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a b s t r a c t 

Car-sharing systems are an attractive alternative to private vehicles due to their benefits in 

terms of mobility and sustainability. However, the distribution of vehicles throughout the 

network in one-way systems is disturbed due to asymmetry and stochasticity in demand. 

As a consequence, vehicles need to be relocated to maintain an adequate service level. 

In this paper, we develop a user-based vehicle relocation approach through the incentiviza- 

tion of customers and a predictive model for the state of the system based on Markov 

chains. Our methods determine the optimal incentive as a trade-off between the cost of 

an incentive and the expected omitted demand loss while taking into account the value of 

time of customers. We introduce a learning algorithm that allows the operator to estimate 

unknown customer preferences to find the optimal incentive. 

Experimental results in an event-based simulation of a real system show that the use of in- 

centives can significantly increase the service level and profitability of a car-sharing system 

and decrease the number of staff members needed to balance the vehicles in the system. 

Thereby, incentives are a more sustainable alternative to staff-based relocations. Extensive 

sensitivity analyses show the prospective benefits in terms of customer flexibility and the 

robustness of our results to varying customer preferences. 

© 2021 The Author(s). Published by Elsevier Ltd. 
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1. Introduction 

Sharing economy and collaborative consumption concepts have influenced mobility. The classical public transportation 

with fixed routes and schedules cannot always have high utilization due to limited accessibility or higher waiting times. 

Instead, various types of on-demand services offer alternatives that can decrease car ownership and private car trips. Due 

to their benefits in terms of mobility and sustainability, Car-Sharing Systems (CSSs) have become an interesting alterna- 

tive to private vehicles. Benefits for the individual users include reduced transportation cost and mobility enhancement, 

while society as a whole benefits from reduced congestion and emissions (see for example Martin and Shaheen (2011) and

Baptista et al. (2014) ). Over the last years, the number of car-sharing users has increased rapidly. A recent study by Frost &

Sullivan (2016) has shown that the increase in the users of CSSs is likely to continue over the coming years. 
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A problem that is generally encountered in CSSs is asymmetry and uncertainty in demand, causing an imbalance of vehi- 

cles in the spatial and temporal distribution of vehicles. This imbalance refers to the shortage of vehicles at some locations

and the abundance of vehicles at others. Due to the limited number of parking spaces in urban areas, the latter leads to a

shortage of available parking spaces as well. The shortage of cars or parking spaces can, in turn, lead to the loss of demand.

The vehicle imbalances can be reduced by relocating the vehicles from locations where there is an abundance 

of vehicles to locations where there exists a shortage of vehicles. This problem has been studied by, among others, 

Jorge et al. (2014) and Boyacı et al. (2015) . The operational management of car-sharing systems is complex due to the

stochastic and dynamic nature of demand in time and space, and the limited availability of information as people intend 

to usually do last minute reservations. The most common type of relocation is staff-based relocation, where staff members 

relocate vehicles. A disadvantage of this type of relocation is that it is inconvenient due to the size and lack of portability of

cars and the significant personnel cost. User-based relocations can potentially overcome these disadvantages. By offering the 

users incentives (i.e. discounts) for undertaking a trip which is slightly less convenient in terms of access time, user-based 

relocations are encouraged. These relocations can help the operator to reduce vehicle imbalances and thereby avoid future 

demand losses. Nevertheless, for such a system to be successful, it requires the availability of resources (in terms of available

vehicles or available parking spots) in the proximity of desired origin and destination of a trip to keep the service attractive.

In this paper, we introduce a new predictive user-based relocation strategy that determines the optimal incentive based 

on both the current state of the system (i.e. distribution of vehicles throughout the network) and expected future demand. 

In doing so, we aim to anticipate future demand and therefore avoid expected future demand losses. Our user-based reloca- 

tion strategy builds on unknown customer preferences. These preferences can be approximated by learning from previously 

offered incentives. The obtained estimates can, in turn, be used to dynamically determine the optimal value of an incentive, 

as well as the optimal pickup and delivery location of the vehicle. Our method is adaptive, in the sense that the value of the

incentive is adjusted to the value of time of customers, as well as the current and expected future states of the car-sharing

system. 

By offering incentives, the operator stimulates customers to relocate vehicles from over-saturated to under-saturated 

locations. We evaluate our strategy using an event based simulation model with synthetic data from a real experiment, 

which allows us to compare our methods to existing relocation policies. Our results show that incentives can increase the 

service level of car-sharing systems and decrease the number of staff members needed to achieve this level. Furthermore, 

our results indicate that incentives are a more profitable and sustainable way of relocating vehicles, compared to staff-based 

relocations. By using a hybrid operator-user-based relocation strategy, profit and service level can be maximized. 

The remainder of this paper is organized as follows. Section 2 presents a review of the relevant literature. Section 3 pro-

vides a description of the problem we consider. Section 4 describes the methodology. Experimental results are provided in 

Section 5 . In Section 6 , the paper is concluded and possible directions for further research are suggested. 

2. Literature review 

Over the last decades, car-sharing systems, as well as other vehicle-sharing systems such as bike- and ebike-sharing, 

have received increasingly more attention. In many large cities, vehicle-sharing systems emerge for various modes of trans- 

portation. The systems can be classified as either free-floating or station-based. The first refers to the case where vehicles 

can be dropped off at any location where parking is permitted within the specified operating area. This type of system has

been considered by, among others, Weikl and Bogenberger (2013) and Herrmann et al. (2014) . The environmental effects of

such a system are significant, as described by Firnkorn and Müller (2011) . However, they are often also harder to handle.

Li et al. (2018) incorporate free-floating car-sharing in a dynamic user equilibrium model and thereby illustrate the supply- 

demand interaction for shared cars. Station-based CSSs on the other hand, require vehicles to be picked up and dropped

off at a limited number of stations. A major advantage of this type of system is that electric vehicles can be charged at

these stations. As described by Li et al. (2016) , this innovative mobility service has benefits in terms of sustainability and

the environment. 

Station-based CSSs can be either one-way or two-way systems. Two-way systems require the customers to drop-off the 

vehicle at the same station as where they picked it up. One-way systems allow the customer to drop their vehicle off at any

other station of their choice. Due to the increased level of flexibility of these systems, they are commonly viewed as a more

attractive alternative for customers compared to two-way systems. As described by Boyacı et al. (2015) , the attractiveness of 

a CSS is not only determined by its flexibility, but also by its level of service. The level of service consists of two important

factors: accessibility and availability. Accessibility refers to the distance of the origin and destination of a customer to the 

available vehicle. Availability refers to the availability of a vehicle at the right time and the right place. 

System performance (i.e. profit and service level) is optimized on a strategic, tactical and operational level. On a strategic 

and tactical level, long and midterm decisions are made. These decisions include the locations of stations ( Kumar and Bier-

laire, 2012; Brandstätter et al., 2017 ), the size of the fleet of vehicles ( George and Xia, 2011; Nair and Miller-Hooks, 2011 )

and the number of staff members ( Kek et al., 2009 ). In this paper, we focus on the operational decisions, which regard the

redistribution of vehicles in the network to guarantee a minimum service level. 

In one-way vehicle-sharing systems, the availability of vehicles is often problematic. Uncertain and asymmetric demand 

are the main causes of the existence of balancing problems. At a location where the demand for vehicles is high, the number

of available vehicles declines rapidly. On the other hand, at a location where the supply for vehicles is high, the number
231 
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of available parking places declines. Due to the limited availability of both vehicles and parking spaces the service level of

CSSs decreases. Non-reserved vehicles should be relocated either to create available vehicles for stations with high density 

of origins or to create available slots for stations with high density of destinations. Nevertheless, due to limited resources for

relocation and the fact that vehicles are unavailable during this movement, an optimization framework should be integrated. 

To solve this balancing problem, vehicles should be relocated. For an extensive review of relocation strategies in one-way 

car-sharing systems, the reader is referred to Illgen and Höck (2019) . In the literature, both static and dynamic relocation

policies are considered. The static relocation policy assumes that no demand occurs during the relocation of vehicles, sug- 

gesting the vehicles are relocated at night. Chemla et al. (2013) consider a capacitated pickup and delivery problem to de-

scribe the static bike relocation problem. Static relocation problems are easier to solve as they are less prone to uncertainty.

However, they are also less effective as temporary imbalances during the day can not be resolved. 

A dynamic relocation policy considers the relocation of vehicles during the day. This is discussed by among others 

Caggiani and Ottomanelli (2013) and Boyacı et al. (2015) . Dynamic relocation policies are more effective as vehicles can 

be relocated throughout the day. However, as customers arrive dynamically, uncertainty forms a major burden. Due to this 

uncertainty, most relocation policies rely on simple benchmarks such as a minimum number of vehicles at each station. As 

these policies do not incorporate expected future demand, they are classified as non-predictive. Predictive methods incor- 

porate expected future demand and thereby expected future states of the system. Such a predictive relocation policy was 

developed by Repoux et al. (2019) . They use a Markovian model to describe the state of the system and optimize their

staff-based relocation policy based on this. 

In practice, vehicle relocations are mostly performed by staff members. Staff members pick up vehicles at over-saturated 

locations and deliver them to under-saturated locations. In bike-sharing systems, a truck can be used to relocate multiple 

bikes at the same time by a single staff member ( Caggiani and Ottomanelli, 2013 ). However, in car-sharing systems this

procedure is less efficient as only a single car can be moved at the same time by one staff member. User-based relocation

offers a more sustainable and less costly alternative to staff-based relocation. User-based relocation refers to the case where 

users are stimulated to relocate the vehicles themselves, thereby contributing to a more balanced system. An example of 

such a method is paid relocation, as described by Schulte and Voß (2015) , where users are paid free minutes or other

bonuses. Jorge et al. (2015) use dynamic trip pricing to reduce imbalances. They offer higher prices to trips that increase

imbalances and lower prices to those trips that improve the state of the system. 

The most common type of user-based relocation is customer incentivization. In this case, customers are stimulated to 

change their pickup or delivery location by offering them a discount. By doing this, a less favorable location in terms of

access time may be chosen by the customer, which aims to reduce the balancing problem. Correia et al. (2014) investigate

that if customers are more flexible in their choice for pickup and delivery locations, a significant increase in profit can be

obtained by incentivizing customers. Angelopoulos et al. (2016) provide discounts to customers if they contribute to the bal- 

ancing process. Their decision is based on priorities that are assigned based on the capacity and occupancy of the stations.

Similarly, Brendel et al. (2016) assume that the price of a ride is a function of the extra time that is required to perform a

relocation. They assume the same value of time applies to all customers, thereby disregarding customer heterogeneity. Most 

of the literature considers policies where incentivization decisions are made based on threshold values ( Clemente et al., 

2017 ) or problematic scenarios at stations such as being completely full or completely empty ( Singla et al., 2015 ). Di Feb-

braro et al. (2018) determines the best incentive stations and discount in a sequential manner. They determine the best 

station based on the relative demand for vehicles at all stations and the best discount value is determined to maximize

the systems’ profit. These approaches can be classified as non-predictive, in the sense that they do not incorporate expected 

future demand loss caused by insufficient vehicles or parking spaces. Future demand is integrated by Pfrommer et al. (2014) ,

who incorporate the difference between supply and demand rates of bikes in their decisions. They use truck routing and 

dynamic incentives to relocate bikes in a bike-sharing system. 

In on-demand transportation systems, incentives or dynamic (surge) pricing are often used to balance demand and sup- 

ply. For example, Yang et al. (2020) design a reward scheme integrated with surge pricing for the ride-sourcing market. 

Similarly, Zha et al. (2018) propose equilibrium models for supply in ride-sourcing and investigate the effect of surge pric- 

ing. Xiong et al. (2019) design an incentive scheme to create energy efficient mobility systems using personalized traveler 

information. Ma et al. (2017) propose an emission pricing model for dynamic traffic networks. They determine the optimal 

first-best emission pricing by solving an optimal control problem. 

In this paper, we consider a station-based one-way car-sharing system, where a user-based relocation policy is imple- 

mented through customer incentivization. Contrary to what has been done in the literature, our approach uses information 

on the current state of the system, as well as expected future demand through a Markovian model. This model allows us to

better predict future demand through vehicle and parking space reservation information. The incorporation of expected fu- 

ture demand makes our policy predictive. Using a predictive policy allows the operator to better anticipate expected future 

demand and thereby increase the service level. Our policy is adaptive in the sense that the discount value depends on the

value of time of customers, as well as the current and expected future states of the car-sharing system. In addition to this,

we assume that customer preferences are generally unknown. As our policy builds on the value of time of customers, we

develop a machine learning approach to estimate these unknown customer preferences. Using this, we solve an optimization 

problem to choose the best set of pickup and delivery locations as well as the optimal discount value. 
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3. Problem description 

The characteristics of the designed system are similar to those considered by Repoux et al. (2019) and occur in many real

cities such as Toyota City in Japan and Grenoble in France. We consider a one-way car-sharing system where once customers

arrive to the system, they select their preferred origin and destination stations. This type of reservation policy is referred 

to as a complete journey reservation policy. The customer is allowed to reserve the vehicle a short time in advance and a

parking space is reserved at the destination until the vehicle is returned. We consider that customers are possibly offered 

an alternative and less convenient trip after revealing their preferences, in return for a small discount. Due to a shortage of

either vehicles or parking spaces, a customer’s first choice trip may be unavailable. In that case, the customer can choose

to accept the incentive or decline and choose a different mode of transportation. We should keep in mind that the short

time for reservations does not allow for proactive relocations based on real information. Nevertheless, a predictive model 

utilizing historical data and the current state of the system can be proved beneficial compared to standard threshold based 

strategies that are among the most established in the state-of-practice. 

We assume that customers make reservations using their customer ID, which is for example linked to their driving 

license. For this reason, we can collect customer-specific data, which contributes to the learning process. Such a system is 

commonly used in practice to ensure that only registered people with a valid driving license can reserve a vehicle. 

Besides user-based relocations, we consider that vehicles can be relocated by staff members. Staff members can pick up 

vehicles at locations with a shortage of parking spaces and deliver them to locations with a shortage of vehicles. We note

that using staff members in car-sharing systems is not necessarily efficient, as only one car can be moved by a staff member

at a specific time. On the other hand, user-based relocations are less flexible as users typically do not want to spend too

much effort to reach their destination. Therefore, user-based relocations are mainly short-distance relocations. Thus, even 

if customers are willing to change their origin or destination following the recommendations of the system (through some 

incentives) this cannot guarantee that it can lead to a proper rebalancing of the system. 

4. Methodology 

In this section, we first elaborate on the relocation policy of the operator in Section 4.1 . We provide an alternative

welfare-maximization objective in Section 4.2 . The customer decision process is described in Section 4.3 . Thereafter, we 

describe a method that allows the operator to estimate customers’ value of time by learning from their previous decisions 

and incorporate this into their relocation policy in Section 4.4 . Results of the different policies will follow in Section 5 . 

4.1. Relocation policy 

Car-sharing operators usually focus on simultaneously maximizing their profit and the level of service they offer to their 

customers, which is reflected in their relocation policy. In our approach, the operator can offer each arriving customer an 

incentive. Upon the arrival of a customer, the operator determines i) whether to offer an incentive, ii) what the discount

value of the optimal incentive is and iii) between which stations the vehicle should be relocated. Therefore, an optimization 

problem is solved upon the arrival of every customer. In this section, we provide a detailed description of this optimization

problem. 

We define I as the set of feasible incentives. An incentive is feasible if there are sufficient available vehicles at the

pickup location and sufficient available parking spaces at the drop-off station. Sufficiency suggests that at least one vehicle 

is available at the origin and at least one parking space is available at the destination. Thereby, we limit this set to only

contain incentives for which the customer can reach the stations within a given time interval (see Section 4.3 ). For every

incentive i we define �time (i ) , the increase in access time the customer experiences when accepting the incentive, and

�cost (i ) , the discount value that is offered. The estimated probability that a customer accepts an incentive, ˆ P acc , is based

both on �time (i ) and �cost (i ) . The shape of the estimated probability function 

ˆ P acc (�time , �cost ) is described in more detail

in Section 4.3 . 

The aim of offering incentives is to relocate the vehicles to omit expected future losses in demand due to vehicle imbal-

ances. We refer to this as the expected omitted demand loss, ODL (i ) , for the system when the customer accepts incentive

i ∈ I. Thereby, we define w as the importance of demand loss relative to the cost of incentives. That is, the higher the value

of w , the higher the relative importance of demand loss. Given that demand is known in the system operator with a short

notice, a predictive framework has to be integrated. The idea is that based on the current state of each station (which is

measured in real time), and the historical demand between origins and destinations, the operator can estimate the probabil- 

ity that in a given future window a station will run out of vehicles or slots. If this probability is multiplied by the expected

demand for origins (related to available vehicles) or demand for destinations (related to available parking spots) an expected 

loss can be estimated. We refer to the original pickup and delivery stations as o and d respectively. The pickup and delivery

stations that are chosen as a consequence of the acceptance of the incentive are referred to as o ∗ and d ∗. As depicted in

Fig. 1 , the use of one incentive implicitly replaces at most two staff-based relocations. The operator can determine for every

possible incentive i ∈ I what the optimal discount �cost (i ) is. For the operator, this decision is based on a trade-off between

cost and the probability that the incentive is accepted. Note that for a given incentive i , the corresponding values of � (i )
time 
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Fig. 1. Implicit relocations experienced due to incentive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and ODL (i ) are fixed. This can be formulated as follows: 

f i ( �cost ( i ) ) = max 
�cost ( i ) ≥0 

ˆ P acc ( �time ( i ) , �cost ( i ) ) · ( wODL ( i ) − �cost ( i ) ) (1) 

The objective is to maximize the expected additional profit of offering the incentive. The additional profit is defined as 

the extra profit obtained compared to the base case when the incentive is not offered. It consists of the weighted omitted

demand loss, minus cost incurred by offering the discount. This discount, of course, needs to be non-negative. An additional 

constraint may be imposed which says that the discount cannot be higher than the price of the trip. The expected values

of w and ODL (i ) are inserted in the objective function in a predict-then-optimize fashion. As the objective is linear in these

uncertain parameters and given their likely independence, this does not effect optimality ( Elmachtoub and Grigas, 2017 ). The

value of ODL (i ) is estimated using Markov chains as explained in the remainder of this section. The function P acc is estimated

using a logistic regression model, using independent data to avoid bias caused by the optimization. This is explained in detail

in Section 4.4 . The optimal value of each incentive can be found by solving the optimization problem in (1) , which can be

done efficiently as the function has a single stationary point, as stated in Theorem 1 . A proof of this theorem is included in

the Appendix. 

Theorem 1. If for a given incentive i a profitable discount value �cost (i ) exists, there exists a unique most profitable (optimal)

discount value �∗
cost (i ) for which the derivative of the subproblem is equal to. 

Following from this theorem and using the fact that discounts are in whole cents and therefore integer, we initialize

�0 
cost = w · ODL and iteratively reduce the discount until the objective function starts to decrease or if it is equal to zero. If

the function starts to decrease, the optimal incentive is found. If the objective value is maximal at zero, no discount exists

for which this incentive is profitable. The optimal discount �∗
cost (i ) is non-decreasing in the value of ODL (i ) if all other

variables remain constant. This is shown analytically through Theorem 2 , of which a proof is included in the Appendix. This

implies that incentives that yield a higher expected omitted demand loss in general receive higher discounts. 

Theorem 2. The optimal discount �∗
cost (i ) is non-decreasing in the value of ODL (i ) 

The best incentive can be chosen by optimizing over the set of possible incentives. We refer to the optimal incentive

as i ∗ and to the corresponding optimal value of the incentive as �∗
cost (i ∗) (which is the argument of the sub-problem). The

total objective can be formulated as follows: 

i ∗ = arg max 
i ∈ I 

f i (�
∗
cost (i )) (2) 

To determine the value of ODL (i ) we construct a Markovian model expanding the model proposed by Repoux et al. (2019) .

We consider a separate Markov chain for every station, which allows us to define the expected loss of future demand given

the current state of the system. Through this Markov chain, we incorporate trip reservation information to better predict 

future states of the system. Every parking spot at a station can have one of the following five states: occupied by an available

vehicle ( x a v ), occupied by a reserved vehicle for either a one-way ( x rv ) or a two-way trip ( x rv ′ ), not occupied but reserved

for a vehicle ( x rp ) or not occupied and available ( x ra ). Therefore, the state of a station is defined by the number of parking

spots that are in any of the first four states. As the capacity C of a station is fixed and known, the number of parking spots

in the fifth state can be deduced from the first four. 

The state of a station changes because of arrivals of vehicles or reservations made by customers. For this, arrival rates

can be determined based on historic data. We determine arrival rates of customers looking to rent a vehicle and arrival

rates of customers returning a vehicle to a reserved parking spot. Hourly arrival rates are used to capture the dynamic

demand pattern of the historic data. Using these states and arrival rates we can estimate the expected loss of customers.

Loss of customer demand is encountered if either the desired pickup location has no available vehicles or the desired drop-

off location has no available parking spaces. The expected demand loss is numerically obtained in the same way as in 
234 



P. Stokkink and N. Geroliminis Transportation Research Part B 149 (2021) 230–249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Repoux et al. (2019) using the approximation method described by Raviv and Kolka (2013) . We denote the expected loss

given the state of the station as EL (x a v , x rv , x rv ′ , x rp ) . 

The omitted demand loss can then be calculated as the difference between the expected demand loss in the original 

situation and the expected demand loss after the relocation has been performed. Following Repoux et al. (2019) , we first

determine the omitted demand loss for every station separately, given the implicit relocations in Fig. 1 . The ODL for every

station is given in Eqs. (3) –(6) . For ease of notation, the variables x a v , x rv , x rv ′ and x rp belong to the station of the corre-

sponding ODL . Intuitively, without an incentive, a vehicle is reserved at station o and no change is observed at station o ∗.

If the incentive is accepted, a vehicle is reserved at station o ∗ and no change is observed at station o. A similar intuition

applies to the destination stations. 

ODL o = EL (x a v − 1 , x rv + 1 , x rv ′ , x rp ) − EL (x a v , x rv , x rv ′ , x rp ) (3)

ODL o ∗ = EL (x a v , x rv , x rv ′ , x rp ) − EL (x a v − 1 , x rv + 1 , x rv ′ , x rp ) (4)

ODL d = EL (x a v , x rv , x rv ′ , x rp + 1) − EL (x a v , x rv , x rv ′ , x rp ) (5)

ODL d ∗ = EL (x a v , x rv , x rv ′ , x rp ) − EL (x a v , x rv , x rv ′ , x rp + 1) (6)

Using this, we can compute the total omitted demand loss as a consequence of the incentive. Other than in 

Repoux et al. (2019) where the relocation is always between a unique origin and a unique destination, user-based relo- 

cations depend on the relation between the four stations that may be included in the relocation. If the origin station is not

changed because of the incentive, o = o ∗ and the first two components (i.e. ODL o and ODL o ∗ ) cancel out. Similarly, the last

two components cancel out if the destination station is not changed. We consider other special cases for which two or more

stations are equal in a similar manner. For example, in case the original trip is a two-way trip (i.e. o = d), we consider the

reservation of a round-trip vehicle at that station. If the incentive changes one of the stations, the trip becomes a one-way

trip instead. Therefore, we verify for every incentive the exact reservations that were made in the old and the new situa-

tion, to accurately estimate the omitted demand loss for every involved station. For example, consider a customer travelling 

from A to B and an incentive being offered to change the destination station from B to A . In the old situation, a vehicle

was reserved for a one-way trip at A , whereas in the new situation a vehicle is reserved for a two-way trip. At B , a parking

space was reserved in the old situation, but remains unused in the new situation. This yields the following calculation of

the omitted demand loss with respect to this incentive: 

ODL A = EL (x a v − 1 , x rv + 1 , x rv ′ , x rp ) − EL (x a v − 1 , x rv , x rv ′ + 1 , x rp ) (7) 

ODL B = EL (x a v , x rv , x rv ′ , x rp + 1) − EL (x a v , x rv , x rv ′ , x rp ) (8) 

If the original trip is unavailable, the composition of the omitted demand loss, to which we will refer as ODL ′ , is also slightly

different. Stations o and d are ignored because no change is observed here. If the incentive is accepted, vehicles and parking 

spaces are reserved at the incentivized location and if the incentive is not accepted, the customer is lost and therefore no

reservations are made. In case the original trip is not available, the corresponding customer is not lost if the incentive is

accepted, but is lost if it is not accepted. This customer is therefore included in the omitted demand loss. 

ODL (i ) = ODL o + ODL o ∗ + ODL d + ODL d ∗ (9) 

ODL ′ (i ) = 1 + ODL o ∗ + ODL d ∗ (10) 

Similar to Repoux et al. (2019) , the omitted demand loss is based on a 2-h time window. As we consider short term omitted

demand losses, some incentives may have a negative effect in the long run. This can be reduced by choosing a longer

estimation window. However, as the estimations do not incorporate future incentives nor relocations and contain a lot of 

uncertainty, the estimation quality decreases as the length of the estimation window increases. Most importantly, we aim 

to improve the system in the short term. The reason for this is that demand is highly asymmetric and stations that require

additional vehicles in the short term may no longer require these in the long term. Our user-based relocations focus to solve

short-term imbalances in the system, for which a 2-h time window has shown to be suitable. 

4.1.1. Staff-based relocations 

Besides the incentivizing method, we consider predictive staff-based relocations. We consider the Markovian relocation 

policy as described by Repoux et al. (2019) as a benchmark for the performance of our policy. As soon as a staff member

is not occupied, his next job is determined by considering all origin and destination stations, which we denote by s 1 and

s 2 respectively. The origin and destination stations are selected such that the weighted expected omitted demand loss is 

maximized. We weight the ODL by the time it takes to get to the origin location, mov e (s 1 ) , and the time needed to execute

the relocation, dri v e (s 1 , s 2 ) . This leads to the following maximization problem: 

(o ∗, d ∗) = arg max 
s 1 ,s 2 

ODL s 1 + ODL s 2 
mov e (s ) + dri v e (s , s ) 

(11) 

1 1 2 
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To reduce the number of staff-based relocations, we extend this policy by introducing a threshold value. We assume that 

the relocation is only executed if the expected omitted demand loss ODL s 1 + ODL s 2 is higher than some threshold value τ .

By introducing this threshold value, staff members no longer perform relocations that bring forth little additional demand. 

User-based and staff-based relocations have some fundamental differences. Staff-based relocations can only be performed 

whenever a staff member is available, which limits the total number of relocations. On the other hand, user-based reloca- 

tions can in theory be performed by every user and therefore does not have this limitation. In terms of feasibility, user-based

relocations can only be performed if the user can reach the station without walking too far and they can always decline a

request for a change. A staff member does not have this restriction and can therefore do any relocation at the time he is

available. 

4.2. Welfare maximization 

Although car-sharing operators mainly focus on profit maximization, the problem can be alternatively formulated to aim 

for welfare maximization. Rather than only considering the cost of the operator, we now also regard the cost of current and

future users. This changes the objective of the subproblem to the following: 

f i ( �cost ( i ) ) 

= max 
�cost ( i ) ≥0 

ˆ P acc ( �time ( i ) , �cost ( i ) ) · [ wODL ( i ) − �cost ( i ) + �cost ( i ) − vot �time ( i ) + w 2 ODL ( i ) ] 

= max 
�cost ( i ) ≥0 

ˆ P acc ( �time ( i ) , �cost ( i ) ) · [ wODL ( i ) − vot �time ( i ) + w 2 ODL ( i ) ] 

(12) 

This objective now represents the expected gain in total welfare of offering the incentive, compared to not offering one. The

first two terms represent the benefit and cost of the operator, and are therefore similar to that in Eq. (1) . The third and

fourth component model the benefit and cost of the current user respectively, where v ot represents the value of time of

the current user. The last component considers the benefit future users experience for not being lost, through parameter 

w 2 . The value of w 2 depends on the alternative transportation modes users have access to and is therefore highly system-

specific. Note that, similar to the profit maximization objective, we only consider incentives offered to the current customer 

and disregard the possibility to offer incentives in the future. 

As a consequence of maximizing welfare in stead of profit, the nested objective function now only depends on the 

offered discount �cost (i ) through the acceptance probability. Intuitively, welfare does not change if the price of the trip is

split differently between user and operator. It can be easily verified that if (w + w 2 ) ODL (i ) > v ot�time (i ) a maximal discount

is offered and no incentive is offered otherwise. The maximal discount can be chosen arbitrarily as the price of the trip or

such that the acceptance probability is equal to some threshold and is referred to as �max 
cost (i ) . Theorem 3 follows directly

from this property and is therefore presented without further proof: 

Theorem 3. Under the objective of welfare maximization as in Eq. (12) , the optimal discount value for incentive i is given as

follows: 

�cost (i ) = 

{
�max 

cost (i ) if (w + w 2 ) ODL (i ) > v ot�time (i ) 
0 otherwise 

(13) 

The optimal discount and corresponding welfare for a given incentive i can be determined efficiently using Theorem 3 .

The optimal incentive can then be computed using the obtained values in Eq. (2) . 

4.3. Customer decision 

To model the customer decisions, we define the probability function P acc . We assume that the probability with which

a customer accepts an incentive depends on the discount value of the incentive and the additional access time that is

experienced because of this incentive. This type of customer decisions is commonly modelled using a binomial logistic 

(logit) model. A similar model has been used by Di Febbraro et al. (2018) . The acceptance probability is defined as follows:

P acc (X ) = 

1 

1 + e −(βX ) 
, (14) 

with X = [ �time , �cost ] 
T . As βX may be negative, P acc (X ) varies between 0 and 1. Two important notes have to be made

considering this probability function. First, customers are heterogeneous in the sense that they value time differently. This 

suggests that the parameters β = [ βtime , βcost ] are customer-specific. Second, the actual shape of the probability function 

P acc is unknown to the operator. The operator can, however, use previously observed data to create an estimation of the

parameters ˆ β through learning over time and thereby estimate the probability function 

ˆ P acc . The estimation of this function 

is discussed in detail in Section 4.4 . 

A customer’s value of time can be determined as the relative importance of the coefficients βcost and βtime , which can be

estimated by taking the ratio of the two. The higher the ratio of these coefficients, the higher a customer’s value of time. A

customer’s value of time can then be interpreted as the additional discount a customer wishes to receive for one minute of
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extra access time. If the offered discount is exactly equal to the value of time, the customer is indifferent between accepting

and not accepting such that the acceptance probability is equal to 0.5. We note that it is also possible to directly model the

value of time of a customer by considering the fraction 

�cost 
�time 

. 

In addition to this probability model, some hard constraints may apply to the choice to accept an incentive. It is com-

monly assumed that customers are not willing to walk too far to pick up their vehicle or reach their destination after deliver-

ing their vehicle. For example, Schulte and Voß (2015) assume that customers choose an alternative mode of transportation 

if they have to walk for more than 500 m to reach their vehicle. We use a similar assumption, that says that customers

never accept an incentive that requires them to increase their one-way access time by 7 min ( ≈ 450 m). This constraint

can be easily incorporated in the definition of the set I. A major advantage of this is that it reduces the computation time

of problem (2) . Low computation time is of importance to the operator, as an incentive has to be offered immediately after

customers reveal their preference. We emphasize that any other relevant constraints on the feasibility of representatives can 

also be implicitly incorporated in the set I. This constraint requires that the density of stations should be quite high, so that

a number of alternatives within this walking distance exists. While this might be the case for the city centers of major cities

with car-sharing services, lower density of stations might exist in the suburbs deteriorating the rebalancing power of this 

policy. For this reason we will test policies that consider a mixture of incentives and staff relocations. 

4.3.1. Truthfulness 

An important property of an incentivization policy is that it forces the customers to be truthful. An untruthful customer 

purposefully reports wrong information for her own benefit. In our case, this means that she specifies a wrong pickup or

delivery station, as she knows she will receive a discount for her actual preferred station. As untruthful behaviour can have

negative effects on the revenue collected by the operator, the policy should avoid untruthful behaviour. In this section, we 

elaborate on the truthfulness of users under the designed policy. 

A customer can gain from being untruthful if she purposefully report a wrong pickup or delivery station and receive 

an incentive for her actual preferred station, thereby reducing her cost. On the contrary, she loses from being untruthful 

if this incentive is not offered and therefore her access time is increased. Based on this intuition, the expected gain of

being untruthful is defined as the expected incentive value multiplied by the probability of that incentive being offered. The 

expected loss of being untruthful is the additional time the customer needs to walk if the incentive is not offered, multiplied

by her value of time ( v ot) and the probability of no incentive being offered. That is, 

E (gain ) = E (�cost ) · P ( desired incentive offered ) , (15) 

E (loss ) = �time · v ot · P ( desired incentive not offered ) . (16) 

Of course, customers can cancel their reservation if the incentive is not offered and make a new reservation for their ac-

tual preferred station. However, this behaviour can be recognized by the reservation tool as untruthful. If a customer is 

recognized to behave untruthfully, no incentive will be offered to this customer in the future. Under the assumption that 

customers are risk-neutral, a customer will be untruthful if: 

E (gain ) ≥ E (loss ) . (17) 

By rewriting this equation, we observe that a customer will be untruthful if: 

E (�cost ) ≥ �time · v ot · P ( desired incentive not offered ) 

P ( desire d incentive offered ) 
. (18) 

Eq. (18) can be seen as a condition for truthfulness. We emphasize that the desired incentive is unknown to the operator

but the corresponding probability can be bounded as follows: 

P ( desire d incentive offered ) ≤ P ( any incentive offered ) , (19) 

P ( desire d incentive not offered ) ≥ P ( no incentive offered ) . (20) 

Thereby, our results show that in general, �cost is not much higher than �time · v ot . In addition to this, customers are in

general risk-averse, which means they value losses higher than gains. Following these arguments, we conclude that these 

conditions are in general satisfied and are therefore not included in the simulation model. 

This restriction can be enforced either on a customer-based, station-based or a system-based level. In case a violation of 

the truthfulness restriction is observed, it can either be enforced by reducing the number of offered incentives or by limiting

the maximum discount value offered. Both conditions can be incorporated in the optimization problem in Section 4.1 . Intu-

itively, some incentives are easier to anticipate than others. For example, experienced users can identify incentives offered 

when the original trip is not available more easily compared to other incentives. How and within what time-span strategic 

users are able to predict incentives is an interesting topic of further research. 

Incentives can create a new way for individuals to earn money. As individuals are paid to relocate vehicles, this may

attract new users that are solely looking to create some income without interest for a specific travel. As these users are
237 



P. Stokkink and N. Geroliminis Transportation Research Part B 149 (2021) 230–249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

new to the system and are only offered those incentives from which the system benefits, they cannot have a negative effect

on the performance of the system and may only improve performance. Nevertheless, a demand model to integrate these 

actions is beyond the scope of the paper and it might require data that are not readily available. Thus, our focus remains

only on travelers that are willing to change their origin or destination for some discount in their trip. 

4.4. Learning from customer behaviour 

The efficiency of the proposed service depends on the willingness of travelers to accept the offered incentive. Never- 

theless, a high value of discount might create losses for the operator. Thus, learning the customer behavior and having a

model that adequately predicts the acceptance probability as a function of the value of incentive is an important aspect of

the framework. In this section, we describe the estimation method of the acceptance probability function. The acceptance 

probability function has the shape of a binomial logistic (logit) model. The operator does not have any information on the

values of the coefficients in β , but it does have full knowledge of the offered incentive and therefore the values of �time and

�cost . In addition to this, the operator can observe the outcomes of the offered incentives. That is, whether the incentive

is accepted or not. Using this, we can estimate the probability function using a maximum likelihood estimate of the coeffi- 

cients in β . As both the dependent (acceptance choice, hereafter also referred to as y ) and independent variables (value of

the incentive and additional access time, hereafter also referred to as X) are known, they can be used to estimate the cor-

responding values of the coefficients. The likelihood function corresponding to the binary logit model with n observations 

is written as follows: 

L (β) = 

n ∏ 

i =1 

P (X i ) 
y i (1 − P (X i )) 

1 −y i . (21) 

The optimal value of β is the one that maximizes the likelihood function. Instead of maximizing the likelihood function, it 

is easier to maximize the log-likelihood function which is given as follows. 

l(β) = 

n ∑ 

i =1 

y i ln (P (X i ))(1 − y i ) ln (1 − P (X i )) . (22) 

As no analytical solution exists, we use a numerical optimization approach to find the optimal value for β . We use a

steepest-descent algorithm with decaying step-size. This estimation method suggests that we can train our model using pre- 

viously observed data and use this to forecast the probability that a customer accepts the offered incentive. An advantage of

the described methods is that, besides the origin and destination location of a customer request, no other information is re-

quired. This limits the possibilities for customers to be untruthful about personal information to maximize their own profit 

and therefore contributes to the truthfulness of our method. This method can be used to obtain customer-specific estimates 

or one estimate for the entire population. If a customer-specific estimate is obtained, only those observations corresponding 

to that customer are used to train the logit model. If a single estimate is obtained for the entire population, all observations

are used. In this case, our method is used to estimate a sample average value of β . 

The use of this learning method in combination with the optimization with the optimized incentives as described in 

Section 4.1 will create a measurement bias. The reason for this is that the input variable �cost is optimized based on the

same acceptance probability function we try to estimate. Experiments show that this generally leads to an overestimation 

of the value of time. Therefore, we first use a training period to estimate the value of the coefficients using the described

maximum likelihood methods. During this training period, the optimal incentive is determined using the methods described 

in Section 4.1 , but the discount value �cost is randomly drawn from a uniform distribution on the interval [0 , w · ODL ] . After

the training period, the performance of the incentivization method is evaluated using the optimized discount using the 

estimated coefficients ˆ β .In case customer-specific parameter estimates have to be obtained, newly arriving customers are 

treated in a similar way. The first discounts are determined randomly during a training period until an adequate estimation 

can be made. Alternatively, discounts for newly arriving customers can be determined using estimates of a set of existing 

customers. 

In reality, estimates can be further improved by grouping users with similar features. Travellers generally have to create 

an account to utilize the car-sharing system. They can then be grouped according to relevant features as age or occupancy,

such that group-specific estimates can be obtained. For example, it is likely that students have a lower value of time than

elderly people. By using group-specific estimates, acceptance probability estimations can be improved. 

5. Experimental results 

The relative performance of the incentivization method described in the previous sections is evaluated using a case 

study of the Grenoble car-sharing system. The details of this case study and the cost structures we use in our evaluations

are described in Section 5.1 . In Section 5.2 we describe the simulation model. In the following sections, experimental results

are provided that give insights into the relative performance of the described methods. 
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5.1. Case study: grenoble car-sharing system 

In our case study, we consider the Grenoble car-sharing system, which has been previously studied by 

Repoux et al. (2019) . The system was operational between September 2014 and November 2017 and was based on a com-

plete journey reservation policy, as described in Section 3 . The system consisted of 27 stations with a total of 121 parking

spots (each station had between 3 and 8 parking spots). In our simulation framework, 40 electric vehicles are available in

the system every day. The maximum speed of the vehicles is equal to 50 km/h, corresponding to the speed limit in urban

areas in France. In this case study, we disregard the battery restrictions of the vehicles, as previous studies have shown

that in station-based systems these influence the results only marginally. As we compare our methods to the Markovian 

staff-based relocation policy designed by Repoux et al. (2019) , we use similar settings for this policy. 

Our simulation is based on demand data of the actual car-sharing system. Every simulation run consists of 10 consecutive 

days. We generate 100 random synthetic demand realizations per day, based on the observed distribution of demand in the 

actual system. As the exact itinerary of a trip is unknown, trip distance and trip duration are assumed to be independent

of incentives. This distribution is based on trip transaction data from the operational period. The system is operational 24 

h per day, but the majority of the trips occur between 7 a.m. and 8 p.m. As no customer information was collected by the

car-sharing system, every demand realization is randomly assigned to one of 50 customers, which allows us to evaluate the 

effect of our learning procedure within the set time-horizon. We note that customer information is only required for our 

learning procedure. Each customer has a specific value of time. The values of time are drawn from a normal distribution

with mean € 0.30 per min and standard deviation of 0.10. We assume βtime is fixed at −0 . 75 (in min) such that βcost follows

directly from the value of time. We emphasize that the number of customers does not influence any of the obtained results

other than the learning procedure. The choice of parameter w depends on the importance of the service level relative to

the profit. We choose the value for w equal to the average revenue earned for a single demand unit, which is equal to

approximately € 15. 

Walking and public transport times between stations for the city of Grenoble have been extracted from Google (2019) .

The public transport time comprises walking time to reach public transport and time spent in public transport. In case 

walking from origin to destination is the least time-consuming option, walking time is used as the full travel time. Staff

members also either walk or use public transport, depending on which is faster, to move between stations when they are

not relocating. For consistency, we use the same moving times as considered by Repoux et al. (2019) . 

Finally, the profit is based on various costs similar to those defined by Boyacı et al. (2015) . The profit is calculated as the

user revenue based on a cost of € 0.20 per min minus the cost of relocators ( € 18 per h), fixed vehicle cost ( € 20 per day)

and a cost of € 0.01 per kilometer travelled by both users and relocators. In practice, users pay € 3 for every 15 min, so their

trip duration is rounded up to 15 min. 

5.2. Simulation model 

Our experimental results are obtained using an event-based simulation framework. The simulation framework is an ex- 

tended version of the developed framework by Repoux et al. (2015) and later updated by Repoux et al. (2019) . For a detailed

description of the framework, the reader is referred to these papers. The framework simulates the actual situation of the 

Grenoble car-sharing system as described in Section 3 . The event-based simulator models vehicle reservations, pickups and 

drop-offs. Thereby, it keeps track of the status of vehicles at stations and on the road and staff members. 

The network of stations is taken directly from the Grenoble car-sharing system. Travel times for users between sta- 

tions are extracted from Google (2019) . We emphasize that we incorporate asymmetries in both walking and transit times. 

Synthetic data is used to model the demand for vehicles and parking spaces. Arrival rates for origin-destination pairs are 

estimated based on observed demand during the period when the system was active. 

We extend the simulation framework by the described incentivization procedure. For every customer entering the system, 

we solve the problem described in Section 4.1 to determine the optimal pickup and delivery location and discount value

corresponding to the incentive, if any beneficial incentive exists. After the incentive is offered, the response of the customer 

to this incentive is randomly drawn corresponding to the logistic distribution described in Section 4.3 . In addition to this,

we implement a learning procedure which allows the operator to learn from previously observed customer behaviour to 

determine unobserved customer preferences. This procedure is described in detail in Section 4.4 . 

5.3. Model evaluation 

While user-based relocations only change the origin or the destination station within the proximity of the original trip, 

they can help to locally rebalance the system. Staff-based relocation can perform any movement of an empty vehicle be- 

tween two stations, but they might increase the operational cost. Thus, we are interested in the performance of the system

for different combinations of user-based and staff-based relocations. 

We first consider the general user-based relocation policy as described in Section 4.1 . We evaluate the relative perfor-

mance of this policy under the assumption that the operator has perfect information on the value of time of customers,

that is ˆ P acc = P acc . The maximum one-way access time is equal to 7 min ( ≈ 450 m). The total additional access time a user

experiences may therefore be at most 14 min, but this is not commonly observed. The average results of 100 simulations
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Table 1 

Simulation results. 

Staff Incentives % served # relocations % accepted # incentives KM Profit 

0 No 59.7 0.0 0.0 0.0 5.82 62.79 

Yes 71.5 0.0 56.7 21.5 5.78 183.66 

1 No 84.6 33.9 0.0 0.0 6.36 206.93 

Yes 91.8 30.8 45.9 21.4 6.31 263.74 

2 No 89.6 62.1 0.0 0.0 6.97 61.17 

Yes 94.7 58.4 40.8 18.6 6.90 95.77 

3 No 91.0 86.0 0.0 0.0 7.49 -135.92 

Yes 95.4 81.4 38.5 17.2 7.40 -106.52 

The first two columns describe the relocation policy in place (i.e. number of staff members and 

whether incentives are used). The third column denotes the percentage of served customers. The fourth 

column contains a daily average of the number of relocations performed. The fifth and sixth column 

contain the percentage of offered incentives that are accepted and the actual number of incentives ac- 

cepted respectively. The KM travelled is measured as an average per served demand unit and includes 

both user and staff KM travelled. The profit is denoted in euros per day. 

Fig. 2. Graphical representation of number of stations with available vehicles and parking spaces over time for one simulation. 

 

 

 

 

 

 

 

 

 

 

are reported in Table 1 . We present different performance measures that can ease our understanding of the system from

the perspective of the users and the operators. The number of active personnel varies between 0 and 3 with or without

incentives. 

The results indicate that by offering incentives, the service level can be increased significantly. Thereby, by only offer- 

ing incentives if they are expected to be profitable, the profit also significantly increases. We also observe that incentives 

are much more sustainable compared to staff-based relocations. Whereas staff-based relocations significantly increase the 

average kilometers travelled, this is not the case for incentives. 

Due to staff-based relocations, the service level can be increased to a percentage between 84.6% and 91%, depending 

on the number of staff members, but the profit decreases if the number of personnel is higher than 1 (and it becomes

negative for 3 or more). By using incentives without any personell, this is only 71.5%. The main reason for this is that

user-based relocations are limited to short-distance relocations, while staff members can also do long-distance relocations. 

By combining the two policies (one staff member and incentives), the profit is optimized and the service level is higher 

than the one with three staff members and no incentives. Interestingly, offering incentives with one personnel is capable 

of serving more customers compared to two personnel with no incentives, which also has a significantly higher operational 

cost. 

Daily, approximately 20 incentives are offered and accepted, depending on the policy that is used. Note that the to- 

tal number of offered incentives can be obtained directly from the number of accepted incentives and the percentage of 

accepted incentives. As daily demand is equal to 100, this means an incentive is accepted by approximately 20% of the

arriving customers. This supports the truthfulness of our policy, as discussed in Section 4.3.1 . Approximately 55% of the of-

fered incentives are accepted if only incentives are used, which decreases if it is combined with staff members. As proven in

Theorem 2 in the Appendix, the discount value is non-decreasing in the expected omitted demand loss. As staff-members 

reduce imbalances in the systems, the expected omitted demand loss of incentives tends to decrease. In turn, this decreases 

the offered discounts. As a consequence, the acceptance probability of those incentives decreases and thereby the percent- 

age of accepted incentives decreases. This also means that if the original trip is not available, the offered incentive is much

more likely to be accepted as the lost customer is incorporated in the objective function. 

By offering incentives or performing relocations, less critical situations (i.e. no available vehicles or no available parking 

places) at stations arise. Fig. 2 displays the number of stations with at least one available vehicle and at least one available

parking space. We compare the scenario where no relocations are performed to the scenario where incentives are used, 

obtained using a single simulation of 10 days. No staff members are used in both scenarios. The results indicate that, by
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Fig. 3. Graphical representation of relocations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

using incentives, slightly more stations have both available vehicles and parking spaces. Because less critical situations arise, 

more demand can be served which is in line with the results in Table 1 . 

Fig. 3 graphically represents the relocations performed by staff members and due to incentives. Fig. 3 A displays the 

incentives on origin locations (origin locations changed because of incentives), Fig. 3 B displays the average walking time 

between two stations in minutes, Fig. 3 C displays the incentives for which the original trip was unavailable and 3 D displays

the staff-based relocations. Fig. 3 C and D display those relocations that occur at least once every 20 or 10 days respectively.

The relocations correspond to the simulations for which either only incentives or only staff is used and are an average of

100 simulation runs. 

The results confirm the intuition that incentives are used for short-distance relocations. The relocations are solely be- 

tween stations that are within 7 min walking distance from each other. Staff-based relocations, on the other hand, can 

relocate vehicles between any two stations. A similar graph can be obtained for incentives on the destination location. If 

the original trip is unavailable, the relocations look more like the staff-based relocations as either the origin or destination 

can be outside the maximum access time range. Incentives on unavailable trips are mostly used to change the origin lo-

cation of the trip, which can be seen from the stations that are selected as origins in Fig. 3 C. The reason for this is that,

due to the high number of parking spaces (121) compared to the number of vehicles (40), unavailability of vehicles at the

origin station is more problematic than unavailability of parking spaces at the destination station. If we reduce the num- 

ber of parking spaces, we observe that the number of incentives regarding an unavailable vehicle and those regarding an 

unavailable parking space become roughly similar. By combining staff and user-based relocations, we are using a hybrid 

operator-user based relocation policy. In this policy, user-based relocations are used for short-distance relocations and are 

extremely effective if the original trip is unavailable. Thereby, staff-based relocations can be used to cover imbalances over 

longer distances such as between suburbs and the city center, as is illustrated in Fig. 3 . Many incentives apply to stations 4,

5 and 10. These stations are located close to the train station of Grenoble, with 5 located approximately between 4 and 10.

Not coincidentally, station 5 is also the station with the highest demand. 

One of the advantages of our method is that it is applicable in real-time operation. For an incentivization method to

be applicable in real-time operation, it should be able to determine the optimal incentive (if any) within seconds. Our 

simulation results illustrate that this condition is satisfied and our method is computationally very efficient. By limiting the 

number of feasible incentives and using the property of the subproblem that has at most one stationary point, the optimal

discount can be found very fast. This suggests that our model can also be applied to larger cities, where the number of

feasible incentives is typically much higher, because stations are located closer together. As the number of feasible incentives 

is higher in larger cities, our user-based relocation approach is expected to perform even better in these cities. 

Demand rates may change due to the used relocation policies. In general, if a customer is not served she is less likely to

return in the future. In addition to this, low availability of vehicles may decrease the demand rates at those stations whereas

high availability at other stations may increase the demand rates there. The pricing policy may therefore change the demand 
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Table 2 

Simulation results with learning method. 

Staff Estimation % served % accepted # incentives discount/minute Profit 

0 Exact 70.4 56.8 21.3 41.08 173.74 

Learning 69.9 54.1 20.5 42.86 168.76 

Underestimate 68.8 43.6 17.6 33.05 167.48 

1 Exact 91.7 45.5 21.3 37.05 267.66 

Learning 91.2 43.8 20.5 38.66 260.80 

Underestimate 90.2 35.4 17.4 30.26 260.15 

2 Exact 94.6 40.7 18.5 35.61 99.80 

Learning 94.3 39.0 17.7 36.77 94.71 

Underestimate 93.5 31.6 15.2 29.46 94.48 

3 Exact 95.3 38.2 16.9 34.52 -102.83 

Learning 95.1 37.6 16.7 36.07 -107.63 

Underestimate 94.4 29.8 14.2 28.69 -106.43 

The first column describes the relocation policy in place (i.e. number of staff members). The second 

column denotes the method used to estimate the value of time: exact, learning or underestimated. 

The third column denotes the percentage of served customers. The fourth and fifth column contain 

the percentage of offered incentives that are accepted and the actual number of accepted incentives 

respectively. The average discount per minute of accepted incentives is given in cents. The profit is 

given in euros per day. 

 

 

 

 

 

 

 

 

 

 

 

 

rates (as may any staff- or user-based policy). To anticipate this change, demand rates can be re-estimated and the omitted

demand loss estimations can be updated accordingly. Using such an iterative process, dynamically changing demand can be 

anticipated indirectly. To directly anticipate dynamically changing demand a proper demand model is required (depending 

on service level, pricing and other features), which is outside the scope of this paper. 

5.4. Learning evaluation 

In this section, we evaluate the performance of our learning algorithm. We use our learning algorithm described in 

Section 4.4 to estimate a single acceptance probability function for the entire population. We assume that the value for 

βtime is fixed and known for all customers, whereas the value for βcosts is drawn randomly and unknown. We emphasize 

that, if enough customer-specific data is gathered, the exact same procedure can be used to obtain a customer-specific 

acceptance probability function. If enough data is gathered, the performance using customer-specific estimates will attain 

the performance under perfect information. We compare the performance of the learning algorithm to the performance 

when the value of time is known exactly and when the value of time is underestimated by 30%. For the latter case, we

approximate the value of time by a single estimate which is 30% lower than the population average. 

Table 2 presents the simulation results for this experiment. A training period of 3 days is used. The simulation results

are therefore an average of the last 7 days. We observe that the performance of the learning algorithm increases with the

length of the training period. After 3 days, the performance does not increase significantly. 

The results indicate that in case the operator does not have perfect information about the customer’s value of time, 

incentives are still effective. The observed differences mainly occur because customer heterogeneity is ignored and all cus- 

tomers are treated as if their value of time is equal. We observe that, even though the average discount per minute is higher,

the percentage of accepted incentives is lower. Consequently, fewer incentives are offered and the profit and service level 

decrease. 

If the value of time is underestimated, the percentage of accepted incentives decreases significantly and so does the 

average discount. As a consequence, the service level decreases. Similar results can be obtained when the value of time is

overestimated. In this case, the average discount value will be higher, causing the profit to decrease. This emphasizes the 

importance of a correct estimate of the value of time, as a wrong estimate can decrease both the profit and the service

level. 

Our experiments indicate that customers with a higher value of time are offered higher discounts. A regression of the 

discount value on the actual value of time of a customer indicates that the value of time has a significant positive effect

on the discount value. From the experiments in this section, we conclude that our learning methods enable the operator to

obtain a good estimate of the acceptance probability function of customers. Naturally, as dispersion among the customers 

in terms of their value of time increases, the performance of the learning method decreases. However, when more data is

gathered, customer-specific estimates can be obtained which are not influenced by dispersion. A more detailed analysis of 

learning the distribution is beyond the scope of this work, as no real data was available for specific users. This can be a

research priority for a demand-oriented analysis. 

5.5. Increasing customer flexibility 

In the previous experiments, we assumed the maximum one-way time customers were willing to walk towards their 

pickup location and from their destination location was 7 min. In this section, we perform a sensitivity analysis to investigate
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Table 3 

Simulation results for multiple maximum walking times. 

Access time Staff Incentives % served # relocations # incentives KM travelled Profit 

5 0 No 59.7 0.0 0.0 5.82 62.79 

Yes 65.1 0.0 11.0 5.79 118.68 

1 No 84.6 33.9 0.0 6.36 206.93 

Yes 88.3 32.2 11.9 6.33 239.59 

2 No 89.6 62.1 0.0 6.97 61.17 

Yes 92.2 59.9 10.7 6.94 80.88 

3 No 91.0 86.0 0.0 7.49 -135.92 

Yes 93.4 83.5 10.1 7.44 -115.82 

7 0 No 59.7 0.0 0.0 5.82 62.79 

Yes 71.5 0.0 21.5 5.78 183.66 

1 No 84.6 33.9 0.0 6.36 206.93 

Yes 91.8 30.8 21.4 6.31 263.74 

2 No 89.6 62.1 0.0 6.97 61.17 

Yes 94.7 58.4 18.6 6.90 95.77 

3 No 91.0 86.0 0.0 7.49 -135.92 

Yes 95.4 81.4 17.2 7.40 -106.52 

10 0 No 59.7 0.0 0.0 5.82 62.79 

Yes 79.4 0.0 32.4 5.76 252.32 

1 No 84.6 33.9 0.0 6.36 206.93 

Yes 94.1 29.7 26.6 6.31 276.15 

2 No 89.6 62.1 0.0 6.97 61.17 

Yes 95.9 57.1 22.7 6.89 98.10 

3 No 91.0 86.0 0.0 7.49 -135.92 

Yes 96.4 80.0 20.5 7.37 -104.39 

The first column denotes the maximum extra access time in minutes. The following two columns describe the 

relocation policy in place (i.e. number of staff members and whether incentives are used). The fourth column 

denotes the percentage of served customers. The fifth and sixth column are a daily average of the number of 

relocations and the number of accepted incentives respectively. The KM travelled is measured as an average per 

served demand unit and includes both user and staff KM travelled. The profit is given in euros per day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the effect of increasing customer flexibility. We assume the operator has perfect information on the customers’ value of time. 

First, we consider three scenarios where the maximum walking time is either 5, 7 or 10 min (again, this applies separately

to origin and destination). The higher the maximum walking time, the more flexible customers are. The results of this 

experiment are displayed in Table 3 . 

We observe that as the maximum walking time increases, more incentives are offered, as more profitable incentives 

are found. As a consequence, the percentage of demand served and profit increase significantly. As flexibility increases, 

the percentage of served demand and effectiveness of incentives increases. This result is in line with those provided by 

Correia et al. (2014) . Due to the increasing number of incentives, the number of staff-based relocations also decreases 

slightly. 

We note that walking for 10 min to pick up or drop off a vehicle can be rather undesirable for customers. Therefore, we

explore the use of public transportation modes to transport customers before pick up or after delivery. The public transport 

data for the city of Grenoble has been extracted from Google (2019) . The travel time comprises walking time to reach

public transport and time spent in public transport. In case walking from origin to destination is the least time-consuming 

option, walking time is used as the full travel time. On top of that, the customer may wish to be compensated for the

inconvenience of public transport (which comprises among others waiting time and scheduling delay). We assume users 

expect to be compensated for inconvenience comparable to five minutes of walking. This is incorporated in the acceptance 

probability function and therefore indirectly leads to higher compensations in case public transport is used. 

The results of this experiment are presented in Table 4 . We consider two scenarios, where the maximum time to get

to or from the vehicle is either 7 or 10 min. For the sake of comparison, we assume the value of time is similar for both

experiments. We note that the value of time in public transport is likely to be higher than that for walking, as the price of

the public transport ticket needs to be paid, but this is omitted in the current work. 

The results indicate that if the maximum one-way access time in public transport is 7 min, the results are better than

walking for 10 min. The reason for this is that if customers are willing to use public transport, they can reach a higher num-

ber of stations within their maximum access time. When the maximum access time is equal to 10 min in public transport,

the use of incentives outperforms the use of 3 staff members. The main reason for this is that if a customer requests an

unavailable trip, an alternative origin or destination can almost always be reached within the maximum access time. There- 

fore, by offering a discount this customer can often be saved without the need to relocate vehicles. Although the use of

incentives outperforms the use of staff members in this case, 41 incentives per day are needed to achieve this. This means

that almost half of the arriving customers change their preferred origin or destination station. This has a negative effect on

truthfulness and, despite the fact that users are compensated, it is likely to decrease customer satisfaction. Thereby, if users 
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Table 4 

Simulation results using public transport. 

Access time Staff Incentives % served # relocations # incentives KM travelled Profit 

7 0 No 59.7 0.0 0.0 5.82 62.79 

Yes 80.6 0.0 32.0 5.77 263.96 

1 No 84.6 33.9 0.0 6.36 206.93 

Yes 95.0 30.4 26.9 6.31 282.00 

2 No 89.6 62.1 0.0 6.97 61.17 

Yes 96.8 58.0 22.9 6.89 105.75 

3 No 91.0 86.0 0.0 7.49 -135.92 

Yes 97.2 81.0 20.6 7.37 -97.69 

10 0 No 59.7 0.0 0.0 5.82 62.79 

Yes 91.9 0.0 41.6 5.76 370.87 

1 No 84.6 33.9 0.0 6.36 206.93 

Yes 97.5 29.2 30.9 6.30 289.08 

2 No 89.6 62.1 0.0 6.97 61.17 

Yes 98.2 56.7 25.6 6.87 106.42 

3 No 91.0 86.0 0.0 7.49 -135.92 

Yes 98.5 79.4 23.5 7.34 -96.23 

The first column denotes the maximum extra access time in minutes. The following two columns describe the 

relocation policy in place (i.e. number of staff members and whether incentives are used). The fourth column 

denotes the percentage of served customers. The fifth and sixth column are a daily average of the number of 

relocations and the number of accepted incentives respectively. The KM travelled is measured as an average per 

served demand unit and includes both user and staff KM travelled. The profit is given in euros per day. 

Table 5 

Simulation results for profit versus welfare maximization. 

Staff Optimize % served # relocations % accepted # incentives Avg discount Profit 

0 Profit 71.3 0.0 56.1 21.3 40.23 181.91 

Welfare 71.5 0.0 95.2 29.4 48.05 136.03 

1 Profit 91.8 30.9 45.2 21.1 37.26 265.60 

Welfare 92.1 29.9 95.1 34.1 47.29 204.59 

The first column describes the relocation policy in place (i.e. number of staff members). The second column 

denotes the optimization function (i.e. profit or welfare maximization) The third column denotes the number 

of staff-based relocations. The fourth and fifth column contain the percentage of offered incentives that are 

accepted and the actual number of accepted incentives per day respectively. The average discount per minute 

of accepted incentives is given in cents. The profit is given in euros per day. 

 

 

 

 

 

 

 

demand higher compensations for the inconvenience of using public transportation, the price of incentives will increase. As 

a consequence, profit goes down and service level goes down as less profitable incentives exist. 

The results of this experiment are promising in the sense that if customers are willing to combine multiple transporta-

tion modes, i.e. public transport and car-sharing, the balancing problem can be solved efficiently without using any staff

members. This implies that incentives are a sustainable alternative to staff-based relocations. A downside of this is that in 

practice customers may choose to waive their car-sharing request when they are already in public transport. A thorough 

customer survey is required to evaluate whether the increased service level outweighs the potential demand lost to public 

transport. 

5.6. Welfare versus profit maximization 

In this section we compare the results obtained under the profit maximization objective to the results under the welfare 

maximization objective. As w 2 generally depends on the availability of alternative transportation modes (both public and 

private) which we are unaware of, we choose w 2 equal to w which is the average price paid for a trip and therefore the

minimum value a user attributes to the trip. We note that, due to the redistribution of costs between operator and user, a

difference in discount value or profit does not change the welfare. What does change the welfare is the service level and

the number of incentives (the latter through inconvenience perceived by the users). Therefore, these are the metrics we use 

to evaluate the welfare. We again assume the operator has perfect information about the value of time of the current user.

The maximum price �max 
cost (i ) is chosen relative to �time such that the acceptance probability is equal to roughly 95%. For 

the sake of comparison, we impose the same upper bound to the discounts offered under the profit maximization objective 

(unlike the other experiments where no upper bound was used). The results of this experiment are displayed in Table 5 . 

We observe that using a welfare optimization objective increases the number of accepted incentives and, as a direct con- 

sequence of the changed objective, increases the average discount offered. As an effect, we observe a decrease in profit. In

line with the chosen maximum price, the percentage of accepted incentives is equal to approximately 95% for the case of

welfare maximization, whereas this is much lower for profit maximization. We also see that the service level only increases 

marginally despite the fact that significantly more incentives were offered. For the profit maximization objective, higher dis- 
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Fig. 4. Distribution of ODL by incentive and staff relocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

counts are offered to incentives that lead to a higher ODL (in line with Theorem 2 ). For welfare maximization, the discount

value is independent of ODL . Therefore, under the welfare maximization objective, also incentives with lower ODL values are 

accepted. 

While the service level is similar, welfare maximization does not actually improve the welfare compared to profit maxi- 

mization. This is mainly due to the increased number of incentives and thereby access time inconvenience perceived by the 

users. The reason for this is the myopic nature of the incentives. Under welfare maximization, more and smaller incentives 

are offered that require customers to walk. Although this has a direct positive effect on the welfare, offering this or a similar

incentive to another user arriving in the near future may be even better. For profit maximization, although not incorporated 

explicitly, this is indirectly avoided through the shape of the objective function. Small incentives that only marginally in- 

crease the ODL and thereby the service level, are either not profitable or only receive small discounts and are therefore less

likely to be accepted. As soon as the ODL value increases and the incentive becomes more “urgent” (over time imbalances 

tend to increase) the discount increases and the incentive is more likely to be accepted. As an indirect effect, unnecessary

walking time through these myopic incentives is partially avoided and thereby welfare is higher. If we only offer incentives 

to users whose original trip is available (a policy that is more resilient against untruthful behaviour, as is discussed in the

next section), welfare-maximization actually leads to a higher service level (66.6 versus 68.0%) at the cost of some additional 

incentives and therefore increases the welfare at the cost of a decrease in profit. 

From the results we can conclude that, as both policies base their choice for incentives largely on omitted demand 

loss, their service levels are rather similar. However, using targeted discounts as in the profit maximization policy leads to 

significantly better performance for the company in terms of profit. Due to the relatively small increase in service level, the

welfare maximization objective does not seem to be more desirable from a government point of view compared to profit 

maximization. 

5.7. Adapting staff-based relocation policy 

As we consider incentives and staff-based relocations that both aim to maximize the omitted demand loss, it is interest- 

ing to consider the distribution of the ODL obtained by a relocation due to an incentive and that obtained by a staff-based

relocation. Fig. 4 depicts the distribution of the ODL values for these two types of relocations. The distribution of the ODL

values for incentives has two peaks. The reason for this is that incentives can be classified as one of two types: incentives

if the original trip is available and incentives if the original trip is unavailable. For the second type, one lost customer is

omitted with certainty if the incentive is accepted, which can be seen from the plus 1 term in Eq. (10) . Therefore, the ODL

corresponding to this type of relocation is generally high, causing the second peak. 

The two distributions indicate that staff-based relocations on average bring forth lower omitted demand losses than 

relocations due to incentives. This is partially caused by the second type of incentives for unavailable trips. Another reason 

for this is that due to the trade-off in the optimization problem, incentives with small ODL values have lower discounts and

therefore lower acceptance probabilities or they may not even be offered. This causes the ODL values to be higher in general.

We emphasize that the omitted demand loss is based on a 2-h time interval. In the long term, relocations generally bring

forth higher ODL values except for those for which the original trip is unavailable. In that case, if the ODL value is smaller

than 1, this value is likely to decrease in the long term. 

By only offering incentives when the original trip is unavailable, the service level only decreases slightly whereas the 

profit may even increase. Of course, these incentives do not actually contribute to the rebalancing of the system as only
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Table 6 

Simulation results for different staff thresholds. 

τ % served # relocations % occupancy # incentives KM travelled Profit 

0.00 91.8 31.0 98.3 21.2 6.32 267.58 

0.05 91.9 30.6 98.2 21.2 6.32 268.22 

0.10 91.7 28.7 96.4 21.7 6.31 270.96 

0.15 91.4 25.0 89.0 21.8 6.25 280.54 

0.20 90.5 20.8 77.5 22.2 6.18 290.78 

0.25 89.1 16.4 63.5 23.3 6.10 297.64 

We consider the case where one staff member is used. The first column denotes the value of τ . 

The second column denotes the percentage of served customers. The third and fifth column are a 

daily average of the number of relocations performed and the number of incentives accepted re- 

spectively. The fourth column denotes the average occupancy of the staff member as a percentage 

of the total workday. The KM travelled is measured as an average per served demand unit and 

includes both user and staff KM travelled. The profit is given in euros per day. 

Table 7 

Simulation results for different customer value of time. 

v ot % served # relocations % accepted # incentives discount/minute Profit 

20 92.0 30.4 55.1 26.2 25.11 273.52 

30 91.8 31.0 45.4 21.2 37.42 267.58 

40 91.6 31.4 39.4 17.7 49.29 257.83 

50 91.3 31.9 35.0 15.2 60.58 250.83 

We consider the case where one staff member and incentives are used. The first column describes 

the scenario, where the value of time is given in cents per minute. The second column denotes the 

percentage of served customers. The third column denotes the percentage of offered incentives 

that is accepted and the fourth column denotes the actual number of accepted incentives. The 

fifth column denotes the average discount value per minute for all accepted incentives. The profit 

is given in euros per day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

customers that would have otherwise been lost are redirected to a different station. These incentives are also more likely 

to induce untruthful behaviour, as they are easier to identify and compensations are higher. On the other hand, by offering

incentives only when the original trip is available, the service level and profit are decreased but are still significantly higher

compared to the case when no incentives are offered. Contrary to the other type of incentives, a policy where incentives are

only offered in case the original trip is available is more resilient to untruthful behaviour and still leads to a system that

is properly rebalanced. Overall, offering incentives independent of the availability of the original trip is highly effective and 

easier to implement in reality. An additional subtlety for originally unavailable trips is that users are in generally more likely

to accept a small detour, but this highly depends on their alternative transportation modes. This means that in reality profit

can be even higher by reducing the discounts for those trips. We can adapt the staff-based relocation policy to the use of

incentives by changing the threshold value τ , the minimum expected omitted demand loss for a staff-based relocation to 

be performed, as defined in Section 4.1.1 . By changing this value we can reduce the number of relocations performed by

staff members and thereby reduce their overall activity. This can be convenient as in practice staff members often perform 

maintenance jobs and other tasks if they are not relocating vehicles. We consider various threshold values varying between 

0.00 and 0.25. The results of this experiment are provided in Table 6 . For this experiment, we assume relocators are only

paid for the number of hours they effectively worked, corresponding to their occupancy rate. 

The results indicate that by increasing the threshold value, we reduce the number of relocations and the percentage of 

time the staff member is relocating vehicles. A positive finding is that for a value of τ = 0.25, the number of staff-based

relocations is almost half compared to τ = 0 , but the served demand decreases by only 2.5%. We also observe that the

number of incentives increases slightly as the threshold increases. The reason for this is that some of the relocations that

are not executed by staff members are now (implicitly) executed by users. By increasing the threshold, the profit increases 

at the cost of a small decrease in the percentage of served customers. The results of this experiment strengthen the idea of

a hybrid operator-user-based relocation approach. 

5.8. Sensitivity analysis: customer value of time 

In all previous experiments, the customer value of time is assumed to be equal to 30 cents per minute of additional

walking time. In this section, we perform a sensitivity analysis on the customer value of time to illustrate the robustness of

our results. The results of this experiment are displayed in Table 7 . We consider average values of time which range from

20 to 50 cents per minute. Other than that, the simulation settings are similar to those used in the previous experiments. 

The results indicate that as the value of time increases, fewer incentives are profitable and therefore fewer incentives are 

offered. In addition to this, because of the higher value of time, the average discount value relative to the value of time is
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lower, which means that the percentage of accepted incentives decreases. For the accepted incentives, we observe that the 

average discount value increases proportionally with the average value of time. 

As fewer incentives are accepted, the service level and profit both decrease. Interestingly, the service level and profit do 

not decrease significantly even though the number of accepted incentives is almost halved. This is partially caused by the 

use of staff-based relocations which can replace the incentives as well as later users that are offered a similar incentive. In

addition to this, those incentives that are no longer profitable to offer are typically those for which the influence on profit

and service level was rather small. 

We emphasize that this representation of profit is not realistic, as we use a constant rental price. In cities where the

average value of time is higher, a higher rental price can be imposed. Thereby, the value for w (monetary value per unit of

lost demand) increases and the effect of value of time will be negligible. 

6. Conclusion 

In this paper, we proposed a predictive user-based relocation policy for one-way car-sharing systems. Our method re- 

lies on user-based relocations that are stimulated by offering discounts to customers. By performing an alternative and less 

convenient trip, users implicitly contribute to the redistribution of vehicles throughout the system. Our policy uses informa- 

tion on the current state of the system as well as expected future demand to determine appropriate relocations, to reduce

expected future demand losses. Our policy is adaptive to the value of time of customers. As customer preferences such as

their value of time are generally unknown, they have to be estimated. We developed a learning algorithm that allows the

operator to learn from previously offered incentives and adjust the future offers accordingly. 

Our simulation results indicate that, by using our incentivization approach, we can partially solve the balancing problem 

of vehicles throughout the network and thereby increase the service level. In addition to this, our methods allow the opera-

tor to use fewer staff members while attaining a higher service level and thereby increase the profit. Specifically, by using a

hybrid operator-user-based relocation policy, service level and profit can be maximized. In this case, user-based relocations 

perform short-distance relocations, while long-distance relocations are executed by staff members. We also observe that by 

using user-based relocations, the average KM travelled by staff and users per unit of served demand decreases, suggesting 

our method is environmentally more sustainable than staff-based policies. 

Using a learning algorithm, we can accurately approximate the customers’ acceptance probability functions. Therefore, we 

can obtain results that are close to those under the assumption of perfect information. A sensitivity analysis indicates that 

we can further increase the service level in case customers are more flexible. That is, if customers are willing to walk further

to pick up or deliver their vehicle or even use public transport, the effectiveness of our incentivization method increases. 

In future work, our model can be extended to include competition between users for incentives. If one user declines the

offered incentive, a similar incentive may be offered to the next arriving user who may then choose to accept it. Including

future decisions on incentives would result in a computationally expensive recourse problem and is therefore omitted in 

the current work, but is an interesting direction of future work for mobility systems with higher demand. By incorporating 

this type of competition for incentives in the optimization problem, offered discounts may be lower without decreasing the 

performance of the system. 

Other topics of further research include the extension of our methods to free-floating vehicle-sharing systems. In these 

systems, vehicles are not required to be parked at stations but can be parked at any legal parking place within the perimeter.

Furthermore, we aim to implement our methods in a real field experiment, to evaluate participation levels of customers. 

Finally, we note that our method to determine incentives and learn from customer behaviour can be applied in various 

other fields. We aim to apply and adapt our developed methods to other modes of transportation, such as ride-sharing and

crowd-shipping. 

Declaration of Competing Interest 
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Appendix A. Proofs 

For notational convenience we denote the optimization problem as follows: 

f i (�cost (i )) = max 
�cost (i ) ≥0 

g i (�cost (i )) (23) 

In addition to this, we substitute �cost (i ) by x and w · ODL (i ) by K. This reduces the function to be optimized to the follow-

ing: 

g(x ) = P (x )(K − x ) (24) 

Theorem 4. If for a given incentive i a profitable discount value �cost (i ) exists, there exists a unique most profitable (optimal)

discount value �∗
cost (i ) which satisfies 

dg(�∗
cost (i )) 

d�∗ (i ) 
= 0 g ′ (�∗

cost (i )) = 0 . 

cost 
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Proof. We first note that the optimal discount value should lie somewhere on the interval [0 , + ∞ ) , as any value below 0

violates the definition of an incentive. Also, we note that as g(0) ≥ 0 and g(x ) < 0 for each x > K, such that we can reduce

the interval to the closed and bounded interval [0 , K] . Additionally, we know that g(K) = 0 . 

A global optimum for function g on a closed and bounded interval can occur either on the boundary points, a non-

differentiable point or a stationary point. As this function is differentiable on the defined interval, only the boundary points 

and stationary points need to be identified. 

Using Fermat’s theorem, a first order stationary point requires for the derivative dg(x ) 
dx 

= 0 
dg(x ) 

dx 
= 

dP(x ) 
dx 

(K − x ) − P (x ) = βP (x ) P (−x )(K − x ) − P (x ) where we use the fact that dP(x ) 
dx 

= βP (x ) P (−x ) 

By rearranging the terms, we obtain the following requirement: dg(x ) 
dx 

= P (x )[ βP (−x )(K − x ) − 1] = 0 . As 0 < P (x ) < 1 by

definition, we can reduce this to: βP (−x )(K − x ) = 1 . 

By further rearranging the terms and substituting y = −x , it should hold that P (y )(K + y ) = 

1 
β

. 

As P (y )(K + y ) is strictly increasing in y there exists at most one stationary point to which we refer as x ∗. 

This suggests that, using Weierstrass extreme value theorem, if a profitable incentive value exists, i.e. there exists some 

x ≥ 0 for which g(x ) > 0 , there exists an x ∗ ≥ 0 which is the unique optimum. �

Theorem 5. The optimal discount �∗
cost (i ) is non-decreasing in the value of ODL (i ) 

Proof. Using the changed notation, the theorem follows directly from the proof that x ∗ is increasing in K. We consider two

incentives i and j for which K i < K j and all other variables are equal. The corresponding optimal discounts are x ∗
i 

and x ∗
j 

respectively. We distuingish between the optimal discount being at a boundary point 0 or at a stationary point. Note that

we ignore the boundary point at K as this incentive will not be offered. Therefore, we consider the following three cases: 

(i) x ∗
i 

and x ∗
j 

are both at a stationary point 

Given the first order necessary condition derived in Theorem 1 , it holds that P (−x ∗
i 
) K i − P (−x ∗

i 
) x ∗

i 
= 

1 
β

. 

Rewriting this equation in terms of K i yields: K i = 

1 
β

+ P(−x ∗
i 
) x ∗

i 

P(−x ∗
i 
) 

(and similar for K j ). 

Given K i < K j , it follows that K j − K i > 0 which after some rewriting implies that 
P (x ∗

j 
) −P (x ∗

i 
) 

β
+ P (−x ∗

i 
) P (−x ∗

j 
)(x ∗

j 
− x ∗

i 
) > 0 which can only hold if x ∗

j 
≥ x ∗

i 
. 

ii) x ∗
i 

= 0 (i.e. i at a boundary point) 

By definition, x ∗
j 
≥ 0 , so x ∗

j 
≥ x ∗

i 

ii) x ∗
j 
= 0 (i.e. j at a boundary point) 

If the discount is optimal at the boundary point, the following relationship must hold: max x P (x )(K j − x ) ≤ P (0) K j . 

Consider specifically K i = K j − τ with τ > 0 . 

max x P (x )(K i − x ) = max x P (x )(K j − x − τ ) = max x P (x )(K j − x ) − τP (x ) ≤ max x P (x )(K j − x ) − τP (0) ≤ P (0) K j − τP (0) =
P (0)(K j − τ ) = P (0) K i . 

As max x P (x )(K i − x ) ≤ P (0) K i → x ∗
i 

= 0 = x ∗
j 

We note that in each of these three cases it holds that x ∗
j 
≥ x ∗

i 
. As the only variable change is K j > K i , it follows that x is

non-decreasing in K and therefore the optimal discount is non-decreasing in the ODL value. �
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