖2

⋅ 𝒏 = cos(𝒏, 𝒓 − 𝒓′), (2.34)

we obtain

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 = −

⎡
⎢
⎢
⎣

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

4𝜋𝑐0‖𝒓 − 𝒓′‖2
+
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

4𝜋‖𝒓 − 𝒓′‖22

⎤
⎥
⎥
⎦

cos(𝒏, 𝒓 − 𝒓′).

(2.35)

Both expressions (2.31) and (2.35) for the two distinct normal derivatives are thus very
similar except for the inverted sign, which results from the direction of propagation 𝒓− 𝒓′

with respect to the corresponding normal. The amplitude is proportional to the cosine of
the angle between the direction of propagation and the (outward) surface normal.
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2.4.2. Infinite Planar Boundaries

As already mentioned, the presence of boundaries in the domain (e.g., an US transducer)
has a direct impact on the Green’s function as such a function must satisfy the boundary
conditions imposed by the problem considered. Approximating US transducers as infi-
nite planar baffles has a long history in the field of transient radiation modeling of US
transducers [36], [37], [43]–[45]. Under such an approximation, the so-called “method of
images” is a convenient technique for finding suitable Green’s functions. This method
consists of mirroring the impulsing source at point 𝒓′ with respect to the infinite boundary
plane in an image source at point ̃𝒓′ (Figure 2.2) while keeping the same impulsing time
̃𝑡′ = 𝑡′ for the image and physical sources.

𝑆

+∞

−∞

Origin

Outside Inside

𝒓 𝒓′

𝒓 −
𝒓′

̃𝒓 ′

𝒓 − ̃𝒓 ′

(a) 𝑆

+∞

−∞

Origin

𝒓 𝒓′

𝒓 −
𝒓′

̃𝒓 ′

𝒓 − ̃𝒓 ′

𝒏

(b) 𝑆

+∞

−∞

Origin

𝒓

𝒓 ′
(=

̃𝒓 ′)

𝒓 − 𝒓 ′𝒓 −
̃𝒓 ′

𝒏′ 𝒏̃′

(c) 𝑆

+∞

−∞

Origin

𝒓

𝒓 ′
(=

̃𝒓 ′)

𝒓
−
𝒓
′

𝒓
−

̃𝒓 ′

𝒏

𝒏′ 𝒏̃′

(d)

Figure 2.2. Method of images to specify suitable Green’s functions when considering an infinite

planar boundary: (a) both the observer and the source are within the volume; (b) the observer is on

the boundary plane and the source within the volume; (c) the observer is within the volume and the

observer on the boundary plane; (d) both the observer and the source are on the boundary plane.

In the case of Dirichlet boundary conditions, a suitable Green’s function can be found
by subtracting two Green’s functions for the unbounded domain, namely

𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′) = 𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) − 𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′). (2.36)

Using the definition (2.24), we can see that the boundary conditions for the Green’s
function (2.13) are satisfied for 𝒓 ∈ 𝑆 and 𝒓′ ∈ 𝑉 [Figure 2.2(b)], or for 𝒓 ∈ 𝑉 and 𝒓′ ∈ 𝑆
[Figure 2.2(c)], or for 𝒓 ∈ 𝑉 and 𝒓′ ∈ 𝑆 [Figure 2.2(d)]. Indeed, 𝑡′ = ̃𝑡′, ‖𝒓−𝒓′‖2 = ‖𝒓− ̃𝒓′‖2,
hence we have

𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′) =
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

4𝜋‖𝒓 − 𝒓′‖2
−
𝛿(𝑡 − ̃𝑡′ − ‖𝒓− ̃𝒓′‖2

𝑐0
)

4𝜋‖𝒓 − ̃𝒓′‖2
= 0. (2.37)

For the normal derivative with respect to 𝒓′, we have cos(𝒏′, 𝒓 − 𝒓′) = − cos(𝒏̃′, 𝒓 − ̃𝒓′)
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[Figures 2.2(c) and 2.2(d)]. Hence, using (2.31), we obtain

𝜕𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ =

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ −

𝜕𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′)
𝜕𝒏̃′ = 2

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′

=
⎡
⎢
⎢
⎣

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋𝑐0‖𝒓 − 𝒓′‖2
+
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖22

⎤
⎥
⎥
⎦

cos(𝒏′, 𝒓 − 𝒓′).

(2.38)

For the normal derivative with respect to 𝒓, since cos(𝒏, 𝒓 − 𝒓′) = − cos(𝒏, 𝒓 − ̃𝒓′) [Fig-
ures 2.2(b) and 2.2(d)], we obtain using (2.35)

𝜕𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 =

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 −

𝜕𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′)
𝜕𝒏 = 2

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏

= −
⎡
⎢
⎢
⎣

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋𝑐0‖𝒓 − 𝒓′‖2
+
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖22

⎤
⎥
⎥
⎦

cos(𝒏, 𝒓 − 𝒓′).

(2.39)

In the case of Neumann boundary conditions, a suitable Green’s function can be found
by summing two Green’s functions for the unbounded domain, namely

𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′) = 𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) + 𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′). (2.40)

We can see that the boundary conditions (2.14), which are specified on the normal
derivatives, are also satisfied in all cases. Indeed, using the same properties as in the case
of Dirichlet boundary conditions, we have for the two normal derivatives

𝜕𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ =

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ +

𝜕𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′)
𝜕𝒏̃′ = 0, (2.41)

𝜕𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 =

𝜕𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 +

𝜕𝑔𝑈(𝒓, 𝑡; ̃𝒓′, ̃𝑡′)
𝜕𝒏 = 0. (2.42)

If 𝒓 ∈ 𝑆 or 𝒓′ ∈ 𝑆, ‖𝒓 − 𝒓′‖2 = ‖𝒓 − ̃𝒓′‖2, and (2.40) can be expressed as

𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′) = 2𝑔𝑈(𝒓, 𝑡; 𝒓′, 𝑡′) =
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
. (2.43)

2.4.3. Time-Dependent Rayleigh-Sommerfeld Equations

Using the Green’s function derived in Section 2.4.2 for Dirichlet and Neumann bound-
ary conditions, it is possible to derive the well-known Rayleigh-Sommerfeld diffraction
equations for transient problems (i.e., time-dependent). These equations were originally
derived in the frequency domain (i.e., continuous waves) by Rayleigh [46] and Sommer-
feld [47, Sec. 34]. They are extensively used for estimating pressure fields generated by
US transducers with “hard” and “soft” boundary conditions, respectively, assuming that
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the transducers are embedded in an infinite planar baffle.
To derive the Rayleigh-Sommerfeld equations, we will therefore consider a radiating

surface embedded in an infinite planar boundary and a homogeneous medium. The
velocity potential can thus be evaluated using (2.16). Inhomogeneous boundary conditions
are specified on the radiating surface and homogeneous boundary conditions (of the
same kind) are specified on the remaining infinite boundary surface, a similar situation
that is depicted in Figure 2.2(c). We will also rely on the convolution property of the Dirac
delta function, also known as the “sifting” property, which can be expressed as

+∞

∫
−∞

𝑓(𝜏)𝛿(𝑡 − 𝜏) d𝜏 = 𝑓(𝑡), (2.44)

as well as on the convolution property of its derivative 𝛿′,
+∞

∫
−∞

𝑓(𝜏)𝛿′(𝑡 − 𝜏) d𝜏 = 𝑓′(𝑡), (2.45)

for which it is assumed that 𝑓 is a compactly supported smooth function and where 𝑓′ is
the derivative of 𝑓.
Let us first consider the case of Dirichlet boundary conditions (i.e., inhomogeneous on

the radiating surface and homogeneous on the remaining of the infinite planar boundary).
Using the normal derivative with respect to 𝒓′ of the Green’s function for inhomogeneous
Dirichlet boundary conditions from (2.38), and injecting it in the solution for the velocity
potential under such conditions given in (2.17), we obtain

𝜑𝐷(𝒓, 𝑡) = −∫
𝑇

∫
𝑆

𝜑𝐷(𝒓′, 𝑡′)
𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

2𝜋𝑐0‖𝒓 − 𝒓′‖2
cos(𝒏′, 𝒓 − 𝒓′) d𝜎(𝒓′) d𝑡′

−∫
𝑇

∫
𝑆

𝜑𝐷(𝒓′, 𝑡′)
𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖22
cos(𝒏′, 𝒓 − 𝒓′) d𝜎(𝒓′) d𝑡′. (2.46)

Using the convolution properties (2.44) and (2.45) of the Dirac delta function and its
derivative,

𝜑𝐷(𝒓, 𝑡) = − 1
2𝜋 ∫

𝑆

𝜕
𝜕𝑡[𝜑𝐷(𝒓

′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
)]cos(𝒏

′, 𝒓 − 𝒓′)
𝑐0‖𝒓 − 𝒓′‖2

d𝜎(𝒓′)

− 1
2𝜋 ∫

𝑆

𝜑𝐷(𝒓′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
)cos(𝒏

′, 𝒓 − 𝒓′)
‖𝒓 − 𝒓′‖22

d𝜎(𝒓′). (2.47)

Assuming that all sources (on the radiating surface) are sufficiently far from the observer
point such that ‖𝒓− 𝒓′‖2 ≫ 𝜆/(2𝜋), the second term of (2.47) can be neglected,8 reducing

8It should be noted that the wavelength involved in the ‖𝒓 − 𝒓′‖2 ≫ 𝜆/(2𝜋) condition depends on the
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to

𝜑𝐷(𝒓, 𝑡) ≈ − 1
2𝜋 ∫

𝑆

1
𝑐0

𝜕
𝜕𝑡[𝜑𝐷(𝒓

′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
)]cos(𝒏

′, 𝒓 − 𝒓′)
‖𝒓 − 𝒓′‖2

d𝜎(𝒓′), (2.48)

which is commonly referred to as the time-dependent Sommerfeld (diffraction) inte-
gral [47, Sec. 34]. It can be seen that the velocity potential decays proportionally to
1/‖𝒓−𝒓′‖2 and to the cosine between the propagation direction and the (outward) normal
to the surface (i.e., soft baffle). Recalling from (2.5) that 𝑝(𝒓, 𝑡) = 𝜌0(𝜕/𝜕𝑡)𝜑(𝒓, 𝑡), and us-
ing a more “standard” inward normal 𝒏̃′ = −𝒏′ [Figure 2.2(c)] such that cos(𝒏̃′, 𝒓 − 𝒓′) =
− cos(𝒏′, 𝒓 − 𝒓′), the Sommerfeld integral (2.48) can be expressed in terms of physical
quantities as

𝜑𝐷(𝒓, 𝑡) ≈
1
2𝜋 ∫

𝑆

1
𝜌0𝑐0

𝑝𝑆(𝒓′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
)cos(𝒏̃

′, 𝒓 − 𝒓′)
‖𝒓 − 𝒓′‖2

d𝜎(𝒓′), (2.49)

where 𝑝𝑆(𝒓, 𝑡), 𝒓 ∈ 𝑆, is the pressure distribution on the radiating surface. Equation (2.49)
is also commonly referred to as the solution to the “pressure release surface problem.”
In the case of Neumann boundary conditions (i.e., inhomogeneous on the radiating

surface and homogeneous on the remaining of the infinite planar boundary), the solution
for the velocity potential is given by (2.18). Using the Green’s function corresponding to
this type of boundary conditions as expressed in (2.43), we can rewrite (2.18) as

𝜑𝑁(𝒓, 𝑡) = ∫
𝑇

∫
𝑆

𝜕𝜑𝑁(𝒓′, 𝑡′)
𝜕𝒏′

𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
d𝜎(𝒓′) d𝑡′. (2.50)

Using the convolution property (2.44) of the Dirac delta function, we obtain the time-
dependent Rayleigh (diffraction) integral [48, Vol 2., p. 107]

𝜑𝑁(𝒓, 𝑡) =
1
2𝜋 ∫

𝑆

𝜕
𝜕𝒏′ [𝜑𝑁(𝒓

′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
)] 1
‖𝒓 − 𝒓′‖2

d𝜎(𝒓′), (2.51)

which, similarly to the Sommerfeld integral, decays proportionally to 1/‖𝒓 − 𝒓′‖2, but
independently to the cosine between the (outward) surface normal and the propagation
direction (i.e., hard baffle). Note that contrary to the Sommerfeld integral, the Rayleigh
integral is exact (i.e., no additional assumption was made on the distance ‖𝒓 − 𝒓′‖2).
Recalling from the definition of the velocity potential (2.4) that 𝒗(𝒓, 𝑡) = −∇𝒓𝜑(𝒓, 𝑡), let
us define the inward normal velocity distribution as 𝑣𝑛(𝒓, 𝑡) = −𝒗(𝒓, 𝑡) ⋅ 𝒏, 𝒓 ∈ 𝑆, such
that 𝑣𝑛(𝒓, 𝑡) = (𝜕/𝜕𝒏)𝜑𝑁(𝒓, 𝑡). Using such a definition, the Rayleigh integral (2.51) can be
expressed in terms of physical quantities as

𝜑𝑁(𝒓, 𝑡) =
1
2𝜋 ∫

𝑆

𝑣𝑛(𝒓′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
) 1
‖𝒓 − 𝒓′‖2

d𝜎(𝒓′). (2.52)

bandwidth property of (𝜕/𝜕𝑡)𝜑𝐷, a quantity proportional to the surface pressure distribution, and should
therefore be analyzed with care.
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2.4.4. Corresponding Spatial Impulse Response Formulations

In Section 2.4.3 we saw that both Rayleigh (2.52) and Sommerfeld (2.49) equations are
expressed as surface integrals involving a surface waveform distribution (i.e., scaled
pressure and normal velocity, respectively). A common approximation [27] consists of
assuming separability of time and spatial variables of these surfacewaveformdistributions.
By doing so, it is possible to express the velocity potential with respect to the SIR, which
relates the surface geometry of the radiator (i.e., transducer) to the acoustic fields [27],
[37].
Let us start with the Sommerfeld equation (i.e., Dirichlet case) and assume separation

of spatial and time variables for the surface pressure distribution such that 𝑝𝑆(𝒓, 𝑡) =
𝜉𝐷(𝒓) ̄𝑝𝑆(𝑡), where 𝜉𝐷 is the surface amplitude distribution of the surface pressure, some-
times referred to as (surface) apodization function. By introducing a retarded Dirac delta
function such that

𝑝𝑆(𝒓, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
) = 𝜉𝐷(𝒓)

+∞

∫
−∞

̄𝑝𝑆(𝜏)𝛿(𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
− 𝜏) d𝜏 (2.53)

= 𝜉𝐷(𝒓) ̄𝑝𝑆(𝑡) ∗𝑡
𝛿(𝑡 −

‖𝒓 − 𝒓′‖2
𝑐0

), (2.54)

we can express (2.49) as

𝜑𝐷(𝒓, 𝑡) ≈
̄𝑝𝑆(𝑡)
𝜌0𝑐0

∗
𝑡
∫
𝑆

𝜉𝐷(𝒓′)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
cos(𝒏̃′, 𝒓 − 𝒓′) d𝜎(𝒓′). (2.55)

The surface integral term of (2.55) is the SIR of a (3-D) planar surface 𝑆 with inhomoge-
neous Dirichlet boundary conditions. This term is expressed as

ℎ𝑆𝐷(𝒓, 𝑡) = ∫
𝑆

𝜉𝐷(𝒓′)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
cos(𝒏̃′, 𝒓 − 𝒓′) d𝜎(𝒓′), (2.56)

such that (2.55) can be rewritten in a compact form as

𝜑𝐷(𝒓, 𝑡) ≈
̄𝑝𝑆(𝑡)
𝜌0𝑐0

∗
𝑡
ℎ𝑆𝐷(𝒓, 𝑡). (2.57)

By also assuming separation of spatial and time variables for the normal velocity
distribution in the Neumann case such that 𝑣𝑛(𝒓, 𝑡) = 𝜉𝑁(𝒓) ̄𝑣𝑛(𝑡), and introducing the
same retarded Dirac as before, we can express the Rayleigh integral (2.52) as

𝜑𝑁(𝒓, 𝑡) = ̄𝑣𝑛(𝑡) ∗
𝑡
∫
𝑆

𝜉𝑁(𝒓′)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
d𝜎(𝒓′). (2.58)

The surface integral term of (2.58) is the SIR of a (3-D) planar surface 𝑆 with inhomoge-

20



2.4. SPECIFYING GREEN’S FUNCTION

neous Neumann boundary conditions. This term is expressed as

ℎ𝑆𝑁(𝒓, 𝑡) = ∫
𝑆

𝜉𝑁(𝒓′)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
d𝜎(𝒓′), (2.59)

such that (2.58) can be rewritten compactly as

𝜑𝑁(𝒓, 𝑡) = ̄𝑣𝑛(𝑡) ∗𝑡
ℎ𝑆𝑁(𝒓, 𝑡). (2.60)

In both Dirichlet (soft) and Neumann (hard) boundary conditions, one can note that
the resulting SIRs defined in (2.56) and (2.59), respectively, are extremely similar, with
an additional cosine term in the case of Dirichlet boundary conditions. Therefore, it is
sometimes convenient to express them in a generic form as

ℎ𝑆(𝒓, 𝑡) = ∫
𝑆

𝜉(𝒓′)𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
𝛽(𝒏̃′, 𝒓 − 𝒓′) d𝜎(𝒓′), (2.61)

where 𝒏̃′ is the inward surface normal, 𝜉 represents the spatial distribution of surface
velocity or pressure amplitudes over the radiating surface, and 𝛽 is a term depending on
the boundary conditions, expressed as

𝛽(𝒏̃′, 𝒓 − 𝒓′) = {
1, for a hard baffle (Neumann type),
cos(𝒏̃′, 𝒓 − 𝒓′), for a soft baffle (Dirichlet type).

(2.62)

Moreover, both resulting expressions for the velocity potential (2.57) and (2.60) consist
of the time convolution of a waveform and a SIR, each of which depend on the type of
boundary conditions considered. Again, we can introduce a generic definition for the
waveform imposed as boundary condition on the surface 𝑆 as

𝑣𝑆(𝑡) = {
̄𝑣𝑛(𝑡), for a hard baffle (Neumann type),
̄𝑝𝑆(𝑡)/(𝜌0𝑐0), for a soft baffle (Dirichlet type),

(2.63)

such that the velocity potential can be expressed in a generic form as9

𝜑(𝒓, 𝑡) = 𝑣𝑆(𝑡) ∗𝑡
ℎ𝑆(𝒓, 𝑡), (2.64)

that is the time convolution of a time-dependent waveform 𝑣𝑆 and a spatially varying SIR
ℎ𝑆.
It can be noted that if the radiating surface is assumed to launch a “quasi”-planar

wavefront, the generic waveform 𝑣𝑆 defined in (2.63) is equal in both Neumann and
Dirichlet cases [49]. Under such plane-wave assumption, other generalizations may

9The approximation sign from the Dirichlet case was removed for convenience.
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be derived as shown in [49], [50]. Also, since the pressure can be evaluated from the
velocity potential using (2.5) as 𝑝(𝒓, 𝑡) = 𝜌0(𝜕/𝜕𝑡)𝜑(𝒓, 𝑡), it can be seen from (2.64) that
the acoustic propagation from a radiating surface will amount to a time convolution of
the time derivative of a waveform prescribed on the surface and the SIR corresponding to
the boundary conditions specified.
It is important to keep in mind that these expressions are valid for 3-D planar radiating

surfaces, assumed to be embedded in an infinite planar boundary surface. Obviously, US
transducers are not embedded in an infinite planar baffle. Yet, this approximation has
proved to be realistic considering the amount of work deriving from it, for instance [27],
[37], [51]–[53]. Also, transducers are not necessarily planar, such as spherically focused
“mono-elements” or elements of 1-D arrays that are typically slightly focused in elevation.
It has also been proved that the Rayleigh-Sommerfeld equations remained accurate in the
case of slightly focused transducers [43], [52], [54], namely with a curvature of multiple
times the characteristic wavelength.
Under these approximations, the Rayleigh integral is exact (hard baffle), whereas the

Sommerfeld integral (soft baffle) has an additional assumption on the distance between
the radiating surface and the observer point at which the velocity potential is to be evalu-
ated. The latter assumption, namely ‖𝒓− 𝒓′‖2 ≫ 𝜆/(2𝜋), depends on the properties of the
pressure waveform specified on the radiating surface, where the wavelength 𝜆 considered
should be the “maximum” wavelength of the pressure waveform (corresponding to the
lower frequency of its spectrum).

2.5. The Pulse-Echo Model for Weak Scattering

Let us now consider the generic pulse-echo set-up depicted in Figure 2.3. We assume
a (3-D) volume 𝑉 bounded by an infinite planar surface 𝑆 onto which boundary con-
ditions are specified. The volume is considered to be weakly scattering such that the
(inhomogeneous) scalar wave equation for the velocity potential defined in (2.8) is sat-
isfied. The source distribution 𝑓(𝒓, 𝑡) accounts for the (weak) scattering. The enclosing
surface consists of a transmitting part 𝑆tx (i.e., transmitter), onto which inhomogeneous
boundary conditions are specified. Homogeneous boundary conditions are specified on
the remaining boundary, including the receiving part 𝑆rx (i.e., receiver) onto which the
backscattered field is to be measured. We also assume that there are no initial conditions,
namely that the scattering volume is initially at rest.
Under these considerations, solutions to this problem may be found using the general

expression of the solution for the inhomogeneous scalarwave equationwith homogeneous
initial conditions, defined in (2.12). By directly injecting the definition of the source term
𝑓(𝒓, 𝑡) = 𝑓op{𝜑}(𝒓, 𝑡) that involves the scattering operator 𝑓op defined in (2.7), we can
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Figure 2.3. Schematic representation of a pulse-echo experiment in the presence of a weakly scat-

tering zone for the derivation of the linear pulse-echo model. The scattering zone is considered to be

embedded in a homogeneous medium and is represented by a source distribution. The pulse-echo

experiment involves a transmitter that insonifies the volume including the weakly scattering zone and a

receiver that senses the echo signals backscattered by the weakly scattering zone. Both the transmitter

and the receiver are assumed to be embedded in an infinite planar boundary onto which boundary

conditions are specified.

rewrite (2.12), ∀𝒓 ∈ 𝑉 and ∀𝒓 ∈ 𝑆, as

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′

+∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓op{𝜑}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.65)

2.5.1. Born Approximation

Since the velocity potential is present on both sides of (2.65) because of the volume
integral that applies to the scattering operator, it is not possible to find a solution for the
velocity potential directly. In other words, this means that the velocity potential at some
point in the volume depends on the integral over the entire volume of a term that itself
depends on the velocity potential. This is a typical instance of a rather complex scattering
process calledmultiple scattering. One way to solve such a problem consists of relying on
the Born-Neumann expansion technique [27], [55]. As we are limiting ourselves to weak
scattering, we can apply the well-known Born approximation, which is the first order
of the Born-Neumann expansion. The Born approximation basically neglects multiple
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scattering such that (2.65) reduces to

𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′

+∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓op{ ̄𝜑}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′, (2.66)

where the velocity potential 𝜑 has been replaced in the volume integral by the incoming
velocity potential ̄𝜑. This greatly simplifies the solution as ̄𝜑 is therefore solution of the
homogeneous wave equation with inhomogeneous boundary conditions, namely as if
the weakly scattering zone was absent (Section 2.5.3).

2.5.2. Specifying Green’s Function

To specify the Green’s function with respect to the boundary conditions specified on
the boundary surface, we rely on the method of images described in Section 2.4.2. This
means that we can use all derivations carried out for Dirichlet and Neumann boundary
conditions, in particular the Rayleigh-Sommerfeld equations (Section 2.4.3), as well as
the expressions for the corresponding SIRs.
It is however important to note that, by using the method of images described in Sec-

tion 2.4.2, we are actually neglecting any “secondary” scattering arising from reflections
on the surface boundary (i.e., transducer face) that propagate back into the medium and
are scattered again by the tissue. This is probably a weaker assumption than neglecting
multiple scattering (i.e., Born approximation, Section 2.5.1), first because we assume
weak scattering, which means that the scattered field is much smaller than the incoming
one, and second because the amplitude of such field decreases proportional to inverse
of the propagation distance. Though, the method of images could also be deployed to
account for multiple reflections as described in [38, Sec. 7.2], but this is beyond the scope
of this work.

2.5.3. Transmit Field

To solve (2.66), we need to evaluate the incoming (or transmit) velocity potential ̄𝜑, which
is, as already mentioned, solution of the homogeneous wave equation with inhomo-
geneous boundary conditions. It can therefore be evaluated using (2.16), as a surface
integral over the transmitter only (since the remaining boundary surface is specified with
homogeneous boundary conditions), namely

̄𝜑(𝒓, 𝑡) =∫
𝑇

∫
𝑆tx

[𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝜑(𝒓′, 𝑡′)
𝜕𝒏′ − 𝜑(𝒓′, 𝑡′)

𝜕𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏′ ] d𝜎(𝒓′) d𝑡′. (2.67)

Using the derivations carried out for the Rayleigh-Sommerfeld equations in Section 2.4.3,
it is straightforward to obtain expressions for the transmit field for both soft and hard
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baffles.
In the case of Dirichlet boundary conditions (i.e., soft baffle), we can therefore use the

(compact) Sommerfeld integral (2.57), namely

̄𝜑𝐷(𝒓, 𝑡) =
̄𝑝𝑆(𝑡)
𝜌0𝑐0

∗
𝑡
ℎtx𝐷(𝒓, 𝑡), (2.68)

where ℎtx𝐷 is the SIR for a planar soft baffle as defined in (2.56) and ̄𝑝𝑆(𝑡) is the pressure
waveform10 applied to the transmitter. In the case of Neumann boundary conditions (i.e.,
hard baffle), we can therefore use the (compact) Rayleigh integral (2.60), namely

̄𝜑𝑁(𝒓, 𝑡) = ̄𝑣𝑛(𝑡) ∗
𝑡
ℎtx𝑁(𝒓, 𝑡), (2.69)

where ℎtx𝑁 is the SIR for a planar hard baffle as defined in (2.59) and ̄𝑣𝑛(𝑡) is the (inward)
normal velocity waveform10 applied to the transmitter.

2.5.4. Receive Field

Equipped with expressions (2.68) and (2.69) to evaluate the transmit velocity potential for
both Dirichlet and Neumann boundary conditions, respectively, we are now interested
in the evaluation of the scattered field onto the receiver. To do so, we rely on (2.66) for
an observer point on the receiver surface, namely 𝒓 ∈ 𝑆rx. One can note that, for both
Dirichlet and Neumann boundary conditions, the surface integral of (2.66) becomes null,
reducing to

𝜑(𝒓, 𝑡) = ∫
𝑇

∫
𝑉

𝑔(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓op{ ̄𝜑}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′, ∀𝒓 ∈ 𝑆rx. (2.70)

This means that the transmit (or incoming) field ̄𝜑 arising from the inhomogeneous
boundary conditions specified on 𝑆tx has no influence on 𝑆rx.11

2.5.4.1. Dirichlet Boundary Conditions

In the case of Dirichlet boundary conditions (i.e., soft baffle), and as already mentioned
in Section 2.3.4, (2.70) is not “usable” as it is zero on both sides (due to the boundary
conditions). Therefore, we rely on the normal derivative with respect to 𝒓 instead, as in
(2.21), namely

𝜕𝜑𝐷(𝒓, 𝑡)
𝜕𝒏 =∫

𝑇

∫
𝑉

𝜕𝑔𝐷(𝒓, 𝑡; 𝒓′, 𝑡′)
𝜕𝒏 𝑓op{ ̄𝜑𝐷}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.71)

From the expression of ̄𝜑𝐷 (2.68) and recalling that 𝑓op is a linear operator, as defined in

10Recall that we assumed separability of time and space variables on the boundary surface.
11This is obviously a crucial aspect for pulse-echo imaging as the scattered field is much weaker than the
incoming one.
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(2.7), one can note that

𝑓op{ ̄𝜑𝐷}(𝒓, 𝑡) =
1

𝜌0𝑐0
𝑓op{ ̄𝑝𝑆 ∗

𝑡
ℎtx𝐷}(𝒓, 𝑡) =

̄𝑝𝑆(𝑡)
𝜌0𝑐0

∗
𝑡
𝑓op{ℎtx𝐷}(𝒓, 𝑡), (2.72)

where the approximation sign from the derivation of the Sommerfeld integral (2.48) has
been dropped to lighten notations as further approximations will be introduced hereafter.
Using the normal derivative of the Green’s function 𝑔𝐷 given in (2.39), immediately
neglecting the term proportional to 1/‖𝒓 − 𝒓′‖22 similarly to the Sommerfeld integral
derivation, (2.71) becomes

𝜕𝜑𝐷(𝒓, 𝑡)
𝜕𝒏 = −∫

𝑇

∫
𝑉

𝛿′(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋𝑐0‖𝒓 − 𝒓′‖2
𝑓op{ ̄𝜑𝐷}(𝒓′, 𝑡′) cos(𝒏, 𝒓 − 𝒓′) d𝑣(𝒓′) d𝑡′

(2.73)

= −∫
𝑉

cos(𝒏, 𝒓 − 𝒓′)
2𝜋𝑐0‖𝒓 − 𝒓′‖2

𝜕
𝜕𝑡[𝑓op{ ̄𝜑𝐷}(𝒓′, 𝑡 −

‖𝒓 − 𝒓′‖2
𝑐0

)] d𝑣(𝒓′), (2.74)

where we used the convolution property of the Dirac delta function derivative (2.45).
Introducing a time convolution with a retarded Dirac delta function, we obtain

𝜕𝜑𝐷(𝒓, 𝑡)
𝜕𝒏 = −∫

𝑉

𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋𝑐0‖𝒓 − 𝒓′‖2
∗
𝑡

𝜕
𝜕𝑡[𝑓op{ ̄𝜑𝐷}(𝒓′, 𝑡)] cos(𝒏, 𝒓 − 𝒓′) d𝑣(𝒓′). (2.75)

Using (2.72), the normal derivative of the velocity potential can be expressed as

𝜕𝜑𝐷(𝒓, 𝑡)
𝜕𝒏 = − 𝜕

𝜕𝑡
̄𝑝𝑆(𝑡)
𝜌0𝑐20

∗
𝑡
∫
𝑉

𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
cos(𝒏, 𝒓 − 𝒓′) ∗

𝑡
𝑓op{ℎtx𝐷}(𝒓′, 𝑡) d𝑣(𝒓′).

(2.76)

The received pulse-echo voltage 𝑒rx𝐷 is the surface integral over the receive surface 𝑆rx
of the time convolution of the inward normal velocity and the acousto-electric impulse
response of the transducer ℎae𝐷 , namely

𝑒rx𝐷(𝑡) = −∫
𝑆rx

ℎae𝐷 (𝒓, 𝑡) ∗𝑡
𝜕𝜑𝐷(𝒓, 𝑡)

𝜕𝒏 d𝜎(𝒓). (2.77)

Assuming separability of variables for the acousto-electric impulse response such that
ℎae𝐷 (𝒓, 𝑡) = 𝜉𝐷(𝒓) ̄ℎae𝐷 (𝑡), we obtain

𝑒rx𝐷(𝑡) = − ̄ℎae𝐷 (𝑡) ∗𝑡
∫
𝑆rx

𝜉𝐷(𝒓)
𝜕𝜑𝐷(𝒓, 𝑡)

𝜕𝒏 d𝜎(𝒓). (2.78)
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Using (2.76), the pulse-echo voltage becomes

𝑒rx𝐷(𝑡) = ̄ℎae𝐷 (𝑡) ∗𝑡
𝜕
𝜕𝑡

̄𝑝𝑆(𝑡)
𝜌0𝑐20

∗
𝑡
∫
𝑉

⎡
⎢
⎢
⎣

∫
𝑆rx

𝜉𝐷(𝒓)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
cos(𝒏, 𝒓 − 𝒓′) d𝜎(𝒓)

⎤
⎥
⎥
⎦

∗
𝑡
𝑓op{ℎtx𝐷}(𝒓′, 𝑡) d𝑣(𝒓′). (2.79)

Noting that cos(𝒏, 𝒓− 𝒓′) = cos(𝒏̃, 𝒓′−𝒓), where 𝒏̃ the inward normal (i.e., 𝒏̃ = −𝒏), and
that ‖𝒓 − 𝒓′‖2 = ‖𝒓′ − 𝒓‖2, it is apparent that the surface integral (in brackets) is equal to
the SIR in the case of Dirichlet boundary conditions, as defined in (2.56), if an “observer”
point were located at 𝒓′ and “sources” at 𝒓 ∈ 𝑆rx.12 Therefore,

𝑒rx𝐷(𝑡) = ̄ℎae𝐷 (𝑡) ∗𝑡
𝜕
𝜕𝑡

̄𝑝𝑆(𝑡)
𝜌0𝑐20

∗
𝑡
∫
𝑉

ℎrx𝐷(𝒓′, 𝑡) ∗𝑡
𝑓op{ℎtx𝐷}(𝒓′, 𝑡) d𝑣(𝒓′) (2.80)

= ̄ℎae𝐷 (𝑡) ∗𝑡
𝜕
𝜕𝑡

̄𝑝𝑆(𝑡)
𝜌0𝑐20

∗
𝑡
∫
𝑉

𝑓op{ℎ
pe
𝐷 }(𝒓′, 𝑡) d𝑣(𝒓′), (2.81)

where ℎpe𝐷 (𝒓, 𝑡) = ℎtx𝐷(𝒓, 𝑡) ∗𝑡 ℎrx𝐷(𝒓, 𝑡) is the pulse-echo SIR corresponding to Dirichlet
boundary conditions. To further simplify the volume integral following the approxima-
tions introduced in [27], it is assumed that the pulse-echo SIR is slowly varying over a
finite volume such that

∫
𝑉

𝑓op{ℎ
pe
𝐷 }(𝒓′, 𝑡) d𝑣(𝒓′)

= ∫
𝑉

[2Δ𝑐(𝒓
′)

𝑐30

𝜕2ℎpe𝐷 (𝒓′, 𝑡)
𝜕𝑡2 − 1

𝜌0
∇𝒓′[Δ𝜌(𝒓′)] ⋅ ∇𝒓′ℎ

pe
𝐷 (𝒓′, 𝑡)] d𝑣(𝒓′) (2.82)

= ∫
𝑉

[2Δ𝑐(𝒓
′)

𝑐30

𝜕2ℎpe𝐷 (𝒓′, 𝑡)
𝜕𝑡2 −

Δ𝜌(𝒓′)
𝜌0

∇2
𝒓′ℎ

pe
𝐷 (𝒓′, 𝑡)] d𝑣(𝒓′). (2.83)

Assuming only small variations in propagation velocity, the Laplacian operator of the
pulse-echo SIR can be related to the second order time derivative as [27]

∇2
𝒓ℎ

pe
𝐷 (𝒓, 𝑡) =

1
𝑐20

𝜕2ℎpe𝐷 (𝒓, 𝑡)
𝜕𝑡2 , (2.84)

further simplifying the volume integral as

∫
𝑉

𝑓op{ℎ
pe
𝐷 }(𝒓′, 𝑡) d𝑣(𝒓′) = ∫

𝑉

[2Δ𝑐(𝒓
′)

𝑐0
−
Δ𝜌(𝒓′)
𝜌0

] 1
𝑐20

𝜕2ℎpe𝐷 (𝒓′, 𝑡)
𝜕𝑡2 d𝑣(𝒓′). (2.85)

12This is a typical instance of the acoustic reciprocity theorem stated by Lord Rayleigh [48, Vol. 2, p. 145]
as: “If in a space filled with air which is partly bounded by finitely extended fixed bodies and is partly
unbounded, sound waves be excited at any point A, the resulting velocity-potential at a second point B is
the same both in magnitude and phase, as it would have been at A, had B been the source of the sound.”
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Injecting (2.85) in (2.81), and grouping all time derivative operations, the pulse-echo
voltage can be expressed as

𝑒rx𝐷(𝑡) = ̄ℎae𝐷 (𝑡) ∗𝑡
1

𝜌0𝑐40

𝜕3 ̄𝑝𝑆(𝑡)
𝜕𝑡3 ∗

𝑡
∫
𝑉

𝑓𝑚(𝒓′)ℎ
pe
𝐷 (𝒓′, 𝑡) d𝑣(𝒓′), (2.86)

where 𝑓𝑚(𝒓) = 2Δ𝑐(𝒓)/𝑐0 − Δ𝜌(𝒓)/𝜌0 is a term accounting for the (weak) fluctuations in
density and propagation velocity, giving rise to the scattered fields.
As the pressure waveform specified on the transmitter is the result of the time convolu-

tion of the excitation voltage waveform 𝑒tx(𝑡) and the electro-acoustic impulse response
of the transducer ̄ℎea𝐷 , (2.86) can also be expressed as

𝑒rx𝐷(𝑡) =
1

𝜌0𝑐40

𝜕3𝑒tx(𝑡)
𝜕𝑡3 ∗

𝑡
̄ℎea𝐷 (𝑡) ∗𝑡

̄ℎae𝐷 (𝑡) ∗𝑡
∫
𝑉

𝑓𝑚(𝒓′)ℎ
pe
𝐷 (𝒓′, 𝑡) d𝑣(𝒓′). (2.87)

2.5.4.2. Neumann Boundary Conditions

The derivation in the case of Neumann boundary conditions (i.e., hard baffle) is per-
formed similarly to the case of Dirichlet boundary conditions, while being sensibly lighter.
Contrary to the Dirichlet case, (2.70) can be exploited directly, and can be expressed as

𝜑𝑁(𝒓, 𝑡) = ∫
𝑇

∫
𝑉

𝑔𝑁(𝒓, 𝑡; 𝒓′, 𝑡′)𝑓op{ ̄𝜑𝑁}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′. (2.88)

Using the Green’s function for the Neumann case (2.43), exploiting the convolution
property of the Dirac delta function (2.44), and introducing time convolution with a
retarded Dirac, we successively obtain

𝜑𝑁(𝒓, 𝑡) = ∫
𝑇

∫
𝑉

𝛿(𝑡 − 𝑡′ − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
𝑓op{ ̄𝜑𝑁}(𝒓′, 𝑡′) d𝑣(𝒓′) d𝑡′ (2.89)

= ∫
𝑉

1
2𝜋‖𝒓 − 𝒓′‖2

𝑓op{ ̄𝜑𝑁}(𝒓′, 𝑡 −
‖𝒓 − 𝒓′‖2

𝑐0
) d𝑣(𝒓′) (2.90)

= ∫
𝑉

𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
∗
𝑡
𝑓op{ ̄𝜑𝑁}(𝒓′, 𝑡) d𝑣(𝒓′). (2.91)

From the expression of ̄𝜑𝑁 (2.69), we can expand the scattering operator as

𝑓op{ ̄𝜑𝑁}(𝒓, 𝑡) = 𝑓op{ ̄𝑣𝑛 ∗
𝑡
ℎtx𝑁}(𝒓, 𝑡) = ̄𝑣𝑛(𝑡) ∗

𝑡
𝑓op{ℎtx𝑁}(𝒓, 𝑡), (2.92)
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such that (2.91) becomes

𝜑𝑁(𝒓, 𝑡) = ̄𝑣𝑛(𝑡) ∗
𝑡
∫
𝑉

𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
∗
𝑡
𝑓op{ℎtx𝑁}(𝒓′, 𝑡) d𝑣(𝒓′). (2.93)

The received pulse-echo voltage 𝑒rx𝑁 is the surface integral over the receive surface 𝑆rx
of the time convolution of the pressure distribution and the acousto-electric impulse
response of the transducer ℎae𝑁 , namely

𝑒rx𝑁(𝑡) = ∫
𝑆rx

ℎae𝑁 (𝒓, 𝑡) ∗𝑡
𝜌0
𝜕𝜑𝑁(𝒓, 𝑡)

𝜕𝑡 d𝜎(𝒓), (2.94)

whereweused the relation (2.5) between the velocity potential and the pressure. Assuming
separability of variables for the acousto-electric impulse response such that ℎae𝑁 (𝒓, 𝑡) =
𝜉𝑁(𝒓) ̄ℎae𝑁 (𝑡), and using (2.94), we obtain

𝑒rx𝑁(𝑡) = ̄ℎae𝑁 (𝑡) ∗𝑡
𝜌0
𝜕 ̄𝑣𝑛(𝑡)
𝜕𝑡 ∗

𝑡
∫
𝑉

⎡
⎢
⎢
⎣

∫
𝑆rx

𝜉𝑁(𝒓)𝛿(𝑡 −
‖𝒓−𝒓′‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓′‖2
d𝜎(𝒓)

⎤
⎥
⎥
⎦

∗
𝑡
𝑓op{ℎtx𝑁}(𝒓′, 𝑡) d𝑣(𝒓′), (2.95)

where the surface integral (in brackets) can be identified as the SIR in the case of Neumann
boundary conditions, as defined in (2.59), if an “observer” point were located at 𝒓′ and
“sources” at 𝒓 ∈ 𝑆rx.13 Therefore,

𝑒rx𝑁(𝑡) = ̄ℎae𝑁 (𝑡) ∗𝑡
𝜌0
𝜕 ̄𝑣𝑛(𝑡)
𝜕𝑡 ∗

𝑡
∫
𝑉

ℎrx𝑁(𝒓′, 𝑡) ∗𝑡
𝑓op{ℎtx𝑁}(𝒓′, 𝑡) d𝑣(𝒓′) (2.96)

= ̄ℎae𝑁 (𝑡) ∗𝑡
𝜌0
𝜕 ̄𝑣𝑛(𝑡)
𝜕𝑡 ∗

𝑡
∫
𝑉

𝑓op{ℎ
pe
𝑁 }(𝒓′, 𝑡) d𝑣(𝒓′), (2.97)

where ℎpe𝑁 (𝒓, 𝑡) = ℎtx𝑁(𝒓, 𝑡) ∗𝑡 ℎrx𝑁(𝒓, 𝑡) is the pulse-echo SIR corresponding to Neumann
boundary conditions. Relying on the same approximations on the pulse-echo SIR as in
the Dirichlet case to simplify the volume integral using (2.85), and grouping all time
derivative operations in the same manner, one can obtain a similar expression for the
pulse-echo voltage in the Neumann case, namely

𝑒rx𝑁(𝑡) = ̄ℎae𝑁 (𝑡) ∗𝑡
𝜌0
𝑐20

𝜕3 ̄𝑣𝑛(𝑡)
𝜕𝑡3 ∗

𝑡
∫
𝑉

𝑓𝑚(𝒓′)ℎ
pe
𝑁 (𝒓′, 𝑡) d𝑣(𝒓′), (2.98)

where 𝑓𝑚(𝒓) = 2Δ𝑐(𝒓)/𝑐0 − Δ𝜌(𝒓)/𝜌0 is the same term accounting for the (weak) fluctua-
tions in density and propagation velocity as in (2.86).
As the Neumann boundary conditions case was derived by Jensen in his foundation

13Another typical instance of the acoustic reciprocity theorem stated by Lord Rayleigh [48, Vol. 2, p. 145].
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work [27], two slight differences can be noted. First, there is an additional 1/2 factor
in [27], which comes from the selection of the unbounded Green’s function to derive the
receive field. This choice implies that the boundary condition due to the presence of the
transducer is neglected on receive but not on transmit. Second, there is a sign difference in
the resulting inhomogenity function 𝑓𝑚, which most probably comes from different sign
conventions for the source function of the inhomogeneous scalar wave equation (2.8).
As the normal velocity waveform specified on the transmitter is the result of the time

convolution of the excitation voltage waveform 𝑒tx and the electro-acoustic impulse
response of the transducer ̄ℎea𝑁 , (2.98) can also be expressed as

𝑒rx𝑁(𝑡) =
𝜌0
𝑐20

𝜕3𝑒tx(𝑡)
𝜕𝑡3 ∗

𝑡
̄ℎea𝑁 (𝑡) ∗𝑡

̄ℎae𝑁 (𝑡) ∗𝑡
∫
𝑉

𝑓𝑚(𝒓′)ℎ
pe
𝑁 (𝒓′, 𝑡) d𝑣(𝒓′). (2.99)

2.5.5. Generic Pulse-Echo Model

Inspection of the relations (2.87) and (2.99) derived in the case of Dirichlet (soft) and
Neumann (hard) boundary conditions clearly reveals their overall similarity. Let us
abstract the specifics of the electro-acoustic and acousto-electric impulse responses of
the transmit and receive transducers involved, and assume that the scaling constants as
well as the third-order time derivative are accounted for by generic impulse responses
defined as ℎae and ℎea. Using the generic expression for the SIR defined in (2.61), one can
rewrite both (2.87) and (2.99) as

𝑒rx(𝑡) = 𝑒tx(𝑡) ∗
𝑡
ℎea(𝑡) ∗

𝑡
ℎae(𝑡) ∗

𝑡
∫
𝑉

[ℎtx(𝒓, 𝑡) ∗
𝑡
ℎrx(𝒓, 𝑡)]𝑓𝑚(𝒓) d𝑣(𝒓), (2.100)

for which the pulse-echo SIR has been split back to a transmit-receive convolutional form,
and where we replaced 𝒓′ by 𝒓 in the volume integral to lighten notations as there is no
more ambiguity at this stage between (volume) sources and (evaluation) field points (i.e.,
observers).
As highlighted in [27], the signal of interest that should be displayed by an US scanner

is

𝑓𝑚(𝒓) =
2Δ𝑐(𝒓)
𝑐0

−
Δ𝜌(𝒓)
𝜌0

, (2.101)

as it represents the local fluctuations in density and propagation velocity, and thus gives
rise to echo signals. However, the measurements obtained of 𝑓𝑚 are blurred and deformed
by the spatial and time convolutions involved in (2.100). In particular, due to the time
convolution with the pulse-echo waveform14

𝑣pe(𝑡) = 𝑒tx(𝑡) ∗𝑡
ℎea(𝑡) ∗𝑡

ℎae(𝑡), (2.102)

14Originally called pulse-echo wavelet in [27].
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and the spatial convolution with the spatially varying pulse-echo SIR

ℎpe(𝒓, 𝑡) = ℎtx(𝒓, 𝑡) ∗𝑡
ℎrx(𝒓, 𝑡). (2.103)

It is important to keep in mind that these generalizations require careful usage of suit-
able impulse responses, and especially the SIRs, depending on the boundary conditions
assumed for the transducers. Hard baffles (i.e., Neumann boundary conditions) were
extensively used in deriving analytic expressions for the corresponding SIRs of transducer
(radiators) with specific geometries [43], [51]–[54], [56], [57]. Good agreements with
respect to measurements were obtained when considering hard baffle conditions for
transducers with characteristic lengths of many wavelengths [27], [58]. Fewer analytic
expressions were derived in the case of soft baffles (i.e., Dirichlet boundary conditions)
for the corresponding SIRs [59], maybe due to the added complexity of the cosine term in
(2.56). Yet, thanks to that additional cosine term, soft baffle conditions were proved to
better fit the radiation pattern of small elements with respect to the characteristic wave-
length [49], [60]–[63]. Transducer arrays deployed in current US scanners are typically
composed many “small” elements, for instance tens to hundreds of them compose 1-D
phased or linear arrays for 2-D imaging, and thousands of them compose 2-D matrix
arrays for 3-D imaging. Therefore, the soft baffle condition is of particular interest to this
work.

2.6. Conclusion

In this chapter, we have derived a linear pulse-echo model accounting for the diffraction
effect of infinite planar baffles (i.e., SIR model) and for the scattering of acoustic waves
propagating through weakly inhomogeneous tissue. The derivation is based on the work
of Jensen [27] and was generalized to account for both Dirichlet (soft) and Neumann
(hard) baffle boundary conditions. For this purpose, the derivation was carried out in the
transient case (i.e., time domain) on the velocity potential rather than the pressure. The
resulting expression for the Neumann boundary condition match the one derived in [27].
Most importantly, this model is at the core of most (if not all) approaches presented in

this thesis. As such, a deep understanding of the physical assumptions made to arrive to
such a model is of primary importance. For instance, this model is the source of a further-
approximated, computationally tractable, pulse-echomodel presented in Chapter 3 for the
purpose of US imaging. Also, and as it will be discussed in Chapter 3, efficient and accurate
computer simulations were needed for the generation of large datasets to train CNN-based
image reconstruction methods (Chapters 5 to 7). The SIR US simulator developed for
this purpose is presented in Chapter 4 and directly derives from the pulse-echo model for
weak scattering presented in the present chapter.
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Imaging

3.1. Introduction

As introduced in Section 1.1, images reconstructed from ultrafast US acquisitions are of
low quality compared with conventional line-by-line scanning. This is obviously expected
because ultrafast US images are reconstructed from single unfocused transmit wavefronts
as opposed to many focused beams in line-by-line scanning. As a result, images recon-
structed from ultrafast US acquisitions using a conventional DAS beamforming algorithm
are characterized by PSFs with broad main lobes (poor lateral resolution) and high sec-
ondary lobes (low contrast) [6]–[8], [11], [16], [17]. These secondary lobes are typically the
result of GL, SL, and EW artifacts, and will be referred to as diffraction artifacts. Because
these artifacts may shadow tissue regions of interest, they can be detrimental to lesion
detection. Moreover, they can reduce the accuracy of displacement estimation techniques
that are fundamental to ultrafast US imaging modes such as shear-wave elastography [6].
Coherent compounding has emerged as the state-of-the-art technique to improve the
quality of ultrafast US images [1], [6], [8], [16], [18]. This process consists of reconstruct-
ing a sequence of low-quality images from differently steered unfocused wavefronts that
are coherently compounded to form an image of higher quality, at the expense of a lower
achievable frame rate.
This chapter presents our initial approach, based on SR, to reconstructing high-quality

US images fromunfocusedwavefronts. In particular, we present a generalization of the for-
ward model developed throughout the years for the purpose of ultrafast US imaging. The
proposed model derives from the generic pulse-echo model for weak scattering presented
in Chapter 2. Because the latter involves complex surface integrals for the evaluation of
the SIR of each transducer element composing an US transducer array, further approxi-
mations were required to obtain a computationally tractable forward model suitable for
image reconstruction methods. The approximated model presented in this chapter rely
on far-field assumptions for transducer elements and on ideal wavefront assumption for
the transmitted unfocused wavefronts used in ultrafast US imaging, allowing to reduce
the complexity drastically.
This model has been successfully applied to different US imaging problems such as

sparsely regularized beamforming for enhanced ultrafast US imaging [25], [64, Sec. 4.2],
compressed US beamforming [25], [64, Sec. 4.3], and deconvolution of US images [29],
[64, Sec. 4.4]. Of particular interest to this thesis is the SR approach for enhanced ultrafast
US imaging, for which a sparsity-promoting term in a concatenation of wavelet bases was
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used as regularizer. This regularizer coupled to the proposed forward model enabled us
to obtain promising images with sensibly reduced diffraction artifacts. The experiments
presented in this chapter also highlight the main issues observed with this approach.
In particular, the fact that we did not find a conventional image-processing regularizer
capable of reducing diffraction artifacts while restoring and preserving accurate speckle
patterns.

3.2. Proposed Methods

3.2.1. Generic Approximated Pulse-Echo Model for Imaging

Let us recall from Chapter 2 that under the first-order Born approximation, assuming
(longitudinal) linear acoustics, and neglecting dispersive attenuation, the signal received
(e.g., by a transducer element) from a weakly scattering medium Ω embedded in a ho-
mogeneous medium and insonified by a transmitter (e.g., wavefront) can be (compactly)
expressed from (2.100) as

𝑦𝑖,𝑗(𝑡) = 𝑣pe(𝑡) ∗
𝑡
∫
Ω

[ℎtx𝑖 (𝒓, 𝑡) ∗𝑡
ℎrx𝑗 (𝒓, 𝑡)]𝑥(𝒓) d𝑣(𝒓), (3.1)

where ∗𝑡 denotes time convolution. The terms ℎtx𝑖 and ℎrx𝑗 represent the SIRs of the
transmitter and receiver, respectively. The pulse-echo waveform,1 as defined in (2.102), 𝑣pe
includes both electro-acoustic (transmit) and acousto-electric (receive) impulse responses
as well as the electric excitation waveform (assumed identical for all transducer elements).
The signal of interest (i.e., image) is defined from (2.101) as

𝑥(𝒓) = 2Δ𝑐(𝒓)
𝑐0

−
Δ𝜌(𝒓)
𝜌0

, (3.2)

and accounts for local fluctuations in density and propagation velocity, which induce the
scattered echo signal (i.e., scattering term).Note thatweused the symbol𝑥 instead of 𝑓𝑚 for
the scattering term, and 𝑦 instead of 𝑒rx for the electric signal received. One can also note
from (3.2) that because the scattering term 𝑥 is a composition of physical quantities (i.e.,
local fluctuations in density and propagation velocity), an image reconstruction method
based on (3.1) will not be able to provide physical quantities. This is why conventional
(B-mode) US imaging is not a quantitative method but rather a contrast imaging modality.
The main (and only) issue of (3.1) in the context of imaging, in particular when con-

sidering real-time imaging, is the high computational complexity of the SIRs involved.2

Therefore, to obtain a computationally tractable (forward) model for use in image re-
construction methods, further assumptions must be made. We limit ourselves to array
imaging and in particular to ultrafast imaging, namely performed by insonifying the re-

1Originally called pulse-echo wavelet in [27].
2This will be studied in detail in Chapter 4.
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gion of interest using unfocused wavefronts such as PWs or DWs. Ultrasound transducer
arrays are composed of many “small” transducer elements, typically close to the excitation
wavelength. By small, it is meant that their characteristic length in the imaging dimension
is small. For instance, transducer elements composing 1-D arrays are characterized by a
width close to the wavelength (i.e., characteristic length) and a height than can attain
few tens of wavelengths. Since imaging is usually performed at few tens of wavelengths,
we will assume that a receiving element (i.e., receiver) is sufficiently far away from all
field points composing the image of interest such that far-field approximation holds. For
the transmitter, we will assume that the transmit wavefront generated by the transducer
array by applying suitable delays (and potential apodization) to its elements is an ideal
wavefront.
With these assumptions in mind, we propose to (drastically) simplify the complexity of

the transmit and receive SIRs of (3.1), such that they can be approximated generically as

ℎ𝑆(𝒓, 𝑡) ≈ ̄ℎ𝑆(𝒓)𝛿(𝑡 − 𝜏𝑆(𝒓)), (3.3)

where 𝛿 is the Dirac delta function. The term ̄ℎ𝑆 is a scalar function representing the
(far-field) acoustic diffraction effects of the aperture 𝑆 (i.e., transmitter or receiver) to a
field point 𝒓. Similarly, the term 𝜏𝑆 is a scalar function representing the acoustic wave
propagation time from the aperture to a field point 𝒓. Equation (3.3) is obviously a drastic
approximation of the complex surface integral over a radiating surface involved in the
evaluation of the SIR, as derived in Chapter 2 and expressed in (2.61). As such, it requires
careful usage, and it will be made clear to why this approximation was considered. As-
suming that such an approximation is acceptable, (3.3) reduces the evaluation of the
(approximated) SIR to some weighting function ̄ℎ𝑆 and a time delay 𝜏𝑆. Injecting these
definitions in (3.1), we obtain

𝑦𝑖,𝑗(𝑡) ≈ 𝑣pe(𝑡) ∗
𝑡
∫
Ω

̄ℎtx𝑖 (𝒓) ̄ℎrx𝑗 (𝒓)𝛿(𝑡 − 𝜏tx𝑖 (𝒓) − 𝜏rx𝑗 (𝒓))𝑥(𝒓) d𝑣(𝒓), (3.4)

where ̄ℎtx𝑖 and ̄ℎrx𝑗 are scalar functions representing the (far-field) acoustic diffraction
effects of the transmitter and the receiver to and from a field point 𝒓, respectively. The
terms 𝜏tx𝑖 and 𝜏rx𝑗 represent the acoustic wave propagation times from the transmitter and
the receiver to a field point 𝒓, respectively. Their sum represents what is often referred
to as the round-trip time-of-flight. An illustration of the proposed (forward) pulse-echo
model in the case of 2-D PW imaging is depicted in Figure 3.1.
Equation (3.4) is a generalization of the forward model developed throughout the

years in our laboratory for the purpose of US imaging. It has been successfully applied to
different US imaging problems such as sparsely regularized beamforming for enhanced
ultrafast US imaging [25], [64, Sec. 4.2], compressed US beamforming [25], [64, Sec. 4.3],
and deconvolution of US images [29], [64, Sec. 4.4]. Thanks to a versatility that goes
beyond the scope of the present thesis, we termed the reconstruction framework deriving
from it the ultrasound sparse regularization framework (USSR) [28]. From these different
works conducted, one is of particular interest to the present thesis, namely the sparsely
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Figure 3.1. Illustration of a 2-D plane-wave (PW) imaging configuration. The PW wavefront is gener-

ated by applying suitable delays (and potential apodization) to the transducer elements composing the

array. Backscattered echoes (here from a single scatterer) are received on all transducer elements

(i.e., full aperture). (Adapted from [25], [30].)

regularized beamforming with its promise to enhance US images from few insonifications.

3.2.2. Inverse Problem and Imaging Methods

For the purpose of conventional US imaging, and by that we mean to reconstruct images
with proper speckle patterns suitable for displacement estimation, we will further assume
the pulse-echo waveform 𝑣pe to be a Dirac delta function such that (3.4) can be rewritten
as

𝑦𝑖,𝑗(𝑡) ≈ ∫
Ω

̄ℎtx𝑖 (𝒓) ̄ℎrx𝑗 (𝒓)𝛿(𝑡 − 𝜏tx𝑖 (𝒓) − 𝜏rx𝑗 (𝒓))𝑥(𝒓) d𝑣(𝒓). (3.5)

Ultrasound transducers typically comprise a set of 𝑛𝑟 receivers (i.e., transducer elements)
arranged in a regular array (e.g., Figure 3.1), and echo signals (i.e., measurements) are
sampled at discrete time intervals. As images are composed of discrete (pixel) values, the
(approximated) pulse-echo model defined in (3.5) can be conveniently expressed as a
discretized operation for all receivers as

𝒚 = 𝑯𝒙 + 𝒏, (3.6)

where𝑯∶ ℝ𝑛 → ℝ𝑚 is the measurement (matrix) operator, 𝒙 ∈ ℝ𝑛 is the (vectorized)
imagewe seek to recover,𝒚 ∈ ℝ𝑚 are the (vectorized) transducer elementsmeasurements,
and 𝒏 ∈ ℝ𝑚 is the measurement noise. Note that the transmitter index 𝑖 has been omitted
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in the matrix expressions to lighten notations. It is thus assumed that 𝑯 accounts for
all transmit-receive events that led to the acquisition of the corresponding (vectorized)
signals𝒚 ∈ ℝ𝑚. Recovering 𝒙 from𝒚 is a well-known inverse problem inmedical imaging
and may be addressed using various strategies (see, e.g., [32] for CT imaging).
Classical backprojection algorithms, which exploit the adjoint operator𝑯∗∶ ℝ𝑚 → ℝ𝑛,

may be used to address such an inverse problem. Using (3.5), one can express the adjoint
operation in the continuous domain for all receivers and for the 𝑖-th transmitter as [29]

̃𝑥𝑖(𝒓) = ̄ℎtx𝑖 (𝒓)
𝑛𝑟
∑
𝑗=1

̄ℎrx𝑗 (𝒓)𝑦𝑖,𝑗(𝜏
tx
𝑖 (𝒓) + 𝜏rx𝑗 (𝒓)), (3.7)

which is an instance of the well-known DAS algorithm, where ̄ℎtx𝑖 and ̄ℎrx𝑗 can be inter-
preted as weighting functions, often referred to as apodization functions of conventional
DAS algorithms. This observation is not “magical,” as all the approximations made from
(3.1) to (3.5) were precisely intended to obtain an explicit backprojection-based formula-
tion for the well-known DAS operator. As the resulting RF image ̃𝑥𝑖 is obtained from a
single insonification (i.e., 𝑖-th transmitter), it usually suffers from strong diffraction arti-
facts. To improve the resulting image quality, it is common to average coherently multiple
(low-quality) RF images reconstructed using DAS-based algorithms from measurements
acquired by insonifying the medium of interest differently, for instance using steered
PWs or DWs in a process called coherent compounding [65], or using SA imaging [19].
In the frame of the proposed formulation, this process amounts to obtaining an image
estimate from 𝑛𝑡 transmit wavefronts as

̃𝑥(𝒓) = 1
𝑛𝑡

𝑛𝑡
∑
𝑖=1

̄ℎtx𝑖 (𝒓)
𝑛𝑟
∑
𝑗=1

̄ℎrx𝑗 (𝒓)𝑦𝑖,𝑗(𝜏
tx
𝑖 (𝒓) + 𝜏rx𝑗 (𝒓)). (3.8)

As an alternative to using multiple insonifications to improve the image quality, regu-
larization techniques may be used by solving

𝒙̂ = argmin
𝒙∈ℝ𝑛

{𝒟(𝑯𝒙, 𝒚) + 𝜘ℛ(𝒙)}, (3.9)

where𝒟∶ ℝ𝑚 × ℝ𝑚 → ℝ+ is a data fidelity term (e.g., the ℓ2-norm), and ℛ∶ ℝ𝑛 → ℝ+

is a regularizer used to infer prior knowledge on the expected image. The regularization
parameter 𝜘 ∈ ℝ+ controls the weighting of the regularization and is typically adjusted
manually. One solution to (3.9), when using the ℓ2-norm as data fidelity, may be found
using the well-known proximal gradient descent iteration [66]

𝒙(𝑘+1) = prox𝛾𝜘ℛ(𝒙
(𝑘) − 𝛾𝑯∗𝑯𝒙(𝑘) +𝑯∗𝒚), (3.10)

where𝑯∗ is the adjoint of 𝑯, 𝛾 ∈ ℝ+ is the gradient step size (that may also be iteration-
dependent), and the proximity operator prox𝜇ℛ∶ ℝ

𝑛 → ℝ𝑛 is defined as

prox𝜇ℛ(𝒛) = argmin
𝒛∈ℝ𝑛

1
2‖𝒙 − 𝒛‖22 + 𝜇ℛ(𝒙), (3.11)
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for some parameter 𝜇 ∈ ℝ+. The proximity operator in (3.10) acts as a projection to
“denoise” each estimate based on some prior knowledge of 𝒙. It is thus of primary impor-
tance and should be selected with care depending on known properties of 𝒙 and on the
expected “noise.”
Among the many regularizers benchmarked in the context of US imaging, we observed

that a promising regularizer for the purpose of reducing diffraction artifacts (i.e., noise)
while preserving speckle patterns (i.e., signal of interest) is to use a sparsity-promoting
term in a transformed domain

ℛ(𝒙) = ‖𝚿∗𝒙‖1. (3.12)

For the sparsity-promoting transform 𝚿∶ ℝ𝑑 → ℝ𝑛, 𝑑 ≥ 𝑛, we relied on the sparsity
averaging model [67]. It is expressed as a concatenation of 𝑝 Parseval frames

𝚿 = 1
√𝑝

[𝚿1, … ,𝚿𝑝]. (3.13)

From the extensive benchmarks conducted, it was observed that setting 𝑝 equal to eight
and using for 𝚿𝑘 the 𝑘-th Daubechies multi-level inverse wavelet transform with two
decomposition levels, provided good results in the context of US imaging. Note that
because the sparsity-promoting transform (3.13) is a concatenation of normalized tight
frames (Daubechies wavelet transforms), the proximity operator corresponding to the
resulting sparsity-promoting term (3.12) amounts to soft-thresholding the transformed
image samples (i.e., wavelet coefficients).

3.2.3. Implementation and Interpretation Notes on the Approximated Model

Inspection of (3.5) reveals that at each time 𝑡 (i.e., at each time sample), a volume integral
over Ω needs to be evaluated. This would obviously be prohibitive on a computational
perspective. Provided that the implicit function 𝑔𝑖,𝑗(𝒓, 𝑡) = 𝑡−𝜏tx𝑖 (𝒓)−𝜏rx𝑗 (𝒓) is continuously
differentiable such that |∇𝒓𝑔𝑖,𝑗(𝒓, 𝑡)| ≠ 0, ∀𝒓 ∈ Ω, ∀𝑡 ≥ 0, (3.5) may be rewritten as

𝑦𝑖,𝑗(𝑡) ≈ ∫
Γ𝑖,𝑗(𝑡)

̄ℎtx𝑖 (𝒓) ̄ℎrx𝑗 (𝒓)
|∇𝒓𝑔𝑖,𝑗(𝒓, 𝑡)|

𝑥(𝒓) d𝜎(𝒓). (3.14)

This step, crucial on a computational perspective, reduces the volume integral to a surface
integral over the zero-level set of 𝑔𝑖,𝑗(𝒓, 𝑡) defined as Γ𝑖,𝑗(𝑡) = {𝒓 ∈ Ω∶ 𝑔𝑖,𝑗(𝒓, 𝑡) = 0}.
It is interesting to note that these surfaces are quadric surfaces, and that they are 1-D
conics when considering 2-D imaging. Thus, the set of these surfaces (or curves) {Γ𝑖,𝑗}
onto which integrals are to be performed can be efficiently parametrized. An illustration
in 2-D is depicted in Figure 3.2 and many derivations can be found in [64, Sec. 3.4 to 3.6].
For instance, in the case of 2-D PW imaging, the set of 1-D conics is a set of parabolas.
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Figure 3.2. Two-dimensional interpretation of the approximated measurement model as the curvilinear

integral over a 1-D conic for a specific time instant of the signal acquired on the j-th receiver from

the i-th transmit wavefront (i.e., transmitter). The time instant is represented by a filled circle in the

corresponding signal. The corresponding 1-D conic is a parabola in the case of 2-D plane wave (PW)

imaging. (Adapted from [25], [30].)

Furthermore, applying numerical integration (quadrature) to (3.14), we obtain

𝑦𝑖,𝑗(𝑡) ≈
𝑛𝑞

∑
𝑞=1

̄ℎtx𝑖 (𝒓𝑞) ̄ℎrx𝑗 (𝒓𝑞)
|∇𝒓𝑔𝑖,𝑗(𝒓, 𝑡)|

𝑤𝑞|det 𝑱Γ(𝒓𝑞, 𝑡)|𝑥(𝒓𝑞), (3.15)

where {𝑤𝑞}, {det 𝑱Γ(𝒓𝑞, 𝑡)}, and {𝒓𝑞}, are the corresponding quadrature weights, Jacobian
determinants, and quadrature points, respectively. The numerical evaluation of (3.14)
by means of (3.15) amounts to a weighted sum of values over some surface (or curve in
1-D). It is thus akin to a DAS operator in some sense, but applied on the image rather
that on the signals. With these derivations, one can note that we end up with a forward
model 𝑯 and its adjoint 𝑯∗ that are similar operators. As such, they have a similar
computational complexity, and both involve operations that can be performed in parallel
such that efficient graphics processing unit (GPU)-based implementations are possible.
An important consideration when implementing (3.7) and (3.15) is the interpolation that
needs to be performed between time samples for the adjoint operator𝑯∗ and between
spatial samples for the forward model𝑯 (i.e., at quadrature point positions). Here again,
they can be performed similarly, and efficiently, using generalized interpolation [68], such
that B-spline interpolation can be leveraged with a minimal overhead in computational
cost (i.e., by means of pre-filtering). Generalized interpolation will be addressed in detail
in Chapter 4.
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3.3. Experiments

We are interested in assessing the image quality of the SR approach described in Sec-
tion 3.2 from single-PW insonifications with normal incidence. For this purpose, we
considered the imaging configuration and corresponding acquisition data provided by
the PICMUS3 [23]. Two different sets of data were considered, namely data acquired
(i.e., simulated) on the numerical PICMUS phantom, and data acquired on an in vivo
carotid (longitudinal view). We compared images reconstructed using the proposed SR
approach from single-PW insonifications to images reconstructed by the corresponding
backprojection-based DAS operator from single-PW and 75-PW insonifications (consid-
ered as reference).
Since the proposed approximated pulse-echo model assumes ideal wavefronts, in case

of PW insonifications the corresponding weighting function ̄ℎtx𝑖 (𝒓) = 1. The diffraction
effect of a transducer element (receiver) evaluated at a field point 𝒓 in the transducer
plane can be derived from the far-field approximation for continuous waves of a plane
rectangle. Considering a soft baffle boundary condition and proceeding similarly to [49],
[61], it can be expressed, using [69], as

̄ℎrx𝑗 (𝒓) =
𝐴 sinc(𝑑/𝜆 sin(𝜃))

2𝜋‖𝒓 − 𝒓𝑗‖2
cos(𝜃), (3.16)

where 𝒓𝑗 is the position (center) of the transducer element, 𝜃 is the angle between normal
vector at the element center and the vector 𝒓 − 𝒓𝑗, 𝐴 and 𝑑 are the surface area and width
of the transducer element, respectively, and sinc(𝑥) ≔ sin(𝜋𝑥)/(𝜋𝑥). The delay function
representing the acoustic wave propagation time of the PW transmit wavefront 𝜏tx𝑖 is
straightforward to evaluate (Figure 3.2). It is equal to the distance between the field point
𝒓 and its projection onto the initial planar wavefront (initial reference time), divided by the
mean sound speed of the medium 𝑐0. The receive delay function is also straightforward
and can be expressed as 𝜏rx𝑗 (𝒓) = (1/𝑐0)‖𝒓 − 𝒓𝑗‖2.
For the SR approach, we relied on the well-known fast iterative shrinkage-thresholding

algorithm (FISTA) [70], an accelerated version of the proximal gradient descent itera-
tion (3.10) proposed by Beck and Teboulle. The algorithm was stopped when the mean
squared error (MSE) of two consecutive solution candidates was smaller than 10−3. The
regularization parameter 𝜘 was optimized by grid search for each case considered.
Image reconstruction quality was assessed quantitatively on the numerical PICMUS

phantom (Figure 3.3). We evaluated a subset of the image quality metrics provided on
the numerical PICMUS phantom. In particular, we considered the contrast-to-noise ratio
(CNR), evaluated on the circular anechoic inclusion. We also computed both the average
lateral and average axial resolution, namely full width at half maximum (FWHM), in the
near field (i.e., at a depth of 14mm) and in the far field (i.e., at a depth of 45mm). Both
US-specific quality tests were considered, namely statistical speckle tests performed in

3All specifications are detailed on the PICMUS evaluation platform https://www.creatis.insa-lyon.

fr/EvaluationPlatform/picmus/index.html.
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different fully developed zones of the phantom, and the log-linear-intensity test performed
on the rectangular inclusion spanning the width of the image. For each RF US image
reconstructed, the corresponding B-mode image was obtained by applying conventional
envelope detection, normalization, and log-compression.

3.4. Results

B-mode image representations of images reconstructed using the three image recon-
struction approach considered, the proposed backprojection-based DAS operator from
a single-PW acquisition (1 PW + DAS), the proposed SR approach from a single-PW
acquisition (1 PW + SR), and the proposed backprojection-based DAS operator from 75
PW acquisitions (75 PWs + DAS, considered as reference) are shown in Figure 3.3. The
corresponding image quality metrics are reported in Table 3.1. Visual comparison of 1 PW
+DAS and 1 PW+ SR shows that the proposed SR approach is capable of reducing diffrac-
tion artifacts, especially in the circular anechoic zone. This results in a CNR improved by
3.4 dB (Table 3.1). Yet, it cannot properly deal with the large GL artifact, resulting from
the high-echogenic (left) part of the rectangular gradient. Resolution metrics demon-
strate that SR is capable of improving both the lateral and the axial resolutions, and even
outperform the reference method (75 PWs + DAS). On the other hand, SR results in the
failing of three speckle tests (i.e., half of them). The linearity also test fails with SR. This
can be observed on the corresponding B-mode image on which an important portion of
the rectangular gradient starts to be completely thresholded (at approximately 5mm in
the lateral dimension).

Figure 3.3. B-mode image representations (60-dB range) of the numerical plane-wave imaging

challenge in medical ultrasound (PICMUS) phantom reconstructed using (from left to right) the proposed

backprojection-based delay-and-sum (DAS) operator from a single plane wave (PW) acquisition,

the proposed sparse regularization (SR) approach from a single PW acquisition, and the proposed

backprojection-based DAS operator from 75 PW acquisitions (considered as reference). (Modified from

[30].)

Figure 3.4 shows B-mode image representations for the three different methods on the
longitudinal view of an in vivo carotid. We can observe that SR is capable of reducing
diffraction artifacts compared with DAS beamforming from a single-PW acquisition. This
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TABLE 3.1

Image Quality Metrics Computed on the PICMUS Numerical Phantom

Method CNR (dB)
Lat. Res. (mm) Ax. Res. (mm) Speckle Tests Linearity Test

14mm 45mm 14mm 45mm Passed Passed

1 PW + DAS 7.2 0.36 0.53 0.38 0.41 6 / 6 Yes

1 PW + SR 10.6 0.23 0.31 0.33 0.37 3 / 6 No

75 PWs + DAS 16.4 0.32 0.46 0.39 0.40 6 / 6 Yes

effect is particularly visible on the many SL artifacts originating from the high-echogenic
carotid walls. It seems that overall, it performswell provided that these diffraction artifacts
are not too extreme.

Figure 3.4. B-mode image representations (60-dB range) of an in vivo carotid (longitudinal view)

reconstructed using (from left to right) the proposed backprojection-based delay-and-sum (DAS)

operator from a single plane wave (PW) acquisition, the proposed sparse regularization (SR) approach

from a single PW acquisition, and the proposed backprojection-based DAS operator from 75 PW

acquisitions (considered as reference). (Modified from [30].)

3.5. Discussion

3.5.1. Generic Approximated Pulse-Echo Model

In Section 3.2.1, we derived a generic approximation of the linear pulse-echo model for
weak scattering (Chapter 2) by assuming a specific set of (sometimes drastic) approxima-
tions. These approximations, namely splitting the SIR as the product of a spatially depen-
dent weighting function and a shifted Dirac delta function (3.3), and assuming the pulse-
echo waveform to be a Dirac delta function, enabled us to derive a forward model whose
adjoint (backprojection) is similar to a conventional DAS operator. When interpreted as a
DAS operator, the weighting functions ̄ℎtx𝑖 and ̄ℎrx𝑗 of the proposed backprojection-based
DAS operator are apodization functions that are generally used to shape the resulting
PSF of the imaging system. In particular, they are generally optimized to attain a satisfac-
tory trade-off between the lateral resolution of the PSF (main lobe) and secondary lobes
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such as those resulting from GL, SL, and EW artifacts. These artifacts are significant in
ultrafast US imaging, in particular when using linear transducer arrays. With the pro-
posed backprojection-based DAS operator, these weighting functions are not optimized
“manually”, but are rather derived from far-field approximations. In general, this results
in corresponding apodization functions that are less restrictive than conventional ones,
with corresponding system PSFs that have tighter main lobes (better lateral resolution)
but greater diffraction artifacts.
We also showed that the proposed forward model (3.5) can be reduced to surface

integrals (curves in 2-D) that are quadric surfaces (conics in 2-D), as derived in (3.14).
Moreover, after numerical integration (3.15), it results in operations that are akin to a
DAS operator. Thus, both forward and adjoint operators are very similar and can benefit
from similar implementations.

3.5.2. Sparse Regularization for Enhanced Ultrafast Imaging

The images reconstructed using the proposed SR approach from single-PW acquisitions
are promising in the sense that diffraction artifacts are indeed reduced, resulting for
instance in an improved CNR (Table 3.1). However, these improvements were obtained
at the cost of a major issue, that is an altered speckle pattern. For instance, half of the
speckle tests failed. A close visual inspection of the speckle patterns obtained using SR
(Figure 3.3) reveals that these patterns are sensibly different from those obtained with a
DAS-based image reconstruction both from single-PW and 75-PW insonifications (the
latter two having very similar patterns). This can obviously be detrimental to displacement
estimation techniques that rely on proper speckle patterns.
Another issue that initially appeared as an advantage of SR is the improvement of both

axial and lateral resolutions (Table 3.1), even outperforming 75 PWs + DAS. While the
improvement in lateral resolution is a great outcome, the improvement of the axial one is
unexpected. Indeed, the forward model considered neglects the pulse-echo waveform as
it is assumed to be a Dirac delta function. Thus, there is no reason for the axial resolution,
which is mainly governed by the time resolution of the pulse-echo waveform, to be
improved.
Both aforementioned issues are linked to the sparsity-promoting regularizer considered

in this study. Even if the sparsity averaging in a concatenation of wavelet bases is the
best regularizer found to account for speckle patterns, it is clear that it does not allow
restoration these patterns. Even worse, it does not preserve proper speckle patterns.

3.6. Conclusion

To conclude, we have derived a generic (approximated) forward model for pulse-echo
ultrasound imaging. It offers great flexibility and is ideally suited to ultrafast US imaging.
On the computational perspective, it can be reduced to operations similar to that of a
DAS operator, enabling efficient parallel implementations of both operators. We showed
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that it can be used to derive a backprojection-based DAS operator for direct use, but also
incorporated in convex optimization tools for reconstructing high-quality images. The
proposed sparsity-promoting term in a concatenation of wavelet bases produced visually
pleasing images. Unfortunately, speckle patterns are altered in a way that displacement
estimation techniques cannot be guaranteed. This represents the major issue of this
approach in the context of US imaging as most ultrafast imaging modes heavily rely on
these patterns. The main conclusion of our work on finding an appropriate regularizer is
that, apparently, conventional image processing regularizers are not well suited to the
high dynamic range and statistical properties of RF US images, especially in the presence
of speckle patterns.
This observation led us to consider more “powerful” imaging methods based on deep

learning techniques, thanks to which amazing performances started emerging in other
medical imaging modalities [31], [32]. These CNN-based approaches will be the subject
of the remaining chapters on US imaging methods (Chapters 5 to 7). But before we could
“embrace” CNN-based methods, we needed data, and a lot of data. At that time, we did
not have access to a suitable US research scanner, no large dataset of US images was
publicly available, so we opted for simulated data. After a thorough benchmark of many
publicly available US simulators, the finding was clear: the generation of a sufficiently
large simulated-image dataset to achieve our goal would have required multiple years
of computing time on our computers. Therefore, before diving into deep learning, we
started by deriving and implementing an accelerated SIR-based US simulator with the
hope that it could enable us to generate large datasets of high-quality for the training of
CNNs. This simulator is the subject of the next chapter (Chapter 4).
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Simulator

The material presented in this chapter is the result of joint work with F. Martinez, M. Arditi, and

J.-Ph. Thiran. This material is currently under preparation for submission.

4.1. Introduction

The need for fast and accurate US simulation tools is as great as ever. Such tools have been
and continue to be extensively developed and deployed for the design and characterization
of US transducers [71], [72]. For instance, as US transducers are crucial to the quality of
the signals acquired, and consequently to the resulting image quality, simulation tools
are often deployed to optimize their defining parameters. The use of end-to-end US
scanner simulators is also increasing for the training and evaluation of physicians and
sonographers [73]–[77], because they eliminate the need for volunteers or patients and can
provide on-demand exposure to specific care and diagnosis scenarios. On the US imaging
side, simulation tools are crucial for the development, assessment, and validation of image
analysis and image reconstruction methods. This includes, for example, the analysis and
characterization of speckle patterns [78], [79], the optimization of application-specific
acquisition sequences [18], the fine-tuning and benchmarking of image reconstruction
parameters and methods [80], or the development of suitable image quality metrics [81].
The recent breakthrough of deep learning-based methods in medical image analysis [82],
medical image reconstruction [83], [84], and ultrasound imaging [85] comes with a
critical need for large-scale datasets to feed the data-intensive algorithms involved.1 In
this context, the generation of synthetic data is of great interest [86], with the potential to
generate (infinitely) large, highly diverse, and unbiased datasets of high quality.
With the myriad of US applications in which simulations can be leveraged, some of

which are listed in the previous paragraph, it is no wonder that many US simulators
are available.2 Among them, and in the context of linear acoustics, Field II [87], [88] is
considered a reference, thanks to its ability to calculate acoustic fields of arbitrarily shaped,
excited, and apodized transducers, as well as simulating the acquisition of ultrasound
pulse-echo signals in the presence of (weak) tissue inhomogeneities [27]. It is based on

1This is particularly true for supervised learning, which, to date, remains the most used and efficient
strategy to train deep neural networks, provided that enough data are available to prevent from overfitting.
2A fairly exhaustive list of available software can be found on the k-Wave website: http://www.k-wave.
org/acousticsoftware.php.
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the SIR method developed by Tupholme [36] and Stepanishen [37], [51], which is an
analytic (mesh-free) method dedicated to the evaluation of transient acoustic fields that
are of particular interest for pulse-echo US imaging.
The SIR approach, as developed by Tupholme and Stepanishen, provides an elegant

way to derive analytic expressions for the evaluation of the velocity potential generated
by a transducer aperture that is excited by a uniform surface waveform, at any point in
the domain. It is assumed that the medium is homogeneous with a constant speed of
sound, that the transducer is planar and embedded in an infinite planar baffle, and that
the surface excitation is separable with respect to time and space. The method therefore
amounts to solving a surface integral (at each time instant), derived from the Rayleigh-
Sommerfeld equations (Section 2.4.3), and a detailed review can be found in [45] in the
context of a rigid baffle. The general concept [57] consists of finding analytic expressions
for the intersection (i.e., active arc length) between a radiating surface (aperture) and a
spherical shell (representing a spherical wave) centered at the evaluation field point with
a radius equal to the product of the mean sound speed and the evaluation time. Once the
SIR is known, the resulting velocity potential can be obtained by the time convolution
between the time derivative of the surface excitation and the SIR. Physical quantities
such as pressure or particle velocity can eventually be derived from the velocity potential
directly (Section 2.2).
Much attention and efforts were devoted to the derivation of analytic SIR expressions

for uniformly excited radiators of specific shapes. The circular piston with a rigid (hard)
baffle condition was apparently the first case for which analytic expressions were de-
rived [37], [45], [56], [57], probably because of its simplicity. Other shapes followed, such
as the slit [89], [90], the spherically focused radiator [43], [52], [53], and the triangular
piston [91]. Of particular interest to array imaging is the rectangular piston, for which
analytic expressions were initially derived in the far-field by Freedman [92], [93] and
Stepanishen [37], [94]. Analytic expressions for the rectangular piston with a rigid baf-
fle condition for points whose projection lies on a vertex of the rectangle were derived
by Lockwood andWillette [44], [95], and generalized to any evaluation field point using
the superposition principle by the same authors. Some analytic expressions were further
derived by Scarano et al. [96] for field points whose projection on the rectangular aperture
lie in specific regions. A complete set of analytic expressions were eventually proposed
by San Emeterio and Ullate [59] for a uniformly excited rectangular piston with multiple
boundary conditions (including hard and soft baffle conditions). Even if the rectangular
piston would be suitable to represent flat transducer elements composing 2-D matrix
arrays, most 1-D arrays are composed by curved elements. Transducer elements compos-
ing linear and phased arrays are cylindrical shells and those composing convex arrays
are toroidal shells, and analytic expressions for the SIR of these geometries do not exist.
For the cylindrical shell, a 2-D approximation was proposed in [97], and semi-analytic
expressions were derived in [98]. Semi-analytic expressions were proposed for the toroidal
shell in [99]. It is worth mentioning that non-uniform excitations were also investigated
in [100]–[103], but analytic expressions were restricted to specific transducer shapes
coupled with specific excitation amplitude distributions.
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Unfortunately, analytic expressions only exist for a restricted set of transducer shapes,
excitation distributions, and baffle conditions. To cope with this limitation, approximate
methods based on discretization were naturally proposed. The main principle consists
of representing the transducer surface as a set of characteristic sub-elements for which
(simple) analytic expressions of the SIR exist. Using the superposition principle (linear
acoustics), the SIR of the transducer is simply obtained by summing all the SIRs of
the sub-elements. Provided that the transducer shape is discretized with sufficiently
small sub-elements, this also enables approximating surface apodization by appropriately
weighting the SIR of each sub-element before summation. Similarly, surface delays can
also be accounted for. The most popular characteristic sub-element type is the rectangle,
as it enables reasonably good approximations of general surfaces, but more importantly
because computationally efficient far-field approximations exist for both rigid and soft
baffle conditions. This approach is implemented (among others) in Field II and proved
to be an efficient choice compared with using triangles as sub-elements [104]. Another
relevant approach proposed by Piwakowski and Delannoy [105] consists of evaluating
the surface integral (at each time instant) numerically by discretizing the surface into
(infinitesimally small) ideal points. The SIR of the transducer can then be computed
by a simple weighted sum of Dirac delta functions. This strategy has the advantage of
enabling exact representation of surfaces, at the cost of requiring a much larger number
of sub-elements than the strategy deployed in Field II [106]. Interestingly, even though
not explicitly noted by the authors, this approach is actually a first-order numerical
quadrature to approximate the surface integral, which is probably one of the reasons why
an excessive number of “quadrature points” were necessary to achieve high accuracy.
Amajor numerical difficulty of the SIRmethod comes from the signal properties of such

responses. They are typically of very short duration, approaching a Dirac delta function
in limit cases, and are characterized by abrupt slope changes, resulting in very high
frequencies [27], [44], [53]. These abrupt changes are induced by the edges and vertices of
the transducer aperture. A typical example of a SIR and corresponding frequency spectrum
is shown in Figure 4.1 for a rectangular element designed to work at a driving frequency
of about 5MHz, from which it is clear that a sampling rate of few GHz is required. Yet,
because the electromechanical impulse responses of conventional transducer elements
are bandlimited, the excitation waveform, andmost importantly the field signal of interest
(e.g., pressure field), are also bandlimited. Ideally, one would want to sample the SIR at
the same rate as the excitation waveform before time convolution of the two signals. This
is obviously not possible in most cases and sampling at the rate of the SIR (i.e., several
additional orders of magnitude) is computationally prohibitive. Different strategies were
proposed to tackle this numerical difficulty, mainly based on the integration of the SIR
between time samples used for the excitation waveform, either numerically using an
adaptive sampling of the SIR (refined around abrupt slope changes) [53] or from analytic
expressions [104], [107]. Such strategies enabled for a much more efficient sampling of
the SIR to be convolved with the excitation waveform, but still require oversampling
ratios of several factors to prevent from detrimental aliasing.
In summary, the most important needs for a computational method relying on the
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Figure 4.1. Example of (a) a spatial impulse response (SIR) and (b) corresponding frequency spectrum

for a rectangular transducer aperture. The rectangle has a width of one wavelength at 5MHz and a

height-to-width ratio of 1.6. The field point at which the SIR was evaluated is positioned relatively to

the element center at (λ / 5, λ / 5, 2.5 λ) in the width, height, and depth directions. Characteristic abrupt

slope changes are circled in (a). The first one represents the first time of arrival of a spherical shell

centered at the position of the evaluation field point. The eight following ones represent time instants at

which the spherical shell intersects the edges and vertices of the rectangular surface.

SIR are: an accurate representation of arbitrary transducer shapes; an efficient way of
evaluating the surface integral at each time instant; and an efficient sampling strategy
such that the SIR can be sampled at rates similar to those required for the excitation
waveform. To address these needs, we propose to represent the shape of transducers as
NURBS surfaces, to evaluate the surface integral numerically using high-order Gaussian
quadrature rules, and to express the SIR in B-spline bases for efficient sampling of the time
axis. The use of NURBS enables accurate representation of complex surfaces. In particular,
quadric surfaces can be represented exactly. This is a notable feature as most typical trans-
ducer shapes are actually quadric surfaces (e.g., cylindrical, spherical, or toroidal shells).
Moreover, NURBS representations offer efficient means to evaluate surface derivatives
at arbitrary positions [108]. This is typically of interest for the evaluation of Jacobian
determinants when deploying Gaussian quadrature rules. Gaussian quadrature rules,
such as the Gauss-Legendre quadrature rule, are well-known high-order quadrature rules
that require much less quadrature points to achieve a desired accuracy [109, Sec. 25.4].
Finally, relying on numerical integration allowed us to express the calculation of the SIR
in B-spline bases [68], [110], [111], and in particular of high-order ones. This enabled the
sampling of SIRs at the same rate as the excitation waveform without any loss of accuracy
on the (post-convolution) field signal at sampling rates of interest.

4.2. Proposed Approach

Let us recall (Section 2.4.4) that the SIR of a radiating surface 𝑆 ⊂ ℝ3 (assumed to be
embedded in an infinite planar baffle) can be expressed at a field point 𝒓 ∈ 𝑉 ⊂ ℝ3 and
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at a time instant 𝑡 ≥ 0 in a generic form as

ℎ𝑆(𝒓, 𝑡) = ∫
𝑆

𝜉(𝒓′)𝛿(𝑡 − ‖𝒓−𝒓′‖2
𝑐0

)

2𝜋‖𝒓 − 𝒓′‖2
𝛽(𝒏̃′, 𝒓 − 𝒓′) d𝜎(𝒓′), (4.1)

where 𝒏̃′ is the inward surface normal, 𝜉 represents the spatial distribution of surface
velocity or pressure amplitudes over the radiating surface, and 𝛽 is a term depending on
the boundary conditions, expressed as

𝛽(𝒏̃′, 𝒓 − 𝒓′) = {
1, for a hard baffle (Neumann type),
cos(𝒏̃′, 𝒓 − 𝒓′), for a soft baffle (Dirichlet type).

(4.2)

4.2.1. Numerical Quadrature of the Spatial Impulse Response

At each time instant 𝑡 ≥ 0 and field point 𝒓 ∈ 𝑉, the integrand of (4.1) is a real-valued
function that can define as 𝑔∶ 𝑆 ⊂ ℝ3 → ℝ for the purpose of derivation. Let us assume
that the radiating surface 𝑆 is a smooth surface parametrized by amapping 𝒔∶ ̂𝑆 ⊂ ℝ2 → 𝑆
whose Jacobian determinant det 𝑱𝒔(𝒖) ≠ 0, ∀𝒖 ∈ ̂𝑆, where the Jacobian matrix is defined
as 𝑱𝒔 = (𝜕/𝜕𝒖)𝒔. Thus, the surface integral of 𝑔 onto 𝑆 can be rewritten as

∫
𝑆

𝑔(𝒓′) d𝜎(𝒓′) = ∫
̂𝑆

𝑔(𝒔(𝒖))|det 𝑱𝒔(𝒖)| d𝜎(𝒖). (4.3)

Assuming that 𝑔 is a well-behaved function,3 one can approximate (4.3) by means of
Gaussian quadrature as

∫
𝑆

𝑔(𝒓′) d𝜎(𝒓′) ≈
𝑛𝑞

∑
𝑞=1

𝑔(𝒔(𝒖𝑞))|det 𝑱𝒔(𝒖𝑞)|𝑤𝑞 =
𝑛𝑞

∑
𝑞=1

𝑔(𝒓𝑞)𝑗𝑞𝑤𝑞, (4.4)

where {𝒖𝑞} are the quadrature coordinates in the parametric space, for which {𝑤𝑞}, {𝑗𝑞},
and {𝒓𝑞}, are the corresponding quadrature weights, Jacobian determinants, and quadra-
ture points (in the physical space), respectively. Note that Gaussian quadrature rules
to obtain quadrature coordinates and corresponding quadrature weights are generally
defined in one dimension [109, Sec. 25.4], but can be extended to higher dimensions by
means of the tensor product.

3This is generally true as there is no realistic interest for the evaluation of the SIR on the radiating surface,
where the integrand of (4.1) is obviously singular.
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Using (4.4), we can now rewrite (4.1) as the finite sum

ℎ𝑆(𝒓, 𝑡) ≈
𝑛𝑞

∑
𝑞=1

𝜉(𝒓𝑞)𝛿(𝑡 −
‖𝒓−𝒓𝑞‖2

𝑐0
)

2𝜋‖𝒓 − 𝒓𝑞‖2
𝛽(𝒏𝑞, 𝒓 − 𝒓𝑞)𝑗𝑞𝑤𝑞 (4.5)

=
𝑛𝑞

∑
𝑞=1

𝜉𝑞𝑗𝑞𝑤𝑞
𝛽(𝒏𝑞, 𝒓 − 𝒓𝑞)
2𝜋‖𝒓 − 𝒓𝑞‖2

𝛿(𝑡 −
‖𝒓 − 𝒓𝑞‖2

𝑐0
). (4.6)

The (non-unit) normal vector 𝒏 at some surface point 𝒓 = 𝒔(𝒖) can be computed from
the surface parametrization (mapping) as

𝒏 = 𝜕𝒔(𝒖)
𝜕𝑢 × 𝜕𝒔(𝒖)

𝜕𝑣 , (4.7)

where (𝑢, 𝑣) are the coordinates defining the parametric space of the surface mapping.
Note that the term 𝛽 is defined on the unit normal vector, but, as it can be seen in
(4.2), is equal when considering the non-unit normal vector to the surface. The Jacobian
determinants, represented as {𝑗𝑞} in (4.6), can then be computed from normal vectors
directly as

|det 𝑱𝒔(𝒖)| =
‖
‖‖
𝜕𝒔(𝒖)
𝜕𝑢 × 𝜕𝒔(𝒖)

𝜕𝑣
‖
‖‖2
. (4.8)

Finally, by grouping all spatially dependent weighting terms in (4.6) under a global
weighting term 𝛼, we can obtain a compact expression for the evaluation of the SIR by
means of Gaussian quadrature as

ℎ𝑆(𝒓, 𝑡) ≈
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)𝛿(𝑡 − 𝜏(𝒓, 𝒓𝑞)), (4.9)

where 𝜏(𝒓, 𝒓𝑞) = (1/𝑐0)‖𝒓 − 𝒓𝑞‖2. Thus, provided that such a surface mapping exists
and that a suitable Gaussian quadrature rule is deployed with a sufficient amount of
quadrature points to achieve a desired accuracy, the calculation of the SIR can be well
approximated by a “simple”4 sum of shifted and weighted Dirac delta functions.
A typical first-order approximation of such a surfacemappingwould be to subdivide the

radiating surface into small rectangles of identical shape and consider a single quadrature
point in the center of each rectangle, in which case the Jacobian determinants would
simply be the area of the characteristic rectangular sub-element. This corresponds to the
well-know midpoint quadrature rule, which generally requires many more quadrature
points to achieve a desired accuracy compared with more elaborated Gaussian quadrature
rules such as the Gauss-Legendre one [109, p.887]. Not to mention the potential error in
the surface approximation due to the use of rectangular sub-elements that cannot exactly
represent non-planar surfaces. Even though not explicitly formulated by Piwakowski and
Delannoy [105], their proposed “discrete representation” approach, which was recently
used in [112], [113], relies on the midpoint quadrature rule. It is thus no wonder that

4Clearly this is not trivial when it comes to sampling.
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they observed the need for excessively large number of sub-elements to achieve a desired
accuracy [106]. To cope with such limitations, we propose to represent the radiating
surface as a NURBS surface and rely on the fact that any NURBS surface can be further
decomposed into smooth (rational Bézier) patches onto which Gaussian quadrature rules
can be applied for the purpose of numerical integration.

4.2.2. Non-Uniform Rational B-Spline Surface Representations

We first review some basic principles of NURBS (surface) representations. For a detailed
reference on the topic, the reader is referred to the book by Piegl and Tiller [108]. Let 𝑈
be a nondecreasing sequence of real numbers representing a nonperiodic, clamped, or
open knot vector, with 𝑟 + 1 knots, defined as

𝑈 = (0, … , 0⏟⏟⏟
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑟−𝑝−1, 1, … , 1⏟⏟⏟
𝑝+1

), 𝑟 = 𝑛 + 𝑝 + 1. (4.10)

The corresponding (nonnegative) B-spline basis functions {𝑏𝑝𝑖 }
𝑛
𝑖=0 of degree 𝑝 (and order

𝑝 + 1) are defined recursively as [114]–[116]

𝑏0𝑖 (𝑢) = {
1, if 𝑢𝑖 ≤ 𝑢 < 𝑢𝑖+1,
0, otherwise,

(4.11)

𝑏𝑝𝑖 (𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖
𝑏𝑝−1𝑖 (𝑢) +

𝑢𝑖+𝑝+1 − 𝑢
𝑢𝑖+𝑝+1 − 𝑢𝑖+1

𝑏𝑝−1𝑖+1 (𝑢), 𝑝 ≥ 1. (4.12)

Note that we restrict ourselves to nonperiodic knot vectors onto which B-spline basis
functions are interpolating at the endpoints of such knot vectors but are (in general)
non-interpolating at interior knots. Also, definitions are not strictly limited to the [0, 1]
interval. Yet, it is so common to the NURBS community that it is also adopted in the
present work. Typical examples of B-spline basis functions on knot vectors of the form
𝑈 = (0, … , 0, 1, … , 1) are shown in Figure 4.2 for different degrees. This type of knot
vectors results in B-spline basis functions that are Bernstein polynomials, because B-
spline representations are a generalization of Bézier representations [108, Sec. 2.2].

0 10

1

(a)

b10 b11

0 1
(b)

b20 b21 b22
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Figure 4.2. Typical examples of B-spline basis functions of different degrees defined on uniform

knot vectors with no interior knots: (a) linear basis functions defined on the knot vector (0, 0, 1, 1); (b)

quadratic basis functions defined on the knot vector (0, 0, 0, 1, 1, 1); (c) cubic basis functions defined

on the knot vector (0, 0, 0, 0, 1, 1, 1, 1).
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ANURBS surface 𝑆 of degree (𝑝, 𝑞) in directions (𝑢, 𝑣) can be represented by a bivariate
vector-valued piecewise rational function (mapping) 𝒔∶ [0, 1]2 → 𝑆 ⊂ ℝ3 defined as [108,
Sec. 4.4]

𝒔(𝑢, 𝑣) =

𝑛

∑
𝑖=0

𝑚

∑
𝑗=0

𝑏𝑝𝑖 (𝑢)𝑏
𝑞
𝑗 (𝑣)𝑤𝑖,𝑗𝒑𝑖,𝑗

𝑛

∑
𝑖=0

𝑚

∑
𝑗=0

𝑏𝑝𝑖 (𝑢)𝑏
𝑞
𝑗 (𝑣)𝑤𝑖,𝑗

, (4.13)

where {𝒑𝑖,𝑗} are the control points (forming a bidirectional net), {𝑤𝑖,𝑗} are the correspond-
ing weights, {𝑏𝑝𝑖 } and {𝑏

𝑞
𝑗 } are the (nonrational) B-spline basis functions of degrees 𝑝 and

𝑞 that are defined on the nondecreasing and nonperiodic (i.e., clamped) knot vectors

𝑈 = (0, … , 0⏟⏟⏟
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑟−𝑝−1, 1, … , 1⏟⏟⏟
𝑝+1

), 𝑟 = 𝑛 + 𝑝 + 1, (4.14)

𝑉 = (0, … , 0⏟⏟⏟
𝑞+1

, 𝑣𝑞+1, … , 𝑣𝑠−𝑞−1, 1, … , 1⏟⏟⏟
𝑞+1

), 𝑠 = 𝑚 + 𝑞 + 1, (4.15)

respectively. Expressions for the derivatives of NURBS surfaces also exist and can be found
in [108, Sec. 4.5]. They are essential tools for the calculations of the surface normal vectors
and the Jacobian determinants defined in (4.7) and (4.8), respectively. Note that if both 𝑈
and 𝑉 are defined with no interior points, such as in the examples shown in Figure 4.2,
the NURBS surface is a (smooth) rational Bézier surface.
Equipped with these definitions, we can now assume that the radiating surface 𝑆 can

be represented exactly by a NURBS surface. An important property of NURBS represen-
tations is that any NURBS surface can be decomposed into a union of (smooth) rational
Bézier surfaces (or patches), that share atmost a common edge (and associated vertices) or
a common vertex. Such a decomposition can be performed by a simple procedure known
as knot refinement [108, Sec. 5.3]. Each (decomposed) rational Bézier patch is actually
also a NURBS surface such that it can be readily represented by (4.13). Rational Bézier
patches are of particular interest as they are smooth surfaces as opposed to “general”
NURBS surfaces that may contain breakpoints. This is an essential property to allow the
use of Gaussian quadrature rules onto such surfaces (Section 4.2.1).
As most transducer elements composing conventional US transducers are (at most)

quadric surfaces, the assumption that the radiating surface can be represented exactly by
a NURBS surface is generally valid in US imaging since NURBS surfaces can represent
quadric surfaces exactly [108, Chap. 8]. For instance, transducer elements composing
linear and phased arrays are cylindrical shells (i.e., elliptic cylinders), those composing
convex arrays are toroidal shells (i.e., hyperbolic paraboloids), and those composing 2-D
matrix arrays are simple rectangular planes. Spherically focused transducer elements are
spherical caps. An example of the latter is shown in Figure 4.3, for which the NURBS
surface definition can be obtained by revolving a circular arc (i.e., represented by NURBS
curve). The NURBS surface can then be decomposed into four rational biquadratic Bézier
smooth patches. Each of these smooth patches is defined by (4.13) onto the characteristic
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unit square space [0, 1]2. As they are smooth surfaces, Gaussian quadrature rules can be
deployed onto the 2-D parametric space (also referred to as parent element) by means
of the tensor product. Resulting quadrature coordinates can then be mapped onto the
radiating surface exactly using (4.13). Note that Gaussian quadrature rules are typically
defined on a characteristic [−1, 1] interval [109, Sec. 25.4], but can be mapped to arbitrary
intervals. This process is also illustrated in Figure 4.3, in which the Gauss-Legendre
quadrature rule was considered to obtain the quadrature coordinates of a (5 × 3) grid.

0 1
u

0

1

v

Figure 4.3. Example of a non-uniform rational B-spline (NURBS) surface representing a spherical

cap, decomposed into four rational biquadratic Bézier smooth patches. The NURBS mapping from

the parametric space to the physical space is illustrated with a parent element comprising (5 ×3)

Gauss-Legendre quadrature points. The two (unit) tangent vectors and the (unit) normal vector at each

quadrature point in the physical space are depicted by green, orange and red arrows, respectively.

Thanks to their small (or nonexistent) curvatures,5 all other aforementioned transducer
element shapes can be represented by NURBS surfaces that are themselves single rational
Bézier patches already, and thus do not require any further decomposition. An example
of such as case for the cylindrical shell is shown in Figure 4.4.

4.2.3. Spatial Impulse Response in B-Spline Bases

Thanks to the proposed NURBS representation of the radiating surface, we are equipped
to evaluate the global weigthing term 𝛼 involved in the sum of (weighted and shifted)
Dirac delta functions (4.9) derived in Section 4.2.1 to approximate the SIR ℎ𝑆.
Before diving into the well-known difficulty of sampling Dirac delta functions, it is

important to keep in mind that the SIR is mainly a (very elegant) physical concept as such
a quantity cannot be measured in physical conditions because of the electromechanical
impulse response of transducer elements that are bandlimited. Thus, signals of interest
that will be measured eventually, and are thereby of interest to be simulated, are also

5Recall that, strictly speaking, the Rayleigh-Sommerfeld equations Section 2.4.3 used to derive the SIR
assume that the radiating surface is embedded in an infinite planar baffle (i.e., no curvature). Yet, it was
demonstrated that they remain good approximations in the case of radiating surfaces with curvatures that
are small with respect to the characteristic wavelength [43], [52], [54]
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Figure 4.4. Example of a non-uniform rational B-spline (NURBS) surface representing a cylindrical

shell that is also a smooth rational Bézier of degree (1, 2), that is, linear in 𝘶 and quadratic in 𝘷 directions.
The NURBS mapping from the parametric space to the physical space is illustrated with a parent

element comprising (3×5) Gauss-Legendre quadrature points. The two (unit) tangent vectors and the

(unit) normal vector at each quadrature point in the physical space are depicted by green, orange and

red arrows, respectively.

bandlimited. Such a signal can be expressed in a generic form as

𝑦(𝒓, 𝑡) = 𝑣(𝑡) ∗
𝑡
ℎ𝑆(𝒓, 𝑡), (4.16)

where 𝑣 represent some bandpass excitation waveform of interest (independent of the
field point 𝒓). For instance, recall (Section 2.4.4) that the pressure field for a rigid baffle
excited by a velocity waveform ̄𝑣𝑛 (including the electromechanical impulse response) can
be expressed as 𝑝(𝒓, 𝑡) = 𝜌0(𝜕/𝜕𝑡) ̄𝑣𝑛(𝑡) ∗𝑡 ℎ𝑆(𝒓, 𝑡). Using (4.9) we obtain the corresponding
approximation of such a signal as

𝑦(𝒓, 𝑡) ≈ 𝑣(𝑡) ∗
𝑡

𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)𝛿(𝑡 − 𝜏(𝒓, 𝒓𝑞)). (4.17)

Equation (4.17) tells us that the signal 𝑦 is composed of time-shifted and weighted replicas
of the excitation waveform 𝑣. The excitation waveform 𝑣 is typically measured in physical
conditions or approximated using a model pulse. Thus, 𝑣 can be expressed as a sampled
signal with uniformly spaced samples {𝑣(𝑘𝑇)}, 𝑘 ∈ [0, … , 𝐾 −1]. Equation (4.17) can then
be rewritten as the discrete convolution

𝑦(𝒓, 𝑡) ≈ ∑
𝑘∈ℤ

𝑣(𝑘𝑇)
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)
𝑇 𝜑int(

𝑡 − 𝜏(𝒓, 𝒓𝑞)
𝑇 − 𝑘) (4.18)

=
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)
𝑇 ∑

𝑘∈ℤ
𝑣(𝑘𝑇)𝜑int(

𝑡 − 𝜏(𝒓, 𝒓𝑞)
𝑇 − 𝑘), (4.19)

where 𝜑int is some (interpolating) basis function (sometimes referred to as sampling
kernel), and where it is assumed that boundary conditions are handled properly (via
signal extension of 𝑣). Since 𝑣 is a bandpass signal, a natural and error-free choice for 𝜑int
would be the (normalized) sinc function, sinc(𝑥) ≔ sin(𝜋𝑥)/(𝜋𝑥). But because the sinc
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function is of infinite support, it needs to be truncated, by multiplying it by some window
of finite support. Generally, truncated sinc functions require rather large supports to
achieve high accuracy [68]. Other options are standard (finite-support) interpolating basis
functions such as those deployed for nearest-neighbor and linear interpolation, which
are computationally efficient but of low accuracy.
Instead, as the discrete convolution of (4.19) consists of time shifting and interpolating

𝑣, we propose to rely on the concept of generalized interpolation as proposed by Thévenaz,
Blu, and Unser [68]. By doing so, we can rewrite (4.19) as

𝑦(𝒓, 𝑡) ≈
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)
𝑇 ∑

𝑘∈ℤ
𝑐(𝑘𝑇)𝜑(

𝑡 − 𝜏(𝒓, 𝒓𝑞)
𝑇 − 𝑘), (4.20)

where 𝜑 is some basis function and {𝑐(𝑘𝑇)} are the corresponding basis coefficients
defined [68] such that

𝑣[𝑘0] = ∑
𝑘∈ℤ

𝑐[𝑘]𝜑(𝑘0 − 𝑘). (4.21)

As a result, one can rely on potentially non-interpolating basis functions, possessing better
properties than interpolating ones, with an additional operation that consists of finding
the basis coefficients. A particularly elegant and efficient way of finding these coefficients
is yet another (pre-filtering) convolution operation with the convolution-inverse6 𝜑−1 as

𝑐[𝑘0] = ∑
𝑘∈ℤ

𝜑−1(𝑘0)𝑣[𝑘0 − 𝑘], (4.22)

provided that the convolution-inverse 𝜑−1 exists. In the case of interpolating basis func-
tions, the sequence of coefficients {𝑐(𝑘𝑇)} is equal to the sequence of samples {𝑣(𝑘𝑇)} (i.e.,
the convolution-inverse of any 𝜑int is logically a Dirac delta function).
We will restrict ourselves to the (extended) family of B-spline basis functions as they

possess fantastic properties [68], [110], [111], [117]–[119], in particular that they benefit
frommaximal approximation orders for a given supports. For the purpose of interpolation,
we can express a B-spline basis function of degree 𝑛 as [120], [121]

𝛽𝑛(𝑥) =
𝑛+1

∑
𝑘=0

(−1)𝑘(𝑛 + 1)
(𝑛 + 1 − 𝑘)! 𝑘!(

𝑛 + 1
2 + 𝑥 − 𝑘)

𝑛

+
, ∀𝑥 ∈ ℝ, ∀𝑛 ∈ ℝ, (4.23)

where the one-sided power function (𝑥)𝑛+ is defined as [68]

(𝑥)𝑛+ =

⎧⎪⎪
⎨
⎪⎪
⎩

0 𝑛 = 0 and 𝑥 < 0,
1/2 𝑛 = 0 and 𝑥 = 0,
1 𝑛 = 0 and 𝑥 > 0,
(𝑥)0+𝑥𝑛 𝑛 > 0.

(4.24)

We are typically interested in B-spline basis functions 𝛽𝑛 of degree greater than one,

6Not to be confused with the inverse function of 𝜑.
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since 𝛽0 is almost identical to the nearest-neighbor basis function and 𝛽1 corresponds to
the basis function of linear interpolation. Also, B-spline basis functions of even degrees
are usually not computationally interesting because they have the same support as B-
spline basis functions of the following (odd) degrees. Since B-spline basis functions are
symmetric, the pre-filtering operation defined in (4.22) can be efficiently performed by a
series of 𝑚 = ⌊𝑛/2⌋ consecutive causal and anti-causal infinite impulse response (IIR)
filters with poles {𝑧𝑖} and {𝑧−1𝑖 }, respectively [110], [111], [117]. The𝑚 pairs of poles can
be derived from the Z-transform of the convolution-inverse (𝛽𝑛)−1, many of which are
tabulated in [110], [111], [117].
So far we have assumed that the samples {𝑣(𝑘𝑇)} and corresponding coefficients {𝑐(𝑘𝑇)}

were extended properly ∀𝑘 ∈ ℤ⧵[0, … , 𝐾−1] for the purpose of convolution operations. In
many signal processing tasks involving interpolation, it is commonly advised to consider
mirror boundary conditions for the purpose of signal extension, preventing from potential
ripple artifacts. Also, “standard” interpolation typically consists of approximating signal
values at rational coordinates (i.e., between samples). In the approach proposed here and
described in (4.19), the sequence of samples {𝑣(𝑘𝑇)} are shifted, weighted, and interpo-
lated for each quadrature point to form the signal of interest 𝑦. As the corresponding
excitation waveform is bandlimited and can be modeled as a windowed sinusoidal RF
signal of finite support,7 we consider zero boundary conditions. Finally, since we want to
keep working with finite support sequences, we impose zero boundary conditions to the
coefficients directly, namely 𝑐[𝑘] = 0, ∀𝑘 ∈ ℤ ⧵ [0, … , 𝐾 − 1]. Coefficients satisfying these
boundary conditions can be computed8 by the following operations. First, we initialize a
sequence of coefficients {𝑐1[𝑘]} by applying a gain to the excitation waveform samples
{𝑣[𝑘]} as

𝑐0[𝑘] = 𝑣[𝑘]
𝑚

∏
𝑖=1

(1 − 𝑧𝑖)(1 − 𝑧−1𝑖 ), 𝑘 ∈ [0, … , 𝐾 − 1]. (4.25)

Then the series of causal and anti-causal IIR filters for 𝑖 = 1, … ,𝑚 can be evaluated as
follows: a causal recursion preceded by suitable initialization

𝑐+𝑖 [0] =
1 − 𝑧2𝑖

1 − 𝑧2𝐾+2𝑖
[𝑐𝑖−1[0] −

𝑧2𝑖
1 − 𝑧2𝑖

𝐾−2

∑
𝑘=1

𝑧𝑘𝑖 (𝑐𝑖−1[𝑘] − 𝑧𝐾+1𝑖 𝑐𝑖−1[𝐾 − 1 − 𝑘])

− 𝑧𝐾+1𝑖 𝑐𝑖−1[𝐾 − 1]], (4.26)

𝑐+𝑖 [𝑘] = 𝑐𝑖−1[𝑘] + 𝑧𝑖𝑐+𝑖 [𝑘 − 1], 𝑘 ∈ [1, … , 𝐾 − 1], (4.27)

7Acoustic pulses are theoretically infinite responses with (rapidly) decaying trailing oscillations. Thus, they
may be truncated when their trailing pulse envelope falls below some level to achieve a desired accuracy.
8Special thanks to Philippe Thévenaz for his invaluable help in deriving these operations.
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and an anti-causal recursion preceded by suitable initialization

𝑐𝑖[𝐾 − 1] = −𝑧𝑖𝑐+𝑖 [𝐾 − 1], (4.28)
𝑐𝑖[𝐾 − 1 − 𝑘] = 𝑧𝑖(𝑐𝑖[𝐾 − 𝑘] − 𝑐+𝑖 [𝐾 − 1 − 𝑘]), 𝑘 ∈ [1, … , 𝐾 − 1]. (4.29)

The coefficients {𝑐[𝑘]} are then simply equal to {𝑐𝑚[𝑘]}. This preliminary step only needs to
be performed a single time, with almost no computational cost as the excitation waveform
is typically composed of few tens (or at most hundreds) of samples at realistic sample
rates.
Once these coefficients are computed, they can be used readily for all quadrature points

to evaluate the signal of interest 𝑦 at any field point 𝒓. The approximated (nonzero) signal
samples at some field point, {𝑦(𝒓, 𝑡0 +𝑛𝑇)} with 𝑡0 = min𝑞 𝜏(𝒓, 𝒓𝑞), can then be computed
by a discrete (full) convolution of the (pre-filtered) coefficients and the summation of
𝑛𝑞 basis functions shifted with respect to the corresponding propagation times {𝜏(𝒓, 𝒓𝑞)},
namely

𝑦(𝒓, 𝑡) ≈ ∑
𝑘∈ℤ

𝑐(𝑘𝑇)
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)
𝑇 𝜑(

𝑡 − 𝜏(𝒓, 𝒓𝑞)
𝑇 − 𝑘). (4.30)

Note that (4.30) and (4.20) only differ in the (reverted) order of summations. The latter
reflects the “physical order,” as in (4.16), which involves the time convolution of the
excitationwaveform and the SIR of the radiating surface. For the purpose of interpretation
(and compactness), let us define the basis SIR as

̂ℎ𝑆(𝒓, 𝑡) =
𝑛𝑞

∑
𝑞=1

𝛼(𝒓, 𝒓𝑞)
𝑇 𝜑(

𝑡 − 𝜏(𝒓, 𝒓𝑞)
𝑇 − 𝑘), (4.31)

such that (4.30) can be interpreted as the convolution of the (pre-filtered) coefficients
and the basis SIR, namely

𝑦(𝒓, 𝑡) ≈ ∑
𝑘∈ℤ

𝑐(𝑘𝑇) ̂ℎ𝑆(𝒓, 𝑡 − 𝑘𝑇). (4.32)

Even if the SIR ℎ𝑆 is not a quantity that can be measured, and as such is less important
to simulate accurately than the signal of interest 𝑦, it remains interesting to be able to
evaluate it.9 Since the basis SIR ̂ℎ𝑆 is a linear combination of 𝑛𝑞 basis functions {𝜑}, it is
possible to obtain an approximation of ℎ𝑆 from ̂ℎ𝑆 by convolution of the latter with the
convolution-inverse 𝜑−1, namely

ℎ𝑆(𝒓, 𝑡) ≈ ∑
𝑘∈ℤ

𝜑−1(𝑘) ̂ℎ𝑆(𝒓, 𝑡 − 𝑘𝑇). (4.33)

This is similar to expressing a cardinal spline basis function from its corresponding (non-
interpolating) B-spline basis function. Thus, the approximation of the SIR obtained from

9Note that it is also possible to obtain the field response to a continuous-wave excitation directly from the
SIR by evaluating its Fourier transform.
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(4.33) when considering non-interpolating basis functions will be of infinite support with
rapidly decaying oscillations [68].

4.2.4. Implementation Details

An illustration of the convolution involved in the evaluation of (4.30) for each quadrature
point is depicted in Figure 4.5 for four different basis functions, namely nearest-neighbor,
linear, quadratic10 Keys [122], and cubic B-spline. As the first three basis functions are
interpolating, their corresponding (pre-filtered) coefficients are equal to the excitation
waveform samples. The coefficients of the cubic B-spline have larger amplitudes than the
excitation waveform to compensate for its non-interpolating property. One can already
note the major issue associated with near-neighbor and linear interpolation, namely a
shift error and an underestimated response, respectively. The advantage of using a cubic
B-spline over a quadratic Keys, both having a support of four samples, can already be
noticed. This will be confirmed by the numerical validation of the expected convergence
orders (Section 4.3.1).
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Figure 4.5. Illustration of the generalized interpolation strategy deployed for approximating the signal

radiated by a transducer element. This strategy involves the convolution of coefficients, evaluated from

the excitation waveform, with shifted basis functions. Three interpolating basis functions are depicted,

namely nearest-neighbor, linear, and (quadratic) Keys. One non-interpolating basis function is also

shown, namely cubic B-spline (B-spline3).

Figure 4.6 summarizes the complete process of the proposed approach developed in
Sections 4.2.1 to 4.2.3 for the approximation of (bandpass) field signals using the SIR
of radiating surfaces. The cylindrical shape of the transducer element [Figure 4.6(a)]
is represented (exactly) as a NURBS surface using (4.13). As the NURBS surface is also

10By quadratic, it is implied that the optimal 𝑎 = −1/2 parameter was used for the Keys basis function,
resulting in a quadratic interpolation method of cubic order.
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a smooth Bézier surface, a Gaussian quadrature rule can be defined in the parametric
space [Figure 4.6(b)], which in this case is a (2 × 4) Gauss-Legendre quadrature rule. The
corresponding eight quadrature points can be mapped into the physical space using the
NURBS representation, as well as the normal vectors (4.7) and Jacobian determinants
(4.8). From the distances between the quadrature points and the field point, some basis
function (e.g., cubic B-spline) can be evaluated at the corresponding time instants on a
sampled time axis of minimum support [Figure 4.6(c)], and weighted accordingly. Their
summation (4.31) results in the basis SIR [Figure 4.6(d)]. The (pre-filtered) coefficients
[Figure 4.6(f)] are obtained by a series of causal and anti-causal IIR filters applied to
the excitation waveform [Figure 4.6(e)], which can be evaluated from (4.25) to (4.29).
Finally, the field signal [Figure 4.6(g)] is obtained by the convolution of the basis SIR
[Figure 4.6(d)] and the (pre-filtered) coefficients [Figure 4.6(f)]. This process must be
repeated for all field points of interest, except for the coefficients that only need to be
computed once. An important aspect of the proposed approach is that it only involves
simple arithmetic operations11 and that all steps can be performed in parallel, making it
a perfect fit for GPU implementations.

1 2
3 4

5 6
7 8

(a) Geometry

Field Point

u

v

(b) NURBS
Parent Elem.

1
(c) Bases

2

3

4

5

6

7

8

+ ∗
(d) Basis SIR

(e) Waveform

(f) Coefficients

=
(g) Field Signal

Figure 4.6. Illustration of all steps composing the proposed approach for the approximation of field

signals using the spatial impulse response (SIR) of radiating surfaces. (Please refer to the associated

text for a summary of each step involved.)

4.2.5. Extension to Arrays

The extension to US transducers composed of multiple transducer elements, typically
arranged as arrays, is straightforward. Let us consider a generic definition of a transducer

11Most analytic expressions for the SIR are typically composed of complex hyperbolic and hyperbolic inverse
operations.
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array composed of a set of 𝑛𝑒 transducer elements. Each element can be represented
by a NURBS surface and decomposed into a set of smooth Bézier patches onto which a
Gaussian quadrature rule can be defined. These elements are generally of the same shape,
which would result in similar NURBS representations, although this is not required.
They can be driven by a set of excitation waveforms {𝑣𝑖(𝑘𝑇)}

𝑛𝑒
𝑖=1, from which the set of

corresponding coefficients {𝑐𝑖(𝑘𝑇)}
𝑛𝑒
𝑖=1 needs to be evaluated once. Using the principle of

superposition (linear acoustics), the field signal at field point 𝒓 radiated by such an array
can be expressed using (4.32) as

𝑦(𝒓, 𝑡) ≈
𝑛𝑒
∑
𝑖=1

∑
𝑘∈ℤ

𝑐𝑖(𝑘𝑇) ̂ℎ𝑖(𝒓, 𝑡 − 𝑘𝑇), (4.34)

where each element basis SIR ̂ℎ𝑖 can be computed using (4.31). It is common to define ex-
plicitly the delays {𝜏𝑖}

𝑛𝑒
𝑖=1 and apodizationweights {𝑎𝑖}

𝑛𝑒
𝑖=1 applied across the array elements,

rather than implicitly including them in the different excitation waveforms. Such delays
and apodization weights are typically used to shape the transmit beam (beamforming),
for instance to focus at a desired position or to steer an unfocused wavefront. Thus, and
without loss of generality, (4.34) can be rewritten as

𝑦(𝒓, 𝑡) ≈
𝑛𝑒
∑
𝑖=1

𝑎𝑖 ∑
𝑘∈ℤ

𝑐𝑖(𝑘𝑇) ̂ℎ𝑖(𝒓, 𝑡 − 𝜏𝑖 − 𝑘𝑇). (4.35)

In pulse-echo imaging, it is conventionally assumed that all (identical) transducer
elements composing the array have the same electromechanical impulse response. An
identical electric excitation is also typically used, such that the characteristic excitation
waveform is identical. Only the delays and apodization weights applied to the elements
may therefore differ such that (4.35) can be simplified as

𝑦(𝒓, 𝑡) ≈ ∑
𝑘∈ℤ

𝑐(𝑘𝑇)
𝑛𝑒
∑
𝑖=1

𝑎𝑖 ̂ℎ𝑖(𝒓, 𝑡 − 𝜏𝑖 − 𝑘𝑇). (4.36)

Finally, the echo signal scattered by an ideal reflector at 𝒓 can be easily obtained by the
convolution of the field signal of the array (4.36)with the field signal of the receive element
(4.32), multiplied by the scattering amplitude 𝑓𝑚(𝒓). Note that the excitation waveform
on transmit is generally different from the one on receive, because the first contains
both the electric excitation and the electromechanical impulse response, whereas the
second contains the electromechanical impulse response only. Again, all computations
can be performed in parallel (with proper handling of the different signal supports), and
thereby efficiently implemented on a GPU. It should be noted that the computing time is
generally governed by the many convolutions of the different field signals involved. Thus,
the sampling rate deployed is critical to the computing time.
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4.3. Experiments and Results

To validate the proposed approach, we performed two numerical experiments (Sec-
tions 4.3.1 and 4.3.2). The goal of the first one is to validate the core of the proposed
approach, as described in (4.32), namely a convolution of (pre-filtered) coefficients and
a signal (representing the basis SIR) composed of shifted and weighted basis functions.
The second experiment consists of evaluating the accuracy of the proposed approach
on field signals radiated by transducer elements with specific shapes allowing analytic
expressions for the SIR.
For the two experiments, we considered an analytic pulse model for the excitation

waveform such that reference signals are exact. The pulse model considered (Figure 4.7)
is an analytic expression of the time derivative of a log-normal-modulated sinusoidal RF
pulse. It is a fairly good model for the electromechanical impulse response of transducer
elements. Note that the time derivative guarantees a zero direct current (DC) component
[Figure 4.7(b)], a physical property of such electromechanical impulse response. For
the log-normal distribution Lognormal(𝜇, 𝜎), we used the parameters 𝜇 ≈ −14.80 and
𝜎 ≈ 0.26. The frequency of the sinusoidal was set to 4.75MHz, resulting in a waveform
centered at ∼5.3MHz with a bandwidth of ∼71% at −6 dB [Figure 4.7(b)]. The waveform
was truncated at a trailing pulse envelope level of −320 dB (double-precision floating-
point format), resulting in a duration of ∼3.15 μs. The FWHM of the resulting waveform,
conventionally used to quantify the time resolution of acoustic pulses, corresponds to
approximately 0.23 μs.
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Figure 4.7. Normalized amplitude of (a) the excitation waveform and (b) corresponding frequency

spectrum of the pulse model considered for the numerical experiments.

In addition to the B-spline basis functions, we also considered maximal-order-minimal-
support (MOMS) functions [123], [124], in particular optimal-maximal-order-minimal-
support (O-MOMS) functions [124], that are derived from B-spline basis functions. In
general, we compared the classical interpolating basis functions for nearest-neighbor,
linear, and quadratic Keys interpolation, as well as B-spline and O-MOMS basis func-
tions of different degrees. For the purpose of quantifying the accuracy in the following
experiments, we relied on the relative two-norm error defined between an estimated (RF
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signal) vector and its true counterpart 𝒚̂, 𝒚 ∈ ℝ𝑛 as

𝜀 =
‖𝒚 − 𝒚̂‖2
‖𝒚‖2

. (4.37)

4.3.1. Convergence Order of Various Basis Functions

For a robust validation of the core of the proposed approach, we considered a reference
signal consisting of the time convolution between the analytic waveform 𝑣 considered [Fig-
ure 4.7(a)] and a stream of 𝑛 Dirac delta functions (stream of Diracs) at random-uniform
times {𝜏𝑖}𝑛𝑖=1 and of random-normal amplitudes {𝑎𝑖}

𝑛
𝑖=1. The corresponding reference

signal can be expressed as

𝑦(𝑡) = 𝑣(𝑡) ∗
𝑡

𝑛

∑
𝑖=1

𝑎𝑖𝛿(𝑡 − 𝜏𝑖), (4.38)

which can be seen as a generic expression for (4.17), namely signals we want to approxi-
mate using the proposed approach (4.32). Note that (4.38) can be evaluated exactly using
the analytic expression for the excitation waveform.
We considered a signal duration corresponding to 500 times the time resolution of

the waveform considered, that is approximately 114.34 μs, and populated it with 51 378
random Diracs (i.e., 100 Diracs per time resolution cell, with appropriate pre-padding).
We compared three interpolating basis functions, namely nearest-neighbor (degree zero),
linear (degree one), and quadratic Keys (degree two), four (non-interpolating) B-spline
basis functions of degrees 2, 3, 4, and 5, and the (non-interpolating) O-MOMS basis
function of degree three. To validate that the theoretical approximation order of different
basis functions is achieved by the proposed method, we computed the relative two-norm
error using (4.37) between each approximated signal and the reference one at 15 log-
linearly spaced sampling rates ranging from 20MHz to 1GHz. For a given basis function
of some degree, the theoretical approximation order is defined by its degree plus one.
The resulting convergence curves are depicted in Figure 4.8. One can see that the

theoretical approximation orders are accurately validated for all basis functions. For
instance, B-spline basis functions of degrees 2, 3, 4, and 5 have approximation orders of
3, 4, 5, and 6, respectively. From these results, it is clear that the use of high-order non-
interpolating B-spline basis functions provides a major advantage. For instance, the ratio
of approximation error between the B-spline of degree five (B-spline5) and the quadratic
Keys is greater than two orders of magnitude at a sampling rate of approximately 50MHz.
It can also be mentioned that the O-MOMS of degree three seems to be “over-performing”
at low frequencies, namely from 20MHz to 50MHz. This low-frequency range represents
a “rough” Nyquist-rate range for the excitation waveform considered [Figure 4.7(b)],
especially below 30MHz.
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Figure 4.8. Results of the numerical experiment performed to validate the theoretical orders of

convergence for different basis functions. Different types of basis functions were considered: three

interpolating basis functions, namely nearest-neighbor (degree zero), linear (degree one), and quadratic

Keys (degree two); four non-interpolating B-spline basis functions of degree 2, 3, 4, and 5; and the

non-interpolating optimal-maximal-order-minimal-support (O-MOMS) basis function of degree three.

The theoretical convergence order of a basis function is equal to its degree plus one.

4.3.2. Validation Against Analytic Solutions

The purpose of this experiment is to validate the complete proposed approach, namely
including the NURBS surface representation and Gaussian quadrature. To do so, we
considered two transducer-element shapes and corresponding baffle conditions for which
analytic expressions are available for evaluating the SIR at any field point. The first is the
spherically focused element (i.e., spherical cap) with a rigid baffle boundary for which a
complete set of analytic expressions were derived in [53]. The second shape considered is
the rectangular plane with both rigid and soft baffle conditions for which a complete set
of analytic expression were derived in [59]. In all cases, we considered the same excitation
waveform as described in Figure 4.7, characterized by a (center) wavelength 𝜆 ≈ 291 μm
for the mean sound speed 𝑐0 = 1540m/s considered. In each case, we studied the field
signal radiated by the transducer element at three characteristic field points (A, B, and
C) positioned relatively to the transducer element center. The three field points were
positioned such that their projections onto the surface lie on an axis of symmetry, an
edge, and outside the surface projection.
We restricted the comparison to the following basis functions: nearest-neighbor, lin-

ear, quadratic Keys, B-spline of degrees three and five, and O-MOMS of degree three.
Two different sampling rates of 30MHz and 80MHz were considered, namely a rather
low-sampling rate for the excitation waveform considered, and a pretty decent one [Fig-
ure 4.7(b)]. Both shapes considered were represented exactly by NURBS surfaces. For
the Gaussian quadrature rule, we relied on the well-known Gauss-Legendre one. As
the regularity of the integrand involved in the evaluation of the SIR (4.1) has not been
studied in depth, we relied on a heuristic strategy consisting of selecting the number
of quadrature points in each (𝑢, 𝑣) direction of the NURBS surface to obtain a spatial
sampling rate equivalent to the sampling rate considered for the time dimension. By
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doing so, it was observed that the resulting accuracy was not bound by the quadrature
rule in the cases studied.
To compute the reference field signals, and because no analytic expressions could be

derived for the convolution of the analytic excitation waveform and the analytic SIR, we
relied on a very high sampling rate of 20 THz. The evaluation of the analytic SIR and
excitation waveform as well as their convolution were performed at that sampling rate.
We ensured that all time instants sampled in estimated signals were also present in the
reference signals, to avoid interpolating the signals before comparing them in terms of
the relative error defined in (4.37). We also compared the SIR obtained using (4.33) from
the basis SIR, even if this quantity is less relevant than the field signal.

4.3.2.1. Spherically Focused Element with a Rigid Baffle Condition

The geometry of the spherically focused transducer element considered is defined by
an active diameter 𝐷 = 20𝜆 and a spherical radius 𝑅 defined such that 2𝑅/𝐷 = 4.8,
namely a similar ratio to the one studied in [53, Fig. 4]. The NURBS representation and
corresponding four smooth Bézier patches is identical to the one described in Figure 4.3.
Our heuristic strategy to define the number of quadrature points led to (59 × 91) Gauss-
Legendre quadrature points per Bézier patch for the sampling rate of 30MHz, and (155 ×
243) for the sampling rate of 80MHz. This corresponds to a total of 21 476 and 150 660
quadrature points, respectively. The three field points (A, B, and C) at which field signals
were evaluated all lie in the same plane of revolution at a depth of 𝐷/2 = 10𝜆. The lateral
coordinate of the first one (A) is 𝑥A = 0. For the second one (B), the lateral coordinate
was computed such that its projection onto the surface lies on an edge, resulting in
𝑥B ≈ 8.1𝜆. The lateral coordinate of the last one (C) was simply set to 𝑥C = 2𝑥B such that
its projection onto the surface lies outside.
The relative two-norm errors of the field signals at each field point for both sampling

rates and all basis functions considered are reported inTable 4.1. These results indicate that
the basis function of the highest order performs best (i.e., B-spline5), with a relative error
of approximately 10−4 and 10−7 at a sampling rate of 30MHz and 80MHz, respectively.
The field signals and SIRs for the B-spline basis function of degree five is depicted in
Figure 4.9. Despite the very different SIR at the three field points considered, the relative
errors are similar at a given sampling rate. One can note that the approximated SIR
typically contains ripple artifacts because the very high frequencies cannot be accounted
for at such low sampling rates. This is especially visible for the field point A at a sampling
rate of 30MHz. Yet, the field signals do not suffer from such artifacts. We can also observe
that the approach would tend to an accurate approximation of the SIR at much higher
rates, should such a quantity be of interest. Field signals obtained with the other basis
functions considered can be found in Figures A.1 to A.5.
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TABLE 4.1

Relative Two-Norm Errors of Field Signals Radiated by a Spherically Focused

Transducer Element with a Rigid Baffle Condition

Freq. Point Nearest Linear Keys B-spline3 O-MOMS3 B-spline5

3
0
M
H
z A 2.89 × 10−1 9.50 × 10−2 2.14 × 10−2 4.38 × 10−3 1.71 × 10−3 7.13 × 10−4

B 8.91 × 10−2 9.06 × 10−2 1.94 × 10−2 4.64 × 10−3 1.27 × 10−3 7.96 × 10−4

C 1.41 × 100 1.99 × 10−1 1.06 × 10−1 1.57 × 10−2 6.96 × 10−3 1.93 × 10−3

8
0
M
H
z A 1.17 × 10−1 1.40 × 10−2 6.02 × 10−4 6.13 × 10−5 2.35 × 10−5 8.62 × 10−7

B 1.25 × 10−2 1.37 × 10−2 4.51 × 10−4 6.12 × 10−5 2.34 × 10−5 9.50 × 10−7

C 1.46 × 10−1 1.53 × 10−2 2.01 × 10−3 1.03 × 10−4 3.50 × 10−5 1.55 × 10−6
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Figure 4.9. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a spherically focused transducer element with a rigid baffle condition, excited by a

windowed-sinusoidal waveform. The excitation waveform is a differentiated log-normal-windowed sine

wave, with a characteristic (center) wavelength λ. The geometry of the spherical cap is defined by an

active diameter of 20 λ and a spherical radius of 240 λ. The three field points (A, B, C) lie in the same

revolution plane at a depth of 10 λ and a lateral coordinate of 0, 8.1 λ (i.e., projection on the edge of

the surface), and 16.2 λ, respectively. The proposed approach was implemented with a B-spline basis

function of degree five, and was evaluated at two sampling rates of (first row) 30MHz and (second

row) 80MHz. The reference SIRs and field signals were evaluated at a sampling rate of 20THz. They

are depicted with the same colors as the approximated counterparts, with a lower opacity.

4.3.2.2. Rectangular Element with Rigid and Soft Baffle Conditions

The geometry of the rectangular transducer element considered is defined by a width
of 𝜆 and a height of 10𝜆, chosen to reflect typical width-to-height ratios of transducer
elements composing linear arrays. The NURBS representation is simply a bilinear surface,
resulting in a single smooth Bézier patch onto which the Gauss-Legendre quadrature rule
was deployed. Our heuristic strategy to define the number of quadrature points led to
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(7×59)Gauss-Legendre quadrature points for the sampling rate of 30MHz, and (17×155)
for the sampling rate of 80MHz. The three field points (A, B, and C) at which field signals
were evaluated all lie in a plane parallel to the element. They were positioned at a depth
of 𝜆/2 and an elevation of 𝜆/2, with lateral coordinates of 0, 𝜆/2, and 𝜆, respectively. Note
that this is quite an extreme case that was selected on purpose as this results in SIRs with
very high frequencies. Also, the far field approximation made for the derivation of the SIR
in the case of a soft baffle condition typically does not hold with a relative position that
close to the radiating surface. Yet, since both the analytic and the proposed approaches
are based on the same approximation, they can be compared for the purpose of validation.
The relative two-norm errors of the field signals at each field point for both sampling

rates and all basis functions considered are reported in Table 4.2 (rigid baffle) and Table 4.3
(soft baffle). All results are consistent for the two different baffle conditions, even at field
point C where the SIRs of the rigid and soft baffle conditions differ greatly. As for the
spherically focused cased, the higher-order basis function performs best. In general, the
order of relative errors are also comparable between the two element shapes. For the two
baffle conditions, the field signals and SIRs for the B-spline basis function of degree five
are depicted in Figures 4.10 and 4.11, respectively. The effect of the soft baffle condition
is visible for all field points, and in particular at field point C. Similarly to the spherically
focused case, ripples due to the high-frequency components of the SIR can be observed
in the approximations. Field signals obtained with the other basis functions considered
can be found in Figures A.6 to A.10 for the rigid baffle condition, and in Figures A.11
to A.15 for the soft baffle condition.

TABLE 4.2

Relative Two-Norm Errors of Field Signals Radiated by a Rectangular

Transducer Element with a Rigid Baffle Condition

Freq. Point Nearest Linear Keys B-spline3 O-MOMS3 B-spline5

3
0
M
H
z A 2.14 × 10−1 1.23 × 10−1 4.34 × 10−2 7.83 × 10−3 3.55 × 10−3 1.31 × 10−3

B 3.65 × 10−1 1.03 × 10−1 3.82 × 10−2 6.58 × 10−3 3.29 × 10−3 1.14 × 10−3

C 3.59 × 10−1 9.45 × 10−2 2.37 × 10−2 4.68 × 10−3 2.24 × 10−3 6.55 × 10−4

8
0
M
H
z A 2.09 × 10−2 1.39 × 10−2 4.20 × 10−4 5.94 × 10−5 2.90 × 10−5 8.28 × 10−7

B 2.19 × 10−2 9.50 × 10−3 3.19 × 10−4 3.39 × 10−5 1.70 × 10−5 7.74 × 10−7

C 6.06 × 10−2 1.08 × 10−2 4.79 × 10−4 3.58 × 10−5 1.76 × 10−5 3.44 × 10−7

4.4. Discussion

We demonstrated that field signals radiated by surfaces embedded in both rigid and soft
baffles and excited by bandpass RF waveforms can be accurately approximated by the pro-
posed approach. This approach consists of representing the radiating surface by a NURBS
surface, decomposing it into smooth Bézier patches onto which high-order Gaussian
quadrature rules can be deployed. From the resulting quadrature points (and weights),
the field signal can then be evaluated by the convolution of the basis SIR, expressed as a
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TABLE 4.3

Relative Two-Norm Errors of Field Signals Radiated by a Rectangular

Transducer Element with a Soft Baffle Condition

Freq. Point Nearest Linear Keys B-spline3 O-MOMS3 B-spline5

3
0
M
H
z A 1.13 × 10−1 1.10 × 10−1 3.05 × 10−2 6.18 × 10−3 2.16 × 10−3 1.20 × 10−3

B 2.66 × 10−1 1.05 × 10−1 2.89 × 10−2 5.80 × 10−3 2.04 × 10−3 1.09 × 10−3

C 2.44 × 10−1 1.08 × 10−1 1.90 × 10−2 5.01 × 10−3 1.48 × 10−3 7.12 × 10−4

8
0
M
H
z A 1.37 × 10−2 1.42 × 10−2 4.13 × 10−4 6.15 × 10−5 2.99 × 10−5 8.93 × 10−7

B 1.06 × 10−2 1.08 × 10−2 3.16 × 10−4 4.31 × 10−5 2.12 × 10−5 9.00 × 10−7

C 5.02 × 10−2 1.15 × 10−2 4.58 × 10−4 3.95 × 10−5 2.07 × 10−5 3.95 × 10−7
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Figure 4.10. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a rectangular transducer element with a rigid baffle condition, excited by a windowed-

sinusoidal waveform. The excitation waveform is a differentiated log-normal-windowed sine wave, with

a characteristic (center) wavelength λ. The geometry of the rectangular element is defined by a width

of λ and a height of 10 λ. The three field points (A, B, C) lie in a plane parallel to the element. They

were positioned at a depth of λ / 2 and an elevation of λ / 2, with lateral coordinates of 0, λ / 2, and λ,

respectively. The proposed approach was implemented with a B-spline basis function of degree five,

and was evaluated at two sampling rates of (first row) 30MHz and (second row) 80MHz. The reference

SIRs and field signals were evaluated at a sampling rate of 20THz. They are depicted with the same

colors as the approximated counterparts, with a lower opacity.

sum of shifted-and-weighted basis functions, and (pre-filtered) basis coefficients.
The results obtained from the two experiments carried out demonstrate that the pro-

posed approach can attain a high accuracy with respect to analytic reference signals. The
comparison of the relative errors obtained in all cases of the second experiment on real-
istic transducer element shapes (Tables 4.1 to 4.3) with those of the convergence-order
study on a random stream of Dirac delta functions (Figure 4.8) shows that the latter
provides an upper bound on the relative error. As such, the first experiment provides
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Figure 4.11. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a rectangular transducer element with a soft baffle condition, excited by a windowed-

sinusoidal waveform. The remaining settings relevant to the results depicted are identical to those

detailed in Figure 4.10.

a robust way for selecting appropriate basis functions to guarantee a desired accuracy,
assuming that suitable numerical quadrature is deployed.

4.4.1. Benefit of High-Order Basis Functions

In pulse-echo US imaging, it is typically acceptable to consider a sampling rate that enable
preserving frequencies with a relative spectrum magnitude of approximately −60 dB. In
the different experiments conducted, this corresponds to a sampling rate of approximately
35MHz [Figure 4.7(b)]. One can note (Figure 4.8) that using a B-spline basis function of
degree five results in a relative error of approximately −60 dB, and should therefore not
induce additional errors in the simulated signals at that sampling rate. On the (complete)
other hand, using a nearest-neighbor basis function would require a sampling rate of
approximately 10GHz to achieve the same relative error as the one achieve using a
B-spline basis function of degree five at approximately 35MHz. This is an important
observation and a major advantage of the proposed method as large-scale simulations
highly benefit from low-sampling rates (because of the many discrete convolutions).
Thus, the use of high-order basis functions is of primary interest, even if it implies basis
functions with slightly greater supports. Note that we did not investigate basis functions
of higher order than the B-spline of degree five (order six), but the proposed approach
can be deployed with B-spline (or O-MOMS) basis functions of arbitrarily large orders.
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4.4.2. Non-Uniform Rational B-Spline Representation of Surfaces

Our choice of representing radiating surfaces as NURBS surfaces was primarily motivated
by the fact that they enable representing quadric surfaces exactly, and that most US
transducer elements are at most quadric surfaces. Obviously, other representations could
be used in the proposed approach (such as analytic ones), provided that parametrization
is smooth such that Gaussian quadrature can be deployed. The fact that any NURBS
surface can be decomposed into smooth Bézier patches guarantees that this requirement
is met.
It is also worth mentioning that NURBS are heavily used in computer-aided design

(CAD) software for representing surfaces. This means that the design of new transducer
element shapes could be evaluated directly from these NURBS definitions without ad-
ditional processing (such as meshing), similarly to the concept of isogeometric analysis
(IGA). In a more automated design strategy, the optimization of transducer element
shapes could be performed directly from their NURBS definitions (e.g., control points
and weights) with direct evaluation of the field quantities of interest. Also, thanks to
IGA, NURBS representations can be used for spectral analyses of objects (e.g., vibration
modes). One could therefore compute the relevant field quantities for different vibration
modes directly.

4.4.3. Gaussian Quadrature Rules

We only considered the well-known Gauss-Legendre quadrature rule in the present study.
Since there is no realistic scenario in which field signals would need to be computed
onto the radiating surface (i.e., non-singular integrand), the Gauss-Legendre quadrature
rule guarantees high-order accuracies. Even though not reported here, we also evaluated
the performance of typical (low-order) quadrature rules such as the midpoint, trape-
zoidal, and Simpson ones. As expected, they all performed much less efficiently than
the Gauss-Legendre one. We also conducted some preliminary evaluations using the
Gauss-Legendre-Lobatto rule. This quadrature rule may be promising in the context of
radiating surfaces as it includes the endpoints of the integration interval (i.e., the surface
edges), at the cost of a slightly reduced accuracy than the Gauss-Legendre rule. However,
we could not yet conclude onwhich one performs generally best. Amore in-depth study to
assess the regularity of the integrand should be performed. Such a study would probably
lead to an optimal selection of the quadrature point number.

4.4.4. Comparison to Other Strategies

It is interesting to note that the proposed approach for expressing the computation of field
signals using the SIR can be used to interpret previously proposed discretized approaches.
Indeed, the proposed formulation is pretty generic as different surface representations,
different quadrature rules, and different basis functions can be used. For instance, Pi-
wakowski and Delannoy [105] proposed an approach to compute the SIR by discretizing
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the radiating surface into many ideal points (Huygens principle) and to average the
Dirac delta functions between each time samples. This strategy can be considered in
the proposed formulation, namely by using a midpoint quadrature rule together with a
nearest-neighbor basis function. This would of course result in much worse accuracy than
using a high-order Gaussian quadrature rule together with a high-order basis function.
It was for instance reported in [105] that an excessive number of points was required
to achieve a suitable accuracy. This observation matches the convergence-order study
performed in this work (Figure 4.8), in which it is clear that the use of a nearest-neighbor
basis function is the least efficient one. Not to mention that a midpoint quadrature rule
also requires many more quadrature points than Gaussian quadrature rules. In general,
the strategy of averaging SIR values was proposed and used in many approaches [53],
[104], [105], [107]. Thus, these approaches could also benefit from the formulation in
basis functions proposed here, in particular to benefit from higher-order basis functions.
From a pure computational perspective, it was mentioned several times that the pro-

posed approach is particularly suited for parallel implementations. This property is largely
inherited from the SIRmodel and the linear pulse-echomodel for weak scattering derived
therefrom (Chapter 2), which imply that all processes are independent of each other. As
such, most approaches based on the SIR model could benefit from efficient GPU-based
implementations. A critical point when it comes to GPU-based implementations is the
complexity of arithmetic operations. Analytic expressions for the SIR of specific radiating
surfaces involve complex operations such as hyperbolic and inverse hyperbolic operations,
with many cases depending on the relative positioning of field points with respect to
radiating surfaces. Such operations would typically not be ideally suited for GPU-based
implementations. The proposed formulation relies on many more operations of much
lower arithmetic complexity,12 and is as such better suited for GPU-based implementa-
tions. So far, we did not perform an exhaustive benchmark of our current implementation
against well-known software such as Field II. Our initial experiments in the context of SA
imaging indicated that we could reduce the computing time by approximately two orders
magnitude, considering consumer-level central processing units (CPUs) (for Field II) and
GPUs (for the proposed approach). Note that the initial goal of developing this approach
was not to propose an alternative to Field II, but rather to enable us generating a sufficient
amount of data for the purpose of training CNN-based image reconstruction methods
(Chapters 5 to 7).

4.4.5. Hypothetical Perspective for Analytic Expressions

Even though research for the derivation of analytic SIR expressions does not seem to be
very active anymore, or at least not as active as it used to be, there may be an interest
in working with NURBS representations for this task. Analytic expressions for specific
shapesmay be derived in or fromNURBS representations. Indeed, NURBS representations

12The most complicated arithmetic operations are the square root and the cosine in the case of soft baffle
conditions.
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can not only be used to represent a radiating surface exactly, but also to represent the
spherical shell centered at a field point. The main principle proposed by Tupholme [36]
and Stepanishen [51] for deriving the SIR of a radiating surface consists of expressing
the (active) arc length of the curve representing the intersection of the radiating surface
and a spherical shell centered at the field (i.e., outgoing spherical wave). The intersection
of two such shells represented as NURBS surfaces may be expressed as a NURBS curve.
Such NURBS representations may provide useful mathematical tools for the derivation
of analytic or (efficient) semi-analytic expressions for the SIR.
As mentioned in the introduction, there exists several shapes of interest to US imaging

that have already been studied but for which no complete analytic or semi-analytic
expressions for the SIR were found. For instance, the cylindrical shell, namely the shape
of transducer elements forming 1-D linear and phased arrays, was partially solved in [98].
The toroidal shell for transducer elements forming 1-D convex arrays was addressed
in [99]. Another transducer shape for which only partial expressions were found is the
conical shell [125], [126].

4.5. Conclusion

In this chapter, we proposed a spline-based SIR approach for the simulation of field
signals radiated by arbitrary shapes embedded in both rigid and soft baffles and excited
by RF bandpass waveforms. This approach consists of representing a transducer surface
as a NURBS surface and decomposing it as smooth Bézier patches onto which high-order
Gaussian quadrature rules can be deployed to approximate the surface integral involved in
the computation of the SIR. Using high-order B-spline bases to express the SIR, the basis
SIR amounts to a sumof shifted-and-weighted basis functions that depend on the positions
and weights of the quadrature points. The resulting field signal is then obtained by the
convolution of the basis SIR and the (pre-filtered) coefficients obtained from the excitation
waveform. The use of NURBS enables accurate representations of complex surfaces, and
common transducer shapes (quadric surfaces) can even be represented exactly. High-
order Gaussian quadrature rules enables using fewer quadrature points to attain a desired
accuracy than low-order ones commonly used (e.g., midpoint or trapezoidal). High-
order B-spline basis functions enables using a simulation sampling rate identical to the
one of interest to represent the excitation waveform accurately. Numerical experiments
conducted against analytic reference signals demonstrated that the proposed approach
can attain an error as low as the sampling error of the excitation waveform. The extension
to transducer arrays and pulse-echo settings is straightforward. This approach is also
well-suited to parallel implementations. An initial GPU implementation enabled us to
reduce the computing time by up to two orders of magnitude compared to the well-known
Field II simulator.
Being able to reduce the computing time requirements to simulated pulse-echo ac-

quisitions accurately by such a factor was literally a game changer. Indeed, it enabled
generating sufficiently large datasets of high-quality US images in a realistic time frame
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to develop, benchmark, and train CNNs for the purpose of image reconstruction. These
image reconstruction methods based on CNNs are the subject of the following chapters
(Chapters 5 to 7), starting with the core CNN-based image reconstruction method for
ultrafast US imaging proposed in this thesis.
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5. CNN-Based Image Reconstruction Method

for Ultrafast Ultrasound Imaging

The material presented in this chapter is the result of joint work with M. Vonlanthen, F. Martinez,

M. Arditi, and J.-Ph. Thiran. This material is also presented in [33].

5.1. Introduction

Deep learning entered the medical image analysis field [82], quickly followed by the
image reconstruction one [83], [84], with tight links to inverse problems [31], [32], [127],
[128]. As US imaging is achieved through a sophisticated signal processing pipeline, deep
learning-based componentsmay be introduced atmany stages of this process [85]. The first
application appears to date back to 1990 with a pre-beamforming aberration correction
method based on a multi-layer fully connected neural network [129]. In recent years,
different strategies relying on CNNs have been proposed for post-beamforming speckle
reduction [130]–[132] or to mimic the post-processing of clinical scanners [133]. Fully
connected neural networks operating on beamformed signals were proposed to remove
off-axis artifacts [134] or to learn the apodizationweights of an adaptive beamformer [135].
An end-to-end CNN-based method was proposed for segmenting anechoic cysts from raw
element data directly [136]. Restoration techniques using CNNswere proposed to enhance
low-quality images [137], [138], to learn a compounding operation from a reduced number
of insonifications [139], [140], or for super-resolution in the context of US localization
microscopy [141].
In this chapter, we explore the reconstruction of high-quality US images from single

insonifications using a CNN-based approach. The main objective is to provide images
with a minimum amount of diffraction artifacts at the highest possible frame rate, crucial
for tracking rapid phenomena in the human body [1]. Inspired by regularized regression
methods and [31], we propose a “two-step” image reconstruction approach, consisting of
a backprojection operation to obtain a low-quality image estimate, followed by applying
a CNN trained to restore a high-quality image. The backprojection operator is derived
from linear acoustics and far-field assumptions (Section 3.2), resulting in an operation
similar to DAS beamforming, and is further improved with a re-weighting operation. The
CNN architecture is based on [31], [32], with notable improvements over our preliminary
work [137]. To account for the HDR property of US images while preserving their RF
nature, we introduce the mean signed logarithmic absolute error (MSLAE) as training
loss function, inspired by both the conventional log-compression applied to visualize
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US images and audio-coding companding algorithms. Experiments were conducted
on a linear transducer array using a single PW with normal incidence to reconstruct
low-quality input images. Reference images were reconstructed from the complete set
of SA acquisitions. The training of the CNN was performed using a simulated-image
dataset with relevant statistical properties, in particular spanning a wide dynamic range.
Leveraging numerical simulations, reference images were pushed “beyond physics” by
considering an optimal, spatially oversampled, virtual version of the transducer array to
prevent GL artifacts. A special attention was given to speckle patterns as they are essential
to most displacement estimation techniques deployed in ultrafast US applications [1], [5],
[14], [15], [65]. Extensive quantitative evaluations were performed on a numerical test
phantom inspired by [80], and robustness to experimental data was evaluated in both in
vitro and in vivo settings. Current limitations and directions for future improvements are
also discussed.

5.2. Background

5.2.1. Pulse-Echo Modeling and Imaging

In this section, we briefly summarize notions presented and derived in Chapters 2 and 3
that are necessary to the present chapter. In Chapter 2, we showed that under the first-
order Born approximation, assuming (longitudinal) linear acoustics, and neglecting
dispersive attenuation, the signal received (e.g., by a transducer element) from a weakly
scattering mediumΩ embedded in a homogeneous medium and insonified by a transmit-
ter (e.g., wavefront) can be (compactly) expressed as

𝑦𝑖,𝑗(𝑡) = 𝑣pe(𝑡) ∗
𝑡
∫

𝒓∈Ω

[ℎtx𝑖 (𝒓, 𝑡) ∗𝑡
ℎrx𝑗 (𝒓, 𝑡)]𝑥(𝒓) d𝒓, (5.1)

where ∗𝑡 denotes time convolution. The terms ℎtx𝑖 and ℎrx𝑗 represent the SIRs of the
transmitter and receiver, respectively. The pulse-echo waveform1 𝑣pe includes both electro-
acoustic (transmit) and acousto-electric (receive) impulse responses as well as the electric
excitation waveform (assumed identical for all transducer elements). Local fluctuations in
density and propagation velocity, which induce the scattered echo signal, are represented
by 𝑥.
Due to the high complexity of the SIRs involved in (5.1), and in order to obtain a

computationally tractable measurement model for use in image reconstruction methods,
further assumptions need to be made (Section 3.2.1). In Chapter 3, we showed that
assuming far-field approximation both for the transmitter (e.g., ideal wavefront) and
for the receiver (e.g., narrow transducer element), and assuming 𝑣pe to be a Dirac delta

1Originally called pulse-echo wavelet in [27].
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function 𝛿, (5.1) can be approximated as

𝑦𝑖,𝑗(𝑡) = ∫
𝒓∈Ω

̄ℎtx𝑖 (𝒓) ̄ℎrx𝑗 (𝒓)𝛿(𝑡 − 𝜏tx𝑖 (𝒓) − 𝜏rx𝑗 (𝒓))𝑥(𝒓) d𝒓, (5.2)

where ̄ℎtx𝑖 and ̄ℎrx𝑗 are scalar functions representing the (far-field) acoustic diffraction
effects of the transmitter and the receiver to and from a field point 𝒓, respectively. The
terms 𝜏tx𝑖 and 𝜏rx𝑗 represent the acoustic wave propagation times from the transmitter and
the receiver to a field point 𝒓, respectively.
Ultrasound transducers typically comprise a set of 𝑛𝑟 receivers (i.e., transducer ele-

ments) arranged in a regular array and signals (measurements) are sampled at discrete
time intervals. As images are composed of discrete (pixel) values, the (approximated)
linear physical measurement model defined in (5.2) can be conveniently expressed as
a discretized operation for all receivers as 𝒚 = 𝑯𝒙 + 𝒏, where 𝑯∶ ℝ𝑛 → ℝ𝑚 is the
forward (matrix) operator, 𝒙 ∈ ℝ𝑛 is the (vectorized) image we seek to recover, 𝒚 ∈ ℝ𝑚

are the (vectorized) transducer elements measurements (raw data), and 𝒏 ∈ ℝ𝑚 is the
measurement noise. (Note that the transmitter index 𝑖 has been omitted in the matrix
expressions to lighten notations.) Recovering 𝒙 from 𝒚 is a well-known inverse problem
in medical imaging and may be addressed using various strategies (e.g., see [32] for CT
imaging).
Classical backprojection algorithms, which exploit the adjoint operator𝑯∗∶ ℝ𝑚 → ℝ𝑛,

may be used to address such an inverse problem. Using (5.2), one can express the adjoint
operation for all receivers in the continuous domain as (Section 3.2.2)

̃𝑥𝑖(𝒓) = ̄ℎtx𝑖 (𝒓)
𝑛𝑟
∑
𝑗=1

̄ℎrx𝑗 (𝒓)𝑦𝑖,𝑗(𝜏
tx
𝑖 (𝒓) + 𝜏rx𝑗 (𝒓)), (5.3)

which is an instance of the well-known DAS algorithm, where ̄ℎtx𝑖 and ̄ℎrx𝑗 can be inter-
preted as weighting functions. As the resulting RF image ̃𝑥𝑖 is obtained from a single
insonification (transmitter), it usually suffers from strong diffraction artifacts. To improve
the resulting image quality, it is common to average coherently multiple (low-quality)
RF images reconstructed using DAS-based algorithms from measurements acquired by
insonifying the medium of interest differently, for instance using steered PWs or DWs in
a process called coherent compounding [65], or using SA imaging [19].
As an alternative to using multiple insonifications to improve the image quality, regu-

larization techniques may be used by solving

𝒙̂ = argmin
𝒙∈ℝ𝑛

{𝒟(𝑯𝒙, 𝒚) + 𝜘ℛ(𝒙)}, (5.4)

where𝒟∶ ℝ𝑚 × ℝ𝑚 → ℝ+ is a data fidelity term (e.g., the ℓ2-norm), and ℛ∶ ℝ𝑛 → ℝ+

is a regularizer used to infer prior knowledge on the expected image. The parameter
𝜘 ∈ ℝ+ controls the weighting of the regularization and is typically adjusted manually.
One solution to (5.4), when using the ℓ2-norm as data fidelity, may be found using the
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well-known proximal gradient descent iteration [66]

𝒙(𝑘+1) = prox𝛾𝜘ℛ(𝒙
(𝑘) − 𝛾𝑯∗𝑯𝒙(𝑘) +𝑯∗𝒚), (5.5)

where𝑯∗ is the adjoint of 𝑯, 𝛾 ∈ ℝ+ is the gradient step size (that may also be iteration-
dependent), and the proximity operator prox𝛾𝜘ℛ∶ ℝ

𝑛 → ℝ𝑛 is defined as

prox𝜇ℛ(𝒛) = argmin
𝒛∈ℝ𝑛

1
2‖𝒙 − 𝒛‖22 + 𝜇ℛ(𝒙), (5.6)

for some parameter 𝜇 ∈ ℝ+. The proximity operator in (5.5) acts as a projection to
“denoise” each estimate based on some prior knowledge of 𝒙. Such methods remain
seldom used in US imaging given the difficulty of finding a regularizer suitable for the
very specific and broad statistical properties of US images (especially considering speckle
patterns). Also, their inherent iterative process makes it difficult to deploy them in real-
time imaging.
One can note that if (5.5) is initialized to zero, namely 𝒙(0) = 𝟎, the first estimate is

obtained as 𝒙(1) = prox𝛾𝜘ℛ(𝑯
∗𝒚), which corresponds to a backprojection followed by

some “denoising” projection that depends on the regularizer ℛ. This observation is the
basis of the proposed “two-step” approach.

5.2.2. Statistical Considerations of Fully Developed Speckle

Ultrasound speckle is characteristic of images produced by conventional DAS-based
pulse-echo imaging systems; it arises from the coherent interferences of echo-components
reflected by sub-resolved diffusive scatterers. It is said to be fully developedwhen scatterers
are present in sufficient numbers within resolution cells, and resulting backscattered
signals follow a (circular symmetric) complex normal distribution 𝒞𝒩(0, 2𝜎2), where
𝜎2 represents the variance of each (independent) component [78]. Following envelope
detection, the signal amplitude of these interferences follow a Rayleigh distribution [142],
denoted as Rayleigh(𝜎), with a parameter 𝜎 > 0 related to the underlying (circular
symmetric) complex distribution. The corresponding probability density function (PDF)
and cumulative distribution function (CDF) are defined as

𝑓(𝑥; 𝜎) = 𝑥
𝜎2 𝑒

−𝑥2/(2𝜍2), (5.7)

𝐹(𝑥; 𝜎) = 1 − 𝑒−𝑥2/(2𝜍2), (5.8)

for 𝑥 ≥ 0, respectively. The first moment (i.e., mean or expected value), the second
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moment, and the variance of a Rayleigh random variable 𝑋 are given by

𝜇1 = 𝔼[𝑋] = √
𝜋
2𝜎, (5.9)

𝜇2 = 𝔼[𝑋2] = 2𝜎2, (5.10)

Var(𝑋) = 𝔼[𝑋2] − 𝔼[𝑋]2 = 4 − 𝜋
2 𝜎2. (5.11)

Even though speckle patterns are sometimes interpreted as noise, they contain positional
information about the underlying physical phenomenon, as they result from deterministic
interferences, and are therefore extensively exploited in motion analysis [6].

5.2.2.1. First Order Statistics

The analysis of first order statistics provides useful tools to characterize envelope signals
regardless of the acquisition system geometry and are therefore extensively used in image
quality metrics and tissue characterization. A widely used measure of first order statistics
in US imaging is the ratio of mean to standard deviation of a signal (i.e., the reciprocal
of the coefficient of variation), often referred to as SNR [142]. In the case of a signal
following a Rayleigh distribution, it is given by

SNR = 𝔼[𝑋]
√Var(𝑋)

= √
𝜋

4 − 𝜋 ≈ 1.91. (5.12)

This ratio is ideally estimated at a single point in an image by conducting multiple inde-
pendent realizations and estimating 𝔼[𝑋] and Var(𝑋) using the sample mean and sample
variance. Assuming a zone of a physical domain composed of a large amount of random
diffuse scatterers with constant mean amplitude imaged with a system characterized
by a slowly varying PSF within such a zone, the resulting speckle patterns will inherit
quasi-constant statistical properties. Therefore, one can assume a wide-sense stationary
(WSS) process within that image zone and estimate the SNR directly from the samples
obtained. It should be noted that, in an attempt to reduce speckle “noise,” one may want
to improve the SNR defined in (5.12) by reducing Var(𝑋). Yet, in scenarios where accu-
rate speckle patterns are required (e.g., motion estimation), the goal is to preserve such
patterns or to restore them as they may have been altered by imaging artifacts or thermal
noise. The SNR can thus serve to verify that speckle patterns follow the expected (first
order) statistics.

5.2.2.2. Second Order Statistics

To study the spatial characteristics of speckle patterns, which depend on the PSF of the
imaging system, the evaluation of second order statistics is required. The normalized
autocovariance function (ACF), also referred to as Pearson correlation coefficient (PCC),
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is commonly used for this purpose [78], [79]. Assuming a WSS process, it is defined as

𝜌𝑋𝑋(Δ𝒓) =
𝔼[(𝑋(𝒓1) − 𝔼[𝑋])(𝑋(𝒓2) − 𝔼[𝑋])∗]

Var(𝑋)
, (5.13)

where 𝒓1 and 𝒓2 are two positions (in the image),Δ𝒓 = 𝒓2−𝒓1, and 𝑧∗ denotes the complex
conjugate of 𝑧. Note that the numerator of (5.13) is simply the autocorrelation of the
image amplitudes from which the mean was subtracted, and may therefore be efficiently
estimated using two fast Fourier transforms (FFTs). To characterize the resolution of
speckle patterns, also referred to as speckle spot size, the FWHM of the ACF is typically
evaluated in all image dimensions.

5.2.2.3. Contrast

A commonly used definition of contrast between two US signals (or image zones) 𝑋1 and
𝑋2 is given by their ratio of mean amplitude, expressed in decibels as [143]

C = 20 log10(
𝔼[𝑋1]
𝔼[𝑋2]

). (5.14)

Considering a Rayleigh random variable 𝑋, one can note that, from (5.9) and (5.10),
𝔼[𝑋] = (𝜋𝔼[𝑋2]/4)1/2. Hence, if 𝑋1 ∼ Rayleigh(𝜎1) and 𝑋2 ∼ Rayleigh(𝜎2), (5.14) can be
equivalently expressed, in decibels, on the signal intensity (power) as

C = 10 log10(
𝔼[𝑋2

1 ]
𝔼[𝑋2

2 ]
). (5.15)

When considering fully developed speckle signals that follow a Rayleigh distribution,
the analysis of the signal intensity, which follows an exponential distribution, may be of
interest as it is linearly proportional to the concentration of scatterers [143]. However, in
general, the signal amplitude is the quantity of interest in US imaging as US systems sense
RF signals that are linearly proportional to the amplitude of scatterers [78], irrespectively
of their statistical properties. Hence, (5.15) should not be used on signals deviating from
Rayleigh statistics as it could result in unrealistic values.

5.2.2.4. Confidence Interval

As the CDF of a Rayleigh random variable, defined in (5.8), is continuous and strictly
monotonically increasing, its quantile function 𝑄 = 𝐹−1, and can be expressed as

𝑄(𝑦; 𝜎) = 𝜎√−2 ln(1 − 𝑦), (5.16)

for 𝑦 ∈ [0, 1). Considering a symmetric confidence level 𝛽 ∈ [0, 1), the lower and upper
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confidence bounds are obtained directly from (5.16), and expressed as

(𝜎
√
−2 ln(

1 + 𝛽
2 ), 𝜎

√
−2 ln(

1 − 𝛽
2 )). (5.17)

Figure 5.1 shows the confidence bounds of a Rayleigh random variable normalized by
its expected value, namely 𝑋/𝜇1 ∼ Rayleigh(√2/𝜋). A 90% confidence level is therefore
achieved when accounting values ranging from approximately −12 dB to +6 dB with
respect to its expected value (i.e., mean).
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Figure 5.1. Lower and upper confidence bounds (in decibels) with respect to the confidence level (in

percent) of a Rayleigh random variable normalized by its expected value (i.e., mean).

5.3. Methods

5.3.1. Proposed Image Reconstruction Method

The proposed method consists of first computing a low-quality estimate of 𝒙, denoted 𝒙̃,
from measurements 𝒚 acquired with a single insonification, by means of a re-weighted
backprojection-based DAS algorithm 𝑫∶ ℝ𝑚 → ℝ𝑛. We define 𝑫 ≔ 𝑾𝑯∗, where
𝑾∶ ℝ𝑛 → ℝ𝑛 is a “pixel-wise” re-weighting operator (diagonal matrix) defined, for
the 𝑖-th transmitter, as

𝑤𝑖(𝒓) = ( ̄ℎtx𝑖 (𝒓)
𝑛𝑟
∑
𝑗=1

̄ℎrx𝑗 (𝒓))
−1

. (5.18)

It has been designed to compensate for the amplitude-related effects of (far-field) diffrac-
tion and can be interpreted as post-DAS image equalization. In a second step, the resulting
approximation 𝒙̃ = 𝑫𝒚 is fed to a CNN 𝒇𝜽∶ ℝ𝑛 → ℝ𝑛, with parameters 𝜽, trained to
recover a high-quality estimate of 𝒙 as 𝒙̂ = 𝒇𝜽(𝒙̃). As opposed to end-to-end approaches
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seeking to map a measurement space to an image space directly, we suggest using a CNN
for a task in which they are well-known to excel, namely restoration tasks [127], [144].
Put formally, we seek to train a mapping 𝒇𝜽 between a subspace of low-quality images

𝑊 ⊂ ℝ𝑛 to a subspace of “ground-truth” images 𝑉 ⊂ ℝ𝑛. In order to define these sub-
spaces more precisely, let us consider an US transducer with a given aperture, composed
of an array of transducer elements, with given geometry, center frequency, and bandwidth
properties, and designed to operate at a given transmit frequency.
We define𝑊 as the subspace of US images reconstructed using 𝑫 from measurements

acquired by a single insonification using the entire aperture. These images are typically
contaminated by high SL and EW artifacts (mostly due to the single insonification), as
well as potential GL artifacts, if the spatial sampling of the aperture is sub-optimal (e.g.,
as it is the case in linear-array designs).
For𝑉, we propose to use a transducer similar to the one used for𝑊, namely spanning the

same aperture and composed of transducer elements with the same physical properties,
but with a spatial sampling ensuring the absence of GLs. In order to produce reference
images from this array, we reconstruct them from the complete set of SA measurements
obtained by sequentially insonifying the medium using a single element of the array and
recording the scattered signals with all elements. Each insonification is reconstructed
using the corresponding𝑫, and they are averaged to produce the final image. As SAmakes
it possible to virtually focus both on transmit and receive in every point of the image [19],
it produces images with a high resolution (tightened main lobe) while minimizing the
level of SL and EW artifacts (increased contrast). As a consequence, SA is often considered
as the gold standard in US imaging.
Furthermore, in comparison to using more “exotic” ground-truth images (e.g., CT-

like), SA images retain high-quality speckle patterns. By ensuring that both subspaces
contain speckle patterns arising from sub-resolution scattering interferences, we enforce
the CNN to preserve their information content. We emphasize the fact that, due to
the assumptions considered in the physical measurement process (5.2) and resulting
backprojection operator (5.3) used to define both𝑊 and 𝑉, the resulting trained CNN
is not expected to correct artifacts arising from neglected physical phenomena, such
as multiple scattering, speed-of-sound distortions, dispersive attenuation, or non-linear
acoustic effects. The focus is on reducing diffraction artifacts and preserving speckle with
an increased resolution.

5.3.2. Convolutional Neural Network Architecture

The proposed CNN architecture [Figure 5.2(a)] is derived from our previous work [137],
adapted from the popular U-Net architecture [145], as well as the architecture used
in [31], [32]. It is a residual CNN, expressed as 𝒇𝜽(𝒙) = 𝒙 + 𝒓𝜽(𝒙), designed to predict the
negative noise to be applied to some input 𝒙. It is composed of a series of multi-channel
convolutional layers (CLs) and rectified linear units (ReLUs), arranged in a downsampling
(left arm) and upsampling (right arm) paths, with intrinsic skip connections to mitigate
information losses. The multi-scale structure confers a large receptive field to the CNN,
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particularly adapted to the non-stationary restoration mapping to be learned.
The input image first undergoes a channel expansion (leftmost chamoisee arrow) up

to 𝑁𝑐 channels. It is then fed to a series of convolutional blocks (red arrows) followed by
downsampling layers (blue arrows)which reduce the spatial dimensionwhile augmenting
the channel number. The upsampling path is performed symmetrically using intrinsic
skip connections (yellow arrows), convolutional blocks, and upsampling layers (violet
arrows). Eventually, the channel number𝑁𝑐 is contracted back to its initial state (rightmost
chamoisee arrow) and the output is then summed to the input image (residual skip
connection).
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Figure 5.2. Proposed residual convolutional neural network (CNN) architecture, adapted from U-Net [145], and from [31],

[137]: (a) generic overall CNN architecture; convolutional blocks considered, namely (b) conventional fully convolutional block

(FCB) and (c) proposed residual convolutional block (RCB). Connections and tensor operations (i.e., layers) are represented as

straight, colorized arrows (legend in the upper right corner). The 3-D tensors are represented as colorized rectangles. (Their

width and height are depicted in proportion to the number of channels and image dimension, respectively. One image dimension

is not represented for readability reasons.)

The main differences with respect to our initial adaptation [137] are as follows. Instead
of a max-pooling layer, which seems inadequate for restoration tasks, a 2 × 2 strided CL
was used within each downsampling layer (blue arrow) as a symmetric counterpart to the
2 × 2 strided “transposed” CL used within each upsampling layer (violet arrow). We used
simple additive intrinsic skip connections instead of concatenated ones conventionally
used in U-Net-like architectures, resulting in a symmetric amount of trainable parameters
in both arms. A residual convolutional block (RCB) [Figure 5.2(c)] is proposed to super-
sede the fully convolutional block (FCB) [Figure 5.2(b)] used previously. Note that such
RCBs would not have been possible to be deployed with concatenated skip connections
directly.
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5.3.3. Training Loss for High-Dynamic-Range Radio-Frequency Data

The trainable model parameters 𝜽 are optimized in a supervised manner by minimizing
the empirical risk

𝑅(𝜽) = 1
𝑙

𝑙

∑
𝑖=1

ℒ(𝒙(𝑖), 𝒇𝜽(𝒙̃(𝑖))), (5.19)

where ℒ(𝒙, 𝒙̂) is a non-negative real-valued (training) loss function, which measures
the distance between a prediction 𝒙̂ = 𝒇𝜽(𝒙̃) and its true value 𝒙. The training set
{{𝒙(1), 𝒙̃(1)}, … , {𝒙(𝑙), 𝒙̃(𝑙)}} is composed of 𝑙 image pairs. Common loss functions include
the MSE loss and the mean absolute error (MAE) loss expressed as

ℒMSE(𝒙, 𝒙̂) =
1
𝑛‖𝒙 − 𝒙̂‖22, (5.20)

ℒMAE(𝒙, 𝒙̂) =
1
𝑛‖𝒙 − 𝒙̂‖1, (5.21)

respectively.
Due to the inherent HDR property of US images, they are commonly compressed

(after envelope detection) before being displayed for interpretation. To account for the
HDR property of US images while preserving their RF nature, we introduce the MSLAE,
inspired by both the log-compression applied to visualize US images and audio-coding
companding algorithms (pulse code modulation). The associated loss is expressed as

ℒMSLAE(𝒙, 𝒙̂) =
1
𝑛‖𝑔𝛼(𝒙) − 𝑔𝛼(𝒙̂)‖1, (5.22)

where 𝑔𝛼∶ ℝ → ℝ is a signed (clipped-and-scaled) logarithmic transformdefined element-
wise as

𝑔𝛼(𝑥𝑘) = sign(𝑥𝑘) log𝛼(
𝛼

max(𝛼, |𝑥𝑘|)
), (5.23)

where 𝛼 ∈ (0, 1) and 𝑥𝑘 is an element of 𝒙 (e.g., a pixel value). It should be noted that
𝑔𝛼(𝑥𝑘) = 0 ∀|𝑥𝑘| < 𝛼. Thus, 𝛼 can be interpreted as a threshold parameter below which a
(pixel) value is assumed “negligible.”
To anticipate the effect of the MSLAE loss, let us define a predicted value ̂𝑥 = 𝜀𝑥 for

any true value 𝑥 ∈ ℝ and error ratio 𝜀 ∈ ℝ. (Note that the component index 𝑘 has been
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dropped to lighten notation.) The resulting loss function can be expressed as

ℒMSLAE(𝑥, 𝜀𝑥) = |𝑔𝛼(𝑥) − 𝑔𝛼(𝜀𝑥)|

=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

||log𝛼(𝜀)|| for |𝑥| > 𝛼, |𝜀𝑥| > 𝛼, 𝜀 > 0,
||log𝛼(−𝛼

2/(𝜀𝑥2))|| for |𝑥| > 𝛼, |𝜀𝑥| > 𝛼, 𝜀 < 0,
||log𝛼(𝛼/|𝑥|)|| for |𝑥| > 𝛼, |𝜀𝑥| ≤ 𝛼,
||log𝛼(𝛼/|𝜀𝑥|)|| for |𝑥| ≤ 𝛼, |𝜀𝑥| > 𝛼,
0 otherwise.

(5.24)

For comparison purposes, and as it served as inspiration for the proposed MSLAE loss,
let us also define the mean μ-law absolute error (MMUAE) loss function as

ℒMMUAE(𝒙, 𝒙̂) = ‖𝑔𝜇(𝒙) − 𝑔𝜇(𝒙̂)‖1, (5.25)

where 𝑔𝜇∶ ℝ → ℝ is the µ-law transform (commonly used in audio companding algo-
rithms) defined element-wise as

𝑔𝜇(𝑥𝑘) = sign(𝑥𝑘) ln(
1 + 𝜇|𝑥𝑘|
1 + 𝜇 ), (5.26)

where 𝜇 ∈ ℝ+ defines the extent of dynamic range compression. Note that to obtain a
dynamic range compression similar to that of (5.23), 𝜇must be set to 𝛼−1. Proceeding
in the same way as for the derivation of (5.24), and using 𝜈 = 1 + 𝜇, one can express the
resulting loss for MMUAE as

ℒMMUAE(𝑥, 𝜀𝑥) = |𝑔𝜇(𝑥) − 𝑔𝜇(𝜀𝑥)|

= {
||log𝜈((1 + 𝜇𝜀|𝑥|)/(1 + 𝜇|𝑥|))|| for 𝜀 > 0,
||log𝜈((1 − 𝜇𝜀|𝑥|)(1 + 𝜇|𝑥|))|| for 𝜀 < 0.

(5.27)

From (5.24) and (5.27), one can note that both losses are not differentiable for 𝜀 = 1,
namely for ̂𝑥 = 𝑥 (similarly to MAE). They both penalize sign errors, which means that
they can preserve the RF property of US images. The main advantage of MSLAE over
MMUAE resides in the fact that, for any true 𝑥 and 𝜀 > 0 such that |𝑥|, |𝜀𝑥| > 𝛼, the loss
is a positive constant value (i.e., independent of 𝑥). Consequently, a specific error ratio
between a predicted value and its true counterpart is penalized equally, regardless of the
true value magnitude.2 This is a highly desirable feature when working on HDR data, as
is the case for (RF) US images. Due to the “threshold” parameter 𝛼, MSLAE is also not
differentiable in a few other cases, namely for |𝑥| = 𝛼 and/or |𝜀𝑥| = 𝛼. Also, note that in
cases where both |𝑥|, |𝜀𝑥| < 𝛼, the penalty is zero. Therefore, the parameter 𝛼must be
selected carefully based on the statistics of the dataset considered (Section 5.4.4).

2Note that MMUAE approximates such a behavior.
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Note that the same derivation can be applied to both MSE and MAE losses, resulting in

ℒMSE(𝑥, 𝜀𝑥) = (1 − 𝜀)2𝑥2, (5.28)
ℒMAE(𝑥, 𝜀𝑥) = |(1 − 𝜀)𝑥|. (5.29)

From (5.28) and (5.29), it is clear that MSE and MAE are not optimal in the context of
HDR data as the resulting loss value is proportional to the true value 𝑥 (i.e., quadratically
for MSE and linearly for MAE).
Other log-compressed loss functions were proposed in the context of deep learning

and US. In [132], conventional loss functions were computed on log-compressed images
(i.e., limited to non-negative data). In [135], the signed-mean-squared-logarithmic error
(SMSLE) was introduced as a loss function. Because the SMSLE operates separately on
the positive and negative parts of RF signals, it is limited to inputs and predictions that
oscillate identically (i.e., cannot account for sign errors, making it unusable in the present
study). Also, both losses have a singularity at zero and can become highly unstable as
(pixel) values tend to zero.

5.4. Experimental Setup

5.4.1. Imaging Configurations

The imaging configurations considered in this study (Table 5.1) are based on the 9L-D
transducer (GE Healthcare, Chicago, Illinois, USA) and the Vantage 256 system (Vera-
sonics, Kirkland, WA, USA) specifications. The 9L-D is a linear array, composed of 192
transducer elements with a center frequency of 5.3MHz and a bandwidth of 75% (at
−6 dB). The transmit excitation is a single-cycle tri-state waveform of 67% duty cycle
centered at 5.208MHz, with leading and trailing equalization pulses of quarter-cycle
durations and opposite polarities. The received echo signals are sampled at 20.833MHz
(200% bandwidth sampling).
We first introduce two “natural” imaging configurations, namely low-quality (LQ)

and high-quality (HQ), defined by the properties of the 9L-D. A single PW with normal
incidence and without apodization is transmitted in the LQ configuration. The complete
set of 192 SA measurements are used for HQ. Assuming a typical speed of sound in
soft tissue of 1540m/s, one can note that the element spacing (i.e., pitch) in LQ and HQ
configurations is∼0.78𝜆, namely greater thanhalf the effectivewavelength.Hence, images
reconstructed by conventional DAS-based algorithms will inevitably be contaminated by
GL artifacts.
Furthermore, we introduce the ultra-high-quality (UQ) configuration as an idealized

configuration. It is based on the HQ one, but takes advantage of a spatially oversampled
aperture with a halved pitch (∼0.39𝜆), resulting in a virtual 383-element array, guarantee-
ing GL-free images. In order to preserve the same speckle patterns obtained using the HQ
configuration while removing GL artifacts, the same aperture and geometric properties
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TABLE 5.1

Specifications of the Imaging Configurations Considered

Parameter LQ HQ UQa

Center frequency 5.3MHz 5.3MHz 5.3MHz

Bandwidth 75% 75% 75%

Aperture 43.93mm 43.93mm 43.93mm

Element number 192 192 383

Pitch 230μm 230μm 115μma

Element widthb 207μm 207μm 207μma

Element height 6mm 6mm 6mm

Elevation focus 28mm 28mm 28mm

Transmit frequency 5.208MHz 5.208MHz 5.208MHz

Excitation cyclesc 1 1 1

Transmit-receive scheme 1 PW 192 SA 383 SA

Sampling frequency 20.833MHz 20.833MHz 20.833MHz

aUQ is not physically possible and can only be simulated.
bGuessed (no official data available).
cSingle excitation cycle with equalization pulses.

of the elements were kept. The configuration can thus only be realized in a simulation
environment.
For each imaging configuration considered, the images were reconstructed using the

corresponding backprojection-based DAS operator 𝑫, defined in Sections 5.2.1 and 5.3.1,
for which the scalar weighting functions ̄ℎtx𝑖 and ̄ℎrx𝑗 and the delay functions 𝜏tx𝑖 and 𝜏rx𝑗
need to be specified. In case of PW acquisitions (i.e., LQ), an idealized wavefront was
assumed as transmitter, namely ̄ℎtx𝑖 (𝒓) = 1. In case of SA acquisitions (i.e., HQ and UQ),
each transmission was performed with a different transducer element. The diffraction
effect of a narrow element evaluated at a field point 𝒓 can be derived from a 2-D far-field
assumption considering a soft baffle boundary condition as [49], [61]

̄ℎtx𝑖 (𝒓) =
𝑑 sinc(𝑑/𝜆 sin(𝜃))
√2𝜋‖𝒓 − 𝒓𝑖‖1/22

cos(𝜃), (5.30)

where 𝒓𝑖 is the position of the transducer element, 𝜃 is the angle between the element
normal and the vector 𝒓 − 𝒓𝑖, 𝑑 is the width of the element, and sinc(𝑥) ≔ sin(𝜋𝑥)/(𝜋𝑥).
The transducer elements are also the receivers for all imaging configurations and (5.30)
was also used to evaluate ̄ℎrx𝑗 (𝒓), with 𝒓𝑗 the position of the receiving element. The time
delay functions 𝜏tx𝑖 and 𝜏rx𝑗 were computed from the distance traveled by the wavefront
from the transmitter to a field point 𝒓 and from a field point 𝒓 to the receiver, respectively,
divided by the mean sound speed (assumed 1540m/s), as in Section 3.3.
It is worth highlighting a slight variation with respect to the weighting function de-

ployed in Section 3.3. The difference comes from the 2-D assumption made here contrary
to the 3-D one defined in (3.16). This choice was motivated because our initial 3-D as-
sumption does not hold in the case of 2-D imaging using conventional linear or phased
transducer arrays that are composed of (focused) transducer elements with a height-
to-width ratio of more than an order of magnitude. The use of (5.30) instead of (3.16)
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resulted in images better equalized. Also note that the physical units do not match in
(5.30) because of the non-physical 2-D approximation.
The interpolation of element raw-data values (before summation) was performed using

a B-spline approximation of degree three [68]. Analytic (complex) images, often called
in-phase quadrature (IQ) images, were reconstructed from the analytic raw-data signals,
enabling us to have direct access to the RF (real part) and envelope (modulus) image
representations. The process was implemented with PyUS,3 a GPU-accelerated Python
package for US imaging developed in our laboratory.
The images were reconstructed with a width spanning the 9L-D aperture (Table 5.1)

and a depth from 1mm to 60mm. A 𝜆/4 × 𝜆/8 (Cartesian) grid was used to guarantee
Nyquist sampling of RF images in both dimensions, resulting in images of 596 × 1600
pixels. Signals were sampled from 0μs to 96.58 μs to account for all echoes contributing
to the final image limits.
As the PSF of DAS-based pulse-echo US imaging systems is spatially varying, especially

when considering ultrafast acquisitions, a generic analysis is a complicated task. Yet,
the PSF varies slowly over the image domain and its visualization at some locations in
the image provides meaningful information about its spread and enables comparing
different imaging configurations. Figure 5.3 shows simulated PSFs, evaluated in three
distinct positions, for the LQ, HQ, and UQ imaging configurations. One can note that GL
artifacts are drastically reduced between LQ and HQ, and are completely removed for
UQ. Artifacts caused by SLs are easily identifiable as they develop from main lobes in
“cross”-like artifacts. The spread and amplitude of these artifacts are drastically reduced
for HQ and UQ with respect to LQ. Artifacts caused by EWs, which are only present
in the LQ configuration [Figure 5.3(b)], are the most spatially varying ones and appear
as two “defocused” duplicates below each main lobe (except in the center of the lateral
dimension where they interfere coherently). The deeper the position in the image, the
closer EW artifacts are to the main lobe, and the more they resemble the combination of
a main lobe and associated SLs.
From these observations, it is clear that all three imaging configuration considered

are characterized by spatially varying PSFs, and that this spatially varying property is
most pronounced for the LQ configuration. Therefore, as we seek to learn a restoration
mapping (using a CNN) to recover high-quality estimates from low-quality ones, such a
mapping needs to be non-stationary as well. Moreover, as the PSF of the LQ configuration
spreads over a large portion of the image because of diffraction artifacts, the restoration
mapping needs a large receptive field to be effective. This observation was critical to the
design of the proposed CNN architecture (Section 5.3.2). In particular, its multi-scale
structure results in a large receptive field even when using convolutional kernels of small
supports (3 × 3 in our case).

3https://gitlab.com/pyus/pyus
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Figure 5.3. B-mode image representations (98-dB range) of simulated point spread function (PSF) examples: (a) point reflector

positions in which the PSFs were evaluated; images reconstructed using each imaging configuration considered (Table 5.1),

namely (b) low-quality (LQ) configuration, (c) high-quality (HQ) configuration (i.e., gold-standard image for the physical transducer

array), and (d) ultra-high-quality (UQ) configuration (i.e., gold-standard image for the spatially oversampled virtual version of the

transducer array, considered as ground-truth). Some zones dominated by grating lobe (GL), side lobe (SL), and edge wave

(EW) artifacts are highlighted by colorized arrows and associated annotations.

5.4.2. Element Raw-Data Generation

For the generation of the dataset image pairs used to train 𝒇𝜽, we relied on computer
simulations. This enables the generation of a training set in a fully controlled environ-
ment. In particular, it can overcome the difficulties encountered in SA imaging. Indeed,
tissue displacements, attenuation effects, and thermal noise can make such acquisitions
rather challenging in experimental conditions (especially at great depth). An arbitrarily
diverse dataset can be crafted using simulation, which may be difficult to achieve on
experimental set-ups. Furthermore, transducers with optimal spatial sampling and an
arbitrary number of elements, even beyond what is physically feasible, are possible by
means of simulations. While many commercial US scanners do not allow raw RF data to
be collected [133], simulations enable generating realistic RF data provided that governing
transducer parameters are available (or possible to estimate).
In order to generate realistic element raw-data, we relied on the exact SIR model

described in (5.1), as opposed to the approximatedmeasurementmodel expression given in
(5.2), which was used to derive a computationally tractable backprojection operator. This
means that neither the far-field approximation of the SIRs nor the Dirac approximation of
the pulse-echo waveform was assumed for simulating the element raw-data involved in
the generation of the simulated-image dataset. Equation (5.1) can be accurately evaluated
using the well-known Field II simulator [87], [88]. Its only issue lies in the computing
time requirements, especially for simulating SA measurements in conditions such as to
produce fully developed speckle.
To generate a sufficiently large and realistic dataset in a reasonable time-frame, we

implemented an in-house GPU-accelerated simulator for evaluating (5.1). The simula-
tor is described in great detail in Chapter 4, with a brief summary of the key features
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described hereafter. The main differences compared with Field II are the spline-based
representations used for both time and element surface domains enabling it to exploit
fully the high parallelizability offered by the SIR model. NURBS representations and
Gauss-Legendre quadrature are used for surface integrations, enabling high accuracy
with few integration points. The time domain is represented in a B-spline basis, thus
reducing the sampling frequency requirements. It is a full 3-D implementation, including
element directivity and elevation effects. The implementation has been validated against
Field II and enabled us to obtain an overall speed-up of about 200×.
The transducer elements were exactly represented by cylindrical NURBS surfaces of

degree (1, 2), and 3 × 87 quadrature points were used for the surface integral involved in
evaluating the SIR terms of (5.1). Their electromechanical impulse response was approxi-
mated by a differentiated log-normal-windowed sine wave. A soft boundary condition
was assumed and a constant speed of sound of 1540m/s was set. To minimize the simu-
lation time, we used a B-spline approximation of degree five [68] for the time domain
representation, enabling us to obtain a sufficient accuracy (i.e., >60 dB) with a sampling
frequency of 31.25MHz.

5.4.3. Simulation Phantoms

Each numerical phantom is represented by a set of ideal point reflectors defined by their
position and echogenicity (amplitude). Figure 5.4 depicts the geometric considerations,
in the transducer plane, relevant to the design and generation of the synthetic phantoms.
The domains Ω𝑖 ⊂ Ω𝑟 ⊂ Ω𝑙 ⊂ Ω𝑒 ⊂ ℝ3 are defined by the transducer aperture and the
considered imaging configurations (Section 5.4.1). All possible scattered contributions to
the final image domain Ω𝑖 arise from Ω𝑙, which is bounded by the Cartesian domain Ω𝑒.
To mitigate the computing time and enable the simulation of a sufficiently large dataset,
we only considered contributions arising from Ω𝑟, where 𝜃𝑟 = 29.71° is the angle from
which the element sensitivity falls below −6dB.

\A \A

Ω4

Ω;

ΩA

Ω8

Aperture G

I

H

2 cm

Figure 5.4. Representation (in the transducer plane) of the spatial domains used for generating the

simulation phantoms for the imaging configurations considered (Table 5.1).

As we are particularly interested in generating speckle patterns, the positions of scat-
terers were drawn from a uniform distribution over Ω𝑒 and their amplitudes were drawn
from a normal distribution, for each synthetic phantom, providing a uniform speckle ref-
erence background (defined as 0 dB). We computed the most restrictive (3-D) resolution
cell, defined by the FWHM in all dimensions, for the UQ imaging configuration, namely
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0.71𝜆 × 3.23𝜆 × 1.10𝜆. To mitigate the computing time while obtaining fully developed
speckle patterns throughout the resulting images, an average of ten scatterers per resolu-
tion cell was used, namely the lower bound prescribed in [146, Sec. 8.4.4]. To mitigate the
computing time further, only a single resolution cell was considered in elevation. This
resulted in ∼153.35 scatterers/mm3 and a total of ∼900 000 effective scatterers in Ω𝑟.
Two hundred ellipsoidal zones were incorporated at random positions and with ran-

dom orientations. The size of each semi-axis was uniformly selected between 0.71𝜆 and
71𝜆 (i.e., between 1 and 100 times the smallest resolution-cell dimension). These choices
guaranteed an almost complete filling of Ω𝑒. Within each inclusion, a mean echogenicity
drawn uniformly randomly between −50 dB and +30 dB with respect to the background,
was set by scaling the initial random amplitude of scatterers contained within it accord-
ingly. Inclusions were processed in descending order of surface area to maximize the
resulting diversity of shapes.

5.4.4. Simulated Dataset

A total of 31 000 simulation phantoms were generated as described in Section 5.4.3, each
defined by a unique set of scatterers. Element raw-data signals were simulated (Sec-
tion 5.4.2) from each simulation phantom and for each imaging configuration (Table 5.1).
Corresponding images were reconstructed using the associated backprojection operators
(Section 5.4.1). For each imaging configuration, a normalization factor was determined
on independent realizations of a reference simulation phantom composed of scatterers
resulting in a constant mean echogenicity of 0 dB (background reference).
Assuming a fully developed speckle zone of constant mean echogenicity, image enve-

lope values follow a Rayleigh distribution [78]. Thus, for a Rayleigh distributed speckle
with a 0 dB mean echogenicity, an interval of −12 dB to +6 dB covering 90% of the enve-
lope values can be determined (Section 5.2.2.4). Since the simulated phantoms contain
inclusions of constant mean echogenicities ranging from −50 dB to +30 dB, an interval of
−62 dB to +36 dB (i.e., 98-dB range) guarantees an absolute minimum of 90% envelope
value coverage.
Representations of a simulated dataset sample are shown in Figure 5.5 on a 98-dB

range. One can appreciate the significant difference in artifact levels between LQ, HQ,
and UQ configurations [Figures 5.5(b) to 5.5(d)]. In particular, the image obtained from
the UQ configuration, which exploits a spatially oversampled optimal version of the array,
is indeed free from GL artifacts, while the HQ image still suffers from them (although
significantly reduced compared with LQ). Both HQ and UQ configurations result in
images free from EW artifacts and with SL artifacts substantially reduced compared with
LQ. Due to the spatial dependency of the imaging configuration PSFs (Section 5.4.1), the
spread of these artifacts is also spatially dependent.
The total computing time required to generate a single sample for all imaging configu-

rations, which was mainly governed by the element raw-data simulation, was ∼1500 s
on a single NVIDIA GeForce GTX 1080 Ti GPU. The complete dataset was simulated on
multiple GPUs for about six weeks.
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Figure 5.5. B-mode image representations (98-dB range) of a simulated dataset sample: (a) the phantom mask composed

of elliptical inclusions; images reconstructed using each imaging configuration considered (Table 5.1), namely (b) low-quality

(LQ) configuration, (c) high-quality (HQ) configuration (i.e., gold-standard image for the physical transducer array), and (d)

ultra-high-quality (UQ) configuration (i.e., gold-standard image for the spatially oversampled virtual version of the transducer

array, considered as ground-truth). Some zones dominated by grating lobe (GL), side lobe (SL), and edge wave (EW) artifacts

are highlighted by colorized arrows and associated annotations.

5.5. Training and Hyperparameter Search

5.5.1. Training and Validation Setup

Many training experiments were performed for hyperparameter search (Section 5.5.2). For
each training experiment, kernel weights were initialized using the well-known Glorot
initialization [147], also referred to as Xavier initialization, implemented with a uniform
distribution, and biases were initialized to zero. Model parameters were optimized using
the Adam optimizer [148] with a learning rate of 5 × 10−5, exponential decay rates for
both the 1st and the 2nd moment estimates 𝛽1 = 0.9 and 𝛽2 = 0.999, as well as a numer-
ical stability constant ̂𝜖 = 10−7. Mini-batch learning was deployed with a batch size of
two (due to memory constraints). The training set consisted of 30 000 image pairs (i.e.,
low-quality input and corresponding high-quality reference). The size of the training
set was motived by a dedicated study to prevent training experiments from overfitting
(Section 5.5.2.6). A total of 500 000 iterations were performed (stopping criterion), corre-
sponding to ∼33 epochs. Complete random shuffling of the training set was performed
after each epoch. Neither training regularization (e.g., dropout or weight regularization)
nor data augmentation was used. To fulfill the downsampling restrictions imposed by
the proposed CNN architecture (Figure 5.2), namely four 2 × 2 strided convolutions in
the image domain, input images were zero padded symmetrically to reach the closest
supported image shape (i.e., 608 × 1600), and cropped to their original size after inference.
To monitor and evaluate the performance of each training experiment, we used a

validation set of 500 image pairs (extracted from the simulated dataset). Both the peak
signal-to-noise ratio (PSNR) and the structural similarity (SSIM) index [149] were com-
puted at each validation step (i.e., every 1000 iterations). These metrics were evaluated on
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B-mode representations between −62 dB and +36 dB (confidence interval discussed in
Section 5.4.4), and were averaged over the entire validation set. Even though not optimal,
the B-mode SSIM correlated particularly well with visual assessments for evaluating the
overall quality of recovered images, and was used to select the best performing CNN
instance among the 500 validation steps of each training experiment. For comparison
purposes, a fixed random seed was used for initializing kernel weights, identical training
set shufflings were performed, and the same validation set was used for each training
experiment.
The implementation was carried out using TensorFlow4 (v1.14), and the trainings were

performed on NVIDIA Tesla V100 GPUs.

5.5.2. Hyperparameter Search

Hundreds of training experiments were carried out heuristically to select the hyperpa-
rameters involved in the proposed approach. The selected training experiments presented
in this section are the ones that guided the selection of the trained CNNs evaluated in
Section 5.6. Each experiment was conducted using the global setup parameters as well as
the training and validation strategy described in Section 5.5.1.

5.5.2.1. Image Representations

Ultrasound images can be expressed, analyzed, and displayed in different representations,
namely RF, IQ, envelope, and B-mode (log-compressed envelope). We thus compared the
impact of training on these different image representations using the proposed residual
CNN (Figure 5.2) deployedwith 16 initial expansion channels, RCBs, and additive intrinsic
skip connections. All instances were trained using the MSLAE as loss function and UQ
images as references, except when trained on B-mode representations in which case the
MAE was used, as this image representation is already log-compressed.
Even though it may seem intuitive to train on image representations that we actually

look at (i.e., B-mode), it is clear (Figure 5.6) that trainings performed on both envelope
and B-mode representations are worse than those performed on RF and IQ ones. This
presumably comes from the fact that both envelope and B-mode representations do not
contain the RF property of US images anymore (due to the envelope detection process), a
property carrying additional information that can be exploited by the learning process.
The images fromCNNs trained on B-mode and envelope representations are characterized
by blurred speckle patterns [Figures 5.7(e) and 5.7(f)].
Trainings performed on RF and IQ representations resulted in similar performances.

This was expected as RF and IQ images contain the same information. Hence, both are
valid choices. Yet, training (and inference) on IQ representations is more demanding
than on RF ones as IQ images are composed of “two channels” (i.e., real and imaginary
parts), but this only affects the first and last CLs. (i.e., initial channel expansion and final

4https://www.tensorflow.org
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channel contraction, Figure 5.2). On the other hand, the use of IQ images simplifies the
following envelope detection step compared with RF ones, namely a simple element-wise
modulus compared with a Hilbert transform (followed by an element-wise modulus).
This is the reason why IQ was preferred.
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Figure 5.6. Validation metric curves (SSIM evaluated on B-mode representations) of training exper-

iments performed using different image representations (i.e., RF, IQ, envelope, and B-mode) and

different reference images (i.e., HQ and UQ). All training experiments were performed on identical

instances of the proposed residual CNN (Figure 5.2) with 16 initial expansion channels, RCBs, and

additive intrinsic skip connections.

5.5.2.2. Reference Image Configurations

In our preliminary work [137], we observed that training on reference images in which
GL artifacts were still present (i.e., HQ) resulted in predicted images with a surprising
reduction of said artifacts. This observation inspired us to develop (and simulate) reference
images free from these artifacts (i.e., UQ). In this experiment, we evaluated the effect of
using UQ images, obtained from the optimal (and virtual) UQ imaging configuration, as
reference images during training, compared to using HQ images, obtained from the HQ
imaging configuration (Section 5.4.1). In both cases, UQ images were used as references
for computing validation metrics. As for Section 5.5.2.1, we used a CNN with 16 initial
expansion channels, RCBs, and additive intrinsic skip connections. Each instance was
trained on IQ representations using the MSLAE as loss function.
Figure 5.6 demonstrates the benefit of training on UQ rather than HQ reference images

in terms of B-mode SSIM. As expected, we observed that imaging artifacts, in particular
those caused byGLs,were better reducedwhen trainingswere performedusingUQ images
as references [Figure 5.7(h)], than when using HQ ones [Figure 5.7(g)]. Details initially
hidden by GL artifacts were also better recovered. Yet, and as observed in our preliminary
work [137], the training on HQ images as references resulted in images with far less GL
artifacts compared with the corresponding HQ images [Figures 5.7(c) and 5.7(g)]. This
effect remains unexplained and could therefore be unpredictable. Nonetheless, training
CNNs on the newly designed UQ reference images resulted in a more consistent GL
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Figure 5.7. B-mode image representations (98-dB range) of a numerical test phantom sample (extracted from the simulated

dataset): (a) the phantom mask; images reconstructed using each imaging configuration considered (Table 5.1), namely (b)

low-quality (LQ), (c) high-quality (HQ) (i.e., gold-standard image for the physical transducer array), and (d) ultra-high-quality (UQ)

(i.e., reference image); images recovered from the LQ input image using the proposed approach with different convolutional

neural networks (CNNs), deployed with 16 initial expansion channels, residual convolutional blocks (RCBs), and additive intrinsic

skip connections, trained on different image representations and image references, namely (e) UQ + B-mode + mean absolute

error (MAE), (f) UQ + envelope + mean signed logarithmic absolute error (MSLAE), (g) HQ + in-phase quadrature (IQ) + MSLAE,

and (h) UQ + IQ + MSLAE.

reduction as UQ reference images did not contain such artifacts. Therefore, we opted for
using UQ images as reference images during training.

5.5.2.3. Training Losses

We compared the effect of using different training losses, namely the MSE, the MAE, and
the proposed MSLAE (implemented with a “threshold” parameter 𝛼 corresponding to
−62 dB). For this comparison, we used a CNN with 16 initial expansion channels, RCBs,
and additive intrinsic skip connections. Trainings were performed on IQ representations
using UQ images as references.
Figure 5.8 clearly shows that, despite being the standard loss in regression problems,

and the loss we used in our preliminary work [137], the MSE is the least effective one to
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address the restoration problem involved in the proposed approach. Indeed, the HDR
property of RF US images makes the use of the MSE suboptimal, as too much emphasis
is put on image samples with large values (i.e., highly echogenic). The use of the MAE as
loss function, which has been increasingly reported in similar regression problems such
as image super-resolution and MRI [150]–[152], performed better than using the MSE.
As expected, the fact that MAE is less sensitive to “outliers” makes it more robust to HDR
contents. A substantial increase in performance with respect to MAE was observed when
using the proposed MSLAE as loss function, confirming its superiority over the other two
losses compared for learning a restoration mapping on HDR RF (or IQ) data.
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Figure 5.8. Validation metric curves (SSIM evaluated on B-mode representations) of training experi-

ments performed using different training losses, namely mean squared error (MSE), mean absolute

error (MAE), and mean signed logarithmic absolute error (MSLAE). All training experiments were

performed on identical instances of the proposed residual CNN (Figure 5.2) with 16 initial expansion

channels, RCBs, and additive intrinsic skip connections.

One can also note that, the more effective the loss, the more stable the training, appear-
ing as smoother validation curves. It was also observed that the use of a more effective
loss resulted in trainings less prone to overfitting, thus less demanding in terms of data
quantity, as it maximized the usage of the available information content. The flattening
of the validation curve observed when using the MSE as loss function is an indication
that overfitting would most probably appear earlier than when using the other losses.
Further analysis and discussions on losses can be found in Sections 5.6 and 5.7.

5.5.2.4. Convolutional Blocks and Skip Connections

These experiments were conducted to evaluate the effects of the proposed CNN architec-
ture improvements (Section 5.3.2). All trainings were performed on IQ representations
using MSLAE as loss function and UQ images as references. All experiments were carried
out on CNN instances with 16 initial expansion channels. Two types of intrinsic skip
connections, namely additive and concatenated as originally proposed in [145], were
compared on CNN instances with traditional FCBs. We also compared the use of the pro-
posed RCBs instead of FCBs on CNN instances with additive intrinsic skip connections,
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as concatenated ones cannot be used with RCBs directly.
The comparison of concatenated and additive intrinsic skip connections implemented

with the jointly compatible FCBs shows (Figure 5.9) that the use of concatenated ones
results in slightly better performances than additive ones. This was somehow expected
as the use of concatenated intrinsic skip connections increases the total number of
trainable parameters (i.e., increased capacity) by approximately 7% in the “decoding”
arm only [Figure 5.2(a)]. As a result it also significantly increases both training and
inference times, due to augmented convolution operations which are the most costly ones.
(Especially the last intrinsic skip connection which results in the most computationally
intense convolutional operation of the CNN architecture.) The comparison of RCBs
and FCBs implemented with additive intrinsic skip connections showed that the use of
RCBs performs best at same CNN capacity with (almost) no effect on the inference time.
It also outperformed the greater-capacity CNN instance with FCBs and concatenated
intrinsic skip connections both in terms of validation metric (B-mode SSIM) and training
stability (smoother validation curve). The use of RCBs together with additive intrinsic
skip connections was therefore selected.
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Figure 5.9. Validation metric curves (SSIM evaluated on B-mode representations) of training ex-

periments performed using different combinations of initial channel expansion numbers (i.e., 8, 16,

and 32), convolutional blocks (i.e., RCBs and FCBs), and intrinsic skip connections (i.e., additive and

concatenated). Each training experiment was performed using the MSLAE as loss function.

5.5.2.5. Initial Channel Expansion Numbers

Since the initial channel expansion number affects the entire architecture, this parameter
has a major impact on the overall CNN capacity, the training time, and the inference time.
Three CNN instances (RCBs, additive intrinsic skip connections) with initial channel
expansion numbers of 8, 16, and 32 were trained on IQ representations using MSLAE as
loss function and UQ images as references. In these settings, the total number of train-
able parameters were 687 704, 2 748 592, and 10 989 920, respectively (i.e., approximately
quadrupled when the initial channel expansion number is doubled).
As US imaging is, in essence, a real-time imaging modality, inference speed tests were

95



5. CNN-BASED IMAGE RECONSTRUCTION METHOD FOR ULTRAFAST ULTRASOUND IMAGING

also performed on these three configurations. To quantify the impact on the inference
time of using IQ images rather than RF images (Section 5.5.2.2), inference speed tests
were also performed on the same configurations but trained on RF images. We com-
puted the averaged inference time, over 5000 runs, on images of size 596 × 1600, with
appropriate zero-padding, for each configuration using both TensorFlow5 (v1.14) and
TensorRT6 (v5.1.5), an inference optimizer. Different GPUmodels were compared, namely
the NVIDIA GeForce MX 150 (laptop, 384 cores, Pascal arch., entry-level), the NVIDIA
GeForce GTX 1080 Ti (desktop, 3584 cores, Pascal arch.), and the NVIDIA TITAN V
(desktop, 5120 cores, Volta arch.).
As expected, the more initial expansion channels the better the validation metric

(Figure 5.9), provided that enough data is available to avoid overfitting. Inference speed
tests (Table 5.2) demonstrated that, depending on code optimization and GPU model,
real-time imaging is feasible using the proposed approach and a 16-channel version.
Since we are using simulations and can theoretically generate a dataset of infinite size
preventing from any overfitting, the architecture optimization really comes down to speed
vs. quality in scenarios where real-time imaging is a necessity. One can also note that the
increase in inference time of using IQ images rather than RF images was of about 5% to
10%, and did not result in loosing real-time capabilities.

TABLE 5.2

Average Inference Time for Different Image Representations

and Initial Channel Expansion Numbers

Image

Repr.

Channel

Number

MX150 1080 Ti TITAN V

TFa TRTb TF TRT TF TRT

RF

8 130ms 83ms 21ms 10ms 18ms 8ms

16 249ms 167ms 36ms 21ms 29ms 14ms

32 ×c ×c 74ms 52ms 52ms 37ms

IQ

8 136ms 86ms 24ms 12ms 21ms 9ms

16 256ms 172ms 39ms 22ms 32ms 15ms

32 ×c ×c 77ms 53ms 54ms 39ms

aTensorFlow bTensorRT cNot enough memory

5.5.2.6. Training Set Sizes

This experiment was performed to evaluate the impact of the training set size, and most
importantly, to guarantee that the selected configuration is not prone to overfitting. We
considered the proposed residual CNN (Figure 5.2) deployed with 16 initial expansion
channels, RCBs, and additive intrinsic skip connections. Each instance was trained on IQ
representations using MSLAE as loss function and UQ images as references. Different
training set sizes (spanning a logarithmic range) were compared, namely 200, 409, 837,

5https://www.tensorflow.org
6https://developer.nvidia.com/tensorrt
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1713, 3504, 7168, 14 664, and 30 000.
From Figure 5.10, it is evident that the training of the analyzed, comparatively small

CNN with only 16 initial expansion channels, suffers from obvious overfitting up to ∼7k
training image pairs. In these settings, it seems like the use of a training set composed of
∼10k image pairs would be sufficient to avoid overfitting. Yet, the training of CNNs with
more capacity, such as with 32 initial expansion channels, necessarily requires larger
training sets. Thus, we chose to use 30 000 image pairs for the reported experiments. One
can also note (magnified inset of Figure 5.10) that the larger the training set, the better
the resulting validation loss, even after “obvious” overfitting cases.
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Figure 5.10. Training and validation loss curves of training experiments performed using different

training set sizes. All training experiments were performed on identical instances of the proposed residual

CNN (Figure 5.2) with 16 initial expansion channels, RCBs, and additive intrinsic skip connections,

using the MSLAE as loss function.

5.5.2.7. Kernel Initializers

We confirmed our choice of using Glorot uniform as kernel initializer by comparing
the performances of differently initialized CNNs instances with 16 initial expansion
channels, RCBs, and additive intrinsic skip connections. As the proposed architecture
is composed of CLs and ReLU activations, we were particularly interested in evaluating
the He initializer proposed in [153] to maintain the variance through such layers and
activations.We compared bothGlorot [147] andHe initializers implementedwith uniform
and normal distributions. All kernels were initialized by the initializers considered, except
for the initial channel expansion layer and the final channel contraction layer which
were always initialized using the Glorot (uniform) initializer, as they are not followed by
a ReLU activation.
Interestingly, both implementations of the Glorot initializer (i.e., uniform and normal)

performed similarly better than both implementations of the He initializer (Figure 5.11).
This may be explained by the many residual connections (i.e., all intrinsic ones and the
outer one) and/or the multi-scale property of the proposed architecture, for which the
benefit of He initializer does not seem to be confirmed.
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Figure 5.11. Validation metric curves (SSIM evaluated on B-mode representations) of training experi-

ments performed using different kernel initializers (i.e., Glorot uniform, Glorot normal, He uniform, and

He normal). Each training experiment was performed on the proposed residual CNN (Figure 5.2) with

16 initial expansion channels, RCBs, and additive intrinsic skip connections, using the MSLAE as loss

function.

5.5.2.8. Learning Rates

We also compared different learning rates of 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, and
1 × 10−3. Identical instances of the proposed residual CNN (Figure 5.2) deployed with 16
initial expansion channels, RCBs, and additive intrinsic skip connections were trained
using the Adam optimizer [148] with each learning rate. Trainings were performed using
the MSLAE as loss function and UQ images as references.
From Figure 5.12, it is clear that a learning rate of 1 × 10−5 is too small and that a

learning rate of 1 × 10−3 is too large. The other three, namely 5 × 10−5, 1 × 10−4, and
5 × 10−4, resulted in fairly similar performances. Even though a learning rate of 5 × 10−5

was the least performing among these three, we decided to select this one as it resulted in
the most stable validation curve and adapted best to all other experiments carried out for
hyperparameter search (in particular when training CNNs with larger capacities).

5.5.3. Summary

All proposed improvements to the neural network architecture (Section 5.3.2) resulted
in increased performances. The use of optimal (virtual) UQ images as reference images
for the training process was successful. It provided better results than using HQ images,
with controlled GL artifacts removal (Section 5.5.2.2). The image representation onto
which the training is performed is crucial. Trainings performed on B-mode and envelope
representations resulted in much worse image restoration capabilities than RF and IQ
ones, as the envelope detection process removes high-frequency content that can be
exploited by the CNN. Even though both IQ and RF trainings performed similarly, as the
information contained in both representations is identical, we opted for the IQ ones as it
allows for a simplified subsequent envelope detection process (Section 5.5.2.1). The loss
choice was observed as the most impactful parameter (Section 5.5.2.3) and was therefore
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Figure 5.12. Validation metric curves (SSIM evaluated on B-mode representations) of training ex-

periments performed using different learning rates (i.e., 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, and

1 × 10−3). Each training experiment was performed on the proposed residual CNN (Figure 5.2) with 16

initial expansion channels, RCBs, and additive intrinsic skip connections, using the MSLAE as loss

function.

further evaluated in an US-specific test environment (Section 5.6.1).

5.6. Experiments and Results

To evaluate thoroughly the performance of the proposed CNN-based image reconstruc-
tion method in realistic settings, we conducted two types of experiments. A dedicated
numerical test phantom (Section 5.6.1) with US-specific metrics was designed and de-
ployed for in-depth evaluation of the proposed method in ideal conditions, namely, on
images obtained using the same simulation settings as the ones used to generate the
training dataset. The robustness to experimental acquisitions was evaluated in both in
vitro and in vivo settings (Section 5.6.2).

5.6.1. Numerical Test Phantom

5.6.1.1. Setup

Standard image-processing metrics such as PSNR and SSIM may be used to compare
different experiments globally (as used for the hyperparameter search, Section 5.5.2), but
they remain suboptimal for assessing US image quality. Traditionally, US image quality
is evaluated using metrics that (ideally) reflect lesion detectability while guaranteeing
that images accurately represent the echogenicity of the underlying tissue. The most
commonly used metrics are the contrast, the CNR, and the imaging system resolution.
Yet, as demonstrated in [80], both contrast and CNR measures, which are often estimated
between image regions with and without signal, can be affected by dynamic range alter-
ations (DRAs), common to most image-dependent adaptive beamformers (e.g., minimum
variance or coherence-based) or resulting from simple non-linear transformations of im-
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age amplitudes (e.g., low-amplitude thresholding). These DRAs may result in improved
contrast or CNRmeasureswithout actually improving image quality or lesion detectability,
and can even potentially conceal information relevant to clinical diagnosis, in the form of
distorted image amplitudes. Inspired by [80], we designed a “challenging” numerical test
phantom for extensive evaluations of images reconstructed from measurements acquired
with the 9L-D transducer. It is composed of tissue-mimicking echogenic zones embedded
in an anechoic background. The test phantom zones are depicted in Figure 5.13(a) and
are described in detail in the following paragraphs, in conjunction with their associated
metrics.
A block with a square section of 20mm × 20mm is centered at (−5mm, 20mm). A

low-echogenic cylindrical inclusion with a diameter of 8.5mm is embedded at its center.
The contrast between the two was set to −36 dB. This value was selected such that the
diffraction artifacts arising from the high-echogenic block and covering the low-echogenic
inclusion are significantly higher (∼8 dB) than the inclusion level, in images obtained
using the LQ configuration. The restoration quality of the low-echogenic inclusion was
assessed by computing the obtained contrast, expressed in decibels as

C = 20 log10(
𝔼[𝒔I]
𝔼[𝒔B]

), (5.31)

where 𝒔B and 𝒔I are the envelope-detected image amplitude values in ΩB and ΩI [Fig-
ure 5.13(a)], respectively, and 𝔼[ ⋅ ] is the expected value, evaluated as the sample mean.
In the case of fully developed speckle zones following a Rayleigh distribution, the contrast
can be equivalently expressed (in decibels) on the image intensity (Section 5.2.2.3). Note
that, by considering an inclusion with a prescribed contrast, reconstruction errors such
as DRAs would most likely result in erroneous contrast estimates.
Another blockwith a rectangular section of 43.93mm×10mm (i.e., spanning the probe

aperture) is positioned at a depth of 50mm, characterized by a lateral log-linear echogenic-
ity ranging from+30 dB to −50 dB (i.e., spanning a range of 80 dBwith a gradient of ∼1.82
dB/mm). The capacity of the proposed method to preserve prescribed linearity (while
removing artifacts) was assessed by averaging the obtained image amplitudes withinΩLG

along the depth axis, and the accuracy was visually assessed by comparing it with the
prescribed one. Again, any potential DRAs would result in (highly) distorted amplitude
gradients (as demonstrated in [80]).
Four ideal bright reflectors (𝑝0, 𝑝1, 𝑝2, and 𝑝3) are arranged at a lateral position of

12.5mm and at different depths, namely at 10mm, 20mm, 30mm, and 40mm. Both
axial and lateral FWHMmeasures were evaluated on the image amplitude using a 2-D
spline-based interpolation and a sub-pixel peak finder within 2𝜆 × 2𝜆 regions centered at
the position of each bright reflector [Figure 5.13(a)].
The level of diffraction artifacts was quantified by averaging the image amplitudes

within different anechoic rectangular regions. These regions were selected on LQ images
[Figure 5.13(b)] to be dominated by significant diffraction artifact levels primarily caused
by GLs (ΩGL), SLs (ΩSL), and EWs (ΩEW).
The speckle was assessed from within a square region (ΩS) of size 10𝜆 × 10𝜆, centered
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at (0mm, 27mm) [Figure 5.13(a)]. First order statistics was assessed by computing the
ratio between the mean and the standard deviation of image amplitudes, often referred
to as SNR, expressed as,

SNR =
𝔼[𝒔S]

√Var(𝒔S)
. (5.32)

In the case of samples following a Rayleigh distribution, this ratio would be equal to
1.91 [142] (Section 5.2.2.1). Second order statisticswas evaluated by computing the FWHM
of the 2-D ACF [78], [79] (Section 5.2.2.2). This metric represents a statistical measure of
the “speckle resolution,” in both axial and lateral dimensions, which is of great importance
to many post-processings (e.g., displacement tracking algorithms).
Global PSNR and SSIMmetrics were also computed on B-mode images between−62 dB

and +36 dB against UQ reference images.
Three hundred statistically independent realizations (i.e., random scatterers) were sim-

ulated for each imaging configuration, identically to the simulated dataset (Sections 5.4.1
to 5.4.3). Images were reconstructed identically, using the same normalization factors (Sec-
tion 5.4.4). An additional normalization factor was evaluated on the average of all UQ
test images such that the reconstructed gradient would fit (on average) the prescribed
one. This factor was applied to all images of each imaging configurations (i.e., also before
inference). No renormalization was applied after inference. All metrics were evaluated
separately for each of the 300 realizations. Both the mean value and standard deviation
were computed for each metric through all independent realizations.
From the extensive hyperparameter search carried out (Section 5.5.2), four trained

CNNs were selected for further evaluations using the numerical test phantom detailed
above. To evaluate the effect of the training loss function, we considered three instances of
the proposed residual CNN, deployed with RCBs, additive intrinsic skip connections, and
16 initial expansion channels (Figure 5.2), trained using MSE (MSE-16), MAE (MAE-16),
and MSLAE (MSLAE-16) as loss functions. A 32-channel instance, trained using MSLAE
as loss function (MSLAE-32), was also selected to evaluate the effect of increasing network
capacity. The proposed MSLAE, defined in (5.23), was implemented with a “threshold”
parameter 𝛼 corresponding to −62 dB. The reasoning for such a value comes from the
confidence interval on the dataset values discussed in Section 5.4.4.

5.6.1.2. Results

Visual assessment of the test phantom images (Figure 5.13) and the metrics obtained
(Table 5.3) confirm that the proposed image reconstruction method significantly im-
proves the image quality compared with LQ using any of the trained CNNs. A global
comparison of CNNs with identical capacities (i.e., MSE-16, MAE-16, and MSLAE-16)
demonstrates the superiority of the proposed HDR-sensitve MSLAE loss. Both MSLAE
trainings achieved higher global quality metrics (i.e., PSNR and SSIM) than HQ, mainly
due to the impressive reduction of GL artifacts. The added capacity of MSLAE-32 resulted
in improved overall performances compared with MSLAE-16.
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Figure 5.13. B-mode image representations (98-dB range) of a numerical test phantom sample: (a) the phantom mask and

annotated zones in which the metrics were evaluated; images reconstructed using each imaging configuration considered

(Table 5.1), namely (b) low-quality (LQ) configuration, (c) high-quality (HQ) configuration (i.e., gold-standard image for the

physical transducer array), and (d) ultra-high-quality (UQ) configuration (i.e., reference image); images recovered from the

low-quality (LQ) input image using the proposed approach with each of the trained convolutional neural networks (CNNs)

considered (Section 5.6.1.1), namely (e) MSE-16, (f) MAE-16, (g) MSLAE-16, and (h) MSLAE-32.

The restoration of the low-echogenic inclusion (prescribed contrast of −36 dB) and the
resulting contrast obtained were improved drastically compared with LQ. Both MSE-16
and MAE-16 suffer from important “dark region artifacts” [154] in the low-echogenic
inclusion [ΩI in Figures 5.13(f) and 5.13(g)], whereas MSLAE-16 and MSLAE-32 are
more robust to them, resulting in a more accurate restoration of the inclusion. This is
confirmed by the contrast obtained which are tending to the reference one (i.e., UQ) for
MSLAE-16 and MSLAE-32 (Table 5.3).
All trained CNNs resulted in diffraction artifact levels drastically reduced compared

with LQ ones. Remaining GL artifacts were far below HQ ones (>18 dB). Artifacts caused
by EWs appeared to be the most complex artifact to deal with [e.g., lower-left corner in
Figures 5.13(e) to 5.13(h)]. It can also be observed that the restoration of the SL artifacts
present in the UQ reference image was handled more accurately with MSLAE-32.
The SNR obtained within the speckle zone ΩS for DAS-based methods (i.e., LQ, HQ,

and UQ) did not reach the theoretical value of 1.91 for fully developed speckle. This was
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TABLE 5.3

Numerical Test Phantom Metrics

Metrica LQ HQ UQ MSE-16 MAE-16 MSLAE-16 MSLAE-32

C (dB)b −28.33 (0.60) −36.06 (0.32) −36.06 (0.32) −39.41 (0.83) −39.49 (1.03) −37.74 (0.70) −37.40 (0.51)

GL (dB) +6.39 (0.45) −10.27 (0.52) −66.62 (0.46) −27.99 (0.32) −45.34 (0.35) −61.56 (0.36) −62.24 (0.32)

SL (dB) −14.48 (1.08) −58.16 (0.55) −68.64 (0.38) −38.89 (0.54) −60.49 (0.53) −67.51 (0.52) −67.91 (0.64)

EW (dB) −13.64 (0.30) −59.61 (0.67) −59.96 (0.70) −31.23 (0.78) −46.74 (3.04) −60.74 (4.05) −55.17 (6.55)

SNR 1.84 (0.09) 1.80 (0.09) 1.80 (0.09) 1.80 (0.09) 1.80 (0.09) 1.79 (0.09) 1.81 (0.09)

ACF lat. (μm) 262.1 (19.5) 219.4 (15.2) 219.6 (15.3) 245.6 (17.5) 246.2 (17.6) 251.1 (18.4) 246.0 (17.4)

ACF ax. (μm) 293.5 (21.5) 302.6 (21.4) 302.7 (21.4) 301.5 (21.6) 302.9 (21.9) 301.9 (21.6) 301.8 (21.6)

F
W
H
M

la
t. 𝑝0 (μm) 276.6 (24.4) 202.1 (1.8) 202.2 (0.0) 226.5 (8.5) 211.5 (6.9) 232.5 (7.9) 207.3 (4.1)

𝑝1 (μm) 336.2 (5.6) 242.5 (0.9) 242.7 (0.0) 255.2 (3.2) 243.1 (2.6) 270.1 (6.3) 240.5 (1.9)

𝑝2 (μm) 388.6 (1.5) 280.0 (0.0) 280.5 (0.0) 286.3 (2.0) 293.7 (1.6) 301.1 (1.6) 271.3 (0.9)

𝑝3 (μm) 446.6 (4.9) 321.9 (0.0) 322.4 (0.0) 345.9 (6.1) 340.5 (4.9) 359.4 (2.2) 322.5 (2.2)

F
W
H
M

a
x
. 𝑝0 (μm) 264.8 (8.3) 266.5 (0.8) 266.6 (0.0) 265.0 (2.9) 256.3 (2.3) 286.2 (5.7) 241.6 (2.4)

𝑝1 (μm) 316.7 (2.5) 314.6 (0.3) 314.6 (0.0) 313.0 (2.4) 310.8 (1.6) 308.5 (3.3) 312.3 (1.5)

𝑝2 (μm) 317.5 (0.9) 318.3 (0.0) 318.3 (0.0) 314.7 (0.6) 311.7 (0.5) 303.5 (1.3) 311.5 (0.6)

𝑝3 (μm) 320.7 (1.6) 324.0 (0.0) 324.0 (0.0) 324.8 (2.2) 328.4 (1.5) 319.3 (1.6) 312.7 (1.1)

PSNR (dB) 8.60 (0.04) 14.23 (0.04) ×c 14.71 (0.05) 21.96 (0.12) 24.18 (0.25) 25.14 (0.32)

SSIM 0.31 (0.00) 0.73 (0.00) ×c 0.39 (0.00) 0.58 (0.00) 0.75 (0.00) 0.78 (0.00)

aMetrics were averaged over 300 independent realizations. The standard deviation is given in parentheses.
bPrescribed contrast of −36 dB.
cPSNR and SSIM metrics were computed against UQ.

expected since ten scatterers per resolution cell were used for numerical simulations (i.e.,
lower bound to obtain fully developed speckle). All trained CNNs improved the SNR
compared with LQ (i.e., closer to the UQ one). The lateral resolution of speckle patterns
(Table 5.3, ACF lat.) was only slightly improved, without reaching the one of HQ and UQ.
On the other hand, the lateral resolution evaluated on bright reflectors was improved
significantly.
The restoration results of log-linear gradient are depicted in Figure 5.14. Almost perfect

restoration was achieved from+30 dB to −30 dB, with a slight but increasing deviation for
lower echogenicity values, by all trained CNNs except for MSE-16, which only preserved
linearity from +30 dB to −15 dB. Note that the LQ response is slightly overestimated
(offset). This effect results from the ideal PW assumption used to derive the backprojection
(DAS) operator (Section 5.4.1). It is easily resolved by all trained CNNs.
Since we generated a simulated test set obtained from 300 statistically independent

realizations (i.e., random scatterers) of the same numerical test phantom (Section 5.6.1.1),
we also analyzed the incoherent average (performed after envelope detection). As inde-
pendent realizations of scatterers with identical statistical properties result in similar
images with uncorrelated speckle patterns, the incoherent averaging of a large amount
of such images provides us with an interesting visualization of stationary structures;
the underlying phantom mask and the image zones suffering from imaging artifacts are
fully revealed. The visual assessment of such a representation (Figure 5.15) leads to the
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Figure 5.14. Mean amplitude responses (averaged along the axial dimension) of the horizontal

gradient zone in the numerical phantom [ΩLG in Figure 5.13(a)], averaged over 300 independent

realizations.

same conclusions, some of which deserve to be re-emphasized. The comparison of the
averaged restoration of the low-echogenic inclusion is of particular interest and shows
again the benefit of using the proposed MSLAE as loss function over the conventional
MSE and MAE losses [Figures 5.15(e) to 5.15(g)]. By comparing the results obtained with
MSLAE-16 and MSLAE-32, one can note that the greater the CNN capacity, the closer
the recovered image to the corresponding UQ reference. This increase in performance is
especially visible on the remaining SL artifacts, which more closely resemble those of
the UQ reference. This visualization makes it very clear that EW artifacts are the most
complex to deal with. It also reveals a remaining EW artifact arising from the deepest
bright reflector and located within the log-linear gradient that was indistinguishable in
the test phantom sample displayed in Figure 5.13.

5.6.2. Experimental Evaluations

5.6.2.1. Setup

Experimental data were acquired using a 9L-D transducer on a Vantage 256 system
using the imaging configurations defined in Section 5.4.1 (Table 5.1), except for the
UQ case (only implementable in a simulation environment). Compounded acquisitions
were performed at maximum pulse repetition frequency (PRF) (∼9.5 kHz) to minimize
the effect of potential inter-acquisition motion. The single-PW insonification (LQ) was
performed first in the ultrafast sequence, directly followed by 192 SA acquisitions (HQ),
performed in an alternated manner from central to outer elements. A peak-to-peak
voltage of 50V was used for the transmit excitation. Time gain compensation (TGC) was
implemented to compensate for a mean tissue attenuation of −0.5 dB/(cm ⋅MHz).
In vitro frames were acquired on the CIRS model 054GS general purpose ultrasound

phantom (CIRS, Norfolk, VA, USA). The transducer was clamped on a stand during
acquisitions and its face was immersed in water for acoustic coupling. A normalization
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Figure 5.15. B-mode image representations (98-dB range) of the incoherent average (performed after envelope detection) of all

images reconstructed from the 300 independent realizations (random scatterers) of the numerical test phantom: (a) the phantom

mask; images reconstructed using each imaging configuration considered (Table 5.1), namely (b) low-quality (LQ) configuration,

(c) high-quality (HQ) configuration (i.e., gold-standard image for the physical transducer array), and (d) ultra-high-quality (UQ)

configuration (i.e., reference image); images recovered from the low-quality (LQ) input image using the proposed approach

with each of the trained convolutional neural networks (CNNs) considered (Section 5.6.1.1), namely (e) MSE-16, (f) MAE-16,

(g) MSLAE-16, and (h) MSLAE-32. Some remaining side lobe (SL) and edge wave (EW) artifacts are highlighted by colorized

arrows and associated annotations.

factor was determined, in the same manner as described in Section 5.4.4, for both LQ
and HQ imaging configurations on fully developed speckle zones of the in vitro phantom.
These normalization factors were applied to all images reconstructed from experimental
acquisitions (including before inference). Quantitative metrics were evaluated on a frame
acquired with the transducer positioned to image three low-echogenic circular inclusions
with a radius of 4mm and centered at a depth of 40mm [Figures 5.16(a) to 5.16(c)],
simultaneously. That is an anechoic inclusion (ΩA) and two low-echogenic inclusions
of −6 dB (ΩB) and −3 dB (ΩC) with respect to their surrounding. For each inclusion, the
contrast was computed against a background zone (ΩD). The speckle was assessed using
first and second order statistics (Section 5.6.1.1) within a square region (ΩS) of 10𝜆 × 10𝜆
centered at (0mm, 27mm).
An in vivo sequence of 60 frames was acquired at a frame rate of 30Hz on the carotid

105



5. CNN-BASED IMAGE RECONSTRUCTION METHOD FOR ULTRAFAST ULTRASOUND IMAGING

of a volunteer. The transducer was positioned on the neck of the volunteer to image a
longitudinal view of the right carotid. Acoustic coupling was achieved by applying a
layer of conventional US coupling gel between the face of the transducer and the skin of
the volunteer. All images within the in vivo sequence were reconstructed identically, in
particular with the normalization factors evaluated on the in vitro phantom.
Experimental acquisitions were evaluated on images obtained with the proposed ap-

proach using the trained MSLAE-16 CNN, and compared with images obtained from
the LQ imaging configuration (also used as inputs to the CNN) and the HQ imaging
configuration (considered as references). We opted for a CNN deployed with 16 initial
expansion channels because of its real-time inference capabilities (Table 5.2).

5.6.2.2. Results

Figure 5.16 depicts the experimental results of an example image for both in vitro (top
row) and in vivo (bottom row) acquisitions. Overall, it can be observed that, despite using
only simulated dataset for training, key effects of the proposed approach translated well
to experimental settings.
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Figure 5.16. B-mode image representations of an in vitro test phantom (top row, 78-dB range) and

an in vivo carotid sample (bottom row, 50-dB range): (a) and (d) single plane wave (PW) low-quality

(LQ) images; (b) and (e) images recovered from LQ using the proposed convolutional neural network

(CNN)-based image reconstruction method with the selected trained CNN (i.e., MSLAE-16); (c) and (f)

reference high-quality (HQ) images reconstructed from the complete set of synthetic aperture (SA)

acquisitions.

The visual assessment of in vitro results shows that both SL and GL artifacts (clearly
visible in the anechoic inclusion) were strongly reduced. (Note that EW artifacts are
harder to identify as they result in patterns that resemble speckle.) This effect was con-
firmed quantitatively by the contrast measured in each inclusion of the in vivo phantom
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(Table 5.4). The contrast in the anechoic inclusion was largely improved compared with
the LQ case. However, the proposed approach seemed to slightly “overshoot” in the other
two inclusions compared with the HQ reference. Speckle patterns were generally well-
preserved. Yet, almost no improvement in the lateral resolution of speckle patterns was
observed and measured (Table 5.4).

TABLE 5.4

Experimental Test Phantom Metrics

Metric LQ HQ MSLAE-16

CA (dB) −19.77 −29.55 −25.93

CB (dB) −6.18 −6.30 −6.71

CC (dB) −2.77 −3.41 −4.04

SNR 1.93 1.91 1.92

ACF lat. (μm) 282.3 220.6 281.0

ACF ax. (μm) 284.2 279.7 291.0

The in vivo experiments cover the full complexity of US imaging, namely highly diverse
scattering processes, a wide range of echogenicities, and all physical effects neglected in
the simulated dataset used for training. Yet, diffraction artifacts were strongly reduced,
especially visible in zones where SL and GL artifacts aggregate [e.g., upper left of Fig-
ure 5.16(d)]. Structures initially shadowed by such artifacts were well restored, up to
some degree of residual artifacts. Image quality improvements were less visible in deeper
regions, partially due to the fact that diffraction artifacts do not seem to be dominant
there. Very fine and low-echogenic details, such as the carotid intima, were not accu-
rately restored. An overall remaining clutter noise was observed, for instance within the
carotid or in the anechoic regions below it (also present in the LQ case). The complete
image sequence from the longitudinal carotid acquisitions is presented in video format
as supplementary material to [33].

5.7. Discussion

5.7.1. Performance in Ideal Conditions

The potential of the proposed CNN-based image reconstruction method for ultrafast US
imaging was demonstrated through the results obtained in numerical experiments, in
which the physical assumptions of the SIR model, defined in (5.1) and used to simulate
the training dataset, were fully satisfied. Indeed, the proposed “two-step” image recon-
struction method, which consists first of computing a low-quality estimate of the image
using a re-weighted backprojection operator (akin to DAS), and then using a CNN trained
to recover a high-quality image from that estimate, includes the learning of a complex
image-to-image mapping, capable of strongly reducing (non-stationary) diffraction arti-
facts, mainly caused by GLs, SLs, and EWs, while preserving speckle patterns that result
from main lobes.
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We demonstrated that the proposed approach is not only capable of strongly reducing
diffraction artifacts, but also to recover accurately zones initially hidden by them, on
a dynamic range exceeding 60 dB (Section 5.6.1.2). This means that the detectability
of lesions potentially hidden by such artifacts would be largely improved. The use of
simulated reference images obtained from an optimal version of the linear transducer
considered (i.e., UQ configuration), together with the HDR-sensitive MSLAE training
loss, enabled us to reconstruct images from single-PW acquisitions with a quality similar
to that of (gold-standard) SA imaging. This represents a more than 100-fold reduction in
acquisition requirements, such as acquisition time, power requirements, or subsequent
data transfer bandwidth requirements.
Artifacts caused by EWs were the most difficult to tackle, most likely due to their close

resemblance to speckle patterns. This issue may be addressed using a CNN with greater
capacity. These EW artifacts could also be reduced significantly by a suitable transmit
apodization [14], [18], at the cost of a lower insonification energy on the sides of the
field of view (probably restorable if accounted for in the training set), and an increased
transmitter complexity. Due to the complexity of the task, the lateral resolution of speckle
patterns was only slightly improved compared with LQ. This improvement was more
pronounced for MSLAE-32 than MSLAE-16, suggesting that using a CNN with greater
capacity could improve further the tightening of speckle patterns.
It should be noted that many elements composing the numerical test phantom, were

not present in the training dataset. As they were formed by random ellipses of constant
mean echogenicity filling out the entire image domain, no rectilinear boundaries, isolated
bright reflectors, anechoic zones, or echogenicity gradients were explicitly present in
training samples. The resulting trained CNNs adapted very well to these features, which
is a strong sign of robustness, suggesting that the complex restoration mapping involved
in the proposed method can be learned accurately. In particular, the robustness observed
on bright reflectors strongly suggests that the learned mapping is not limited to fully
developed speckle zones that composed the simulated-image dataset.
It was also observed that when using a CNN with increased capacity (i.e., MSLAE-16

vs. MSLAE-32), not only the metrics were improved, but also the restoration of remaining
diffraction artifacts present in the UQ reference images (i.e., SLs). This confirms that the
learning of the restoration mapping (from LQ to UQ images) involved in the proposed
image reconstruction is effective, andmay be achieved exactly with a CNN of even greater
capacity than MSLAE-32, provided that a sufficiently large training dataset is available to
avoid overfitting.

5.7.2. Performance in Experimental Conditions

In vitro experiments showed that images were improved significantly over conventional
single PW (LQ) images. A reduction of diffraction artifacts was also observed on in
vivo acquisitions, in particular at shallow depths. Yet, performance drops were observed
compared with numerical evaluations performed in ideal conditions. Such performance
drops were expected because CNNs were trained exclusively on simulated data. They are
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likely to be caused by all physical phenomena not considered in the simulated training
set, for which we relied on the SIR model defined in (5.1). These discrepancies come from
several factors discussed hereafter.
A first set of potential differences come from the transducer array itself. Indeed, not

all parameters were known or possible to be measure accurately. In particular, the elec-
tromechanical impulse response and exact geometry of each piezoelectric forming the
transducer array could only be approximated. These parameters have an influence on the
resulting (spatially dependent) PSF of the imaging system, namely the main lobe and all
diffraction artifacts.
Another important set of differences come from the physical assumptions inherent to

the SIR model considered for both simulating the dataset and deriving the backprojection
operator (Sections 5.2.1 and 5.3.1). The SIR model only accounts for diffusive scattering
in the medium, hence neither specular nor diffractive scattering regimes were taken into
account [146, Sec. 8.2]. Such scattering regimes result in image statistics deviating from
purely diffusive (Rayleigh) ones [78], [155] and may therefore disrupt trained models
not accounting for such statistical features. Speed of sound is also assumed constant
throughout the medium in the SIR model, hence deviations in mean speed of sound
and/or local fluctuations may alter speckle patterns (i.e., image statistics). Dispersive
attenuation was compensated using a standard TGC, which only corrects for a constant
and frequency-independent attenuation throughout the medium. This may represent
a limitation, especially at great depths, because the frequency-dependent attenuation
continuously distorts the acoustic pulse as it travels through the medium. Thermal noise
and quantization noise also have an increased impact with depth, as the backscattered
signal amplitude decreases (mainly due to attenuation). While less likely to have a signifi-
cant impact in the imaging schemes considered, thanks to the low mechanical index of
unfocused transmit wavefronts, non-linear effects could also result in discrepancies.
Even though 3-D simulations were performed, only extruded 2-D phantoms were

considered on a layer of 3.23𝜆, namely approximately one-sixth of the transducer height.
This choice was made for computational reasons, but this means that potential out-of-
plane artifacts were not exactly accounted for in the training set. It should be noted that
such artifacts would also have impacted reference images.

5.7.3. Potential Improvements

As the training dataset is crucial to the learning of the complex restoration mapping
involved in the proposed image reconstruction method, it is also a great opportunity for
improvements. Indeed, as observed when analyzing the performance in ideal conditions
(Section 5.7.1), the deployed CNN architecture trained using the proposed MSLAE as
loss function is even capable of partially restoring remaining artifacts of UQ reference
images (i.e., SLs). One may thus consider using reference images with a quality even
higher than UQ in the training phase, for instance obtained with ideal PSFs without
SLs. As the main reason for performance drops in experimental conditions seems to be
related to the physical phenomena neglected for simulating the training dataset, the use
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of more sophisticated simulations and/or experimental training datasets could lead to
improved results in experimental conditions. The use of an experimental dataset is of
particular interest as its acquisition would be faster than its simulation and all physical
phenomenawould be taken into account. However, undesirable physical phenomena such
as frequency-dependent attenuation would also impact reference images. Moreover, the
acquisition of such a dataset, free of motion artifacts and with a high diversity of images,
remains a challenging task. The use of a more sophisticated simulated dataset remains
extremely appealing as one could generate (low-quality) input images suffering not
only from diffraction artifacts, but also from other physical phenomena (e.g., frequency-
dependent attenuation), while generating (high-quality) reference images free of these.
As detailed in Sections 5.2.1 and 5.3.1, the proposed CNN-based image reconstruction

method relies on a backprojection operator. This operator, defined in (5.3), is a DAS
algorithm with weighting (apodization) functions that result from the (far-field) physical
assumptions made to obtain a computationally tractable measurement model. While
deviating from the theoretical derivations, the proposed method could also be imple-
mented with common apodization functions (e.g., a Hamming window), conventionally
designed to reduce diffraction artifacts at the cost of a lower lateral image resolution (i.e.,
broader main lobe). One should keep in mind that the trained CNNs were more efficient
at reducing diffraction artifacts than improving the lateral resolution of speckle patterns.
Also, note that the backprojection-based DAS operator results in a PSF with a tighter
main lobe and higher diffraction artifacts than more “restrictive” apodization functions
commonly used.
The fact that the restoration mapping is learned (using a CNN) on a specific imaging

configuration (i.e., array geometry, impulse response, transmit wavefront, etc.) theoreti-
cally limits its use to said configuration. While this limits the approach, it maximizes its
potential as the entire CNN capacity is used to learn an already complex non-stationary
restoration problem. Not to mention that it is pretty common in US imaging systems
to have finely tuned image reconstruction settings for each imaging configuration. It
would thus be reasonable to consider dedicated pre-trained models for different imaging
configurations. More elaborate datasets, accounting for variations in some imaging con-
figuration parameters, could also be considered. This would probably result in improved
generalization at the cost of degraded specialized performance.
It can also be mentioned that the proposed method does not contain an explicit data

fidelity feedback mechanism, as opposed to convex optimization techniques. Data fidelity
is “only” inferred implicitly by the overall training strategy (supervised learning). Subtle
combinations of optimization algorithms and learned projections, such as proposed
in [32], could be considered, at the risk of losing real-time imaging capabilities, which, in
some cases, would not be detrimental.
Among all hyperparameter searches carried out (Section 5.5.2) the use of the proposed

HDR-sensitive and RF-compatible MSLAE as loss function provided the largest increase
in performance. Other architectural and/or optimization parameters could of course be
optimized. An in-depth study of the activation function would be of particular interest
in the context of RF signals. Indeed, due to its asymmetric (positive) nature, ReLU

110



5.8. CONCLUSION

does not strike as the most adapted activation function for bi-polar (RF) signals. Yet,
preliminary studies conducted on this aspect using anti-rectifier-like activations did not
yield satisfactory results so far.

5.7.4. Application Perspectives

The proposed approach may provide a viable solution to ultrafast US imaging modes in
challenging environments, such as shear-wave elastography or high-velocity flow mea-
surements (e.g., echocardiography), where only few acquisitions are possible to track the
underlying (fast-evolving) physical phenomena accurately, and where artifacts (including
diffraction ones) can severely degrade the accuracy of these imaging modes [6]. It should
be noted that such modes heavily rely on the time-coherence between consecutive frames,
and that current static image metrics used throughout this work cannot guarantee such
a coherence. From the visual assessment of the in vivo carotid sequences, provided in
video format as supplementary material to [33], the proposed approach also seems to pre-
serve the time-coherence of moving structures (smooth movement of speckle patterns).
A preliminary study on the time coherence between consecutive frames reconstructed
using a CNN-based approach was carried out recently with positive outcomes [156]. This
essential aspect is the subject of Chapter 6.
Portable systems could also benefit from the proposed approach to reduce the number of

transmit-receive events required per frame, enabling, for instance, to reach more efficient
power-down states of some electronic components [157]. Not to mention the potential
simplifications in the transmitter as beamforming can be avoided when transmitting
an unfocused wavefront, for which neither delay nor apodization are required. Sparse-
array imaging is another area of research that could benefit from this approach, as it is
even more prone to diffraction artifacts. Indeed, sub-sampling the transducer aperture
inevitably entails substantial increases in GL, SL, and EW artifacts. An application to
ultrafast imaging with sparse linear arrays is presented in Chapter 7.
It is also interesting to note that the use of a backprojection-based operation (akin to

DAS in its computational complexity) followed by an inference is readily compatible with
real-time imaging; and this using consumer-level GPUs (Table 5.2). This preserves one of
the main advantage of US imaging compared with other medical imaging modalities.

5.8. Conclusion

We proposed a CNN-based image reconstruction method for high-quality ultrafast US
imaging. A low-quality estimate is obtained by means of a backprojection operation, akin
to conventionalDAS beamforming, fromwhich a high-quality image is then restored using
a CNN trained specifically to remove diffraction artifacts, inherent to ultrafast US imaging.
Trainings were performed on a simulated dataset using a loss function designed to account
for both the HDR and the RF property of US images. Through extensive numerical
experiments, we demonstrated that the proposed method can effectively reconstruct
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images from single-PW insonifications with a quality comparable to that of gold-standard
SA imaging. This represents a more than 100-fold reduction in acquisition requirements,
which could unlock ultrafast image modalities where only a single insonification is
possible, but also to reduce power requirements for portable systems. In vitro and in vivo
experiments confirmed that trainings performed on simulated images translated well to
experimental settings. Yet, trainings could also be performed on a more precise dataset,
such as one using more accurate simulations or acquired experimentally. This could
enable the CNN to learn an even more complex restoration mapping to remove other
type of artifacts, currently neglected by the simulated dataset crafted for this work. The
proposed method is readily compatible with real-time imaging, and could also benefit to
other acquisition and imaging systems relying on antenna arrays.
As alreadymentioned, ultrafastUS imagingmodes heavily rely on the coherent displace-

ment of speckle patterns between consecutive frames. Because the proposed CNN-based
image reconstruction method was evaluated on static images only, and despite extensive
evaluation of speckle patterns, it is thus not guaranteed that our method can be applied
to ultrafast US imaging modes. As such, we also investigated an approach to ultrafast dis-
placement estimation that exploits consecutive frames reconstructed by our CNN-based
imaging approach. This will be the topic of the following chapter (Chapter 6).
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6. CNN-Based Ultrasound Image

Reconstruction for Ultrafast Displacement

Tracking

The material presented in this chapter is the result of joint work with M. Vonlanthen, F. Martinez,

M. Arditi, and J.-Ph. Thiran. This material is also presented in [34].

6.1. Introduction

As discussed in Section 1.1, the ability of ultrafast US to image large tissue regions at
frame rates of multiple kilohertz unlocked several breakthrough US imaging modes such
as shear-wave elastography [5], high-frame-rate vector flow imaging [14], ultrasensitive
flow imaging [13], and functional US neuroimaging [15]. All of these imaging modes rely
on displacement estimation between consecutive frames acquired at ultrafast rates. The
accuracy achievable with such displacement estimation techniques is strongly contingent
upon two contradictory requirements: a high quality of consecutive frames and a high
frame rate. Indeed, the image quality of consecutive frames can usually be improved by
increasing the number of steered ultrafast acquisitions, but at the expense of a reduced
frame rate and possible motion artifacts. Consequently, there exists a great need for a
robust displacement estimation technique that does not rely on multiple acquisitions
to reconstruct consecutive frames. This is of particular interest when analyzing rapidly
evolving physical phenomena, such as the propagation of naturally occurring or externally
induced shear waves [5]–[9], in highly heterogeneous tissue prone to strong diffraction
artifacts.
In Chapter 5, we introduced a method for reconstructing high-quality US images

from single unfocused acquisitions. It consists of a backprojection-based DAS operation
followed by the application of a CNN, specifically trained to reduce the diffraction arti-
facts inherent to the deployed ultrafast US imaging setup. Strong artifact reduction was
demonstrated in simulated, in vitro, and in vivo environments. The CNN-based image
reconstruction method works strictly on a frame-by-frame basis and relies on the spa-
tial information of each image only. Hence, it is completely agnostic to displacements
that may occur between consecutive frames, making it a perfect fit for combination
with state-of-the-art image-based displacement estimation techniques. In a preliminary
work [156] we showed that a CNN-based image reconstruction method may preserve the
time-coherence of speckle patterns between consecutive frames, which is essential to any
image-based displacement estimation technique.
In this work, we propose an approach for estimating 2-D inter-frame displacements

113



6. CNN-BASED ULTRASOUND IMAGE RECONSTRUCTION FOR ULTRAFAST DISPLACEMENT

TRACKING

at maximum frame rates, by combining our CNN-based image reconstruction method
(Chapter 5) with a state-of-the-art 2-D speckle tracking algorithm. Although estimating
the axial displacement (only) remains the standard in US imaging, 2-D displacement esti-
mation is increasingly gaining attention in both flow and tissue motion applications [12],
[158], [159], as it enables the analysis of more complex motion patterns. In elastography,
2-D displacement maps may be of interest to increase the quality and robustness of the
estimated elasticity maps [65]. Also, 2-D speckle tracking represents an optimal fit for
high-frame-rate displacement estimation since, unlike vector Doppler techniques, it does
not rely onmulti-angle acquisitions.Moreover, displacement estimation can be performed
accurately from two consecutive frames only, whereas Doppler-based techniques usually
require multiple consecutive frames to estimate the phase accurately.
Since our aim is to tackle displacement estimation at maximum frame rates, the pro-

posed approach relies only on single unfocused acquisitions to reconstruct consecutive
frames and on two consecutive frames only to obtain 2-D displacement estimates. The
primary goal of this work is to assess whether the diffraction artifact reduction and speckle
restoration capabilities of our CNN-based image reconstruction method (Chapter 5) can
enable accurate estimation of displacements in zones initially shadowed by GL, SL, and
EW artifacts. This work was conducted in the context of PW imaging with a linear trans-
ducer array (Section 6.2). The accuracy of the proposed approach was evaluated both in
numerical and in in vivo experiments, and was compared with a state-of-the-art coherent
plane wave compounding (CPWC)-based displacement estimation approach (Section 6.3).
The results obtained demonstrate that the proposed approach is capable of estimating
displacements in zones initially shadowed by SL and GL artifacts accurately. However,
only slight improvements were observed in zones initially shadowed by EW artifacts,
which still prevent accurate displacement estimates. In-depth results, implications, and
limitations of the experiments carried out are analyzed and discussed in Sections 6.3
and 6.4, respectively. Concluding remarks are given in Section 6.5.

6.2. Materials and Methods

6.2.1. Imaging Configurations

We considered an US acquisition system composed of a 9L-D transducer (GE Healthcare,
Chicago, Illinois, USA) and a Vantage 256 system (Verasonics, Kirkland, WA, USA), iden-
tical to the one considered in Section 5.4.1. Relevant imaging configuration parameters
are summarized in Table 6.1. The 9L-D is a 192-element linear transducer array with
a center frequency of 5.3MHz and a bandwidth of 75% (at −6 dB), and is commonly
used for vascular imaging. All pulse-echo acquisitions were carried out by transmitting a
single-cycle tri-state waveform of 67% duty cycle centered at 5.208MHz, with leading
and trailing equalization pulses of quarter-cycle durations and opposite polarities. The
received echo signals were sampled at 20.833MHz, guaranteeing a Nyquist sampling rate
up to a bandwidth of 200%. To reconstruct images up to a depth of 60mm, we considered
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a maximum PRF of 9 kHz.

TABLE 6.1

Specifications of the Imaging Configurations Considered

Parameter Value

Center frequency 5.3MHz

Bandwidth 75%

Aperture 43.93mm

Element number 192

Pitch 230μm

Element widtha 207μm

Element height 6mm

Elevation focus 28mm

Transmit frequency 5.208MHz

Excitation cyclesb 1

Sampling frequency 20.833MHz

aGuessed (no official data available).
bSingle excitation cycle with equalization pulses.

All image reconstruction methods considered in this study rely on PW acquisitions
performed without transmit apodization. Single PW acquisitions with normal incidence
were used for the proposed CNN-based image reconstruction method (Section 6.2.2), and
steered PW acquisitions were used for CPWC-based comparison methods (Section 6.2.3).
For each transmit-receive event, echo signals were recorded on all transducer elements
(i.e., full aperture). A typical speed of sound in soft tissue of 1540m/s was assumed,
resulting in an element spacing (i.e., pitch) of ∼0.78𝜆 at the transmit frequency. As a
result, images reconstructed with this transducer in the context of ultrafast imaging by
conventionalDAS algorithmswill inevitably be contaminated byGL artifacts. As discussed
in [18], most linear transducer arrays available commercially were optimized for line-by-
line scanning, and are thus suboptimal when used in the context of ultrafast imaging.
Nonetheless, these transducer arrays remain commonly used in ultrafast imaging [1], [6],
[18], thanks to their wide aperture and resulting high lateral resolution.

6.2.2. CNN-Based Image Reconstruction Method

To obtain high-quality images from single unfocused acquisitions, we relied on our CNN-
based image reconstruction method presented in Chapter 5, and briefly summarized
hereafter.
The method consists of first reconstructing a (vectorized) low-quality estimate 𝒙̃ ∈ ℝ𝑛

from the (vectorized) transducer elements measurements 𝒚 ∈ ℝ𝑚, obtained from a single
unfocused insonification, by means of a backprojection-based DAS operator 𝑫∶ ℝ𝑚 →
ℝ𝑛 as 𝒙̃ = 𝑫𝒚. The operator 𝑫 is composed of the adjoint of a linear measurement
model (backprojection) and a pixel-wise reweighing operator (image equalization). The
measurement model is based on linear acoustics and is derived from the SIR model [27],
assuming far-field approximation both for the transmitter (e.g., ideal wavefront) and
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the receiver (e.g., narrow transducer element), an ideal Dirac pulse-echo waveform, and
neglecting tissue attenuation. Before summation, measurement values were interpolated
using a B-spline approximation of degree three [68]. Analytic (complex) images, also
called IQ images, were reconstructed on a 𝜆/4×𝜆/8 (Cartesian) grid, with awidth spanning
the 9L-D aperture (Table 6.1) and a depth from 1mm to 60mm. The image grid resolution
was chosen to guaranteeNyquist sampling of RF content of US images in both dimensions,
resulting in images of 596 × 1600 pixels. The process was implemented with PyUS,1 a
GPU-accelerated Python package for US imaging developed in our laboratory.
In a second step, the low-quality estimate 𝒙̃ is fed to a CNN 𝒇𝜽∶ ℝ𝑛 → ℝ𝑛, with

parameters 𝜽, trained to recover a high-quality estimate as 𝒙̂ = 𝒇𝜽(𝒙̃), with strongly
reduced diffraction artifacts and well-preserved speckle patterns. The CNN architecture
is based on the popular U-Net [145] and on [31], with several improvements such as
the use of RCBs and additive intrinsic skip connections (Section 5.3.2). It is a residual
CNN with multi-scale and multi-channel filtering properties, composed of 2-D CLs
and ReLUs arranged in symmetric downsampling and upsampling paths. As real-time
displacement estimation was not a primary goal of this work, we used the best-performing
CNN architecture analyzed in Section 5.6, with 32 initial expansion channels. The CNN
was trained precisely as detailed in Section 5.5.1, namely in a supervised manner using
a dataset composed of 30 000 simulated image pairs (i.e., input and ground-truth). The
well-known Adam optimizer [148] was used to minimize the MSLAE loss, introduced in
Section 5.3.3 to account for both the HDR and the RF property of US images. A total of
500 000 iterations were performed with a batch size of two and a learning rate of 5 × 10−5.
The same training dataset of simulated images was used. It is composed of low-quality
input images reconstructed from single PW acquisitions with normal incidence. High-
quality reference images were reconstructed from the complete set of SA acquisitions
using a spatially oversampled version of the transducer array to ensure the absence of
GL artifacts (only possible in a simulation environment). To reconstruct both input and
reference images, element raw-data were simulated using an in-house 3-D SIR simulator,
validated against the well-known Field II simulator [87]. Each numerical phantom was
composed of random scatterers with a density that ensured fully developed speckle
patterns throughout the resulting images. The simulated images composing the training
dataset are characterized by overlapping ellipsoidal zones of random size, position, and
orientation, with mean echogenicities spanning an 80-dB range.

6.2.3. Comparative Image Reconstruction Methods

For the CPWC-based comparisonmethods, acquisitions to reconstruct consecutive frames
consisted of sequential transmit-receive events of 𝑁𝑎 differently steered PWs, fired at
maximum PRF. The PW steering angle spacing was evaluated as [6], [17]

Δ𝛽 = arcsin(𝜆𝐿) ≈ 0.38°, (6.1)

1https://gitlab.com/pyus/pyus

116

https://gitlab.com/pyus/pyus


6.2. MATERIALS AND METHODS

where 𝜆 is the wavelength of the transmit excitation and 𝐿 is the transducer aperture. We
restricted ourselves to odd acquisition numbers, thus the linearly increasing sequence of
steering angles can be expressed as

𝛽𝑛 = 𝑛Δ𝛽, 𝑛 = −𝑀,−𝑀 + 1, … , 0, … ,𝑀 − 1,𝑀, (6.2)

where 𝑀 = (𝑁𝑎 − 1)/2. We deployed an alternate steering angle sequence (−𝛽𝑀, 𝛽𝑀,
−𝛽𝑀−1, 𝛽𝑀−1, … , −𝛽1, 𝛽1, 0), as proposed in [17].
In particular, we considered single-PW acquisitions with normal incidence, used both

with the proposed CNN-based image reconstruction method and with DAS beamforming,
as well as sequences of 3, 9, 15, and 87 steered PW acquisitions used with DAS beamform-
ing. ComparisonDAS-basedmethods are denotedCPWC-1, CPWC-3, CPWC-9, CPWC-15,
and CPWC-87. The parameters for each imaging acquisition sequence considered are
summarized in Table 6.2; the corresponding maximum achievable frame rates, given the
deployed PRF of 9 kHz, are also provided. A sketch of the imaging acquisition schemes is
depicted in Figure 6.1.
The CPWC-87 was used for reference purposes only and exclusively in settings where

motion artifacts were negligible. This reference number of acquisitions was computed
following [6] as

𝑁ref
𝑎 = 𝐿

𝜆𝐹#
≈ 87, (6.3)

with an F-number 𝐹# = 1.75. The other comparison methods, namely CPWC-1 to
CPWC-15, were selected to obtain a range of maximum achievable frame rates, namely
from 9kHz to 0.6 kHz, spanning typical values necessary for analyzing rapid events
occurring in the human body.

TABLE 6.2

Plane Wave Imaging Acquisition Sequences Considered

Method
Sequence Parameters Maximum

𝑁𝑎 Δ𝛽 𝛽𝑀 Type PRF Frame Rate

CNN 1 ×a ×a ×a ×a 9 kHz

CPWC-1 1 ×a ×a ×a ×a 9 kHz

CPWC-3 3 0.38° 0.38° Alternate 9 kHz 3 kHz

CPWC-9 9 0.38° 1.52° Alternate 9 kHz 1 kHz

CPWC-15 15 0.38° 2.66° Alternate 9 kHz 0.6 kHz

CPWC-87 87 0.38° 16.34° Alternate 9 kHz 0.1 kHz

aSingle PW with normal incidence.

Each PW acquisition was reconstructed using the DAS algorithm detailed in Sec-
tion 6.2.2. Coherent compounding of images reconstructed from steered acquisitions was
realized by simple pixel-wise averaging. Note that as CPWC-1 only relies on single-PW
acquisitions, it is not a compounding method. Its designation was adopted to simplify the
naming convention. Also, images obtained from CPWC-1 are identical to input images
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Figure 6.1. Sketch of the acquisition schemes deployed for the different plane wave (PW) imaging

configurations considered. To form a single frame, a sequence of echo-signals from differently steered

PWs is acquired at a pulse repetition frequency (PRF) of 9 kHz. The number of PWs composing each

acquisition sequence depends on the imaging configuration (Table 6.2). The resulting frame rate is

determined by the time interval between consecutive acquisition sequences, and is limited by the

duration of a single acquisition sequence.

of the CNN-based image reconstruction (Section 6.2.2), as the same DAS algorithm was
deployed in both cases.

6.2.4. Speckle Tracking Algorithm

The proposed speckle tracking algorithm is a block-matching algorithm based on normal-
ized cross-correlation. It is heavily inspired by both the speckle trackingmethod described
in [160], which won the challenge on synthetic aperture vector flow imaging (SA-VFI)
organized during the 2018 IEEE International Ultrasonic Symposium (IUS) [161], and
the PIVlab toolbox [162], a popular software for particle image velocimetry (PIV). Speckle
tracking is fundamentally linked to PIV. However, instead of tracking particles to visualize
flows, speckle tracking estimates displacements by tracking speckle patterns arising from
interferences by scatterers separated by sub-resolution distances, assuming that these
patterns are highly correlated between consecutive frames.
To estimate the 2-D displacement field between two consecutive frames 𝑺1 and 𝑺2,

both frames were identically subdivided into overlapping interrogation windows. The
most probable displacement that occurred between a pair of interrogation windows
was obtained by finding the maximum value (peak) of the (2-D) zero-normalized cross-
correlation (ZNCC). To achieve sub-pixel precision, we applied a 2-D Gaussian regression
around the ZNCC peak, as proposed in [163]. In order to analyze complex displacements,
including shear and rotation, this process was deployed in a coarse-to-fine multi-pass
algorithm [162]. Between each pass, 𝑺2 was deformed (B-spline interpolation) using the
estimated displacements to resemble 𝑺1more closely. For the next pass, the displacements
between 𝑺1 and the deformed 𝑺2 were estimated in a similar way. The remaining displace-
ment estimates of each pass were accumulated, resulting in more accurate estimates after
a few passes. After each pass, statistical outliers of the estimates were smoothed using
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the unsupervised smoothing algorithm described in [164].
Speckle tracking was performed on envelope images, obtained by computing the (pixel-

wise) modulus of IQ images. Envelope images were downsampled by a factor of two
in the axial dimension, in a uniformly spaced spatial grid of 𝜆/4 × 𝜆/4 (i.e., 596 × 800
pixels).While applying normalized cross-correlation-based speckle tracking directly to RF
signals may lead to a higher precision than using envelope signals [165], especially when
analyzing very small displacements close to the Cramér-Rao lower bound [166], it is also
muchmore prone to faulty displacement estimation because of speckle decorrelation [167,
Sec. 14.2.1]. Speckle decorrelation increases when analyzing larger displacements, more
complex displacement patterns with strong gradients (e.g., rotation), and tissue deforma-
tion [168], [169]. As our method is designed to be a robust displacement estimator over a
wide range of displacements and flow patterns, envelope images were preferred for the
purpose of speckle tracking. However, it is easily adapted to work with RF images if the
potential increase in precision for small displacements is of interest.
For adapting the speckle tracking parameters to the imaging configurations and dis-

placement ranges considered, we cross-validated a wide range of different interrogation
window sizes, number of passes, and window overlaps using a dedicated numerical test
phantom, namely a rotating cylinder centered at the elevation focus of the transducer,
similar to the ones deployed in the numerical experiment (Section 6.3.1). Two differ-
ent angular velocities were considered, resulting in the same inter-frame displacements
considered in this work. Consecutive frames were generated by simulating high-quality
images using CPWC-87 without rotating the cylinder between successive steered PW
acquisitions (only achievable in a simulation environment). This strategy of “pausing”
motion during a complete compounded acquisition sequence was exclusively deployed
for the purpose of finding optimal speckle tracking parameters, to avoid being biased
by potential motion artifacts. Inter-acquisition motion was considered in the following
numerical experiment (Section 6.3.1).
Interestingly, the speckle tracking parameters yielding best overall displacement esti-

mates in our settingswere identical to the ones deployed in [160]. Thus, for all experiments
conducted in this work, irrespectively of the displacement range and frame rate under
consideration, we deployed the proposed speckle algorithm with four passes, square
interrogation windows of 4mm, 2.5mm, 2mm, and 1.5mm, and a window overlap of
65%.

6.2.5. Metrics

To evaluate the accuracy of displacement estimates throughout the experiments, we relied
on the relative endpoint error (REPE), a normalized version of the well-known endpoint
error (EPE), commonly used in flow estimation techniques [170], [171]. Considering a
displacement estimate vector 𝒖̂ ∈ ℝ2 and its true counterpart 𝒖 ∈ ℝ2, the REPE can be
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expressed as

REPE =
‖𝒖 − 𝒖̂‖2
‖𝒖‖2

, (6.4)

where ‖ ⋅ ‖2 represents the Euclidean norm. The main advantage of REPE over EPE
comes from its relative nature, enabling a more reliable comparison over a wide range of
displacements. On the other hand, REPE becomes unstable as the reference displacement
tends to zero. Such cases should therefore be analyzed with care.
We also relied on the mean relative endpoint error (MREPE) as a global metric to

assess a set of 𝑙 displacement estimates and true counterparts {{𝒖̂1, 𝒖1}, … , {𝒖̂𝑙, 𝒖𝑙}} (e.g.,
extracted from a region of interest), by simply computing the sample mean of all REPE
values over the set.

6.3. Experiments and Results

We conducted two experiments (numerical and in vivo) to assess the performance of the
proposed 2-D displacement estimation approach, which combines our CNN-based image
reconstruction method (Section 6.2.2) to reconstruct consecutive frames from single-PW
acquisitions and the deployed speckle tracking algorithm (Section 6.2.4). In both ex-
periments, we compared the proposed CNN-based displacement estimation method to
CPWC-based tracking, which consists of applying the same speckle tracking algorithm to
consecutive frames reconstructed using conventional CPWC (Section 6.2.3). For CPWC,
a larger number of compounded acquisitions results, if motion artifacts are negligible,
in better image quality and consequently in improved displacement estimation, at the
cost of a reduced achievable frame rate. Thus, by studying different numbers of com-
pounded acquisitions (Table 6.2) we compared the proposed approach to multiple levels
of displacement estimation accuracy.

6.3.1. Numerical Experiment

6.3.1.1. Setup

For the first experiment, we used computer simulations to control the motion pattern,
the relative echogenicities of tissue-mimicking structures, and the diffraction artifact
levels precisely. The goal is to evaluate the quality of displacement tracking that can be
achieved using the proposed method in rapidly moving, highly heterogeneous tissue,
where strong diffraction artifacts hinder proper motion analysis with conventional CPWC-
based tracking. All simulations were conducted using the same SIR simulator used to
generate the training dataset (Section 6.2.2).
We designed a dynamic numerical test phantom composed of scatterers randomly

positioned within four cylinders [A, B, C, and D in Figure 6.2(a)], embedded in an ane-
choic background. Each cylinder has a radius of 6.86mm and a height of 1.0mm, the
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latter corresponding to the resolution cell size in elevation evaluated for the imaging
configuration considered (Section 5.4.3). Within each of the four zones, an average of
ten scatterers per resolution cell was used to ensure fully developed speckle patterns in
the resulting images [146, Sec. 8.4.4]. The cylinders were centered such that cylinder A
spawns distinct and spatially separable diffraction artifacts onto cylinders B, C, and D.
Cylinders B, C, and D were positioned such that they are maximally covered by EW, SL,
and GL artifacts, respectively [Figure 6.2(b)]. The mean amplitudes of scatterers located
within cylinders B, C, and D were chosen to blend in with the amplitude of EW, SL, and
GL artifacts arising from cylinder A [Figure 6.2(b)]. Specifically, the mean amplitudes
in cylinders A, B, C, and D were set to 20 dB, −20 dB, −20 dB, and 0 dB with respect to
an arbitrary 0 dB reference, respectively. Between successive simulated transmit-receive
events (i.e., steered PWs), the scatterers were rotated with a constant counter-clockwise
angular velocity around the center of the cylinder within which they are positioned. The
same angular velocity was used for all cylinders.
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Figure 6.2. B-mode image representations (80-dB range) of a numerical test phantom sample: (a) the 2-D geometry of the

deployed numerical phantoms, composed of four cylinders (A, B, C, and D) filled with dense point-scatterers rotating at constant

angular velocity around their respective cylinder center; (b) image reconstructed by delay-and-sum (DAS) beamforming a single

plane-wave (PW) acquisition (CPWC-1), simultaneously representing the convolutional neural network (CNN) input image for

the proposed method; (c) image reconstructed using CNN-based reconstruction; images reconstructed by coherent plane wave

compounding (CPWC) using nine steered PW acquisitions (CPWC-9): (d) small displacement range and (e) large displacement

range. The frame rate and displacement range for each image reconstruction method considered are given in Table 6.3.

This experiment is designed to evaluate the accuracy of displacement estimates, ob-
tained using the same speckle tracking algorithm on consecutive frames reconstructed
with the different image reconstruction methods considered. For this purpose, displace-
ments were estimated using the proposed CNN-based approach, as well as CPWC-1,
CPWC-3, CPWC-9, and CPWC-15. Each method was deployed at its maximum achiev-
able frame rate (Table 6.2), while always considering the same range of inter-frame
displacements for comparison purposes. Inter-frame displacements ranging from 3.3 μm
to 600 μm (i.e., approximately from 𝜆/10 to 2𝜆) were analyzed, covering a range from
the small displacements that typically occur in shear-wave elastography [6] or acous-
tic radiation force imaging [172], up to the large displacements that typically occur in
external compression-based elastography [172]. It can be noted that these inter-frame
displacement ranges correspond to velocities up to 5.4m/s for the twomethods capable of
achieving a frame rate of 9 kHz in these settings (i.e., CPWC-1 and CNN). Such velocities
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are close to peak velocities inside the cardiovascular system [173].
Two different sets of numerical phantomswere simulated for each image reconstruction

method considered and associated frame rate, covering two inter-frame displacement
ranges, namely 3.3 μm to 60 μm (small displacement range) and 33 μm to 600 μm (large
displacement range). The respective angular velocities were determined such that the
maximum inter-frame displacement occurs at a radius of 6.5mm. The remaining border
of 0.36mm was ignored to avoid speckle tracking border effects in the quality evaluation.
It corresponds to the approximate average resolution cell size in the transducer plane.
A similar zone was ignored in the center of each cylinder. Displacement ranges are
made explicit in Table 6.3 for each image reconstruction method considered, and the
corresponding cross-radial velocity ranges are also provided as additional information.
It can be noted that the large-displacement case involves displacements greater than
half the deployed wavelength. As a result, motion artifacts are expected for CPWC-based
methods [17].

TABLE 6.3

Displacement and Velocity Ranges Considered

for the Numerical Experiment

Method
Frame Large Ranges Small Ranges

Rate D. (μm) V. (cm/s) D. (μm) V. (cm/s)

CNN 9kHz 33–600 29.7–540 3.3–60 2.97–54

CPWC-1 9 kHz 33–600 29.7–540 3.3–60 2.97–54

CPWC-3 3 kHz 33–600 9.9–180 3.3–60 0.99–18

CPWC-9 1 kHz 33–600 3.3–60 3.3–60 0.33–6

CPWC-15 0.6 kHz 33–600 2.0–36 3.3–60 0.20–3.6

For all test configurations considered (i.e., method and displacement range), 50 sta-
tistically independent scatterer realizations were simulated, resulting in 50 inter-frame
displacement estimate maps for each configuration. The accuracy of each method was
measured locally in terms of REPE, by computing (6.4) for each displacement estimate
(grid point) and corresponding true (analytical) value. The average local REPE was also
computed over the 50 independent realizations (in each displacement estimate grid point).

6.3.1.2. Results

Figure 6.3 displays local REPE values, averaged over the 50 independent realizations
performed in each configuration considered. To support the analysis, we also provide
two global metrics computed for each zone, method, and displacement range considered
(Table 6.4), namely the MREPE and the ratio of valid estimates (RVE). For the RVE, a
local REPE value (averaged over the 50 independent realizations) exceeding 100% was
deemed invalid. It is thus directly related to the amount of saturated REPE values depicted
in Figure 6.3, and provides a global metric less sensitive than MREPE to potentially huge-
but-scarce local REPE values.
Zone A was designed such that it did not suffer from diffraction artifacts and could be
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Figure 6.3. Local relative endpoint error (REPE), averaged over 50 independent realizations, of the 2-D displacement estimates

inside each of the numerical phantom zones [A, B, C, and D in Figure 6.2(a)], obtained by applying the deployed 2-D speckle

tracking algorithm (Section 6.2.4) on two consecutive frames for the two inter-frame displacement ranges considered: (a) large

displacement range (from 33μm to 600μm); (b) small displacement range (from 3.3μm to 60μm). Consecutive frames were

reconstructed either by coherent plane wave compounding (CPWC) from 1, 3, 9, and 15 differently steered PWs, or using

the proposed convolutional neural network (CNN)-based image reconstruction method from single PWs. The frame rate and

displacement range for each image reconstruction method considered are given in Table 6.3. The displayed REPE range is

limited to 100%. Local REPE values were interpolated onto a fine grid for display purposes.

TABLE 6.4

Global Evaluation Metrics of the Numerical Experiment

Z
o
n
e

Metric
Large Displacement Range Small Displacement Range

CPWC-1 CPWC-3 CPWC-9 CPWC-15 CNN CPWC-1 CPWC-3 CPWC-9 CPWC-15 CNN

A
RVE (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MREPE (%) 4.45 7.24 12.99 12.84 3.62 7.34 6.91 5.25 4.36 5.81

B
RVE (%) 63.10 69.48 63.10 68.86 74.61 57.76 73.79 99.38 99.69 67.42

MREPE (%) 78.58 61.32 82.72 72.65 48.36 143.91 64.30 26.66 19.37 95.44

C
RVE (%) 85.27 77.80 51.56 65.25 100.00 29.25 81.64 100.00 100.00 100.00

MREPE (%) 67.50 66.30 91.49 71.03 4.98 192.57 54.37 17.64 8.29 9.61

D
RVE (%) 44.59 44.18 34.81 49.43 100.00 22.14 42.02 82.29 99.69 99.59

MREPE (%) 135.18 120.69 123.74 100.19 5.51 504.38 159.15 52.90 17.83 15.67

used to assess displacement estimation in pure speckle zones. In the large-displacement
case [Figure 6.3(a)], CPWC-based tracking suffered from increasing motion artifacts
with the number of compounded acquisitions when tracking identical inter-frame dis-
placements (i.e., at decreasing frame rates), reaching a stable motion artifact level after
nine compounded acquisitions. The proposed method performed best and improved
over CPWC-1 both in terms of local and global metrics. In the small-displacement case
[Figure 6.3(b)], motion artifacts are negligible and all methods performed efficiently. A
typical comparison of CPWCwith and without motion artifacts is shown in Figures 6.2(d)
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and 6.2(e) for CPWC-9.
Zone B was designed to suffer from EW artifacts. The proposedmethod was not capable

of restoring speckle patterns shadowed by EW artifacts accurately, resulting in perfor-
mance metrics only slightly improved compared with CPWC-1. Inaccurate restoration of
speckle patterns plagued by EW artifacts can be observed in Figure 6.2(c) (e.g., clipped
values). These artifacts could only be progressively resolved in the small displacement case
[Figure 6.3(b)] with the increase in compounded acquisitions, because motion artifacts
are negligible in that case.
Zone C was designed to suffer from SL artifacts. In the large-displacement case [Fig-

ure 6.3(a)], the reduction in SL artifacts achieved by compounding several acquisitions
was counteracted by the induced motion artifacts, except in zones of pure lateral move-
ment, making proper tracking impossible using CPWC-based tracking. The proposed
method was capable of properly estimating displacements, with a quality only slightly
worse than in artifact-free zone A. In the small-displacement case [Figure 6.3(b)], CPWC-
based tracking was improved with the increase in compounded acquisitions, thanks to a
more efficient SL reduction than with motion artifacts. The proposed method achieved a
quality slightly worse than CPWC-15 but significantly better than CPWC-9.
Zone D was designed to suffer from GL artifacts, that increase in strength towards the

right edge of the image. In the large-displacement case [Figure 6.3(a)], compounding
multiple acquisitions reduced GL artifacts. Yet, motion artifacts prevented accurate dis-
placement estimation except in zones of pure lateral movement. The proposed method
significantly improved the displacement estimation quality over CPWC-1 and was the
only method to enable tracking displacements in this case. In the small-displacement case
[Figure 6.3(b)], the increase in compounded acquisitions enabled CPWC-based tracking
to reduce the effect of GLs and restore the underlying speckle patterns, progressively re-
sulting in an increased RVE and lower MREPE. The proposed method performed slightly
better than CPWC-15.

6.3.2. In Vivo Experiment

6.3.2.1. Setup

For the second experiment, we applied the proposed approach to in vivo acquisitions, to
analyze the natural tissue motion around the carotid artery. The goal of this experiment
is to evaluate the robustness and translatability of the results obtained in the numerical
experiment to the full complexity of in vivo imaging. As the natural tissue motion induced
by cardiac pulsations in the vicinity of the carotid artery is small compared with the
one considered in the numerical experiment, similar inter-frame displacements could
be studied at a much lower frame rate, enabling the use of CPWC-87 for obtaining high-
quality reference displacement estimates.
We analyzed the slow-moving tissue between the skin and the carotid artery of a healthy

volunteer. In particular, motion within a specific tissue region of size 5mm × 5mm (Fig-
ure 6.4) was analyzed from consecutive frames acquired at a frame rate of 10Hz. This

124



6.3. EXPERIMENTS AND RESULTS

resulted in inter-frame displacements similar to those studied in the numerical experiment
(Table 6.3), namely ranging from 5μm to 125 μm approximately [Figure 6.4(e)]. There-
fore, identical speckle tracking settings were used (Section 6.2.4). Speckle tracking was
performed on full images, but we restricted our analysis to a specific zone characterized
by fully developed speckle patterns, plagued by diffraction artifacts mainly originating
from the highly echogenic carotid walls when imaged using CPWC-1 [Figure 6.4(a)]. The
mean echogenicity of the analyzed speckle zone was approximately 20 dB lower than
the echogenicity of the carotid walls, thus similar to the relative echogenicity between
cylinders A and D studied in the numerical experiment.
We compared displacement estimates obtained using the proposed CNN-based ap-

proach, CPWC-1 (i.e., the CNN input), and CPWC-15 with respect to reference displace-
ment estimates obtained with CPWC-87 (Table 6.2). As compounded acquisition se-
quences were performed at a PRF of 9 kHz, motion artifacts were negligible. More specif-
ically, the maximum mean displacement estimated during a complete compounded
acquisition sequence for CPWC-87 was approximately of 12 μm. This amounts to approx-
imately 𝜆/25 and motion artifacts can therefore be neglected [17]. For each method being
compared, consecutive frames were reconstructed using the relevant subset of steered
PW(s) acquired for the reference CPWC-87 method (Section 6.2.3).
A total of 30 frames were obtained at a frame rate of 10Hz, resulting in 29 inter-

frame displacement estimate maps. For each inter-frame displacement estimate map,
the accuracy of each method was measured locally in terms of REPE, by computing
(6.4) for each displacement estimate (grid point) and corresponding reference value
(CPWC-87). The quality of the displacement estimates for each pair of frameswas assessed
by computing the MREPE obtained within the region of interest.

6.3.2.2. Results

From the example images and corresponding displacement estimates [Figures 6.4(a)
to 6.4(d)], one can observe that CPWC-1 suffered from diffraction artifacts (mainly caused
by GLs and SLs arising from the carotid walls), disturbing both the speckle patterns
and the resulting displacement estimates. These artifacts were strongly reduced using
CPWC-15, leading to speckle patterns similar to the reference ones (CPWC-87), resulting
in accurate displacement estimates. The proposed CNN-based imaging approach also
reduced these artifacts, restoring the underlying speckle patterns accurately. This resulted
in local displacement estimates with a quality similar to that obtained with CPWC-15.
The analysis of the MREPE values over time [Figure 6.4(f)] shows that, while CPWC-1

was generally unable to estimate inter-frame motion properly, the proposed method
resulted in high and stable displacement estimation quality, similar to (though slightly
worse than) CPWC-15. This observationmatches the results of the numerical experiments
on small displacements (Section 6.3.1.2). At 2.2 s, significant deviations in theMREPE val-
ues for all methods compared can be observed [Figure 6.4(f)]. As the estimated reference
tissue displacement at this time instant is very small (∼5 μm) [Figure 6.4(e)], local REPE
values, and as a consequenceMREPE values, can be very sensitive to small absolute errors.
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Figure 6.4. Examples of displacement estimates, mean reference displacement magnitude, and mean relative endpoint error

(MREPE), obtained using the displacement estimation methods considered, in a fully developed speckle zone above the carotid

artery: images of a longitudinal view of the carotid artery, are shown for (a) CPWC-1 (also CNN input), (b) CPWC-15, (c) CNN,

and (d) CPWC-87 (reference); the bottom row shows (e) the mean reference displacement magnitude and (f) the MREPE along

the entire in vivo sequence for each method considered. In each B-mode image of the top row, the square region of interest

is highlighted and the corresponding magnified inset displays the 2-D displacement estimates. B-mode images are displayed

using a dynamic range of 50 dB. The mean value (through time) of each quantity represented by a colorized solid line in (e)

and (f) is represented by a horizontal dashed line of the same color. These mean values were computed ignoring samples at

2.2 s due to the resulting extreme MREPE values. An animation of the figure and the corresponding slideshow are provided as

supplementary material to [34].

Moreover, it is likely that such small displacements are close to the minimum achiev-
able displacement estimation error (Cramér-Rao lower bound), thus over amplifying the
inherent sensitivity of the REPE to very small reference displacements. This behavior
can also be observed in the numerical experiment on small displacements towards the
center of rotation of zones C and D [Figure 6.3(b)]. Therefore, all values estimated at
2.2 s were ignored in the computation of the following global metrics. As global metrics,
we computed the mean value through time (ignoring said time instant) of each esti-
mated quantity [represented as dashed lines in Figures 6.4(e) and 6.4(f)]. The estimated
mean inter-frame displacement is 66.83 μm. The MREPE values are 90.18%, 13.38%, and
20.73% for CPWC-1, CPWC-15, and the proposed CNN-based method, respectively.

6.4. Discussion

In this work, we proposed a 2-D motion estimation approach based on single unfocused
acquisitions to reconstruct consecutive frames and on pairs of consecutive frames to esti-
mate local displacements. This approach relies on our CNN-based image reconstruction

126



6.4. DISCUSSION

method (Chapter 5) to reconstruct full-viewUS frames from single unfocused acquisitions.
It consists of first reconstructing low-quality images using a backprojection-inspired DAS
algorithm and then feeding them to a CNN, specifically trained to reduce diffraction
artifacts inherent to ultrafast US imaging. Inter-frame displacements are estimated by
applying a state-of-the-art 2-D speckle tracking algorithm on consecutive frame pairs
only.

6.4.1. Performance in Numerical Conditions

An important observation is that the proposed approach could not estimate displacements
accurately in zones dominated by EW artifacts (Figure 6.3, zone B). This is directly
related to the fact that the CNN deployed is not capable of restoring the underlying
speckle patterns accurately [Figure 6.2(c)]. Slight improvements were observed compared
with conventional single PW imaging (CPWC-1), but far less striking than in zones
dominated by SL and GL artifacts (Figure 6.3, zones C and D). In Section 5.7.1, we already
observed that EW artifacts were the most difficult artifacts to deal with, but also that the
restoration quality improved with the increase of the CNN capacity. The latter implies
that the reduction of these artifacts might be further improved using a more efficient
CNN architecture or training process.
As expected, we observed in the large-displacement case that compounding multiple

acquisitions in an attempt to improve the obtained image quality induces strong motion
artifacts, mainly due to destructive interferences caused by axial motion. In the presence
of motion artifacts, conventional CPWC-based speckle tracking was generally incapable
of providing valid displacement estimation, in particular in zones plagued by strong
diffraction artifacts. Consequently, compounding multiple acquisitions decreased the
displacement estimation quality compared with single-PW acquisitions (CPWC-1).While
motion compensation techniques have been proposed to tackle this issue [22], it remains
unclear if motion-compensated coherent compounding can be deployed in zones plagued
by diffraction artifacts (as it is based on inter-acquisition motion estimation), and if it
actually improves displacement estimation quality in artifact-free zones compared with
single unfocused acquisitions. We demonstrated that the proposed single PW CNN-based
approach is capable of providing high-quality displacement estimates in artifact-free
zones, as well as in zones plagued by SL and GL artifacts.
In the case of small displacements, increasing the number of compounded acquisi-

tions using CPWC-based tracking progressively increased, as expected, the accuracy of
displacement estimation. The proposed CNN-based approach achieves a displacement es-
timation quality comparable to CPWC-15 in zones suffering from SL and GL artifacts and
comparable to CPWC-9 in artifact-free zones. It can be noted that the relative estimation
precision achieved by the proposed approach was generally worse when analyzing small
inter-frame displacements than in larger displacement cases. This was also observed for
conventional CPWC-based tracking in artifact-free zones [e.g., compare CPWC-1, zone
A in Figures 6.3(a) and 6.3(b)]. This mainly comes from the fact that the minimum esti-
mation error of correlation-based tracking converges to a minimum value (Cramér-Rao
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lower bound), which, relatively speaking, becomes more significant for smaller displace-
ments [172]. For quantifying very small displacements, applying speckle tracking to
RF data instead of envelope data may improve precision [165], [167, Sec. 14.2.1], at the
expense of a reduced robustness to speckle decorrelation.

6.4.2. Performance in Physical Conditions

We demonstrated that the proposed CNN-based approach, which relies on single-PW
acquisitions, significantly improved over conventional single PW imaging (CPWC-1).
It also achieved an accuracy of inter-frame displacement estimation similar to that of
15 compounded acquisitions (CPWC-15), in conditions where motion artifacts were
negligible and thus did not limit the performance of the comparative CPWC-15 method.
Overall, the quantitative evaluations performed in the in vivo experiment are compara-

ble to those of the numerical one. This does not only show that the proposed method can
be applied to in vivo data successfully, even though the CNN used for image reconstruc-
tion was trained on simulated data only, it also suggests that the results of the numerical
experiments are robust and translatable (to some extent) to experimental conditions.
More specifically, as motion artifacts were negligible in the in vivo experiment, the results
obtained are best compared with the ones obtained in the numerical experiment on small
displacements [Figure 6.3(b)]. It can be noted that the artifacts initially shadowing the
zone in which displacement estimates were analyzed seem to be a combination of GL
and SL artifacts spawned by the highly echogenic carotid walls [Figure 6.4(a)]. Thus,
zones C and D of the numerical experiment are of interest for comparison purposes,
as they contain SL and GL artifacts, respectively [Figure 6.2(b)]. While the quantitative
metrics are similar, it is important to note that this presumptive combination of GL and
SL artifacts was not present in the numerical experiment, and that the “signal-to-artifact”
ratio was probably more favorable in the in vivo experiment than in the numerical one.
One can observe that CPWC-15 performed better than the proposed method in the in vivo
experiment [Figure 6.4(f)], whereas both methods performed similarly well in zones C
and D of the numerical experiment on small displacements (Table 6.4). A performance
drop of the proposed approach from numerical to physical conditions was expected since
the deployed CNN was trained on simulated images only. This performance drop was
already observed in Section 5.7.2, in which a detailed discussion on the discrepancies
between the numerical and physical conditions can be found.
It should be noted that the in vivo experiment was intentionally carried out on a

slow moving tissue zone. This enabled us to obtain reference displacement estimates for
quantitative evaluation purposes, and to select a frame rate, identical for all methods
considered, resulting in inter-frame displacements within ranges of interest. However, as
speckle tracking is agnostic to the underlying frame rate, the results are fully translatable
to fast motion cases with similar inter-frame displacement ranges, provided that the
required frame rate is achievable by the method deployed.
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6.4.3. Potential, Perspectives, and Limitations

The proposed approach is overall able to provide high-quality estimates for a wide range
of 2-D inter-frame displacements, even in tissue regions dominated by SL and GL artifacts.
As it only relies on single unfocused acquisitions to reconstruct consecutive frames, it
is immune to motion artifacts. Moreover, it is limited only by the propagation time of
acoustic waves, making it especially interesting for the analysis of rapidly changing events
at very high frames rate, such as the propagation of shear waves in tissue or complex flow
patterns within the cardiovascular system, where displacement estimation techniques
based on multi-acquisition image reconstruction methods may not be deployable.
The major limitation is that the current implementation of the proposed approach

was not able to provide accurate displacement estimates in regions dominated by EW
artifacts. This is most probably due to the fact that the patterns resulting from EW artifacts
resemble speckle patterns much more closely than the ones resulting from SL and GL
artifacts [Figure 6.2(b)]. Since CNNs are, in essence, based on pattern recognition, the
close resemblance of two patterns, one sought to be removed, the other to be preserved,
represents a greater difficulty compared with a situation in which the two patterns are
very distinctive. Both the EW behavior and the general performance of the approach
might be further improved by augmenting the performance of the CNN used for image
reconstruction. For instance, the use of a higher-capacity CNN or amore efficient training
process may improve the restoration of tissue structures hidden by EW artifacts. Another
way to tackle this limitation would be to use transmit apodization [18]. This technique can
significantly reduce EW artifacts, at the cost of limited energy towards the image borders.
However, its effectiveness is limited by the apodization capability of US systems, in
particular by the transmitter complexity. If themethod is not used atmaximum achievable
frame rate, and in the presence of sufficiently stationary motion, the robustness and
precision of the displacement estimation could be improved, for instance, by averaging
multiple displacement estimates or by using ensemble correlation [160].
This study was limited to tracking fully developed speckle patterns, hence no insights

about tracking tissue structures arising from specular or diffractive scattering should
be drawn from it directly. Yet, carotid wall movement was observed to be similar to
that of conventional methods (see animation of Figure 6.4 provided as supplementary
material to [34]). The training set was also limited to simulated images of fully developed
speckle zones resulting from diffusive scattering. In Section 5.7.2, we observed that, while
reconstructing other tissue structures is generally possible, the performance may be
less potent than in fully developed speckle zones. Using a versatile training set may
be considered to widen the applicability of both the reconstruction approach and the
displacement tracking method proposed here.
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6.5. Conclusion

In this work, we proposed an approach for estimating 2-D inter-frame displacements in
the context of ultrafast US imaging. The approach consists of a CNN trained to restore
high-quality images from single unfocused acquisitions and a speckle tracking algorithm
to estimate inter-frame displacements from two consecutive frames only. Compared with
conventional multi-acquisition strategies, this approach is immune to motion artifacts
and enables accurate motion estimation at maximum frame rates, even in highly het-
erogeneous tissues prone to strong diffraction artifacts. Numerical and in vivo results
demonstrated that the proposed approach is capable of estimating displacement vec-
tor fields from single-PW acquisitions accurately, including in zones initially hidden
by SL and GL artifacts. The proposed approach may thus unlock the full potential of
ultrafast US, with direct applications to imaging modes that depend on accurate motion
estimation at maximum frame rates, such as shear-wave elastography or ultrasensitive
echocardiography.
On a more general perspective, this work further validates the potency of the CNN-

based image reconstruction method presented in Chapter 5. Indeed, this method not
only provides high-quality images from single unfocused acquisitions, but also preserves
the information of underlying physical phenomena that can be further exploited for
estimating inter-frame displacements accurately.
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7. CNN-Based Ultrafast Ultrasound Imaging

with Sparse Linear Arrays

The material presented in this chapter is the result of joint work with M. Vonlanthen, F. Martinez,

M. Arditi, and J.-Ph. Thiran. It is a direct application of the CNN-based image reconstruction

method proposed in Chapter 5 to the problem of sparse-array imaging. This material is also

presented in [35].

7.1. Introduction

Sparse array design and image formation have been studied extensively during the past
decades, mainly to reduce costs and complexity of large-channel-count 3-D US scan-
ners [174], and more recently for low-power portable ones [175]. Real-time 3-D US
imaging relies on 2-D transducer arrays with thousands of elements, rendering both the
fabrication process and element control involved very challenging. The use of sparse 2-D
arrays has proven to be a promising solution to reduce the complexity of 3-D US systems
and is still heavily studied [176]. On the other hand, the recent advent of low-power,
portable US systems [157] has led to increased interest in 2-D imaging using sparse 1-D
arrays [175], not only to reduce the costs and complexity, but also to keep the energy
consumption and data transfers minimal.
Many sparse array design strategies have been studied with the goal of maintaining

a high image quality, while reducing the number of array elements deployed as low as
possible. While “naively” undersampling a transducer array uniformly keeps both the
main lobe shape and SL levels largely intact, the interferences between element channels
can lead to devastating GL artifacts, dominating a large portion of the resulting image.
Thus, most design strategies focus on mitigating GL artifacts, while making compromises
on the resulting resolution, SL levels, and image uniformity. Some consider random
element positioning (or subsampling) to break the periodicity of the array [177], others
leverage probabilistic optimization techniques (e.g., simulated annealing) under some
arbitrary cost function [176] or adopt different transmit and receive element arrangements
with the aim of cancelling out their respective GLs [175], [178].
In Chapter 5, we proposed reconstructing US images from single unfocused acquisi-

tions, by first computing a low-quality image estimate with a backprojection-based DAS
algorithm and then restoring a high-quality image using a CNN, specifically trained to
reduce diffraction artifacts. The CNN has proven a strong ability to remove GL artifacts
while properly restoring previously shadowed tissue structures of interest.
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In this chapter, we investigate, in a numerical environment, the applicability of our
CNN-based image reconstruction method (Chapter 5) to the case of ultrafast PW imag-
ing using undersampled arrays. To ensure GL-free transmit wavefronts, we considered
unapodized single-PW insonifications using the full array on transmit and uniformly
undersampled arrays on receive. As this simple transmit scheme could be implemented in
the front-end, receive-only sparsity is sufficient for the sought-after data-rate reduction. In
contrast to most sparse array design approaches, we considered uniform undersampling
for its simplicity and its ability to maintain proper main-lobe and SL characteristics, and
relied on a trained CNN to reduce the resulting GL artifacts significantly.

7.2. Materials and Methods

7.2.1. Imaging Configurations

As in Section 5.4.1, we considered an US acquisition system composed of the 9L-D trans-
ducer (GE Healthcare, Chicago, Illinois, USA) and the Vantage 256 system (Verasonics,
Kirkland, WA, USA). Relevant system specifications are summarized in Table 7.1. The 9L-
D is a linear array transducer containing 192 elements with a center frequency of 5.3MHz
and a bandwidth of 75% (at −6 dB). An excitation composed of a single-cycle tri-state
waveform of 67% duty cycle centered at 5.208MHz, with leading and trailing equalization
pulses of quarter-cycle durations and opposite polarities, was used for all pulse-echo
measurements. The received echo signals were sampled at 20.833MHz, guaranteeing
a Nyquist sampling rate up to a bandwidth of 200%. We assumed a speed of sound of
1540m/s (typical for soft tissue), resulting in an element spacing (i.e., pitch) of more
than half a wavelength (i.e., ∼0.78𝜆) at the effective frequency. Thus, even when using all
transducer elements on receive, images reconstructed from unfocused acquisitions with
a DAS algorithm will inevitably be contaminated by GL artifacts, especially at shallow
depths.
Based on this acquisition system, we considered full-aperture unapodized single-PW

insonifications with normal incidence and different uniformly undersampled receive
configurations, namely by a factor of 2, 3, 4, and 6 (U2–U6). For comparison purposes,
we also considered single-PW insonifications with full-aperture receive, named LQ to
keep the same terminology as in Chapter 5. As it will serve as reference for CNN trainings
(Section 7.2.2), we also introduce here the UQ configuration, which relies on SA imaging
from a spatially oversampled version of the transducer array with 383 elements and
a halved pitch of ∼0.39𝜆 (i.e., simulation exclusive), guaranteeing GL-free images of
gold-standard quality. All configurations considered are summarized in Table 7.2.
From the acquisitions obtained with each configuration considered, full-view images

were reconstructed using the backprojection-based DAS algorithm used in Chapter 5.
Analytic IQ images were reconstructed on a 𝜆/4 × 𝜆/8 (Cartesian) grid, with a width
spanning the 9L-D aperture (Table 7.1) and a depth ranging from 1mm to 60mm. The
image grid resolution guaranteed Nyquist sampling for the RF content of US images in
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TABLE 7.1

Acquisition System Specifications

Parameter Value

Center frequency 5.3MHz

Bandwidth 75%

Aperture 43.93mm

Element number 192

Pitch 230μm

Element widtha 207μm

Element height 6mm

Elevation focus 28mm

Transmit frequency 5.208MHz

Excitation cyclesb 1

Sampling frequency 20.833MHz

aGuessed (no official data available).
bSingle excitation cycle with equalization pulses.

TABLE 7.2

Transmit and Receive Array Configurations

Parameter UQa LQ U2 U3 U4 U6

Tx Element Number 383 192 192 192 192 192

Tx Pitch 0.39 λ 0.78 λ 0.78 λ 0.78 λ 0.78 λ 0.78 λ

Rx Element Number 383 192 96 64 48 32

Rx Pitch 0.39 λ 0.78 λ 1.56 λ 2.34 λ 3.12 λ 4.68 λ

Tx-Rx scheme 383 SA 1 PW 1 PW 1 PW 1 PW 1 PW

aSimulation exclusive.

both lateral and axial dimensions, and resulted in images of size 596 × 1600 pixels.

7.2.2. CNN-Based Image Reconstruction Method

To obtain higher quality images from single unfocused acquisitions using sparse array
configurations, we deployed the two-step CNN-based image reconstruction method
proposed in Section 5.3.1, briefly summarized hereafter. In a first step, a (vectorized)
low-quality estimate 𝒙̃ ∈ ℝ𝑛 is computed from the (vectorized) transducer elements
measurements 𝒚 ∈ ℝ𝑚, obtained from a single unfocused insonification, by means of
a backprojection-based DAS operator 𝑫∶ ℝ𝑚 → ℝ𝑛 as 𝒙̃ = 𝑫𝒚. In this study, the low-
quality estimates corresponded to either of the U2 to U6 images described in Section 7.2.1.
The low-quality estimate 𝒙̃ is then fed to a CNN𝒇𝜽∶ ℝ𝑛 → ℝ𝑛, with parameters 𝜽, trained
to reduce diffraction artifacts while restoring the underlying image content of interest
and preserving proper speckle patterns, thereby recovering a high-quality estimate as
𝒙̂ = 𝒇𝜽(𝒙̃).
The deployed network architecture is a residual CNN with multi-scale and multi-

channel filtering properties, adapted from the popular U-Net. It is composed of 2-D CLs
and ReLUs arranged in symmetric downsampling and upsampling paths and includes
several adaptations such as the use of RCBs and additive intrinsic skip connections
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(Section 5.3.2). For this study,we deployed the best-performingCNNarchitecture analyzed
in Section 5.6 that still maintains real-time capabilities, namely using 16 initial expansion
channels.
Trainings were performed precisely as detailed in Section 5.5.1, namely in a super-

vised manner using a dataset composed of 30 000 simulated image pairs (i.e., input and
reference). The MSLAE loss (Section 5.3.3), which accounts for both the HDR and the
RF property of US images, was minimized using the well-known Adam optimizer over
500 000 iterations, using a learning rate of 5 × 10−5 and a batch size of two. For each
input image type, a dedicated CNNwas trained using a specific simulated-images training
dataset composed of low-quality input images (U2–U6) and corresponding reference
images (UQ). An in-house 3-D SIR simulator, validated against the well-known Field II
simulator [87], was used to generate the element raw-data for both input and reference
images. The numerical phantoms were composed of random scatterers with a density
that ensured fully developed speckle patterns throughout the resulting images. The re-
sulting training images are characterized by overlapping ellipsoidal zones of random size,
position, and orientation, with mean echogenicities spanning an 80-dB range.

7.2.3. Numerical Experiment

To evaluate the image quality achieved using CNN-based reconstruction (Section 7.2.2) on
single-PW acquisitions with the different uniformly undersampled receive configurations
considered (U2–U6, Section 7.2.1), we relied on the numerical test phantom deployed in
Section 5.4.3, previously adapted from [80] to the US acquisition system under study. The
test phantom is composed of tissue-mimicking echogenic zones embedded in an anechoic
background [Figure 7.1(f)], and allows to compute awide range of image qualitymetrics. It
comprises a cylindrical inclusion embedded in a block of square section with a prescribed
contrast of 36 dB, a rectangular region with a log-linear lateral echogenicity gradient
ranging from 30 dB to −50 dB, and four bright reflectors 𝑝0, 𝑝1, 𝑝2, and 𝑝3 at increasing
depths. Similar to the numerical phantoms used for training purposes (Section 7.2.2),
echogenic zones were filled with densely populated random scatterers to guarantee fully
developed speckle patterns.
A total of 300 statistically independent realizations of the test phantom were simulated

for each undersampled configuration considered with and without applying the corre-
sponding trained CNN, as well as for the comparative methods LQ and UQ. Image quality
was assessed using a subset of the quality metrics from the numerical test phantom,
namely using the SSIM against UQ reference images as a global metric (evaluated on
log-compressed B-mode representations), the contrast achieved between the block and
the inclusion, the lateral FWHM at each bright reflector position, and the linearity preser-
vation. All metrics were computed precisely as described in Section 5.4.3 and averaged
over the 300 statistically independent realizations.
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7.3. Results and Discussion

Figure 7.1 shows example images of a test phantom sample (from the 300 realizations)
for each imaging configuration considered (Table 7.2), and all resulting image quality
metrics, computed as described in Section 7.2.3, are provided in Table 7.3. Note that the
contrast metrics reported in Table 7.3 differ slightly from those reported in [35] because
the background zone [Figure 5.13(a), ΩB] was modified from its initial version [33]. The
resulting contrast measured did not contradict any conclusion drawn in [35].
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Figure 7.1. B-mode image representations (98-dB range) of a numerical test phantom sample, reconstructed using each

imaging configuration considered (Table 7.2): (a) low-quality (LQ) configuration (i.e., full array on receive) and (f) ultra-high-

quality (UQ) configuration (i.e., reference image), providing image quality comparisons; (b) to (e) U2, U3, U4, and U6 uniformly

undersampled configurations (by a factor of 2, 3, 4, and 6 on receive only); (g) to (j) images recovered from U2 U3, U4, and U6

using the proposed approach with the corresponding trained convolutional neural network (CNN).

The impact of increased uniform undersampling can be analyzed in Figures 7.1(a)
to 7.1(e), where both a significant increase in the area covered by GL artifacts and a
decrease of the signal-to-artifact ratio within zones contaminated by these artifacts can
be observed with the increase of the undersampling factor. Furthermore, comparing
images obtained from the undersampled configurations, in zones free of GL artifacts (e.g.,
highly echogenic portion of the rectangular gradient), [Figures 7.1(b) to 7.1(e)] to the LQ
image which uses the full array [Figure 7.1(a)], one can note that both main-lobe and SL
characteristics are not effected by the uniform undersampling.
Overall, the CNN-based image reconstruction demonstrated a high efficiency at recov-

ering many structures previously hidden by the significant GL artifacts arising from the
undersampled configurations. For instance, one can appreciate the recovery performance
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Figure 7.2. Mean amplitude responses (averaged along the axial dimension) of the lateral gradient

zone in the numerical phantom [Figure 7.1(f)], averaged over 300 independent realizations.

TABLE 7.3

Numerical Test Phantom Metrics

Metrica LQ UQ U2 U2 + CNN U3 U3 + CNN U4 U4 + CNN U6 U6 + CNN

SSIM 0.31 ×b 0.12 0.68 0.07 0.62 0.03 0.56 0.00 0.56

C (dB)c −28.33 −36.06 −16.51 −43.61 −3.47 −71.42 −0.58 −75.66 +0.05 −75.90

F
W
H
M

la
t. 𝑝0 (μm) 276.6 202.2 ×d 265.9 ×d 257.0 ×d 269.0 ×d 298.8

𝑝1 (μm) 336.2 242.7 339.5 273.7 ×d 304.4 ×d ×d ×d ×d

𝑝2 (μm) 388.6 280.5 ×d 299.7 ×d 316.1 ×d 306.4 ×d ×d

𝑝3 (μm) 446.6 322.4 ×d 359.7 ×d 376.9 ×d 410.8 ×d 357.7

aMetrics were averaged over 300 independent realizations.
bSSIM metric was computed against UQ.
cPrescribed contrast of −36 dB.
dAt least one image sample resulted in an undetectable reflector.

of the bright reflectors which were almost undetectable [e.g., compare Figure 7.1(d) and
Figure 7.1(i)], or the recovery of the square block which progressively disappears below
GL artifacts as the undersampling factor increases. This is confirmed by the increase in
SSIM, for instance improved from 0.07 to 0.62 in the U3 case, even surpassing the SSIM
obtained for LQ significantly.
However, these recovery performances were limited to a certain signal-to-artifact ratio

of the input images, below which the CNNs generally removed both the GL artifacts
and the underlying signal of interest. Because of decreasing signal-to-artifact ratios
with increased undersampling, a progressively larger portion of the image could not be
recovered accurately and the image quality achieved thus decreased steadily (Table 7.3).
This behavior can be well observed when comparing the recovery of the circular inclusion
from the U2 and U3 images [Figures 7.1(g) and 7.1(h)]. While the CNN was able to
(partially) recover the structures within the circular inclusion in the U2 case, the inclusion
was fully thresholded by the CNN from an undersampling factor of three (U3–U6).
The structures that could be recovered by the CNN, namely in zones of the input

images with a signal-to-artifact ratio sufficiently high before restoration, were recovered
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with high-quality speckle patterns, preserved log-linearity (see Figure 7.2) and, in the
case of the point scatterers, with a lateral resolution comparable or better than the one
achieved for LQ (FWHM in Table 7.3). The analysis of the mean amplitude responses
within the lateral gradient zone (Figure 7.2) can be used to estimate the signal-to-artifact
ratio below which the CNN is not capable to recover the underlying signal of interest
with the prescribed log-linear amplitude. For instance, in the U3 case, the restored mean
amplitude (U3 + CNN) starts to deviate from UQ at approximately −5mm, where the
input signal-to-artifact ratio (between LQ and U3) is of approximately −3 dB.

7.4. Conclusion

We showed that the proposed CNN-based image reconstruction method can increase
the image quality achieved from single-PW acquisitions using uniformly undersampled
linear arrays on receive. Indeed, the overall quality of the restored images is competitive
to images reconstructed by a DAS algorithm from single-PW acquisitions on the full array
up to an undersampling factor of three, demonstrating a high potential in the context
of sparse array imaging. As observed in Section 5.7.3, the performances can be further
improved by optimizing the CNN architecture, its training process, or simply increasing
its capacity. To evaluate the potency of the studied approach further, additional studies,
including in vitro and in vivo data should be conducted.
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8. Concluding Remarks

As most chapters contain in-depth discussions on the results obtained, the limitations
observed, and the perspectives envisaged, only prospective notes of particular interest for
future research are discussed hereafter.
The CNN-based image reconstruction presented in Chapter 5 proved to be a promising

approach for reconstructing high-quality US images from single unfocused acquisitions;
most importantly, images that can benefit displacement estimation techniques (Chapter 6)
such that the accuracy of ultrafast US imaging modes could be further improved. Thus, it
is not unrealistic to believe that such approaches may be useful in clinical settings. In an
effort to improving these approaches and push them further, few topics are discussed in
this section.
Concerning the structure of the CNN deployed, we relied on a “U-Net-like” architec-

ture, primarily because it was successfully applied to other medical image reconstruction
methods [31], [32]. Some modifications of the architecture were proposed, mainly in-
spired by multi-level wavelet decomposition, the sparsity-promoting term deployed in
our initial SR approach. All these modifications resulted in performance increases, thus
it is expected that further optimization and hyperparameter searches on the architecture
itself should further increase the resulting performances. Nevertheless, compared with
the improvements obtained by optimizing the training datasets and adapting the training
loss function, these improvements can be considered “minor.”
As for any deep learning method, the quality of the dataset used to train some artificial

neural network is obviously crucial. This is one of the reasonswhywe actually developed a
dedicated simulator that allowed the generation of relatively large datasets in realistic time
frames. In total three complete training datasets of about 30 000 were simulated before
obtaining the one used in the different CNN-based contributions of this thesis (Chapters 5
to 7). The two most important features of the datasets designed are: a high diversity of
structures resulting in fully developed speckle patterns; and echogenicities spanning
at least the excepted (high) dynamic range of signals (including a proper confidence
interval). I personally find the use of simulated-image datasets particularly adapted to
research because the environment is fully controlled and testing can be performed in
identical settings. It also allows using reference images that go “beyond physics” (as
we did for the UQ reference image configuration). Yet, experimental acquisitions could
be highly beneficial to more applied scenarios. A good experimental setup is certainly
complicated to design, but, once available, datasets can be obtained much faster than
simulated ones. Also, I have the feeling that they would result in drastic performance
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increases in experimental conditions.
Adapting the loss to the signal properties was probably the second most important

improvement obtained. The use of the proposed MSLAE as loss function, designed to
be compatible with both the HDR and RF properties of US images, resulted in drastic
performance improvements compared with less adapted losses such as the MSE and
MAE. Yet, MSLAE remains a “pixel-based” function, which makes it very efficient on
a computational perspective, but also means that only first-order statistics can be ac-
count for by such a loss function. And, because second-order statistics is crucial to many
post-processing algorithms such as 2-D speckle tracking, a suitable (distance) function
accounting for the expected second-order statistics should result in notable improvements
(though not trivial).
Another component of major importance to deep learning is the activation function.

Because RF US images are inherently “symmetric” signals, the use of ReLU as activation
function ismost probably suboptimal. Yet, from the experiments carried out using “off-the-
shelf” symmetric rectifiers, none outperformed ReLU. Preliminary works on examining
feature maps of CNNs trained on RF images using ReLU as activation function confirmed
that the “positive” and “negative” components of RF content is somehow processed
by the CNN separately (i.e., symmetric feature maps). It is thus expected that a CNN
trained with a suitable bi-polar activation function should be twice as efficient as the
same CNN trained with ReLU. We investigated the use of trainable and non-trainable
soft-thresholding activation functions, here again with disappointing results so far. There
is however a good chance that the initialization of the weights was not optimal. Also,
note that the recent work by Aziznejad et al. [179] on trainable activations could be of
great interest in the case of RF signals.
As already discussed in Section 5.7, and pointed out previously, the use of simulated

datasets offers many interesting perspectives. In this thesis, we exploited a spatially
oversampled version of the transducer array to guarantee GL-free images. Another US
application could benefit from simulated datasets, namely speckle reduction (also referred
to as despeckling). Even though speckle patterns are crucial to displacement estimation,
they are also known to reduce both the contrast and the resolution of images. Thus,
removing these patterns in applications where tracking is not required could be of great
interest. Having access to both experimental acquisitions and underlying echogenicity
maps is certainly not easy (if not impossible). Simulated datasets could be a good solution
to assess whether a CNN-based speckle reduction technique could increase both contrast
and resolution of US images.
Other physical phenomena have deterministic impacts on speckle patterns (especially

second-order statistics), which could thus benefit from CNN-based approaches. In par-
ticular, local fluctuations of mean sound speed with respect to the “global” mean sound
speed assumed for DAS beamforming results in visible alterations of speckle patterns,
such as shifted and defocused patterns. This is typically the case when an aberration layer
is present between the tissue of interest and the US transducer, such as a fatty layer or
a skull bone (in zones and at frequencies for which the porous layer does not induce
detrimental scattering of the acoustic waves). Also, some tissues have a mean sound
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speed that deviate sufficiently from the one in soft tissue such that images reconstructed
from insonifications with different angles result in shifted speckle patterns. This effect is
currently exploited by speed-of-sound imaging techniques, which are also based on the
correlation of speckle patterns. I believe that these approaches could highly benefit from
CNN-based approaches, in particular with simulated datasets. The main (temporary)
problem I see is that the simulation of such complex physical phenomena would require
even more computational resources.
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A. Supplementary Material to Chapter 4

This appendix presents all additional results to Section 4.3.2.

Spherically Focused Element with a Rigid Baffle Condition
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Figure A.1. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a spherically focused transducer element with a rigid baffle condition, excited by a

windowed-sinusoidal waveform. The excitation waveform is a differentiated log-normal-windowed sine

wave, with a characteristic (center) wavelength λ. The geometry of the spherical cap is defined by an

active diameter of 20 λ and a spherical radius of 240 λ. The three field points (A, B, C) lie in the same

revolution plane at a depth of 10 λ and a lateral coordinate of 0, 8.1 λ (i.e., projection on the edge of the

surface), and 16.2 λ, respectively. The proposed approach was implemented with a nearest-neighbor

basis function (degree zero), and was evaluated at two sampling rates of (first row) 30MHz and (second

row) 80MHz. The reference SIRs and field signals were evaluated at a sampling rate of 20THz. They

are depicted with the same colors as the approximated counterparts, with a lower opacity.
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Figure A.2. Ibid. for a linear basis function (degree one).

−1.0

−0.5

0.0

0.5

1.0

No
rm

ali
ze

d 
Am

pli
tu

de

30 MHz

Field Point A
SIR
Signal

Rel. Err.:
6.1e−02
2.1e−02 −0.4

−0.2

0.0

0.2

0.4

30 MHz

Field Point B
SIR
Signal

Rel. Err.:
4.4e−02
1.9e−02

−0.1

0.0

0.1

30 MHz

Field Point C
SIR
Signal

Rel. Err.:
4.3e−03
1.1e−01

2 3 4
Time (μs)

−1.0

−0.5

0.0

0.5

1.0

No
rm

ali
ze

d 
Am

pli
tu

de

80 MHz

SIR
Signal

Rel. Err.:
5.9e−02
6.0e−04

2 3 4 5
Time (μs)

−0.4

−0.2

0.0

0.2

0.4

80 MHz

SIR
Signal

Rel. Err.:
1.5e−02
4.5e−04

2 4 6
Time (μs)

−0.1

0.0

0.1

80 MHz

SIR
Signal

Rel. Err.:
3.1e−03
2.0e−03

Figure A.3. Ibid. for a quadratic Keys basis function.
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Figure A.4. Ibid. for a cubic B-spline basis function.
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Figure A.5. Ibid. for a cubic O-MOMS basis function.
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Rectangular Element with Rigid and Soft Baffle Conditions
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Figure A.6. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a rectangular transducer element with a rigid baffle condition, excited by a windowed-

sinusoidal waveform. The excitation waveform is a differentiated log-normal-windowed sine wave, with

a characteristic (center) wavelength λ. The geometry of the rectangular element is defined by a width

of λ and a height of 10 λ. The three field points (A, B, C) lie in a plane parallel to the element. They

were positioned at a depth of λ / 2 and an elevation of λ / 2, with lateral coordinates of 0, λ / 2, and λ,

respectively. The proposed approach was implemented with a nearest-neighbor basis function (degree

zero), and was evaluated at two sampling rates of (first row) 30MHz and (second row) 80MHz. The

reference SIRs and field signals were evaluated at a sampling rate of 20THz. They are depicted with

the same colors as the approximated counterparts, with a lower opacity.
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Figure A.7. Ibid. for a linear basis function (degree one).
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Figure A.8. Ibid. for a quadratic Keys basis function.
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Figure A.9. Ibid. for a cubic B-spline basis function.
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Figure A.10. Ibid. for a cubic O-MOMS basis function.
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Figure A.11. Comparison of the spatial impulse responses (SIRs) and field signals radiated at different

field points by a rectangular transducer element with a soft baffle condition, excited by a windowed-

sinusoidal waveform. The remaining settings relevant to the results depicted are identical to those

detailed in Figure A.6. The proposed approach was implemented with a nearest-neighbor basis function

(degree zero), and was evaluated at two sampling rates of (first row) 30MHz and (second row) 80MHz.

The reference SIRs and field signals were evaluated at a sampling rate of 20THz. They are depicted

with the same colors as the approximated counterparts, with a lower opacity.
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Figure A.12. Ibid. for a linear basis function (degree one).
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Figure A.13. Ibid. for a quadratic Keys basis function.
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Figure A.14. Ibid. for a cubic B-spline basis function.
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Figure A.15. Ibid. for a cubic O-MOMS basis function.
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