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Abstract

Deep learning networks are typically trained by
Stochastic Gradient Descent (SGD) methods that
iteratively improve the model parameters by es-
timating a gradient on a very small fraction of
the training data. A major roadblock faced when
increasing the batch size to a substantial fraction
of the training data for reducing training time is
the persistent degradation in performance (gen-
eralization gap). To address this issue, recent
work propose to add small perturbations to the
model parameters when computing the stochastic
gradients and report improved generalization per-
formance due to smoothing effects. However, this
approach is poorly understood; it requires often
model-specific noise and fine-tuning.
To alleviate these drawbacks, we propose to use
instead computationally efficient extrapolation
(extragradient) to stabilize the optimization tra-
jectory while still benefiting from smoothing to
avoid sharp minima. This principled approach
is well grounded from an optimization perspec-
tive and we show that a host of variations can be
covered in a unified framework that we propose.
We prove the convergence of this novel scheme
and rigorously evaluate its empirical performance
on ResNet, LSTM, and Transformer. We demon-
strate that in a variety of experiments the scheme
allows scaling to much larger batch sizes than
before whilst reaching or surpassing SOTA accu-
racy.

1. Introduction
The workhorse training algorithm for most machine learn-
ing applications—including deep learning—is Stochastic
Gradient Descent (SGD). Recently, data parallelism has
emerged in deep learning, where large-batch (Goyal et al.,
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2017) is used to reduce the gradient computation rounds
so as to accelerate the training. However, in practice, these
large-batch variants suffer from severe issues of test quality
loss (Shallue et al., 2018; McCandlish et al., 2018; Golmant
et al., 2018), which voids gained computational advantage.
While still not completely understood, recent research has
linked part of this loss of efficiency to the existence of sharp
minima. In contrast, landscapes with flat minima have in em-
pirical studies shown generalization benefits (Keskar et al.,
2016; Yao et al., 2018; Lin et al., 2020), though this topic is
still actively debated (Dinh et al., 2017).

Another line of research tries to understand general deep
learning training from an optimization perspective, in terms
of the optimization trajectory in the loss surface (Neyshabur,
2017; Jastrzebski et al., 2020). Golatkar et al. (2019) empir-
ically show that regularization techniques only affect early
learning dynamics (initial optimization phase) but matter
little in the final phase of training (converging to a local
minimum), similar to the critical initial learning phase de-
scribed in (Achille et al., 2019) and the break-even point
analysis on the entire optimization trajectory of Jastrzebski
et al. (2020).
These new insights are consistent with empirically devel-
oped techniques for the SOTA large-batch training. For
example, gradual learning rate warmup for the first few
epochs (Goyal et al., 2017; You et al., 2019) is often used;
and in local SGD (Lin et al., 2020) for better generalization,
stochastic noise injection is only applied after the first phase
of training (post-local SGD).

These discussions on optimization and generalization mo-
tivate us to answer the following questions when using or
developing large-batch techniques for better training: Does
the proposed technique improve (initial) optimization, or
help to converge to a better local minimum, or both? How
and when should we apply the technique?

In this paper, we first revisit the classical smoothing idea
(which was recently attributed to avoiding sharp minima in
deep learning (Wen et al., 2018; Haruki et al., 2019)) from
optimization perspective. We then propose a computational
efficient local extragradient method as a way of smoothing
for distributed large-batch training, referred to as EXTRAP-
SGD; we further extend it to a general framework (extrapo-
lated SGD) for distributed training. We thoroughly evaluate
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our method on diverse tasks to understand how and when it
improves the training in practice. Our empirical results jus-
tify the benefits of EXTRAP-SGD, and explain the effects of
smoothing ill-conditioned loss landscapes as to exhibit more
well-behaved regions, which contain multiple solutions of
good generalization properties (Garipov et al., 2018). We
show the importance of using EXTRAP-SGD in the critical
initial optimization phase, for the later convergence to better
local minima; the conjecture is verified by the combina-
tion with post-local SGD, which achieves SOTA large-batch
training. Our main contributions can be summarized as
follows:

• We propose EXTRAP-SGD and extend it to a unified frame-
work (extrapolated SGD) for distributed large-batch training.
Extensive empirical results on three benchmarking tasks
justify the effects of accelerated optimization and better
generalization.
• We provide convergence analysis for methods in the pro-

posed framework, as well as the SOTA large batch training
method (i.e. mini-batch SGD with Nesterov momentum).
Our analysis explains the large batch optimization ineffi-
ciency (diminishing linear speedup) observed in previous
empirical work.

2. Related Work
Large-batch training. The test performance degradation
(often denoted as generalization gap) caused by large batch
training has recently drawn significant attention (Keskar
et al., 2016; Hoffer et al., 2017; Shallue et al., 2018; Masters
& Luschi, 2018). Hoffer et al. (2017) argue that the general-
ization gap in some cases can be closed by increasing train-
ing iterations and adjusting the learning rate proportional to
the square root of the batch size. Goyal et al. (2017) argue
the poor test performance is due to the optimization issue;
they try to bridge the generalization gap with the heuristics
of linear scale-up of the learning rate during training or dur-
ing a warmup phase. You et al. (2017) propose Layer-wise
Adaptive Rate Scaling (LARS) for better optimization and
scaling to larger mini-batch sizes; but the generalization
gap does not vanish. Lin et al. (2020) further propose post-
local SGD on top of these optimization techniques to inject
stochastic noise (to mimic the training dynamics of small
batch SGD) during the later training phase.

In addition to the techniques developed for improving op-
timization and generalization, the optimization ineffective-
ness (in terms of required training steps-to-target perfor-
mance) of large-batch training has been observed. Shallue
et al. (2018); McCandlish et al. (2018); Golmant et al. (2018)
empirically demonstrate the existence of diminishing linear
speedup region across different domains and architectures.
Such a limit is also theoretically characterized in (Ma et al.,
2017; Yin et al., 2017) for mini-batch SGD in the convex set-

ting.

Smoothing the “sharp minima”. Some research links
generalization performance to flatness of minima. Entropy
SGD (Chaudhari et al., 2017) proposes Langevin dynamics
in the inner optimizer loop to smoothen out sharp valleys
of the loss landscape. From the perspective of large-batch
training, Wen et al. (2018) perform “sequential averaging”
over models perturbed by isotropic noise, as a way to combat
sharp minima. Haruki et al. (2019) claim that injecting
different anisotropic stochastic noises on local workers can
smoothen sharper minima. However, the claimed “sharper
minima” is debatable (Dinh et al., 2017); it is also unclear
whether the improved results are due to obtained flatter
local minima or improved initial optimization brought by
smoothing. We defer detailed discussion to Section 3.2
and 5.2.

Smoothing in classical optimization. Randomized
smoothing has a long history in the optimization literature,
see e.g. Nesterov (2011); Duchi et al. (2012); Scaman et al.
(2018) which show that a faster convergence rates can be
achieved by convolving non-smooth convex functions with
Gaussian noise. In contrast to non-smooth convex functions,
we focus on the smooth non-convex functions, motivated by
deep neural networks.

Extragradient methods and optimization stability. An-
other useful building block from optimization is the extragra-
dient method, which is a well-known technique to stabilize
the training at each iteration by approximating the implicit
update. The method was first introduced in (Korpelevich,
1976) and extended to many variants, e.g. mirror-prox (Ne-
mirovski, 2004), Optimistic Mirror Descent (OMD) (Judit-
sky et al., 2011) (using past gradient information), extragra-
dient method with Nesterov momentum (Diakonikolas &
Orecchia, 2017). Recently its stochastic variants have found
new applications in machine learning, e.g., Generative Ad-
versarial Network (GAN) training (Daskalakis et al., 2017;
Gidel et al., 2018; Chavdarova et al., 2019; Mishchenko
et al., 2019), and low bit model training (Leng et al., 2017).

On the theoretical side, several papers analyze the conver-
gence of stochastic variants of extragradient. Juditsky et al.
(2011) study stochastic mirror-prox under restrictive as-
sumptions. Xu et al. (2019) analyze stochastic extragradi-
ent in a more general non-convex setting and demonstrate
tighter upper bounds than mini-batch SGD, when using
mini-batch size O(1/ε2). Mishchenko et al. (2019) revisit
and slightly extend the stochastic extragradient for better
implicit update approximation. However, their work focuses
on min-max GAN training and argues the stochastic extra-
gradient method might not be better than SGD for traditional
function minimizations tasks. Our work is the first that com-
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bines the idea of Nesterov momentum and extragradient
(from past information) for stochastic optimization in the
setting of distributed training.

3. Optimization with Extrapolation
Problem Setting and Notation. We consider
sum-structured optimization problems of the form
minx∈Rd f(x) := 1

N

∑N
i=1 fi(x) , where x denotes the

parameters of the model (neural networks in our case), and
fi denotes the loss function of the i-th (out of N ) training
data examples. To introduce our notation, we recall a
standard update of mini-batch SGD at iteration t, computed
on K devices:

xt+1 := xt − γt
[

1
KB

∑K
k=1

∑
i∈Ikt
∇fi(xt)

]
. (1)

Here Ikt denotes a subset of the training points selected on
device k (typically selected uniformly at random) and we
denote by B :=

∣∣Ikt ∣∣ the local mini-batch size and by γt the
step-size (learning rate).

3.1. Accelerated (Stochastic) Local Extragradient for
Distributed Training

Motivated by the idea of randomized smoothing in the clas-
sic optimization literature (as for reducing the Lipschitz
constant of the gradient), we here introduce the novel idea
of using extragradient locally, as a way of smoothing loss
surface, for efficient distributed large-batch training.

The original idea of extrapolation (or extragradient (Kor-
pelevich, 1976)) was developed to stabilize optimization
dynamics on saddle-point problems for a single worker,
such as e.g. in GAN training (Gidel et al., 2018; Chavdarova
et al., 2019). The idea is to compute the gradient at an ex-
trapolated point, different from the current point from which
the update will be performed:

xt+ 1
2

= xt − γ∇f(xt) , xt+1 = xt − γ∇f(xt+ 1
2
) .

This step is intrinsically different from the well-known and
widely used accelerated method (i.e. Nesterov momentum):

xt+ 1
2

= xt + uvt ,vt+1 = uvt − γ∇f(xt+ 1
2
) ,

xt+1 = xt+ 1
2
− γ∇f(xt+ 1

2
) ,

where here 1 > u ≥ 0 denotes the momentum parameter.
The key difference lies in the lookahead step for the gradient
computation of these two methods.

Considering different extrapolated local models (with Nes-
terov momentum) under the distributed training, EXTRAP-
SGD combines the effects of randomized smoothing and
the stabilized optimization dynamics through extrapola-
tion. Our EXTRAP-SGD follows the idea of extrapolating
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Figure 1. Illustrated EXTRAP-SGD (K=2).

from the past (currently only used for single worker train-
ing (Gidel et al., 2018; Daskalakis et al., 2017)), as a means
to avoid additional cost for gradients used to form an ex-
trapolation point. The EXTRAP-SGD method is detailed in
Algorithm 1 and illustrated in Figure 11, where the previous
local gradients are used for the extrapolation and the super-
script k stresses that local models are different. Using the
past local mini-batch gradients (∇fi(xkt− 1

2

)) for extrapola-
tion (at time t) is a computationally efficient and allows the
extrapolation scale γ̂ to directly take on the learning rate
used for small mini-batch training with size B, thus avoids
the difficulty of hyper-parameter tuning. Note that setting
γ̂ = 0 in Algorithm 1 (line 2) recovers the SOTA large
batch training method, i.e., mini-batch SGD with Nesterov
momentum.

To the best of our knowledge, it is the first time such an
extragradient method is used locally with Nesterov Momen-
tum under the framework of smoothing, for accelerated and
smoothed distributed optimization.

Algorithm 1 EXTRAP-SGD
input: learning rate γ, inner learning rate γ̂, momentum factor u,

initial parameter x0, initial moment vector v0=0, time step
t=0, worker index k.

1: while xt not converged do
2: xk

t+ 1
4
= xt − γ̂

B

∑
i∈Ikt

∇fi(xkt− 1
2
) . extrapolation step

3: xk
t+ 1

2
= xk

t+ 1
4
+ uvt . Nesterov momentum

4: vt+1 = uvt − γ
KB

∑
k,i∈Ikt

∇fi(xkt+ 1
2
) . update buffer

5: xt+1 = xt + vt+1 . actual update
6: end while

output: xt.

3.2. Unified Extrapolation Framework

Our Algorithm 1 can be extended to a more general extrapo-
lation framework for distributed training, by using diverse
extrapolation choices ζkt . It is achieved by replacing line 2 in
Algorithm 1 by xk

t+ 1
4

=xt− γ̂ζkt . We denote our framework

as extrapolated SGD, covering different choices of noise ζkt
1 we omit the extrapolation step in line 2 when t=0.
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(e.g. Gaussian noise, uniform noise, and stochastic gradient
noise) and EXTRAP-SGD (past mini-batch gradients). We
detail some choices of ζkt below and use them as our close
baselines for EXTRAP-SGD:

• ζkt as a form of isotropic noise. The noise can be sam-
pled from e.g. an isotropic Gaussian or uniform distribution.
Following the idea of Li et al. (2017), the strength of noises
added to a filter can be linearly scaled by the l2 norm of the
filter, instead of fixing a constant perturbation strength over
different layers. Formally, the scaled noise ζkt of j-th filter
at layer i on worker k follows ‖xt,i,j‖ · ζ̂kt,i,j/

∥∥ζ̂kt,i,j∥∥. A
similar idea was proposed in SmoothOut (Wen et al., 2018),
corresponding to letting ζkt := ζt in our framework.
• ζkt as a form of anisotropic noise. Kleinberg et al. (2018)
interpret sequential SGD updates as GD with stochastic
gradient noise convolution over update steps. This motivates
to use stochastic gradient noise for smoothing (similarly
proposed in Haruki et al. (2019)), thus ζkt can be chosen as:

1
B

∑
i∈Ikt
∇fi(xkt− 1

2

)− 1
KB

∑
k

∑
i∈Ikt
∇fi(xkt− 1

2

) .

The side effects of these noise extrapolation variants are the
training setup sensitivity, causing the hyperparameter tuning
difficulty and limited practical applications. For example,
the isotropic noise requires to manually design the noise
distribution for each model and dataset; the anisotropic noise
distribution will be dynamically varied by different choices
of the number of workers, the local mini-batch size, and the
objective of the learning task (Zhang et al., 2019).

Despite the existence of variants (Wen et al., 2018; Haruki
et al., 2019) and their reported empirical results2, none of
them has analyzed their convergence behaviors. In the next
section, we provide rigorous convergence analysis for our
algorithm for distributed training (illustrated in Algorithm 1,
which also includes the SOTA practical training algorithm).
In Section 5, we empirically evaluate all related methods to
better understand the benefits of using extrapolation with
smoothing for distributed large-batch training.

4. Theoretical Analysis of Nesterov
Momentum and EXTRAP-SGD

We now turn to the theoretical convergence analysis, i.e. we
derive an upper bound on the number of iterations to find
an approximate solution with small gradient norm.

Following the convention in distributed stochastic optimiza-
tion, We denote by f? a lower bound on the values of f(x)

2 The empirical results of Haruki et al. (2019) are not solid.
Taking the results of CIFAR-10 for mini-batch size 8,192 into
account and use three trials’ experimental results for the same
choice of ζkt (e.g. layerwise uniform noise) as an example, our
experimental results can reach reasonable test top-1 accuracy (at
around 91), much better than their presented results (at around 63).

and use the following assumptions:
Assumption 1 (Unbiased Stochastic Gradients). ∀i ∈
[N ], t ∈ [T ], it holds E [∇fi(xt)] = ∇f(xt).
Assumption 2 (Bounded Gradient Variance). ∃σ2 >

0,∀i ∈ [N ], t ∈ [T ], s.t. E
[
‖∇fi(xt)−∇f(xt)‖2

]
≤ σ2.

Here σ2 quantifies the variance of stochastic gradients at
each local worker and we assume workers access IID train-
ing dataset (e.g., data center setting).
Assumption 3 (Lipschitz Gradient). ∃L > 0, s.t. ∀x,y ∈
Rd, i ∈ [N ], the objective function fi : Rd → R satisfies
the following condition ‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

4.1. Analysis for Mini-batch SGD (with Nesterov
Momentum)

In this section we first recall the known convergence guar-
antees for mini-batch SGD (without momentum) on non-
convex functions for later reference, and then derive new
guarantees for mini-batch SGD with Nesterov momentum.
Theorem 4.1 (Convergence of stochastic distributed mini–
batch SGD for non-convex functions (Ghadimi & Lan,
2016)). Under Assumptions 1–3, after T mini-batch gradi-
ent updates, each using KB samples, the mini-batch SGD
returns an iterate x satisfying

E
[
‖∇f(x)‖2

]
≤ O

(
L(f(x0)−f?)

T +
σ
√
L(f(x0)−f?)√
KBT

)
.

The second term in the rate is asymptotically dominant as
long as KB = O

(
σ2T

L(f(x0)−f?)
)
. In this regime, increas-

ing the mini-batch size gives a linear speedup, as T =

O
(σ2L(f(x)−f?)

KBε2

)
decreases in KB, as similarly pointed

out by Wang & Srebro (2017). However, when we increase
the mini-batch size beyond this critical point, the first term
dominates the rate and increasing the mini-batch size further
will have less impact on the convergence. This phenomenon
has also been empirically verified in deep learning applica-
tions (Shallue et al., 2018).

In practice, mini-batch SGD with Nesterov momentum (Nes-
terov, 1983) is the state-of-the-art deep learning training
scheme. However, previous theoretical analysis normally
relies on the strong assumption of the bounded mini-batch
gradients (Yan et al., 2018). Here we provide a better
convergence analysis without such an assumption for dis-
tributed mini-batch SGD with Nesterov momentum follow-
ing closely Yu et al. (2019). The convergence rate is detailed
in Theorem 4.2, and for the proof details we refer to Sec-
tion A of Appendix I.
Theorem 4.2 (Convergence of mini-batch SGD with Nes-
terov momentum for non-convex functions). Under As-
sumption 1–3, for mini-batch SGD with Nesterov mo-
mentum, i.e., xt+ 1

2
= xt + uvt, vt+1 = uvt −
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γ
KB

∑K
k=1

∑
i∈Ikt
∇fi(xt+ 1

2
), xt+1 = xt + vt+1, we can

show that for optimally tuned stepsize (cf. Lemma A.4)
γ ≤ 2(1−u)2

L(u3+1) , it holds

E
[
‖∇f(x)‖2

]
= O

(
Lr0(u

3+1)
T (1−u) +

√
2Lr0σ2

KBT (1−u)

)
,

where here x denotes a uniformly at random selected xt+ 1
2

iterate, i.e. 1
T

∑T−1
t=0

∥∥∇f(xt+ 1
2
)
∥∥2, and r0 := f(x0)− f?.

The second term is asymptotically dominant as long as
KB = O

(
(1−u)

(u3+1)2
σ2T

L(f(x0)−f?)

)
and for small K we can

achieve the linear speedup where T = O
(
Lσ2(f(x0)−f?)
(1−u)KBε2

)
.

Remark 4.3. Yu et al. (2019) argue that a linear speedup
O(1/

√
KT ) for SGD with the local Nesterov momentum-

can be achieved. However, this claim is only valid for large
T and stepsize γ =

√
K/T , cf. (Yu et al., 2019, Cor. 1).

We here tune the stepsize differently and show a tighter
bound that holds for all T , providing a better critical mini-
batch size analysis (diminishing linear speedup in terms of
optimization) for mini-batch SGD with Nesterov momen-
tum (Shallue et al., 2018).

4.2. Convergence of EXTRAP-SGD

In this subsection, we show the convergence analysis for
our novel EXTRAP-SGD for non-convex functions. We also
include the analysis for other noise variants of extrapolated
SGD, which explains their potential limitations. The proof
details can be found in the Section B of Appendix I.

Theorem 4.4 (Convergence of EXTRAP-SGD for non-con-
vex functions). Under Assumption 1–3, and by defining
x̄t+ 1

2
:= 1

K

∑
k=1 x

k
t+ 1

2

, it holds for γ̂ ≤ u2

(1−u)2 γ and

γ ≤ (1−u)2
L(1+3u+u3) :

E 1
T

∑T−1
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2

≤ 2(1−u)
γT E [f(x̄0)− f?] +

(
4γ̂2L2

B + γL(1+3u)
(1−u)2BK

)
σ2 .

Remark 4.5. Using past local gradients for extrapola-
tion in EXTRAP-SGD allows us to directly set γ̂ ≈ γ

K

for EXTRAP-SGD, where the constraint of γ̂ ≤ u2

(1−u)2 γ is
normally satisfied.

Corollary 4.6. Considering Theorem 4.4 and tuning
the stepsize as in Lemma A.4, with γ ≤ (1−u)2

L(1+3u+u3)

and γ̂ ≤ γ
K , and r0 := f(x0) − f?, we can

rewrite the convergence rate of Theorem 4.4 as

E
[

1
T

∑T−1
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2]

= O
(

4(u3 + 3u+ 1) Lr0
T (1−u) + 2

√
(19u+1)

(u3+3u+1)
2Lr0σ2

KBT (1−u)

)
.

The second term is asymptotically dominant as long
as KB = O

( (19u+1)(1−u)
(u3+3u+1)3

σ2T
L(f(x0)−f?)

)
and for small

K we can achieve the linear speedup where T =

O
(
Lσ2(f(x0)−f?)

KBε2
19u+1

(u3+3u+1)(1−u)

)
,

Remark 4.7. By setting u = 0, we recover the same
rates for EXTRAP-SGD in non-convex cases (Theorem 4.2
and Corollary 4.6) as for standard mini-batch SGD (Theo-
rem 4.1) but we cannot show an actual speedup over mini-
batch SGD by setting u > 0. However, thus might not
necessarily be a limitation of our approach as to the best
of our knowledge, there exist so far no theoretical results
for stochastic momentum methods that can show a speedup
over mini-batch SGD.

The analysis below extends the proof of EXTRAP-SGD to
the other cases of our extrapolated SGD framework.

Theorem 4.8. Under the extrapolation framework, IID ran-
dom noise ζkt (instead of the past local mini-batch gradients
in Algorithm 1) is used for the local extrapolation, where
E
[
ζkt
]

= 0 and E
[∥∥ζkt ∥∥2] ≤ σ̂2. Under Assumption 1–3,

it holds for γ ≤ (1−u)2
L(1+u+u3) :

E 1
T

∑T−1
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2 ≤ 2(1−u)

γT E [f(ȳ0)− f(ȳT )]

+ γL(1+u)
(1−u)2BKσ

2 + (L2 + (1−u)2L
γu3K )2γ̂2T σ̂2 .

Remark 4.9. The choice of using random noise for extrap-
olation in Theorem 4.8 requires the manual introduction
of the noise distribution (σ̂2) for each problem setup. The
dependence on the unknown relationship between σ̂2 and σ2

results in the difficulty of providing a concise convergence
analysis (e.g. exact convergence rate, the critical mini-batch
size) for Theorem 4.8.

5. Experiments
We first briefly outline the general experimental setup below
(for more details refer to Appendix C) and then thoroughly
evaluate our framework on different challenging large-batch
training tasks. We limit our attention to three standard and
representative benchmarking tasks, with a controlled epoch
budget (for each task). We ensure the used mini-batch size is
a significant fraction of the whole dataset. Performing exper-
iments on a much larger dataset for the same demonstration
purposes is out of our computational ability3.

3 E.g., we use the mini-batch size of 8,192 (roughly 16% of
the total data), out of 50,000 samples for CIFAR as our main tool
of justification. While for ImageNet (Russakovsky et al., 2015)
with 1.28 million data samples in total, the same fraction would
result in roughly 800 workers for local mini-batch of size 256.
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Figure 2. Understanding the learning behaviors of different methods on the large-batch training (with mini-batch size 8, 192 on 32
workers) for training ResNet-20 on CIFAR-10. The visualization of smoothness in Figure 2(b) follows the idea in (Santurkar et al., 2018;
Haruki et al., 2019); it takes 8 additionally steps (each with 30% of the update) in the direction of the update for each training step, and
the smoothness of a training step is expressed by the maximum value of L (evaluated after local update steps) satisfying the Assumption 3.
We use the learning rate scaling and warmup in Goyal et al. (2017) for the first 5 epochs, and γ and γ̃ are fine-tuned for different methods.

5.1. Experimental Setup

Datasets. We evaluate all methods on the follow-
ing three tasks: (1) Image Classification for CIFAR-
10/100 (Krizhevsky & Hinton, 2009) (50K training sam-
ples and 10K testing samples with 10/100 classes) with the
standard data augmentation and preprocessing scheme (He
et al., 2016; Huang et al., 2016b); (2) Language Modeling
for WikiText2 (Merity et al., 2016) (the vocabulary size is
33K, and its train and validation set have 2 million tokens
and 217K tokens respectively); and (3) Neural Machine
Translation for Multi30k (Elliott et al., 2016).

Models and training schemes. Several benchmarking
models are used in our experimental evaluation. (1) ResNet-
20 (He et al., 2016) and VGG-11 (Simonyan & Zisser-
man, 2014) on CIFAR for image classification, (2) two-
layer LSTM (Merity et al., 2017) with hidden dimension
of size 128 on WikiText-2 for language modeling, and
(3) a down-scaled transformer (factor of 2 w.r.t. the base
model in Vaswani et al. (2017)) for neural machine trans-
lation. Weight initialization schemes for the three tasks
follow Goyal et al. (2017); He et al. (2015), Merity et al.
(2017) and Vaswani et al. (2017) respectively.

We use mini-batch SGD with a Nesterov momentum of 0.9
without dampening for image classification and language
modeling tasks, and Adam for neural machine translation
tasks. In the following experiment section, the term “mini-
batch SGD” indicates the mini-batch SGD with Nesterov
momentum unless mentioned otherwise.

For experiments on image classification and language mod-
eling, unless mentioned otherwise the models are trained
for 300 epochs; the local mini-batch sizes are set to 256
and 64 respectively. By default, all related experiments will
use learning rate scaling and warmup scheme4 (Goyal et al.,
2017; Hoffer et al., 2017). The learning rate is always grad-
ually warmed up from a relatively small value for the first
few epochs. Besides, the learning rate γ in image classifica-
tion task will be dropped by a factor of 10 when the model
has accessed 50% and 75% of the total number of training
samples (He et al., 2016; Huang et al., 2016a). The LARS is
only applied on image classification task5 (You et al., 2017).

For experiments on neural machine translation, we use stan-
dard inverse square root learning rate schedule (Vaswani
et al., 2017). The warmup step is set to 4000 for the mini-
batch size of 64 and will be linearly scaled down by the
global mini-batch size6.

We carefully tune the learning rate γ and the trust term γ̃
in You et al. (2017). The tuning procedure ensures that the
best hyper-parameter lies in the middle of our search grids;
otherwise, we extend our search grid. The procedure of
hyperparameter tuning can be found in Appendix C.1.

4 Since we will fine-tune the (to be scaled) learning rate, there
is no difference between learning rate linear scaling (Goyal et al.,
2017) and square root scaling (Hoffer et al., 2017) in our case.

5 Our implementation relies on the PyTorch extension of
NVIDIA apex for mixed precision and distributed training.

6 We follow the practical instruction from NVIDIA.

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
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5.2. Evaluation on Large-batch Training

Superior performance of EXTRAP-SGD on different
tasks. We evaluate our extrapolation framework and com-
pare it with SOTA large-batch training methods on CIFAR-
10 image classification (Figure 2) and WikiText2 language
modeling (Figure 3). To better exhibit the optimization
behaviors of different methods, for these two tasks in this
section we do not decay the learning rate. The extrapolated
SGD framework in general significantly accelerates the op-
timization and leads to better test performance than the
existing SOTA methods. For example, the smaller gradient
Lipschitz constant illustrated in Figure 2(b) demonstrates
the improved optimization landscape, which explains the
at least 2× speedup in terms of the convergence (after thor-
ough hyperparameter tuning) in Figure 2(a) and Figure 3.

We further extend7 the extrapolation idea of EXTRAP-SGD
to EXTRAP-ADAM and validate its effectiveness (compared
with Adam) on neural machine translation with Transformer.
The algorithmic description refers to Algorithm 3 in Ap-
pendix D.2. Figure 4 shows the results of large-batch train-
ing (using 4% and 16% of the training data per mini-batch)
and EXTRAP-ADAM again outperforms the Adam with at
least 2× speedup.

Optimization v.s. Generalization benefits. To better un-
derstand when and how EXTRAP-SGD (and extrapolated
SGD) help, we switch our attention to the commonly ac-
cepted training practices: using an initial large learning rate
and decaying when the training plateaus. The common be-
liefs8 (LeCun et al., 1991; Kleinberg et al., 2018) argue that,
the initial large learning rate accelerates the transition from
random initialization to convergence regions (optimization),
and the decaying leads the convergence to local minimum
(generalization).

Table 1 thoroughly evaluates the large-batch training perfor-
mance (ResNet-20 on CIFAR-10 for mini-batch size 8,192,
with learning rate decay schedule) for all related methods.
Though the remarkable optimization improvements in Fig-
ure 2(a) justify the effects of EXTRAP-SGD (and extrapo-
lated SGD), i.e. smooth the ill-conditioned loss landscape,
decaying the learning rate diminishes our advantages, as
illustrated in Table 1 and Figure 6 in Appendix. We argue
that EXTRAP-SGD and its variants can smoothen the loss
surface thus avoid some bad local minima regions, but it can-
not guarantee to converge to a much better local minimum9,

7 It is non-trivial to adapt Adam to the noise variants of the
extrapolated SGD.

8 Recent work (Li et al., 2019; You et al., 2020a) comple-
ment the understanding of this phenomenon from the learning of
different patterns via different learning rate scales; we leave the
connection to this aspect for future work.

9 Additional experiments show that switching EXTRAP-SGD
to mini-batch SGD after the first learning rate decay has similar

2 x speedup

K=24 K=48

mini-batch SGD 108.39± 0.31 110.16± 0.67

EXTRAP-SGD 105.86± 0.32 107.86± 0.50

Figure 3. The perplexity (PPL, the lower the better) of training
LSTM on WikiText-2. The global mini-batch size are 1,536 and
3,072 for K = 24 and K = 48 respectively, accounting for 2%
and 4% of the total training data. We use the learning rate scaling
and warmup in Goyal et al. (2017), and use constant learning rate
after the warmup. We finetune the γ for mini-batch SGD (and its
momentum variants); EXTRAP-SGD reuses the hyper-parameter
from mini-batch SGD. The results of the inline table are averaged
over three different seeds. The displayed learning curves are based
on K=24 and more details refer to Appendix E.2.
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Figure 4. Training EXTRAP-ADAM on Multi30k with Transformer.
The evaluations are performed on the validation dataset, for the
training onK=20 andK=80 workers (corresponding to roughly
4% and 16% of the total training data). We use the standard inverse
square root learning rate schedule (Vaswani et al., 2017) and scale
the warmup step based on the number of workers.

contrary to the statements in (Wen et al., 2018; Haruki et al.,
2019). They use (limited) empirical generalization metrics
as the main arguments of the “flatter minima”, ignoring the
complex training dynamics; their ignored SOTA optimiza-
tion techniques (e.g. LARS in some experiments) might also
result in the improper understandings. Our empirical results
provide insights: the primary benefits of EXTRAP-SGD are

test performance as using EXTRAP-SGD alone.
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Table 1. The performance comparison of different methods for large-batch training on CIFAR-10 (mini-batch of size 8,192 on K=32).
Two neural architectures (ResNet-20 and VGG-11) are considered (with and without batch normalization). Unless mentioned otherwise
each method will use the learning rate scaling and warmup in Goyal et al. (2017) and LARS in You et al. (2017). We finetune γ and γ̃
for mini-batch SGD and SmoothOut (with γ̂ additionally). For the results of extrapolated SGD, we reuse the optimal γ and γ̃ tuned on
mini-batch SGD; γ̂ is fine-tuned for noise-based extrapolation variants. The results are averaged over three different seeds.

mini-batch SGD
(w/o LARS)

EXTRAP-SGD
(w/o LARS) mini-batch SGD SmoothOut

(Wen et al., 2018)
extrapolated SGD,

uniform noise
extrapolated SGD,
stochastic noise

EXTRAP-SGD

ResNet-20 on CIFAR-10 90.00± 0.48 90.47± 0.16 91.36± 0.19 91.55± 0.20 91.53± 0.25 91.66± 0.24 91.72± 0.11
VGG-11 on CIFAR-10 73.09± 9.35 76.79± 3.5 86.64± 0.10 86.92± 0.15 87.00± 0.31 86.04± 0.43 87.00± 0.26

on the optimization phase (early training phase) and will
diminish in the later training phase. It is also reflected in
Figure 2(b) in terms of the smoothness.

Combining EXTRAP-SGD with post-local SGD. Given
our new insights in the previous paragraph, here we try to
understand the importance of better optimization brought
by EXTRAP-SGD for the eventual generalization. We con-
sider the post-local SGD in Lin et al. (2020), a known tech-
nique arguing to converge to flatter local minimum for better
generalization. This choice comes from the noticeable op-
timization benefits of EXTRAP-SGD in the initial training
phase while post-local SGD targeting to converge to “flat-
ter minima” for the later training phase. Please refer to
Algorithm 2 in Appendix D.1 for training details.

We argue that EXTRAP-SGD biases the optimization tra-
jectory towards a better-conditioned loss surface, where
solutions with good generalization properties can be found
more easily. Figure 5 challenges the extreme large-batch
training (mini-batch of size 16,384 on 64 workers, account-
ing for 33% of training data) for ResNet-20 on CIFAR-10
with different epoch budgets. We can notice that the im-
proper optimization in the critical initial learning phase of
the mini-batch SGD results in a significant generalization
gap, which cannot be addressed by adding post-local SGD
or increasing the number of training epochs alone. EXTRAP-
SGD, on the contrary, avoids the regions containing bad
local minima, complementing the ability of post-local SGD
for converging to better solutions. Table 2 additionally re-
ports a similar observation for mini-batch of size 8,192 on
more datasets.

5.3. Ablation study

EXTRAP-SGD for different local mini-batch sizes and
number of workers. Table 3 in the Appendix E.1 evalu-
ates how different combinations of the local mini-batch size
and the number of workers will impact the performance,
for a given global mini-batch size (8,192 for ResNet-20 on
CIFAR-10). The benefits of EXTRAP-SGD can be further
pronounced when increasing the number of workers, which
is the common practice for large-batch training. Simi-
lar observation can be found in Figure 4 for the increased
number of workers (as well as the global mini-batch size).
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Figure 5. The test top-1 accuracy of integrating EXTRAP-SGD
with post-local SGD (Lin et al., 2020). The performance of ResNet-
20 on CIFAR-10 is evaluated with a global mini-batch size of
16, 384 (33% of the total training data with 64 workers). By
default we use the learning rate scaling and warmup in Goyal et al.
(2017) and LARS in You et al. (2017). We individually finetune
γ and γ̃ for each base method; the local update step H is tuned
and set to H = 4. The learning rate is decayed by 10 when the
model has accessed 50% and 75% of the total training samples.
The results are averaged over three different seeds.

Understanding the effect of momentum. Given the
mixed effects of local extrapolation and momentum accel-
eration in EXTRAP-SGD, Figure 8 in Appendix E.3 de-
couples these two factors for the training ResNet-20 on
CIFAR-10 with mini-batch of size 8,192. We can witness
that (1) EXTRAP-SGD can take advantages of both extragra-
dient as well as the acceleration from the momentum, and
thus can always be applied for accelerated and stabilized
distributed optimization; (2) using extrapolation alone (no
momentum) in EXTRAP-SGD still outperforms mini-batch
SGD with tuned momentum factor; (3) tuning momentum
factor for mini-batch SGD can marginally improve the opti-
mization performance but cannot eliminate the optimization
difficulty.

6. Conclusion
In this work, we adopt the idea of randomized smoothing
to distributed training and propose EXTRAP-SGD to per-
form extrapolation with past local mini-batch gradients. The
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Table 2. The test top-1 accuracy of integrating EXTRAP-SGD with post-local SGD (Lin et al., 2020). The performance of ResNet-20
on CIFAR-10/100 is evaluated with global mini-batch size 8, 192 (K=32). By default we use the learning rate scaling and warmup
in Goyal et al. (2017) and LARS in You et al. (2017). We individually finetune γ and γ̃ for each method; the local update step H tuned
from {4, 8, 16} (as in Lin et al. (2020)) in general improves the performance and we report the best performance with H=8. The results
are averaged over three different seeds.

mini-batch SGD
mini-batch SGD

(with post-local SGD) EXTRAP-SGD
EXTRAP-SGD

(with post-local SGD)

CIFAR-10 91.36± 0.19 91.73± 0.25 91.72± 0.11 92.23± 0.02
CIFAR-100 65.79± 0.46 67.39± 0.18 66.63± 0.32 68.06± 0.21

idea further extends to a unified framework, covering multi-
ple noise extrapolation variants. We provide convergence
guarantees for methods within this framework, and em-
pirically justify the remarkable benefits of our methods on
image classification, language modeling and neural machine
translation tasks. We further investigate and understand the
properties of our methods; the algorithms smoothen the
ill-conditioned loss landscape for faster optimization and bi-
ases the optimization trajectory to well-conditioned regions.
These insights further motivate us to combine our methods
with post-local SGD for SOTA large-batch training.
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Part I

Omitted proof for the convergence analysis
A. Nonconvex proof for Nesterov Momentum
One iterate of SGD with Nesterov momentum can be expressed as follows:

xt+ 1
2

= xt + uvt , vt+1 = uvt −
γ

BK

K∑
k=1

∑
i∈Ikt

∇fi(xt+ 1
2
) , xt+1 = xt + vt+1 , (2)

where v0 = 0. In the rest of Section A, we use gt := 1
KB

∑K
k=1

∑
i∈Ikt
∇fi(xt) to simplify notation. With this simplication

the iterate (2) can be expressed as follows:

xt+ 1
2

= xt + uvt , vt+1 = uvt − γgt+ 1
2
, xt+1 = xt + vt+1 , (3)

We follow the idea of Yu et al. (2019) and define an auxiliary sequence ȳt for (3):

ȳt =

{
x 1

2
= x0 if t = 0

1
1−uxt+ 1

2
− u

1−uxt− 1
2

+ γu
1−ugt− 1

2
if t ≥ 1

. (4)

We have the following two auxiliary lemmas:

Lemma A.1. Consider the sequence {ȳ} in (4) and for all t ≥ 0, we have ȳt+1 − ȳt = − γ
1−ugt+ 1

2
.

Proof. For the case t = 0, we have

ȳt+1 − ȳt = ȳ1 − ȳ0

=
1

1− u
x 3

2
− u

1− u
x 1

2
+

γu

1− u
g 1

2
− x 1

2

=
1

1− u
(x 3

2
− x 1

2
) +

γu

1− u
g 1

2

=
1

1− u
(uv1 − γg 1

2
) +

γu

1− u
g 1

2

=
1

1− u
(−uγg 1

2
− γg 1

2
) +

γu

1− u
g 1

2

= − γ

1− u
g 1

2

For the case t ≥ 1, we have

ȳt+1 − ȳt =
1

1− u
(xt+ 3

2
− xt+ 1

2
)− u

1− u
(xt+ 1

2
− xt− 1

2
) +

γu

1− u

(
gt+ 1

2
− gt− 1

2

)
=

1

1− u
(uvt+1 − γgt+ 1

2
)− u

1− u
(uvt − γgt− 1

2
) +

γu

1− u
(gt+ 1

2
− gt− 1

2
)

= − γ

1− u
gt+ 1

2
+

u

1− u
(vt+1 − uvt + γgt+ 1

2
) +

γu

1− u
(gt− 1

2
− gt− 1

2
)

= − γ

1− u
gt+ 1

2
.

Lemma A.2. For all t ≥ 0 and xt+ 1
2

defined in (3), we have

T−1∑
t=0

∥∥∥ȳt − xt+ 1
2

∥∥∥2 ≤ u4γ2

(1− u)4

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2 . (5)
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Proof. Following the definition for t = 0, we have

ȳ0 − x 1
2

= 0

For t ≥ 1, we have

ȳt − xt+ 1
2

=
u

1− u
(xt+ 1

2
− xt− 1

2
) +

γu

1− u
gt− 1

2

=
u

1− u
(uvt − γgt− 1

2
) +

γu

1− u
gt− 1

2

=
u2

1− u
vt .

Letting st :=
∑t−1
i=0 u

t−i−1 = 1−ut
1−u and fixing T ≥ 2, we have

T−1∑
t=0

∥∥∥ȳt − xt+ 1
2

∥∥∥2 =

T−1∑
t=1

∥∥∥ȳt − xt+ 1
2

∥∥∥2 =
u4

(1− u)2

T−1∑
t=1

‖vt‖2

Further we bound
∑T−1
t=1 ‖vt‖

2 as follows:

T−1∑
t=1

‖vt‖2 = γ2
T−1∑
t=1

∥∥∥∥∥
t∑
i=1

ut−igi− 1
2

∥∥∥∥∥
2

= γ2
T−1∑
t=1

s2t

∥∥∥∥∥
t−1∑
i=0

ut−i−1

st
gi+ 1

2

∥∥∥∥∥
2

≤ γ2
T−1∑
t=1

s2t

t−1∑
i=0

ut−i−1

st

∥∥∥gi+ 1
2

∥∥∥2 = γ2
T−1∑
t=1

st

t−1∑
i=0

ut−i−1
∥∥∥gi+ 1

2

∥∥∥2
≤ γ2

1− u

T−1∑
t=1

t−1∑
i=0

ut−i−1
∥∥∥gi+ 1

2

∥∥∥2 =
γ2

1− u

T−2∑
i=0

∥∥∥gi+ 1
2

∥∥∥2 T−1∑
t=i+1

ut−i−1

≤ γ2

1− u

T−1∑
i=0

∥∥∥gi+ 1
2

∥∥∥2 ∞∑
t=0

ut =
γ2

(1− u)2

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2 ,
which implies

∑T−1
t=0

∥∥∥ȳt − xt+ 1
2

∥∥∥2 ≤ u4γ2

(1−u)4
∑T−1
t=0

∥∥∥gt+ 1
2

∥∥∥2.

A.1. Main proof of Theorem 4.2

Theorem A.3 (Non-convex convergence of mini-batch SGD with Nesterov momentum). Under Assumption 1, 2, and 3, for
the update rule of mini-batch SGD with Nesterov momentum (3). we can show that, under the condition of γ ≤ 2(1−u)2

L(u3+1) ,

E

[
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2] ≤ 1

1− Lγ(u3+1)
2(1−u)2

(
1

T γ
1−u

E [f(x0)− f?] +
γL

2(1− u)2
σ2

BK

)
.

Proof. From the standard smoothness condition we have, ∀t ≥ 0,

E [f(ȳt+1)− f(ȳt)] ≤ E
[
〈∇f(ȳt), ȳt+1 − ȳt〉+

L

2
‖ȳt+1 − ȳt‖2

]
(a)
= E

[
− γ

1− u

〈
∇f(ȳt) ,gt+ 1

2

〉
+
L

2

∥∥∥∥ γ

1− u
gt+ 1

2

∥∥∥∥2
]

= E

[
− γ

1− u

〈
∇f(xt+ 1

2
) +∇f(ȳt)−∇f(xt+ 1

2
) ,gt+ 1

2

〉
+
L

2

∥∥∥∥ γ

1− u
gt+ 1

2

∥∥∥∥2
]

= E

[
− γ

1− u

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 − γ

1− u

〈
∇f(ȳt)−∇f(xt+ 1

2
) ,∇f(xt+ 1

2
)
〉

+
L

2

∥∥∥∥ γ

1− u
gt+ 1

2

∥∥∥∥2
]
,
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where we use Lemma A.1 for (a).

We can note that

− γ

1− u

〈
∇f(ȳt)−∇f(xt+ 1

2
) ,∇f(xt+ 1

2
)
〉

=

〈
−
√

1− u√
Lu3/2

(
∇f(ȳt)−∇f(xt+ 1

2
)
)
,
γ
√
Lu3/2

(1− u)3/2
∇f(xt+ 1

2
)

〉
(b)

≤ 1− u
2Lu3

∥∥∥∇f(ȳt)−∇f(xt+ 1
2
)
∥∥∥2 +

γ2Lu3

2(1− u)3

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 ,

where (b) follows the basic inequality 〈a,b〉 ≤ 1
2 ‖a‖

2
+ 1

2 ‖b‖
2.

Thus, we have

E [f(ȳt+1)− f(ȳt)]

≤ E
[
− γ

1− u

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

1− u
2Lu3

∥∥∥∇f(ȳt)−∇f(xt+ 1
2
)
∥∥∥2 +

γ2Lu3

2(1− u)3

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

γ2L

2(1− u)2

∥∥∥gt+ 1
2

∥∥∥2]
≤ E

[
− γ

1− u

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

(1− u)L

2u3

∥∥∥ȳt − xt+ 1
2

∥∥∥2 +
γ2Lu3

2(1− u)3

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

γ2L

2(1− u)2

∥∥∥gt+ 1
2

∥∥∥2]
= E

[
(− γ

1− u
+

γ2Lu3

2(1− u)3
)
∥∥∥∇f(xt+ 1

2
)
∥∥∥2 +

(1− u)L

2u3

∥∥∥ȳt − xt+ 1
2

∥∥∥2 +
γ2L

2(1− u)2

∥∥∥gt+ 1
2

∥∥∥2] .
Taking sum over t and averaging by 1

T yields:

1

T

T−1∑
t=0

E [f(ȳt+1)− f(ȳt)] =
1

T
E [f(ȳT )− f(ȳ0)]

≤ E

[(
− γ

1− u
+

Lγ2u3

2(1− u)3

)
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

(1− u)L

2u3
1

T

T−1∑
t=0

∥∥∥ȳt − xt+ 1
2

∥∥∥2 +
γ2L

2(1− u)2
1

T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2]
(c)

≤
(
− γ

1− u
+

Lγ2u3

2(1− u)3

)
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 + E

[
(1− u)Lγ2

2u3
u4

(1− u)4
1

T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2]

+ E

[
γ2L

2(1− u)2
1

T

T−1∑
t=0

∥∥∥gt+ 1
2

∥∥∥2]
(d)

≤
(
− γ

1− u
+

Lγ2u3

2(1− u)3

)
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

(
γ2L

2(1− u)2
+

Luγ2

2(1− u)3

)(
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

σ2

BK

)

=

(
− γ

1− u
+

Lγ2u3

2(1− u)3
+

γ2L

2(1− u)2
+

Luγ2

2(1− u)3

)
1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 +

(
γ2L

2(1− u)2
+

Luγ2

2(1− u)3

)
σ2

BK
,

where the inequality (c) comes from Lemma A.2. For (d), by using E
[
‖X‖2

]
= var [X] + ‖E [X]‖2 and the fact that

var [
∑
iXi] =

∑
i var [Xi] if Xi’s are independent , we get

E
[∥∥∥gt+ 1

2

∥∥∥2] = E


∥∥∥∥∥∥ 1

BK

K∑
k=1

∑
i∈Ikt

gt+ 1
2 ,i

∥∥∥∥∥∥
2


=
1

B2K2

K∑
k=1

∑
i∈Ikt

var
[
gt+ 1

2 ,i

]
+

∥∥∥∥∥∥E
 1

BK

K∑
k=1

∑
i∈Ikt

gt+ 1
2 ,i

∥∥∥∥∥∥
2

2

≤ 1

BK
σ2 +

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 .



Extrapolation for Large-batch Training in Deep Learning

Note that the coefficient of the gradient norm of − γ
1−u + Lγ2u3

2(1−u)3 + γ2L
2(1−u)2 + Luγ2

2(1−u)3 can be simplified as

γ

1− u

(
−1 +

Lγu3

2(1− u)2
+

Lγ

2(1− u)
+

Luγ

2(1− u)2

)
=

γ

1− u

(
−1 +

Lγ(u3 + 1)

2(1− u)2

)
.

By rearranging, we have

1

T

T−1∑
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 ≤ 1

T γ
1−u

(
1− Lγ(u3+1)

2(1−u)2

)E [f(ȳ0)− f(ȳT )] +

(
γ2L

2(1−u)2 + Luγ2

2(1−u)3

)
γ

1−u

(
1− Lγ(u3+1)

2(1−u)2

) σ2

BK

≤ 1

T γ
1−u

(
1− Lγ(u3+1)

2(1−u)2

)E [f(x0)− f?] +

(
γL

2(1−u) + Luγ
2(1−u)2

)
(

1− Lγ(u3+1)
2(1−u)2

) σ2

BK

≤ 1

1− Lγ(u3+1)
2(1−u)2

(
1

T γ
1−u

E [f(x0)− f?] +
γL

2(1− u)2
σ2

BK

)
,

where we have to make the overall coefficient of the RHS positive, i.e., γ ≤ 2(1−u)2
L(u3+1) .

Lemma A.4 (Lemma 13 of Stich & Karimireddy (2019)). For every non-negative sequence {rt}t≥0 and any parameters
d ≥ 0, c ≥ 0, T ≥ 0, there exists a constant γ ≤ 1

d , such that for constant stepsizes {γt = γ}t≥0 it holds

ΨT := 1
T+1

∑T
t=0

(
rt
γt
− rt+1

γt
+ cγt

)
≤ dr0

γ(T+1) + cγ .

Corollary A.5. Consider the Theorem 4.2 and Lemma A.4 with γ ≤ 2(1−u)2
L(u3+1) , we can rewrite the convergence rate of

Theorem 4.2 as

E 1
T

∑T−1
t=0

∥∥∥∇f(xt+ 1
2
)
∥∥∥2 = O

(
Lr0(u

3+1)
T (1−u) +

√
2Lr0σ2

KBT (1−u)

)
.

Proof of Corollary A.5. We first simplify the notations and constraints in Theorem 4.2 by considering ΨT := 1
Tγ r0 + γLσ2

KB ,
where r0 := f(x0) − f? and γ ≤ 1

L . Following the techniques in the proof of the Lemma 13 in Stich & Karimireddy

(2019), we consider two cases: (1) if r0KBLσ2T ≤
1
L2 , then we choose the stepsize γ =

√
r0KB
Lσ2T and get ΨT ≤ 2

√
Lr0σ2

KBT ; (2)

if r0KB
Lσ2T > 1

L2 , then we choose γ = 1
L and get ΨT ≤ Lr0

T + σ2

KB ≤
Lr0
T + Lr0

T . These two bounds together show that

ΨT ≤ 2
√

Lr0σ2

KBT + 2Lr0T .

We then evaluate the exact case of Theorem 4.2 by considering Ψ′T := 1
T γ

1−u
r0 + γL

2(1−u)2
σ2

KB . Similarly, we have the

potential γ to minimize Ψ′T , where γ =
√

2r0KB(1−u)3
Lσ2T and γ = 2(1−u)2

L(u3+1) . Thus, by considering two cases as in previous

paragraph, we have Ψ′T ≤
Lr0(u

3+1)
T (1−u) +

√
2Lr0σ2

KBT (1−u) .

B. Nonconvex proof for EXTRAP-SGD
In the main text we propose to reuse past local gradients (with mini-batch size B) for extrapolation. For the convergence
analysis illustrated in this section, we consider a more general extrapolation framework.

Recall that a general form of EXTRAP-SGD can be defined as:

xt+ 1
4

= xt + uvt ,x
k
t+ 1

2
= xt+ 1

4
− γ̂

b

∑
i∈Îkt

ξkt,i ,vt+1 = uvt −
γ

BK

K∑
k=1

∑
i∈Ikt

∇fi(xkt+ 1
2
) ,xt+1 = xt + vt+1 , (6)
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where v0 = 0 and ξk0,i = 0. The Îkt ⊆ Ikt indicates the possibility of using the samples from the subset of Ikt , and b =
∣∣∣Îkt ∣∣∣.

The ξkt,i could be either fresh local gradient ∇fi(xkt ), or old local gradient ∇fi(xkt− 1
2

). The later choice corresponds to

Algorithm 1 demonstrated in the main paper. Furthermore we could choose 1
b

∑
i∈Îkt

ξkt,i := ζkt as various types of i.i.d.
noise e.g. Gaussian noise, uniform noise and stochastic noise as discussed in Section 3.2. For ease of exposition, we adopt
the following notations:

ξ̄t :=
1

bK

K∑
k=1

∑
i∈Îkt

ξkt,i , gkt,i := ∇fi(xkt ) , ḡt :=
1

bK

K∑
k=1

∑
i∈Îkt

gkt,i , ḡt+ 1
2

:=
1

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i
. (7)

We follow the idea of using virtual sequence (Yu et al., 2019; Stich & Karimireddy, 2019) and define two auxiliary sequences
for our own setup (6):

x̄t+ 1
2

:=
1

K

K∑
k=1

xkt+ 1
2
, (8)

and

ȳt :=

{
x̄ 1

2
= x0 if t = 0

1
1−u x̄t+ 1

2
− u

1−u x̄t− 1
2

+ γu
1−u ḡt− 1

2
+ γ̂

1−u (ξ̄t − uξ̄t−1) if t ≥ 1
. (9)

Following the definition of the virtual sequence in (8), the update scheme in (6) can be rewritten as

x̄t+ 1
2

=
1

K

K∑
k=1

xkt+ 1
2

=
1

K

K∑
k=1

xt + uvt −
γ̂

b

∑
i∈Îkt,i

ξkt,i

 = xt + uvt −
γ̂

bK

K∑
k=1

∑
i∈Îkt

ξkt,i = xt + uvt − γ̂ξ̄t ,

vt+1 = uvt −
γ

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i

= uvt − γḡt+ 1
2
,

xt+1 = xt + vt+1 ,

(10)

We have the following three lemmas:

Lemma B.1. Consider the sequence {ȳ} in (9) and for t ≥ 0, we have

ȳt+1 − ȳt = − γ

1− u
ḡt+ 1

2
.

Proof. For the case t = 0, we have

ȳt+1 − ȳt = ȳ1 − ȳ0

=
1

1− u
(x̄ 3

2
− x̄ 1

2
) +

γu

1− u
ḡ 1

2
+

γ̂

1− u
ξ̄1

=
1

1− u
(uv1 − γḡ 1

2
− γ̂ξ̄1) +

γu

1− u
ḡ 1

2
+

γ̂

1− u
ξ̄1

=
1

1− u
(−uγḡ 1

2
− γḡ 1

2
− γ̂ξ̄1) +

γu

1− u
ḡ 1

2
+

γ̂

1− u
ξ̄1

= − γ

1− u
ḡ 1

2
.
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For the case t ≥ 1 we have

ȳt+1 − ȳt =
1

1− u
(x̄t+ 3

2
− x̄t+ 1

2
)− u

1− u
(x̄t+ 1

2
− x̄t− 1

2
) +

γu

1− u
(ḡt+ 1

2
− ḡt− 1

2
) +

γ̂

1− u
(ξ̄t+1 − ξ̄t − uξ̄t + uξ̄t−1)

=
1

1− u
(uvt+1 − γḡt+ 1

2
+ γ̂ξ̄t − γ̂ξ̄t+1)− u

1− u
(uvt − γḡt− 1

2
+ γ̂ξ̄t−1 − γ̂ξ̄t)

+
γu

1− u
(ḡt+ 1

2
− ḡt− 1

2
) +

γ̂

1− u
(ξ̄t+1 − ξ̄t − uξ̄t + uξ̄t−1)

=
1

1− u
(uvt+1 − γḡt+ 1

2
) +

γ̂

1− u
(ξ̄t − ξ̄t+1)− u

1− u
(uvt − γḡt− 1

2
)− uγ̂

1− u
(ξ̄t−1 − ξ̄t)

+
γu

1− u
(ḡt+ 1

2
− ḡt− 1

2
) +

γ̂

1− u
(ξ̄t+1 − ξ̄t)−

uγ̂

1− u
(ξ̄t − ξ̄t−1)

=
1

1− u
(uvt+1 − γḡt+ 1

2
)− u

1− u
(uvt − γḡt− 1

2
) +

γu

1− u
(ḡt+ 1

2
− ḡt− 1

2
)

= − γ

1− u
ḡt+ 1

2
+

u

1− u
vt+1 −

u

1− u
(uvt − γḡt+ 1

2
) +

γu

1− u
(ḡt− 1

2
− ḡt− 1

2
)

= − γ

1− u
ḡt+ 1

2
.

Lemma B.2. For T ≥ 2 and x̄t+ 1
2

defined in (8), we have

E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2] ≤ (1 + β)
u4γ2

(1− u)4
E

[
T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2]+ (1 +
1

β
)γ̂2E

[
T−1∑
t=0

∥∥ξ̄t∥∥2] , ∀β > 0 .

If we reuse past local stochastic gradients with mini-batch size B, i.e. ξ̄t =

{
0 if t = 0

ḡt− 1
2

if t ≥ 1
, by choosing β = 1 and

γ̂ ≤ u2

(1−u)2 γ, we obtain the simplified expression:

E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2] ≤ 4u4γ2

(1− u)4
E

[
T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2] ≤ 4u4γ2

(1− u)4
1

BK
Tσ2 +

4u4γ2

(1− u)4

T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2

.

Proof. The proof starts from

ȳt − x̄t+ 1
2

=
u

1− u
(x̄t+ 1

2
− x̄t− 1

2
) +

γu

1− u
ḡt− 1

2
+

γ̂

1− u
(ξ̄t − uξ̄t−1)

=
u

1− u
(uvt − γḡt− 1

2
+ γ̂ξ̄t−1 − γ̂ξ̄t) +

γu

1− u
ḡt− 1

2
+

γ̂

1− u
(ξ̄t − uξ̄t−1)

=
u2

1− u
vt −

uγ

1− u
ḡt− 1

2
+

uγ̂

1− u
ξ̄t−1 −

uγ̂

1− u
ξ̄t +

γu

1− u
ḡt− 1

2
+

γ̂

1− u
ξ̄t −

γ̂u

1− u
ξ̄t−1

=
u2

1− u
vt −

uγ̂

1− u
ξ̄t +

γ̂

1− u
ξ̄t

=
u2

1− u
vt + γ̂ξ̄t .

Thus, we have
∥∥∥ȳt − x̄t+ 1

2

∥∥∥2 =
∥∥∥ u2

1−uvt + γ̂ξ̄t

∥∥∥2 ≤ (1 + β) u4

(1−u)2 ‖vt‖
2

+ (1 + 1
β )γ̂2

∥∥ξ̄t∥∥2, where ‖a + b‖2 ≤
(1 + β) ‖a‖2 + (1 + β−1) ‖b‖2 for β > 0.

Summing over {0, . . . , T − 1}, we then have

T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2 ≤ (1 + β)
u4

(1− u)2

T−1∑
t=0

‖vt‖2 + (1 +
1

β
)γ̂2

T−1∑
t=0

∥∥ξ̄t∥∥2 .
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We define st :=
∑t−1
i=0 u

t−i−1 = 1−ut
1−u ≤

1
1−u . Noticing v0 = 0 and T ≥ 2, we have

T−1∑
t=0

‖vt‖2 =

T−1∑
t=1

‖vt‖2

= γ2
T−1∑
t=1

∥∥∥∥∥
t∑
i=1

ut−iḡi− 1
2

∥∥∥∥∥
2

= γ2
T−1∑
t=1

s2t

∥∥∥∥∥
t−1∑
i=0

ut−i−1

st
ḡi+ 1

2

∥∥∥∥∥
2

≤ γ2
T−1∑
t=1

s2t

t−1∑
i=0

ut−i−1

st

∥∥∥ḡi+ 1
2

∥∥∥2 = γ2
T−1∑
t=1

st

t−1∑
i=0

ut−i−1
∥∥∥ḡi+ 1

2

∥∥∥2
≤ γ2

1− u

T−1∑
t=1

t−1∑
i=0

ut−i−1
∥∥∥ḡi+ 1

2

∥∥∥2 =
γ2

1− u

T−2∑
i=0

∥∥∥ḡi+ 1
2

∥∥∥2 T−1∑
t=i+1

ut−i−1

≤ γ2

1− u

T−1∑
i=0

∥∥∥ḡi+ 1
2

∥∥∥2 ∞∑
t=0

ut =
γ2

(1− u)2

T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2 ,
which implies

T−1∑
t=0

∥∥∥yt − xt+ 1
2

∥∥∥2 ≤ (1 + β)
u4γ2

(1− u)4

T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2 + (1 +
1

β
)γ̂2

T−1∑
t=0

∥∥ξ̄t∥∥2 .
Further if we reuse the past local gradients with mini-batch B, i.e. ξ̄t =

{
0 if t = 0

ḡt− 1
2

if t ≥ 1
, and choose β = 1 and

γ̂ ≤ u2

(1−u)2 γ, we obtain

T−1∑
t=0

∥∥∥yt − xt+ 1
2

∥∥∥2 ≤ 4u4γ2

(1− u)4

T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2 .
By using the fact that E

[
‖X‖2

]
= var [X] + ‖E [X]‖2 and that var [

∑
iXi] =

∑
i var [Xi] if Xi’s are independent , we get

E
[∥∥∥ḡt+ 1

2

∥∥∥2] = E


∥∥∥∥∥∥ 1

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i

∥∥∥∥∥∥
2
 =

1

B2K2

K∑
k=1

∑
i∈Ikt

var
[
gkt+ 1

2 ,i

]
+

∥∥∥∥∥∥E
 1

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i

∥∥∥∥∥∥
2

2

≤ 1

BK
σ2 +

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2

,

where we rely on Assumption 1, 2. Thus,

E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2] ≤ 4u4γ2

(1− u)4

T−1∑
t=0

 1

BK
σ2 +

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2


=

4u4γ2

(1− u)4
1

BK
Tσ2 +

4u4γ2

(1− u)4

T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2

.

Lemma B.3. For all t ≥ 0, xk
t+ 1

2

defined in (6) and x̄t+ 1
2

in (10), we have

E

[
1

K

K∑
k=1

∥∥∥x̄t+ 1
2
− xkt+ 1

2

∥∥∥2] ≤ E

γ̂2
∥∥∥∥∥∥ξ̄t − 1

b

∑
i∈Îkt

ξkt,i

∥∥∥∥∥∥
2
 , (11)
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where b :=
∣∣∣Îkt ∣∣∣.

If we reuse past local gradients, i.e. ξ̄t =

{
0 if t = 0

ḡt− 1
2

if t ≥ 1
, we have E

[
1
K

∑K
k=1

∥∥∥x̄t+ 1
2
− xk

t+ 1
2

∥∥∥2] ≤ 4γ̂2

b σ
2.

Alternatively if we use i.i.d. noise, i.e. 1
b

∑
i∈Îkt

ξkt,i =

{
0 if t = 0

ζkt if t ≥ 1
, with ζkt being i.i.d., E

[
ζkt
]

= 0 and E
[∥∥ζkt ∥∥2] ≤

σ̂2, we have E
[

1
K

∑K
k=1

∥∥∥x̄t+ 1
2
− xk

t+ 1
2

∥∥∥2] ≤ 2γ̂2σ̂2.

Proof. By definition, for t = 0, E
[∥∥∥x̄ 1

2
− xk1

2

∥∥∥2] = 0.

For t ≥ 1, we have the following

E
[∥∥∥x̄t+ 1

2
− xkt+ 1

2

∥∥∥2] = E


∥∥∥∥∥∥xt + uvt − γ̂ξ̄t −

xt + uvt −
γ̂

b

∑
i∈Îkt

ξkt,i

∥∥∥∥∥∥
2
 = E

γ̂2
∥∥∥∥∥∥ξ̄t − 1

b

∑
i∈Îkt

ξkt,i

∥∥∥∥∥∥
2


If we reuse past local gradients i.e. ξkt,i = gk
t− 1

2

, then we have

E

γ̂2
∥∥∥∥∥∥ξ̄t − 1

b

∑
i∈Îkt

ξkt,i

∥∥∥∥∥∥
2
 = E

[
γ̂2
∥∥∥ḡt− 1

2
−∇f(xt− 1

2
) +∇f(xt− 1

2
)− gkt− 1

2

∥∥∥]

≤ 2γ̂2E
[(∥∥∥ḡt− 1

2
−∇f(xt− 1

2
)
∥∥∥2 +

∥∥∥∇f(xt− 1
2
)− gkt− 1

2

∥∥∥2)]
(a)

≤ 2γ̂2(
1

Kb
+

1

b
)σ2 ≤ 4γ̂2

b
σ2 ,

where (a) is from the Assumption 2 and the independence between data samples.

Alternatively if we use i.i.d. noise, i.e. 1
b

∑
i∈Îkt

ξkt,i =

{
0 if t = 0

ζkt if t ≥ 1
, with ζkt being i.i.d., E

[
ζkt
]

= 0 and E
[∥∥ζkt ∥∥2] ≤

σ̂2, we have

E

γ̂2
∥∥∥∥∥∥ξ̄t − 1

b

∑
i∈Îkt

ξkt,i

∥∥∥∥∥∥
2
 = γ̂2E

∥∥∥∥∥ζkt − 1

K

K∑
k=1

ζkt

∥∥∥∥∥
2


= γ̂2E

∥∥ζkt ∥∥2 +

∥∥∥∥∥ 1

K

K∑
k=1

ζkt

∥∥∥∥∥
2

− 2

K

K∑
i=1

〈ζit , ζkt 〉


= γ̂2E

[∥∥ζkt ∥∥2 +
1

K2

K∑
k=1

∥∥ζkt ∥∥2 − 2

K

∥∥ζkt ∥∥2
]

≤ γ̂2(σ̂2 +
1

K
σ̂2) ≤ 2γ̂2σ̂2 .

Combining these yields the lemma.

B.1. Main proof of Theorem 4.4

We duplicate the Theorem 4.4 appearing in the main paper as the Theorem B.4.
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Theorem B.4. Consider the update rule of EXTRAP-SGD with notations defined in (7),

xt+ 1
4

= xt + uvt ,x
k
t+ 1

2
= xt+ 1

4
− γ̂gkt− 1

2
,vt+1 = uvt − γḡt+ 1

2
,xt+1 = xt + vt+1 .

We define x̄t+ 1
2

:= 1
K

∑
k=1 x

k
t+ 1

2

as well as the following virtual sequence

ȳt :=

{
x̄ 1

2
= x0 if t = 0

1
1−u x̄t+ 1

2
− u

1−u x̄t− 1
2

+ γu
1−u ḡt− 1

2
+ γ̂

1−u (ḡt− 1
2
− uḡt− 3

2
) if t ≥ 1

,

where ḡ− 1
2

= 0 by default.
Under Assumption 1- 3, the convergence rate of x̄t+ 1

2
for a non-convex function follows

E

[
1

T

T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γT
E [f(x̄0)− f?] +

(
4γ̂2L2

B
+

γL(1 + 3u)

(1− u)2BK

)
σ2 ,

where γ̂ ≤ u2

(1−u)2 γ and γ ≤ (1−u)2
L(1+3u+u3) .

Proof. We start from the standard smoothness inequality

E [f(ȳt+1)− f(ȳt)] ≤ E
[
〈∇f(ȳt), ȳt+1 − ȳt〉+

L

2
‖ȳt+1 − ȳt‖2

]
(1)
= E

[
〈∇f(ȳt), −

γ

1− u
ḡt+ 1

2
〉
]

+ E
[

γ2L

2(1− u)2

∥∥∥ḡt+ 1
2

∥∥∥2]
= E

[〈
∇f(ȳt)−∇f(x̄t+ 1

2
) +∇f(x̄t+ 1

2
), − γ

1− u
1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]
+ E

[
γ2L

2(1− u)2

∥∥∥ḡt+ 1
2

∥∥∥2]

= E

[〈
∇f(ȳt)−∇f(x̄t+ 1

2
), − γ

1− u
1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]
︸ ︷︷ ︸

(a)

+E

[〈
∇f(x̄t+ 1

2
), − γ

1− u
1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]
︸ ︷︷ ︸

(b)

+
γ2L

2(1− u)2
E
[∥∥∥ḡt+ 1

2

∥∥∥2]︸ ︷︷ ︸
(c)

,

where we use Lemma B.1 for (1).

For (a), we have

E

[〈
∇f(ȳt)−∇f(x̄t+ 1

2
), − γ

1− u
1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]
(2)

≤ E
[

1− u
2u3L

∥∥∥∇f(ȳt)−∇f(x̄t+ 1
2
)
∥∥∥2]+ E

 Lγ2u3

2(1− u)3

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2


(3)

≤ E
[

(1− u)L

2u3

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2]+ E

 Lγ2u3

2(1− u)3

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2
 ,

where the inequality (2) is due to the basic inequality 〈a,b〉 ≤ β
2 ‖a‖

2
+ 1

2β ‖b‖
2 with β = 1−u

Lu3 and (3) is from
Assumption 3.
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For (b), we have

E

[〈
∇f(x̄t+ 1

2
), − γ

1− u
1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]

= − γ

1− u
E

[〈
∇f(x̄t+ 1

2
),

1

K

K∑
k=1

∇f(xkt+ 1
2
)

〉]

(4)
= − γ

2(1− u)
E

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2 +

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

−

∥∥∥∥∥∇f(x̄t+ 1
2
)− 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2


(5)

≤ − γ

2(1− u)
E

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2 +

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

− L2

K
E

[
K∑
k=1

∥∥∥x̄t+ 1
2
− xkt+ 1

2

∥∥∥2]


(6)

≤ − γ

2(1− u)

E
[∥∥∥∇f(x̄t+ 1

2
)
∥∥∥2]+ E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2
− 4γ̂2L2

B
σ2

 ,

where the equality (4) comes from 〈a,b〉 = 1
2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
, the inequality (5) is due to Assumption 3 and

(6) is from Lemma B.3.

For (c), by using E
[
‖X‖2

]
= var [X] + ‖E [X]‖2 and the fact that var [

∑
iXi] =

∑
i var [Xi] if Xi’s are independent , we

get

E
[∥∥∥ḡt+ 1

2

∥∥∥2] = E


∥∥∥∥∥∥ 1

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i

∥∥∥∥∥∥
2


=
1

B2K2

K∑
k=1

∑
i∈Ikt

var
[
gkt+ 1

2 ,i

]
+

∥∥∥∥∥∥E
 1

BK

K∑
k=1

∑
i∈Ikt

gkt+ 1
2 ,i

∥∥∥∥∥∥
2

2

(7)

≤ 1

BK
σ2 +

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2

,

where (7) follows from Assumption 2.

Thus the smoothness inequality becomes

E [f(ȳt+1)− f(ȳt)] ≤
(1− u)L

2u3
E
[∥∥∥ȳt − x̄t+ 1

2

∥∥∥2]+

(
Lγ2u3

2(1− u)3
− γ

2(1− u)

)
E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2


− γ

2(1− u)
E
[∥∥∥∇f(x̄t+ 1

2
)
∥∥∥2]+

γ

2(1− u)

4γ̂2L2

B
σ2 +

γ2L

2(1− u)2

 1

BK
σ2 + E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2


=
(1− u)L

2u3
E
[∥∥∥ȳt − x̄t+ 1

2

∥∥∥2]+

(
Lγ2u3

2(1− u)3
− γ

2(1− u)
+

γ2L

2(1− u)2

)
E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2


− γ

2(1− u)
E
[∥∥∥∇f(x̄t+ 1

2
)
∥∥∥2]+

(
γ

2(1− u)

4γ̂2L2

B
+

γ2L

2(1− u)2
1

BK

)
σ2 .
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By rearranging, summing over t, and diving both sides by γ
2(1−u) , we have

E

[
T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )] +

(1− u)2L

γu3
E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2]

+

(
γLu3 + γL(1− u)

(1− u)2
− 1

) T−1∑
t=0

E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2
+

(
4γ̂2L2

B
+

γL

1− u
1

BK

)
Tσ2 .

Through Lemma B.2, we have

E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2] ≤ E

[
4u4γ2

(1− u)4

T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2] ≤ 4u4γ2

(1− u)4
1

BK
Tσ2 +

4u4γ2

(1− u)4

T−1∑
t=0

E

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2
 ,

thus,

E

[
T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )] +

(1− u)2L

γu3

 4u4γ2

(1− u)4
1

BK
Tσ2 +

4u4γ2

(1− u)4

T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

2


+

(
γLu3 + γL(1− u)

(1− u)2
− 1

) T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+

(
4γ̂2L2

B
+

γL

1− u
1

BK

)
Tσ2

≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )]

+

(
γLu3 + γL(1− u)

(1− u)2
+

4uγL

(1− u)2
− 1

) T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+

(
4γ̂2L2

B
+

γL

1− u
1

BK
+

4uγL

(1− u)2
1

BK

)
Tσ2

≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )]

+

(
γL
(
u3 + 3u+ 1

)
(1− u)2

− 1

)
T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+

(
4γ̂2L2

B
+

γL(1 + 3u)

(1− u)2BK

)
Tσ2 .

Dividing both sides by T , we have

E

[
1

T

T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2]

≤ 2(1− u)

γT
E [f(ȳ0)− f(ȳT )] +

1

T

(
γL
(
u3 + 3u+ 1

)
(1− u)2

− 1

)
T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+

(
4γ̂2L2

B
+

γL(1 + 3u)

(1− u)2BK

)
σ2 .

Further we choose γ to ensure the coefficient of the gradient norm on the RHS nonpositive (i.e., Lγ(1+3u+u3)
(1−u)2 − 1 ≤ 0,

which implies γ ≤ (1−u)2
L(1+3u+u3) . As a result, we can conclude that

E

[
1

T

T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γT
E [f(ȳ0)− f(ȳT )] +

(
4γ̂2L2

B
+

γL(1 + 3u)

(1− u)2BK

)
σ2 .
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Theorem B.5. Under the extrapolation framework, if we use i.i.d. noise, i.e. 1
b

∑
i∈Îkt

ξkt,i =

{
0 if t = 0

ζkt if t ≥ 1
, with ζkt

being i.i.d., E
[
ζkt
]

= 0 and E
[∥∥ζkt ∥∥2] ≤ σ̂2. Under the same assumption as in Theorem 4.4, we have the following

convergence rate for a non-convex function:

E

[
1

T

T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γT
E [f(ȳ0)− f(ȳT )] +

γL(1 + u)

(1− u)2BK
σ̂2 + (L2 +

(1− u)2L

γu3K
)2γ̂2T σ̂2 ,

where γ ≤ (1−u)2
L(1+u+u3) .

Proof. Following similar procedures in the proof of Theorem B.4, we have

E

[
T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )] +

(1− u)2L

γu3
E

[
T−1∑
t=0

∥∥∥ȳt − x̄t+ 1
2

∥∥∥2]

+

(
γLu3 + γL(1− u)

(1− u)2
− 1

) T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+ 2γ̂2L2T σ̂2 +
γL

1− u
1

BK
Tσ2 .

Simplifying Lemma B.2 by choosing β = 1 and ξ̄t =
∥∥∥ 1
K

∑K
k=1 ζ

k
t

∥∥∥2 gives:

E

[
T−1∑
t=0

∥∥∥yt − xt+ 1
2

∥∥∥2] ≤ 2u4γ2

(1− u)4
E

[
T−1∑
t=0

∥∥∥ḡt+ 1
2

∥∥∥2]+
2γ̂2T

K
σ̂2

≤ 2γ̂2T

K
σ̂2 +

2u4γ2

(1− u)4
1
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Tσ2 +
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(1− u)4
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t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

,

we have the main proof as follows:

E

[
T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2]

≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )] +

(1− u)2L

γu3

2γ̂2T

K
σ̂2 +

2u4γ2

(1− u)4
1

BK
Tσ2 +
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∥∥∥∥∥ 1
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K∑
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∇f(xkt+ 1
2
)

∥∥∥∥∥
2


+

(
γLu3 + γL(1− u)

(1− u)2
− 1

) T−1∑
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∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
2

+

(
γL

1− u
1

BK

)
Tσ2 + 2γ̂2L2T σ̂2

≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )] +

(
γLu3 + γL(1− u)

(1− u)2
+

2uγL

(1− u)2
− 1

) T−1∑
t=0

∥∥∥∥∥ 1

K
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2
)

∥∥∥∥∥
2

+

(
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1− u
+
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)
T
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σ2 + (L2 +

(1− u)2L

γu3K
)2γ̂2T σ̂2

≤ 2(1− u)

γ
E [f(ȳ0)− f(ȳT )]

+

(
γL
(
u3 + u+ 1

)
(1− u)2

− 1

)
T−1∑
t=0

∥∥∥∥∥ 1

K

K∑
k=1

∇f(xkt+ 1
2
)

∥∥∥∥∥
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+
γL(1 + u)

(1− u)2BK
Tσ2 + (L2 +

(1− u)2L

γu3K
)2γ̂2T σ̂2

Dividing both sides by T and choosing γ such that Lγ(1+u+u
3)

(1−u)2 − 1 < 0 yields:

E

[
1

T

T−1∑
t=0

∥∥∥∇f(x̄t+ 1
2
)
∥∥∥2] ≤ 2(1− u)

γT
E [f(ȳ0)− f(ȳT )] +

γL(1 + u)

(1− u)2BK
σ2 + (L2 +

(1− u)2L

γu3K
)2γ̂2T σ̂2
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where we have γ ≤ (1−u)2
L(1+u+u3) .

B.2. Proof of Corollary 4.6

Proof. Following the proof of Corollary A.5, we define r0 := f(x0)− f? and Ψ′T := 2
T γ

1−u
r0 +

(
4γ̂2L2

B + γL(1+3u)
(1−u)2BK

)
σ2.

Ψ′T
(a)

≤ 2
T γ

1−u
r0 +

(
4u2γ2L2

BK(1−u)2 + γL(1+3u)
(1−u)2BK

)
σ2

(b)

≤ 2
T γ

1−u
r0 +

(
4u2γL

BK(1−u)2
(1−u)2
u3+3u+1 + γL(1+3u)

(1−u)2BK

)
σ2

= 2
T γ

1−u
r0 + γLσ2

BK

(
4u2

u3+3u+1 + 1+3u
(1−u)2
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= 2

T γ
1−u

r0 + γLσ2

BK
7u4−7u3+13u2+6u+1

(u3+3u+1)(1−u)2

(c)

≤ 2
T γ

1−u
r0 + γLσ2

BK
19u+1

(u3+3u+1)(1−u)2 ,

where (a) follows from γ̂2 ≤ u2

K(1−u)2 γ
2 ( because of γ̂ ≤ γ

K and γ̂ ≤ u2

(1−u)2 γ), (b) is from γL ≤ (1−u)2
1+3u+u3 and (c) comes

from u4 ≤ u3 ≤ u2 ≤ u.

Similarly, we could choose two values of γ as the minimizer, where γ =
√

2r0KB
Lσ2T

(u3+3u+1)(1−u)3
19u+1 and γ = (1−u)2

L(1+3u+u3) .

Thus, by considering two cases as in Lemma A.4, we have Ψ′T ≤
4Lr0(u

3+3u+1)
T (1−u) + 2

√
2Lr0σ2(19u+1)

KBT (u3+3u+1)(1−u) .

Part II

Experiments
C. Detailed experimental setup
Datasets. We evaluate all methods on the following two tasks: (1) Image classification for CIFAR-10/100 (Krizhevsky &
Hinton, 2009) (50K training samples and 10K test samples with 10/100 classes) with the standard data augmentation and
preprocessing scheme (He et al., 2016; Huang et al., 2016b); (2) Language modeling for WikiText2 (Merity et al., 2016)
(the vocabulary size is 33K, and its train and validation set have 2 million tokens and 217K tokens respectively); and (3)
Neural Machine Translation for Multi30k (Elliott et al., 2016).

Large-batch training in practice. We detail the SOTA large-batch training techniques used in our experiment evaluation:

• Better Optimization:
Goyal et al. (2017) from optimization aspect propose to linearly scale the learning rate with a few epochs warmup. (1)
multiply the learning rate by K when the mini-batch size is multiplied by K; (2) warmup the learning rate from γ to
Kγ through H epochs, where the incremental learning rate for each iteration is calculated from Kγ−γ

HN/(KB) . Note that
N is the number of total training samples and B is the local mini-batch size.

LARS (You et al., 2017; 2020b) argue the layerwise difference in the weight magnitude and propose to scale the
gradient of each layer accordingly for better optimization. The scaled gradient for j-th layer of xt at i-th sample
follows ∇fi,j(xt)×

(
γ̃ × ‖xt,j‖

‖∇fi,j(xt)‖+λ‖xt,j‖

)
, where γ̃ defines how much we trust the layer to change its weights

during one update.

• Better Generalization:
On top of these optimization techniques (Goyal et al., 2017; You et al., 2017), Post-local SGD (Lin et al., 2020) propose
to further inject stochastic noise when converging to the local minima, targeting better generalization. The stochastic
noise is introduced by performing local SGD updates.
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Models and training schemes. Three models are used in our experimental evaluation. (1) ResNet-20 (He et al., 2016)
and VGG-1110 (Simonyan & Zisserman, 2014) on CIFAR for image classification, (2) two-layer LSTM11 (Merity et al.,
2017) with hidden dimension of size 128 on WikiText-2 for language modeling, and (3) a down-scaled transformer (factor
of 2 w.r.t. the transformer base model in Vaswani et al. (2017)) for neural machine translation. Weight initialization schemes
for the three models follow Goyal et al. (2017); He et al. (2015), Merity et al. (2017) and Vaswani et al. (2017) respectively.

We use mini-batch SGD with a Nesterov momentum of 0.9 without dampening for image classification and language
modeling tasks, and Adam for neural machine translation tasks. Unless mentioned otherwise in the following experiment
section, the term “mini-batch SGD” indicates the mini-batch SGD with Nesterov momentum.

For experiments on image classification and language modeling, the models are trained for 300 epochs; the local mini-batch
sizes are set to 256 and 64 respectively. By default all related experiments will use learning rate scaling and warmup
scheme12 (Goyal et al., 2017; Hoffer et al., 2017). The learning rate will gradually warm up from a relative small value
(e.g. 0.1) for the first few epochs. The weight decay of ResNet-20 and LSTM are 1e-4 (He et al., 2016) and 0 (Merity et al.,
2017) respectively. For the Batch Normalization (BN) (Ioffe & Szegedy, 2015) for distributed training we follow Goyal et al.
(2017) and compute the BN statistics independently for each worker; we also do not apply weight decay on the learnable
BN coefficients (He et al., 2016). In addition, the learning rate γ in image classification task will be dropped by a factor of
10 when the model has accessed 50% and 75% of the total number of training samples (He et al., 2016; Huang et al., 2016a).
The LARS is only applied on image classification task13 (You et al., 2017; 2020b).

For experiments on neural machine translation, we use standard inverse square root learning rate schedule as in Vaswani et al.
(2017). The warmup step is set to 4000 for mini-batch size of 64 and will be linearly scaled down by the global mini-batch
size14. Other hyper-parameters follow the default setting in Vaswani et al. (2017). The first and second moment factor of the
adam are set to 0.90 and 0.98 respectively, with the epsilon 10−9. The values of dropout rate and the label smoothing factor
are set to 0.1. The weight decay factor is set to 0.

Implementation and platform. Our algorithms are implemented in PyTorch15 (Paszke et al., 2017) and the distributed
training is supported by MPI and Kubernetes.

C.1. Hyper-parameter tuning procedure and the corresponding values

We carefully tune the learning rate, the trust term γ̃ in You et al. (2017) and our extrapolation term γ̂ for each experimental
setup. For example, for ResNet-20 on CIFAR-10 we tune the optimal unscaled learning rate (i.e. γ/K) for a fixed mini-batch
size B in the range of {0.05, 0.10, 0.15, 0.20} and then linearly scale (and warmup) the learning rate by the factor of K.
The γ̃ is initially searched within {0.01, 0.02, 0.03}, where 0.02 is the default hyperparameter used in NVIDIA apex. The
extrapolation term γ̂ for EXTRAP-SGD and EXTRAP-ADAM is tuned by scaling the γ

K with the factor searched from
{1, 2, 4}; we perform extensive hyper-parameter tuning for the noise variants of the extrapolated SGD, where the scaling
factor of γ

K is searched from {0.1, 0.25, 0.5, 1, 2, 4}. The tuning procedure of the hyper-parameters ensures that the best
hyper-parameter lies in the middle of our search grids; otherwise we extend our search grid.

D. Algorithmic details
D.1. EXTRAP-SGD with Post-local SGD

We combine EXTRAP-SGD with post-local SGD in Algorithm 2. We omit the extrapolation step in line 3 and line 8 when
t=0. The original form of post-local SGD refers to Lin et al. (2020).

10 Due to the resource constraints (GPU memory bound), we down-scaled the original VGG-11 by reducing the number of filters by the
factor of 2.

11 We borrowed and adapted the general experimental setup of Merity et al. (2017). The gradient clip magnitude is 0.4, and dropout
rate is 0.40. The loss is averaged over all examples and timesteps.

12 Since we will fine-tune the (to be scaled) learning rate, there is no difference between learning rate linear scaling (Goyal et al., 2017)
and square root scaling (Hoffer et al., 2017) in our case.

13 Our implementation relies on the PyTorch extension of NVIDIA apex for mixed precision and distributed training.
14 We follow an instruction from NVIDIA.
15 Our code is included in the submission for reproducibility.

https://github.com/NVIDIA/apex
https://github.com/NVIDIA/apex
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/Transformer
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Algorithm 2 EXTRAP-SGD integrated with post-local SGD.

input: learning rate γ, inner learning rate γ̂, momentum factor u, initial parameter x0, initial moment vector v0 = 0, time step t = 0,
worker index k, transition phase (iteration t0) for post-local SGD, and local update steps H .

1: while xt not converged do
2: if t ≤ t0 then
3: xk

t+ 1
4
= xt − γ̂∇f(xkt− 1

2
)

4: xk
t+ 1

2
= xk

t+ 1
4
+ uvt

5: vt+1 = uvt − γ
K

∑K
k=1∇f(x

k
t+ 1

2
)

6: xt+1 = xt + vt+1

7: else
8: xk

t+ 1
4
= xkt − γ̂∇f(xkt− 1

2
)

9: xk
t+ 1

2
= xk

t+ 1
4
+ uvkt

10: vkt+1 = uvkt − γ∇f(xkt+ 1
2
)

11: xkt+1 = xkt + vkt+1

12: if t mod H = 0 then
13: xkt+1 = 1

K

∑K
k=1 x

k
t+1

14: end if
15: end if
16: end while
output: xt.

D.2. Generalized EXTRAP-SGD with Adam

We present the generalized EXTRAP-SGD with Adam (EXTRAP-ADAM) in Algorithm 3. We omit the extrapolation step in
line 2 when t=0.

Algorithm 3 EXTRAP-ADAM.

input: learning rate γ, inner learning rate γ̂, initial parameter x0, initial first-order moment vector m0 = 0, initial second-order moment
vector v0 = 0, time step t = 0, worker index k.

1: while xt not converged do

2: xk
t+ 1

2
= xt − γ̂

β1mt−1+(1−β1)∇f(xk
t− 1

2

)

β2vt−1+(1−β2)∇f(xk
t− 1

2

)2+ε

3: gt =
1
K

∑K
k=1∇f(x

k
t+ 1

2
)

4: mt = β1mt−1 + (1− β1)gt
5: vt = β2vt−1 + (1− β2)g2

t

6: xt+1 = xt − γ mt√
vt+ε

7: end while
output: xt.

E. Additional results
E.1. ResNet-20 on CIFAR-10

The top-1 test accuracy for all related methods on CIFAR-10 is shown in Figure 6.

The effects of different combinations between local batch sizes and worker numbers are evaluated in Table 3.

Table 3. The test top-1 accuracy for ResNet-20 on CIFAR-10 under different combinations of local mini-batch size B and number of
workers K. The global mini-batch size is always set to 8, 192 and we vary K workers (MPI processes). We individually finetune γ and γ̃
for each method on different setups, and the reported results are averaged over three different seeds.

(B=512,K=16) (B=256,K=32) (B=128,K=64) (B=64,K=128)

Mini-batch SGD 91.35± 0.19 91.36± 0.19 91.29± 0.13 91.32± 0.17
EXTRAP-SGD 91.62± 0.32 91.72± 0.11 91.88± 0.27 91.89± 0.24
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Figure 6. Understanding the learning behaviors of different methods on the large-batch training (with mini-batch size 8, 192 on 32
workers) for training ResNet-20 on CIFAR-10. The hyper-parameters are fine-tuned, which are corresponding to the results shown in
Table 1; by default the learning rate is decayed by 10 at epoch 150 and 225.

E.2. LSTM on WikiText2

The learning curves of EXTRAP-SGD and mini-batch SGD with LSTM model on WikiText2 dataset are presented in
Figure 7.
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(a) K=24.
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(b) K=24.
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(c) K=24 V.S. K=48
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(d) K=24 V.S. K=48

Figure 7. The learning curves and perplexity (PPL, the lower the better) of training Wikitext-2 on LSTM. The global mini-batch size are
1536 and 3072 for K=24 and K=48 respectively, accounting for 2% and 4% of the total training data. We use the learning rate scaling
and warmup in Goyal et al. (2017). We finetune the γ for different variants of mini-batch SGD and EXTRAP-SGD have no additional
tuning. The results of the inline table are averaged over three different seeds.
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E.3. Impact of different momentum factors

The impacts of momentum factors on EXTRAP-SGD and mini-batch SGD are demonstrated in Figure 8 and Figure 9.
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(a) The training loss of EXTRAP-SGD v.s. Mini-batch SGD.
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(b) The test top-1 accuracy of EXTRAP-SGD v.s. Mini-batch SGD.

Figure 8. Understanding the behaviors of EXTRAP-SGD and mini-batch SGD for different momentum factors u. The curves are evaluated
on ResNet-20 with CIFAR-10 for mini-batch size 8, 192; we use constant learning rate γ and the LARS trust term γ̃ over the whole
training procedure, for both of mini-batch SGD and EXTRAP-SGD (with default extrapolation term γ̂). The value of γ and γ̃ correspond
to the tuned optimal value in Table 1.
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(a) The training loss of Mini-batch SGD.
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(b) The test top-1 accuracy of Mini-batch SGD.
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(c) The training loss of EXTRAP-SGD.
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(d) The test top-1 accuracy of EXTRAP-SGD.

Figure 9. The performance of EXTRAP-SGD and mini-batch SGD for different momentum factors u. The curves are evaluated on
ResNet-20 with CIFAR-10 for mini-batch size 8, 192; we use constant learning rate γ and the LARS trust term γ̃ over the whole training
procedure, for both of mini-batch SGD and EXTRAP-SGD (with default extrapolation term γ̂). The value of γ and γ̃ correspond to the
tuned optimal value in Table 1.


